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ABSTRACT
Tidal debris from Galactic satellites generally forms one-dimensional elongated streams, since
nearby Galactic orbits have almost identical frequency ratios. We show that the situation is
different for orbits close to the Galactic disc, whose vertical frequency �z is strongly amplitude
dependent. As a consequence, stars stripped from a satellite obtain a range of values for �z

and hence of frequency ratios, and spread into two dimensions, forming a ribbon-like structure
with vertical extent comparable to that of the progenitor orbit. In integrals-of-motion space,
tidal ribbons are clumps, which offer the best chance of detection and allows the determination
of the Galactic potential vertically across the disc.

Key words: galaxies: formation – galaxies: interactions – galaxies: kinematics and
dynamics – galaxies: structure.

1 IN T RO D U C T I O N

Tidal debris streams form via the stripping of stars from galactic
satellites by the tidal field of their host and the subsequent spreading
of the clouds of stripped stars into one-dimensional structures within
six-dimensional phase space. Dozens of such streams have been
discovered in the Milky Way from two- or three-dimensional data
alone (e.g. Grillmair & Carlin 2016), but more are likely to be
found by searches in more phase-space dimensions. The observable
characteristics of these streams constrain the Galactic gravitational
potential, including its time evolution, without the need to assume
equilibrium of some tracer population. They have, for example, been
proposed to constrain the distribution of dark subhaloes orbiting the
Milky Way (Yoon, Johnston & Hogg 2011; Erkal et al. 2016b; Bovy,
Erkal & Sanders 2017), or used to infer the shape of the Galactic
halo (e.g. Koposov, Rix & Hogg 2010; Bowden, Belokurov & Evans
2015; Bovy et al. 2016).

The orbits of debris stars differ only very little from that of
their progenitor, and their drifting away from it originates from that
difference. Thus, the debris delineates not a Galactic orbit, but the
difference between nearby orbits, which accumulates over time. The
orbits of the debris stars also differ between them and comprise a
three-dimensional clump in orbit-space. Why then does the debris
in general form only a one-dimensional structure?

The main reason is that the directions in which nearby orbits
diverge hardly depend on these orbital offsets (in contrast to their
rates of divergence). This is because for many Galactic potentials
the ratios of the orbital frequencies hardly vary. In other words, the
frequency vectors have a preferred direction and their differences
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also point (almost) in this direction. A preferred direction of di-
vergence from the progenitor implies a one-dimensional structure.
Moreover, as this direction is close to that of an orbit, such a stream
nearly delineates an orbit (though not that of the progenitor).

Mathematically, this is best described using action-angle vari-
ables (as first pointed out by Helmi & White 1999; Tremaine 1999,
see also Section 3), which provide a conceptually clear and concise
picture for the linear drift of the debris away from the progeni-
tor. For a chaotic progenitor orbit, action-angle variables cannot
be constructed and nearby trajectories diverge exponentially rather
than linearly. This results in widening of the stream to a degree
which depends on that of the chaos (Price-Whelan et al. 2016). In
fact, if observed, such widening may be used to place constraints
on the presence of chaos in the Galactic potential.

In this study, we show that debris from progenitors on Galactic
disc orbits, i.e. with vertical excursion comparable to a few disc
scale heights, forms not one- but two-dimensional structures: verti-
cally extended ribbons around the Galaxy. Such debris ribbons can
be very useful for constraining the vertical disc potential, i.e. for in-
ferring the Oort limit and the total mass distribution vertically across
the disc, because they trace the full vertical extent at each visited
(R, φ) position within the disc, which may include the Solar neigh-
bourhood. Here, we present numerical simulations demonstrating
the formation of tidal ribbons and provide an explanation in terms
of the action-angle formalism.

2 TI DAL DEBRI S FROM A D I SC PROGENITO R

We simulated the tidal debris from a progenitor with a mass of
106 M� orbiting an axisymmetric model of the Milky Way (Allen &
Santillan 1991) for 5 Gyr on the orbit of the globular cluster 47 Tuc.
Debris is represented as test particles initially sampled onto weakly
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Tidal ribbons 4721

Figure 1. Distribution of simulated debris formed by tidal stripping of stars
from a globular cluster (red) orbiting the Milky Way on a disc orbit (blue)
in the x–y (left) and R–z (right) planes (note the different scales).

bound orbits within the progenitor, thereby correctly modelling the
stripping process (Hasanuddin & Dehnen in preparation).

Fig. 1 plots projections of the spatial distribution of the resulting
tidal debris. In the Galactic plane (left-hand panel), the debris mim-
ics an orbit, but vertically it resembles a band or ribbon. This is also
evident in Fig. 2, where the debris shows a narrow distribution over
azimuthal offset �φ and radius r, but spreads widely over �φ and
vertical position z. In fact, Fig. 2 shows the results from five simu-
lations for different choices of the parameters a and b (as indicated)
of the contribution (Miyamoto & Nagai 1975)

�disc(R, z) = − GMdisc√
R2 +

(
a + √

b2 + z2
)2

(1)

of the Galactic disc to the gravitational potential, at fixed a + b =
5.32 kpc. For a = 0, this reduces to a spherical Plummer (1911)
model, and b = 0 corresponds a razor-thin Kuzmin (1956) disc. The
potential in the disc mid-plane (z = 0) only depends on the sum
a + b, which acts as scale radius, such that Galactic models with
different a, b but the same a + b have the same rotation curve.

For the spherical case (a = 0, bottom panel of Fig. 2), the debris
forms a narrow stream, especially in the �φ–z plot, where it closely
resembles an orbit (this is an immediate consequence of sphericity
when the vertical and azimuthal motions are just two aspects of in-
clined rotation). But for thinner discs (smaller b), the debris deviates
from this picture and fans out to form a vertically extended band.
This can be readily understood in terms of action-angle variables,
as we now show.

3 TIDAL DEBRIS IN AC TION-ANGLE SPAC E

For many situations in galaxy dynamics, the canonical action-angle
phase-space coordinates provide the clearest insight, and tidal debris
is no exception. Pioneered by Tremaine (1999) and Helmi & White
(1999), many studies have used them to this purpose (e.g. Eyre
& Binney 2011; Sanders & Binney 2013a,b; Bovy 2014; Sanders
2014) as we now summarize.

We denote the angle coordinates by θ and their conjugate mo-
menta, the actions, by J . For regular disc orbits, the three actions are
Jr, Jφ , and Jz (for more details and a precise definition see Binney
& Tremaine 2008, Section 3.5). The Hamiltonian is a function of
the actions only: H = H ( J) and the canonical equations of motion

Figure 2. Distribution of debris over azimuthal offset �φ from the progeni-
tor, spherical radius r, and vertical height z. The different panels correspond
to varying degrees of flattening of the Galactic potential: flattest top and
spherical bottom. The case b = 0.25 is the same simulation as shown in
Fig. 1. The models are only complete between the thin vertical lines: be-
yond the lines particles lost prior the start of the simulation would contribute.
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dθ

dt
= �( J) ≡ ∂H

∂ J
and

d J
dt

= −∂H

∂θ
= 0 (2)

have the simple solutions J(t) = J0 and

θ (t) = θ0 + t �, (3)

where a subscript ‘0’ denotes initial values (e.g. Goldstein 1980).
The initial angles and actions of debris stars differ only very little

from those of their progenitor. The corresponding offsets, �θ0 and
�J , then fully describe the time evolution of the debris relative
to the progenitor. From equation (2) of motion, we find that �J
remains at its initial value, while at time �t after the stripping

�θ (t) = �θ0 + �t �� ≈ �t ��. (4)

A comparison with equation (3) shows that the debris behaves like
an orbit, but with the angles and frequencies, θ and �, replaced
with the respective differences, �θ and ��, between debris star
and progenitor. Since

�J · � ≈ �E ≈ �x · ∇� ∝ rtid|∇�| ∝ M
1/3
sat (5)

(e.g. Johnston 1998; Dehnen et al. 2004; Sanders & Binney 2013a)
�J � J for debris from small satellites, and we can accurately
approximate the frequency offset from its Taylor expansion

�� ≈ H · �J, (6)

with the Hessian of the Hamiltonian (Tremaine 1999)

Hik ≡ ∂2H

∂Ji ∂Jk

. (7)

This formalism separates the orbital dynamics, encapsulated in the
matrix H (and the canonical map from θ , J to Cartesian phase-space
coordinates), from the stripping process, providing the distribution
over �θ0, �J , and �t. Tidal streams, shells, and ribbons can all be
naturally explained in this way, as we now demonstrate.

3.1 When does debris form a thin stream?

Consider the situation of a Hamiltonian that depends on the actions
only through a linear combination:

H = f (I ), I = ω · J, (8)

with a constant vector ω and some function f. In this case, energy
surfaces in action space are parallel planes, � = f ′(I ) ω, and

Hik ∝ �i �k (9)

is proportional to the outer self-product of �. Such a H has only one
non-zero eigenvalue λ1 with eigenvector ê1 ∝ � (Tremaine 1999).
Therefore, any action offset �J is projected on to �� ∝ �, and
tidal debris forms one-dimensional streams aligned to an orbit.

For a spherical galaxy, H depends on Jφ and Jz only through the
total angular momentum L = |Jφ | + Jz and one need only consider
the actions Jr and L. For scale-free spherical galaxies, i.e. with
power-law circular velocity vc(r) ∝ rβ ,

Jr (E, L) ≈ ϕ−1 [Lc(E) − L] (10)

(Dehnen 1999) with ϕ = κ/ω = √
2(β + 1) the ratio of the

epicyclic and the circular frequency and Lc(E) the angular mo-
mentum of the circular orbit with energy E. The implied H ( J) is
of the form (8) with ω = (ϕ, 1, 1), such that the frequencies are
approximated as those of the circular orbit with the same energy,
and streams as thin and orbit-aligned (Williams, Evans & Bowden
2014).

For the harmonic (β = 1) and point-mass potentials (β = − 1
2 )

this approximation becomes exact: tidal-disruption events near su-
permassive black holes form elliptic streams (barring general rela-
tivistic effects), as does debris from comets or asteroids (barring the
effect of the Solar wind). However, for − 1

2 < β < 1 equation (10)
slightly overestimates Jr at small eccentricities

e ≡
√

1 − L2/L2
c(E), (11)

with the largest deviation for β = 0 (flat rotation curve; see Dehnen
1999, fig. 9). This deviation from the form (8) implies that the
Hessian H has a second non-vanishing eigenvalue λ2, and that the
eigenvector ê1 no longer points exactly in the direction of �, but
deviates by some angle ϑ .

Hence, an isotropic distribution of �J results in an anisotropic
distribution of �� with axial ratio |λ2/λ1|. In reality, �J is bi-
modally distributed as stars stripped from the inner and outer La-
grange points have �E < 0 and >0, respectively, and directions re-
sulting in �E = � · �J = 0 are avoided (see also Eyre & Binney,
section 6). This increases the anisotropy of the �� distribution,
but not by much (according to our numerical experiments). This
anisotropy directly translates into a relative divergence rate for the
debris, implying (assuming the order |λ1| ≥ |λ2| ≥ |λ3|)
|λ1| � |λ2| (12)

as condition for the formation of thin streams.1 Such a stream
spreads out in the direction ê1, and the angle ϑ between ê1 and
� is also the angle in θ space between the stream and an orbit (Eyre
& Binney, Sanders & Binney 2013a).

We now estimate |λ2/λ1| and ϑ for orbits in scale-free spherical
galaxies by going beyond the plane-parallel approximation. To this
end, we note that the radial frequency is very well approximated by
the second-order expression (Dehnen 1999)

�r (E, L) = κ(E)

1 − ζe2
with ζ ≡ 1

2
(2 − ϕ)(ϕ − 1)ϕ−2 (13)

at all eccentricities. This corresponds to

Jr = ϕ−1[Lc − L]
(
1 − ζL−1

c [Lc − L]
)
, (14)

which extends the linear approximation (10) by a term quadratic
in Lc − L. The implied Hamiltonian is a function of the non-linear
combination

I = ϕJr + (1−2ζ )L + √
ϕ2J 2

r + 2ϕ(1−2ζ )JrL + L2

2(1 − ζ )
(15)

of the actions Jr and L, and has derivatives

∂H

∂Jr

= �r = κ

1 − ζe2
, (16a)

∂H

∂L
= �φ = ω

1 − ζe2

[
1 − 2ζ

(
1 −

√
1 − e2

)]
, (16b)

∂2H

∂J 2
r

=
[

2ζ (1 − e2)

1 − ζe2
− 1 − β

1 + β

]
�2

r

ωLc
, (16c)

∂2H

∂Jr ∂L
=

[
2ζ (1 − e2)

1 − ζe2
− 1 − β

1 + β

]
�r�φ

ωLc
− 2ζ

√
1 − e2 �r

(1 − ζe2) Lc
,

(16d)

1But not λ1 � λ2 (Eyre & Binney 2011; Sanders & Binney 2013a) as
typically λ1 < 0 because the frequencies decrease with increasing actions.
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∂2H

∂L2
=

[
2ζ (1 − e2)

1 − ζe2
− 1 − β

1 + β

]
�2

φ

ωLc
− 2ζ (2

√
1 − e2 �φ − ω)

(1 − ζe2) Lc
.

(16e)

Thus, the Hessian consists of a first part proportional to �i�j, as
for plane-parallel energy surfaces, and a second part that deviates
from this pattern. We find that the resulting approximations for the
ratio |λ2/λ1| and the angle ϑ are weak functions of β and e, staying
small (� 0.03 and � 3◦, respectively) for all β and e.

The largest values for |λ2/λ1| and ϑ occur for circular orbits, for
which the exact H can be obtained via extended epicycle theory for
any spherical potential (see Appendix A). We find that for e = 0
equations (16) are correct, except (16c), which makes a maximal
error of 4 per cent (at β = 0.15). The implied errors of |λ2/λ1| and ϑ

are small, and we conclude that for spherical galaxies with near-flat
rotation curves |λ2/λ1| � 0.03 and ϑ � 3◦.

These results quantify the statement by Williams et al. (2014)
that streams in scale-free spherical systems are thin and nearly
orbit-aligned. This also agrees with the findings of Bowden et al.
(2015) that modelling the Galactic stream GD-1 using an orbit or a
proper stream model makes hardly any difference in a logarithmic
potential (β = 0), even if that is oblate.

Moreover, even without knowledge of H ( J), Erkal, Sanders &
Belokurov (2016a) have shown that debris from progenitors on loop
orbits in oblate or triaxial galaxies diverges faster with increasing
asphericity or orbital inclination. However, the divergence rates are
still modest and result merely in a slow widening of the stream,
implying that condition (12) is still satisfied, albeit not to the same
degree as for loop orbits in spherical galaxies.

3.2 When does debris form a radial shell?

Another well-known form of tidal debris are radial shells, observed
in ∼20 per cent of elliptical galaxies (Tal et al. 2009) and found
in simulations of the tidal disruption of satellites on plunging or-
bits (e.g. Hernquist & Quinn 1988, 1989). These shells differ from
streams in that the debris spreads over a wide range of directions,
such that the accumulation near apo-centre causes a shell-like ap-
pearance.

Such shells are also described by the action-angle formalism.
Consider, for example, the galaxy potential known as Henon’s
(1959) isochrone sphere (with b a scale radius)

�(r) = − GM

b + √
r2 + b2

. (17)

While this model is not very realistic, since it implies a constant-
density core and a ρ∝r−4 envelope, it has the benefit that

H (Jr , L) = −1

2
G2M2

[
Jr + 1

2

(
L +

√
4GMb + L2

)]−2

, (18)

(Saha 1991) is known analytically. We have (e.g. Saha)

�r =
√

GM

a3
, �φ = �r

2

[
1 + L√

L2 + 4GMb

]
(19a)

with a ≡ −GM/2H and the Hessian follows as (see also Eyre 2010)

H = − 3

a2

(
1 g

g g2

)
+

√
GM

a3

(
0 0
0 g′

)
, (19b)

where g = g(L) ≡ �φ /�r. Deviations of H from the form (9) are due
to the second term, which has the opposite sign (as g

′
> 0) and dom-

inates for weakly bound near-radial orbits. Such orbits probe both
the Keplerian envelope and the harmonic core, and have ∂�φ /∂L

Figure 3. Contours of ϑ (the angle between ê1 and �) and |λ2/λ1| in action
space for the isochrone potential.2 To the left of the |λ2/λ1| = 1 contour
λ1 < 0 < λ2, while to its right λ2 < 0 < λ1 and ϑ changes by 90◦ when
crossing between these regions. Debris from orbits with |λ2| ∼ |λ1| forms
two-dimensional structures.

> 0, reversing the usual decrease of frequency with increasing ac-
tions. If ∂�φ /∂L + ∂�r/∂Jr = 0, then λ1 = −λ2, see Fig. 3,2 and
debris spreads equally in two directions forming two-dimensional
structures, the caustics of which appear as radial shells.

This situation is quite different from that for scale-free models,
and may not explain radial shells in cusped galaxies. However, for
plunging orbits in a cusped galaxy, we still expect radial shells if �L
� L. In this case, the approximation (6) is invalid (Eyre & Binney
2011) and with it all reasoning based on the Hessian of H ( J),
in particular the result from Section 3.1 that debris in scale-free
potentials always forms thin streams. For purely radial orbits (L =
0), debris stars will pass the centre of the Galaxy on all sides and
get deflected in all directions (with deflection angle �= 0 for radial
orbits in scale-free cusps), creating a wide distribution but with very
similar apo-centres and hence forming radial shells.

For box orbits in triaxial systems, which regularly come close
to the centre, a similar mechanism may apply, but understanding
debris from box orbits requires the associated H to be calculated,
for example, for triaxial Stäckel potentials.

3.3 When does debris form a ribbon?

While radial shells are caused by the violation of the condition (12)
on plunging orbits, ribbons occur when this condition is violated for

2Eyre & Binney (2011, fig. 3) plot contours of λ1/λ2 and ϑ for the isochrone
potential, but only for Jr < 0.5

√
GMb and L < 2

√
GMb, the bottom left

corners of our plots. They incorrectly report ϑ < 2.◦2 and λ1/λ2 > 10
everywhere (in fact λ1/λ2 < 0) and missed that |λ1| ∼ |λ2| for some orbits.
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loop orbits. Our simulations suggest that this is the case for disc or-
bits, but are not open to analytical insight. For that we now construct
a toy model. On near-circular disc orbits, the vertical gravitational
force is dominated by the attraction of the local Galactic disc. If we
approximate the disc as razor thin, we have

�(R, z) ≈ �(R, 0) + 2πG�(R)|z|, (20)

with �(R) the surface mass density of the disc. For the one-
dimensional vertical motion in this potential

Ez = 1

2
(3π2G� Jz)

2/3 and �z = dEz

dJz
∝ J−1/3

z . (21)

The most important property of these relations is the non-linear
dependence on the vertical action Jz. Even if the assumptions
made here are not fully correct, the basic fact that �z is a strong
function of Jz for orbits with vertical extent in the range ∼0.4–
4 kpc remains valid. If we ignore the slight curvature of the en-
ergy surfaces in the Jr–Jφ plane (which we discussed in Sec-
tion 3.1), we expect, for example from a Hamiltonian of the form
H = f (ϕJr + |Jφ | + j 1/3J 2/3

z ) with appropriate constant j, that the
Hessian is approximately

Hik ∝ �i �k + αiαk, (22)

with α ∼ �z ẑ. For �r: �φ : �z = 1.5: 1: 1.4, this Hessian ob-
tains |λ2/λ1| = 0.25 and ê2 · �/|�| = 0.46, i.e. a substantial second
eigenvalue with eigenvector far from orthogonal to �, and hence
likely to be projecting onto most debris’ �J . This agrees with
the findings of Sanders & Binney (2013a), who numerically found
|λ2/λ1| � 1

8 (read off their fig. 2) for low-Jz orbits in a realistic
Galaxy model.

For the simulation presented in Section 2, we numerically es-
timated the actions and frequencies for the progenitor and debris
stars using Bovy’s (2015) GALPY code employing the Stäckel ap-
proximation (Binney 2012), giving 4 per cent and 0.4 per cent rms
deviations for Jr and Jz from their respective orbital means. From
these, we obtain H via a linear fit. The results of this exercise,

Jr,φ,z ≈ 13, 1243, 180 kpc km s−1, (23a)

�r,φ,z ≈ 44, 30, 41 km s−1 kpc−1, (23b)

λ1,2,3 ≈ −0.106, −0.033, +0.0011 kpc−2, (23c)

ê1,2,3 ≈
⎛
⎝ 0.43

0.37
0.82

⎞
⎠,

⎛
⎝ 0.73

0.38
−0.56

⎞
⎠,

⎛
⎝ 0.52

−0.84
0.11

⎞
⎠, (23d)

|ê1,2,3 · �̂| ≈ 0.95, 0.3, 0.03, (23e)

are not far from our toy model.
In the top panels of Fig. 4, we project the numerically obtained

�� for the simulated debris onto the eigenvectors êi of the Hessian.
Evidently, the debris samples two planar regions, one for the leading
and another for the trailing stream, in three-dimensional �� space,
largely perpendicular to ê3. As a result, the debris does not form a
thin stream but fans out vertically into a broader structure (Sanders
& Binney 2013a), clearly visible in Fig. 4 near the progenitor.
However, eventually the debris densely occupies a two-dimensional
region in �θ , though for typical debris stars it takes ∼3 times longer
to wrap around in the ê2 than the ê1 direction.

In contrast, the bottom panels of Fig. 4 show the situation for a
spherical galaxy, when the distribution of �� is one-dimensional
and the debris forms a thin stream (Fig. 2, bottom panel).

Figure 4. Top: Distribution of debris stars from a disc orbit (the simulation
presented in Fig. 1) over �� projected on to the eigenvectors of the Hessian
as numerically calculated (see the text). Bottom: Similar, but for a simulation
in a spherical galaxy (see bottom panel of Fig. 2 for the spatial distribution).

Figure 5. As the panels for the b = 0.25 kpc case in Fig. 2, but for a
progenitor of only 2 × 105 M�, five times less massive.

4 D ISCUSSION

We have demonstrated numerically and explained analytically the
formation process of tidal ribbons, which are produced by tidal
debris from progenitors on Galactic orbits with highly anharmonic
vertical motion, which includes all disc orbits with vertical extent in
the range ∼0.4–4 kpc. This also implies that extended tidal streams
cannot exist near such orbits.

This phenomenon is entirely caused by the properties of the
Galactic gravitational field (and implied Hamiltonian) and inde-
pendent of the properties of the disrupted satellite. A less massive
satellite on the same orbit, for example, obtains tidal ribbons with
exactly the same spatial structure as demonstrated in Fig. 5, albeit
with a drift rate reduced ∝ M

1/3
sat , because of relation (5). However,

there may be insufficient time for the formation of fully developed
ribbons from small satellites, because even after another 5 Gyr the
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Figure 6. Distribution of the simulated debris shown in Fig. 1 in vertical
displacement and velocity. The curves are contours of Ez = �(R, z) + 1

2 v2
z

at fixed R = 6.3 kpc, the median radius of the progenitor orbit.

debris will have wrapped just once around the Galaxy and it takes
∼3 times longer for most debris stars to wrap around vertically.

These ribbons are two-dimensional entities in six-dimensional
phase space and hence spread the debris over a larger region than
conventional tidal streams, and could be hard to detect by stream-
finding methods. However, a ribbon crossing the wider Solar vicin-
ity should be detectable by exploiting that the debris stars have very
similar actions or, equivalently, angular momentum as well as verti-
cal and horizontal orbital energies. This approach is essentially the
same as the ‘integrals-of-motion space’ search for halo substructure
(Helmi et al. 1999, 2017; Myeong et al. 2017).

Since tidal ribbons trace all vertical displacements and velocities
at each (R, φ) position within the disc, the detection of one such
tidal feature puts strong constraints on the vertical structure of the
Galactic mass distribution within its vertical extent at each traced
(R, φ). Fig. 6 demonstrates that the debris accurately traces surfaces
of constant vertical energy Ez = 1

2 v2
z + �(R, z), and thus allows to

read the run of � with z off such a plot.
Whether such tidal ribbons remain coherent over many Gyr

within the environment of the Galactic disc, where spiral arms and
the bar induce significant perturbations, is less clear. In fact, the dis-
solution of a zero-dimensional progenitor into a two-dimensional
ribbon, rather than a one-dimensional stream as in the Galactic halo,
is the first step of the accelerated mixing within the Galactic disc.
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A P P E N D I X A : TH E H E S S I A N O F H(J) FO R
CI RCULAR ORBI TS I N SPHERI CAL
G A L A X I E S

For spherical galaxies, the radial motion at fixed angular momentum
L is governed by the Hamiltonian H (r, pr ) = 1

2 p2
r + �eff (r) with

the effective potential

�eff (r) ≡ �(r) + L2/2r2. (A1)

The minimum of �eff(r) occurs at the radius rc(L) of the circular
orbit, where �eff (rc(L)) = Ec(L), the energy of that orbit. Taylor
expanding the effective potential in x ≡ r − rc(L) gives

�eff (r) = Ec(L) + 1
2! κ

2x2 + 1
3! αx3 + 1

4! γ x4 + O(x5), (A2a)

with

κ2 = �′′(r) + 3L2

r4
, (A2b)

α = �′′′(r) − 12L2

r5
= dκ2

dr
− 3κ2

r
, (A2c)

γ = �′′′′(r) + 60L2

r6
= d2κ2

dr2
− 3

r

dκ2

dr
+ 15κ2

r2
, (A2d)

MNRAS 479, 4720–4726 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/479/4/4720/5046726 by U
niversity of Leicester user on 26 June 2019

http://dx.doi.org/10.1111/j.1365-2966.2012.21757.x
http://dx.doi.org/10.1088/0004-637X/795/1/95
http://dx.doi.org/10.1088/0067-0049/216/2/29
http://dx.doi.org/10.3847/1538-4357/833/1/31
http://dx.doi.org/10.1093/mnras/stw3067
http://dx.doi.org/10.1093/mnras/stv285
http://dx.doi.org/10.1086/301009
http://dx.doi.org/10.1086/383214
http://dx.doi.org/10.1093/mnras/stw1400
http://dx.doi.org/10.1093/mnras/stw1957
http://dx.doi.org/10.1111/j.1365-2966.2011.18270.x
http://dx.doi.org/10.1046/j.1365-8711.1999.02616.x
http://dx.doi.org/10.1038/46980
http://dx.doi.org/10.1051/0004-6361/201629990
http://dx.doi.org/10.1086/166592
http://dx.doi.org/10.1086/167571
http://dx.doi.org/10.1086/305273
http://dx.doi.org/10.1088/0004-637X/712/1/260
http://dx.doi.org/10.1093/mnrasl/slx051
http://dx.doi.org/10.1093/mnras/71.5.460
http://dx.doi.org/10.1093/mnras/stv2383
http://dx.doi.org/10.1093/mnras/248.3.494
http://dx.doi.org/10.1093/mnras/stu1159
http://dx.doi.org/10.1093/mnras/stt806
http://dx.doi.org/10.1093/mnras/stt816
http://dx.doi.org/10.1088/0004-6256/138/5/1417
http://dx.doi.org/10.1046/j.1365-8711.1999.02690.x
http://dx.doi.org/10.1093/mnras/stu892
http://dx.doi.org/10.1088/0004-637X/731/1/58


4726 W. Dehnen and Hasanuddin

which are evaluated at r = rc(L), and hence functions of L. Trun-
cating the series (A2a) at the second order obtains classical epicy-
cle theory (Lindblad 1926) with solution x = √

2Jr/κ sin θr and
Hamiltonian H0 = Ec + κJr , the Taylor expansion of H(Jr, L) to
linear order in Jr. For calculating ∂2H/∂J 2

r at Jr = 0, we require the
expansion to order J 2

r , which we derive via second-order canonical
perturbation theory. Following Lichtenberg & Lieberman (1983,
section 2.5),

H1 = α

3!
x3 = α

3!

[
2Jr

κ

]3/2

(3 sin θr − sin 3θr ) , (A3)

H2 = γ

4!
x4 = γ

4!

[
2Jr

κ

]2

(3 − 4 cos 2θr + cos 4θr ) . (A4)

At first order, the correction to the Hamiltonian H 1 = 〈H1〉 = 0,
where 〈 ·〉 denotes a phase average, and the generating function

w1 = 1

κ

∫
(〈H1〉 − H1) dθr = α

3!κ

[
2Jr

κ

]3/2

(cos 3θr − 9 cos θr ) .

(A5)

At second order, the correction to the Hamiltonian

H 2 =
〈

H2 + 1

2

{
w1, H1 − 〈H1〉

}〉
, (A6)

where {,} denotes the Poisson bracket. Inserting equations (A3)–
(A5) into (A6) and combining with the lower orders, yields

H (Jr , L) = Ec(L) + κ(L)Jr + 1

16

[
γ

κ2
− 5

3

α2

κ4

]
rc(L)

J 2
r + O(J 3

r ).

(A7)

From this we obtain the Hessian at Jr = 0 as

∂2H

∂L2
= dω

dL
= 1

r2

[
1 − 4ω2

κ2

]
, (A8a)

∂2H

∂Jr ∂L
= dκ

dL
= dκ2

dr

ω

rκ3
, (A8b)

∂2H

∂J 2
r

= 1

8

[
γ

κ2
− 5

3

α2

κ4

]
(A8c)

evaluated at r = rc(L).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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