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Abstract

We present observations of the optical afterglow of GRB 170817A, made by the Hubble Space Telescope, between
2018 February and August, up to one year after the neutron star merger GW170817. The afterglow shows a rapid
decline beyond 170days, and confirms the jet origin for the observed outflow, in contrast to more slowly declining
expectations for “failed-jet” scenarios. We show here that the broadband (radio, optical, X-ray) afterglow is
consistent with a structured outflow where an ultra-relativistic jet, with a Lorentz factor of Γ100, forms a
narrow core (∼5°) and is surrounded by a wider angular component that extends to ∼15°, which is itself relativistic
(Γ 5). For a two-component model of this structure, the late-time optical decline, where F∝t−α, is
α=2.20±0.18, and for a Gaussian structure the decline is α=2.45±0.23. We find the Gaussian model to be
consistent with both the early ∼10 days and late 290 days data. The agreement of the optical light curve with the
evolution of the broadband spectral energy distribution, and its continued decline, indicates that the optical flux is
arising primarily from the afterglow and not any underlying host system. This provides the deepest limits on any
host stellar cluster with a luminosity 4000 Le(MF606W−4.3).

Key words: gravitational waves – relativistic processes – stars: neutron

1. Introduction

The first binary neutron star merger detected via gravitational
waves (GW170817) was accompanied by a weak short-
duration gamma-ray burst (GRB 170817A Abbott et al.
2017a), a radioactively powered kilonova, and a long-lived
afterglow (e.g., Abbott et al. 2017b). The steady rise of the
afterglow from a ∼10 days post-merger, which was traced at
radio, X-ray, and optical wavelengths (e.g., Hallinan et al.
2017; Margutti et al. 2017, 2018; Troja et al. 2017, 2018;
Alexander et al. 2018; D’Avanzo et al. 2018; Dobie et al. 2018;
Lyman et al. 2018; Mooley et al. 2018c, 2018a, 2018b; Nynka
et al. 2018; Resmi et al. 2018; van Eerten et al. 2018; Piro et al.
2019), distinguished GRB 170817A (alongside its intrinsic
low-luminosity) from cosmological short gamma-ray bursts
(GRBs). This called into question the link between GW170817
and the progenitors of other short GRBs.

Following a neutron star merger, a jet, launched due to the
rapid accretion of ejected matter onto a compact remnant, will
propagate through the merger ejecta medium. The interaction
of the jet with the ejecta will result in a structured outflow
where the wider components are the product of a cocoon of
accelerated ejecta material (e.g., Nagakura et al. 2014;
Murguia-Berthier et al. 2017). The profile of this outflow
depends on the mass and density of the ejected material and the
initial structure of the jet. Simulations of jet propagation
through the merger ejecta can result in outflows that have a
Gaussian structure (Xie et al. 2018). This structure is
responsible for driving the afterglow’s evolution. More recent
simulations are beginning to reveal the structure of the jet
at launch (Kathirgamaraju et al. 2018). The afterglow to
GRB 170817A is the first opportunity to convincingly probe
the structure of these outflows.

For a favorably inclined gravitational-wave (GW) detected
neutron star merger, the temporal behavior of the afterglow,
viewed off the jet central axis, can probe the outflow structure
and give an insight into the outflows that accompany
cosmological short GRBs (Lamb & Kobayashi 2017; Lazzati
et al. 2017a). The slow rise of the afterglow is indicative of an
outflow with either an angular or radial structure.
In the angular model, the earliest afterglow observations are

of the outflow components nearest to the line of sight. As the
outflow decelerates and expands an increasing fraction of the
outflow becomes visible. A slow rise to peak, as observed in
the afterglow of GRB 170817A, can be recreated where the
angular structure of the outflow consists of a fast and energetic
core (the jet, with a Lorentz factor of Γ 100) and a slower,
less energetic, wide component (a cocoon, Γ 10; e.g., Lazzati
et al. 2018).
In the radial model the outflow is wide and has a stratified

velocity profile. The fastest components (Γ∼ 10) decelerate
first and the resultant blast wave is refreshed by slower
components as they catch up to the shock front. The total
energy of the blast wave increases until the slowest component
peaks; the dynamics of the final decelerating blast wave are
determined by the slowest component (Γ∼ 1.4–2.0). The
afterglow rise following GRB 170817A can be recreated by a
wide-angled outflow with such a radial profile (e.g., Kasliwal
et al. 2017).
At ∼150 days post-merger, the X-ray (D’Avanzo et al. 2018;

Margutti et al. 2018) and radio (Dobie et al. 2018) frequency
light curves peaked and began to decline. Distinctive behavior
for the decline rate of the afterglow is expected depending on
the dynamical and structural nature of the outflow; a steeper
decline is expected for the initially ultra-relativistic angular
structured jet scenario (Lamb et al. 2018; Troja et al. 2018). A
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steep decline, confirming the presence of a strong jet and ruling
out the wide cocoon of the radial model, was revealed by recent
radio afterglow observations (Mooley et al. 2018b). The
presence of an energetic jet within the outflow was additionally
supported by the results from the very long baseline
interferometry (VLBI) of the radio source. The superluminal
motion of the source was observed, revealing the relativistic
motion of a narrow jet core launched during the merger
(Ghirlanda et al. 2018; Mooley et al. 2018a).

In this Letter we present the optical light curve of the
afterglow of GRB 170817A from Hubble Space Telescope
(HST) imaging covering one year post-merger. The photometry
is presented in Section 2. We supplement these data with radio
and X-ray frequency observations to investigate the behavior of
the declining afterglow within the structured jet scenario. In
Section 3 we fit a simple two-component jet-cocoon structure
and a Gaussian structure that are both consistent with the
observed data. The Gaussian-structured outflow gives a steeper
decline post-peak and is more consistent with the very late-time
observations at optical and radio frequencies. The discussion
and conclusions are given in Sections 4 and 5, respectively.

2. Additional HST Photometry

Our HST observations were carried out in programs
GO14771 (PI: Tanvir) and GO15482 (PI: Lyman) using
WFC3 in filters F606W and F814W. Early HST photometry
of the kilonova was presented in Tanvir et al. (2017). Here we
concentrate on later observations when the afterglow is
dominant, extending up to one year after the merger. The first
epoch of these data were presented in Lyman et al. (2018), and
here we present four additional epochs of observations, the
results of which are shown in Table 1 and Figure 1. Non-
detections in the near-infrared observations from 2017
December caused us to focus on optical bands for the
subsequent epochs in 2018 February, June, July, and August,

corresponding to ∼171, 294, 323, and 358 days post-merger,
respectively. Observations employed dithered exposures within
visits in order to improve upon the native pixel scale using
ASTRODRIZZLE within DRIZZLEPAC. In addition, as the July
and August epochs’ exposures were split across multiple visits,
TWEAKREG was employed to achieve accurate alignment
between the visits (rms ∼0.10–0.15 pixel). Further details of
the reduction and analysis are presented in Lyman et al. (2018).
Our photometry was performed on the drizzled images after

subtracting the smooth galaxy light through isophotal ellipse
fitting with the IRAF task ELLIPSE. A 0 08 aperture was used
and corrected using provided encircled energy tables.7 Our
optical light curve mimics the behavior seen at other
frequencies by peaking somewhere between our 110 and
171 days epochs, before steeply declining.
For the February epoch, our photometry indicated a

significant and unexpected change in the color of the afterglow
compared to our 2017 December observations. Although the
F814W flux remained almost constant, a drop (at the ∼3–4σ
level) of ∼0.75 mag was seen in our F606W measurement.
Inspection of the individual frames did not reveal any obvious
detector artifacts. We note that a near-contemporaneous
measurement in F606W was made by Piro et al. (2019), and,
although a low significance detection at 26.4±0.4 mag, this
suggests no significant change of flux with respect to 2017
December. Given the achromatic evolution of the synchrotron
emission, we would not expect such a large color change,
particularly over neighboring filters. Coupled with no change in
the broad band evolution (i.e., radio or X-rays), we suggest that
these observations are most likely a statistical fluke rather than
any real color evolution in the afterglow.
Our August epoch has a marginal detection of flux and we

cannot say for certain if this is entirely down to the afterglow

Figure 1. Very late-time HST imaging of GW170817. Images are 5 arcsec per side and the filter and rest-frame days since GW170817 are indicated in each sub-figure.
An isophotal elliptical model of the smooth galaxy light has been subtracted from each figure (see the text) and the images have been Gaussian-smoothed to aid the
eye. Dashed circles, centered on the location of GW170817, from alignment with earlier HST epochs, are 0 25 radius. North is up and east is left.

Table 1
GW170817 HST WFC3 Photometry

Date MJDa Time Since Merger Tot. Exp. Time Filter AB Mag.
(day) (day) s

2018 Feb 5 58154.65 170.5 2400 F814W 26.31±0.15
58154.72 170.5 2400 F606W 27.16b±0.17

2018 Jun 10 58279.27 293.9 5220 F606W 27.75±0.20
2018 Jul 10 58309.14 323.4 14070 F606W 28.05±0.17
2018 Aug 14 58344.23 358.2 14070 F606W 28.78±0.39

Notes. Magnitudes have been corrected for foreground Galactic extinction following Schlafly & Finkbeiner (2011).
a At start of exposures.
b Appears spurious considering contemporaneous data, see the text.

7 http://www.stsci.edu/hst/wfc3/analysis/uvis_ee
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itself, or whether some underlying surface brightness fluctuation
in the galaxy light or cluster system is contributing, or at what
level (indeed the source becomes visually ambiguous at this
epoch; see Figure 1). The measurement does however allow us to
place deep constraints on any underlying host cluster, which could
not be significantly brighter than the flux level we see. At a
distance modulus of μ=33.05±0.18mag (Hjorth et al. 2017;
Cantiello et al. 2018) this translates to a limit of MF606W=
−4.3±0.4mag (∼4000Le), fainter than∼99% of global clusters
(GCs) found in the Local Group (Harris 1996, 2010 edition; see
method of Lyman et al. 2014). Further, as shown later, our June
epoch (294 days post-merger) is almost contemporaneous with
radio and X-ray measurements and our photometry for this epoch
agrees well with the broadband spectral energy distribution (SED)
of the afterglow. However, when subtracting the August image
from our June epoch and repeating the photometry on this
subtracted image, we found the resultant flux was significantly
below this SED-inferred level. This would suggest that the flux is
dominated by the transient, rather than any underlying fluctuation,
at least at this epoch. The continued decline of the optical flux up
to the limit of our observations also indicates that the transient is
the source of the flux, rather than any underlying persistent source.

3. Afterglow Modeling

The afterglow flux of GRB 170817A exhibits a slow rise to
peak from ∼10 to 150 days as ∼t0.8. This behavior is best
explained by the angular structure of the outflow. The wide
angle components of a structured outflow are likely to be a
cocoon of merger ejecta material that has been shocked and
accelerated by the passage of an ultra-relativistic jet, where the
jet is at the core of the outflow.

Post-peak, the rapid decline with an index of α>1.5, where
the flux F∝t−α, indicates that the light curve at late times is
dominated by an initially ultra-relativistic velocity jet or the core
of the outflow (Lamb et al. 2018). A rapid post-peak decline has
been confirmed by X-ray and radio observations (Alexander
et al. 2018; Mooley et al. 2018b; Nynka et al. 2018; van Eerten
et al. 2018) and here via optical observations with HST.

We determine light curves for two angular structured outflow
models that give good fits to the data. Motivated by the VLBI
observations of a superluminal core with a half-opening angle,
θc5°, and observed at an inclination from the outflow central
axis, ι∼20° (Mooley et al. 2018a), we limit the range for
these two parameters in our model fits to 0.6°�θc�6° and
the inclination to 17°�ι�23°. With these tight constraints
we consider the following models.

1. Model (A): a simple two-component structure consisting
of a narrow uniform <θc, energetic, and ultra-relativistic
Γ100 core surrounded by a wide, relativistic cocoon of
Γ=5 with 10% of the core energy per steradian over angles
θc− θj, where θj=15° and is the edge of the outflow.8

2. Model (B): a Gaussian structure where the energy per
steradian is e c

2 2
µ q q- and the Lorentz factor is e 2 c

2 2
µ q q-

(and condition Γ> 1) within θj.

Model (A) is a simple structure based on Lazzati et al. (2017a,
2017b) and Lamb & Kobayashi (2017), where the Lorentz

factor of the cocoon is Γ<10. The fixed parameters ensure
that the cocoon is energetic enough to contribute at early times
and reduces the number of parameters in the fit. Model (B) was
used originally in relation to the GRB 170817A afterglow by
Resmi et al. (2018) and Lamb & Kobayashi (2018). We limit
the opening angle of the outflow to ∼15°. For Model (A), a
much wider cocoon would require a more complex structure,
and for Model (B), the low energetics of wider components
would contribute insignificantly to the light curve.
The afterglow flux from each model is calculated using an

updated version of the structured outflow method described in
Lamb & Kobayashi (2017) and Lyman et al. (2018). The
dynamics for the expanding blast wave follow the analytic solution
in Pe’er (2012) and includes sideways expansion at the sound
speed9 as well as a more accurate synchrotron flux estimation
(see Lamb et al. 2018).

Table 2
Inferred Afterglow Parameters

Parameter Prior Range Model (A) Model (B) Unit

Elog10 iso,c 50–53 52.0 0.9
0.6

-
+ 52.4 0.5

0.4
-
+ log erg10

Γ0,c 10–1000 88 28
40

-
+ 666 272

231
-
+ L

θc 0.01–0.1 0.07 0.01
0.01

-
+ 0.09 0.01

0.01
-
+ rad

ι 0.3–0.4 0.36 0.03
0.03

-
+ 0.34 0.02

0.02
-
+ rad

log B10 e −4–0.5 2.4 0.9
1.4- -

+ 2.1 1.0
0.8- -

+ L
log e10 e −4–0.5 1.3 0.7

0.6- -
+ 1.4 0.6

0.5- -
+ L

nlog10 0 −5–0 3.3 1.0
0.6- -

+ 4.1 0.5
0.5- -

+ log cm10
3-

p 2.01–2.25 2.17 0.01
0.01

-
+ 2.16 0.01

0.01
-
+ L

Note. Subscript “c” indicates the jet central point. Parameter values are the median
from EMCEE distributions, uncertainties represent the 16th and 84th percentiles.

Figure 2. Model light curves for 400 randomly selected parameter sets from an
MCMC for Model (A). The stars represent the data points and the error bars are
1σ (error bars may be hidden by the markers). Light curves at 3 GHz, 6 GHz,
3.8×1014 Hz (F814W), 5.1×1014 Hz (F606W), and 1 keV are shown. The
decline index α between 260 and 300 days is annotated. The faint point at
∼170 days shows the anomalous F606W point discussed in Section 2.

8 A energetic cocoon that can account for the afterglow light curve of t
80 days and with an initial Lorentz factor of Γ<5 will dominate the late-time
decline resulting in a decay index of α2.0 (Lamb et al. 2018). Such a
decline is ruled out by the data.

9 Sideways expansion of the outflow is required at late times as the decline is
α1.6, the limit expected for a jetted outflow with these parameters. Using a
more realistic expansion (e.g., van Eerten & MacFadyen 2012) will have only a
small effect on the fitted parameters.
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We use a Markov Chain Monte Carlo (MCMC) EMCEE to
determine the best parameter fits for each model using the flux
at 3 and 6 GHz (Dobie et al. 2018; Margutti et al. 2018; Mooley
et al. 2018c, 2018b), the HST optical data points (this study;
Lyman et al. 2018; Piro et al. 2019), and Chandra X-ray flux at
1 keV (Margutti et al. 2017; Troja et al. 2017, 2018). For each
model we fit eight parameters,

E n p, , , , , , , ,c B eiso,c 0,c 0q i e eF = G[ ]

where Eiso,c is the isotropic equivalent energy of the central
core point, Γ0,c is the bulk Lorentz factor pre-deceleration of
the central core point, εB and εe are the microphysical
parameters, n0 is the ambient medium particle density, and p
the accelerated electron power-law index.10

The parameter constraints for each model are shown in
Table 2 where the uncertainties represent the 16th and 84th
percentiles. We see the expected correlations and degeneracies
within the parameter distributions, i.e., εB with n and both εB
and n with the core energy. Model (A) favors an inclination
toward the upper limit within our range and εe is pushed against
the upper bound, whereas for Model (B) we see a positive
correlation between core angle and inclination and find that the
core energy, Lorentz factor, and jet core angle favor the upper
half of the parameter range.

For each model we show 400 light curves using randomly
selected parameters drawn from the sample. The light curves
for Model (A) are shown in Figure 2 and the light curves for
Model (B) are shown in Figure 3. The light curve at 3 GHz,
3.8×1014 Hz (F814W), 5.1×1014 Hz (F606W), and 1 keV
are shown with data as stars. The temporal decline, α,
calculated between 260 and 300 days at optical frequencies,
is α=2.20±0.18 for Model (A) and α=2.45±0.23 for
Model (B). The optical data, the Model (B) light curve, and the
model SED at 294 and 323 days are highlighted in Figure 3.

4. Discussion

We have presented optical observations made by HST of the
afterglow to GRB 170817A between 2018 February and
August (see Table 1). Using this data we confirm the rapid
decline of the afterglow indicative of an initially ultra-
relativistic jet viewed off-axis. Combining the optical data
with radio wavelength observations at 3 and 6 GHz, and X-ray
frequency data at 1 keV, we use EMCEE to fit two outflow
structure models (see Figures 2 and 3).
The post-peak decline seen here at optical frequencies, and at

radio frequencies by Mooley et al. (2018b), is rapid; the decline
index is α2.1. An α∼p is expected for an on-axis
observed afterglow following the jet-break, a steeper decline is
expected for an observer outside of the initial jet half-opening
angle (e.g., van Eerten et al. 2012), and the latest data points
indicate a very rapid decline at late times. Such a rapid decline
requires an initially ultra-relativistic and collimated outflow—a
jet—and rules out the possibility here of a wide-angled mildly
relativistic outflow (Lamb et al. 2018).
The two outflow models used to fit the afterglow data show

differing late-time declines. The two-component Model(A)
shows a shallower decline at α∼2.2, and the Gaussian-
structured outflow Model(B) shows a steeper decline at
α∼2.5, between 260 and 300 days post-merger. If the decline
is shown to steepen at later epochs then the expansion
description or the jet core structure should be reconsidered.
The origin of the gamma-ray emission in GRB 170817A is

debated. A faint GRB would be an expectation for an off-axis
observation. However, the spectral peak energy for the prompt
emission and the lack of an early afterglow challenges the
simple off-axis model (e.g., Ioka & Nakamura 2018; Lamb &
Kobayashi 2018; Matsumoto et al. 2019; Nakar et al. 2018).
The leading explanations for the prompt origin include a short
GRB seen off-axis, but considering more complex emission
models (e.g., Eichler 2018; Zhang et al. 2018), a GRB scattered
by cocoon material (Kisaka et al. 2018), and a burst of gamma-
rays as a result of a cocoon shock breakout (Gottlieb et al.
2018). It is beyond the scope of this work to determine the

Figure 3. Left panel: 400 SEDs at 294 days (red line) and 323 days (purple line). The stars show data for each epoch and the error bars are smaller than the marker
size. Middle panel: model light curves for 400 randomly selected parameter sets from an MCMC for Model (B). Data are the same as those in Figure 2. The decline
index α between 260 and 300 days is annotated. Right panel: zoom-in of the optical data and light curves between 100 and 400 days post GRB 170817A/GW170817.

10 Parameters E n, , , andB eiso,c 0e e have logarithmic flat priors, while
Γ0,c,θc,ι, and p have flat priors. We use 40 walkers, 2000 burn-in steps and
15,000 steps per model.
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origin of the prompt emission, although the steep sides of the
core in both models (A) and (B) are consistent with the
description Kisaka et al. (2018) required for scattered prompt
emission.

We have tested only angular structure models and this is
supported by the success of Model(A) at reproducing the early
afterglow data. Where the Lorentz factor of the cocoon is <5,
the late-time afterglow decline is shallower than α2 due to
the contribution of the cocoon. This supports the need for a
relativistic outflow from core to edge. We note that the
Gaussian structure can account for all of the data from 10 days,
whereas the two-component model fails to recreate the first
X-ray frequency data points (see Figure 2).

Both models have a peak of ∼140–160 days and predict a
rapid decline α2.0. The transition to a Newtonian blast
wave is seen more prominently in the Gaussian model at
∼700 days post-merger, although this is below the detection
threshold at all frequencies. The counter jet will contribute to
the light curve beyond the range of the figures at ∼104 days.

5. Conclusions

Hubble Space Telescope observations of the afterglow of
GRB 170817A, taken from 171 days to one year from merger
GW170817, show it to be rapidly declining in flux. We find the
declining optical flux is most consistent with arising from the
afterglow, matching the behavior seen at other frequencies, and
thus can be used to place the most stringent constraints on any
underlying globular cluster system, which must be MF606W
−4.3±0.4 mag.

We have modeled the afterglow using both a two-component
jet model, consisting of a narrow highly relativistic core and a
wider-angle component, and a Gaussian-structured outflow.
Both scenarios are able to broadly recreate the steep decline
post-peak. Such a steep decline requires an initially collimated,
highly relativistic outflow and confirms that a successful jet
was launched in GRB 170817A, in agreement with other lines
of evidence (Ghirlanda et al. 2018; Mooley et al. 2018a). We
find most consistency with the Gaussian outflow to describe
our very late-time photometry (although uncertainties in the
measurements are large for these epochs).

Based on observations made with the NASA/ESA Hubble
Space Telescope, obtained from the data archive at the Space
Telescope Science Institute (STScI). STScI is operated by the
Association of Universities for Research in Astronomy,
Inc. under NASA contract NAS 5-26555. These observations
are associated with programs GO 15482 (J.D.L.) and GO 14771
(N.R.T.). G.P.L. is supported by STFC grant ST/N000757/1
and thanks Om Salafia for useful discussions. J.D.L. acknowl-
edges support from STFC grant ST/P000495/1. A.J.L.
acknowledges that this project received funding from the
European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation program (grant agreement
725246). J.H. acknowledges support by a VILLUM FONDEN
Investigator grant (project number 16599). S.R.O. acknowledges
support of the Leverhulme Trust Early Career Fellowship. We
thank the anonymous referee for the comments.
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