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Abstract

In this note we show how specify cointegrated vector autoregressive-moving average

models and how they can be used to generate cointegrated time series.

1 Introduction

Available tests for cointegration in pure VAR or mixed VARMA models (Johansen , 1988, 1991;

Yap and Reinsel , 1995; Lüktepohl and Claessen , 1997) are built on the assumption that the data

generating process is homogeneously non-stationary under the null hypothesis. Data simulation

for Monte Carlo experiments is performed by assuming that all the presample values are given.

In this approach, the presence of cointegration imposes a set of restrictions on the AR matrix

polynomial, but not affect to the MA matrix polynomial whose only role is to provide parsimony.

In this note, we show that there is an alternative specification for cointegrated VARIMA

models based on a data generating process that is stationary under the null hypothesis. Data
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(Spain). e-mail: jose.gallego@unican.es (José L. Gallego), carlos.diazv@unican.es (Carlos Dı́az)

1



simulation proceeds in two stages: (1) stationary realizations are generated without needing to fix

presample values and (2) integrated realizations are then obtained by cumulating the stationary

ones with given presample. The presence of cointegration in our representation imposes a similar

set of restrictions on the MA matrix polynomial, but does not affect to the AR matrix polynomial,

which also plays a role in the definition of the cointegration matrix.

It can be illustrative to relate both approaches to the two strategies commonly followed to

identify the degree of differencing in the applied analysis of univariate time series, namely, the un-

derdifferencing and overdifferencing strategies underlying the type Dickey and Fuller (1979) and

Nyblom and Mäkeläinen (1983) tests, respectively. However, we emphasize that our cointegra-

ted VARIMA model is an homogeneously non-invertible but non-overdifferenced representation

that can be estimated using standard methods based on the exact maximum likelihood function.

The main contribution of the note is to specify a cointegrated VARIMA model compatible

with univariate representations widely used to forecast. Such representations include IMA(1,1)

structures that provide adaptive terms in the forecast function, being reasonable its consideration

when modeling multiple time series. The algorithm here proposed to generate cointegrated time

series can be used to evaluate the performance of different tests for multivariate cointegration,

specially those that claim to be independent of the data generating process (e.g. Stock and

Watson , 1988; Nyblom and Harvey , 2000). Another useful experiment is to compare the

performance of these multivariate tests with their univariate analogous versions.

The paper is structured as follows. Section 2 describes the data generating process and how

the cointegrating relations can be recovered from the moving average in a VARIMA model.

Section 3 illustrates the simulation procedure in a given example and section 4 concludes.
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2 Cointegration in Vector ARIMA models

The Engle and Granger (1987) representation theorem is based on the Wold representation of a

first order integrated m-dimensional vector stochastic process

∇zt = Ψ(B)at, (1)

where B and ∇ = 1 − B are the backshift and first difference operators respectively, Ψ(B) =

Im +Ψ1B +Ψ2B
2 + ... is a matrix polynomial in B of infinite order, Ψ(1) = Im +Ψ1 +Ψ2 + ... is

the sometimes called gain of the linear filter Ψ(B) whose determinantal equation has all its zeros

on or outside the unit circle (|Ψ(B)| = 0 for |B| ≤ 1), and at is a multivariate white noise process

with zero mean vector and covariance matrix Ωa. Under these assumptions, they shown that an

r×m matrix of coefficients C will define a set of r < m cointegration relations when CΨ(1) = 0,

that is, when Ψ(1) has rank m − r. The proof follows easily from the well-known multivariate

Beveridge-Nelson decomposition of Ψ(B) = Ψ(1) + Ψ∗(B)∇ that reveals the stationarity of

Czt = CΨ∗(B)at, where Ψ∗(B) = Ψ∗

0 + Ψ∗

1B + Ψ∗

2B
2 + . . . and Ψ∗

j = Ψj+1 + Ψj+2 + . . . so

that Ψ∗(B) is invertible. The choice of C is obtained from the reformulation of (1) into an

error-correction model.

We follow now a similar reasoning to determine the cointegrating restrictions in the vector

ARIMA(p,1,q) process as the parsimonious representation of (1),

Φ(B)∇zt = Θ(B)at, (2)

where Φ(B) = Im − Φ1B − · · · − ΦpB
p and Θ(B) = Im − Θ1B − · · · − ΘqB

q are the finite

order AR and MA matrix polynomials, respectively, such that Φ(B)Ψ(B) = Θ(B), |Φ(B)| = 0

for |B| < 1, and |Θ(B)| = 0 for |B| ≤ 1. By replacing Φ(B) and Θ(B) by their respective
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Beveridge-Nelson decompositions, (2) can be written as

Φ(1)∇zt = Φ∗(B)∇2zt + Θ(1)at + Θ∗(B)∇at, (3)

where Φ(B)∗ = Φ∗

0 + Φ∗

1B + · · · + Φ∗

p−1B
p−1 and Θ∗(B) = Θ∗

0 + Θ∗

1B + · · · + Θ∗

q−1B
q−1. It

is now clear from (3) that zt will exhibit cointegration if there exists an r × m matrix C that

annihilates Θ(1), CΘ(1) = 0. In such a situation, the cancelation of the common ∇ operator

on both sides of the equation implies that the linear transformation Dzt, with D = CΦ(1),

is the sum of two stationary processes and therefore, the rows of D can be interpreted as the

r cointegrating relations of the system. Hence, we can deduce the role that each operator of

the vector ARMA model plays in the cointegration analysis. While the gain of the MA matrix

polynomial determines the existence or non-existence of cointegration, that of the AR matrix

polynomials appears only as a weighing factor in the definition of the cointegrating vectors.

From the discussion above, a necessary condition for the existence of cointegration is that

the gain matrix of the moving average filter has rank (m − r) < m. Therefore, matrix C, if it

exists, can be found from the spectral decomposition of Θ(1) = PΛP−1 which, would reduce to

Θ(1) = P2Λ2Q
′

2,

where the diagonal submatrix Λ2 contains the m−r non-null eigenvalues, all of which are inside

the unit circle, the m × (m − r) submatrix P2 contains the corresponding eigenvectors and the

m× (m− r) submatrix Q2 contains the rows in the conformable partition of P−1. Hence, if P1

is the m × r submatrix of eigenvectors associated to the null eigenvalue with multiplicity r and

Q1 is the m × r submatrix with the corresponding rows of P−1, then it is clear that C = Q′

2.

As an example consider the simple vector IMA(1,1) model

∇zt = (Im −ΘB)at,
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which will exhibit cointegration when I − Θ is rank deficient or, equivalently, if Θ has some unit

eigenvalues. Thus, a testing strategy for the cointegrating rank of the system can be based on

the transformed model

∇P−1zt = (Im −ΛB)bt,

where bt = P−1at and Λ = {λ1, . . . , λm} is the diagonal matrix containing the eigenvalues of

the moving average matrix. If the system is reordered such that λ1 ≤ λ2 ≤ · · · ≤ λm, the

null hypothesis of multiple cointegration implies testing H0 : λ1 = · · · = λr = 0 against the

alternative hypothesis H1 : λ1 = · · · = λr−1 = 0 by extending the tests for noninvertibility in

univariate models proposed by Tanaka (1990) and Saikkonen and Luukkonen (1993) in a similar

way to the extension of the Nyblom and Mäkeläinen (1983) and Kwiatkowski et al. (1992) test

given by Nyblom and Harvey (2000).

3 Simulating cointegrated time series

To specify a cointegrated vector ARIMA model that can be used as a data generating process

we must worry mainly of the choice of the MA coefficient matrices. To this end, we create

directly the gain matrix Θ(1) from its spectral decomposition PΛP−1, remembering that r

eigenvalues are null and that the cointegrating matrix C fixes r rows of the P−1. The m − r

remaining eigenvalues (real and/or complex conjugates) are chosen arbitrarily inside unit circle

and determine if the corresponding rows of P−1 are either real or complex vectors, which can

also be chosen arbitrarily. Once Λ and P−1 have been created, we calculate P and Θ(1) and

impose the cointegration restriction by fixing Θ1 = Im − Θ2 − · · · − Θq − Θ(1), where the

MA coefficient matrices Θ2, . . . ,Θq can be chosen arbitrarily as long as the resulting MA(q)

polynomial has all its zeros on or outside unit circle. If the model has autoregressive part, any

stationary polynomial Φ(B) is suitable. Once chosen the parameters of the VARMA model, the

stationary series wt is simulated using exact initial conditions as described by Hillmer and Tiao

5



(1979). Then, the I(1) series is obtained by aggregation as yt = wt + yt−1 where y0 is fixed.

The following example illustrates the procedure of simulation of a cointegrated bivariate

VIMA(1,2) model with cointegrating vector Q′

1 = (1, −1.5). Assuming λ2 = 0.3 and Q′

2 =

(0.7635, 1.4069), so that P−1 = [Q1 Q2]
′, the gain matrix can be recovered as

Θ(1) =







0.1346 0.2481

0.0897 0.1654






, with Ωa =







1 0.5

0.5 1






,

Next, we set an arbitrary Θ2 matrix and recover the following MA(2) model





∇z1t

∇z2t



 =









1 0

0 1



 −





1.1368 −0.6129

−0.2882 1.5009



 B −





−0.2714 0.3648

0.1985 −0.6663



B2









a1t

a2t



 ,

which has one unit root, a real root equal to 4.9976 and a pair of complex conjugates, 1.3263±0.2932i,

with moduli equal to 1.3584. The eigenvalues of the gain matrix Θ(1) = I2−Θ1−Θ2 are 0.3 and

0, and the cointegrating vector, which arises from the row of the inverse matrix of eigenvectors

corresponding to the zero eigenvalue is, conveniently normalized, equal to its assumed value of

(1, -1.5).

The left panel of figure 1 shows a realization of this cointegrated bivariate VIMA(1,2) model

along with the simple and partial autocorrelation functions shown as bars for z1 and a straight

line for z2. The slow decay of the simple autocorrelation function show that both series are I(1).

As assumed, imposing the cointegrating relation this decay disappears, as shown in the right

panel of figure 1, and the correlation structure of the cointegrating relation resembles that of

the the remaining MA(1) structure, as implied by equation (3).
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Figure 1: Simulated bivariate system
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4 Conclusions

In this paper we have shown how to embed the cointegration analysis into the Tiao-Box mode-

ling approach by defining the restrictions that these type of relationships between non-stationary

time series imposes on the MA parameters. Both the order and the cointegration matrix can

be obtained from the conventional estimation of a VARIMA model. Notwithstanding, the de-

velopment of a strategy for testing multivariate cointegration requires extending the univariate

tests for noninvertibility proposed by Tanaka (1990) and Saikkonen and Luukkonen (1993),

which is also part of our research agenda. We also give a general procedure to simulate a coin-

tegrated VARIMA model with known cointegrating vectors. Further extensions of the work

will show a full testing procedure for detecting the presence of cointegration in a model an the

number of cointegrating relations. Our approach can be easily extended to handle with seasonal

cointegration related to the seasonal operator or some of its simplifying factors.
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