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Abstract. Ecoepidemiology is a well-developed branch of theoretical ecology, which explores
interplay between the trophic interactions and the disease spread. In most ecoepidemiological
models, however, the authors assume the predator to be a specialist, which consumes only
a single prey species. In few existing papers, in which the predator was suggested to be a
generalist, the alternative food supply was always considered to be constant. This is obviously
a simplification of reality, since predators can often choose between a number of different prey.
Consumption of these alternative prey can dramatically change their densities and strongly
influence the model predictions. In this paper, we try to bridge the gap and explore a generic eco-
epidemiological system with a generalist predator, where the densities of all prey are dynamical
variables. The model consists of two prey species, one of which is subject to an infectious
disease, and a predator, which consumes both prey species. We investigate two main scenarios
of infection transmission mode: (i) the disease transmission rate is predator independent and
(ii) the transmission rate is a function of predator density. For both scenarios we fulfil an
extensive bifurcation analysis. We show that including a second dynamical prey in the system
can drastically change the dynamics of the single prey case. In particular, the presence of a
second prey impedes disease spread by decreasing the basic reproduction number and can result
in a substantial drop of the disease prevalence. We demonstrate that with efficient consumption
of the second prey species by the predator, the predator-dependent disease transmission can
not destabilize interactions, as in the case with a specialist predator. Interestingly, even if the
population of the second prey eventually vanishes and only one prey species finally remains, the
system with two prey species may exhibit different properties to those of the single prey system.
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1. Introduction

The spread of infectious disease within wildlife populations is often affected by trophic interactions.
Modelling of trophic interactions in the presence of infection is a major subject of ecoepidemiology, which
is itself a rapidly growing branch of theoretical ecology. Since the first publications in this area [3,13,34],
hundreds of various ecoepidemiological models have been suggested so far emphasizing various aspects
of the field (for a brief review, see [35]). However, in most of the previous works, the authors assume
that the predator is a specialist, i.e. it can only consume one type of resource. In the few papers, which
do consider the predator to be a generalist, the alternative food source was always taken to be constant
(’static’) and large enough to support the predator growth rate alone [14,15,30]. On the other hand, it is
well-known that predators are often generalists and multi-prey consumption by such predators affects the
densities of all the prey species they feed on [4, 27]. Allowing the predator to feed on multiple resources
can affect the predictions obtained from simple models, which assume the predator to be a specialist, a
fact which has been well recognized in theoretical ecology [8,10,12,16,19,33]. Surprisingly enough, aside
from a few exceptions [31], most ecoepidemiological models still ’avoid’ exploring these more realistic
scenarios involving generalist predators with dynamical prey.

In this paper, we try to bridge this gap and explore eco-epidemiological interaction in the case where
the predator is a generalist and the densities of all prey species are dynamical variables. The most
important difference between ecosystems with a specialist and a generalist predator is that in the former
case the extinction of one prey does not necessarily result in extinction of the predator, and this can have
drastic consequences for the overall system properties such as influencing the basic reproduction number
of the disease. Thus it is unclear whether or not the prior modelling results will hold in the more realistic
case of a generalist predator. Obviously we cannot cover the whole problem in a single paper, so here we
investigate the dynamics of a somewhat generic eco-epidemiological system in the particular case where
we have two prey species, which do not compete directly with each other, and a generalist predator, and
the first prey alone is subject to an infectious disease.

We explore two different scenarios of infection transmission. Firstly, we suggest that the transmission
rate of disease is predator independent, as is the case in all conventional models (see [35] and the references
therein). Secondly, we shall analyze a more interesting scenario, where the transmission rate is predator-
dependent. Often a prey population can become more vulnerable to a disease in the presence of predators,
with various mechanisms causing such predator-dependent disease transmission. For instance, increased
susceptibility to disease may be part of the cost of induced prey defence against predators [21,23,29]. A
well-known case study is a freshwater snail which in the presence of predators spends more time hiding
inside its shell. This makes the snail more vulnerable to parasites because the organism cannot expel
the blood necessary for the normal functioning of its immune system [29]. Another possible mechanism
for an increase in the transmission rate is the grouping of prey in the presence of predators through
the formation of fish schools, avian flocks and herds of herbivores [36], which significantly increases
the number of contacts [1,5,20]. Note that the predator-dependent transmission scenario remains highly
unexplored in the current literature. An eco-epidemiological model with predator-dependent transmission
was recently considered in [25], but only for the case of a specialist predator.

For both transmission scenarios, we analyze the endemic and disease-free equilibria of the system and
their stability. We explore the dependence of infection spread (in terms of the basic reproduction number)
and disease prevalence on the key model parameters and compare the two transmission scenarios. Our
results show that the presence of a second prey can dramatically affect the model predictions obtained
from the case of a specialist predator. In particular, we show that the presence of an alterative food
source decreases the disease prevalence ratio and impedes the spread of infection in the case of a predator-
dependent transmission rate. Inclusion of a second prey may further result in stabilization of the system,
which otherwise would show high amplitude oscillations. Efficient consumption of the second prey by
the predator will not allow for the Allee effect in the predator population, which was previously reported
in the system with a specialist predator [25]. Surprisingly, even in the case of eventual extinction of the
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alternative prey, the systems with a specialist and a generalist predator are not equivalent in terms of
their dynamical properties.

The paper is organized as follows: Section 2 introduces the model equations both for predator-
independent and the predator-dependent disease transmission; in Sections 3,4 we present the bifurca-
tion analysis of both models, and summarize the stability properties of the system in two tables - we
also present typical bifurcation diagrams for variation of key model parameters; the paper ends with a
summary of the main results, general discussion and conclusions (Section 5).

2. Model Equations

The model describes interaction of three species- two prey species and a generalist predator- by combining
a standard S-I model and a two-prey one predator model. We assume that the first prey species is subject
to infection and hence we divide the whole population of this species into two classes, susceptible and
infected. The predator only consumes infected members of the first prey species, thus healthy individuals
of this species escape from predation. This scenario is largely supported by empirical data [7, 9, 17, 18].
The second prey species is an alternative resource for the predator. The overall model is a system of four
coupled ordinary differential equations which describe the dynamics of susceptible prey #1 (S), infected
prey #1 (I), prey #2 (N) and the generalist predator (P ).

dS

dt
= r1

(

1− S + I

K1

)

S − λ(P )SI, (2.1)

dI

dt
= λ(P )SI − d1I − f(I,N)P, (2.2)

dN

dt
= r2

(

1− N

K2

)

N − g(I,N)P, (2.3)

dP

dt
= θ1f(I,N)P + θ2g(I,N)P − d2P. (2.4)

The state variables and the model parameters are briefly listed in Table 1.

The growth rate of each prey population is described by a logistic function, where Ki and ri are,
respectively, the carrying capacity and the maximal per capita growth rate of species i. We assume that
only healthy individuals of prey #1 can reproduce; however, the infected subpopulation still affects the
overall prey growth via competition for resources and therefore contributes to the carrying capacity of
the healthy subpopulation. We consider the situation where the two prey species do not compete directly
for the same resource, but can affect each other by influencing predator density (known in ecology as
’apparent competition’, see [32]). When feeding on the infected prey I, the predator is assumed not to
succumb to the infection. Consumption of I and N is described by the functional responses f(I,N) and
g(I,N), respectively. There exist a large number of various shapes of the multi-prey functional response
[11] and choosing a particular one can affect modelling results. In this paper, we consider the simplest
Holling type-I functional response (linear response) and assume that the consumption of each prey occurs
independently of the other prey species (i.e. no explicit prey selectivity):

f(I,N) ≡ f(I) = aI, g(I,N) ≡ g(N) = bN. (2.5)

Analysis of the influence of saturation in f(I,N) and g(I,N) on modelling results should be done else-
where.

The disease transmission is parameterized via the classical mass action term λSI [2,24]; this scenario is
observed in situations, where the number of contacts between individuals is not fixed, but is proportional
to the population size. The coefficient of proportionality λ is called the transmission coefficient. In
earlier models, the transmission coefficient was considered to be constant [35], however, a large amount
of empirical evidence indicates that disease transmission can be affected by the presence of predators (see
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relevant references in the Introduction). Thus, we shall explore here both scenarios: (i) λ = const and
(ii) λ = λ(P ). There may be various mechanisms to describe the nature of the relationship λ = λ(P );
here we assume the simplest linear form of dependence (which can be considered as the first term in the
Taylor expansion about the predator-free state P = 0),

λ(P ) ≡ λ0 + αP, (2.6)

where λ0 is the predator density independent disease transmission rate and α is the predator regulated
additional disease transmission rate [25]. Although we can potentially have α < 0, we shall focus on the
case α > 0, i.e. assuming that the presence of the predator facilitates the spread of the infection.

Variables Description

t Time
S Density of susceptible prey #1
I Density of infected prey #1
N Density of prey #2
P Density of predator

Parameters Description

r1 Growth rate of prey #1
K1 Carrying capacity of prey #1

λ(P ) ≡ λ0 + αP Transmission coefficient of the disease spread
λ0 Disease transmission rate, independent of predator density
α Predator density mediated additional disease transmission rate
d1 Disease virulence (i.e. extra mortality caused by the disease)

f(I,N) ≡ f(I) Functional response describing the grazing of I by the predator
r2 Growth rate of prey #2
K2 Carrying capacity of prey #2

g(N, I) ≡ g(N) Functional response describing the grazing of N by the predator
θ1, θ2 Conversion efficiencies for consumption of prey #1,2
d2 Intrinsic death rate of the predator

Table 1. Description of variables and parameters present in the basic model.

It is worth mentioning that in the absence of the second prey (N ≡ 0) and for a constant transmission
coefficient λ, the model behavior is well understood [25,26]; its properties are briefly listed in the beginning
of the next section. Introducing a predator-dependent transmission λ = λ(P ) into the model with a single
prey (N ≡ 0) makes it more complex, a scenario which has been considered in [25]. The major results of
this investigation are briefly listed in the beginning of section 4.

In the forthcoming two sections we will be considering model (2.1) - (2.4) in the two above mentioned
cases: α = 0 (Model 1) and α > 0 (Model 2). Note that using standard approaches (e.g. [30]), one can
easily prove boundedness as well as positive invariance of solutions of the general model. We do not show
these proofs for the sake of brevity.
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3. Model 1: predator-independent disease transmission scenario

For a predator-independent transmission scenario, the model equations read

dS

dt
= r1

(

1− S + I

K

)

S − λ0SI, (3.1)

dI

dt
= λ0SI − d1I − aIP, (3.2)

dN

dt
= r2

(

1− N

K

)

N − bNP, (3.3)

dP

dt
= θ1aIP + θ2bNP − d2P. (3.4)

Note that without any generality loss, we can consider that K1 = K2 = K since we can always re-scale
the species densities to have the same carrying capacities.

Next, to better understand the role of the second prey on dynamics of the system, we shall briefly
consider the same model with N ≡ 0. The model has the following stationary states [25,26]. The trivial
stationary state is (0, 0, 0); it is always unstable. The disease-free and predator-free stationary state is
given by (K, 0, 0); it is stable for D > Kλ0 and unstable otherwise. The predator-free stationary state is
(S6, I6, 0), with S6 = d1/λ, I6 = r(Kλ0−d1)/(λ0(Kλ0+ r)). Finally, there is a unique interior stationary
state (S8, I8, P8), where the stationary values are determined by

S8 =
rKθ1a− rδ − δKλ0

raθ1
, I8 =

δ

θ1a
, P8 =

rKaθ1λ0 − rδλ0 − δλ0K − aθ1rd1
aθ1rd1

. (3.5)

This stationary state is always stable when it exists [25, 26].
A typical bifurcation diagram for Model 1 in the absence of the second prey is shown in Fig.1, which

represents the variation in the equilibrium species densities as functions of λ0. The figure is constructed
for the following parameters r1 = 1, K = 10, d1 = .5, a = 1, θ1 = .2. From the diagram one can see
that the predator can establish in the system only for intermediate values of λ0. In other words, a small
transmission rate λ0 is not enough to spread the infection in the prey (and, consequently, the predator
cannot survive since I = 0), whereas a large transmission rate will reduce the population size of the
infected prey to the point where it is not large enough to support the predator’s growth.

Introduction of an alternative prey N can drastically change the above results.

3.1. Equilibria

The full Model 1 (3.1)-(3.4) with a second prey has the following equilibria. There is the trivial equilibrium
point E0(0, 0, 0, 0), two axial equilibria E1(K, 0, 0, 0), E2(0, 0,K, 0) (only one prey species can survive and
there is no infection in the system) and one boundary equilibrium point given by E3(K, 0,K, 0) (both
prey species survive, there is infection in the system), which exist for any system parameters.

The model may also possess five more boundary equilibria given by E4

(

d1
λ0

,
r1(λ0K − d1)

λ0(r1 + λ0K)
, 0, 0

)

,

E5

(

0, 0,
r2(θ2bK − d2)

θ2b2K
,
d2
θ2b

)

, E6

(

d1
λ0

,
r1(λ0K − d1)

λ0(r1 + λ0K)
,K, 0

)

, E7

(

K, 0,
d2
θ2b

,
r2(θ2bK − d2)

θ2b2K

)

and

E8

(

θ1ar1K − d2r1 − d2λ0K

θ1ar1
,
d2
θ1a

, 0,
λ0θ1ar1K − λ0d2r1 − d2λ

2
0K − d1θ1ar1

a2θ1r1

)

when certain paramet-

ric restrictions are satisfied, the related results are stated in the propositions below. In each of the above
equilibrium at least one component is absent.

The equilibrium states with Ii > 0 are called the endemic equilibria (states). Let us define the basic
reproduction number for the disease transmission as follows

R0 =
λ0K

d1
. (3.6)
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Figure 1. Equilibrium species densities in Model 1 in the absence of prey #2 are
constructed as functions of the transmission coefficient λ0. The other model parameters
are r1 = 1, K = 10, d1 = .5, a = 1, θ1 = .2.

The basic reproduction number can be interpreted in the following way [6]: 1/d1 is the average lifespan
of infected prey individuals and λ0 is the rate of new infections, and hence the rate of generation of new
infective individuals, when the number of infected prey individuals is assumed to be small, is given by
λ0

d1

K. With the help of the basic reproduction number, we can define the conditions of the existence of
the system’s equilibria:

Proposition 3.1. Let us define,

H1 : R0 > 1.
H2 : θ2bK > d2.
H3 : θ1ar1K > d2(r1 + λ0K).
H4 : θ1ar1(λ0K − d1) > d2λ0(r1 + λ0K).

If H1 is satisfied then E4 and E6 exist. If H2 is satisfied then E5 and E7 exist. If both H3 and H4 hold

then E8 is feasible.

Note that the condition R0 > 1 is the necessary condition for the existence of the endemic stationary
states E4, E6 and E8.

Finally, the model exhibits a unique interior equilibrium point ensuring the coexistence of all four
components (S∗, I∗, P∗, N∗). The specific parametric restrictions required for the existence of the interior
equilibrium are given in the following proposition.

Proposition 3.2. Let us define,

H5 : θ1ar1(λ0K − d1) + λ0(r1 + λ0K)(θ2bK − d2) > 0.
H6 : ar2(θ2bK − d2) < θ2b

2K(λ0K − d1).
H7 : a2r2θ1r1 > b[θ1ar1(λ0K − d1)− d2λ0(r1 + λ0K)].

The model possesses a unique interior equilibrium point E∗(S∗, I∗, N∗, P∗) if H5, H6 and H7 hold.
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The components of interior equilibrium point are given by the following expressions

S∗ =
a2r2θ1r1K + λ0K

2θ2b
2d1 − ar2d2r1 − ar2d2λ0K + r1θ2bar2K + r1θ2b

2Kd1 + λ0K
2θ2bar2

a2r2θ1r1 + r1θ2b2Kλ0 + λ2
0K

2θ2b2
,

I∗ =
r1(λ0K

2θ2b
2 − θ2bKar2 − θ2b

2Kd1 + d2ar2)

a2r2θ1r1 + r1θ2b2Kλ0 + λ2
0K

2θ2b2
,

N∗ =
K(a2r2θ1r1 − bλ0aθ1r1K + bλ0d2r1 + bλ2

0d2K + bd1aθ1r1)

a2r2θ1r1 + r1θ2b2Kλ0 + λ2
0K

2θ2b2
,

P∗ =
r2(λ0θ1ar1K − λ0d2r1 − d2λ

2
0K + λ0r1θ2bK + λ2

0K
2θ2b− d1θ1ar1)

a2r2θ1r1 + r1θ2b2Kλ0 + λ2
0K

2θ2b2
.

Note that the condition R0 > 1 is necessary (but not sufficient) for H6 to hold. We can also introduce
a modified basic reproduction number R1 the disease spread in the presence of the predator. To do this,
we consider the per capita growth rate of I when the predator density is supported by prey #2 and is
given approximately by P7 = r2(θ2bK−d2)

θ2b2K
(see equilibrium E7). The value of R1 is then defined as

R1 =
λ0K

d1 + aP7
=

λ0K

d1 +
r2(θ2bK−d2)

θ2b2K

. (3.7)

Thus, a necessary condition for the existence of the endemic equilibrium E∗ is given by R1 > 1, which
coincides with condition H6. Note that the condition R1 > 1 is more restrictive than R0 > 1.

The main results on system’s equilibria in Model 1 are summarized in Table 2.

3.2. Stability of equilibria

Stability of the stationary state is determined by the eigenvalues of the linearized system. The Jacobian
matrix for Model 1 evaluated at an arbitrary point is given by

J =









r1
(

1− 2S+I
K

)

− λ0I −r1
S
K

− λ0S 0 0
λ0I λ0S − d1 − aP 0 −aI
0 0 r2

(

1− 2N
K

)

− bP −bN
0 θ1aP θ2bP θ1aI + θ2bN − d2









. (3.8)

E0(0, 0, 0, 0) is trivial equilibrium point and evaluating the Jacobian matrix at E0 we get the eigenvalues
r1 > 0, −d1 < 0, r2 > 0 and −d2 < 0. Hence E0 is a saddle-point having a two-dimensional stable
manifold and a two-dimensional unstable manifold.

E1(K, 0, 0, 0) and E2(0, 0,K, 0) are two axial equilibrium points. Evaluating the Jacobian matrix at
E1 we find the eigenvalues of the Jacobian matrix as −r1 < 0, λ0K − d1, r2 > 0 and −d2 < 0. Hence E1

is a saddle point and the dimension of the unstable manifold is 2 if R0 > 1 and is 1 otherwise.
The eigenvalues of J at E2 are r1 > 0, −d1 < 0, −r2 < 0 and θ2bK − d2. Clearly E2 is a saddle point

having a two-dimensional unstable manifold if θ2bK > d2.
Evaluating the Jacobian matrix at the first boundary equilibrium point E3(K, 0,K, 0) we find its

eigenvalues −r1 < 0, λ0K − d1, −r2 < 0 and θ2bK − d2. So E3 is locally asymptotically stable if R0 < 1

and θ2bK < d2. Combining these conditions we get K < min

{

d1
λ0

,
d2
θ2b

}

. E3 is a saddle point having a

two-dimensional unstable manifold if R0 > 1 and θ2bK > d2, that is if K > max

{

d1
λ0

,
d2
θ2b

}

.

For E4, the Jacobian matrix is

J4 =











− r1d1

λ0K
− r1d1

λ0K
− d1 0 0

r1(λ0K−d1)
r1+λ0K

0 0 −ar1(λ0K−d1)
λ0(r1+λ0K)

0 0 r2 0

0 0 0
θ1ar1λ0K−λ0d2r1−d2λ

2

0
K−d1θ1r1K

λ0(r1+λ0K)











(3.9)
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E4 is a saddle point with a two-dimensional unstable manifold if θ1ar1(λ0K − d1) > d2λ0(r1 + λ0K).
Otherwise it will have a one-dimensional unstable manifold and a three-dimensional stable manifold.

For E5

J5 =











r1 0 0 0

0 − b2θ2Kd1+ar2(θ2bK−d2)
(b2θ2K) 0 0

0 0 − r2d2

Kθ2b
− d2

θ2

0 θ1ar2(θ2bK−d2)
b2θ2K

r2(θ2bK−d2)
bK

0











(3.10)

so E5 is a saddle point with a one-dimensional unstable manifold.

For E6

J6 =











− r1d1

λ0K
− r1d1

λ0K
− d1 0 0

r1(λ0K−d1)
r1+λ0K

0 0 −ar1(λ0K−d1)
λ0(r1+λ0K)

0 0 −r2 −bK

0 0 0 θ1ar1(λ0K−d1)+λ0(r1+λ0K)(θ2bK−d2)
λ0(r1+λ0K)











(3.11)

E6 is a stable point if θ1ar1(λ0K − d1) + λ0(r1 + λ0K)(θ2bK − d2) < 0 otherwise it is a saddle point
with a one-dimensional unstable manifold.

For E7

J7 =











−r1 −r1 − λ0K 0 0

0 b2θ2K(λ0K−d1)−ar2(θ2bK−d2)
(b2θ2K) 0 0

0 0 − r2d2

Kθ2b
− d2

θ2

0 θ1ar2(θ2bK−d2)
b2θ2K

r2(θ2bK−d2)
bK

0











(3.12)

E7 is a stable point if ar2(θ2bK − d2) > θ2b
2K(λ0K − d1). Note that this condition coincides with

R1 < 1. Otherwise it is a saddle with a one-dimensional unstable manifold.

For E8, one eigenvalue is r2 − bP8 and others are the characteristic roots of the matrix,

M =





− r1S8

K
− r1S8

K
− λ0S8 0

λ0I8 0 −aI8
0 P8θ1a 0



 . (3.13)

If we write the characteristic equation for M8, we get a cubic equation,

µ3 +B1µ
2 +B2µ+B3 = 0

and its coefficients satisfy the conditions B1 > 0, B3 > 0 and B1B2 > B3. Hence, E8 is locally
asymptotically stable if r2 < bP8. Otherwise it is a saddle point with a one-dimensional unstable
manifold.

Note 3.3. It is important to note here that the existence of the interior equilibrium requires that all
boundary equilibria are unstable.

We shall prove the local stability of the interior equilibrium point with the help of a suitable Lyapunov
function. Linearizing the system (3.1) - (3.4) around the interior equilibrium point with help of the
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Equilibrium Existence Stability

E0(0, 0, 0, 0) Always Saddle point with two-dimensional stable
and two-dimensional unstable manifolds.

E1(K, 0, 0, 0) Always Saddle point, dimension of unstable manifold
is two if H1 (R0 < 1) and one otherwise

E2(0, 0,K, 0) Always Saddle point, dimension of unstable manifold
is two if H2 holds and one otherwise.

E3(K, 0,K, 0) Always Locally asymptotically stable if both H1 (R0 < 1) and H2

do not hold, otherwise it is a saddle point

E4(S4, I4, 0, 0) If H1 holds. Saddle point, dimension of unstable manifold
is two if H4 holds and one otherwise.

E5(0, 0, N5, P5) If H2 holds. Saddle point, with one-dimensional unstable manifold.

E6(S6, I6,K, 0) If H1 holds. Locally asymptotically stable if H5 does not hold,
otherwise saddle point with one-dimensional unstable manifold.

E7(K, 0, N7, P7) If H2 holds. Locally asymptotically stable if H6 does not hold (R1 < 1),
otherwise saddle point with one-dimensional unstable manifold

E8(S8, I8, 0, P8). If both H3 and H4 hold. Locally asymptotically stable if H7 does not hold,
otherwise saddle point with one-dimensional unstable manifold

E∗(S∗, I∗, N∗, P∗). If H5, H6 and H7 hold. Locally asymptotically stable.

Table 2. Summary of existence and stability conditions for the equilibria of Model 1.
Note that S4 = S6, I4 = I6, N5 = N7 and P5 = P7.

transformation S = S∗ + x1, I = I∗ + x2, N = N∗ + x3 and P = P∗ + x4 we get the following linearized
system,

ẋ1 = −α1x1 − α2x2,

ẋ2 = α3x1 − α4x4,

ẋ3 = −α5x3 − α6x4,

ẋ4 = α7x2 + α8x3,

where all α1 = r1S∗

K
, α2 = ( r1

K
+ λ0)S∗, α3 = λ0I∗ = α4, α5 = r2N∗

K
, α6 = bN∗, α7 = θ1aP∗ and

α8 = θ2bP∗ are positive.
We can construct a Lyapunov function,

V (x1, x2, x3, x4) =
1

2

(

C1x
2
1 + C2x

2
2 + C3x

2
3 + C4x

2
4

)

,

and then calculating the time derivative along the solution trajectories of the above linearized system,
we get

dV

dt
= −C1α1x

2
1 − C3α5x

2
3 + (C3α3 − C1α2)x1x2 + (C4α7 − C2α4)x2x4 + (C4α8 − C3α6)x3x4.

Choosing, C1 = 1, C2 = α2α6α7/α3α4α8 > 0, C3 = α2/α3 > 0 and C4 = α2α6/α3α8 > 0, we find

dV

dt
= −α1x

2
1 − C3α5x

2
3 ≤ 0.

Hence, the interior equilibrium (S∗, I∗, N∗, P∗) is always locally stable whenever this equilibrium exists.

The main results on the stability of the equilibria in Model 1 are summarized in Table 2.
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3.3. Bifurcation Portraits of Model 1

We follow changes in the species equilibrium densities by considering the transmission rate coefficient λ0

as the key bifurcation parameter. The outcomes largely depend on whether or not the alternative prey
can support the predator’s growth in the absence of disease in the first prey.
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Figure 2. Equilibrium species densities in Model 1 are constructed as functions of the
transmission coefficient λ0. The other model parameters are r1 = 1, K = 10, d1 = .5,
a = 1, r2 = 3, b = 1, θ1 = .2, θ2 = .2, d2 = .1

In the case, where prey #2 can alone support the predator (H2 is satisfied), a typical bifurcation
structure is represented in Fig.2 (constructed for r1 = 1, K = 10, d1 = .5, a = 1, r2 = 3, b = 1,
θ1 = .2, θ2 = .2, d2 = .1). The figure shows the stable equilibria, which are the only model attractors
of the system. For a weak transmission rate, the disease cannot establish in the system and the entire
population of prey #1 is healthy. Starting from a critical value of λ0 (determined by the condition
R1 = 1), the disease invades the system and all four components S, I,N, P can coexist (equilibrium is
E∗). Interestingly, for a further increase of disease transmission, the density of prey #2 tends to zero and
this species goes extinct (equilibrium E8). This can be explained by the fact that the predator density
becomes large and the predation rate on prey #2 becomes higher than its maximal growth rate r2. A
further gradual increase in λ0 results in a drop of I, and, as a consequence, a decrease in P , thus the
predation on prey #2 is reduced and it can establish itself in the system again (equilibrium E∗). For
a further increase in the transmission rate, the values of S, I, P decrease, whereas that of N slightly
increases. It is worth mentioning that in Fig.2 and other bifurcation diagrams, the exchange of stability
among the equilibria takes place through transcritical bifurcations.

The extinction of N at some intermediate λ0 requires relatively high values of the carrying capacity
and does not occur at low K, although the values of N generally drop. For instance, if we drop K from
10 to 2, the stationary value of N is always positive (the diagram is not shown here).

In the case where prey #2 cannot support the growth of predator alone, the bifurcation diagrams
radically change. Fig.3 shows an example of such a situation (we decreased the value of the conversion
coefficient θ2, and the carrying capacity K, the other parameters are the same as before). One can
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see from the diagram that the predator can survive only within an intermediate range of λ0: for small
transmission rate the disease cannot establish in the system, thus the predator cannot consume infected
prey #1; for high transmission rates the level of infected prey I becomes small and it cannot support
the predator growth. In this sense, the diagram is somewhat similar to that of Fig.1 (i.e. in the will be
observed for larger values of K (not shown here): in this case an increase in P for some intermediate
transmission rate is high enough to completely suppress the growth of prey #2. This is an example of
strong apparent competition of the prey species via their common predator [32].
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Figure 3. Equilibrium species densities in Model 1 are constructed as functions of the
transmission coefficient λ0. The other model parameters are r1 = 1, K = 5, d1 = .5,
a = 1, r2 = 3, b = 1, θ1 = .2, θ2 = .01, d2 = .1.

Interestingly, the presence of an alternative prey can strongly affect the disease prevalence, which is
an important characteristic of the infection strength [28]. The prevalence is determined as the ratio
between the infected individuals and the total number of individuals in the population, i.e. I/(I + S).
Fig.4 shows the graphs of the dependence of the prevalence on λ0 in the presence (solid line) and in the
absence (dashed line) of the second predator. One can see that for N > 0, the disease prevalence exhibits
a substantial drop. This is due to the fact that in the presence of prey #2, the population size of the
healthy prey #1, S, increases. Such a decrease in the disease prevalence is observed within a broad range
of model parameters.

Finally, we also investigated the dependence of the system behaviour on both the transmission rate λ0

and the virulence d1. Fig.5 shows two different examples of λ0 − d1 diagrams constructed for the same
parameters as in Fig.2 and Fig.3 respectively. The symbols Ei denote the stable equilibria of the system
(see Table 2), which are the global model attractors. In the case where the second prey can alone support
the growth of the predator (Fig.5a), an increase in virulence impedes the disease establishment (the area
corresponding to E7 becomes larger); moreover, for high d1, extinction of the second prey is not observed
due to the fact that the density of the predator drops. In the situation where the second prey does not
provide enough supply for the predator (see Fig.5b), the persistence of predator is possible only for small
and intermediate d1: for large values of virulence, the predator cannot survive due to a low level of I.
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Figure 4. The disease prevalence in the system with two prey species (solid line) and
in the system with a single prey (dashed line). The model parameters are the same as
in Fig.2

4. Model 2: predator-dependent disease transmission scenario

For a predator-dependent transmission scenario (α > 0), the model equations read

dS

dt
= r1

(

1− S + I

K

)

S − (λ0 + αP )SI, (4.1)

dI

dt
= (λ0 + αP )SI − d1I − aIP, (4.2)

dN

dt
= r2

(

1− N

K

)

N − bNP, (4.3)

dP

dt
= θ1aIP + θ2bNP − d2P. (4.4)

We shall start our analysis with a brief description of the model behaviour in the absence of prey #2,
since this will be important for understanding the consequences of introducing the alternative prey. The
model has been considered in detail in [25] and we briefly list the main findings.

In the absence of prey #2, the model has the following equilibria. The trivial stationary equilibrium
is G0 = (0, 0, 0); it is always unstable. The disease-free and predator-free equilibrium is given by G1 =
(K, 0, 0); it is stable for D > Kλ0 and unstable otherwise. The predator-free stationary equilibrium is
given by G2 = (S6, I6, 0), with S6 = d1/λ, I6 = r(Kλ0 − d1)/(λ0(Kλ0 + r)). Finally, there is an interior
stationary state (G∗ = S8(1,2), I8(1,2), P8(1,2)), where the stationary densities are determined by

S8(1,2) =
d1 + aP8(1,2)

λ0 + αP8(1,2)
, I8(1,2) =

δ

θ1a
, (4.5)
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Figure 5. Bifurcation diagram of Model 1 in the λ0 − d1-plane for constructed for:
r1 = 1, K = 10, a = 1, r2 = 3, b = 1, θ1 = .2, θ2 = .2, d2 = .1 (left panel); r1 = 1,
K = 5, a = 1, r2 = 3, b = 1, θ1 = .2, θ2 = .01, d2 = .1 (right panel).

where P8(1,2) is one of the positive roots of the following quadratic equation,

D0P
2
8(1,2) +D1P8(1,2) +D2 = 0 (4.6)

with

D0 = α2d2K, (4.7)

D1 = 2αd2Kλ0 + αd2r1 + a2r1θ1 − aαKr1θ1, (4.8)

D2 = d2λ0(r1 + λ0K)− θ1ar1(λ0K − d1). (4.9)

If H8: D1 < 0 and D2
1 > 4D0D2 hold, the system has two interior equilibria (S8(1,2), I8(1,2), P8(1,2)),

one of them is a always saddle point. Note that condition H4 (D2 < 0) is also required in this case.
Adding predator-dependent disease transmission (compared to the same model with α = 0) results in

the possibility of multiple attractors [25], which was impossible for α = 0. A typical bifurcation diagram
in the λ0 − α plane is shown in Fig.6, which is constructed for the same parameters as Fig.1. The
labels over the domains indicate the attractors of the system. We also show close-ups of two parts of the
diagram with a more complex structure (see Fig.6, the bottom panels). From the diagrams one can see
that for a small α, a gradual increase in the predator-independent transmission λ0 results in the same
behaviour as for α = 0 (cf. Fig.1). However, for intermediate α the system exhibits bi-stability for small
λ0: depending on initial condition, the predator will either establish in the system or go extinct. Finally,
for some large α, the interior equilibrium becomes unstable and the species densities periodically oscillate
around this equilibrium. A further increase in the predator-independent transmission component λ0 (for
a fixed α) results in qualitatively similar behaviour to the case α = 0. Thus, the main alteration caused
by a predator-dependent disease transmission is observed only for small λ0 (see [25] for more detail).

Having the above properties in mind, we shall proceed to the investigation of the full Model 2.

86



“BanerjeeMmnp˙1” — 2015/3/28 — 10:53 — page 87 — #14
✐

✐

✐

✐

✐

✐

✐

✐

M. Sen, M. Banerjee, A. Morozov A generalist predator regulating infection spread

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

α →

λ 0
 →

L.C.

BA

(S
8
,I

8
,P

8
)

(S
6
,I

6
,0)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.04

0.042

0.044

0.046

0.048

0.05

0.052

0.054

0.056

0.058

0.06

α →

λ
0
 →

A

(S
8
,I

8
,P

8
)

(K,0,0) & (S
8
,I

8
,P

8
)(K,0,0)

(S
6
,I

6
,0)

(S
6
,I

6
,0) &

(S
8
,I

8
,P

8
)

1.5 1.52 1.54 1.56 1.58 1.6
0.04

0.042

0.044

0.046

0.048

0.05

0.052

0.054

0.056

0.058

0.06

α →

λ
0
 →

B

L.C.
(S

8
,I

8
,P

8
)

(K,0,0) & (S
8
,I

8
,P

8
) (K,0,0) & L.C.

(S
6
,I

6
,0) & (S

8
,I

8
,P

8
) (S

6
,I

6
,0) & L.C.

Figure 6. Bifurcation diagram in α− λ0-plane for Model 2 in the absence of prey #2.
The other parameters are: r1 = 1, K = 10, a = 1, d1 = .5, θ1 = .2, d2 = .1. The symbols
Gi denote the corresponding attracting equilibria (Gi) and a stable limit cycle (L.C.).

4.1. Equilibria

The full model (4.1)-(4.4) has the following equilibria: the trivial equilibrium point E0(0, 0, 0, 0), two
axial equilibria E1(K, 0, 0, 0), E2(0, 0,K, 0) and one boundary equilibrium point given by E3(K, 0,K, 0).
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These equilibria always exist. As it was the case with Model 1, Model 2 will have four boundary equilibria

given by E4

(

d1
λ0

,
r1(λ0K − d1)

λ0(r1 + λ0K)
, 0, 0

)

, E5

(

0, 0,
r2(θ2bK − d2)

θ2b2K
,
d2
θ2b

)

, E6

(

d1
λ0

,
r1(λ0K − d1)

λ0(r1 + λ0K)
,K, 0

)

,

E7

(

K, 0,
d2
θ2b

,
r2(θ2bK − d2)

θ2b2K

)

under the parametric restrictions stated in Proposition 3.1.

On the other hand, the model can have the following two boundary equilibria of the form

E8i

(

d1 + aP8(i)

λ0 + αP8(i)
,
d2
θ1a

, 0, P8(i)

)

, where P8(i) is a positive solution of the equation (4.6). In this case the

second prey is absent and the equilibrium densities coincide with those of (4.6)- (4.5). Computation of

the stationary densities of the predator gives P8(1) =
−D1−

√
D2

1
−4D0D2

2D0

and P8(2) =
−D1+

√
D2

1
−4D0D2

2D0

,
where the values of Di are provided by (4.7) - (4.9). Hence, if H4: holds only E82 exists. Otherwise both
E81 and E82 are feasible provided H8: D1 < 0 and D2

1 > 4D0D2 hold.
Finally, Model 2 may have up to three interior equilibrium points depending upon the parametric

restrictions. Let us denote an interior equilibrium point by E∗(S∗, I∗, N∗, P∗), where I∗ is a positive root
of the cubic equation

∆0ξ
3 +∆1ξ

2 +∆2ξ +∆3 = 0, (4.10)

where

∆0 = α2r22θ
2
1a

2,

∆1 = (2α2r22θ1aθ2bK + 2r2αKλ0θ2b
2θ1a+ r2αr1θ2b

2θ1a− 2α2r22θ1ad2),

∆2 = (r2a
2r1θ2b

2θ1 − r2αr1θ2b
2d2 + r2αr1θ

2
2b

3K − r2αr1Kθ2b
2θ1a+ λ0r1θ

2
2b

4K + 2r2αK
2λ0θ

2
2b

3

+α2r22θ
2
2b

2K2 − 2α2r22θ2bKd2 + α2r22d
2
2 +K2λ2

0θ
2
2b

4 − 2r2αKλ0θ2b
2d2)

∆3 = −r2ar1θ2b
2d2 − λ0r1K

2θ22b
4 − r2αr1K

2θ22b
3 + r2ar1θ

2
2b

3K + d1r1θ
2
2b

4K + r2αr1Kθ2b
2d2.

Other components are given by

S∗ =
r1Kθ2b

2 + αr2d2I∗ − r1θ2b
2I∗ +Kλ0θ2b

2I∗ − αar2θ1I∗ − αr2θ2bKI∗
r1θ2b2

N∗ =
d2 − θ1aI∗

θ2b
,

P∗ =
r2(θ1aI∗ + θ2bK − d2)

θ2b2K
.

We define the following condition:

H9: In the case the cubic equation (4.10) has one, two or three positive roots Ii∗ such that Si∗ >
0, Ni∗ > 0, Pi∗ > 0, for i = 1,2 or 3, the model will have one, two or three feasible interior equilibrium
points.

The explicit expressions for H9: can be technically derived; however, obviously, they are rather cum-
bersome and we do not provide them here.

The main results on system equilibria in Model 1 are summarized in Table 3.
Note that adding a predator-dependent disease transmission α > 0 alters the previous conditionR1 > 1

(obtained in Model 1) for the establishment of the disease in the presence of the second predator (see
(3.7)). Thus, we need to introduce a modified basic reproduction number R2. We again consider the
per capita growth rate of I under condition that the predator density is supported by the second prey
(P = P7) and proceed in a similar way as before. We define R2 as

R2 =
(λ0 + αP7)K

d1 + aP7
=

(

λ0 + α r2(θ2bK−d2)
θ2b2K

)

K

d1 +
ar2(θ2bK−d2)

θ2b2K

. (4.11)
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Thus, a necessary condition for an endemic equilibrium E∗ is given by R2 > 1.

4.2. Stability of equilibria

The Jacobian matrix for the above model evaluated at an arbitrary point is given by

J =









r1
(

1− 2S+I
K

)

− (λ0 + αP )I −r1
S
K

− (λ0 + αP )S 0 −αSI
(λ0 + αP )I (λ0 + αP )S − d1 − aP 0 (αS − a)I

0 0 r2
(

1− 2N
K

)

− bP −bN
0 θ1aP θ2bP θ1aI + θ2bN − d2









.(4.12)

Evaluating the Jacobian matrix at E0(0, 0, 0, 0), the trivial equilibrium point, we find the eigenvalues
of the Jacobian matrix as r1 > 0, −d1 < 0, r2 > 0, −d2 < 0, and hence E0 is a saddle-point with a
two-dimensional stable manifold and two dimensional unstable manifold.

The eigenvalues of the Jacobian matrix evaluated at E1(K, 0, 0, 0) are −r1 < 0, λ0K − d1, r2 > 0 and
−d2 < 0. Hence E1 is a saddle point, the dimension of the unstable manifold is 2 if λ0K > d1 and is 1
otherwise.

Evaluating J at E2(0, 0,K, 0) we find the related eigenvalues r1 > 0, −d1 < 0, −r2 < 0 and θ2bK−d2.
Hence E2 is a saddle point having a two-dimensional unstable manifold if θ2bK > d2.

Evaluating the Jacobian matrix at the first boundary equilibrium point E3(K, 0,K, 0) we find its
related eigenvalues −r1 < 0, λ0K − d1, −r2 < 0 and θ2bK − d2. Hence E3 is locally asymptotically

stable if K < min

{

d1
λ0

,
d2
θ2b

}

. E3 is a saddle point having a two-dimensional unstable manifold if

K > max

{

d1
λ0

,
d2
θ2b

}

For E4

(

d1

λ0

, r1(λ0K−d1)
λ0(r1+λ0K) , 0, 0

)

, the Jacobian matrix is

J4 =













− r1d1

λ0K
− r1d1

λ0K
− d1 0 − r1αd1(λ0K−d1)

λ2

0
(r1+λ0K)

r1(λ0K−d1)
r1+λ0K

0 0 r1(αd1−aλ0)(λ0K−d1)
λ2

0
(r1+λ0K)

0 0 r2 0

0 0 0
θ1ar1λ0K−λ0d2r1−d2λ

2

0
K−d1θ1r1K

λ0(r1+λ0K)













(4.13)

E4 is a saddle point with a two-dimensional unstable manifold if θ1ar1(λ0K − d1) > d2λ0(r1 + λ0K).
Otherwise it will have a one-dimensional unstable manifold and a three-dimensional stable manifold.

For E5

(

0, 0, r2(θ2bK−d2)
θ2b2K

, d2

θ2b

)

J5 =











r1 0 0 0

0 − b2θ2Kd1+ar2(θ2bK−d2)
(b2θ2K) 0 0

0 0 − r2d2

Kθ2b
− d2

θ2

0 θ1ar2(θ2bK−d2)
b2θ2K

r2(θ2bK−d2)
bK

0











(4.14)

E5 is a saddle point with a one-dimensional unstable manifold.

For E6

(

d1

λ0

, r1(λ0K−d1)
λ0(r1+λ0K) ,K, 0

)

J6 =











− r1d1

λ0K
− r1d1

λ0K
− d1 0 − r1αd1(λ0K−d1)

λ2

0
(r1+λ0K)

r1(λ0K−d1)
r1+λ0K

0 0 r1(αd1−aλ0)(λ0K−d1)
λ2

0
(r1+λ0K)

0 0 −r2 −bK

0 0 0 θ1ar1(λ0K−d1)+λ0(r1+λ0K)(θ2bK−d2)
λ0(r1+λ0K)











(4.15)
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E6 is a stable point if θ1ar1(λ0K − d1) + λ0(r1 + λ0K)(θ2bK − d2) < 0 otherwise it is saddle point with
a one-dimensional unstable manifold.

For E7

(

K, 0, d2

θ2b
, r2(θ2bK−d2)

θ2b2K

)

J7 =













−r1 −r1 −
(

λ0 +
αr2(θ2bK−d2)

b2θ2K

)

K 0 0

0
(

λ0 +
αr2(θ2bK−d2)

b2θ2K

)

K − d1 − ar2(θ2bK−d2)
b2θ2K

0 0

0 0 − r2d2

Kθ2b
− d2

θ2

0 θ1ar2(θ2bK−d2)
b2θ2K

r2(θ2bK−d2)
bK

0













(4.16)

E7 is a stable point if H10:
(

λ0 +
αr2(θ2bK−d2)

b2θ2K

)

K < d1 +
ar2(θ2bK−d2)

b2θ2K
, otherwise it is a saddle with a

one-dimensional unstable manifold. Note that the condition H10 coincides with the requirement for the
modified basic reproduction number R2 < 1.

For E8i we have,

J8i =







− r1S8i

K
−r1

S8i

K
− (λ0 + αP8i)S8i 0 −αS8iI8i

(λ0 + αP8i)I8i 0 0 (αS8i − a)I8i
0 0 r2 − bP8i 0
0 θ1aP8i θ2bP8i 0






. (4.17)

Finally, for the interior equilibria Ei∗ we have

J =







− r1Si∗

K
−r1

Si∗

K
− (λ0 + αPi∗)Si∗ 0 −αSi∗Ii∗

(λ0 + αPi∗)Ii∗ 0 0 (αSi∗ − a)Ii∗
0 0 0 −bNi∗

0 θ1aPi∗ θ2bPi∗ 0






. (4.18)

Computation of the explicit characteristic equation results in a cumbersome expression, which can be
done only numerically.

The main results on the stability of the equilibria in Model 1 are summarized in Table 3.

4.3. Bifurcation Portraits of Model 2

Note that it is rather hard to fulfil an exhaustive parametric analysis of Model 2 due to the large number
of parameters and a dramatic increase in complexity caused by λ(P ). Here, to gain an introductory
insight, we shall investigate the role of the second prey in the dynamics of the system in two major
ecologically relevant scenarios. The two cases we shall consider are: (i) the second prey N can alone
support the predator in the absence of the first prey, and (ii) the infected population I of the first prey is
required for the persistence of the predator. Following [25], we shall use α and λ0 as the key bifurcation
parameters.

Fig.7 shows a typical α−λ0 bifurcation diagram in the case the predator can survive in the absence of
prey #1. The diagram is constructed for the same parameters as in Fig.2. The symbols over the different
domains specify model attractors; they are always stable equilibria Ei for the given parameter range.

Comparison of Fig.6 and Fig.7 shows that including prey #2 suppresses oscillations, stabilizes the
system and restricts the conditions for epidemic spread (determined by R2 > 1). On the other hand,
the domains with multiple stability disappear from the parametric portrait: now for any small initial
amount of P , the predator is able to establish in the system (see domain E8 in Fig.7), which was not
the case in the system with a specialist predator [25]. Interestingly, this happens even in the case where
the second prey cannot ultimately establish itself in the system. Thus, even if for large times we have
extinction of prey #2, introducing any small amount of N will make the equilibrium with P = 0 unstable.
Thus, no Allee-like effect phenomena are observed as was the case in Fig.6. For high values of α, all four
components S, I,N, P will always establish in the system. Computation of the disease prevalence also
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Equilibrium Existence Stability

E0(0, 0, 0, 0) Always Saddle point with two-dimensional stable
and two-dimensional unstable manifolds.

E1(K, 0, 0, 0) Always Saddle point, dimension of unstable manifold
is two if H1 (R0 < 1) and one otherwise

E2(0, 0,K, 0) Always Saddle point, dimension of unstable manifold
is two if H2 holds and one otherwise.

E3(K, 0, K, 0) Always Locally asymptotically stable if both H1 (R0 < 1) and H2

do not hold, otherwise it is a saddle point

E4(S4, I4, 0, 0) If H1 holds. Saddle point, dimension of unstable manifold
is two if H4 holds and one otherwise.

E5(0, 0, N5, P5) If H2 holds. Saddle point, with one-dimensional unstable manifold.

E6(S6, I6,K, 0) If H1 holds. Locally asymptotically stable if H5 does not hold,
otherwise saddle point with one-dimensional unstable manifold.

E7(K, 0, N7, P7) If H2 holds. Locally asymptotically stable if H10 holds (R2 < 1).
otherwise saddle point with one-dimensional unstable manifold

E81(S81, I81, 0, P81). H4 does not hold Stable if all roots of the characteristic equation,
and H8 holds of J81 have negative real parts.

E82(S82, I82, 0, P82). Either H4 holds or Stable if all roots of the characteristic equation,
H4 does not hold and H8 holds of J81 have negative real parts.

E∗(Si∗, Ii∗, Ni∗, Pi∗). See H9 Stable if all roots of the characteristic equation,
of Ji∗ have negative real parts.

Table 3. Summary of existence and stability criterion for the equilibria of Model 2.

shows that its value decreases compared to the same model with a single prey (not shown here); this is
due to an increase in the stationary value of S.

As in Model 1, a decrease in the carrying capacity K in the current model results in the disappearance
of domain E8 in Fig.7: there is no extinction of prey #2 for some intermediate α and λ0. We do not
show the altered bifurcation diagram in this case for the sake of brevity.

Let us consider next the other possible situation, where the predator cannot survive by consuming
prey #1 alone. A typical bifurcation diagram is shown in Fig.8 (constructed for the same parameters
as Fig.3). The overall structure of this diagram is close to that of the model with a specialist predator
(cf. Fig.6, note that replacing K = 5 does not change the portrait qualitatively). For example, Model
2 with N 6= 0 can exhibit bi-stability for small λ0. Moreover, a large predator-dependent transmission
α will result in a destabilization of the system: species densities begin oscillating around an unstable
E∗ (this is denoted by L.C in the figure). The condition for disease establishment is the same as in the
absence of prey #2, which is given by R0 > 1. On the other hand, the coexistence of all four components
becomes enhanced in the presence of the second prey: the survival of the predator is observed for larger
values of λ0. Interestingly, although the population cycles in Fig.8 are not suppressed, adding a second
prey results in a substantial drop in the amplitude of oscillations (by a factor of 8-10 for the given set of
parameters), which is observed within a large range of α − λ0 (the corresponding graphs are not shown
here). As a result, due to the existence of an alternative food source, the population density of prey
#1 does not exhibit a severe drop to very small values (as it would be for N = 0), which would signify
species extinction in a real ecosystem. Thus, the presence of prey #2 enhances the persistence conditions
of prey #1 and the predator.

Finally, we should say that after completing a rather extensive investigation, we could not find a
single set of parameters, corresponding to the triple exterior equilibrium (S∗, I∗, N∗, P∗) with all positive
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Figure 7. Bifurcation diagram of Model 2 in α−λ0-plane for the parameter set: r1 = 1,
K = 10, a = 1, r2 = 3, b = 1, θ1 = .2, θ2 = .2, d2 = .1.

densities. This might signify that even if such a parameter set were to exist, the domain size should be
rather narrow. Finding such a parameter set can be an important future extension of the current work.

5. Discussion and conclusions

Most models in theoretical eco-epidemiology make the important assumption that the predator consumes
only one prey species (see references in [35]). This is obviously a too simplistic scenario and the current
paper is suggested to partially bridge the existing gap and explore the role of an alternative prey in the
disease spread and overall ecosystem dynamics. A number of publications consider the scenario where the
predator consumes both susceptible and infected prey, and so formally the predator does have two sources
of food: healthy and infected prey (see examples in [35]). However, the two subpopulations (S and I) of
the same prey cannot be regarded as two separate species. Indeed, alteration in the growth rate/carryng
capacity of the healthy subpopulation S automatically affects the growth rate of the density of the infected
subpopulation I. Moreover, extinction of S would automatically result in an imminent extinction of I.
On the other hand, in the existing few eco-epidemiological models, where the predator does have an
alternative food source, such a source was always suggested to be fixed, i.e. to be ’static’ [14, 15, 30].
In this paper, we consider the density of the alternative prey N to be a dynamical variable. Finally,
we explore here eco-epidemiological dynamics for two different scenarios of transmission rate: predator-
independent and predator-dependent disease transmission. The last scenario is largely overlooked in the
literature.

After fulfilling a comprehensive bifurcation analysis, we find that the introduction of a second prey in
the system can strongly affect the spread of the disease in the first prey species. This can be described
in terms of the basic reproduction number of the infection. We have introduced two modified basic
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Figure 8. Bifurcation diagram of Model 2 in α−λ0-plane for the parameter set: r1 = 1,
K = 5, a = 1, r2 = 3, b = 1, θ1 = .2, θ2 = .01, d2 = .1.

reproduction numbers R1 and R2, which depend on the predator density (see (3.7) and (4.11)), these
numbers generally provide more restrictive conditions for disease spread than R0 (i.e. establishment of
the infection requires a larger transmission rate). However, they are valid only in the case where the
alternative prey can support the growth of the predator population alone: otherwise the condition for
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infection spread is determined by R0. Furthermore, computation of the disease prevalence shows that
including a second prey can substantially decrease its value (Fig.3). Mathematically, this follows from
the equation for the infected prey I: at equilibrium a higher density of predator P - due to the presence
of an alternative resource - should be compensated by a higher density of healthy subpopulation S, which
should decrease the disease prevalence I/(S + I), since the value of I varies only slightly. Thus, the
infection prevalence predicted using a single prey model can be somewhat overestimated, which is an
important consideration for practical disease management in ecosystems.

We show that the presence of an alternative prey enhances the persistence of the predator regardless
of whether or not prey #2 can support the predator population alone. This is true for both transmission
scenarios, and can be seen from a comparison of the corresponding bifurcation diagrams obtained for the
specialist and the generalist predators. On the other hand, the spread of disease in prey #1 can strongly
affect the population density of prey #2, and can even cause it to go extinct (e.g. figs.2,7). For example,
for high values of carrying capacity K, coexistence between the two prey species is impossible for an
intermediate range of disease transmission rate. Since the prey species do not interact directly, this is an
example of strong apparent competition [32].

Recently it was shown that predator-dependent disease transmission can result in system bi-stability
and destabilization even for a linear predator functional response [25]. Our work shows that the previous
findings are not justified in the case of a generalist predator, where the second prey constitutes an
important food source (i.e. the predator can survive solely by consuming the alternative prey). For
instance, there is no Allee -effect like behaviour or species oscillations (see Fig.7), as was the case for a
single prey model [25]. Paradoxically, even if the second prey cannot establish in the system in the long
term and therefore formally the equilibrium species densities S, I, P are equivalent to the model with a
single prey, the overall system behaves differently to the case of a specialist predator, where the second
prey is always absent. This happens because the equilibrium with P = 0 is stable only in the subspace
with N ≡ 0 and adding any amount of N > 0 breaks down the stability. Since in nature there often exists
some alternative prey species (even at low densities) we will always have N > 0 and the equilibrium with
P = 0 will be unstable in the considered scenario. We also find that the presence of a second prey can
dampen high amplitude oscillations in Model 2 caused by the predator-dependent disease transmission.

Here we consider two different disease transmission scenarios and it is worth comparing the overall effect
of introducing a predator-dependent transmission to the system with a generalist predator. A thorough
comparison between the two scenarios should be done elsewhere since it would require the construction of
all possible parametric portraits. Our current findings show that inclusion of λ(P ) generally facilitates the
spread of disease (provided α > 0). Adding λ(P ) can promote bi-stability in the system and oscillations
of species densities in the case the second prey cannot support the predator population alone (cf. Fig.8).
Also, introducing predator-dependent transmission can shift persistence conditions for the second prey
(see Fig.7, domain E8), i.e. either to result in extinction of N , or facilitate its survival depending on the
conditions for N at λ(0).

Finally, we should mention that our study leaves some open questions. For instance, it would be
an important extension to investigate the behaviour of the same model for a more realistic functional
response with saturation (e.g. Holling type II). Also, it would be interesting to explore the possibility of
more complex dynamics in Model 2, in particular, to investigate the possibility of having three coexisting
interior equilibria. Another important future extension would be the use of a parametrization of the
transmission rate other than the mass action term λSI, in particular the frequency-dependent pathogen
transmission which is widely used in the modelling literature [22, 24]. We shall address these issues in
following papers.
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