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ABSTRACT
Linear perturbation is used to investigate the effect of gravitational softening on the retrieved
two-armed spiral eigenmodes of razor-thin stellar discs. We explore four softening kernels
with different degrees of gravity bias, and with/without compact support (compact in the
sense that they yield exactly Newtonian forces outside the softening kernel). These kernels
are applied to two disc galaxy models with well-known unsoftened unstable modes. We
illustrate quantitatively the importance of a vanishing linear gravity bias to yield accurate
frequency estimates of the unstable modes. As such, Plummer softening, while very popular
amongst simulators, performs poorly in our tests. The best results, with excellent agreement
between the softened and unsoftened mode properties, are obtained with softening kernels
that have a reduced gravity bias, obtained by compensating for the sub-Newtonian forces at
small interparticle distances with slightly super-Newtonian forces at radii near the softening
length. We present examples of such kernels that, moreover, are analytically simple and
computationally cheap. Finally, these results light the way to the construction of softening
methods with even smaller gravity bias, although at the price of increasingly complex kernels.
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1 IN T RO D U C T I O N

The evolution of a collisionless stellar system is determined by the
collisionless Boltzmann equation (CBE)

∂F (x, v, t)

∂t
+ v · ∂F (x, v, t)

∂x
+ ∂V (x, t)

∂x
· ∂F (x, v, t)

∂v
= 0. (1)

Here, F (x, v, t) is the distribution function (DF), which gives the
stellar phase-space density at location (x, v) and time t. The motion
of the collisionless fluid is controlled by the (positive) binding
potential V (x, t). The direct numerical integration of the CBE in
six-dimensional phase space is in general impossible because under
the CBE the DF develops ever finer structures owing to phase mixing
or chaotic mixing. However, numerical schemes that smooth out
such fine structure (whereby violating the CBE) are possible but
taxing (Yoshikawa, Yoshida & Umemura 2013; Schaller et al. 2014;
Colombi et al. 2015).

A much more popular method for modelling collisionless stellar
dynamics is an N-body simulation: a Monte Carlo approach,
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which integrates the CBE via the method of characteristics. The
DF is represented by a collection of phase-space points, called
‘particles’, and each particle is evolved through phase space along its
characteristic curve by solving the first-order differential equations

dx
dt

= v, (2a)

dv

dt
= ∂V (x, t)

∂x
. (2b)

In the case of gravitational forces, the binding potential can be
written as

V (x, t) = G

∫
ρ(x′, t) dx′

|x − x′| (3a)

≈ G
∑

i

mi

|x − xi | (3b)

with ρ the stellar mass density and mi and xi the mass and posi-
tion, respectively, of the ith particle. Using the approximation (3b)
to the gravitational field, diverging accelerations may occur in close
encounters (‘collisions’) between particles. Such collisions are an
artefact of the much smaller N in the simulation than in the simulated
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Softening and spiral modes 151

system. This problem is generally solved by ‘softening’ gravity,
when the 1/r potential in equations (3) is replaced by a non-diverging
form,

1

r
→ ψ(r) = 1

ε
φ
( r

ε

)
, (4)

where ψ(r) is the softening Green’s function, ε is the softening
length, and φ is the dimensionless softening kernel. For suitable
functions φ, this modifies the interparticle interactions such that
accelerations remain bounded and strongly deflecting encounters
are avoided.

Unfortunately, this force modification results in a bias of gravity
and hence changes the character of the physical problem being
addressed by the N-body simulation. In practice, a balance must
be found between too much softening, causing force bias, and
too little softening, allowing strong encounters that render the N-
body dynamics intractable and collisional (Merritt 1996). Dehnen
(2001) has derived asymptotic relations in the context of spherically
symmetric systems, which can be used to inform the choice of the
softening parameters (kernel and length) such as to minimize the
resulting mean-square gravity error. However, it remains unclear
what the optimal choice of these parameters is in terms of accurately
modelling the dynamics, rather than merely minimizing the gravity
error. The goal of this series of papers is to investigate this question
by considering stellar dynamical problems that invoke non-trivial
dynamics but are still simple enough that accurate solutions of
the CBE are available. Specifically, we consider unstable two-
dimensional (2D) and three-dimensional (3D) systems, whose
eigenmodes can be accurately obtained from linear perturbation
theory. In this first paper, we focus on the two-armed (multiplicity
m = 2) spiral-shaped eigenmodes of 2D razor-thin disc galaxies in
the limit of N → ∞ (which can be achieved with computationally
cheap linear mode analysis without N-body simulations). Research
into the origin and longevity and/or transience of spiral structure
in disc galaxies has by and large relied on N-body simulations
(Hohl 1971; Toomre 1977; Sellwood & Lin 1989; Sellwood & Kahn
1991; Sellwood 2011; D’Onghia, Vogelsberger & Hernquist 2013;
Sellwood & Carlberg 2014) and on (semi-)analytical mode analysis
using the first-order CBE as a starting point (Zang 1976; Kalnajs
1977; Fridman & Polyachenko 1984; Palmer 1994; Vauterin &
Dejonghe 1996; Pichon & Cannon 1997; Evans & Read 1998;
Jalali & Hunter 2005; Jalali 2007; Binney & Tremaine 2008;
Polyachenko & Just 2015). Here, we use linear theory to investigate
how gravitational softening affects the growth of small-amplitude
eigenmodes in N-body simulations.

We introduce the various softening techniques explored by us
in Section 2. Our implementation of gravitational softening in
linear mode theory is layed out in Section 3. The properties
of the unsoftened axially symmetric disc models are discussed
in Section 4. Our results are presented in Section 5 and their
implications are discussed in Section 6.

2 G R AV I TAT I O NA L SO F T E N I N G IN TWO
SPATIAL D IMENSIONS

The usual motivation for softening in 2D N-body simulations is to
account for the finite thickness of the stellar disc, which is neglected
in the razor-thin limit (Miller 1971). In this interpretation, the
softening length ε is no longer a numerical but a physical parameter
and the modification of gravity and, consequently, of the dynamics
is deliberate, because real galaxies are not razor-thin (Romeo 1992,
1997).

However, as we are interested in the errors introduced by the
softening-induced modification of gravity, we cannot adopt this
interpretation but must consider the razor-thin disc as the desired
physical model, whose modes one may attempt to recover with an
N-body simulation.

2.1 Gravity bias

When inserting the softening kernel (4) into equation (3b), we obtain
the softened potential

V (x) ≈ V̂ (x) =
∑

i

Gmi

ε
φ

( |x − xi |
ε

)
. (5)

Here, V̂ (x) can be interpreted as an estimate, based on the masses
and positions of the simulation particles, for the true potential V (x).
The mean-square error made by this estimate can be decomposed
into a variance,

varx(V̂ ) =
〈[〈

V̂ (x)
〉 − V̂ (x)

]2
〉

, (6)

and a bias,

biasx(V̂ ) = 〈
V̂ (x)

〉 − V (x). (7)

Here, 〈 · 〉 denotes the ensemble average of a quantity over all N-
body realizations, in the limit N → ∞, of the underlying smooth
density distribution. The variance measures the mean amplitude of
the random fluctuations of a softened N-body potential around its
ensemble mean. In other words, it measures the graininess of the
N-body potential: the error made by not softening enough. The bias
measures the deviation of the ensemble mean of the softened N-
body potential from the underlying smooth potential. This is the
error made by softening too much.

For the situation of 3D N-body simulations, Dehnen (2001) has
derived analytical asymptotic relations for these quantities. An
adaptation of his derivations to an N-body simulation of a razor-
thin disc with surface density �(x) gives

biasx(V̂ ) = a0 ε G �(x) + a2 ε3 G ∇2�(x) + O(ε5), (8)

for the bias on the potential V (see the Appendix for a derivation).
The coefficients an depend only on the functional form of the
softening kernel:

an = 2π

2n ([n/2]!)2

∫ ∞

0
[1 − uφ(u)] undu. (9)

This is different for 3D systems, where this bias asymptotes as
ε2 at lowest order. Here, in two dimensions, the gravity biases are
proportional to ε. This is a direct consequence of the reduced
number of dimensions. Thus, in 2D N-body simulations, the
gravity bias is in general significantly stronger than in 3D N-body
simulations.1

Note that the integrand in equation (9) is always well-behaved
in the limit u → 0 but can be problematic for large u. If 1 −
uφ(u) ∝ u−p for large u then only coefficients an with n < p − 1 are
finite; the rest come out infinite. In this case, the Taylor series (8)
does not converge, but the terms at n < p − 1 still provide a useful
approximation, only the remainder grows faster than ε2
(p − 1)/2�.

1Except in 3D simulations of disc galaxies with scale height h � ε, since in
three dimensions

biasx (V̂ ) ≈ −a3D
0 ε2Gρ(x) (10)

(Dehnen 2001, equation 10) with ρ(x) the spatial density.
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Table 1. Characteristics of the various softening methods used in this study. Here, φ, 	, and σ take argument u = r/ε and are the dimensionless kernels
for, respectively, potential, spatial, and surface density, defined in equations (4) and (12). The coefficients a0 and a2 determine the gravitational biases (see
equation 8). Here, ε0 quantifies the scaling of the kernels with non-zero a0 to a common level of gravity bias and εF quantifies the scaling of the kernels to a
common maximum interparticle force.

Name φ(u) 	(u) σ (u) a0 a2 ε0/ε εF/ε

Newton
1

u
δ3D(u) δ2D(u) 0 0 0 0

P0 Plummer
1√

1 + u2

3

4π

1

(1 + u2)5/2

1

2π

1

(1 + u2)3/2
2π ∞ 1 1

Q2
2nd modified
Kuz’min

3 + 5
2 u2 + u4

(1 + u2)5/2

15

8π

4 − 3u2

(1 + u2)9/2

3

4π

4 − u2

(1 + u2)7/2
0 −π

3
– 2.568

F3
a Ferrers n = 3 1 + 1

2 t + 3
8 t2 + 5

16 t3 + 35
128 t4 315

64π
t3 ill-behaved

63π

128

7π

1024

63

256
2.309

L2
a 2D modified

Ferrers n = 2
1 + 1

2 t + 3
8 t2 + 5

2 t3 105

8π
(1 − 2u2)t ill-behaved 0 − 7π

384
– 3.711

aIt indicates softening methods with compact support, where the formulæ for φ and 	 only apply at r < ε or t ≡ 1 − u2 ∈ [0, 1]. For these methods, no sensible
razor-thin surface-density kernel σ (u) can be provided.

Figure 1. Top panel: the dimensionless interaction potential of the softening
recipes listed in Table 1. Bottom panel: the corresponding interparticle
forces. The dimensionless interaction potentials (top) and interparticle forces
(bottom) of these softening kernels are listed in Table 1. The kernels are
scaled according to equations (19) and (20) to obtain a common maximum
interparticle force (as is obvious in the bottom panel), see also Section 2.3.
Note that kernels with a0 = 0 (Q2 and L2) have super-Newtonian gravity
at intermediate scales to compensate for the sub-Newtonian behaviour at
r → 0.

2.2 Softening kernels

The functional forms and other properties of the softening kernels
used in this study are listed in Table 1. Their interparticle interaction
potentials and forces are plotted in Figure 1. In particular, we

list the dimensionless interparticle interaction potential φ and the
corresponding 3D and 2D dimensionless density kernels, denoted
by 	 and σ , respectively, assigned to each point particle.

In three dimensions, gravitational softening is equivalent to
estimating the spatial mass density as a superposition of spheres
with density distribution ρ(r) placed at the particle positions. In two
dimensions, one can consider softening as a way of smoothing the
overall mass distribution as a superposition of razor-thin discs with
density distribution �(r) at the particle positions. For a softening
kernel φ, these spherical or razor-thin surface density distributions
are given by

ρ(r) = m

ε3
	
( r

ε

)
and �(r) = m

ε2
σ
( r

ε

)
, (11)

where the dimensionless density and surface-density kernels are
given by

	(u) = − 1

4πu2

d

du

(
u2 dφ

du

)
, (12a)

σ (u) = − 1

π2

∫ ∞

u

dx√
x2 − u2

d

dx

∫ x

0

x dt√
x2 − t2

dφ(t)

dt
, (12b)

respectively (Kalnajs 1999; Binney & Tremaine 2008).
Note that the softened force is that between a softened particle

[with density distribution ρ(r) or �(r) given by equation (11)] and
a point particle and not the force between two softened particles
(Barnes 2012). This remark applies to all softening techniques.

2.2.1 Plummer softening P0: infinite support, a0 �= 0

In three dimensions, this popular softening method corresponds to
estimating the spatial mass density as a superposition of Plummer
spheres (Plummer 1911) with scale radius ε at the particle positions.
In two dimensions, Plummer softening amounts to smoothing the
overall mass distribution as a superposition of razor-thin Kuz’min
discs (Kuz’min 1956).

Plummer softening modifies the gravitational interaction at all in-
terparticle separations and asymptotes to the Newtonian interaction
only for infinitely large particle separations. As a result, a3D

0 = ∞
and the gravity bias (10) in this case grows faster than ∝ ε2. In two
dimensions, this method’s non-zero a0 indicates that the gravity bias
increases linearly with softening length.
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2.2.2 Modified Kuz’min softening Q2: infinite support, a0 = 0

One can modify the Plummer kernel such that a0, a2, ..., ak = 0, for
any chosen even k, in order to significantly reduce the gravity bias.
For instance, we introduce the class of modified Kuz’min potentials,
with an interaction potential given by

φ(u) = Kn(u2)(
1 + u2

)n+1/2 , (13)

where Kn(u2) = ∑n

i=0 ciu
2i is a polynomial of degree n in u2 with

coefficients ci. We refer to the nth member of this class as Qn.
Clearly, the choice n = 0 yields the Plummer kernel, or: Q0 = P0.

The extra degree of freedom that comes with the choice n = 1
can be exploited to make a0 = 0. For instance, for this Q1 kernel,
one finds that

a0 ∝ lim
x→∞

∫ x

0

(
1 − c0 u + c1 u3(

1 + u2
)3/2

)
du

= lim
x→∞

{
(1 − c1)x + 2c1 − c0 + O

(
1

x

)}
(14)

and the choice c0 = 2, c1 = 1 makes a0 = 0. Thus, the ‘Q1’ method
is defined by the interparticle potential

φ(u) = 2 + u2

(1 + u2)3/2
(15)

and by the corresponding 3D and 2D density distributions

	(u) = 3

4π

4 − u2

(1 + u2)7/2
and σ (u) = 3

2π

1

(1 + u2)5/2
. (16)

In order to achieve a0 = 0, this softening method compensates with
slightly super-Newtonian forces at r� 1.2ε for the substantially sub-
Newtonian accelerations at small separations. Unfortunately, while
we now have a0 = 0, the Q1 softening kernel still has a diverging
second-order coefficient a2, such that the gravity bias grows faster
than ε3.

The extra degree of freedom provided by coefficient c2 of kernel
Q2 can be used to provide a2 with a finite value. Indeed, for this
kernel, we find that

a0 ∝ lim
x→∞

∫ x

0

(
1 − c0 u + c1 u3 + c2 u5(

1 + u2
)5/2

)
du

= lim
x→∞

{
(1 − c2)x + 1

3
(8c2 − 2c1 − c0) + O

(
1

x

)}
(17)

and

a2 ∝ lim
x→∞

∫ x

0

(
1 − c0 u + c1 u3 + c2 u5(

1 + u2
)5/2

)
u2du

= lim
x→∞

{
1

3
(1 − c2)x3 +

(
5c2

2
− c1

)
x

−2

3
(8c2 − 4c1 + c0) + O

(
1

x

)}
. (18)

Demanding a0 to be zero and a2 to be finite, leads to c2 = 1, c1 =
5/2, and c0 = 3. All properties of this Q2 kernel are listed in Table 1.

Of course, this game can be continued to obtain a2 = 0, then finite
a4, then a4 = 0, etc. However, the functional form of the resulting
interaction potentials becomes increasingly complex.

2.2.3 Ferrers n = 3 softening F3: compact support, a0 �= 0

An increasingly popular method is cubic spline softening, which
in 3D N-body simulations corresponds to replacing each particle
by a cubic-spline smoothing kernel as is widely used in smoothed
particle hydrodynamics (SPH) codes (see e.g. Monaghan 1992)
and was introduced as a gravitational softening kernel for N-
body/SPH codes by Hernquist & Katz (1989). Its main advantages
in this context are its exactly Newtonian behaviour beyond the
softening length and its dual use as hydrodynamics smoother and
gravity softener. However, its interparticle potential and 3D density
distribution are numerically rather unattractive due to their complex,
piecewise continuous functional forms.

Here and in the remainder, we will use the phrase ‘compact
support’ to indicate that a kernel yields exactly Newtonian forces
outside the softening kernel. In three dimensions, it immediately
follows from Newton’s first theorem that the corresponding density
distribution is zero outside the kernel, i.e. 	 = 0 at u > 1. In
two dimensions, this is not the case. In fact, all softening kernels
with exact Newtonian gravity at separations r > ε have poorly
behaved corresponding razor-thin disc profiles σ (u) (12b), with
infinite spatial extent and negative values.

We here opt for the so-called Ferrers softening methods, labelled
‘Fn’, whose interaction potentials are polynomials of degree n + 1
in the variable t = 1 − u2 inside the softening length and that behave
exactly Newtonian at separations r > ε. In three dimensions, they
correspond to replacing each particle with a Ferrers (1877) sphere
of order n. For n = 0, this is just a homogeneous sphere. Higher
order models have spherical densities that are simple polynomials,
with n continuous derivatives, in the variable t = 1 − u2.

For this paper, we investigate member n = 3 from this family, with
properties listed in Table 1, as an example of a softening method
with compact support but with a0 �= 0.

2.2.4 Modified Ferrers softening L2: compact support, a0 = 0

It is possible to modify the Ferrers softening methods to obtain
a0 = 0 in order to reduce their gravitational bias while retaining
the attractive property of having compact support. Here, we test the
method labelled ’L2’, or ‘2D modified Ferrers n = 2’, in Table 1. Its
name derives from the fact that it’s based on the F2 kernel, which has
as an interaction potential φ(u) = 1 + 1

2 t + 3
8 t2 + 5

16 t3, but where
the coefficient of the last term is tuned to make a0 = 0. This leads
to the L2 interaction potential φ(u) = 1 + 1

2 t + 3
8 t2 + 5

2 t3.
This kernel achieves its desirable properties by having super-

Newtonian accelerations for a limited range of separations close to
and inside of r = ε.

2.3 Softening scale

The softening length and kernel are only defined up to a re-
scaling: the softened potential (5) is invariant under the transfor-
mation

ε → aε and φ(q) → aφ(aq) (19)

with scaling factor a. This implies that the parameter ε has no
natural scale by itself and comparing different kernels at the same ε

is meaningless. Therefore, some other measure is required for such
a comparison. One such measure valid for all softening kernels is
the force-scaling as

εF = ε/
√−φ′

max, (20)
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where −φ′
max denotes the maximum value of the derivative of φ

(Springel 2010). The ratios εF/ε, scaled to unity for the Plummer
kernel, are listed in Table 1 for the kernels considered in this study.

For kernels with a0 �= 0, another natural measure of the softening
length is

ε0 ≡ a0

2π
ε =

∫ ∞

0
[1 − rψ(r)] dr, (21)

which measures the actual scale of the bias irrespective of any re-
scaling. With this definition, ε0 = ε for Plummer softening. For
other softening methods used in this study, ε0 is given in Table 1.

Likewise, softening techniques with zero a0 but non-zero a2 can
be scaled to a common level of gravity bias via the softening length
transformation

ε2 =
∣∣∣∣3a2

π

∣∣∣∣1/3

ε. (22)

With this definition, ε = ε2 for Q2 softening.

3 SOFTENED GRAV ITY IN STABILITY
ANALYSIS

3.1 Linear mode theory

We use PYSTAB, a PYTHON/C++ computer code, to analyse
the stability of a razor-thin stellar disc embedded in an axially
symmetric gravitational potential. The details of the mathematical
formalism behind this code and of its implementation can be found
in Vauterin & Dejonghe (1996), Dury et al. (2008), and De Rijcke &
Voulis (2016), so we will not repeat these here. An axially symmetric
disc galaxy model is characterized by a distribution function F0(E,
J), with E the specific binding energy and J the specific angular
momentum of a stellar orbit, and a mean gravitational potential
V0(r). In the remainder, we will refer to this unperturbed axially
symmetric state as the ‘base state’ of the system. Note that this base
state is only a correct solution of the CBE when employing the
Newtonian gravitational interaction (but see below).

For any given base state, PYSTAB can retrieve those complex
frequencies ω for which a spiral-shaped perturbation of the form

Vpert(r, θ, t) = Vpert(r) ei(mθ−ωt) (23)

constitutes an eigenmode. Here, (r, θ ) are polar coordinates in the
stellar disc, m is the multiplicity of the spiral pattern, �p =R{ω}/m
its pattern speed, and �{ω} its growth rate. A general perturbing
potential can always be expanded in such modes and, owing to the
linear approximation, these can be studied independently from each
other.

In essence, PYSTAB solves the first-order CBE to find the
response distribution function fresp(r, θ , vr, vθ , t) produced by a
given perturbation Vpert(r, θ , t). This response distribution function
generates the response density

�resp(r, θ, t) =
∫

fresp(r, θ, vr , vθ , t) dvrdvθ (24)

which in turn gives rise to the response softened gravitational
potential

Vresp(x) = G

∫
�resp(x′) ψ(|x − x′|) d2x′, (25)

where the integral runs over the whole surface of the stellar disc and
ψ(r), defined in equation (4), is the softened Green’s function for
gravitational interactions, replacing the Newtonian 1/r. Eigenmodes

are then identified by the fact that

Vpert(r, θ, t) ≡ Vresp(r, θ, t) (26)

and PYSTAB employs a matrix method (Kalnajs 1977) to find them.
The perturbing potential Vpert is expanded in a basis of potentials,
V�. The response to each basis potential, denoted by V�,resp, can
likewise be expanded in this basis as

V�,resp =
∑

k

Ck�Vk. (27)

If the perturbation is an eigenmode, then the C matrix can be shown
to possess a unity eigenvalue (Vauterin & Dejonghe 1996; Dury
et al. 2008; De Rijcke & Voulis 2016). This feature is exploited by
PYSTAB to identify the eigenmodes.

The formalism contains a number of technical parameters, such as
the number of orbits on which phase space is sampled [here we use
norbit(norbit + 1)/2 orbits with norbit = 600 in the allowed triangle of
turning point – or pericentre/apocentre – space], the number nFourier

of Fourier components in which the periodic part of the perturbing
potential is expanded (here we use nFourier = 80), the number of
potential-density pairs (PDPs) that is used for the expansion of the
radial part of the perturbing potential and density (we use 44 PDPs),
and the shape and extent of the PDP density basis functions. As in
De Rijcke & Voulis (2016), we use PDP densities of the form

��(r) = �0(r) exp

(
−1

2

(
r − r�

σ�

)2
)

, (28)

where the average radii r� cover the relevant part of the stellar disc
and are evenly spaced on a logarithmic scale so the resolution
is highest in the inner regions of the disc. The widths σ � are
automatically chosen such that consecutive basis functions are
sufficiently unresolved to represent any smooth function. The
position of these PDP density basis functions can be tuned to
achieve a high spatial resolution there where the eigenmodes live.
The corresponding PDP potentials are obtained via

V�(x) = G

∫
��(x′) ψ(|x − x′|) d2x′. (29)

3.2 Introducing gravitational softening

Since we want to validate our approach by comparing particular
results with published work based on numerical simulations, we
mimic the strategies employed by simulators when setting up and
performing N-body simulations of disc galaxies aimed at mode
analysis. Usually, an initial condition is generated by sampling
stellar particles from the distribution function F0(E, J) evaluated
using the Newtonian gravitational potential V0(r), independent of
the gravitational softening that is employed later on when evolving
the particles through time. Moreover, the axially symmetric force
field of the base state is subsequently evaluated correctly, i.e. without
softening, either by directly using the analytical expression for the
potential V0 or by adding a small correction to the softened gravita-
tional field derived from the particles. Only the non-axisymmetric
force field of the growing waves is softened (Earn & Sellwood
1995; Sellwood & Evans 2001; Sellwood 2012). This allows a
simulator to sample particles from the correct DF evaluated in the
correct potential so that at least the initial conditions of a simulation
correspond to the intended base state and the particle dynamics in
the axially symmetric force field is followed correctly.

Therefore, we only implement gravitational softening in the
response potential Vresp(r, θ , t), but not in the axially symmetric
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base state potential V0(r). Using this strategy, equation (25), and
a fortiori equation (29), is the only place where the softened
gravitational interaction enters the computation of the modes. It
is therefore straightforward to insert interaction potentials other
than the Newtonian one into a mode analysis code. The gravity bias
introduced in Section 2.1 must then be regarded as a measure for the
fidelity with which the softened response potential resembles the
Newtonian one. Thus, we can use linear stability theory to emulate
the results expected in the large N limit from N-body simulations
of disc galaxies. In this paper, we investigate the effect on the
eigenmodes in disc galaxy models from the P0, Q2, F3, and L2

softening methods listed in Table 1.

4 THE BA SE STATES

Below, we give the essential details of the two base states that
we employ for this study. We also list the frequencies of the
known eigenmodes of these base states computed for a Newtonian
interparticle interaction.

4.1 The isochrone disc model

The isochrone disc is characterized by the cored density profile

�0(r) = Mb

2πr3

(
ln

r + √
r2 + b2

b
− r

b

)
, (30)

which self-consistently generates the gravitational potential

V0(r) = GM

b + √
b2 + r2

(31)

(Henon 1959; Kalnajs 1976). Here, M is the total mass of the stellar
disc and b its scale-length. As shown by Kalnajs (1976) and Earn &
Sellwood (1995), a family of distribution functions that generate
this potential-density pair is given by

F0(E, J ) =
[

E

V0(0)

]mK−1

gmK
(x) (32)

with mK an integer, x = J
√

2E/GM , and

gmK
(x) = 2mK

2πV0(0)

[
x

dτmK

dx
− mK (mK − 3)

2
τmK

(x)

+
∫ 1

0
τmK

(ηx) ηmK
d2PmK−1

dη2
dη

]
. (33)

Here, Pm is the Legendre polynomial of degree m and

τmK
(x) = − M

16πb2

(1 − x2)3−mK

x3(1 + x2)

[
2x + (1 + x2) ln

1 − x

1 + x

]
. (34)

We adopt mK = 12 for this study. The Legendre polynomial can be
evaluated explicitly, allowing the integral featuring in the expression
for the distribution function to be evaluated in closed form. However,
the resulting expression is numerically very unstable for small x.
Therefore, we opted to simply evaluate the integral numerically.
This distribution function is only used to populate orbits with
positive angular momentum.

Counter-rotating stars have been added according to the prescrip-
tion given in Earn & Sellwood (1995), which, unfortunately, neces-
sitates going back and forth between energy, angular momentum
and the radial action variable, Jr:

F ′
0(E, J ) =

{
1
2 F0(E′, 0) if J < 0

F0(E, J ) − 1
2 F0(E′, 0) if J > 0

(35)

with E
′
the energy corresponding to a radial action Jr + |J| and zero

angular momentum. Fortunately, analytical conversion formulæ
between energy, angular momentum, and radial action exist for
the isochrone disc (Binney & Tremaine 2008).

We will focus here on the bisymmetric (m = 2) modes of this
model. Pichon & Cannon (1997) provide the frequencies of three
modes of this base state model, choosing units such that G = M =
b = 1, as

ω1 = 0.59 + 0.21 i,

ω2 = 0.46 + 0.14 i,

ω3 = 0.26 + 0.05 i, (36)

while Jalali & Hunter (2005) find

ω1 = 0.584 + 0.217 i,

ω2 = 0.468 + 0.148 i, (37)

for the two main modes.2

4.2 The Mestel disc

The Mestel (1963) disc has a cusped total surface density given by

�0(r) = �0
r0

r
, (38)

which self-consistently generates a gravitational potential of the
form

V0(r) = −v2
0 ln

(
r

r0

)
(39)

with the surface density scale given by �0 = v2
0/2πGr0. Here, v0

is the value of the disc’s constant circular velocity. A central hole
is cut-out of this disc model by multiplying its distribution function
(Toomre 1977)

f (E, J ) = �0v
q

0√
2qπ�

(
q+1

2

)
σq+2

(
J

r0v0

)q

eE/σ 2
, (40)

where q is a real number, with a cut-out function of the form

Hcut(J ) = x

1 + x
(41)

with x = (J/r0v0)n (obviously, this also slightly suppresses the
distribution function at larger J-values). Outside the central cut-
out region, the disc’s constant radial velocity dispersion is given by
σ = v0/

√
1 + q.

Here, we will focus on the q = 6, n = 4 member of this model
family and adopt units such that G = v0 = r0 = 1. Its dominant
bisymmetric mode is then expected to have a frequency

ω1 ≈ 0.88 + 0.13 i, (42)

as shown, e.g., by Toomre (1977), Read (1997), Evans & Read
(1998), and Polyachenko & Just (2015). This mode owes its
existence to the inner cut-out: if the angular momentum cut-off is not
sufficiently steep, i.e. if n is too small, there is no eigenmode. The

2Accuracy estimates for mode frequencies derived from linear stability
computations are hard to obtain, since many numerical parameters come into
play. Judging from the differences between published mode frequencies and
from our own limited experiments with varying the values of the employed
numerical parameters (described in Section 3.1), we estimate the mode
frequencies to be accurate to about the per cent level.
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idea is that incoming trailing wave packets are (partially) reflected
from this sharp inner edge to travel back outwards as leading
waves. Overreflection, or swing amplification, at the evanescent
zone around the corotation resonance (Mark 1976; Toomre 1981)
sends amplified trailing waves back inwards. Inside this resonance
cavity, growing modes can occur (Evans & Read 1998).

5 R ESULTS

5.1 The isochrone disc

5.1.1 Unsoftened gravity

For the two most rapidly growing m = 2 modes of the mK = 12
isochrone disc, we find frequencies

ω1 = 0.582 + 0.215 i,

ω2 = 0.466 + 0.146 i, (43)

in good agreement with published values.
However, the third mode listed by Pichon & Cannon (1997)

showed up in our analysis as only the fifth fastest growing mode,
with a frequency

ω3 = 0.272 + 0.053 i. (44)

The two interloping modes at

ω′
3 = 0.384 + 0.103 i and

ω′
4 = 0.323 + 0.075 i (45)

have not been described in the literature before. We confirmed that
they are robust to changes of the numerical parameters in the code
(resolution in phase space, number of Fourier modes, etc.) and
that they exert a zero total torque on the disc, as they should, and
therefore see no reason to discard them as spurious (Polyachenko &
Just 2015).

5.1.2 Softened gravity

For this base state, published information on how the properties of
the two main m = 2 modes change with softening in a numerical
simulation exists. Earn & Sellwood (1995) use a polar grid code
with 120 000 particles, a fixed time-step, and a polar grid of 128
azimuthal and 85 radial nodes to simulate the mK = 12 isochrone
disc from quiet-start initial conditions (Sellwood 1983) using
Plummer softening with different softening lengths. The results
of these simulations are shown in Fig. 2 as black data points. Both
the pattern speed and the growth rate of the two dominant modes
appear to be declining functions of softening length.

Overplotted in Fig. 2 are the results from our linear stability analy-
sis with PYSTAB, using different softening prescriptions. Clearly, our
results for Plummer softening agree rather well with those presented
in Earn & Sellwood (1995): both the pattern speed and growth
rate are non-linearly declining functions of the softening length
[scaled according to equations (19) and (20) to a common maximum
interparticle force]. The drop is steepest for small softening lengths
and becomes shallower for larger ε. Especially for larger ε-values,
numerical simulations and linear mode analysis predict the same
behaviour for frequency as a function of softening length. We
tentatively attribute the deviations between the simulations and
linear theory at small ε-values to variance, i.e. to the gravity error
caused by not softening enough (cf. Section 2.1).

Figure 2. Pattern speeds R{ω} = m�p (top panel) and growth rates
�{ω} (bottom panel) of the two dominant m = 2 modes of the mK =
12 isochrone disc, with unsoftened frequencies of ω1 = 0.582 + 0.215 i
and ω2 = 0.466 + 0.146 i for different softening recipes (Plummer P0,
modified Kuz’min Q2, Ferrers F3, and modified Ferrers L2). The softening
lengths are scaled according to equations (19) and (20) to obtain a common
maximum interparticle force. The bullets are data taken from the N-body
simulations using Plummer softening reported in Earn & Sellwood (1995).
The horizontal grey lines indicate the Newtonian mode frequency.

Using the other softening recipes, the pattern speed and growth
rate likewise decline with increasing softening length but they
do so much less dramatically and with smaller deviation from a
linear dependence on softening length than when using Plummer
softening. Moreover, it appears that having a zero gravity bias
parameter a0 induces a much stronger effect than having compact
support. This is exemplified in this case by the Q2 method (infinite
support, a0 = 0), yielding results much closer to the Newtonian
ones than the F3 method (compact support, a0 > 0). Methods
that combine compact support with having a0 = 0, like the L2

method, appear vastly superior, with very little deviation between
the retrieved mode frequencies and the correct, Newtonian values.

However, we refer the reader to Section 6 for a discussion of how
to correctly interpret this apparent success.

5.2 The Mestel disc

5.2.1 Unsoftened gravity

PYSTAB retrieves the dominant mode of the q = 6, n = 4 Mestel
disc, along with a number of much slower growing modes. Since
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Softening and spiral modes 157

Figure 3. Pattern speed R{ω} = m�p (top panel) and growth rate �{ω}
(bottom panel) of the dominant m = 2 mode of the q = 6, n = 4 Mestel disc
for different softening recipes (Plummer P0, modified Kuz’min Q2, Ferrers
F3, and modified Ferrers L2). The softening lengths are scaled according to
equations (19) and (20) to obtain a common maximum interparticle force.
The data points are derived from the N-body simulations by Sellwood &
Evans (2001). The horizontal grey lines indicate the Newtonian mode
frequency.

the frequencies of these minor modes are sensitive to the choice
of numerical parameter values, they are most likely spurious
(Polyachenko & Just 2015). Using unsoftened gravity, we find the
dominant mode to have a frequency ω = 0.876 + 0.128 i, which is
in good agreement with the values reported by Toomre (1977), Read
(1997), and Polyachenko & Just (2015) and which were computed
using different mode analysis techniques and codes.

5.2.2 Softened gravity

In Fig. 3, we show how the pattern speed (top panel) and growth rate
(bottom panel) of the dominant mode of this base state change with
increasing softening length [scaled according to equations (19) and
(20) to a common maximum interparticle force] using the softening
recipes listed in Table 1.

Overplotted in this figure, we show the frequency estimates of
Sellwood & Evans (2001) for this Mestel disc model, based on N-
body simulations with a particle-mesh code employing 2.5 million
particles, and a grid of 256 azimuthal and 200 radial nodes. The
five simulations presented here all start from exactly the same
initial conditions but are evolved using different Plummer softening

lengths. The agreement with our linear mode analysis is not as good
as in the case of the isochrone disc. As reported by Sellwood &
Evans (2001), there is a ∼10 per cent scatter between the measured
frequencies of simulations with resampled initial conditions at a
constant particle number. This may be why the simulation data
points do not converge to the Newtonian linear-mode result for
zero softening length. Moreover, particle noise may have negatively
affected the frequency measurements. Still, the trend followed by
these simulations is in qualitative agreement with our results: both
the pattern speed and the growth rate decrease with increasing
softening length.

As for the isochrone disc, softening methods with a0 = 0 (like Q2)
stay much closer to the Newtonian mode frequency than methods
with compact support but non-zero a0 (like F3) for a given value of
the softening length ε. Methods that combine compact support with
a0 = 0 (like L2) generally outperform the others.

Again, we refer the reader to Section 6 for a discussion of how
to correctly interpret this apparent success.

6 D ISCUSSION

6.1 Scaling to the same level of gravity bias

As mentioned in Section 2.3, the softening length and kernel are
only defined up to a re-scaling and we advocate the scale

ε0 = a0

2π
ε (46)

to bring methods with non-zero a0 to a common gravity bias level.
In Fig. 4, we show the retrieved frequencies of the modes of

the isochrone and Mestel discs as a function of ε0 for the two
softening methods with non-zero gravity bias parameter a0 (i.e. P0

and F3). Clearly, the differences between both softening methods,
which are so striking in Figs 2 and 3, now largely disappear. At a
given ε0-value, all a0 �= 0 methods perform almost equally well.
Thus, it is always possible to re-scale the softening length of one
a0 �= 0 softening technique such that it approximately matches
the performance of another a0 �= 0 method. No exact matching is
possible because of the higher order terms in the expansion of the
gravity bias.

As can be seen in Fig. 5, softening techniques with a0 = 0
but non-zero a2 can be scaled to a common level of gravity bias
using the transformation (22), allowing for higher order terms in
the expansion (8) for the gravity bias.

Based on these results, it seems fair to say that softening strategies
with a0 = 0 generally yield more accurate (i.e. Newtonian-like)
mode frequencies than strategies with a0 �= 0 because the gravity
bias of the latter grows linearly with softening length ε while for the
former it grows much more slowly, as ε3. However, within each of
these classes of softening techniques, there is no particular reason
to favour one method over another provided they are compared at
(approximately) the same level of gravity bias.

6.2 Physical interpretation

We define the 2D Fourier transform ψ̂(k) of the interparticle
interaction potential ψ(r) as

ψ(r) = 1

(2π)2

∫
ψ̂(k) e ik.r dk. (47)

Based on Poisson’s equation, using separation of variables it is
straightforward to show that the radial part of the gravitational
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158 S. De Rijcke, J.-B. Fouvry and W, Dehnen

Figure 4. Pattern speed R{ω} = m�p (top panels) and growth rate �{ω} (bottom panels) of the dominant m = 2 mode of the mK = 12 isochrone disc
(left-hand panels) and the q = 6, n = 4 Mestel disc (right-hand panels) as a function of the scaled softening length ε0, which allows for a direct comparison of
the softening kernels with non-zero a0 (i.e. P0 and F3) at the same level of gravity bias. The bullets are data taken from the N-body simulations using Plummer
softening reported in Earn & Sellwood (1995) and Sellwood & Evans (2001). The horizontal grey lines indicate the Newtonian mode frequencies.

response potential, which we denote here by Vm(r), generated by an
m-armed spiral response density of the form

�m(r, θ ) = �m(r) e imθ (48)

can be retrieved from the relation

Hm {Vm(r)} = −Gψ̂(k)Hm {�m(r)} (49)

with Hm the Hankel transform of order m (see e.g. Binney &
Tremaine 2008). Note that the wavenumber k as it appears here
(i.e. as the reciprocal of the interparticle distance) should not be
interpreted as the radial wavenumber of the spiral pattern (i.e. as
the reciprocal of the radial coordinate).

The Hankel transform of order m of a function f(r) is defined as

Hm {f } (k) =
∫ ∞

0
f (r)Jm(kr)rdr (50)

with Jm(x) a Bessel function of the first kind.
Here, we will use the notation ψ̂N (k) for the Fourier transform of

the Newtonian interaction potential, with

ψ̂N (k) = 2π

k
. (51)

Likewise, for the interaction potentials listed in Table 1, we find
that

ψ̂P0 (k) = 2π
e−kε

k
, (52)

ψ̂Q2 (k) = 2π

(
1 + kε + 1

2
(kε)2

)
e−kε

k
. (53)

For the softening techniques with compact support, F3 and L2, no
simple analytical expression exists for the Fourier transform of their
interaction potentials but they can easily be obtained numerically.

For a given response density �m, the softened response potential
V ε

m and the unsoftened response potential V 0
m are connected as

Hm

{
V ε

m

} = ψ̂

ψ̂N

Hm

{
V 0

m

}
(54)

with ε the softening length. We plot the k-dependent suppression
factor ψ̂/ψ̂N that links the Fourier transforms of the softened
and unsoftened response potentials in Fig. 6. The most striking
consequence of gravitational softening is the suppression of the
small scale, i.e. large wavenumber k, structure in the Fourier
transform of the response potential.

In the Appendix, we show how this suppression factor is con-
nected to the gravity bias. More specifically, we prove that the
even coefficients in the series expansion of the suppression factor
around zero k are directly proportional to the even coefficients in the
series expansion of the gravity bias around zero ε (in case the latter
exist). Clearly, designing a softening kernel to have vanishing bias
coefficients is equivalent to designing an interaction kernel whose
suppression factor ψ̂/ψ̂N is increasingly close to unity for small
wavenumbers k.
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Figure 5. Pattern speed R{ω} = m�p (top panels) and growth rate �{ω} (bottom panels) of the dominant m = 2 mode of the mK = 12 isochrone disc
(left-hand panels) and the q = 6, n = 4 Mestel disc (right-hand panels) as a function of the scaled softening length ε2, which allows for a direct comparison of
the softening kernels with zero a0 (i.e. Q2 and L2) at the same level of gravity bias. The horizontal grey lines indicate the Newtonian mode frequencies.

Figure 6. The suppression factor ̂ψ/̂ψN as a function of the dimensionless
wavenumber kεF, where the softening lengths are scaled according to
equations (19) and (20) to obtain a common maximum interparticle force.

However, just as it is not sensible to compare the various softening
strategies as we did in Figs 2 and 3, it makes little sense to
compare the suppression factors as a function of kεF. It is more
meaningful to compare the suppression factors at the same level
of gravity bias, i.e. as a function of kε0 for the softening methods
with a0 �= 0, and as a function of kε2 for the softening methods

with a0 = 0. This comparison is shown in Fig. 7 and restates our
previous conclusions. As a function of the re-scaled wavenumber
kε0, which places the P0 and F3 kernels on an equal gravity bias
footing, the suppression factors of these two softening techniques
behave remarkably similar. In fact, Plummer softening leads to less
suppression for large kε0 than F3 softening. This agrees with Fig. 4
in which Plummer softening is shown to stay closer to the correct,
Newtonian result than F3 softening at an equal level of gravity bias.
The Q2 kernel, in turn, leads to less suppression than the L2 kernel
and, as can be seen in Fig. 5, it also leads to slightly better frequency
estimates.

This suppression of the response potential will likely lead to an
increased stability of the model galaxy. This expectation is borne out
by studying the stability of axially symmetric WKBJ waves under
Plummer softening, where a Toomre Q-value Q < 1 now separates
growing from stationary waves (Miller 1971). This analysis has been
extended to include general softening kernels by Romeo (1994,
1997). The physical background of our results and the expected
influence of softening on m = 0 WKBJ waves are, therefore, already
well understood. Here, we took this work further by studying general
eigenmodes beyond the WKBJ approximation and by going to m =
2 patterns.

6.3 Extrapolation to zero softening length

The softening length dependence of the gravitational bias is car-
ried over to a similar softening length dependence of the mode
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Figure 7. The suppression factor ̂ψ/̂ψN as a function of the re-scaled
dimensionless wave numbers kε0 (top panel), for the softening methods
with a0 �= 0, and kε2 (bottom panel), for the softening methods with a0 = 0.

frequencies through the linear perturbation calculation (see e.g. De
Rijcke & Voulis 2016). This means that the deviation δω between
the true and the softened complex mode frequency varies as

δω(ε) = d0a0ε + d2a2ε
3 + . . . , (55)

where the coefficients ai are given by equation (9) and the complex
coefficients di depend only on the base state.

Hence, the P0 and F3 softening methods, which have non-zero a0

coefficients, are expected to yield mode frequency estimates whose
deviation from the true frequencies increases linearly with softening
length (in the small-ε limit). This is clearly the case, as can be seen in
Figs 2–4. Moreover, from equation (55), it is clear that at the same,
small unscaled value of the softening length one expects that

δω(P0)

δω(F3)
≈ a0(P0)

a0(F3)
= 256

63
≈ 4.1. (56)

We have confirmed numerically that this is the case for the two
modes of the isochrone disc and the single mode of the Mestel disc
investigated here. At ε = 0.01, we found δω ratios between 3.9 and
4.0.

Likewise, the Q2 and L2 methods, which have zero a0 but non-
zero a2, are expected to yield mode frequency estimates whose
deviation from the true frequencies increases as the cube of the
softening length (in the small-ε limit). These methods indeed yield
frequency estimates that deviate much more slowly with increasing
ε than the methods with non-zero a0, as can be seen in Figs 2, 3,

and 5. From equation (55), one expects that

δω(Q2)

δω(L2)
≈ a2(Q2)

a2(L2)
= 384

21
≈ 18.3. (57)

However, the frequency deviations δω are very small at small ε and
it is very difficult to compute reliable δω ratios in this regime. At
larger ε, the Q2 method deviates markedly from a cubic behaviour (it
has an infinite a4). For the main mode of the isochrone disc model,
which is the only one for which we are able to estimate a δω ratio,
we find values of 13.2 and 21.9 for the real and imaginary frequency,
respectively, at ε = 0.1. This is comparable to the expected value
of 18.29.

As a practical side note: since δω has the same leading power as
the gravity bias as a function of ε, this same power law should be
used when extrapolating mode frequencies extracted from softened
N-body simulations to zero softening length, as attempted in Earn &
Sellwood (1995) and Polyachenko (2013).

7 C O N C L U S I O N S

We use linear perturbation theory to investigate how different
recipes for gravitational softening, as employed in numerical N-
body simulations of razor-thin disc galaxies, affect predictions for
the properties of the latter’s spiral eigenmodes. We specifically
focus on the frequencies, i.e. pattern speeds and growth rates, of
two-armed modes in the linear regime.

We have tested our linear mode analysis approach by comparing
the behaviour of the frequencies of the dominant m = 2 modes of
an isochrone disc and of the Mestel disc as a function of Plummer
softening length with those found in the N-body simulations
reported by Earn & Sellwood (1995) and Sellwood & Evans (2001).
Overall, we found reasonably good agreement between linear theory
and numerical simulations, also in the softened regime.

We argue that the only meaningful way of comparing softening
kernels is to scale them to the same gravity bias level. In this
paper, we show how this scaling can be achieved, based on the
results of Dehnen (2001). Thus, it is always possible to re-scale the
softening length of one softening technique such that it matches
the performance of another method with the same dependence of
gravity bias on softening length.

We have shown that softening methods with a vanishing lowest
order term in the expansion of the gravity bias as a function of
softening length (in two dimensions, this is a linear term; in three
dimensions, this term is quadratic in the softening length) and whose
gravity bias therefore grows slowly with increasing softening length
(e.g. the Q2 and L2 methods discussed in this paper) provide more
accurate mode frequency estimates than methods with a non-zero
lowest order term (e.g. the P0 and F3 methods). Softening methods
with zero lowest order term compensate the sub-Newtonian forces
deep inside the kernel with super-Newtonian forces near r ∼ ε.

Kernels with compact support, in the sense that they yield
exactly Newtonian forces outside of the softening kernel, perhaps
somewhat counter-intuitively, do not necessarily provide more
accurate frequency estimates than kernels with infinite extent. For
instance, when compared at a common level of gravity bias, the
Plummer kernel (P0) provides more accurate frequency estimates
than the F3 kernel. Likewise, the Q2 kernel outperforms the L2

kernel in this regard.
The relative merit of a softening kernel can be judged from its

suppression of the small-scale, i.e. large wavenumber k, structure
in the Fourier transform of its response potential. The stronger this
suppression, measured at a given level of gravity bias, the more the
mode frequency estimates deviate from their Newtonian values.
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As a guide to simulators, we provide an example of how a
softening technique, in this case Plummer softening, can be used as
a basis for developing new softening kernels whose gravity biases
grow more slowly with increasing softening length. These then
provide much more accurate estimates for mode frequencies than
Plummer softening does. Moreover, we show that the deviation
between the true and the softened mode frequency has the same
softening length dependence as the gravity bias. In particular, the
P0 and F3 methods yield frequency estimates that deviate linearly
with ε from the true values. The Q2 and L2 methods provide much
more accurate frequency estimates: they deviate with the cube of the
softening length. Thus, one knows which power law to use when
extrapolating mode frequencies extracted from softened N-body
simulations to zero softening length.

Generally, the use of gravitational softening lowers the expo-
nential growth rate of spiral modes. Therefore, strongly softened
N-body simulations may risk ‘losing’ some of these modes as their
growth rates are overtaken by that of e.g. swing amplified noise
(Romeo 1995).

Finally, we warn the reader that our approach does not take into
account the effects of approximate force evaluations (Barnes & Hut
1986), finite-N (Dehnen 2001; Sellwood 2012; Fouvry et al. 2015),
stochasticity (Sellwood & Debattista 2009), implicit softening
contributed by the grid in particle-mesh codes (Romeo 1994),
etc. whose respective magnitudes, moreover, may depend on the
amount of gravitational softening. Moreover, thick disc galaxies
likely behave more as 3D systems where the leading term in the
expansion of the gravity bias in the softening length is quadratic
rather than linear, as in two dimensions. Similarly to what we
showed here, it is possible to design 3D softening kernels that lead
to successively higher leading powers in this expansion and hence
to a more slowly growing gravity bias (Dehnen 2001). If our present
work provides any intuition for 3D problems, that would also mean
that these yield more accurate mode frequency estimates.
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A P P E N D I X : T H E G R AV I T Y B I A S A N D T H E
SUPPRESSI ON FACTOR

A1 Gravity bias

Analogous to the 3D case discussed in Dehnen (2001), in two
dimensions, the expectation value of the gravitational potential is〈
V̂ (r)

〉 = −G

∫
�(r ′) ψ(|r − r ′|) d2r ′, (A1)
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with � the surface density that causes the gravitational potential
V through the interparticle interaction potential −ψ . The integral
covers the whole surface of the galaxy. The gravity bias can be
obtained by rewriting the interaction potential as

ψ(r) = 1

ε
φ
( r

ε

)
= 1

r
− 1

ε

[ε

r
− φ

( r

ε

)]
, (A2)

which leads to

biasr (V̂ ) ≡ 〈
V̂ (r)

〉 − V (r)

= εG

∫
�(r − εu)

[
1

u
− φ(u)

]
d2u, (A3)

with εu = r − r ′. We replace the surface density by its Taylor
expansion around the position r ,

�(r − εu) =
∞∑

n=0

(−ε)n

n!
(u.∇)n �(r). (A4)

such that

biasr (V ) = εG

∞∑
n=0

(−ε)n

n!

∫ [
1

u
− φ(u)

]
(u · ∇)n�(r) d2u. (A5)

If we perform the integration in polar coordinates (u, θ ) and replace
(u · ∇)n = un(cos θ ∇x + sin θ ∇y)n by its binomial expansion, we
have

biasr (V ) = ε G

∞∑
n=0

(−ε)n

n!

∫ ∞

0
un [1 − uφ(u)] du

×
n∑

l=0

(
n

l

)
∇ l

x∇n−l
y �(r)

∫ 2π

0
cosl θ sinn−l θ dθ. (A6)

The θ integral vanishes for odd n or l, while for even n and l,∫ 2π

0
cosl θ sinn−l θ dθ = 2πn!

2n([n/2]!)2

(
n/2

l/2

)(
n

l

)−1

, (A7)

such that we obtain (using � ≡ ∇2)

biasr (V ) =
∞∑

k=0

ε2k+1a2k G �k�(r) (A8)

with coefficients an as given by equation (9).

A2 Relation to the reduction factor

Because f (r) ≡ r−1 − ψ(r) is an isotropic function in r space, its
moments

μl,m ≡
∫

xl ym f (r) d2r (A9)

vanish for odd l or m. For even l and m,

μl,m = εn+1 ann!

(
n/2

l/2

)(
n

l

)−1

, (A10)

where n = l + m and we have used relation (A7). Let

F (k) ≡
∫

f (r) e−ik·r d2r (A11)

be the 2D Fourier transform of f (r). Because f (r) is isotropic and
real-valued, then so is F (k) = F (k). From the equation (A11)

∂l+mF

∂kl
x ∂km

y

∣∣∣∣∣
k=0

= (−i)l+mμl,m, (A12)

and hence the Taylor expansion of F (k)

F (k) =
∞∑

l,m=0

kl
x km

y

l! m!
(−i)l+mμl,m

= ε

∞∑
ν=0

(−1)ν a2ν |εk|2ν . (A13)

The reduction factor is related to F (k) via

R(k) ≡ ψ̂(k)/ψ̂N (k) = 1 − (2π )−1kF (k). (A14)

Thus, the coefficients cn of the Taylor series

R(k) = 1 −
∞∑

n=0

cn (εk)n+1 (A15)

are given by

cn = (−1)n/2an/2π (A16)

for even n and if an is finite. For odd n and/or infinite an, the situation
is more complicated. If the kernel ψ has compact support or ψ ∼ r−1

exponentially fast as r → ∞, then all the coefficients an are finite,
the Taylor series (A13) of F (k) converges, and relation (A16) holds
for all n, i.e. R(k) is a function of k2 only. This is the situation for
the F3 and L2 kernels.

If the kernel does not satisfy the above conditions, but f(r) ∼ r−p

at r → ∞, then an = ∞ for n ≥ p − 2 and the Taylor series (A13)
does not converge. However, the series of the non-divergent terms
is still useful, only the remainder grows faster than εp − 2. A typical
example is Plummer softening, for which a0 = 2π, while an > 0 =
∞ and (see equation 52)

F (k) = 2πk−1(1 − e−εk) = 2π
[
ε − 1

2 ε2k . . .
]
, (A17)

i.e. c0 = a0/2π as per relation (A16), but c1 = − 1
2 �= 0. The problem

is that the 2D Fourier transform (A17) is not smooth at the origin,
but has discontinuous gradient (such that its Taylor series fails),
while the one-dimensional function F(k) and hence the reduction
factor R(k) are well behaved for all k ≥ 0. Thus, a divergent an

indicates a non-vanishing cn − 1 and, conversely, a cn − 1 �= 0 for
even n implies an = ∞.
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