
Word problems of groups: formal languages,
characterizations and decidability

Sam A. M. Jones and Richard M. Thomas

Department of Informatics, University of Leicester, Leicester LE1 7RH, UK

Abstract

Let G be a group and let ϕ : Σ∗ → G be a monoid homomorphism from
the set of all strings Σ∗ over some finite alphabet Σ onto the group G. The
set Σ is then called a generating set for G and the language {1}ϕ−1 ⊆ Σ∗ is
called the word problem of G with respect to the generating set Σ (via the
homomorphism ϕ) and is denoted by W (G,Σ).

We consider nine conditions that hold in each such language of the form
W (G,Σ) and determine which combinations of these conditions are equivalent
to the property of the language in question being the word problem of a group.
We show that each of these nine conditions is decidable for the family of regular
languages but that each is undecidable for the family of one-counter languages
(the languages accepted by one-counter pushdown automata). We also show
that the property of a language being the word problem of a group is undecid-
able for the family of one-counter languages but is decidable for the family of
deterministic context-free languages (the languages accepted by deterministic
pushdown automata).

1. Introduction

The word problem of a finitely generated group G is a fundamental notion
in group theory. Whilst it has been traditionally thought of as the problem of
determining whether or not a word in the generators of the group represents
the identity element of G, it can also be defined as the set W of all the words
in the generators of G that represent the identity element (so that the previous
problem about representing the identity becomes the question of determining
membership of the set W ). This alternative approach allows us to consider such
a word problem W as a formal language and a rich topic of research has been
the connection betweens the complexity of this language W and the algebraic
structure of the corresponding group G. For example, the groups with a regular
word problem were classified in [1] and those with a context-free word problem
in [23] (modulo a subsequent result in [7]).

We will focus on these two families of languages (the regular and context-
free languages) in this paper along with the family of one-counter languages
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(see Section 2 for a definition). This last family is particularly interesting when
considering word problems of groups for the following reason. Herbst showed
in [10] that, if F is a subfamily of the family of context-free languages which
forms a cone (see Section 3), then the finitely generated groups whose word
problem lies in the family F are either those with a regular word problem, those
with a one-counter word problem or those with a context-free word problem.
Herbst also classified [10] the groups with a one-counter word problem; see
Section 4 for further details.

Another interesting related problem is that of characterizing which languages
are word problems of groups. A simple necessary and sufficient criterion for a
language to be such a word problem was established in [27]. This involves
the conjunction of two conditions, universal prefix closure and deletion closure
(see Definition 12 and Proposition 13); a natural question is then what other
such characterizations there are. We investigate this problem, using sentences
expressed in first-order logic where the only relations are membership of the
language in question and concatenation of words. We choose some natural
conditions on languages that hold in all word problems (see Definition 12) and
then characterize which sets of these conditions are sufficient to guarantee that
the language really is the word problem of a group (see Theorem 45). We also
consider the related problem of asking when a language can represent a subgroup
(or a normal subgroup) of a group, as opposed to just representing the identity
element; see Section 7.

There are many interesting questions here. One general observation is that
different families of languages can give rise to the same class of groups: this
means that imposing certain very natural conditions on a language in one family
forces it to lie in some specified proper subfamily. For example, any context-free
language that satisfies the conditions for being a word problem of a group is
necessarily deterministic context-free and even an NTS-language (see Section 4).
Such results are not always easy to see directly (i.e. without using group theory)
and this situation does seem worthy of further investigation.

Given that these properties are all natural ones for a language to potentially
satisfy (many of which have been extensively studied elsewhere), in addition
to being important when characterizing word problems of groups, we turn our
attention to decidability results in Section 9. We see that the properties we
study here are easily seen to be all decidable for the family of regular languages
but they all turn out to be undecidable if we generalize to the family of one-
counter languages (and hence to the context-free languages as well).

Having established the undecidability of these conditions for the family of
one-counter languages, we turn our attention to the question of deciding whether
or not a given language is the word problem of a group. Whilst this is easily seen
to be decidable for the regular languages we build on the work in [22] to show
that this is undecidable for one-counter languages (and hence for context-free
languages as well); see Theorem 60. However, we know that any context-free
language that is the word problem of a group is deterministic context-free and we
show that the problem of deciding whether a deterministic context-free language
is the word problem of a group is actually decidable (see Theorem 65).
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2. Background from formal language theory

In this section and the next we will recall some concepts, notation and re-
sults we need from formal language theory and from group theory. For the
background material on formal language theory the reader is referred to (for
example) [3, 16, 19] and, for group theory, to [20, 30].

As usual, we let Σ∗ denote the set of all words, including the empty word ε,
and Σ+ denote the set of all non-empty words over the alphabet Σ. (Our
alphabets will always be finite here.) If α ∈ Σ∗ and x ∈ Σ we let |α| denote the
length of α and |α|x denote the number of occurrences of the symbol x in α.
If n ∈ N then Σ6n is the set of words in Σ∗ of length at most n and Σ>n is the
set of words of length at least n (we will take the set N of natural numbers to
include 0 in this paper).

If α = βγ for some β, γ ∈ Σ∗ then β is said to be a prefix of α and γ is said
to be a suffix of α; if α = βγδ for some β, γ, δ ∈ Σ∗ then γ is said to be a factor
of α. If α is the word a1a2 . . . an−1an with n > 1 and ai ∈ Σ for each i, then
the reversal αrev of α is the word anan−1 . . . a2a1 (and εrev is defined to be ε).
For any language L we define Lrev to be the language {αrev : α ∈ L}.

Given a language L over an alphabet Σ we define the syntactic congru-
ence ≈L to be the congruence on Σ∗ defined by:

α ≈L β ⇐⇒ (γαδ ∈ L⇔ γβδ ∈ L for all γ, δ ∈ Σ∗),

and then the syntactic monoid Synt(L) of L to be the quotient Σ∗/ ≈L. If ϕ
is the natural map from Σ∗ onto Synt(L) then L = Sϕ−1 for some subset S of
Synt(L).

Remark 1. We will need the following elementary observation later in this
paper. If L is a language over an alphabet Σ then the monoid Synt(L) is trivial
if and only if ≈L consists of a single congruence class, i.e. if and only if the only
congruence class of ≈L is Σ∗. As L is a union of congruence classes of ≈L, if L is
non-empty then L must be Σ∗. So the only languages with a trivial syntactic
monoid are ∅ and Σ∗. �

Throughout this paper we will be discussing the families of regular and
context-free languages accepted by finite automata and (non-deterministic) push-
down automata respectively. Alternatively one could define these families using
regular and context-free grammars, and we will need this approach as well in
this paper. We will also be discussing one-counter languages which are those
languages accepted by a one-counter pushdown automaton, i.e. a pushdown au-
tomaton where we have only a single stack symbol (apart from a special symbol
marking the bottom of the stack); these automata are non-deterministic and
accept by final state. We will use some standard definitions and properties of
families of languages (such as their closure properties under certain operations
and decidability results); see [3, 16, 19] for example. We will make some further
comments about this in the next section.
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3. Background from group theory

Here we recall some standard terminology and definitions from the theory
of groups; we start with semigroups and monoids (as we will also use these
concepts in this paper). A semigroup is a set S together with a closed binary
operation ∗ which is associative. A monoid is a semigroup M where there is an
identity element 1 = 1M for ∗. A group is a monoid G where each g in G has
an inverse g−1. We usually suppress the reference to ∗, simply referring to the
group (say) as G and writing gh for g ∗ h.

A subset H of G that also forms a group under ∗ is called a subgroup of G
(and is a proper subgroup of G if H 6= G). If H is a subgroup of G and if we
have that g−1Hg = H for all g ∈ G, then H is said to be a normal subgroup
of G. For any subgroup H of G there is a unique maximal normal subgroup
of G contained in H, namely

⋂
{g−1Hg : g ∈ G}.

If H is a subgroup of a group G then the distinct subsets of the form Hg
(where g ∈ G) are known as the (right) cosets of H in G and these subsets form
a partition of G. If there are only finitely many such cosets then we say that
the subgroup H has finite index in G.

Bound up with these concepts is the idea of a homomorphism. A semigroup
homomorphism is a mapping ϕ : S → T (where S and T are semigroups)
such that (st)ϕ = (sϕ)(tϕ) for all s, t ∈ S. If S and T are monoids then we
have a monoid homomorphism ϕ if ϕ is a semigroup homomorphism such that
1Sϕ = 1T . For a group homomorphism between groups we need to also have
that (gϕ)−1 = (g−1)ϕ for all g ∈ G (although this follows from the fact that
ϕ is a semigroup homomorphism, as does the fact that ϕ preserves the identity
element in the group case).

We mentioned in Section 2 that we would be assuming facts about closure
properties of families of languages; amongst the properties we will need are the
following. Let Σ and Ω be alphabets. We say that a family of languages F is
closed under homomorphism if

L ∈ F , L ⊆ Σ∗, ϕ : Σ∗ → Ω∗ a monoid homomorphism =⇒ Lϕ ∈ F ,

and that F is closed under inverse homomorphism if

L ∈ F , L ⊆ Ω∗, ϕ : Σ∗ → Ω∗ a monoid homomorphism =⇒ Lϕ−1 ∈ F .

We also say that a family F of languages is closed under intersection with regular
languages if

L1 ⊆ Σ∗, L2 ⊆ Σ∗, L1 ∈ F , L2 regular =⇒ L1 ∩ L2 ∈ F .

Following [3], we define a cone to be a family of languages closed under
homomorphism, inverse homomorphism and intersection with regular languages.
There are other names in use for this concept such as a full trio (see [16] for
example). The families of languages we will be most concerned with in this
paper, namely the regular, one-counter and context-free languages, are all cones.

4



With regards to decision problems, it is well known (see [16] for example)
that one cannot decide whether or not a context-free language L ⊆ Σ∗ is equal
to Σ∗ (the so called universe problem). In fact, this problem remains undecidable
if one restricts oneself to the certain subfamilies of the context-free languages
such as the one-counter languages [18]. We will need a slight strengthening of
this last fact here where we restrict to the special case where the alphabet has
size 2:

Theorem 2. The following decision problem is undecidable:
Input: a one-counter pushdown automaton M with input alphabet Ω

of size 2.
Output: “yes” if L(M) = Ω∗;

“no” otherwise.

Proof. We will show that, if we had an algorithm A solving this decision
problem, then we would have an algorithm solving the universe problem for
one-counter pushdown automata with input alphabets of arbitrary size. So
suppose that we have such an algorithm A. Let Σ = {x1, x2, . . . , xn} be an ar-
bitrary alphabet and let Ω = {a, b}. Let M = (Q,Σ,Γ, τ, s, A) be a one-counter
pushdown automaton and let L = L(M). We want to determine whether or not
L(M) = Σ∗.

Define ϕ : Σ∗ → Ω∗ by x1 7→ ab, x2 7→ a2b, . . . , xn 7→ anb, and let K = Σ∗ϕ.
Since K is regular, R = Ω∗ − K is regular. Since ϕ is injective we have that
L = Σ∗ if and only if Lϕ = Σ∗ϕ = K which is equivalent to saying that
Lϕ ∪R = K ∪R = Ω∗. Since Lϕ ∪R is a one-counter language over Ω we may
use the algorithm A to decide this problem, and so we could determine whether
or not L(M) = Σ∗, a contradiction. �

Remark 3. In Theorem 2 all we have used about the family F of one-counter
languages are the facts that the universe problem is undecidable for F and that
the family F is closed under homomorphism and union with regular languages
(and that we can effectively construct the necessary one-counter pushdown au-
tomaton given the specified homomorphism or regular language); so Theorem 2
applies to any family of languages with such properties. �

If G is a group and Σ is a finite set of symbols such that there is a surjective
(monoid) homomorphism ϕ : Σ∗ → G, then we say that Σ is a generating set
for G (via ϕ). Note that Σ is then a monoid generating set for G as opposed to
a group generating set ; in the latter case, we would have a set of symbols X and
then let Σ = X ∪X−1 where X−1 is a set of symbols in a (1-1) correspondence
with X and where we insist that x−1ϕ = (xϕ)−1 for each x ∈ X.

In either case the word problem of the group G is the set of all words in Σ∗

that represent the identity element of G (i.e. the set of all words α ∈ Σ∗ such
that αϕ = 1G).

For each a ∈ Σ let a be an element of Σ∗ such that aϕ = (aϕ)−1. We then
have that a1a2 . . . an = b1b2 . . . bm in G (where ai, bj ∈ Σ for each i and j) if
and only if the word

a1a2 . . . anbm bm−1 . . . b1
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represents 1G; so we can focus on the set of the words in Σ∗ representing the
identity of G and we refer to this language as the word problem W (G,Σ) of G
with respect to the generating set Σ (via the homomorphism ϕ).

Remark 4. A group is the syntactic monoid of its word problem; see [11] for
example. We will need a more general result here. Let Σ be a finite set, G be
a group and ϕ : Σ∗ → G be a surjective homomorphism. Suppose that H is a
subgroup of G, such that there is no non-trivial normal subgroup of G contained
in H, i.e. such that ⋂

{g−1Hg : g ∈ G} = {1},

and let L = Hϕ−1; then G is the syntactic monoid of L (see [26] for example).
Even more generally, suppose we drop the assumption that there is no non-

trivial normal subgroup of G contained in H and let N be the maximal normal
subgroup of G contained in H. Then ϕ : Σ∗ → G induces a surjective homo-
morphism ϕ : Σ∗ → G = G/N and there is no non-trivial normal subgroup of
G/N contained in H/N . We now have that L = Hϕ−1 and that G/N is the
syntactic monoid of L. �

A presentation for a group G is an expression of the form 〈A : R〉 where
A is a generating set for G and R is a set of relations of the form α = β. If
A is a monoid generating set for G and R ⊆ A∗ × A∗, then we have a monoid
presentation for G (we obviously also have monoid presentations for monoids
that are not groups) and, if A is a group generating set for G, Σ = A ∪A−1 as
above, and R ⊆ Σ∗×Σ∗, then we have a group presentation for G. In each case
the set R must be a set of defining relations for G in the following sense: if ≈ is
the congruence generated by R (together with all pairs of the form (x−1x, ε)
or (xx−1, ε) with x ∈ X in the case of a group generating set, where ε again
denotes the empty word), then G is isomorphic to Σ∗/ ≈, i.e. α ≈ β if and only
if αϕ = βϕ. The free group on a set X has the (group) presentation 〈X : ∅〉. If
we consider 〈X : ∅〉 as a monoid presentation then we get the free monoid on
X which is naturally isomorphic to X∗.

Remark 5. If G is a group and ℘ = 〈A : R〉 is a monoid presentation for G,
then ℘ is also a group presentation for G. On the other hand, if ℘ = 〈A : R〉
is a group presentation for G, we may easily obtain a monoid presentation
for G as follows: for every generator a ∈ A we add a new generator a and
we then add the relations aa = aa = 1; the resulting presentation is now a
monoid presentation for G. Given that we can effectively transform a monoid
presentation into a group presentation and vice-versa, there is no need in many
instances to specify which type of presentation we have, and we will adopt this
convention throughout this paper where appropriate (as opposed to duplicating
results, specifying them for group and monoid presentations separately). �

If P is any property of groups, then we say that a group is virtually P if it
has a subgroup of finite index with property P . We will need the following fact
(where we are adopting the convention from Remark 5):
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Theorem 6. The following problem is decidable:
Input: a finite presentation ℘ = 〈X : R〉 for a virtually free group G;

Output: “yes” if G is trivial;
“no” otherwise.

Proof. We start two processes running. The first enumerates the consequences
of the set R of relations, terminating if all the pairs (x, ε) with x ∈ X have been
output; this terminates if and only if G is trivial. The second process enumerates
the subgroups of finite index in G (one can do this for any finitely presented
group; see Section 5.6 of [32] or Section 5.4 of [13] for example) and terminates
if it finds a proper subgroup (any non-trivial virtually free group must possess
such a subgroup), which shows that the group is non-trivial. Eventually one of
these two processes must terminate. �

4. Word problems and formal languages

When examining groups based on their word problem as a formal language
it is quite common to try to classify groups based on what family of languages
their word problem lies in. Whilst we will concentrate on the results most
pertinent to the current paper here, the reader is referred to [4, 9, 15, 21, 33]
(for example) for more information.

The first issue is that there is no guarantee that the word problem will lie in
the same family F of languages for different finite generating sets. The following
result (see [11] for example) shows that, under certain mild assumptions on F ,
this is not a problem:

Theorem 7. If a family of languages F is closed under inverse homomorphism
and if the word problem of a group G lies in F with respect to some finite
generating set then the word problem of G will lie in F for all finite generating
sets.

Theorem 7 applies to all the families of languages we will be most con-
cerned with here, namely the families of regular, one-counter and context-free
languages, as all these families are closed under inverse homomorphism (indeed,
as previously mentioned, they are all cones). With regards to the first of these
three families, Anisimov [1] classified the groups with a regular word problem:

Theorem 8. A finitely generated group has a regular word problem if and only
if it is a finite group.

Further work was done by Muller and Schupp [23] which, along with a re-
sult of Dunwoody [7] concerning a property of groups known as accessibility,
characterised the groups with a context-free word problem:

Theorem 9. A finitely generated group G has a context-free word problem if
and only if it is a virtually free group.
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There are several other interesting results related to Theorem 9; for example,
it is not difficult to show that the word problem of a finitely generated virtu-
ally free group must be deterministic context-free (we pick up on this point in
Section 11 below). One can go further: for example it was shown in [2] that
such a word problem must even be an NTS language (i.e. a language gener-
ated by a context-free grammar where the set of sentential forms is unchanged
when the production rules are used both ways). This phenomenon (different
natural families of languages giving rise to the same class of groups) does not
seem to be unusual. Another interesting reference here is [6] which presents a
self-contained proof of Theorem 9 without using either the structure theorem
of Stallings (which is important in the original proof in [23]) or the result of
Dunwoody in [7].

One might ask what families of languages F contained in the family of
context-free languages give rise to interesting classes of groups other than the
finite and virtually free groups. Herbst [10] showed that, if the family F satisfies
the natural closure conditions we have introduced, then there are not many
possibilities for the corresponding class of groups:

Theorem 10. If F is a subset of the context-free languages which is a cone then
the class of finitely generated groups whose word problem lies in F is the class
of groups with a regular word problem, the class of groups with a one-counter
word problem or the class of groups with a context-free word problem.

In the light of Theorems 8, 9 and 10, it is natural to ask which groups have
a one-counter word problem. Herbst characterised these groups in [10] (see also
[11] and [14]):

Theorem 11. A finitely generated group G has a one-counter word problem if
and only if it is a virtually cyclic group.

Given Theorem 10 it is natural to ask if one can decide if a language lying
in one of these three families of languages is a word problem of a group and we
answer this question in Section 10.

5. Properties of word problems

As we said in the introduction, we are interested in determining which sets
of properties of languages are sufficient to ensure that a language must be the
word problem of a group. Obviously such properties must be ones that are
satisfied by word problems of groups; the particular properties we will consider
here are listed in the following definition:
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Definition 12. We define some potential properties of a language L over an
alphabet Σ:

(UPP) for all α ∈ Σ∗ there exists β ∈ Σ∗ such that αβ ∈ L;
if L satisfies (UPP) we say that L has the universal prefix property ;

(USP) for all α ∈ Σ∗ there exists β ∈ Σ∗ such that βα ∈ L;
if L satisfies (USP) we say that L has the universal suffix property ;

(UFP) for all α ∈ Σ∗ there exist β, γ ∈ Σ∗ such that βαγ ∈ L;
if L satisfies (UFP) we say that L has the universal factor property ;

(DC) α ∈ Σ∗, β ∈ L, γ ∈ Σ∗, αβγ ∈ L =⇒ αγ ∈ L;
if L satisfies (DC) we say that L is deletion closed ;

(CRD) α ∈ Σ∗, β ∈ L,αβ ∈ L =⇒ α ∈ L;
if L satisfies (CRD) we say that L is closed under right deletions;

(CLD) α ∈ L, β ∈ Σ∗, αβ ∈ L =⇒ β ∈ L;
if L satisfies (CLD) we say that L is closed under left deletions;

(IC) α ∈ Σ∗, β ∈ Σ∗, γ ∈ L,αβ ∈ L =⇒ αγβ ∈ L;
if L satisfies (IC) we say that L is insertion closed ;

(CCS) α ∈ Σ∗, β ∈ Σ∗, αβ ∈ L =⇒ βα ∈ L;
if L satisfies the (CCS) we say that L is closed under cyclic shift ;

(CC) α ∈ L, β ∈ L =⇒ αβ ∈ L;
if L satisfies (CC) we say that L is closed under concatenation.

It is easy to check that that all the properties in Definition 12 are satisfied
by word problems of groups; we will use this fact from now on without further
comment. These are all natural conditions on families of languages and many of
them have been extensively studied; it is intriguing that we have such connec-
tions between word problems of groups and natural formal language conditions
such as these.

The following result from [27] will be the starting point for our investigations
here:

Proposition 13. A language L over an alphabet Σ is the word problem of a
group if and only if it satisfies properties (UPP) and (DC).

The proof of Proposition 13 in [27] shows that L being a word problem of a
group is equivalent to the conditions (UPP), (IC) and (DC), and then that (IC)
is a consequence of (UPP) and (DC). We will explore further such connections
between the properties from Definition 12 in Section 6. However we also note
the following result from [21] (see Proposition 5.4 there):

Proposition 14. If Σ is an alphabet and ∅ 6= L ⊆ Σ∗, then the following are
equivalent:

(i) there is a monoid M and a monoid homomorphism ϕ : Σ∗ → M
such that L = {1}ϕ−1;

(ii) L satisfies (DC) and (IC).

Remark 15. In the situation described in Proposition 14, the language L must
also satisfy (CLD) and (CRD), as these are consequences of (DC), and L must
also satisfy (CC), as that is a consequence of (IC).
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In general L does not need to satisfy any of the other conditions. For (UPP),
(USP) and (UFP) this is clear as we can take a monoid (such as Σ∗) where the
identity is not the product of two other elements; in this situation {1}ϕ−1 must
be {ε} and these three conditions clearly do not hold in this case.

Of interest later will be an example where L satisfies (UFP) but not (UPP)
or (USP); this particular L will also not satisfy (CCS) and we will describe the
language in question here.

Consider the bicyclic monoid B; this is the monoid defined by the (monoid)
presentation 〈a, b : ab = 1〉. Let Σ = {a, b}; we have the natural (monoid)
homomorphism ϕ : Σ∗ → B and we let L = {1}ϕ−1.

Since ab = 1, each element of B is represented by a word of the form biaj

(where i, j > 0) and we have that (biaj)θ = (bka`)θ if and only if i = k and
j = `. Indeed, if we consider the complete (i.e. the confluent and terminating)
string rewriting system R over Σ where the only rewriting rule is ab → ε, we
see that R reduces any word α in Σ∗ to the unique word β of the form biaj

(i, j > 0) that represents the same element of B as α (i.e. to the word β of this
form such that βϕ = αϕ).

We have that L satisfies (UFP): if α = ai1bj1 . . . ainbjn let

J = i1 + . . .+ in and I = j1 + . . .+ jn;

then aIαbJ reduces in R to ε and so aIαbJ ∈ L. However, L does not satisfy
(UPP): if we let α = b then there is no word β such that αβ ∈ L as any word
in L can be reduced to ε through repeated uses of the rewriting rule ab → ε
and no word starting in b can be so reduced. A similar argument shows that
no word ending in a can be so reduced and so L does not satisfy (USP) either.
The fact that no word starting in b can belong to L also shows that L does not
satisfy (CCS) (since ab ∈ L but ba 6∈ L). �

We will note here a fact about deletion closed languages that may be of
some independent interest. To do this we will use the following result from [12],
known as Higman’s Lemma:

Theorem 16. The set of finite words over a finite alphabet, as partially ordered
by the subsequence relation, is well-quasi-ordered. This, in particular, implies
that there does not exist an infinite sequence where the elements of the sequence
are all pairwise incomparable or, equivalently, any set containing only pairwise
incomparable finite words is finite.

We will write α ≺ β if α can be obtained by deleting some symbols in β, i.e.
if α is a proper subsequence of β; if α is a (not necessarily proper) subsequence
of β, then we will write α � β. We then have:

Proposition 17. A language L ⊆ Σ∗ which is deletion closed and which con-
tains Σ is regular.

Proof. Given that L is deletion closed and contains Σ, deleting any symbols
from a word in L always results in another word in L; so, if α ∈ L and β ≺ α,
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then β ∈ L. If L = Σ∗ then the result is clearly true; so we will assume that
L 6= Σ∗ in what follows.

First, consider words β /∈ L such that

α ≺ β =⇒ α ∈ L

(such words are guaranteed to exist since ∅ 6= L 6= Σ∗). Given two such words
γ and β we must have that γ ⊀ β and that β ⊀ γ; so, by Theorem 16, the set U
of all such words must be finite.

Consider the language

V = {α ∈ Σ∗ : there exists β ∈ U such that β � α}.

This language V is regular (as all we are doing is checking that some subsequence
lies in a specified finite set).

If α ∈ V then there exists β ∈ U such that β � α and so α 6∈ L (as β 6∈ L).
Conversely, if α 6∈ L, then choose β minimal such that β � α and β 6∈ L. If
γ ≺ β, then γ ∈ L by the minimality of β; so β ∈ U and hence α ∈ V .

Given this we see that Σ∗−L = V is regular and hence that L is regular. �

Remark 18. The hypothesis that L contains Σ in Proposition 17 is necessary;
for example, the language {anbn : n > 0} is deletion closed but not regular.
Indeed, since the word problem of any finitely generated group is deletion closed
and there are finitely generated groups with unsolvable word problem, there
exist deletion closed languages that are not even recursively enumerable. �

We now introduce a concept that we will call duality.

Remark 19. Suppose we have (as in Definition 12) a sentence σ in first-order
logic where the only relations in σ are membership of the language L in question
and concatenation of words. We can obtain a new sentence σ′ by reversing the
order of the words in any concatenation in σ (but leaving everything else in the
sentence σ fixed). For example, if we take the sentence

∀α ∈ Σ∗, ∃β ∈ Σ∗ : αβ ∈ L

representing the property (UPP), then the only concatenation in the sentence
is αβ ∈ L; we reverse this to get βα ∈ L and we now have the sentence

∀α ∈ Σ∗, ∃β ∈ Σ∗ : βα ∈ L

representing (USP). In this sense we say that (USP) is the dual of (UPP) (and
that (UPP) is the dual of (USP)).

In a similar vein we see that (CRD) is the dual of (CLD) and that the other
properties listed in Definition 12 are all self-dual. We sum these facts up in the
following tables:

Dual properties
(UPP) (USP)
(CLD) (CRD)

Self dual properties
(UFP) (DC) (IC)

(CCS) (CC)
�
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The motivation for introducing this concept is that, when characterizing
word problems of groups, we will make extensive use of the following result:

Proposition 20. If L is a language over some alphabet Σ, S = {σ1, σ2, . . . , σn}
is a subset of the properties listed in Definition 12, σ′i is the dual of σi for each i
and S′ = {σ′1, σ′2, . . . , σ′n}, then the following statements are equivalent:

(i) L is the word problem of a group if and only if it satisfies S.
(ii) L is the word problem of a group if and only if it satisfies S′.

Proof. We will first show that L is a word problem of a group if and only if
Lrev is a word problem of a group.

If Σ = {a1, a2, . . . , an} and ϕ : Σ∗ → G is a surjective homomorphism
from Σ∗ onto a group G then we define a new homomorphism θ : Σ∗ → G by
aθ = (aϕ)−1 for all a ∈ Σ. If L is the word problem of G then, since

(g1 . . . gn)−1 = g−1n . . . g−11

in G and since we also have that αϕ = 1 if and only if (αϕ)−1 = 1, we see
that Lrev is also the word problem of G via the homomorphism θ. Applying
the argument again shows that, if Lrev is the word problem of a group, then
L = (Lrev)rev is also the word problem of a group.

The result now follows from the observation that L satisfies the properties
in S if and only if Lrev satisfies the properties in S′. �

Remark 21. When we are considering the word problem of a group G we are
looking at the preimage of the subgroup {1} of G under a natural homomor-
phism ϕ : Σ∗ → G. We can also widen the scope and consider languages that
are preimages of arbitrary subgroups of G under such a homomorphism. The
argument in Proposition 20 goes over to this more general situation and we
have that, with the same notation as in Proposition 20, if S is a necessary and
sufficient set of conditions for L to be the preimage of a subgroup of G, then S′

is also such a set of conditions. We will explore languages which are preimages
of arbitrary subgroups of a group in Section 7. �

6. Characterizing word problems

We now take Proposition 13 and derive some other similar characterizations
of languages that are word problems of groups. There are quite a few results
in this section but, for the convenience of the reader, we summarize them in
Remark 38 below.

First of all, using Remark 19 and Proposition 20, we immediately have:

Corollary 22. A language L over an alphabet Σ is the word problem of a group
if and only if it satisfies properties (USP) and (DC).

We then note the following:
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Proposition 23. If a language L over an alphabet Σ satisfies properties (CCS)
and (UFP) then it satisfies property (UPP).

Proof. If α ∈ Σ∗ then there exist β, γ ∈ Σ∗ such that βαγ ∈ L by (UFP).
Then αγβ ∈ L by (CCS) and so there exists δ = γβ with αδ ∈ L as required. �

Using Remark 19 we immediately have:

Corollary 24. If a language L over an alphabet Σ satisfies properties (CCS)
and (UFP) then it satisfies property (USP).

Given Propositions 13 and 23, we have the following immediate consequence:

Corollary 25. A language L over an alphabet Σ is the word problem of a group
if and only if it satisfies properties (DC), (CCS) and (UFP).

We next note the following:

Proposition 26. If a language L over an alphabet Σ satisfies properties (CCS)
and (CRD) then it satisfies property (DC).

Proof. If αβγ ∈ L and β ∈ L then we can apply (CCS), (CRD) and (CCS) in
turn to get that γαβ ∈ L, that γα ∈ L, and then that αγ ∈ L as required. �

Given Propositions 13 and 26, we have the following:

Corollary 27. A language L over an alphabet Σ is the word problem of a group
if and only if it satisfies properties (UPP), (CCS) and (CRD).

By Remark 19 and Proposition 26, we have the following:

Corollary 28. If a language L over an alphabet Σ satisfies properties (CCS)
and (CLD) then it satisfies property (DC).

Given Proposition 13 and Corollary 28 we have:

Corollary 29. A language L over an alphabet Σ is the word problem of a group
if and only if it satisfies properties (UPP), (CCS) and (CLD).

Given Propositions 13, 23 and 26 we have:

Corollary 30. A language L over an alphabet Σ is the word problem of a group
if and only if it satisfies properties (UFP), (CCS) and (CRD).

In a similar vein, Propositions 13, 23 and 28 give:

Corollary 31. A language L over an alphabet Σ is the word problem of a group
if and only if it satisfies properties (UFP), (CCS) and (CLD).

Given Corollaries 22 and 28 we have:
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Corollary 32. A language L over an alphabet Σ is the word problem of a group
if and only if it satisfies properties (CCS), (USP) and (CLD).

In a similar way, Corollaries 22 and 26 give:

Corollary 33. A language L over an alphabet Σ is the word problem of a group
if and only if it satisfies properties (CCS), (USP) and (CRD).

Another such result is the following:

Proposition 34. If a language L over an alphabet Σ satisfies properties (UPP),
(IC) and and (CRD) then it satisfies property (DC).

Proof. Assume that L satisfies (UPP), (IC) and (CRD); we want to show that
L must then satisfy (DC) as well.

So assume that αβγ ∈ L (for some α, γ ∈ Σ∗) and that β ∈ L. By (UPP)
there exists δ ∈ Σ∗ such that αγδ ∈ L. Since β ∈ L we have by (IC) that
αβγδ ∈ L. Since αγδ ∈ L and αβγ ∈ L, (IC) also gives us that αγ(αβγ)δ ∈ L.
Since αγαβγδ ∈ L and αβγδ ∈ L, (CRD) gives that αγ ∈ L as required. �

Given Propositions 13 and 34 we have another characterization of word prob-
lems as follows:

Corollary 35. A language L over an alphabet Σ is the word problem of a group
if and only if it satisfies properties (UPP), (IC) and (CRD).

Given Proposition 34 we can apply Remark 19 to deduce:

Proposition 36. If a language L over an alphabet Σ satisfies properties (USP),
(IC) and (CLD) then it satisfies property (DC).

Given Propositions 22 and 36 we have another characterization as follows:

Corollary 37. A language L over an alphabet Σ is the word problem of a group
if and only if it satisfies properties (USP), (IC) and (CLD).

Remark 38. For the convenience of the reader we summarize the implications
between the properties listed in Definition 12 which we have established in this
section by means of the following diagrams:

(UPP) ⇐= (CCS), (UFP) =⇒ (USP)

(CCS), (CRD) =⇒ (DC) ⇐= (CCS), (CLD)

(UPP), (IC), (CRD) =⇒ (DC) ⇐= (USP), (IC), (CLD)
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These various implications will be important in what follows.
We also summarize below the sets of conditions on a language which we have

established are sufficient for the language in question to be the word problem of
a group. The convention here is that one starts at one of the three positionson
the left and then follows arrows to the right until one can go no further; the
eleven paths one can trace doing this give the eleven such sets of conditions.

(CRD) //

''

(IC)

(UPP)

77

//

''

(DC) (CCS)

(CLD)

77

(CRD)

''
(USP)

77

//

''

(DC) (CCS)

(CLD)

77

// (IC)

(CRD)

''
(UFP)

77

//

''

(DC) // (CCS)

(CLD)

77

�
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7. Preimages of subgroups

When we are considering the word problem of a groupG we are looking at the
preimage of the subgroup {1} of G under a natural homomorphism ϕ : Σ∗ → G.
In Section 5 we gave various characterizations of such a language. In this section
we widen the scope of the languages considered and look at languages that are
preimages of arbitrary subgroups of G.

We first make the following observation:

Proposition 39. Let Σ be an alphabet, G be a group and ϕ : Σ∗ → G be a
surjective monoid homomorphism. If ∅ 6= S ⊆ G and L = Sϕ−1 then the
language L satisfies (UPP).

Proof. We choose any element x ∈ S and then let δ ∈ Σ∗ be such that δϕ = x;
having done this, x and δ will be fixed in what follows.

Given an arbitrary α ∈ Σ∗ we want to show that there exists β ∈ Σ∗ such
that αβ ∈ L.

Let α ∈ Σ∗ and then let γ ∈ Σ∗ be such that γϕ = (αϕ)−1. Let β = γδ.
Then

(αβ)ϕ = (αϕ)(γϕ)(δϕ) = x ∈ S,
so that αβ ∈ Sϕ−1 = L as required. �

Given this we can now establish the following:

Proposition 40. Let Σ be an alphabet, G be a group and ϕ : Σ∗ → G be a
surjective monoid homomorphism. Let S ⊆ G and then let L = Sϕ−1. Then
the following are equivalent:

(i) S is a subgroup of G.
(ii) L satisfies (UPP), (CC) and (CRD).

Proof. First suppose that S is a subgroup of G; we have that L satisfies (UPP)
by Proposition 39.

If α, β ∈ L then αϕ, βϕ ∈ S and so

(αβ)ϕ = (αϕ)(βϕ) ∈ S,

so that αβ ∈ L; so L satisfies (CC).
Lastly, if αβ ∈ L, β ∈ L then (αβ)ϕ ∈ S, βϕ ∈ S, so that (βϕ)−1 ∈ S and

then αϕ = (αβ)ϕ(βϕ)−1 ∈ S, so that α ∈ L; so L satisfies (CRD).
Conversely suppose that L satisfies (UPP), (CC) and (CRD). Note that

Lϕϕ−1 = L. We also have that L 6= ∅, as L satisfies (UPP), and so S 6= ∅.
Since L 6= ∅ and L satisfies (CRD), we have that ε ∈ L and so 1 ∈ S.
If s, t ∈ S let α, β ∈ L be such that αϕ = s and βϕ = t; then αβ ∈ L, as

L satisfies (CC) and st = (αβ)ϕ, so that st ∈ S.
Lastly, let s ∈ S and then let α, β ∈ L be such that αϕ = s and βϕ = s−1;

then (βα)ϕ = 1 ∈ S, so that βα ∈ L, α ∈ L, giving that β ∈ L by (CRD) and
then that s−1 ∈ S.

So S is a subgroup of G as required. �

16



Given Remark 21, we can use duality to deduce:

Corollary 41. Let Σ be an alphabet, G be a group and ϕ : Σ∗ → G be a sur-
jective monoid homomorphism. Let S ⊆ G and L = Sϕ−1. Then the following
are equivalent:

(i) S is a subgroup of G.
(ii) L satisfies (USP), (CC) and (CLD).

We now turn our attention to normal subgroups and establish the following:

Proposition 42. Let Σ be an alphabet, G be a group and ϕ : Σ∗ → G be
a surjective monoid homomorphism. Let H be a subgroup of G and then let
L = Hϕ−1. Then the following are equivalent:

(i) H is a normal subgroup of G.
(ii) L satisfies (IC).

(iii) L satisfies (DC).
(iv) L satisfies (CCS).

Proof. If H is a normal subgroup of G then L is the word problem of the
group G/H, and so L satisfies (IC), (DC) and (CCS). So (i) implies each of (ii),
(iii) and (iv).

We will now complete the proof by showing that each of (ii), (iii) and (iv)
implies (i).

Now the fact that H is a subgroup of G means that L satisfies (UPP),
(USP), (CC), (CRD) and (CLD) by Proposition 40 and Corollary 41. Let N be
the largest normal subgroup of G contained in H so that G/N is the syntactic
monoid of L by Remark 4.

If L satisfies any of (IC), (DC) or (CCS) then L is the word problem of
a group (by Corollary 35, Proposition 13 or Corollary 29 respectively). As in
Remark 4, L is then the word problem of its syntactic monoid. Since G/N is
the syntactic monoid of L it follows that every word in L must represent the
identity of G/N , giving that H = N , and hence that H is a normal subgroup
of G as required. �

8. Minimality results

In this section we build on the results in Section 6 and investigate the mini-
mality of sets of conditions from Definition 12 on a language L that are sufficient
for L to be a word problem of a group.

We first establish a result that will be crucial in establishing the minimality
of certain such sets of conditions from Definition 12 when characterizing word
problems of groups:
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Proposition 43. There are languages L1, L2, L3, L4, L5 and L6 that satisfy
respectively the following specified subsets of the set of the properties listed in
Definition 12:

(UPP) (DC) (CCS) (UFP) (CRD) (IC) (CC) (CLD) (USP)

L1
√

X
√ √

X
√ √

X
√

L2 X
√ √

X
√

X X
√

X
L3

√
X X

√ √
X

√ √ √

L4 X
√

X
√ √ √ √ √

X
L5 X

√ √
X

√ √ √ √
X

L6
√

X X
√

X
√ √ √

X

Proof. Let Σ = {a, b} and n > 1, and then let L1 be the language Σ>n and
L2 be the language Σ6n.

We see that the language L1 satisfies the conditions (UPP), (USP), (UFP),
(CCS), (CC) and (IC) but not (DC), (CLD) or (CRD).

On the other hand, the language L2 satisfies the conditions (DC), (CRD),
(CLD) and (CCS) but not (UPP), (USP), (UFP), (CC) or (IC).

Now let Ω be a finite set, G be a group, ϕ : Ω∗ → G be a surjective
homomorphism, H be a non-trivial subgroup of G such that there is no non-
trivial normal subgroup of G contained in H (in particular, H is itself not a
normal subgroup of G) and then let L3 be the language Hϕ−1.

By Remark 4, we see that G is the syntactic monoid of L3. Using Proposi-
tion 40, Corollary 41 and Proposition 42, we see that L3 satisfies the conditions
(UPP) (and hence (UFP) as well), (USP), (CC), (CRD) and (CLD), but not
the conditions (IC), (DC) or (CCS).

For our next language L4 we take the language L from Remark 15 consisting
of the words representing the identity element of the bicyclic monoid B defined
by the (monoid) presentation 〈a, b : ab = 1〉. We saw in Remark 15 that L
satisfies the conditions (DC), (CRD), (CLD), (IC), (CC) and (UFP), but not
the conditions (UPP), (USP) or (CCS).

We next consider L5 be the empty language ∅. It is clear that L5 satisfies the
conditions (DC), (CCS), (CRD), (CLD), (IC) and (CC), but not the conditions
(UPP), (USP) or (UFP).

Lastly we let Σ = {a, b} and then let L6 be the language {ε} ∪ Σ∗{a}. It is
clear that L6 satisfies the conditions (UPP) and (UFP) but not (USP). L6 also
satisfies (IC) and (CC) but not (CCS). Lastly L6 satisfies (CLD) but not (CRD)
or (DC). �

As we said above, the six languages specified in Proposition 43 will be useful
in establishing the minimality of certain sets of conditions from Definition 12
which characterize word problems of groups. Indeed, we can now show that
the eleven characterizations we have obtained so far are all minimal, in the
sense that no proper subset S of any of the specified eleven sets of properties is
sufficient to ensure that a language satisfying all the properties in S is the word
problem of a group:
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Proposition 44. For any non-empty proper subset S of any of the sets

{(UPP), (DC)}, {(DC), (CCS), (UFP)},
{(UPP), (CCS), (CRD)}, {(CCS), (CRD), (UFP)}
{(UPP), (IC), (CRD)}, {(USP), (DC)},
{(IC), (CLD), (USP)}, {(UPP), (CCS), (CLD)},
{(USP), (CCS), (CLD)}, {(USP), (CCS), (CRD)},

or {(UFP), (CCS), (CLD)}

there is a language satisfying all the conditions in S which is not a word problem
of a group.

Proof. We will refer to the six languages L1, L2, L3, L4, L5 and L6 introduced
in Proposition 43.

To eliminate proper subsets of . . . . . . we consider . . .
{(UPP), (DC)} L1 and L2.

{(DC), (CCS), (UFP)} L1, L2 and L4.
{(UPP), (CCS), (CRD)} L1, L2 and L3.
{(CCS), (CRD), (UFP)} L1, L2 and L3.
{(UPP), (IC), (CRD)} L1, L3 and L4.
{(USP), (DC)} L1 and L2.

{(IC), (CLD), (USP)} L1, L3 and L4.
{(UPP), (CCS), (CLD)} L1, L2 and L3.
{(USP), (CCS), (CLD)} L1, L2 and L3.
{(USP), (CCS), (CRD)} L1, L2 and L3.
{(UFP), (CCS), (CLD)} L1, L2 and L4.

For each maximal proper subset S of one the eleven sets we have given an
example of a language satisfying all the properties in S which is not the word
problem of a group. �

Theorem 45. The eleven sets of properties listed in Proposition 44 are pre-
cisely those subsets S of the set of properties listed in Definition 12 such that
satisfying the conditions in S is sufficient for a language L to be the word prob-
lem of a group but such that no proper subset of S has this property.

Proof. Again, we will refer to the languages L1, L2, L3, L4, L5 and L6 specified
in Proposition 43.

To start with, notice that the empty set L5 is not a characterization and
satisfies all of the properties except (UPP), (USP) and (UFP); so any charac-
terization must contain at least one of these three properties. Next we note
that, if a language satisfies (CCS) and any one of (UPP), (USP) and (UFP),
then it satisfies all of them; so, to begin with, we will consider languages which
do not satisfy (CCS).

Note, also, that each of (USP) and (UPP) implies (UFP) so that, when
considering languages which satisfy two of (USP), (UPP) and (UFP), there
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is therefore really only one pair to consider (taking minimality into account),
namely (UPP) and (USP).

The result of these observations is that we have five cases which we will need
to consider (with respect to minimal characterizations):

Case 1. We specify (UPP) but not (CCS).
Case 2. We specify (USP) but not (CCS).
Case 3. We specify (UFP) but not (CCS).
Case 4. We specify (UPP) and (USP) but not (CCS).
Case 5. We specify (CCS) and one of (UPP), (USP) and (UFP).

Let us consider Case 1 where we specify (UPP) but not (CCS), (USP) or
(UFP). Since (UPP) and (DC) is already a characterization by Proposition 13
there is no minimal characterization properly containing both of these proper-
ties; so we will exclude (DC). Since (IC) implies (CC) we do not include both
of these; so we are looking at subsets of (UPP), (CLD), (CRD) and (CC) or of
(UPP), (CLD), (CRD) and (IC).

With regards to the set consisting of (UPP), (CLD), (CRD) and (CC), the
language L3 satisfies all these conditions, and so no subset of this set is sufficient
for a characterization.

Let us now consider (UPP), (CLD), (CRD) and (IC). Considering L3 again
we see that (IC) must be included. If we only have (UPP) and (IC) then this is
not sufficient as is demonstrated by L1. If we add (CLD) to (UPP) and (IC) we
see that this is not a characterization as witnessed by L6. If we add (CRD) to
(UPP) and (IC) we have a characterization by Corollary 35, and this is minimal
by Proposition 44.

Case 2 is the dual of Case 1 (in the sense of Remark 19). Using Proposition 20
we see that the only minimal sets of conditions here are {(USP), (DC)} and
{(USP), (IC), (CLD)}.

Case 3 cannot give rise to any characterizations as witnessed by L4 which
satisfies all the properties listed in Definition 12 except (UPP), (USP) and
(CCS).

Let us now consider Case 4 where we specify (UPP) and (USP) but not
(CCS) or (UFP). Again, using Proposition 13, we can exclude (DC) if we are
considering minimal characterizations. Since (IC) implies (CC), we do not in-
clude both of these properties; so we are looking at subsets of (UPP), (USP),
(CLD), (CRD) and (CC) or of (UPP), (USP), (CLD), (CRD) and (IC). With
regards to (UPP), (USP), (CLD), (CRD) and (CC), the language L3 satisfies
all these conditions, and so no subset of this particular set is sufficient for a
characterization.

Now consider (UPP), (USP), (CLD), (CRD) and (IC). Given L3 we see that
(IC) must be included. If we only have (UPP), (USP) and (IC) this is not suffi-
cient as demonstrated by L1. If we add (CRD) to (UPP), (USP) and (IC) then
we have a proper superset of {(UPP), (IC), (CRD)} which is a characterization
as above, and, if we add (CLD) to (UPP), (USP) and (IC) then we have a
proper superset of {(USP), (IC), (CLD)} which is also a characterization; so no
new minimal characterizations arise here.
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Lastly consider Case 5. We first consider the case where we have (CCS)
and (UPP). Again, by minimality, we can assume that (DC) is excluded.

Given Proposition 44, if we include (CRD), then we have a minimal char-
acterization by Corollary 27 and, if we include (CLD), then we have a minimal
characterization by Corollary 31. We must include one of these, however, as L1

satisfies (UPP), (CCS), (IC) and (CC).
We next turn to the case where we specify (CCS) and (USP). This is the

dual of the case where we specify (CCS) and (UPP) and so we get the minimal
characterizations {(CCS), (USP), (CRD)} and {(CCS), (USP), (CLD)} here.

Lastly we look at the case where we specify (CCS) and (UFP). Given that
(UPP), (USP) and (UFP) are all equivalent in the presence of (CCS), we get
(using Proposition 44) the minimal characterizations {(CCS), (UFP), (CRD)}
and {(CCS), (UFP), (CLD)}. The only other possibility would be to include
(DC) as, unlike (UPP) and (USP), (DC) is not sufficient to guarantee a word
problem when taken in conjunction with (UFP) as witnessed by L4. The set
{(CCS), (UFP), (DC)} is a characterization by Corollary 25 and is minimal by
Proposition 44; so this is our last possibility (as we clearly cannot take any set
properly containing it and preserve minimality). �

9. Decidability results

We now investigate the decidability of the properties listed in Definition 12.
First of all we point out that it is reasonably clear that these are all decidable for
the family of regular languages, i.e. given a finite automaton M we can decide
whether or not L(M) satisfies the property in question.

Proposition 46. All the properties listed in Definition 12 are decidable for the
family of regular languages.

Proof. One possible approach for regular languages involves considering the
syntactic monoid of L(M). If L = L(M) ⊆ Σ∗ then we know that Synt(L) is
finite, that L = Sϕ−1 for some S ⊆ M (where ϕ is the natural map from Σ∗

onto Synt(L)) and that we can explicitly construct Synt(L) and S from M .
Given this, the condition (UPP) (for example) is equivalent to the sentence

∀x ∈ Synt(L), ∃y ∈ Synt(L) : xy ∈ S,

which is decidable as Synt(L) is finite. The decidability of the other properties
listed in Definition 12 for regular languages can all be established in the same
way. �

Remark 47. We are only interested in decidability questions in this paper
and not with computational complexity. In our one non-trivial result which
establishes decidability (see Theorem 65) we do not have an easily computable
time complexity (see Remark 66). For more information about the complexity
of problems related to that described in Proposition 46 see [28] for example. �
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When we consider the corresponding questions for one-counter languages
then we will need the idea of a counter machine; see [16] for example. There
are several ways of defining these machines and we give one possibility here.

In [16] counter machines are taken to be deterministic Turing machines which
have a read-only input tape and a number of stacks each of which can contain
only one symbol apart from a bottom of stack marker (which is present at the
start of the computation and which is never erased). As the contents of each
stack can be completely specified in terms of the number of instances of the
symbol present, the stacks are usually referred to as counters. The one-counter
pushdown automaton we introduced in Section 2 is essentially an example of
a non-deterministic version of such a machine where we only have one counter
(although, as usual, one has to be careful about allowing for the presence of a
halt state in a counter machine as opposed to having accept states in a one-
counter pushdown automaton).

In our model of a Turing machine (and, in particular, in our version of
a counter machine) the input tape will be read-only and the read head will
only move to the right. This is not a restriction on the power of the class of
machines, as the input could always be copied to a work tape if necessary, but
this convention will simplify our discussions here.

It is known that having two counters in a counter machine means that one
can simulate an arbitrary Turing machine; see [16] for example. The argument
proceeds by first showing that having four such counters is sufficient (in that
this allows one to simulate two general stacks) and then showing how the four
counters can be simulated by two counters. This is done by allowing one counter
to contain n = 2b3c5d7e symbols (there is no particular significance in the choice
of 2, 3, 5 and 7, in that any four pair-wise coprime natural numbers would suffice
here). We have that b, c, d, e > 0 (so that n > 1); in this way the counter with
2b3c5d7e symbols represents four counters with b, c, d and e symbols respectively.
To increment b, c, d or e by 1, we multiply n by 2, 3, 5 or 7 respectively and,
to decrement b, c, d or e by 1, we divide n by 2, 3, 5 or 7 respectively.

Of course, we can only decrement b if b > 0, i.e. if n is divisible by 2, with
a similar restriction applying to c, d and e as well. The other counter in the
two-counter machine (as described in [16]) is used to test whether or not each
of b, c, d and e is equal to 0 and also to perform the necessary multiplications
and divisions. We note that, if the original Turing machine never moves right
on its input tape, then none of the successive machines we have mentioned here
performing the simulations will do so either.

For our purposes we will take a slight variation of this model. We will have
a single counter containing n = 2b3c5d7e symbols but, rather that having a
second counter to allow testing equality of b, c, d and e to 0 and performing
the multiplications and divisions, we will have these facilities built into the
machine M , i.e. M knows at each stage whether or not each of b, c, d and e is
equal to 0, and M can also multiply and (if possible) divide the number n by
2, 3, 5 or 7 in one move. This is sufficient to simulate the four-counter model
(and hence any Turing machine), as per the discussion in [16], but having just
one counter will make the resulting discussion here much simpler.

22



We can think of the knowledge of whether or not each of b, c, d and e is equal
to 0 as somehow being stored in the state of M (and updated after every move),
so that M knows whether or not each of the four counters in the four-counter
machine it is simulating is empty or not. Given that the four-counter machine
that M is simulating will have (at most) one possible move for any given state,
input symbol and stack symbol on each stack, for any state of M and any input
symbol there will be at most one possible move (which will be multiplying the
counter by some specified value of k if possible, otherwise leaving the counter
unchanged, with specified states to go to in each case).

Given all this, for our purposes a counter machine M will be a particular
type of two-tape Turing machine. The first tape is the input tape; it is read only
and the head can only move to the right. The second tape is a stack so that,
whenever we move left, M erases the symbol it moved away from. There is only
one stack symbol, a say; as discussed above, this means that M can effectively
only store a natural number, and so we can think of M as having an input tape
and a counter. As we will see, the stack is never empty (and so, in this model,
we will not need the presence of a bottom marker for the stack).

More formally, a counter machine is a sextuple M = (Q,Σ, a, δ, q0, qh) where
Q is a finite set of states containing two distinguished states, q0, the start state,
and qh, the halt state. The input alphabet Σ is a finite set of symbols such that
a /∈ Q ∪ Σ and Q ∩ Σ = ∅. We have a designated special symbol H (which is
not an element of Σ) to mark the right-hand end of the input tape (as we never
move left on the input tape, there is no need to mark the left-hand end of that
tape). We let Σ denote the set Σ ∪ {H}.

A configuration of M is a word of the form θqan where θH ∈ Σ∗H is the
input remaining to be read (with the convention that θ = ε if the current symbol
on the input tape is H), q ∈ Q is the current state of M and the current stack
contents of M are an (n > 0). Given our assumptions that a /∈ Q ∪ Σ and that
Q ∩ Σ = ∅, there is no ambiguity here.

We take C to be {1, 2, 3, 5, 7, 12 ,
1
3 ,

1
5 ,

1
7}, i.e. the set of values which can

be used to multiply the current number stored in the counter. The transition
relation δ is then a subset of

(Q− {qh})× Σ× C × (Q− {q0})× {N,R} × (Q− {q0)} × {N,R},

so that, once the computation has started, M never re-enters the start state q0
(and there is no move out of the halt state qf ).

As per the above the discussion, for any q ∈ Q and any u ∈ Σ, there is
at most one septuple of the form (q, u,−,−,−,−,−) in δ. We specify that M
starts in state q0 with just a on its stack (i.e. with the counter set to 1) and,
insist that, when accepting, M must have read all its input (i.e. it must be
scanning the symbol H) and must have set its counter to 1 again before entering
the halt state qh.

A transition (q, u, k, p,D1, r,D2) in δ is interpreted as follows. If M is in
state q reading an input u and if the result of multiplying the current value n of
the counter (i.e. we currently have an on the stack) by the value k is an integer,
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then we set the counter to kn, move to state p and move in direction D1 on the
input tape (i.e. we don’t move if D1 = N and we move one cell right if D1 = R);
if kn is not an integer then the counter remains set at n, M moves to state r
and we move in direction D2 on the input tape. We write θqan ` ζpakn (where
θ = ζ if D1 = N and θ = uζ if D1 = R) or θqan ` ζran (again where θ = ζ if
D2 = N and θ = uζ if D2 = R) as appropriate.

We obviously do not have transitions (q,H, k, p,D1, r,D2) with D1 = R
or D2 = R. If C and C ′ are configurations of M such that we do not have
C ` C ′, then we will write C 0 C ′. Note that, given the way we have set up our
machine, given any configuration C there is at most one configuration C ′ such
that C ` C ′.

In a counter machine any configuration θqan will have n = 2b3c5d7e for some
b, c, d, e > 0. Multiplying n by 2, 3, 5 or 7 increases b, c, d or e respectively
by 1 and multiplying n by 1

2 , 1
3 , 1

5 or 1
7 (if possible) decreases b, c, d or e by 1;

so, as discussed above, we effectively have four counters each of which can be
increased or decreased by 1. The fact that we can only multiply by k if kn is an
integer effectively says that we can test each of the four counters individually
for zero (for example, if n = 2b3c5d7e and we want to multiply by 1

2 , then we
must have that b > 0); in the four-counter machine this is achieved by having
the special symbol marking the bottom of each stack and, as we have said, in
our version of a counter machine the machine knows at each stage which (if any)
of b, c, d and e are equal to zero.

Given all this, given a Turing Machine T , one can effectively construct a
counter machine (as defined here) accepting the same language as T .

We now turn to the notion of a valid computation of a counter machine:

Definition 48. Let M be a counter machine with input ψ. A valid computation
of M is a word C0C1 . . . Cn ∈ (Σ ∪ Q ∪ {a})∗ where the Ci are configurations
of M and

C0 = ψq0a ` C1 ` . . . ` Cn = qha;

other elements of (Σ ∪Q ∪ {a})∗ are said to be invalid computations.

Note that, given the way we have defined counter machines, for any input ψ to
a counter machine M , there is at most one valid computation of M .

Our aim here is to show that, for any of the properties listed in Definition 12,
the problem of deciding whether or not a language has that property is unde-
cidable for the family of one-counter languages. In order to do this we will
relate the set of invalid computations of a counter machine M to a one-counter
language (i.e. a language accepted by a one-counter pushdown automaton as de-
fined in Section 2). There have been other similar approaches to such problems
(see [34] for example).

We start with the following technical result which essentially says that we
can verify that a transition from one given configuration to another in a counter
machine is not valid using a one-counter pushdown automaton; this will be the
main tool in the proof of undecidability that follows (see Theorem 52).
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Proposition 49. If M = (Q,Σ, a, δ, q0, qh) is a counter machine then the lan-
guage

{CC ′ : C and C ′ are configurations of M, C 0 C ′}

is a one-counter language.

Proof. Let L = {CC ′ : C and C ′ are configurations of M} and let

K = {CC ′ : C and C ′ are configurations of M, C 0 C ′}.

For any u ∈ Σ and q ∈ Q let

Lu,q = { CC ′ : C and C ′ are configurations of M,
C = θqan for some θ ∈ Σ∗ and n > 0,
where either the first symbol in θ is u or θ = ε & u = H }.

We let Ku,q = K ∩ Lu,q. We have that

K =
⋃
{Ku,q : u ∈ Σ, q ∈ Q}.

Since there are only finitely many pairs (u, q) ∈ Σ×Q and given that the family
of one-counter languages is closed under union, it is sufficient to show that each
of the sets Ku,q is a one-counter language.

Let us therefore fix u ∈ Σ and q ∈ Q. If there is no septuple of the form
(u, q,−,−,−,−,−) in δ then Ku,q = Lu,q is a regular language, and so is cer-
tainly one-counter. So we will assume that there is such a septuple. By the
above comments, there is only one such septuple.

Let CC ′ ∈ Lu,q where C = θqan and C ′ = ζpaj . In order for C ` C ′ we must
have that the septuple is of the form (u, q, k, p,D1, r,D2) or (u, q, k, r,D1, p,D2)
for some k, r, D1 and D2 (with the possibility that p = r here). We will
show that, in all such cases, the language Ku,q is a one-counter language by
constructing a one-counter pushdown accepting it.

It is important to note that, as we read the an portion of the input, we can
determine whether or not kn ∈ N without using the stack. If k ∈ N then the
condition kn ∈ N is automatically satisfied; if k 6∈ N, then the condition kn ∈ N
is equivalent to n mod 1

k being zero. As we read the an portion of the input we
update, in the state, the value of i mod 1

k at each stage (where ai is the part of
the an read so far). So, at the end of reading the an portion of the input, we
will know whether or not kn ∈ N. We will this that as read in what follows.

Let us first consider the possibility that we have a septuple of the form
(u, q, k, p,D1, r,D2) with r 6= p. In this case we have that

Ku,q = {θqanζpaj : (i) θ is of the form uη (or θ = ε if u = H);
(ii) either kn 6∈ N;

or D1 = N and θ 6= ζ;
or D1 = R and θ 6= uζ;
or kn 6= j}.
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The set of words of the form θqanζpaj , where θ is of the form uη (or θ = ε
if u = H), forms a regular language. If we can show that the set of words
satisfying condition (ii) is a one-counter language then, as the intersection of a
regular language and a one-counter language is a one-counter language, we will
have established our result.

As we only have to verify that (at least) one of the four conditions in (ii) is
satisfied, we can non-deterministically choose which one to check. Remember
that we can check whether or not kn ∈ N without using the stack, and so we
can focus on the remaining three conditions.

Let us assume that D1 = N and that we want to verify the condition that
θ 6= ζ. If θ = ε then we must have that ζ 6= ε which is easily verified (just
using the states of the machine); so we assume that θ 6= ε. When reading θ
we put an a on the stack of our one-counter pushdown automaton for each
symbol read in θ until we (non-deterministically) choose a symbol which will
not match the corresponding symbol in ζ. We remember that symbol in the
state of the pushdown automaton and do not do anything to the stack until we
start reading ζ. At that stage we pop a symbol off the stack every time we read
a symbol of ζ, and, when we reach an empty stack (i.e. when the bottom marker
resurfaces on the stack) we verify that the symbol we read in ζ is different to
the one we stored from the corresponding position in θ.

If D1 = R then the procedure is very similar except that we read the first u
in θ without modifying the stack and then verify that the remainder of θ is not
equal to ζ.

As far as condition kn 6= j is concerned, we can verify this by putting a
symbol on the stack of our one-counter pushdown automaton every time we
read an a in an. If k ∈ N then we pop a symbol off the stack every time we read
k a’s in aj , checking that we do not finish with an empty stack at the end of
reading aj (which would match kn against j). If 1

k ∈ N then we pop 1
k symbols

off the stack every time we read an a in aj , again checking that we do not finish
with an empty stack at the end of reading aj (which, again, would match kn
against j).

Let us next consider the possibility that we have a septuple of the form
(u, q, k, r,D1, p,D2) with r 6= p. In this case we have that

Ku,q = {θqanζpaj : (i) θ is of the form uη (or θ = ε if u = H);
(ii) either kn ∈ N;

or D2 = N and θ 6= ζ;
or D2 = R and θ 6= uζ;
or n 6= j}.

The argument here is very similar to the previous case. The only real dif-
ference is that, at the end, we are verifying that n 6= j (as opposed to kn 6= j as
before). This time we put a symbol on the stack of our one-counter pushdown
automaton every time we read an a in an and then pop a symbol off the stack
every time we read an a in aj , checking that we do not finish with an empty
stack (which would match n against j).
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Lastly there is the possibility that we have a septuple of the form

(u, q, k, p,D1, p,D2),

i.e. the case where r = p. In this case:

Ku,q = {θqanζpaj : (i) θ is of the form uη (or θ = ε if u = H);
(ii) kn ∈ N;
(iii) either D1 = N and θ 6= ζ;

or D1 = R and θ 6= uζ;
or kn 6= j}⋃

{θqanζpaj : (i) θ is of the form uη (or θ = ε if u = H);
(ii) kn 6∈ N;
(iii) either D2 = N and θ 6= ζ;

or D2 = R and θ 6= uζ;
or n 6= j}.

The arguments that the two languages in this union are one-counter are es-
sentially the same as those given above for the previous two cases (remembering
that we can check whether or not kn ∈ N without using the stack) and we can
again use the fact that the family of one-counter languages is closed under union
to conclude that the language Ku,q is a one-counter language in this last case
as well. �

Our aim here is to show that the properties listed in Definition 12 are unde-
cidable for one-counter languages. In order to do this we will need the following
technical result:

Proposition 50. The following problem is undecidable:
Input: a one-counter pushdown automaton N with an input alphabet

Σ of size at least two such that either L(N) = Σ∗ − Σ∗{α}Σ∗
or else L(N) = Σ∗ for some word α such that α has length at
least two and contains at least two different symbols.

Output: “yes” if L(N) = Σ∗ − Σ∗{α}Σ∗;
“no” if LN) = Σ∗.

Proof. Our aim is to describe a language L over an alphabet Σ which is closed
under taking factors and whose elements do not include a valid computation
of a counter machine M (when reading a specified input β) as a factor. This
way the language L will be equal to either Σ∗−Σ∗{α}Σ∗ or Σ∗, where α is the
computation path of M accepting β, depending on whether or not M accepts β.
Note that the input β will be fixed in what follows.

Since we want L to be closed under taking factors we need to ensure that
no factor of a word γ in L is a valid computation of M . We do this by checking
that, whenever the initial configuration of M occurs in γ, a valid computation
does not follow. Formally, we will consider the following three languages:
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(i) L1 = Σ∗ − Σ∗{βq0a}Σ∗. This is the set of all words in Σ∗ which do not
contain the unique initial configuration of M .

(ii) L2 = Σ∗ − Σ∗{qha}Σ∗. This is the set of all words which do not contain
the unique halting configuration of M .

(iii) L3 which is the set of all words which are invalid as computations of M
after every instance of the unique initial configuration of M (i.e. all words
which do not contain a factor consisting of the unique initial configuration
of M followed by a valid computation path ending in the unique halting
configuration of M).

L1 and L2 are both regular languages and so are one-counter languages; we
will now show that L3 is a one-counter language as well.

The one-counter pushdown automaton accepting L3 operates as follows. It
scans its input doing nothing until it reads the unique initial configuration βq0a
of M (as β is fixed it can check whether or not it reads βq0a in its states).
At this point the machine continues reading the input and attempts to detect
an invalid computation step of M (as in Proposition 49). If the machine does
not find a factor which is an invalid computation step of M before reading the
unique halting configuration qha of M then the machine simply scans the rest
of its input, doing nothing, and then rejects at the end.

If the one-counter pushdown automaton does find a factor which is an invalid
computation step of M then it continues to scan its input until it finds another
instance of the unique initial configuration of M (again, as β is fixed, this can
be done using the states of the pushdown automaton) and then repeats the
above process, accepting the input if and only if, after every instance of the
initial configuration βq0a of M , we do not reach the halting configuration qha
of M without finding an invalid computation step first. If, at any point, the
pushdown automaton finds another instance of the initial configuration of M
before an instance of the halting configuration then the pushdown automaton
resets its state and attempts again to find an invalid computation step of M
starting at the most recent initial configuration read (remember that the initial
configuration βq0a of M only occurs at the beginning of the computation of M
with input β).

So L = L1 ∪ L2 ∪ L3 is a one-counter language as the family of one-counter
languages is closed under union. Now L = Σ∗ if and only if M rejects β and
L = Σ∗ − Σ∗{α}Σ∗ (for suitable α) if and only if M accepts β. So, if we could
distinguish between Σ∗ and Σ∗ − Σ∗{α}Σ∗ for one-counter languages, then we
could solve the halting problem for counter machines (and hence for Turing
machines), a contradiction. �

The technical condition in Proposition 50 that α can be assumed to have
length greater than two and to consist of at least two symbols is included only
to facilitate the undecidability results that follow. In a similar manner we can
establish:
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Proposition 51. The following problem is undecidable:
Input: a one-counter pushdown automaton N with an input alpha-

bet Σ of size at least two such that either L(N) = Σ∗−{α} or
else L(N) = Σ∗ for some α such that α has length at least two
and contains at least two different symbols.

Output: “yes” if L(N) = Σ∗ − {α};
“no” if L(N) = Σ∗.

Having established Propositions 50 and 51 we can now prove our result:

Theorem 52. All the properties listed in Definition 12 are undecidable for the
family of one-counter languages.

Proof. Σ∗ satisfies all the properties in Definition 12 but K = Σ∗ −Σ∗{α}Σ∗
(where α has length at least two and contains two different symbols) does not
satisfy any of the conditions (UPP), (USP), (UFP), (IC), (CCS), (CC). These
are reasonably clear. The word α is not a prefix, suffix or factor of any word
in K, and so K does not satisfy (UPP), (USP) or (UFP). If α = βγ with
β 6= ε 6= γ then β, γ ∈ K but βγ 6∈ K; so K does not satisfy (IC) or (CC).

Given that α can be assumed to have two distinct symbols, we can write
α in the form aδbζ for some a, b ∈ Σ with a 6= b and δ, ζ ∈ Σ∗; if K satisfied
(CCS) then, as bζaδ ∈ K, we would have that α = aδbζ ∈ K, a contradiction.
So all these conditions must be undecidable by Proposition 50.

The remaining properties are (DC), (RDC) and (LDC). If we could decide
these then we would be able to distinguish between Σ∗, which satisfies all three
properties, and Σ∗ − {α}, which doesn’t satisfy any of them; for example, for
any character x in Σ, αx ∈ Σ∗ − {α} and x ∈ Σ∗ − {α} but deleting x from αx
yields α which is not a member of Σ∗ − {α}), contradicting Proposition 51. �

Remark 53. Given Theorem 52 it is immediate that the problem of deciding
any of these properties is undecidable for the family of context-free languages
as well. Given our interest in word problems of groups, we have concentrated
on the one-counter and context-free languages in this paper, but the argument
could be applied to other families of languages as well. �

10. Word problems and decidability

We now turn our attention to word problems, i.e. those languages satisfy-
ing both the conditions (UPP) and (DC) in Theorem 13. Given Theorem 13
together with Proposition 46, we immediately have the following result:

Proposition 54. The following decision problem is decidable:
Input: a finite automaton N .

Output: “yes” if L(N) is the word problem of a group;
“no” otherwise.
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When we come to the one-counter languages, however, this problem becomes
undecidable. This was shown for the family of context-free languages in [22] and,
as we will see, the argument used there extends to the family of one-counter
languages as well. This result does not follow immediately from Theorem 52;
it is possible to have two undecidable problems whose conjunction is decidable.
In order to prove the undecidability of this problem we need the concept of a
Hotz group from [17]:

Definition 55. The Hotz group H(G) of a grammar G = (V,Σ, P, S) is the
group with (group) presentation 〈V ∪ Σ : {α = β : (α→ β) ∈ P}〉.

Hotz showed that the group H(G) for a reduced context-free grammar G
depends only on L(G). We will also need the idea of a collapsing group:

Definition 56. The collapsing group C(L) of a language L ⊆ Σ∗ is the group
with (group) presentation 〈Σ : {α = β : α, β ∈ L}〉.

The following connection between these two concepts will play a central role
in what follows:

Definition 57. A language L ⊆ Σ∗ is called a language with Hotz isomorphism
if there exists a reduced grammar G = (V,Σ, P, S) with L = L(G) such that the
collapsing group of L is isomorphic to H(G).

It is known [8] that all context-free languages are languages with Hotz iso-
morphism. In fact it is shown in [5] that:

Theorem 58. A language L ⊆ Σ∗ is a language with Hotz isomorphism if and
only if the collapsing group C(L) is finitely presentable.

Remark 59. The collapsing group C(L) of a language L ⊆ Σ∗, where the
empty word ε lies in L, will have every word in L representing the identity
element of C(L) but it may have words outside L representing the identity
element as well.

Let ℘ denote the (group) presentation

〈Σ : {α = 1 : α ∈ L} 〉.

If L is the word problem of some group K, then ℘ is a presentation for K
and so K is isomorphic to C(L). If L is not the word problem of a group then
the word problem of the group with presentation ℘ must contain L as a proper
subset.

In particular, if L is a context-free language which is the word problem of a
group K, then C(L) is isomorphic to K and we may obtain a finite presentation
for K using the facts that K is isomorphic to H(G) (where G is a context-free
grammar generating L) and that the definition of H(G) in Definition 55 is via
a finite presentation. �
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We are now in a position to prove our undecidability result:

Theorem 60. The following decision problem is undecidable:
Input: a one-counter pushdown automaton N = (Q,Σ,Γ, τ, s, A).

Output: “yes” if L(N) is the word problem of a group;
“no” otherwise.

Proof. Suppose we had an algorithm A which could decide, given a one-counter
pushdown automaton N , whether or not L = L(N) was the word problem of
some group G. We will show that one could then decide whether or not L = Σ∗

which is a contradiction by Theorem 2.
Since Σ∗ is the word problem of the trivial group {1}, if A outputs “no”,

then we have that L 6= Σ∗. On the other hand, since L is context-free, if A
outputs “yes”, then we know that the corresponding group G has a context-free
word problem (as one-counter languages are context-free), and so G is virtually
free by Theorem 9. We can now obtain a finite presentation ℘ for G as in
Remark 59 and then use the presentation ℘ to test the group G for triviality as
in Theorem 6. Since G is trivial if and only if L = Σ∗ we now have an algorithm
for determining whether or not L = Σ∗, a contradiction. �

Remark 61. Since every one-counter language is context-free, in that a one-
counter pushdown automaton is a special case of a pushdown automaton, it im-
mediately follows from Theorem 60 that there is no algorithm to decide whether
or not L(M) is the word problem of a group for a pushdown automaton M (as
proved in [22]).

The proof given in Theorem 60 will, in fact, work for any family F of context-
free languages where the universe problem is undecidable (provided that F is
specified in such a way that a finite presentation for the Hotz group of any
language L in F can be effectively determined). So, for example, this applies to
the family of linear languages as well. In fact, it is a consequence of Theorem 10
that a group whose word problem is linear must be a finite group, and so the
word problem would be a regular language; however the problem of deciding
whether or not a linear language is regular is also undecidable. �

As we commented in Remark 4, a group is the syntactic monoid of its word
problem so that Theorem 60 could be thought of as a decidability result about
syntactic monoids in a particular case. It is natural to then ask what happens if
we change the focus and ask about syntactic monoids in general. The following
result shows that there is no algorithm for constructing a presentation for the
syntactic monoid of a one-counter language even if we know that the monoid in
question is finitely presented:

Proposition 62. There is no algorithm to solve the following problem:
Input: a one-counter pushdown automaton M = (Q,Σ,Γ, τ, s, A) such

that the syntactic monoid of L(M) is finitely presented;
Output: a finite presentation for Synt(L).
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Proof. Suppose that there was such an algorithm A.
If we had a one-counter pushdown automaton M = (Q,Σ,Γ, τ, s, A) such

that L(M) = Σ∗ or L(M) = Σ∗ − {α} for some α ∈ Σ∗ then L = L(M) would
be regular, and so the syntactic monoid S = Synt(L) would be finite, and hence
finitely presented. So we could apply the algorithm A to get a finite presentation
for S. We could then use a Todd-Coxeter process to enumerate the elements
of the finite monoid S (see [25, 29] for example) to see whether or not S is
trivial. By Remark 1 this would allow us to determine whether L(M) = Σ∗ or
L(M) = Σ∗ − {α}, contradicting Proposition 51. �

Remark 63. We can prove other undecidability results for one-counter lan-
guages similar to Proposition 62. For example, suppose we had an algorithm A
that, given a one-counter pushdown automaton N = (Q,Σ,Γ, τ, s, A) accepting
a language L and a word β ∈ Σ∗, could decide whether or not β was trivial in
Synt(L). We could apply A to each generator of Synt(L) (i.e. to each element
of Σ) to see whether or not Synt(L) was trivial, and we would again be able to
distinguish between L(N) = Σ∗ and L(N) = Σ∗ − {α}. �

11. Deterministic context-free languages

We saw in Theorem 9 that a group has a context-free word problem if and
only if it is virtually free. As we mentioned in Section 4, it is not hard to show
that the word problem of a virtually free group is deterministic context-free. So
we have the following well-known consequence of Theorem 9 (see Corollary 2.10
of [24] or Theorem 5.25 of [4] for example):

Theorem 64. If a group G has a context-free word problem, then G has a
deterministic context-free word problem.

However, despite the fact that it is undecidable whether or not a context-
free language is the word problem of a group, we will show that this problem
becomes decidable if the language is deterministic context-free and is given by
a deterministic pushdown automaton.

Theorem 65. The following decision problem is decidable:
Input: a deterministic pushdown automaton M = (Q,Σ,Γ, τ, s, A).

Output: “yes” if L(M) is the word problem of a group;
“no” otherwise.

Proof. If ε 6∈ L = L(M) then L is not the word problem of a group; so we
check first that ε ∈ L (outputting “no” if that is not the case). We can therefore
assume that ε ∈ L in what follows.

We convert our deterministic pushdown automaton to a reduced context-free
grammar Γ such that L(Γ) = L and then use the Hotz group construction in
Remark 59 to write down a finite (group) presentation ℘ of the group G = H(Γ)
with generating set Σ.
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As in Remark 59, if L is the word problem of a group, then it must be
the word problem of G. If W is the word problem of G with respect to the
generating set Σ, then the question is whether L = W (in which case L is the
word problem of a group) or else L ⊂ W (in which case L is not the word
problem of a group).

If L is the word problem of the group G then, as L is context-free, G must
be virtually free. With this is mind, we start a process which we will refer to as
Process 1.

Process 1 enumerates the finite-index subgroups of G and enumerates all
presentations of these finite-index subgroups, checking each such presentation it
generates to see if it is a natural presentation of a free group (i.e. a presentation
with no relations). This is a semi-decision process; if G is virtually free, then we
will eventually find such a presentation (i.e. a presentation for a free subgroup
of finite index) and so we will know that G is virtually free, but, if G is not
virtually free, then this process will not terminate.

At the same time we start Process 2. Process 2 takes the finite presentation ℘
and enumerates the words in Σ∗ representing the identity element of G, checking
each one it generates for membership of L. If Process 2 ever finds a word which
is trivial in the group G but which is not a member of L then we terminate
all the running processes and output “no”. (If L were the word problem of a
group then it has to be the word problem of G, in which case no word trivial
in G could lie outside L.) Process 2 is also a semi-decision process; we continue
enumerating words whilst we do not have an output of “no”.

Eventually one of these two processes must terminate. If it is Process 1 then
we know that the group G is virtually free and we now start Process 3. Process 3
uses the presentation ℘ of G and the finite-index free subgroup we have found
to construct a deterministic pushdown automaton N which accepts the word
problem of G. We can then test N for equivalence with M by Theorem 87 in [31]
which says that the equivalence problem for deterministic pushdown automata
is decidable. We halt all the processes and output the result of this equivalence
test as our final output. Note that, if we reach Process 3, then Process 3 will
always terminate.

Eventually either Process 2 terminates (and we output “no”) or else Pro-
cess 1 (and therefore Process 3) terminates. Thus we have an algorithm which
outputs “yes” if L(M) is the word problem of a group and outputs “no” if it is
not, as required. �

Remark 66. As the reader will have seen, the use of the theorem of Sénizergues
concerning the decidability of the equivalence problem for deterministic push-
down automata is a crucial component of the proof of Theorem 65. We are also
using procedures such as the enumeration of finite-index subgroups of a group
searching for one that is a free group. As it is (in general) undecidable as to
whether or not a finitely presented group is virtually free, this procedure will
not necessarily terminate, and our proof relies on the fact that we can run this
in parallel with another semi-decision procedure and that, given our particular
situation, one of these two procedures must terminate. Given that the two pro-

33



cedures we have used will not have computable time complexity in general, we
are not claiming any degree of efficiency for this decision procedure, merely that
the problem is decidable. �

It is interesting that problems that are undecidable for context-free, or even
deterministic context-free, languages become decidable if we restrict ourselves
to word problems of groups. An example is the inclusion problem which is
undecidable even for (general) deterministic context-free languages:

Proposition 67. The following decision problem is decidable:
Input: two pushdown automata M1 = (Q1,Σ,Γ1, τ1, s1, A1) and M2 =

(Q2,Σ,Γ2, τ2, s2, A2) such that L(M1) and L(M2) are word
problems of groups.

Output: “yes” if L(M1) ⊆ L(M2);
“no” otherwise.

Proof. As in the proof of Theorem 65 we can convert our pushdown automata
M1 and M2 to reduced context-free grammars Γ1 and Γ2 and then use the Hotz
group construction to write down finite presentations ℘1 and ℘2 of the groups
G1 = H(Γ1) and G2 = H(Γ2) (over the generating set Σ in each case).

Since L(M1) and L(M2) are word problems of groups, they are the word
problems of G1 and G2 respectively. These groups are both virtually free and so
have decidable word problems (and we may use the argument from Theorem 65
to construct presentations for G1 and G2 such that we have actual algorithms
for solving the word problem of each group).

We now note that L(M1) ⊆ L(M2) means that the word problem of G1 is
a subset of the word problem of G2, which is equivalent to saying that G2 is
a homomorphic image of G1. We may check whether or not this is true by
seeing if every relation in ℘1 also holds in ℘2 (using the decidability of the word
problem for G2). If so, then we output “yes”; otherwise we output “no”. �
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