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Abstract

When assessing the short-term effect of air pollution on health outcomes, it is common prac-

tice to consider one pollutant at a time, due to their high correlation. Multi pollutant methods

have been recently proposed, mainly consisting of collapsing the different pollutants into air

quality indexes or clustering the pollutants and then evaluating the effect of each cluster on

the health outcome. A major drawback of such approaches is that it is not possible to evalu-

ate the health impact of each pollutant. In this paper we propose the use of the Bayesian

hierarchical framework to deal with multi pollutant concentrations in a two-component

model: a pollutant model is specified to estimate the ‘true’ concentration values for each

pollutant and then such concentration is linked to the health outcomes in a time-series per-

spective. Through a simulation study we evaluate the model performance and we apply the

modelling framework to investigate the effect of six pollutants on cardiovascular mortality in

Greater London in 2011-2012.

1 Introduction

Short-term air pollution studies aim at evaluating the association between the day-to-day vari-

ation in ambient air pollution and the day-to-day variation in a health outcome, such as mor-

tality or hospital admissions. Typically this involves a time-series approach using data from a

particular geographical area that contains daily counts of mortality or morbidity, pollution

and meteorological measurements. To provide a few recent examples, Xie et al. [1] used a data

set from Beijing containing counts of daily hospital admissions and mortality from ischaemic

heart disease (IHD), measurements of fine particulate matter air pollution and potential con-

founding meteorological variables such as temperature or relative humidity. Using a Poisson

model, they reported a significant association between the pollutant and IHD. Other studies

using a time-series approach [2], [3], [4] had mixed results in detecting a short-term associa-

tion between various air pollutants and a mortality outcome.

It is obvious that the air that we breath contains a number of different pollutants; however,

due to the high correlation between these, the typical approach used in this field evaluates the
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health effect of one pollutant or at most two pollutants at a time, e.g. [5], [6], [7]. Despite this,

recently there have been some attempts to move towards a multi pollutant approach that more

realistically depicts the complexity of the air pollutant concentrations. For instance, Pirani

et al. [8] proposed a Dirichlet process (DP) mixture model to cluster the days by their concen-

tration profiles. The model jointly estimates the covariate patterns and the health effect of each

cluster. In addition, the use of the DP allows the number of clusters to be determined by the

model and the data, providing extreme flexibility.

In a similar perspective Bobb et al. [9] proposed a Bayesian Kernel Machine Regression

(BKMR). The idea is to include the pollutants in the model using a smooth function h that is

represented through a kernel function. The authors focused on Gaussian kernel as it outper-

formed linear and ridge regression kernels in simulation studies where h has a complex func-

tional form.

Similarly to the DP approach, the focus of BKMR is to correctly identify the concentration-

response relationship rather than to identify the effect of each individual pollutant on the out-

come. To partially address this, the authors extended their model to include a framework for

variable selection, allowing the inclusion only of pollutants which have an impact on the

response. However, such approach does not quantify this impact, to determine exactly how

much the pollutants are affecting the response.

An alternative approach to deal with multiple pollutants focuses on composite air quality

indexes, that summarises the air pollution concentration; this is commonly carried out by

most governments and used to inform people of the health risk posed by air quality. For exam-

ple, in the UK the Daily Air Quality Index (DAQI) is based on the highest pollutant concentra-

tion out of the following regulated ones: sulphur dioxide, ozone, particulate matters, nitrogen

dioxide. The concentration is then transformed into pre-determined bands (low, moderate,

high, very high). Recently DAQI has been used to evaluate the effect of episodes of high air pol-

lution concentration on respiratory conditions [10].

Finazzi et al. [11] proposed a more sophisticated approach by using a hierarchical model

based on latent variables, that they called dynamic co-regionalization model. This model

aggregates the pollutant data over space and addresses problems such as missing data as well as

the presence of an unbalanced network, where not all pollutants are measured at every site.

The output of this model can then be used to calculate an index, for instance by taking the

maximum, such as the DAQI does. The authors applied their model to Scottish air pollution

data and used the maximum to calculate a state-wide index over time.

Very recently Huang et al. [12] proposed a two-stage spatio-temporal approach to evaluate

the effects of two pollutants on respiratory hospital admissions in Scotland. In the first step

they estimate annual concentrations from monitoring stations and output from numerical

models and then feed forward the estimates and their uncertainty to the second step to assess

the health effects. To include the two pollutants in the second stage, avoiding collinearity, they

consider the first pollutant and the residual of the second after accounting for the first through

a linear regression, making the approach difficult to be extended to more than two pollutants.

Our paper is set in a similar perspective as [12] and we develop a two-components Bayesian

hierarchical model that quantifies the health effect of several pollutants. In the first component

we account for process variance in the observed air pollution measurements and for correla-

tion among pollutants; based on this we estimate the corresponding latent ‘true’ concentration

values. However, our paper novelty lays on its fully Bayesian framework, as the two compo-

nents are jointly estimated so that uncertainty from the concentration estimates can feed for-

ward into the health effect estimates; at the same time information from the outcome can

feedback to the air pollution estimates. We do rely on the joint estimation process, on the hier-

archical nature of the model and on informative priors on the health effect parameters to
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overcome the collinearity among the pollutants; this make the framework extendible to any

number of pollutants and capable to disentangle synergic or antagonistic effects of pollutants

which would be not detectable in the common single-pollutant modelling framework. The

developed approach is used to evaluate the effect of five pollutants (carbon monoxide—CO,

nitrogen dioxide—NO2, ozone—O3, sulphur dioxide—SO2 and fine particulate matter, smaller

in size than 2.5 μm—PM2.5) and particle number concentration—PCNT on daily cardiovascu-

lar mortality in Greater London for 2011-2012.

The remainder of the paper is structured as follows: section 2 presents the data and the

model, section 3 introduces the simulation study, while in section 4 we present the results of

our analysis and section 5 covers areas of discussion and concluding remarks.

2 Material and methods

2.1 Data description

Daily measurements of CO, NO2, O3, SO2, PM2.5 and PCNT were obtained from a monitoring

site in North Kensington, London (UK) over the period 1 January 2011 to 31 December 2012.

The London North Kensington site (lat 5131015.78000 N, long 012048.57100 W) is part of

both the London Air Quality Network and the national Automatic Urban and Rural Network

and is owned and part-funded by the Royal Borough of Kensington and Chelsea. The facility is

located within a self-contained cabin on a school ground in a mainly residential area. It has

been used in previous time-series studies on air pollution health effects [5, 8, 2]. The same

monitoring site has also been used extensively as a background measurement site for source

apportionment [13] and also to track the outcome of policies to improve London air pollution

[14].

CO, NO2, O3 and SO2 were measured using CEN mandated methods eg EN 14211 for

NO2. Fortnightly calibrations enabled the traceability of measurements to national meteoro-

logical standards. PM2.5 were measured by TEOM-FDMS (Tapered Element Oscillating

Microbalance—Filter Dynamics Measurement System) which is considered equivalent to the

EU reference method. Particle number concentration was measured by condensation particle

counter (TSI 3022).

We focus on these five pollutants as they are already regulated in ambient air; as a result,

they are well monitored, have documented associations to health outcomes [15] and have been

showed to need National Ambient Air Quality Standards [16]. In addition several papers have

focused on one or more of these: for instance Mills et al. [17] presented a systematic review of

the effects on NO2 where particulate matter is also controlled for. Besides the five pollutants,

we also investigate the effect of PCNT, as this metric was previously associated to adverse

short-term health outcome in London [5].

As a health outcome we consider the daily count of mortality due to cardiovascular diseases

(CVD) over the same period obtained from the UK Office of National Statistics and available

through the Small Area Health Statistics Unit (SAHSU). These cardiovascular causes were

derived from the International Statistical Classification of Diseases, 10th Revision (ICD-10,

Chapter I).

To adjust for potential confounding effect of weather variables, we use daily average tem-

perature and relative humidity obtained from a meteorological station close to the North Ken-

sington monitoring site. Table 1 provides descriptive statistics of the variables considered in

the analysis. The time-series of health counts and pollutant concentrations used for the analy-

ses are available in Table A in S2 File.
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2.2 Model specification

Our modelling framework consists of two components jointly estimated: a pollutant model

and a health model, which we describe in details in this section.

2.2.1 Pollutant model. We start specifying Ypt as the measured concentration level of pol-

lutant p (p = 1, . . ., P = 6) on day t (t = 1, . . ., T = 731) from the monitoring site. As different

pollutants are typically characterised by different scales we recommend standardisation to

make them comparable. As Ypt is a continuous variable, and after standardisation it can

assume any value in R, it is reasonable to assume the following Normal distribution:

Ypt � Nðmpt; s2
pÞ ð1Þ

where s2
p is the process variance, which is specific for each pollutant. On μpt a linear model is

specified as follows:

mpt ¼ g0p þ g1pXtemp;t þ g2pX
2

temp;t þ g3pXrhum;t þ g4pX
2

rhum;t þ ypt ð2Þ

where γ0p is the pollutant specific intercept, while γp are the regression coefficients linking the

time-dependent covariates Xt to the pollutant levels; as descriptive plots suggest the presence

of a non-linear relationship between the covariates and the pollutant concentration levels (see

Figs A-C in S1 File), we include a linear and quadratic effect of both temperature and relative

humidity. In (2) {θ1t, . . ., θPt} account for the residual temporal effects (see Figs D-I in S1 File

for the time-series of each pollutant) and for the correlation among pollutants; they are mod-

elled following a multivariate Normal specification with an autoregressive structure, following

Shaddick et al. [18]:

ðy1t; :::; yPtÞ
0

� MVN
�
ðy1;t� ‘; :::; yP;t� ‘Þ

0

;SP

�
ð3Þ

where t − ℓ provides the temporal lag of ℓ days for the t-th day. For each pollutant, the concen-

tration at time t depends on the values at time t − ℓ, while the diagonal of the covariance matrix

of the errors SP allows each pollutant to have a different amount of temporal dependence, with

smaller values indicating weaker dependence. The off-diagonals represent the temporal depen-

dence between the pollutants, allowing the model to incorporate and maintain the correlation

structure in the estimation of the ‘true’ pollutant levels.

Table 1. Descriptive statistics of the variables included in the study.

Number of Days Percentiles IQR

10th 25th 50th 75th 90th

Mortality 731 28 32 37 42 47 10

Meteorological data:

Temperature (˚C) 731 5.1 8.0 11.7 15.5 18.1 7.4

Relative Humidity (%) 731 61.6 69.6 78.0 84.2 88.5 14.5

Pollutants:

CO (mg/m3) 715 0.1 0.2 0.2 0.3 0.4 0.1

NO2 (μg/m3) 706 18.2 23.2 33.3 46.9 57.9 23.6

O3 (μg/m3) 695 11.4 24.3 39.1 51.1 64.9 26.8

SO2 (μg/m3) 717 0.0 0.4 1.8 2.6 3.6 2.2

PCNT (p/cm3) 636 7.8 9.7 12.1 14.9 17.9 5.2

PM2.5 (μg/m3) 730 5.0 6.0 9.0 14.0 25.0 8.0

https://doi.org/10.1371/journal.pone.0212565.t001
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Note that this specification has the added benefit of providing a natural way to deal with

missing data in the pollutant concentration. As seen in Table 1, there are some days where the

concentration is not available for one or more pollutants; the model could impute directly the

concentration based on i) the correlation with the other pollutants and ii) the temporal depen-

dency. It seems reasonable to assume that the missingness is completely at random and we

jointly model (2) and (3) for measured and missing pollutant concentrations. This means that

when a measurement is missing, information from the other pollutants for the same day and

from the same and other pollutants in different days are driving the imputation through the

correlation structure in θ as well as the relationship with the covariates included in (3).

2.2.2 Health model. The second component of the model links the ‘true’ latent value of

the pollutant concentrations μpt with the counts of the health outcome within a time-series epi-

demiological framework. Let Ot be the observed number of CVD deaths for the day t, we spec-

ify a Poisson distribution as:

Ot � PoissonðltEtÞ ð4Þ

where Et represents the expected number of CVD deaths. Following Pirani et al. [8], we take it

to be the average mortality over the whole period, hence Et = E. Then λt represents the relative

risk of CVD death on day t compared to the average. In a previous analysis performed on the

same data set, Atkinson et al. [2] considered the association between CVD and 1-day lagged

pollutant concentrations, thus we coherently adopt the same lag. We therefore specify a regres-

sion model on the log link transformed λt:

log ðltÞ ¼ b0 þ
X

p

bpmpðt� 1Þ þ
X

i

sðXti;ciÞ þ dIt þ �t ð5Þ

so that exp(βp) is the multiplicative change in relative risk of CVD death for a unit increase in

the pollution concentration obtained from (2). To be able to interpret the health effects on the

correct scale, we back transform the pollutant concentration μpt estimated from (2) to the orig-

inal scale. In (5) s(�, ψi) denote smooth functions of daily average temperature, relative humid-

ity, as well as of calendar time to account for any residual seasonality and long-term trends.

These confounding factors are included in the model through flexible nonparametric penal-

ised spline functions [19]. In particular, we consider a mixed model framework and following

Crainiceanu et al. [20] we specify a low-rank thin plate spline basis over other options, which

tends to show a smaller posterior correlation between parameters. By letting Xti be the i-th

confounder on day t, we have the following spline representation:

sðXti;ciÞ ¼ aiXti þ
XKi

k¼1

bkijXti � kkij
3

ð6Þ

where ψi = (αi, b1i, . . ., bKi)0 are the regression coefficients, Xti − κki are the set of basis functions

of the cubic spline and Ki is the number of knots for confounder i, with knot locations κ1i<

κ2i< . . .< κKi. Based on Atkinson et al. [2] we select 3 knots for temperature and relative

humidity and 6 for time. Additionally, to account for any holiday effect, we include in the

model the linear term It which classifies the days according to workday or weekend/holiday.

Finally to account for overdispersion, that is typically present when a Poisson distribution is

assumed on the data, we include an additional random effect �t � Nð0; s2
�
Þ.

2.3 Prior specification

The last step in the model specification consists of is the choice of prior distributions. Minimally

informative Normal distributions are specified on all the regression coefficients γ0, γp, β0, δ and
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α, centered on 0 and with a variance equal to 103. Given the high correlation present among the

pollutants, we take advantage of an informative prior on βp; we choose aN(0, 0.1) covering a

range of values on the relative rate scale from 0.82 to 1.22, which is plausible with what has been

seen in the literature on cardio-respiratory diseases.

On the standard deviation for the process variance σp and for the random effect σ�, a Uni-

form prior is specified ranging between 0 and 100, to ensure minimal information.

The covariance matrix SP is given a P-dimensional inverse Wishart prior, IW(D, d), where

D is a symmetric and positive-definite scale matrix and d is the degrees of freedom parameter.

We follow the specification presented in Lunn et al. [21] and to ensure the weakest informa-

tion we fix d = P; as the prior mean for the inverse Wishart is d−1 D, D is chosen to be d times

the prior estimate of the correlation matrix.

We penalise the random coefficients associated to the basis functions, bki, shrinking them

towards zero to avoid over-fitting. This is achieved by specifying a hierarchical prior structure,

so that bki � Nð0; s� 2
bi
Þ. This latter parameter controls the amount of smoothness and is sup-

plemented with a Gamma(a, b) prior distribution, where a = 1;b = 0.001.

2.4 Implementation and sensitivity analysis

The model is run using a Markov Chain Monte Carlo simulative method in R, through the

R2OpenBUGS and Coda packages; we discarded the first 50,000 iterations of the MCMC and

retained the following 10,000 to estimate the posterior distribution of the parameters. We con-

sidered two chains and checked for convergence of the parameters visually (see Figs J-L in S1

File) and analytically (evaluating the MC error below 5% of the standard deviation of the pos-

terior estimates as well as the Gelman-Rubin diagnostic tool).

It is important to stress that this is the first paper to consider jointly the pollutant and the

health components; this results in uncertainty on μpt affecting the estimates of the relative risks

β1, . . ., βP, while at the same time the information from the outcome is fed backwards into the

latent concentration values. This is a crucial point as in this way the correlation between the

pollutants is naturally accounted for through the hierarchical structure and through the input

from the outcome.

To evaluate the robustness of our modelling framework we changed the prior specification

of all the parameters where a non informative prior was assumed. In particular, on the regres-

sion coefficients (except the β that estimate the health effects of the pollutants on which we

keep an informative prior to deal with co-linearity) we specified a Normal distribution cen-

tered on zero and with a variance equal to 106, while the process error and random effect vari-

ance were set to Inverse Gammas with parameters 1 and 0.001; finally we put a Gamma with

parameters a = b = 0.001 on the precisions of the random coefficients associated to the basis

functions.

A key aspect in air pollution time-series health studies is represented by the inclusion of

the smoothing functions for the time-varying confounding factors. Here, we need to ade-

quately control for their potential non-linear confounding effect while retaining sufficient

information for estimating the concentration effects. To perform model checking on the

knots we also ran the model with 14 knots on time (7 for each year, [22]), and 9 on tempera-

ture and humidity, which we think is large enough to account for a high degree of non linear-

ity, while at the same time not leading to oversmoothing. As model selection tool we used

the Deviance Information Criterion (DIC, Spiegelhalter et al. [23]), one of the suggested

methods [24] to choose the degree of smoothness for time-series studies of air pollution and

mortality.
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3 Simulation study

We carried out a simulation study to evaluate if the proposed modelling framework is able to

estimate the relative risk of highly correlated pollutants on a health outcomes.

3.1 Simulation set-up

We simulated mortality and air pollution concentration for 2000 days and considered 6 pollut-

ants. For the sake of simplicity we did not include any confounder factor (e.g. meteorology) in

the pollutant or health components of the model. We fixed the correlation among the pollut-

ants to be equivalent to that observed on the time-series data from Greater London:

PP ¼

1 0:737 � 0:535 0:442 0:515 0:630

1 � 0:606 0:510 0:730 0:659

1 � 0:260 � 0:394 � 0:396

1 0:390 0:490

1 0:420

1

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

: ð7Þ

where the order of the pollutants is CO, NO2, O3, SO2, PCNT, PM2.5. The following steps were

used to simulate the data on concentration and outcome:

1. Using the above correlation matrix we generated the true pollutant levels assuming an auto-

regressive structure of order 1, as specified in (3), μpt* N(μp(t−1), PP). This represents the

gold standard concentration.

2. At the same time we also simulated the measured concentration for the six pollutants,

which we assumed centered on the true latent concentration, but with a process variance

equal to 0.1 (Ypt* N(μpt, 0.1)).

3. We then simulated the daily number of events for a health outcome using a Poisson distri-

bution, where the mean is given by Et λt, with Et fixed to the average of the mortality time-

series presented in Section 2.1 and

log ðltÞ ¼ 1þ 0:2mt1 þ 0:2mt2 � 0:2mt3 þ 0mt4 þ 0mt5 þ 0mt6

so that we are able to assess if the model can capture true effects as well as the lack thereof.

4. We repeated the process 100 times.

We ran our modelling framework, hereafter called “hierarchical two-component model”

(H2Mjoint), and compared it with a standard Poisson model, here named as “measurement

error model” (ME), where the true concentration is replaced by the measured one:

Ot � PoissonðltEtÞ

log ðltÞ ¼ b0 þ
X

p

bpYpðt� 1Þ þ
X

i

sðXti;ciÞ þ dIt þ �t
ð8Þ

We used this as benchmark, given that it is the model commonly specified in epidemiologi-

cal studies to study short-term health effects of air pollution. The graphical representation of

ME is presented in Fig 1(b) and shows a direct link between Ypt and λt.
The H2Mjoint model jointly estimates the pollutant concentrations and their health effects

through a fully specified Bayesian framework. As an additional comparison we specified an

alternative model where the two components are fitted separately, calledH2M: for this model
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first (1)–(3) are run and the posterior distribution for the pollution concentration is estimated.

The distribution is then fed forward into the health component ((4)–(6)), so that similarly to

the H2Mjoint the health effects account for the uncertainty which derives from the estimates

of the air pollution concentrations (through γ and most of all θ and SP which model the

Fig 1. Graphical representation of the modelling frameworks. (a) shows the proposed two component model: the

left hand side represents the pollutant component, while the right hand side the health component. The latent

concentration for each pollutant and day, μpt, obtained from the pollutant component enters the health model as

predictor. The specification of the link between μpt and λtmakes the difference between H2M and H2Mjoint. In the

former the uncertainty from μpt goes forward into the health model, but there is no feedback fromOt; in the latter the

uncertainty goes forward, while at the same time information from the mortality countOt can influence back μpt. (b)

shows the ME model: the pollutant component is not there and the measured pollutant concentration Ypt is now

directly linked to λt. For both (a) and (b) the circles denote latent random variables, while the rectangles are observed

quantities; single rectangles are random variables, while double rectangles enter the model as data and are not

characterised by a probability distribution i.e. the Yt in (b).

https://doi.org/10.1371/journal.pone.0212565.g001
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dependence in time and across pollutants). At the same time in H2M, the feedback from the

health outcome is not allowed to influence the air pollutant concentration estimates. H2Mjoint

and H2M are both represented in Fig 1(a): the former has two links between μpt and λt, going

each in one direction (uncertainty feeding forward and backwards), while for the latter there is

only one link and the arrow only points from μpt to λt as no feedback is allowed.

The model comparison is carried out in terms of bias, root mean square error (RMSE), 95%

credible interval (CI) coverage and 95% CI width.

3.2 Simulation results

Table 2 presents the results of the simulation study in terms of the indexes above. It is clear

that the hierarchical two-component model framework (H2Mjoint / H2M) outperforms the

model that uses measured air pollution concentration (ME, as in (8)); across the six pollutants

the bias is reduced by 3 to 11 fold and the coverage of the CI95% is always above 90% (com-

pared to 53-77% for theMEmodel). In terms of precision, the RMSE is generally smaller for

the Bayesian model, indicating better accuracy in the estimates, while the width of the confi-

dence interval is larger, which can be explained by the additional uncertainty included in the

concentration estimates and that feeds forward into the health component. This can also be

seen in the 95% CI plot for the β coefficients (Fig 2). Comparing H2Mjoint with H2M shows

that there is an advantage in allowing for the joint specification of the two model components:

in H2Mjoint the bias is smaller, which is clearer when the true effects are different from 0 (β1-

β3); at the same time there is no increase in the estimate uncertainty, as the widths of the 95%

credible intervals do not change substantially.

4 Real application results

We focused on H2Mjoint to evaluate the effects of the six pollutants (CO, NO2, O3, SO2, PM2.5

and PCNT) on daily CVD mortality in Greater London for 2011-2012, as the simulation

Table 2. Results of the simulation study: The table shows the bias, root mean square error (RMSE), 95% credible intervals (CI) width and coverage for the ME, H2M

and H2Mjoint. The bias and RMSE are substantially reduced for all the 6 pollutant coefficients using H2Mjoint / H2M. Coverage improves and at the same time width of

the 95% credible interval increases, suggesting that the uncertainty is larger for the hierarchical two-component modelling framework, as expected, given that this comes

also from the pollutant component. The comparison of H2Mjoint with H2M shows how the influence of the outcome helps reduce the bias, while at the same time the

uncertainty does not increase.

Bias RMSE

ME H2M H2Mjoint ME H2M H2Mjoint

β1 -0.021 -0.007 -0.002 0.003 0.002 0.002

β2 -0.036 -0.006 0.002 0.004 0.005 0.004

β3 0.013 0.004 0.000 0.003 0.004 0.002

β4 0.008 0.003 0.002 0.001 0.002 0.001

β5 0.021 0.002 -0.001 0.002 0.002 0.002

β6 0.022 0.002 -0.001 0.002 0.002 0.002

95% CI width 95% CI coverage

ME H2M H2Mjoint ME H2M H2Mjoint

β1 0.16 0.20 0.20 65 92 93

β2 0.20 0.30 0.30 53 97 97

β3 0.16 0.17 0.16 71 92 97

β4 0.13 0.16 0.16 77 98 99

β5 0.16 0.19 0.22 61 95 94

β6 0.15 0.18 0.19 65 97 99

https://doi.org/10.1371/journal.pone.0212565.t002
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showed that allowing for the feedback from the outcome leads to an improvement in the esti-

mates in terms of bias. In addition to the multi pollutant model (H2Mjoint), we ran single pol-

lutant models as a comparison, given that this is the typical approach in the field. The results

are robust to the changes in prior and in the number of knots on the spline specification, but

as the DIC was smaller for the model with 6 knots on time and 3 on temperature and humidity

Fig 2. 95% posterior credible intervals for β under ME, H2M and H2Mjoint. The H2Ms show smaller levels of uncertainty, as this influence the

coefficients from the pollutant estimates as well as from the health model itself. At the same time the ME model shows a larger bias in the estimates, due

to the measurement error, while H2Mjoint model shows a median estimate virtually equal to the true values, suggesting how the feedback from the

outcome can play a role in reducing the corresponding bias.

https://doi.org/10.1371/journal.pone.0212565.g002
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(9257), thus we present the results of this model specification (which was also the one used in

Atkinson et al. [2]). For the models with increased number of knots and different prior the

results are presented in Tables A and B in S1 File, together with their DIC.

Given the standardisation of the pollutant concentrations, we found that the specification

of a Normal distribution was reasonable. Nevertheless, we evaluated the suitability of the loga-

rithm using Hinkley’s normality statistics (Table C in S1 File) and found that for O3 and SO2 it

was detrimental. In addition, we produced residuals plots to check the fit of the model (Fig M

in S1 File), and as they are scattered around 0 for all the six pollutants we concluded that

modelling on the original scale was reasonable.

As the pollutants are on different scales, to make their effects comparable, in Table 3 we

present the results in terms of percent increase for a interquartile range (IQR) change in air

pollution concentrations, defined as:

%increase ¼ ðebp�IQR � 1Þ � 100%

Out of the six metrics NO2 and O3 shows an increased risk of CVD mortality, with credible

intervals entirely above 0, suggesting strong evidence of an effect. For the remaining pollutants

the point estimates of percent change are slightly below 0, but there is a high degree of uncer-

tainty on the results and the credible intervals include 0. There is high correlation between

measured and latent pollutant concentration and, as expected, the latter is slightly less extreme

due to shrinkage intrinsic in the modelling framework (see Fig N in S1 File for a plot compar-

ing the posterior mean of μpt with the measured concentration Ypt for the six pollution met-

rics). In addition, the process variance on the standardised metrics is presented on Table 4 and

shows the lowest values for NO2 and O3, both around 0.04, while it is 0.08 for PM2.5 and it

increases between 0.14 to 0.45 for the remaining pollutants. This suggests that the model is

able to account almost entirely for the variability of NO2, O3 and PM2.5, while it would poten-

tially point towards some residual confounding for SO2, CO and PCNT.

By contrast the time-series single pollutant model shows a positive posterior mean with a

credible interval above zero only for O3. For the remaining pollutants the point estimates are

negative and their intervals cross 0, pointing towards lack of substantive evidence of an effect.

Process variances are larger, with a posterior mean spanning from 0.11 to 0.66, suggesting that

the multi pollutant model borrow strength across pollutants to improve the accuracy of the

concentration estimates.

Table 3. Posterior mean and 95% credible interval of the percent increase in mortality for an IQR change in pollutant concentration: (left) multi pollutant H2Mjoint

model; (centre) single pollutant H2Mjoint model; (right) single pollutant frequentist model (Atkinson et al., 2016). Note that all the pollutants are measured in μg/m3

except for PCNT which is measured in p/cm3 and CO which is measured inmg/m3.

Pollutant IQR Multi Pollutant

(H2Mjoint)

% Increase

(95% CI)

Single Pollutant

(H2Mjoint)

% Increase

(95% CI)

Single Pollutant

(Atkinson et al., 2016)

% Increase

(95% CI)

CO 0.10 -1.67 (-4.72, 1.65) -1.59 (-3.89, 0.84) -1.47 (-2.94, 0.01)

NO2 23.65 9.40 (3.06, 16.03) -0.25 (-2.90, 2.43) -1.69 (-3.97, 0.64)

O3 26.85 3.46 (0.18, 6.71) 2.61 (0.02, 5.32) 3.31 (0.83, 5.84)

SO2 2.20 -1.94 (-6.59, 2.80) -1.13 (-4.96, 3.15) -2.33 (-4.18, -0.45)

PCNT 5.18 -2.89 (-6.36, 1.05) -0.31 (-3.56, 3.35) � �

PM2.5 8.00 -1.24 (-3.45, 0.92) -0.79 (-2.06, 0.47) -0.9 (-2.09, 0.25)

� CO and PCNT were not analysed in Atkinson et al., 2016.

https://doi.org/10.1371/journal.pone.0212565.t003
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The single pollutant results are in line with Atkinson et al. [2], who analysed the same

period for Greater London and are reported on the right hand side of Table 3. There is

slightly more uncertainty in the H2Mjoint framework, as expected, as the pollutant compo-

nent contributes to it. This translates into point estimates which are generally closer to zero

and wider credible intervals; it is particularly interesting to note how accounting for uncer-

tainty shift SO2 estimates towards zero, so that the protective effect seen in Atkinson et al. [2]

disappears.

5 Discussion

In this paper we proposed a fully Bayesian hierarchical model to assess the health effect of

multi pollutant concentrations in a time-series perspective, allowing for the integration of

uncertainty on the concentration and health components. We deal with the common issue of

multi-collinearity among pollutants as the joint hierarchical specification of (2)–(6) allows to i)

directly estimate and incorporate the correlation when modelling the ‘true’ latent concentra-

tion from the measured ones at the monitoring site; ii) incorporate such correlation in the link

between concentration and health. It is worth noting that we are focusing on concentration as

opposed to exposure which is a characteristic of individuals; in order to estimate the latter we

would need data at the individual level (e.g. personal monitors).

The use of a hierarchical model has been shown to provide stable health effect estimates

[25] and it allows to specify an informative prior, which acts as a constraint on the parameter

estimates, helping deal with the potential colinearity among the pollutants. In addition, a

Bayesian approach naturally accounts for missing data in the estimation process; this means

that we were able to use the entire 731 days of the time-series, while other analyses [2] were

based on less data points as the days with missing pollutant concentrations were removed. In

our case, as we are considering six pollutants at the same time, this would mean removing 125

days as one or more pollutants did not have concentration value recorded. We assumed a

completely at random mechanism of missingness, meaning that we do not expect the complete

case analysis to be biased. Nevertheless the ability to impute the missing data through the hier-

archical framework leads to higher power in detecting the health effects. However, the single

pollutants within our Bayesian framework, where the imputation has been performed, but

there is no dependency across pollutants, show very similar results to [2]. This seems to suggest

that it is the multi pollutant framework to improve the estimation of the health effects, rather

than the solely ability to use more data through the imputation.

Note that the meteorological covariates (temperature and humidity) are included in the

concentration component as well as in the health component of the model. This was done

according to the approach proposed by Cefalu et al. [26] who discussed how the covariates

Table 4. Posterior mean and 95% credible interval for the process variance s2
v for the H2Mjoint framework: Multi

pollutant model (left) and single pollutant model (right). Note that all the pollutants are measured in μg/m3 except

for PCNT which is measured in p/cm3 and CO which is measured inmg/m3.

Pollutant Multi Pollutant Model

Posterior Mean (95% CI)

Single Pollutant Model

Posterior Mean (95% CI)

CO 0.18 (0.15, 0.22) 0.44 (0.36, 0.52)

NO2 0.03 (0.01, 0.05) 0.20 (0.17, 0.27)

O3 0.04 (0.02, 0.06) 0.16 (0.12, 0.21)

SO2 0.45 (0.29, 0.51) 0.66 (0.55, 0.79)

PCNT 0.14 (0.10, 0.17) 0.59 (0.49, 0.68)

PM2.5 0.08 (0.04, 0.12) 0.11 (0.04, 0.18)

https://doi.org/10.1371/journal.pone.0212565.t004
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included in the exposure prediction model need to be included as confounders in the epidemi-

ological model to avoid biased results.

A key characteristic of our modelling framework is that it involves a joint specification of

the two components (pollution model and health model) in (2)–(6). This ensures that the

dependence in the pollution component is maintained in the health component and that all

the uncertainty is accounted for in the estimation process, differently from classical two-stage

models, where the pollution concentration estimates are considered without the associated

uncertainty to evaluate their health effects. At the same time, the joint framework leads to

feedback from the health outcome to the pollution estimates and their health effects. This

is depicted in the graphical representation, which shows the difference between our joint

approach and the standard single pollutant model. In the simulation study, we found that the

feedback from the outcome provides additional information to estimate the health effects

when these are truly different from 0, while at the same time is not introducing bias in any

direction when the true health effects are null. Running our model on simulated data we found

that the proposed framework caters well for the process error intrinsic in the observed concen-

trations and is able to estimate the health effects more accurately than the model which consid-

ers the observed concentrations as concentration in the health model.

At the same time, on the real data application, we showed that our multi pollutant model

is able to capture the short-term harmful effect of a possible synergic mechanism between

NO2 and O3. After adjustment for airborne particles and other regulated gases (i.e. CO and

SO2), we found a positive association between a mixture of these two oxidant gases and car-

diovascular mortality. The result is in line with Williams et al. [27], which considered a two-

pollutant model of NO2 and O3, but for daily counts of all cause mortality for Greater Lon-

don in 2000-2005, hence characterised by more power due to the longer period and larger

numbers. The plausibility of the reported associations is also consistent with atmospheric

chemistry findings [28] and toxicological results [29]. Williams et al. [27] have looked into

combining the two pollutants, due to their high correlation and their complex chemistry; for

instance NO2 is a precursor of O3, but also scavenging it, which explains why in the centre

of cities the level of NO2 is higher and the level of O3 are lower. However a clear drawback

would be not to be able to disentangle the effects of the two pollutants, which might act on

health through different mechanisms. For this reason we think that our approach is benefi-

cial here, as it has shown the ability to identify and quantify the magnitude of the short-term

health effect of the simultaneous concentration of multiple air pollutants, that it is not detect-

able using a traditional single pollutant model [30]. Therefore, from an air quality manage-

ment perspective we believe that a multi pollutant approach, such as the one proposed in this

study, has a potential for suggesting effective control strategies to reduce adverse effects on

human health, since it is able to provide insights on the complex trade-offs between different

ambient pollutants.

In this paper we showed how the Bayesian hierarchical modelling framework is advanta-

geous for dealing with multi pollutant concentrations in a purely time-series perspective. A

natural extension will consists of increasing the number of measurement sites, moving to a

spatio-temporal model. This would allow to account for natural spatial variation which can

be particularly strong for some of the pollutants (e.g. NO2) and should help increase the accu-

racy of the pollution estimates, hence reducing the process variance. We could adapt the

approach proposed by Goldman et. al [31] who specified a simulative framework to account

for different sources of measurement error and evaluated their impact on health effect esti-

mates. In addition, a spatio-temporal extension would allow to evaluate also chronic effects,

which are generally dominated by spatial heterogeneity. The proposed framework is also trans-

ferable to evaluate the effects of extreme values (e.g. pollutant concentrations above the WHO
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thresholds), which would entail modification of the health component specification to include

a threshold and could be modelled assuming a linear or non linear concentration-response.
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