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Abstract
Ageing of the kidney is a multi-dimensional process that occurs simultaneously at the molecular, 
cellular, histological, anatomical and physiological level. Nephron number and renal cortical 
volume decline, renal tubules become atrophic and glomeruli become sclerotic with age. 
These structural changes are accompanied by a decline in glomerular filtration rate, decreased 
sodium reabsorption and potassium excretion, reduced urinary concentrating capacity and 
alterations in the endocrine activity of the kidney. However, the pace of progression of these 
changes is not identical in everyone - individuals of the same age and seemingly similar 
clinical profile often exhibit stark differences in the age-related decline in renal health. Thus, 
chronological age poorly reflects the time-dependent changes that occur in the kidney. An 
ideal measure of renal vitality is biological kidney age – a measure of the age-related changes 
in physiological function. Replacing chronological age with biological age could provide 
numerous clinical benefits including improved prognostic accuracy in renal transplantation, 
better stratification of risk and identification of those who are on a fast trajectory to an age-
related drop in kidney health.

Introduction

The intrinsic measure of biological age has captivated the imagination of the general 
public for years. The appeal may stem from a desire to quantify one’s remaining years, the 
pursuit of novel treatments to extend lifespan, or as a justification for poor health. For the 
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clinician, interest in calculating a person’s biological age dates back to at least the 1960s, when 
researchers monitoring the health of survivors from the Hiroshima and Nagasaki bombings 
sought to quantify their biological age via the amalgamation of predictive biological markers 
[1].

Biological age can be defined as an intrinsic measure of the age-related changes in 
physiological reserve; that is the capacity for organs to carry out normal physiological 
function. In the last 50 years, numerous attempts have been made to develop a reliable 
algorithm to measure biological age [2, 3]. The mechanisms that underlie ageing are more 
complex than initially expected. Consequently, biological ageing algorithms have grown 
increasingly complex. Recent evidence suggests that each organ has a unique ageing pattern, 
indicating that the biological age of each organ should be calculated individually [4].

Herein, we provide an overview of structural and functional changes that occur as the 
kidney ages (see Fig. 1). We summarise research progress on inter and intra-individual 
differences in biological age and expound the clinical importance of accurate calculation of 
an individual’s biological kidney age.

The role of genetic, epigenetic and environmental factors in renal ageing

The data on narrow-sense heritability (a proportion of variance explained by additive 
genetic component) of renal ageing is limited, perhaps due to a lack of clinical measures with 
sufficient sensitivity and specificity to define renal ageing. Changes in estimated glomerular 

Fig. 1. Molecular, 
structural (microscopic 
and macroscopic), and 
functional dimensions of 
kidney ageing. Cellular 
dysfunction due to 
oxidative stress and the 
resultant inflammation, 
in combination with 
telomere shortening, lead 
to cellular senescence 
and apoptosis. Reduced 
reparative capacity and 
extracellular matrix 
dysregulation is associated 
with microscopic damage 
known as nephrosclerosis. 
Sclerotic glomeruli shrivel, 
leading to reduction in 
cortical volume. At a 
macro-anatomical level 
ageing is associated with 
cortical scarring and 
parenchymal calcification. 
These anatomical changes 
are accompanied by 
reductions in glomerular filtration rate, tubular dysfunction and aberrant endocrine activity. Abbreviations: 
GFR: Glomerular filtration rate, RAAS: Renin-angiotensin-aldosterone system.

 

Figure 1: Molecular, structural (microscopic and macroscopic), and functional dimensions of 

kidney ageing. Cellular dysfunction due to oxidative stress and the resultant inflammation, in 

combination with telomere shortening, lead to cellular senescence and apoptosis. Reduced 

reparative capacity and extracellular matrix dysregulation is associated with microscopic 

damage known as nephrosclerosis. Sclerotic glomeruli shrivel, leading to reduction in cortical 

volume. At a macro-anatomical level ageing is associated with cortical scarring and 

parenchymal calcification. These anatomical changes are accompanied by reductions in 

glomerular filtration rate, tubular dysfunction and aberrant endocrine activity. Abbreviations: 

GFR: Glomerular filtration rate, RAAS: Renin-angiotensin-aldosterone system 
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filtration rate (eGFR) are commonly used as a measure of age-related decline in kidney 
health. Our earlier family-based studies documented the heritable nature of eGFR and that 
the proportion of its variance explained by the heritable additive component is actually 
higher than that of blood pressure [5]. The estimated heritability for age-related drop in 
eGFR (h2= 0.33) is generally less significant than that for eGFR (h2=0.38-0.75) [5–9], although 
it appears that monozygotic twins exhibit higher correlation for age-related changes in eGFR 
than dizygotic twins [10].

Over 60 single nucleotide polymorphisms (SNPs) were associated with eGFR in 
genome-wide association studies [11, 12]. Similar to other complex polygenic traits, the 
extent to which these genetic variants explain the proportion of inter-individual variance 
in the decline in eGFR is minimal [11]. Only 3 SNPs have been associated with eGFR decline 
so far [8]. Further evidence for the contribution of genes to the development of age-related 
changes in the kidney come from gene expression studies – hundreds of genes are up- or 
down-regulated in the human kidney in response to ageing [13]. MicroRNAs (miRNA) - small 
noncoding RNAs that regulate gene expression post-transcriptionally are also associated with 
renal ageing. Indeed, at least 18 miRNAs were significantly upregulated and 10 miRNAs were 
downregulated with ageing in the kidney of the rat [14]. Surprisingly few studies directly 
addressed the influence of environmental factors on the ageing of the kidney. Dietary factors 
such as caloric restriction reduce the rate of age-associated autophagy and oxidative stress 
in the kidney, a process mediated via SIRT1, AMPK and mTOR [15]. Methionine consumption 
(found in red meat, cheese and nuts) appears to have the opposite effect as documented in 
experimental models [16].

Key molecular mechanisms of renal ageing

Oxidative stress and inflammation
The free radical theory of ageing proposes that oxidative stress damages cellular 

constituents, leading to age-related decline. The kidney deploys an arsenal of mechanisms 
to prevent reactive oxygen species from wreaking havoc. For example, superoxide 
dismutase 1 and 2 (SOD1 and SOD2) soak up free radicals, preventing organelle and DNA 
damage. Unfortunately, like many other antioxidants, SOD expression declines with age 
[17]. As exhibited in knockout (KO) mice, absence of SOD1 leads to glomerulonephritis, 
nephrocalcinosis and lymphocyte infiltration. Consequently, KO mice have a reduced 
lifespan [18]. As the kidney ages, damage driven by oxidative stress leads to accumulation 
of macrophages and lymphocytes in the renal tissue [19]. Infiltrating macrophages release 
IFNγ, IL-6 and TNFα, which activate key master transcription factors including STAT1, STAT3 
and NFκB [20]. Of these transcription factors, NFκB has been studied in extensive detail, with 
the hope that if able to target it, you could halt the age-associated inflammatory cascade.

Cellular senescence and telomere shortening
Central to the ageing process lies cellular senescence, the irreversible growth arrest 

that constricts renal regenerative capacity and propagates a pro-inflammatory state termed 
the senescence-associated secretory phenotype (SASP). In acute senescence e.g. post acute 
kidney injury (AKI), the SASP coordinates the removal of senescent cells through immune 
surveillance. However, in ageing, immune system dysfunction prevents effective clearance of 
senescent cells, leading to persistent SASP factor expression which causes inflammatory and 
fibrotic damage to surrounding cells [21]. Recently, Baker et al. demonstrated therapeutic 
clearance of senescent cells using a drug-inducible transgene to initiate apoptosis improved 
renal function, reduced glomerulosclerosis and ultimately led to increases in mouse lifespan 
[22]. One of the key instigators of cellular senescence is telomeric shortening. The telomere 
theory of ageing proposes that lifespan is predetermined by a finite capacity for cellular 
replication, called the Hayflick limit [23]. There is a documented inverse correlation between 
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the length of telomeres in the kidney and chronological age [24]. Telomeric attrition was 
also associated with increased susceptibility to AKI and decreased graft survival post-
transplant [25, 26]. However, telomere shortening is not an ideal biomarker of ageing. For 
one, telomere dysfunction can cause cellular senescence independent of telomere shortening 
[27]. Moreover, telomere length stops being a useful predictor of age-related morbidity and 
mortality in those older than 85 [28]. Furthermore, a cell’s telomere length is indicative of 
its’ replicative history, and does not necessarily correlate with its’ biological age.

Structural and functional changes in renal ageing

Histology
At birth, the human kidney contains approximately 900,000-1 million nephrons [29]. 

No new nephrons are formed after 36 weeks gestation [29]. Ageing is associated with the 
depletion of approximately 4,500 nephrons per year [30, 31]. This equates to loss of almost 
half one’s nephrons between early adulthood (18-19) and old age (70-75). Nephron number 
is proportional to eGFR throughout one’s life, except in the elderly age group (70-75) where 
nephron number drastically drops with minimal consequence to eGFR. One possibility is 
that compensatory hypertrophy of residual nephrons maintains eGFR in some elderly 
populations [31]. This could explain (at least to some extent) the inter-individual differences 
seen in eGFR in elderly populations [32–34].

The drop in nephron numbers with age is accompanied by the changes in renal histology. 
The glomerular basement membrane thickens, its capillaries shrivel and are replaced 
by fibrotic tissue (glomerular sclerosis), the renal tubules collapse (tubular atrophy), 
extracellular matrix components accumulate, expanding the interstitial space (interstitial 
fibrosis) and arterial walls thicken and lose their elasticity (arteriosclerosis) [35]. This 
tetrad of abnormalities is termed nephrosclerosis [36]. Pairwise comparison indicates these 
age-related histological abnormalities are highly correlated with one another [36]. However 
cumulatively, as measured by nephrosclerosis score; they are not associated with age-related 
eGFR decline, perhaps due to the involution and eradication of sclerotic glomeruli distorting 
findings [36].

Nephrosclerosis is the most common pathway for kidney injury in ageing [37]. It 
has its roots in early life, prior to the development of chronic kidney disease (CKD) [36], 
but is clinically silent throughout a major part of its natural history; unlike many other 
renal conditions it does not usually manifest with proteinuria [38]. However, the gradual 
progression of nephrosclerotic changes leads inevitably to a loss in functional nephron 
reserve and atrophy increasing the susceptibility of affected patients not only to severe 
presentations of progressive CKD but also other renal disorders such as acute kidney injury 
[39]. Nephrosclerosis was also reported to cluster with high mortality and high risk of end-
stage renal disease [40]. As a facet of ageing, histological appearance is unique in that it 
represents the wounds of time, the afflictions faced by an organ.

Macroscopic changes
From the 4-5th decade onwards, renal volume declines [41]. Diminution is largely 

confined to the renal cortex, as renal medulla volume remains relatively stable perhaps due 
to tubular hypertrophy or unaccounted increases in renal sinus fat. Loss of renal mass, in 
combination with atherosclerotic plaque formation and an increase in renal sympathetic 
tone, results in declining renal blood flow, at a rate of 10% per decade, from the 4-5th decade 
onwards [39, 42]. Inadequate renal perfusion likely contributes to the age-associated 
decline in GFR. Furthermore, ageing is associated with increased prevalence of renal cysts, 
parenchymal calcifications and cortical scars [39].



 Kidney Blood Press Res 2018;43:55-67
DOI: 10.1159/000486907
Published online: January 30, 2018

© 2018 The Author(s). Published by S. Karger AG, Basel
www.karger.com/kbr 59

Rowland et al.: Renal Ageing

Functional changes
Multiple studies report variable age-associated decline in eGFR from 0.4-2.6 ml/min/

year [33, 34, 36, 43, 44]. The rate of decline increases with age. In 20-30-year olds eGFR 
decreased by 0.82 ml/min/1.73m2/year in comparison to those over 50 where it decreased 
by 1.15 ml/min/1.73m2/year [34]. Ageing is associated with tubular dysfunction including 
decreased sodium reabsorption, potassium excretion and reduced urinary concentrating 
capacity [45]. These changes in part account for the increased risk of dehydration and 
AKI observed in elderly individuals [46]. Ageing also affects the endocrine function of 
the kidney. Despite decreased renin expression, angiotensin II activity increases with age 
[47, 48]. This may be due to increases in angiotensin II receptor sensitivity or differential 
regulation of systemic and intrarenal renin-angiotensin systems [49, 50]. Renal conversion 
of 25-hydroxyvitamin D into 1,25-dihydroxyvitamin D declines with age, contributing to 
the vitamin D deficiency commonly seen in the elderly [51]. Commonly used to distinguish 
age-associated renal dysfunction from chronic kidney disease, elderly individuals exhibit 
raised levels of erythropoietin, perhaps due to subclinical blood loss, increased erythrocyte 
turnover or increased insensitivity to the effects of erythropoietin [52].

Intra and inter-individual variation in ageing

A person’s chronological age can drastically differ from their underlying biological age. 
Belsky et al. used an array of biomarkers, including creatinine clearance and blood urea 
nitrogen, to measure the biological ages of a large cohort of 38-year-olds [2]. Despite being 
the same chronological age, individual biological ages ranged from 28-61. Some participants 
aged 3 biological years for every calendar year, whereas others exhibited almost no 
physiological age-related change in a year.

The pace of renal ageing varies between individuals. Findings by Rule et al. suggest 
substantial variation in nephrosclerosis scores between healthy individuals within the same 
age bracket [36]. For example, 10% of individuals aged 60-69 had a nephrosclerosis score 
of 0, whilst another 10% had a sclerosis score of 4. Our data from the TRANScriptome of 
renaL humAn TissuE (TRANSLATE) study [53, 54] illustrates how two individuals of the 
same chronological age and seemingly similar clinical profile exhibit stark contrast in renal 
histological appearance (see Fig. 2). Longitudinal studies by Linderman, Jiang and Cohen 
demonstrate 36%, 43% and 15.4% of  healthy individuals exhibit no age-related decline in 
eGFR respectively [32–34]. These findings indicate that age-associated functional decline in 
healthy kidneys exhibits marked inter-individual variation.

It is not clear at present what offers a protection against age-related decline in the 
structural integrity and function of the kidney. The differences in the observed phenotypic 
changes of the kidney can be explained (at least to some extent) by the differences in gene 
expression profiles between those with faster and slower renal ageing. Indeed, Rodwell et al. 
evaluated the age-associated changes in gene expression in 74 kidneys [13]. They identified 
447 age-regulated genes that form a molecular profile of ageing. In doing so, they noted 
that certain individuals despite being chronologically younger, had a gene expression profile 
suggestive of someone more senior (fast agers), and vice versa (slow agers).

Apart from these apparent differences in pace of renal ageing between individuals, 
variation exists in ageing of different organs from the same individual. For example, 
comparison of age-associated transcriptomic changes in kidney and muscle, demonstrated 
minor overlap in age-related gene expression, suggesting discrete molecular ageing 
mechanisms [13, 55]. Cadaveric studies measuring telomere length in 12 different tissues, 
including the kidney, demonstrates high variability in the extent of telomeric attrition 
between organs, suggesting divergent pace of ageing [56]. In addition, different histological 
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components of the same organ from the same individual respond differently to ageing. Within 
the kidney, Rodwell et al. demonstrate little overlap in expression of ageing-associated genes 
between the cortex and the medulla [13]. Likewise, Melk et al. observed a faster rate of 
telomeric attrition in the renal cortex, than the renal medulla [24].

Quantifying the biological age of the kidney

There are a number of potential surrogates of biological renal age (Table 1) [3, 27-
28, 32-33, 36, 57-58]. Telomere length and eGFR have previously been utilised to predict 
biological age [2], however, they have their own limitations as discussed earlier. Molecular 
markers such as Klotho may have a potential role in renal ageing. Indeed, overexpression of 
Klotho has been shown to extend the lifespan of mice by 20-30% [59]. In the kidney, Klotho 
is involved in the prevention of cellular senescence, regulation of interstitial fibrosis, and 
suppression of inflammation [59–61]. Urinary and serum Klotho levels have already been 
utilised as prognostic markers of CKD [62, 63]. Nephrosclerosis is a potential proxy, having 
been closely correlated with age [36], age-associated kidney gene expression [13] and renal 
transplant outcome [64]. However, obtaining histological samples via renal biopsy is not 
feasible in patients without clear clinical indication i.e. evidence of overt nephropathy. The 

Fig. 2. Inter-individual variation in nephrosclerosis. Histology images from two TRANScriptome of renaL 
humAn TissuE (TRANSLATE) study patients (1 and 2) with a seemingly comparable clinical profile; both 
62-year-old men with hypertension and obesity. Despite similar clinical histories the two patients exhibit 
dramatically different nephrosclerotic changes. 1. Normal interlobular artery. 2. Global glomerulosclerosis. 
3. Glomerular collapse. 4. Tubular atrophy and interstitial fibrosis with inflammation. 5. Interlobular artery 
with fibrointimal thickening. A and C = Periodic acid–Schiff, x40. B and D = Masson’s trichrome, x100.
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successful identification of robust signatures of kidney-specific biological age will require 
exploiting new molecular strategies such as transcriptomics, epigenomics, proteomics and 
metabonomics. Each of them offers an unbiased systematic insight into thousands of genes 
and molecules many of which are the key determinants of the individual trajectories of kidney 
ageing. A particularly promising strategy is transcriptomic profiling of cells harvested from 
urine samples [58]. Additional strategies, including the measurement of circulating levels 
of cell-free DNA have shown promise in the prediction of outcomes in renal transplantation 
[65, 66], and this could be potentially further exploited in studies on renal ageing. Next-
generation RNA-sequencing-based profiling of epigenetic master regulators, such as small 
(miRNA, small interfering RNA, piwi-interacting RNA) and long non-coding RNAs may shed 
an insight into these ageing signatures [67, 68]. Horvath’s DNA methylation-based measure 
of biological age has already shown the potential of exploiting human epigenome in search 
of signatures of tissue ageing [3]. Ideally, the use of “omics” should be integrated with the 
objective and direct measures of age-related kidney damage such as histologically confirmed 
nephrosclerosis. The availability of resources where both histologically-confirmed measures 
of age-related kidney damage together with biological materials suitable for omics-type 
profiling (i.e. TRANSLATE Study) [53, 54] brings us closer to finding the multi-marker 
signatures of biological kidney age. We believe that the future of a kidney-specific ageing 
signature lies in systems biology – combining genetics, transcriptomics, epigenetics, 
proteomics, clinical and histological data. Such efforts are currently underway as part of our 
TRANSLATE Study [53, 54] and in the NEPTUNE Study [69].

Clinical prediction of biological kidney age

The attractiveness of determining the biological age of the kidney lies in its diagnostic 
and predictive potential. The shortage of donor kidneys has led to increased use of suboptimal 
organs, often from elderly donors. In Great Britain, the UK kidney donor risk-index scoring 
system is commonly used to screen the allograft quality. It incorporates donor age, which is 
known to predict poor outcome after transplant [70]. Biological kidney age could supersede 
chronological age, as a more accurate predictor of prognosis. Thus, kidney donors rejected 
due to their old age, may now be able to donate if found to be younger than their expected 
biological age, increasing the pool of available kidneys. Conversely, organs of apparent 
optimal suitability for renal transplantation based on chronological age, may require more 
careful monitoring upon transplantation should their biological age be much older than their 
chronological age. The value of incorporating markers of ageing into prognostic algorithms 
in renal transplantation is receiving increasing attention due to its potential to improve 
outcome in recipients [71]. For example, two non-coding RNAs, miR-217 and miR125b were 
shown to predict delayed graft function with a 61% sensitivity and 91% specificity.

Given that chronological age is the major risk factor for AKI, it is tempting to speculate 
that the prediction of risk and monitoring of clinical outcomes in patients with AKI can be 

Table 1. Surrogates of renal biological age – past, present and future 

Signature Source Limitations References 

eGFR Blood 
Significant inter-individual differences. Indirect measure 

based on serum levels of creatinine. Poor correlation with 
histological measures of age-related kidney damage. 

Linderman et al 
[32] 

Jiang et al [33] 

Telomere length Blood/Tissue sample 
Mostly measured in leukocytes from peripheral blood. Poor 
correlation with biochemical measures of kidney function. 

Cell replication ≠ biological cell age.  

Arai et al [27] 
Martin-Ruiz et 

al [28] 
Klotho expression Urine/Blood Reliability of urinary/serum measurement questionable. Akimoto et al 

[57] 
Nephrosclerosis Tissue sample Measurement requires invasive procedure. Rule et al  

[36] 
Transcriptomic 
signatures 

Urine/Blood/Tissue 
sample Limited evidence in relation to kidney ageing. Suthanthiran et 

al [58] 
Epigenetic 
signatures 

Urine/Blood/Tissue 
sample Limited evidence in relation to kidney ageing. Horvath et al 

[3] 
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improved by knowledge of their biological kidney age. This is particularly relevant to AKI due 
to drug nephrotoxicity (approximately 20% of AKI) [72] as clinical guidelines recommend 
careful monitoring and increased caution when prescribing high-risk medications to the 
elderly (based on their chronological age) [73]. Information on biological kidney age could 
more accurately inform the decision-making process. For example, the Mehran contrast-
induced AKI risk score advocated by the Kidney disease: Improving global outcomes 
(KDIGO) guidelines advises that those chronologically older than 75 are at increased risk 
of contrast nephropathy [74]. If an individual chronologically younger than 75 was found 
to have a biological age greater than 75, it would be sensible to assume increased risk and 
if appropriate, modify their management plan in accordance with best practice guidelines.

Perceived biological age currently plays a role in surgical decision making, often 
conveyed in the notes as “remarkably fit for 88” or “a rather old 71-year-old”. With respect 
to the kidney, eGFR is typically the only measure of renal vitality used in pre-operative 
assessments. Reduced eGFR prior to surgery is associated with increased mortality, 
independent of AKI [75]. However, eGFR is a suboptimal measure of overall renal health. As 
previously noted, eGFR only measures one aspect of renal function, it does not reflect the 
age-related kidney change in a significant cohort of the population [32–34], and it poorly 
correlates with other markers of renal biological age e.g. nephrosclerosis score [36]. Thus, 
pre-operative appraisal of biological kidney age in addition to eGFR could provide more 
accurate prognostic information.

Advanced chronological age is independently associated with poor prognosis in IgA 
nephropathy [76] and renal malignancy [77]. Conversely, increased chronological age at 
disease onset in autosomal recessive polycystic kidney disease is associated with improved 
prognosis [78]. In these conditions, biological age could replace chronological age as a 
prognostic indicator. Other kidney diseases with a less well-defined role of age on outcome 
include diabetic nephropathy [79], focal segmental glomerulosclerosis [80] and membranous 
nephropathy [81].

Ageing is associated with increased prevalence of chronic kidney disease (CKD), indeed, 
almost half of elderly individuals fulfil the current diagnostic criteria for CKD [82, 83]. Elderly 
patients with CKD have a greater adjusted risk of death [83] and exhibit lower functional 
kidney reserve when they present with CKD [84]. Current diagnostic criterion relies on a 
fixed threshold to identify CKD, with little consideration for age-related decline in eGFR, 
with some suggesting this leads to over-diagnosis of otherwise healthy individuals [85, 86]. 
One possible solution is incorporation of biological kidney age into diagnostic criteria in this 
group of patients.

For the healthy individual, whose baseline eGFR is otherwise normal, biological kidney 
age could be used to identify those with accelerated renal ageing. For example, Rule et al. 
demonstrate in a population of healthy living kidney donors, 15% of those aged 30-39 exhibit 
substantial age-related nephrosclerotic change (indicating accelerated renal ageing), yet all 
these individuals have a measured GFR >75 ml/min/1.73m2 [36]. It is reasonable to assume 
these fast renal agers are more susceptible to age-related renal disease (e.g. chronic kidney 
disease). Thus, an increased rate of kidney ageing could warrant prophylactic measures i.e. 
prescription of prospective anti-ageing therapies [87].

Conclusion

Renal ageing is associated with a progressive decline in eGFR and structural disfigurement 
at a microscopic and macroscopic level. At a molecular level, this is accompanied by cellular 
senescence, telomere shortening, apoptosis and fibrosis. There are numerous gaps in 
knowledge on how molecular changes influence renal histology and how histological changes 
translate into a decline in renal function. Furthermore, little is known about the genetic and 
environmental factors that influence individual rates of age-related decline. Intra-individual 
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differences in organ ageing advocate the development of a kidney-specific ageing signature. 
This successful identification of such signatures relies on combining “omics”, clinical and 
histological data. This will have several potential benefits for clinical nephrology including 
improved prognostics and identification of high-risk patients.
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