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Abstract

We suggest a new inference method for median regression which is robust to assumptions on

the censoring mechanism. Applying the method on the SIPP data we obtain that the benefit

elasticity of median unemployment duration is between -1.1% and +7.9%.
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1 Introduction

In economic duration analysis it is routinely assumed that the process which led to censoring of

the observed duration is independent of unobserved characteristics. The objective of this paper is

to examine the sensitivity of parameter estimates to this independence assumption in the context

of a median regression for unemployment durations in the United States. We leave the distri-

bution of censoring unrestricted, allowing it to be correlated both with observed and unobserved

characteristics, which leads to partial identification of parameters of interest.

We observe a censored unemployment duration Yi = min{Ỹi, Ci}, where Ỹi is the length of the

uncensored spell and Ci is the censoring variable. Let Di = 1{Yi ≤ Ci} indicate observations which

are not censored.
∗We would like to thank Elie Tamer for helpful suggestions and Raj Chetty for sharing his dataset and codes.
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Consider a log-linear model of unemployment duration with median restriction:

log Ỹi = X ′iβ0 + εi Med(εi|Xi) = 0. (1)

where Xi ∈ RK . This model can be viewed as an alternative to the accelerated failure time (AFT)

and mixed proportional hazard (MPH) models used in duration analysis. Latter models assume that

the error term ε is statistically independent of the regressors X, whereas our model only imposes

median independence, e.g. allowing for heteroskedastic errors.

Khan & Tamer (2009) analyze this model without putting exogeneity restrictions on the censor-

ing mechanism. They allow C to be correlated both with X and ε, show that the slope coefficient

β0 in this model is in general not point-identified and characterize the identified set with conditional

moment inequalities. However, they proceed with inference assuming that the support condition

required for point identification is satisfied. The condition states that the support of the censoring

variable is bounded below by x′β0 for some values of X = x. This is a strong requirement. In

our application, this would require that, for some levels of unemployment benefit, unemployment

durations below the median cannot be censored.

Our paper does not put support conditions on the distribution of C and allows the slope coeffi-

cients to be partially identified. We apply the profiled procedure of Gandhi et al. (2013) (henceforth,

GLS) to estimate confidence sets for the elasticity of unemployment duration with respect to un-

employment benefit using SIPP data from the period 1985-2000. Similar inference procedure is

used by Szydłowski (2017) to estimate the elasticity of unemployment hazard rate with respect to

unemployment benefit using the same dataset but the MPH model for unemployment duration.1

Our confidence sets contain all values consistent with the log-linear model under a wide range of

censoring distributions. In particular, they will contain the true parameter value even if the confi-

dence interval from the random censoring model fails to do so. Combining estimates from different

specifications we conclude that a 10% benefit hike will lead to a change in median unemployment

duration between -1.1% to +7.9%. These estimates do not rule out a positive effect of benefits

on unemployment durations. Such positive effect can be reconciled with a model where agents

face liquidity constraints and job search is costly: a higher UI benefit may relax their liquidity
1This paper also argues why assuming exogenous censoring is problematic in the SIPP data.
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constraint and induce more search, if this effect dominates the moral hazard effect (i.e. reduced

incentive to search due to the conditional nature of unemployment benefits), the resulting change

in the probability of finding a job will be positive.

2 Identification

Define:

Y u
i = DiYi + (1−Di)×∞

(with 0×∞ = 0). Khan et al. (2011) show that the identified set for β0 in this model is characterized

by a set of moment inequalities. The moment inequalities are indexed by the values of the covariate

vector x ∈ X and, to simplify the inference, we will assume that this set is discrete, i.e. X =

{x1, x2, . . . , xM}.2 As a result, we obtain a finite set of moment inequalities:

µm(β) ≥ 0 m = 1, . . . , 2M

where

µm(β) =


x′mβ −Med(Yi|Xi = xm) for m = 1, . . . ,M

Med(Y u
i |Xi = xm−M )− x′m−Mβ for m = M + 1, . . . , 2M

Let Θ0 denote the set of β’s satisfying these inequalities. Since the inequalities are linear in β, the

identified set is convex.

3 Inference

We suggest a profiling procedure for building a confidence set for the coordinate(s) of the slope

coefficient β. We focus on the elements of β, firstly, because the coordinates, not the full vector,

are usually of interest in applications, and, secondly, because this leads to simpler computation.
2In application this will require discretizing the support of continuously distributed covariates. As shown by

Szydłowski (2017), as long as the number of support points is relatively large, this should not have a significant effect
on the size of the estimated confidence sets.
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Partition the (compact and convex) parameter space Θ = Θ1 ×Θ−1 and let:

Θ0,1 = {β1 ∈ Θ1 : ∃β−1 ∈ Θ−1 such that (β1, β−1) ∈ Θ0}.

Next, set:

µ̂m(β) =


x′mβ − M̂ed(Yi|Xi = xm) for m = 1, ..,M

M̂ed(Y u
i |Xi = xm−M )− x′m−Mβ for m = M + 1, .., 2M

where:

M̂ed(·|Xi = xm) = inf

{
y :

∑n
i=1Di1{· ≤ y,Xi = xm}∑n

i=1 1{Xi = xm}
≥ 1

2

}

The profiled test statistic is given by:

Tn(β1) = min
β−1∈Θ−1

2M∑
m=1

[
√
nµ̂m(β)]2− −min

β∈Θ

2M∑
m=1

[
√
nµ̂m(β)]2−

where [·]− = min{·, 0}, and the corresponding bootstrap statistic is:

T ∗n,r(β1) = min
β−1∈Θ−1

2M∑
m=1

[
√
nµ̄∗m(β) +

√
κnµ̂m(β)]2− −min

β∈Θ

2M∑
m=1

[
√
nµ̄∗m(β) +

√
κnµ̂m(β)]2−.

where µ̄∗m(β) = µ∗m(β) − µ̂m(β) and µ∗m(β) is the estimate of µm(β) calculated on the bootstrap

sample (we sample from {Yi, Di, Xi}ni=1 with replacement).

Further, let c∗τ (β1) be the 1 − τ quantile of T ∗n,r(β1) across bootstrap samples, r = 1, 2, . . . , R,

and define:

Q(β) =
2M∑
m=1

[µm(β)]2−.

We make the following assumptions in order to apply the results in GLS:

Assumption 1. (a) Θ0 is a strict subset of Θ.
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(b) For any β1 ∈ Θ0,1 there exist constants C, c > 0 such that:

Q(β) ≥ C
{

inf
b∈Θ0

‖β − b‖2 ∧ c
}

for all β ∈ Θ such that β = (β1, β−1).

Assumption 2. κn →∞, κn/n→ 0.

Assumption 3. For all m, the densities of Y and Y u given X = xm exist and are positive and

continuous in the neighborhoods of ymed = Med(Y |X = xm) and yumed = Med(Y u|X = xm),

respectively.

A set of sufficient conditions for Assumption 3 is:

(i) P (Di = 1|Xi = xm) ≥ 1
2

(ii) εi’s are absolutely continuously distributed given Xi = xm and the conditional density func-

tions fε(·|Xi = xm) are bounded away from zero in the neighborhoods of ε = Med(Yi|Xi =

xm)− x′mβ0 and ε = Med(Y u
i |Xi = xm)− x′mβ0

for all m. The first condition requires limited amount of censoring and is satisfied in our application.

The second condition imposes mild smoothness restrictions on the distribution of the error term.

The following theorem establishes that bootstrap provides a correct critical value for the test.

Its proof is an application of Theorem 2 in GLS.

Theorem 1. Let β1 ∈ Θ0,1, {Yi, Di, Xi}ni=1 be an i.i.d. sample from (1) and Assumptions 1 - 3

hold. Then:

lim inf
n→∞

P (Tn(β1) ≤ c∗τ (β1)) ≥ 1− τ.

if c∗τ (β1) is the continuity point of the asymptotic distribution of Tn(β1).

Proof. First, note that our problem is simpler than the one in GLS, since we discretize X and do not

have to integrate over the “boxes” of values of X. Since our moment conditions are linear in β, the

smoothness conditions from Assumption C.2 in GLS are automatically satisfied. By Assumption 3
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and Theorem 2.3.3.A in Serfling (1980), we have:

√
n(M̂ed(Yi|Xi = xm)−Med(Yi|Xi = xm))→D N

0,

(
2
∂P (Yi ≤ y|X = xm)

∂y

∣∣∣∣
y=ymed

)−2


√
n(M̂ed(Y u

i |Xi = xm)−Med(Y u
i |Xi = xm))→D N

0,

(
2
∂P (Y u

i ≤ y|X = xm)

∂y

∣∣∣∣
y=yumed

)−2


for all m and equivalent bootstrap version of this convergence result follows by standard arguments,

which implies that a condition corresponding to Assumptions C.2(c)-(d) in GLS is satisfied. The

rest of their assumptions are either trivially satisfied or are implied by our Assumptions 1-2.

4 Monte Carlo simulations

The aim of performing Monte Carlo simulations in our setup is twofold. Firstly, it gives us an insight

about finite sample performance of our inference procedure. Secondly, it assists us in picking the

tuning sequence κn needed for the application.

The data is generated from the following model:

log Ỹi = β0Xi + (logUi − log Vi)e
δXi

logCi = c+ β0Xi + ρ log Vie
δXi

where Vi, Ui are exponentially distributed (mutually independent and independent of X), with β0 =

0.33 and the following parameters: δ = ρ = 0 in Design 1, δ = 0, ρ = 1 in Design 2, δ = 0.25, ρ = 1

in Design 3. Constant c is set to obtain around 22% censoring rate (same as in our SIPP data).

The covariate Xi is drawn from a uniform distribution on X = {0, 1/M, 2/M, . . . , 59/M} where

M = 60 or M = 30. Censoring is exogenous in Design 1 so β is point-identified. Design 3 features

heteroskedastic errors.

We set κn = n/(κ log(n)), κ = 0.5, 1, 1.5 and consider different values of β to check if our test

controls size correctly in the interior and at the boundary of the identified set and to examine

its power properties. The boundary values of the identified set were calculated with M = 60 so

simulations for M = 30 help us evaluate the power loss from introducing coarse discretization.
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Table 1: Results of Monte Carlo simulations

n = 4000 n = 8000
coverage 1 - power coverage 1 - power

interior boundary interior boundary

M
=

6
0

Design 1 (point-identified)
β = 0.33 β = 0.5 β = 0.33 β = 0.5

90% 95% 90% 95% 90% 95% 90% 95%
κ = 0.5 0.97 0.99 0.40 0.63 0.97 0.99 0.09 0.21
κ = 1 0.95 0.98 0.21 0.40 0.94 0.98 0.03 0.08
κ = 1.5 0.94 0.97 0.18 0.31 0.92 0.97 0.02 0.05

Design 2 (partially-identified)
β = 0.33 β = 0.334 β = 0.5 β = 0.33 β = 0.334 β = 0.5

90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95%
κ = 0.5 0.98 0.99 0.98 0.99 0.61 0.80 0.97 0.99 0.97 0.99 0.31 0.54
κ = 1 0.96 0.99 0.96 0.99 0.40 0.59 0.95 0.99 0.95 0.98 0.15 0.29
κ = 1.5 0.95 0.98 0.95 0.98 0.34 0.51 0.95 0.98 0.94 0.98 0.11 0.21

Design 3 (partially-identified)
β = 0.33 β = 0.345 β = 0.5 β = 0.33 β = 0.345 β = 0.5

90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95%
κ = 0.5 0.97 0.99 0.97 0.99 0.57 0.77 0.98 1.00 0.97 0.99 0.37 0.59
κ = 1 0.94 0.99 0.92 0.97 0.31 0.50 0.97 0.99 0.94 0.98 0.13 0.28
κ = 1.5 0.93 0.97 0.90 0.95 0.22 0.39 0.95 0.98 0.92 0.96 0.08 0.17

M
=

30

Design 1 (point-identified)
β = 0.33 β = 0.33 β = 0.5 β = 0.33 β = 0.33 β = 0.5

90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95%
κ = 0.5 0.97 1.00 0.40 0.63 0.97 0.99 0.09 0.22
κ = 1 0.94 0.98 0.22 0.40 0.94 0.98 0.03 0.09
κ = 1.5 0.93 0.97 0.19 0.33 0.93 0.97 0.03 0.06

Design 2 (partially-identified)
β = 0.33 β = 0.334 β = 0.5 β = 0.33 β = 0.334 β = 0.5

90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95%
κ = 0.5 0.97 0.99 0.97 0.99 0.68 0.83 0.96 0.99 0.96 0.99 0.36 0.58
κ = 1 0.96 0.99 0.96 0.98 0.48 0.69 0.94 0.97 0.95 0.97 0.20 0.35
κ = 1.5 0.95 0.98 0.95 0.98 0.41 0.61 0.93 0.97 0.94 0.97 0.16 0.27

Design 3 (partially-identified)
β = 0.33 β = 0.345 β = 0.5 β = 0.33 β = 0.345 β = 0.5

90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95%
κ = 0.5 0.97 0.99 0.98 1.00 0.67 0.83 0.97 0.99 0.98 0.99 0.46 0.67
κ = 1 0.96 0.98 0.94 0.98 0.43 0.63 0.96 0.98 0.95 0.98 0.21 0.40
κ = 1.5 0.94 0.98 0.93 0.97 0.33 0.53 0.95 0.98 0.94 0.97 0.15 0.28

Note: 1000 Monte Carlo simulations, 500 bootstrap replications. The column “1 - power” gives the probability that
the value outside the identified set is included in the confidence set.

The results in Table 1 show that the coverage probabilities for values inside the identified set

(Designs 2-3) are close to one and increase with the sample size. The coverage at the boundary is

fairly close to the nominal values for κ = 1.5 and other values of κ lead to conservative inference,

therefore we choose the former value for our application. Finally, the power of our test improves

significantly with the sample size. We also see that power of the test decreases for M = 30, showing
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that too coarse discretization may enlarge the estimated confidence sets.

5 Unemployment benefits and unemployment durations

We use an altered version of SIPP 1985-2000 data analyzed in Chetty (2008). We include following

covariates: logarithm of the weekly unemployment benefit (defined as the average state unemploy-

ment benefit in the year of entry into the unemployment pool), pre-unemployment annual wage,

average state unemployment rate in years 1985-2000, age and a marital status dummy.3 Table 2

shows the estimated confidence sets under two different model specifications and compares them

with confidence intervals obtained under the assumption of random censoring, where the latter were

calculated by bootstrapping the RCLAD estimator of Honoré et al. (2002). Estimates from Model

(1) imply that a 10% increase in the weekly unemployment benefit, which corresponds to a $16 hike

on average, raises the median unemployment duration by 0.6-7.9%. Thus, even allowing for endoge-

nous censoring we can conclude that raising unemployment benefits leads to longer unemployment

spells. However, the results from Model (2) do not confirm this conclusion and suggest that the

elasticity of unemployment duration can be slightly negative. Combining estimates from both mod-

els by taking the largest confidence interval that contains estimates under both specifications, we

can conclude that this elasticity falls between -0.11 and 0.79.

Table 2: Confidence sets for the elasticity of unemployment duration with respect to unemployment
benefit, 90% level

Model (1) Model (2)
log UI benefit [0.06,0.79] [-0.11,0.56]
log annual wage x x
average unemployment rate x x
age x
married x
discretization 10× 2× 3 4× 2× 2× 2× 2
n 3986 3986
CI under random censoring [0.08,0.51] [0.19,0.53]

Note: The row “discretization” gives the number of discrete values of the variables included in the model in the order
they appear in the rows of the table, e.g. 10× 2× 3 means 10 values of log UI benefit, 2 values of log annual wage, 3
values of unemployment rate. The number of bootstrap replications is 500 and κ = 1.5.

3State unemployment rate controls for local labor market conditions. As shown in Szydłowski (2017) controlling
for state unemployment rate is equivalent to including state dummies but leads to more parsimonious specification of
conditional medians, thus more precise estimates. See that article for further motivation for our choice of covariates.
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In both specifications the confidence sets contain the corresponding confidence intervals under

random censoring. Thus, we cannot reject the hypothesis that censoring is exogenous in our dataset.

Still, our estimates are robust to violations of this assumption. If censoring is endogenous, the true

parameter value may lie outside the CI under random censoring but it will always be included in

our confidence interval.

6 Conclusion

We focused on median unemployment duration above. It would be interesting to see if the effect of

unemployment benefits differs for short- and long-term unemployed (e.g. first and third quartile).

This can be done by adding moment inequalities corresponding to these quantiles to our profiled

statistic and checking if there is a β1 that satisfies these inequalities for every quartile.
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