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Abstract
Development of Experimental and Finite Element Modelling Techniques for

Investigation of Human Femurs

Caroline Meakin

The aim of the work presented in this thesis was to develop a finite element model

and experiment to simulate the loading conditions caused by a fall on the prox-

imal femur. Investigations were carried out with a PVC surrogate human femur

and a sheep’s femur. The results of the model and experiment were used to assess

the effect of the orientation of the femur at time of impact on the strain distribution.

The finite element model was based on data obtained from computed tomog-

raphy scans of the samples, which were used to characterise their geometry and

material properties, and included a simulation of the contact mechanics in the hip

joint. The experiment involved the use of strain gauges to measure strain at a num-

ber of locations on the samples. Apparatus was developed to support the samples at

a range of orientations with respect to the direction of an applied load. Trilateration

was used to identify the model coordinates of the strain gauges. The accuracy of

the model, assessed by comparison with the results of the experiment, was found to

be limited by restrictions in the resolution of the CT data.

An investigation into the effect of multiple freeze-thaw cycles on strain gauge

measurements showed that the accuracy of strain readings taken after four cycles

could not be guaranteed. The use of different materials to simulate the acetabular

surface through which the load is applied to the femoral head was determined to

have a significant effect on the strain, as was the difference between using a foam

soft tissue surrogate and a hard PMMA cap to protect the greater trochanter.

The effect of changing the angle of rotation about the shaft of the femur was

assessed. It was found that the largest strains per unit force were associated with

posterolateral falls.
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Chapter 1 Introduction 1

Chapter 1

Introduction

Falls among older people are a common problem, with devastating consequences

for many people. 3.4 million people in the UK over the age of 65 fall every year,

incurring an estimated daily cost to the NHS of £4.6 million [1]. 65,000 of these

falls result in hip fracture [2]. By simulating the process of hip fracture we can

analyse it, and make steps towards determining the conditions that cause fracture

and avoiding them. The aim of this project is to use a finite element model and ex-

perimental testing to simulate the loading conditions caused by a fall scenario, and

investigate how changes to the loading conditions can affect the strains measured

in the proximal femur. The results of the model and experiment will be compared

against one another to assess the accuracy of the finite element simulation.

Human tissue samples are not available for use in this investigation due to time

constraints. A polymer model of a human femur will be used as a surrogate femur

sample for carrying out experimental tests to provide the geometry for a finite el-

ement model. Following this, the same process will be carried out with a sheep’s

femur. A sheep’s femur was chosen as it is easily available and fairly comparable to

a human femur in size and bone structure [3]. In spite of this, the sheep’s femur does

not have the same morphology as that of a human. Using the polymer human femur

surrogate ensures that the apparatus and modelling techniques can be proved to be

capable of being used for samples with the size and geometry of a human femur.

This will allow for the development of experimental and computational techniques

which could be applied to investigations using human tissue at a later time. The
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effect of changing the orientation of the femur will be assessed in this thesis, with

the inclusion of contact mechanics between the acetabulum and femoral head.

1.1 Falls and Hip Fracture

Hip fracture is associated with high mortality rates [4], and frequent consequences

are loss of mobility, loss of independence, and increased fear of experiencing more

falls in the future. The cost of treating hip fracture patients is significant, as is the

cost of social care to the fallers, their families, and the state. The population over

the age of 65 is predicted to rise over the next decade at a faster rate than other

age groups [5], so the incidence rates of falls and hip fracture are very likely to also

increase.

Falls are more frequent in older people due to a number of health problems, in-

cluding poor balance, reduced muscle strength, and diseases affecting the bones and

joints. The reflexive use of the hands to break the fall lessens the magnitude of the

impact on more fragile parts of the body such as the hip. The slowing of reaction

speed associated with ageing means that older people are less able to break their

fall. Falls in older people are generally falls to the side, so the hip is the first point

of contact with the ground. These factors mean that a fall often causes a large force

in the hip joint.

A hip fracture is a fracture occurring in the proximal end of the femur, the por-

tion of the femur near to the hip joint. Half of all fractures among older people affect

the hip [6]. The likelihood of a fall resulting in a hip fracture is increased by the

presence of osteoporosis, a disease causing fragility and reduced strength in bones.

People who have suffered from hip fracture have been found to have, on average,

less subcutaneous soft tissue protecting the hip joint than a healthy person [7]. This

tissue provides protection to the hip joint and reduces the force of the impact deliv-

ered to the joint.
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Figure 1.1: Categorisation of hip fractures based on the region of the femur where they occur.

Figure 1.1 shows how hip fractures are categorised by their location on the fe-

mur. The location of the fracture can have a great effect on the severity of the

injury and the recovery of the patient. Intracapsular fractures, which occur on the

part of the femur which lies inside the hip joint, can disrupt the blood supply to

the femur, which can cause tissue death and delay healing [6]. Intertrochanteric

fractures occur between the greater trochanter and the lesser trochanter, two bony

protrusions whose location are seen in figure 1.1. Subtrochanteric fractures occur

in the 5 cm portion of the shaft of the femur below the lesser trochanter. 54% of

all hip fractures are intracapsular, 35% intertrochanteric, and 6% subtrochanteric [8].

The likelihood of a fall leading to hip fracture can be reduced by reducing the

force transmitted to the hip joint. This can be done by placing a barrier between

the faller and the surface onto which they fall, or by modifying the surface. Hip

protectors are devices worn over the hip to absorb energy and transfer the energy

from the bone to the surrounding soft tissue in the case of a fall. Hip protectors

reduce the magnitude of the force delivered to the femur in a fall [9], and they

have been proven to reduce the likelihood of hip fracture [10]. The effectiveness of

hip protectors depends upon the user’s agreement to wear them at all times, uptake

has been found to vary from 37% to 72%, and compliance between 20% and 92% [11].
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Changes to floor surfaces may have the potential to reduce injury rates. There is

some evidence that carpeted floors are associated with fewer fall injuries than vinyl

floors [12].

1.2 Finite Element Modelling and Experimental

Investigation of Hip Fracture - A General Re-

view

The finite element method is a numerical analysis technique which is widely used

in many areas of physics and engineering. It can be used to approximate the solution

to any problem characterised by a boundary value problem. It is particularly useful

for systems with complicated geometries, where it is impossible to derive a continu-

ous solution for the entire system. Instead, the structure is split into a mesh of small

elements in which it is possible to solve the equation. The finite element method

has been used frequently in simulations of the proximal femur, where it is used as a

non-invasive way of measuring strain and simulating fracture mechanics [13–23].

The benefit of using a simulation is that mechanics of the problem can be calcu-

lated at any point on the surface or within the volume of the femur. The structural

complexity of the femur, along with the complicated microstructure and variable

material properties within the bone, mean that the reliability of a finite element

model cannot be assumed automatically. Data gathered from the model can be

compared against strains measured in an analogous experiment to verify whether

the model is providing an adequate simulation of the mechanics of the problem.

Finite element modelling was first used to characterise the mechanical response

of femurs to loading by Brekelmans et al. in 1972 [24]. The finite element method

requires the user to define the geometry of the simulated object. Brekelmans study

was carried out with a 2D geometry based on radiography images. Some 3D studies
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have been done using geometry built by computed aided design [25]. The use of

computed tomography scans to characterise the geometry of the femur in 3D was

introduced by Basu et al in 1986 [26].

Quantitative micro X-ray computed tomography (CT) is a technique frequently

used to create three-dimensional surface geometry images of the proximal femur

[15, 20], as well as provide a measurement of the material properties of the bone

[13,18,19,27]. The finite element software also requires the user to input the mate-

rial properties of the objects. In the case of the structural mechanics problem, the

relevant material properties are the Young’s modulus and Poisson’s ratio. Studies

have confirmed a correlation between CT attenuation coefficients and the material

properties of bone [28–30].

A bone density imaging phantom, such as the potassium phosphate liquid phan-

tom developed by Cann and Genant [31], can be scanned alongside the bone sample

to calculate its ash density. The phantom consists of a number of solutions of vary-

ing concentrations, and so the linear attenuation of the phantom samples can be

used to calibrate the equivalent potassium phosphate concentration within the bone

sample, from which it is possible to determine the ash density of the bone [32].

Mathematical relationships between the ash density and the material properties of

bone have been determined by a number of studies [17,18,33].

The forces involved in a fall are caused by an impact, meaning that the struc-

tural mechanical problem is time-dependent. All of the finite element analyses of

hip fracture mechanics discussed in this chapter are static or quasi-static. The mod-

els and experiments designed in this project will only involve static loading. The

mechanical problem of dynamic impact is significantly more complex to solve than

static loading. Although the solution to the dynamic problem cannot be accurately

solved by a static simulation, the aim of this process is to estimate the effect of

altering the loading conditions on the scale and distribution of the strain induced

in the bone. Several experimental investigations have been carried out into falls.

These studies generally used a pendulum [9, 34–36], or drop test [37, 38] to apply
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the impact load. Many of these tests were done to assess the forces associated

with falling, particularly the effect of hip protectors in damping the impact of the

fall [9, 36–38]. Synthetic materials have been used in dynamic testing experiments

to simulate the soft tissue covering the hip joint [34–38]. Surrogate femurs are often

used in place of real bone samples. They are designed to mimic the shape of the

femur, and have been constructed out of materials such as wood [36], steel [38], or

polymers [34, 35, 37]. This would not provide a good estimate of strains induced

in a real human femur, but is adequate for measuring applied force using a load

cell [34–38]. The advantage of using a surrogate femur as opposed to a bone sample

is that it can be constructed from a material which does not decay. The surrogate

can be designed to have homogeneous material properties which are easier to define

than those of bone, and there is the potential to make it more resilient that real

bone. This means that techniques can be tested out and refined without worrying

about damaging a real bone sample, and that it is easier to compare the results of

the experiment and model because the sources of error associated with estimating

the material properties of bone tissue are not included. Full-scale polymer models

of human bones, designed for educational use, are readily available.

A direct way of assessing hip fracture mechanics using finite element modelling

is to use a failure criterion to indicate whether a fracture would occur under the

simulated conditions. The initiation and propagation of fractures has been found to

be highly dependent on the distribution of the microstructural constituents of the

bone [39, 40]. One way of testing whether failure has occurred in each element of

the model by comparing the stress induced with the strength of the material in that

element [18]. This technique can be used to predict the minimum forces required

to cause fracture. Other studies compare the strain simulated in the model with

strains induced in experimental testing measured by strain gauges bonded to the

surface of the bone under the same loading conditions [14, 20, 22]. This allows for

comparison of results with small forces, and does not rely on the reliability of any

fracture criteria. Experimental testing of bone samples can be performed with much

smaller loads than would be present in a real fall, ensuring that the sample is not

damaged and can be used for further studies.
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Some studies have been carried out to investigate how the way in which a person

falls affects the forces induced in the hip and the likelihood of hip fracture. Groen et

al. showed that the force of impact depends on falling technique, such as blocking

with the hands and arms [41], and Lo and Ashton-Miller studied pre-impact move-

ment strategies [42]. These studies show that how the body is positioned at time of

impact has an effect on the force transmitted to the hip.

Keyak, Skinner and Fleming used a finite element model derived from CT data

to quantify the effect of force direction on fracture load in both fall and stance con-

figurations [23]. They varied the force directions three-dimensionally by applying a

load to the head of the femur, and quantifying angles of rotation of loading direc-

tion about shaft and away from the shaft. They found that the lowest fracture loads

correspond to falls onto posterolateral aspect of greater trochanter. In an earlier

paper, Keyak experimentally compared the static forces required to cause fracture

in femurs in the stance position and in a fall position [16]. They found that the

fracture loads in the two configurations are linearly related, but correlation is not

good enough to reliably predict one from another.

Wakao et al. used a finite element model derived from CT data of healthy people,

people who have suffered hip fracture, and people who have osteoporosis but have

not suffered fractures to investigate the effect of the angle of the loading direction

by rotating the femur about the shaft and applying forces to the appropriate bound-

aries according to rotation angle [21]. They found a significant relationship between

loading direction and fracture load, and that the effect of altering the direction was

larger in models derived from scans of fracture patients obtained from the intact

(contralateral) femur and people with osteoporosis than in healthy people. They

also found that the fracture load was lowest in falls onto the posterior aspect of the

femur.

Bessho et al. used a finite element model created with CT scans of the con-

tralateral femurs of people who have suffered from hip fracture to assess the load
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required to cause fracture as well as the location of the fracture [13]. The findings

of the models were compared with the real fractures. They compared a stance con-

figuration with four fall configurations and used a fracture criterion to assess the

minimum load necessary to cause fracture under each loading condition. Like Keyak

et al. and Wakao et al., they found that the smallest fracture loads were associated

with a fall onto posterolateral aspect of the femur.

It is clear from the results of the above mentioned papers that the loading di-

rection has a significant effect on the strains induced in the femur and the forces

required to cause fractures. A factor which has not been included in any of these

studies, however, is the way in which the femoral head interacts with the acetabu-

lum, the concave surface of the pelvis in which the femoral head sits to form the hip

joint. The contacting faces of these two objects are not perfectly smooth or spheri-

cal, so the size of the force delivered through the pelvis to the femur, as well as the

size of the contact area and its position on the femoral head, will depend on the

contact mechanics between the two surfaces under the given loading configuration.

1.3 The Structure of This Thesis

The purpose of the work presented in this thesis is to develop the techniques

necessary to create a valid simulation for human bone, and to analyse the effect of

changing the orientation of the femur on the strain distribution and intensity. The

aim is to simulate separately the shape of the femur (using a PVC femur model),

and the distribution of Young’s modulus within a bone sample (with a sheep femur).

A finite element model will be created to simulate strain in the femur under

different loading angles. The results of this model will be verified by carrying out

an analogous experiment on a femoral sheep bone sample, and comparing strains

measured with strain gauges.

Thesis structure:
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• Chapter 2 will deal with developing techniques for creating the finite element

model. Techniques for using CT scan data to derive geometry and material

properties will be tested and used to create simple models of the PVC femur

and sheep’s femur without contact mechanics to assess how changing direc-

tion load affects strain distribution. This will be useful in the design of the

experiments.

• Chapter 3 will include an assessment of experimental techniques used for bond-

ing gauges to bone samples and fixture of samples within apparatus. The effect

of freezing and thawing the sample multiple times will be tested.

• Chapter 4 will describe the design of the experimental apparatus, which will

be used to test the effect of loading orientation on the strain measured on the

surface of the PVC femur. The results of the experiment will be used to test

the validity of a finite element model which will be based on the polymer pre-

liminary model described in chapter 2, with the addition of contact mechanics

and designed to mimic the conditions of the experiment.

• Chapter 5 will report on an experiment where the apparatus described in

chapter 4 is used to test the sheep femur. The experimental techniques will be

refined based on the outcomes of the previous chapter. A finite element model

of the sheep’s femur will be created, with contact mechanics, and results of

the model and the experiment will be compared.

• Chapter 6 will consist of a conclusion, summarising the findings of the project

and considering potential future developments of this work.
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Chapter 2

CT Characterisation of Femoral

Bone and Finite Element

Modelling of Bone Tissue

2.1 Introduction

In order to build a reliable finite element model of the proximal femur, the mor-

phology and the material properties must first be characterised.

The proximal portion of the femur can be thought of as a combination of two

types of osseous tissue: cortical bone and cancellous bone. Cortical bone is a hard,

dense tissue which forms a shell on the outside of the bone. Cancellous bone is

a porous tissue consisting of a framework of trabeculae, hard rod-like structures

which grow in alignment with the typical load direction that the bone is subjected

to [43,44].

Finite element modelling software requires the user to input the material prop-

erties of any objects being modelled, in the case of structural mechanics modelling

this is the Young’s modulus and Poisson’s ratio. These properties are not uni-

form throughout the structure of a femur. There are many complex microstructures

throughout the structure of the bone which cause inhomogeneous response to stress.

The most reliable way to characterise the geometry and material properties of the
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tissue is to use X-ray computed tomography. The purpose of the work presented in

section 2.2 is to use this technique to create a geometry file for each of the samples

used in this study, as well as a spatially varying function for the Young’s modulus

of the sheep bone sample, which can be imported into the finite element software.

The geometry of a PVC femur determined in section 2.2 was used to create a sim-

ple finite element model which simulates the effect of changing the loading direction

on the strain distribution. It was used to to determine the locations on the surface

of the femur which experience the largest strains. Two models of a sheep’s femur

were also created, one with a spatially varying Young’s modulus function through

the volume of the bone, the other with a constant modulus throughout. This was

done to investigate the effect of the spatially dependent Young’s modulus on the

strains induced in the femur. These models also simulated loading under different

loading angles. All finite element analysis performed in this project was carried

out in COMSOL Multiphysics. This information will be useful when designing the

experiment in later chapters.

2.2 Modelling bone tissue

2.2.1 Computed Tomography

Quantitative micro X-ray computed tomography (CT) is a technique frequently

used in the development of finite element models of biological materials. CT has

been widely used to create three-dimensional surface geometry images of the proxi-

mal femur bone structure [15,20], and it has also been used to provide a measurement

of the material properties of the bone [13,18,19,27].

2.2.1.1 Geometry

A micro CT scan provides a measure of the average linear attenuation coefficient

of X-rays within each voxel of the image. Micro CT scanners provide the absolute

linear attenuation coefficient (SI units m−1), unlike medical CT scanners which use
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the Hounsfield scale. Assuming that the linear attenuation of the sample differs suf-

ficiently from that of the surrounding air, a three-dimensional surface can be formed

by using a threshold linear attenuation value to split the space in the scanned vol-

ume into that which lies above the threshold (within the object) and that which

lies below (the air surrounding the object). This information is imported into finite

element analysis software to define the geometry of the object.

A CT scan was used to provide an STL mesh geometry file compatible with Com-

sol of a right PVC femur model (3B Scientific LTD., Weston-super-Mare, United

Kingdom). The femur, a full size human simulant, was approximately 40 cm long.

The scanner (Nikon Metrology XT H 225) has a scanning platform with a diameter

of approximately 170 mm, so a handsaw was used to cut the femur to approximately

this length. Hip fractures occur in the proximal part of the femur, so it is not im-

portant that the distal part of the geometry is present in mechanical tests. Many

studies, involving both finite element modelling and experimental testing, have used

just the proximal portion of the femur [14,16,20–22].

The femur CT scan was obtained (105 kVp, 295 mAs, 0.0991 mm voxel size,

1879 × 1064 pixel slice area, 780 slices), and the data was processed in VGStudio

MAX (version 2.1). The surface was exported in an STL mesh file with 25,000,000

vertices. The STL file exported by VGStudio MAX was too large to be processed by

Comsol, so the number of vertices in the mesh had to be reduced in Meshlab v1.3.0b

to 2800 vertices. Images of the PVC mesh are shown in figure 2.1. The reduced

STL file was imported into Comsol, where the triangular framework formed by the

mesh was automatically partitioned into faces. The import settings were altered

manually to ensure that the face partitioning appeared realistic and there were no

gaps in the surface of the geometry.

2.2.1.2 Material Properties

As noted in section 2.1, the bone tissue of the proximal femur is a complicated,

inhomogeneous material consisting of many small microstructures. While it is ac-
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Figure 2.1: Images of both the PVC femur meshes before and after reduction.

ceptable to apply constant mechanical properties to the PVC femur model, the

properties of bone are better defined by a spatially dependent function. Instead

of modelling the microstructure of the bone, which would require an impractically

fine mesh, the material properties are averaged across small unit volumes across the

geometry of the bone [14,18–22].

The Young’s modulus of bone can be determined from the ash density [13,17–22,

32, 33, 45]. The ash density is calculated by scanning alongside a CT bone density

phantom, an object designed to have a similar X-ray opacity to bone, and consist-

ing of a number of objects with known equivalent bone ash densities. When the

phantom is scanned alongside a sample, a calibration equation can be determined

in order to calculate bone ash density from the linear attenuation within each voxel.

A number of different materials have been used to make bone density phantoms.

Solid hydroxyapatite phantoms are commercially available, and are frequently used

to measure bone density for femoral hip fracture finite element analysis [13, 19, 21].

Another commonly used phantom is potassium phosphate (K2HPO4), dissolved

into distilled water at different concentrations to provide a varying mineral den-

sity [17, 18, 33, 45]. K2HPO4 is a good choice because it is inexpensive and easy

to make, and has been shown to be as effective as a commercial phantom [32]. A
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K2HPO4 phantom was chosen for this project for these reasons.

Nazarian et al. [32] provided an equation for calculating ash density from the

equivalent K2HPO4 concentration of bone, C,

ρash = 1.48C − 0.8. (2.1)

All densities and concentrations are expressed in g cm−3.

In order to characterise the Young’s modulus of bone samples, Keyak et al.

(1998) [18] used two separate equations (determined by Keller [33] and Keyak et

al. (1994) [17]) which predict the modulus each for a different range of ash density.

Keller’s study provides an equation for cortical bone samples with an ash density of

ρash ≥ 0.6 g cm−3,

Ecort = 10.2ρ2.01ash if ρash ≥ 0.6 g cm−3. (2.2)

All moduli are expressed in GPa. Keyak et al. (1994) provide an equation for can-

cellous bone samples with an ash density of ρash ≤ 0.27 g cm−3. Separate equations

were provided for the elastic modulus of cancellous bone along the superior-inferior,

mediolateral, and antereoposterior directions, as this property varies with loading

direction depending on the direction of growth of the trabeculae. As hip fractures

are primarily caused by sideways falls, the femur was primarily loaded along the

mediolateral axis, and the appropriate relationship was used,

Ecanc = 7.330ρ2.07ash if ρash ≤ 0.27 g cm−3. (2.3)

Keyak et al. (1998) used a model combining these two relationships, along with a

linear interpolation applied to ash densities between 0.27 g cm−3 and 0.6 g cm−3.

Keyak et al. (1998) used the equation for the superior-inferior direction, so the same

method was used here but incorporating the mediolateral equation instead, as this



Chapter 2 CT Characterisation of Femoral Bone and Finite Element Modelling of
Bone Tissue 15

is the principal direction along which the bone was loaded.

Eint = 9.59ρash − 2.10 if 0.27 ≤ ρash ≤ 0.6 g cm−3. (2.4)

A Poisson’s ratio of 0.4 is assumed for all ash densities [18].

2.2.2 Densitomentry of sheep femur

Nazarian et al. [32] used four concentrations of K2HPO4 solution: 0.05 g/ml,

0.15 g/ml, 0.5 g/ml, and 1 g/ml. The same concentrations were chosen here, but

with the addition of a pure distilled water sample (C = 0 g/ml). K2HPO4 (Sigma-

Aldrich, Gillingham, United Kingdom) calibrations were prepared by serial dilution

with distilled water in plastic bottles. The solutions were transferred to plastic 0.25

ml microcentrifuge tubes (Alpha Laboratories, Eastleigh, United Kingdom).

A left sheep femur was acquired from a local butcher (Joseph Morris, Wigston,

United Kingdom). The distal part of the femur was removed with a handsaw ap-

proximately 140 mm from the head to the sawn end. The femur was acquired with

most of the muscle tissue removed, and as much as possible of the remaining soft

tissue was removed from the surface of the bone with a number 10 scalpel blade.

The femur was scanned and the data was processed in VGstudio (110 kVp, 326

mAs, 0.0892 mm voxel size, 1006 × 1033 × 1470 volume). The femur was placed

in a plastic flowerpot and supported with pieces of foam so that it could be held

vertically in the scanner. The foam had a very low linear attenuation so did not

appear in the scan data. The five calibration phantom vials were pressed into the

foam along the axis of the bone. The flowerpot and the calibration vials did not

touch the femur directly, so they could be easily removed from the STL file.

Figure 2.2 illustrates the process undertaken to generate a surface mesh and spa-

tially varying Young’s modulus function within the finite element model using the

scan data. An STL file containing the mesh of the surface geometry of the femur

(186,582 vertices) was exported and reduced in Meshlab (2000 vertices). Figure 2.3
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Figure 2.2: The process of generating a mesh and spatially varying Young’s modulus function
within the finite element model. The left hand column shows the process used to import the linear
attenuation data obtained during the scan, calibrate it to determine ash density, then calculate
the Young’s modulus. The right hand column shows the process used to generate the surface mesh
for the femur.

shows the original mesh including parts of the flowerpot and calibration vials. These

were removed from the mesh in Solidworks after the mesh was reduced. The CT

data was also exported from VGStudio MAX as a stack of TIF image files, with

each image representing one voxel layer in the z-direction. The grey value of each

pixel scales linearly with the linear attenuation in the corresponding voxel. All TIF

image analysis and manipulation was carried out in ImageJ 1.48v. The extent of the

K2HPO4 solution in the calibration vials in the z-direction was determined to range

from 184 to 248 slices. For each vial, image slices were taken at five 50 slice inter-

vals, covering 180 slices starting from the approximately lower extent of the vial,

and linear attenuation values were sampled from a manually selected rectangle. An

example of a sample rectangle from the 1 g/ml phantom vial is shown in figure 2.4.

The sampling areas were taken from the centre of the cross section of the vial, and

care was taken to avoid artificial lowering of the measurement due to partial volume

effects caused by inclusion of any voxels containing plastic or air. The mean and

standard deviation of the grouped data from each of the five slices are plotted in

figure 2.5 against the equivalent K2HPO4 concentration.

The calibration equation for calculating equivalent K2HPO4 concentration C for

a given linear attenuation µ was determined by generating a line of best fit of the
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Figure 2.3: Images of the sheep bone meshes before and after reduction. Parts of the plastic pot
and calibration vials were present in the original file (visible in the left-hand image) and removed
after reduction.

Figure 2.4: Sample slice (slice number 687) taken from scan of sheep femur and K2HPO4 calibration
vials. All five vials are visible, along with a cross-section through the shaft of the femur. Expanded
image shows C = 1 g/ml phantom vial. Pixels within the yellow box (24 by 23 pixels) were
sampled along with data from 4 other slices to generate a mean and standard deviation for the
linear attenuation of the contents of this vial.
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Figure 2.5: Calibration graph of K2HPO4 concentration C plotted against mean linear attenuation
µ in each of the five phantom tubes. Error bars are the standard deviation in µ for the samples
taken from each vial.

data (using graphing software Origin (OriginLab, Northampton, MA, USA)):

C = 0.0155µ− 0.63. (2.5)

The images were downsampled using ImageJ’s bilinear interpolation tool so that

each voxel contained the mean linear attenuation in 1 mm3, and the stack was saved

in an Analyse format. A MatLab program was written to read the Analyse image

and save its contents into a text file containing a four-column table of coordinates

and linear attenuation values. Comsol’s interpolation function allows the user to

enter values at discrete points on a three-dimensional grid, and interpolates the val-

ues across the whole geometry. Linear attenuation values were entered at 1 mm

intervals across the volume of the geometry of the femur. A function was created to

convert linear attenuation values to ash density, using equations 2.5 and 2.1. The

interpolated concentration function was then used in equations 2.2, 2.3, and 2.4 to

compute the Young’s modulus. Figure 2.6 shows a sample image from the scan be-

fore and after downsampling, along with the Young’s modulus calculated in Comsol
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on the same plane.

Figure 2.6: Clockwise, from top left: a sample image slice; the same slice after downsampling; the
elastic modulus (GPa) plotted on a cut plane at the same z value as the image slices; the location
of the cutplane in the geometry of the proximal femur geometry.

2.3 Preliminary Finite Element Model - PVC

Throughout this project, the surface strains calculated by finite element analysis

was compared with strains measured with strain gauges bonded to the surface of a

femur. The number of points where strain can be measured is therefore restricted

by the number of available strain gauge amplifier channels. It is important to select

points on the surface of the femur which experience a significant strain dependence

on loading condition. The positioning of the gauges is constrained by the surface

geometry, the surface that the gauge is bonded to needs to be sufficiently flat and

smooth, as surface defects could cause unpredictable localised strain concentration.

It is therefore critical to understand the strain distribution on the surface of the

femur so that the areas with the largest strain can be predicted. It is also important

to select a range of loading conditions which result in a significantly varying strain
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Figure 2.7: Position on the PVC femur of a) boundary loads and b) fixed boundaries for each
loading condition. c) the fixed boundaries for all loading conditions at the distal end of the femur

distributions.

A finite element simulation was run to observe how loading angle affects strain

distribution. In chapter 1, it was stated that the loading conditions will be changed

by altering orientation of the femur, thus changing the the point of contact with

the load cell and the floor. While the aim of this project is to produce a model

where the load applied to the femur is governed by simulation of contact forces, the

simulation reported in this chapter is a preliminary model which does not require

this level of complexity or accuracy. Normal loads will be applied through small,

single facet boundaries. The purpose of this simulation is to provide a qualitative

assessment of the strain distribution on the proximal femoral geometry.

2.3.1 Model

The STL file of the PVC proximal femur portion was imported into Comsol. The

material properties of PVC were applied (E = 2.7 G Nm−2 [46], and the Poisson

ratio ν = 0.4 [47, p.278]). All boundaries at the distal end up to approximately 3

cm from the sawn end were fixed in space (figure 2.7c). Bone cement is used in the
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Figure 2.8: Loading configuration of model depends on two angles: α - the angle of rotation about
the shaft, and φ - the angle between the shaft and the floor. The point and direction of the applied
1 N load is shown with an arrow, and the floor is represented by a workplane.

experiments described in this thesis to hold the distal end of the PVC and bone

samples in the apparatus. The decision was made to not model the displacement

of the boundaries in contact with the cement, as they were considered to be at a

sufficient distance from the proximal end of the loaded boundaries, and the proximal

end of the femur where hip fractures frequently occur.

The geometry was rotated so that the bone shaft (proximal-distal axis) pointed

roughly along x-axis of Comsol’s coordinate system, and the medial-lateral axis

pointed along the y-axis. This was done by plotting a line through the anatomical

axis in the Comsol geometry using the coordinates of two nodes estimated to be

at either extent of this axis on the surface of the femur, and calculating the angles

between this line and each Cartesian axis. The load was applied roughly along the

y-axis, this was achieved by using two workplanes in the x − z plane and selecting

the positions on the y-axis to bring them in to contact with the femur. The first

boundary met by the workplane was selected as the boundary of application of the

load (boundaries on the femoral head) or the fixed boundary (greater trochanter).

Two rotations of α and φ were applied around the x-and y-axes respectively (Fig-

ure 2.8). The angles were set so that α = 90◦ and φ = 0◦ described the configuration

described in the previous paragraph, representing an exclusively sideways fall with

the femur parallel to the ground. α < 90◦ represents the case where the impact site
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is rotated towards the posterior side of the greater trochanter, and when α > 90◦

the impact is rotated towards the anterior side. In configurations where φ > 0◦, the

femur is no longer parallel to the floor, representing a situation where the knee is

turned away from the ground at the time of impact.

The position of the femur relative to the parallel workplanes could then be de-

fined by the angles α and φ, and the workplanes moved along the y-axis to meet the

femur and determine the loading and fixed boundaries for each loading condition.

Ten loading conditions were used, five α values and two φ values (figure 2.7a and

2.7b). α was varied from 50◦ to 130◦ with an interval of 20◦. A study by Court-

ney [48] used an angle of 10◦ between the diaphysial axis and the ground, equivalent

to the angle φ in this study, based on loading conditions associated with producing

realistic fractures [49]. This choice of angle has also been used by Wakao et al. [21]

and Pinilla et al. [50]. The simulation was run at the range of α angles with both

φ = 10◦ and 0◦ degrees so that the effect of altering φ can be observed.

The boundaries selected for loading were prescribed a normal compressive load

of 1 N, this was achieved by applying a pressure equal to the inverse of the surface

area of the load boundary. A sweep parameter was used to activate each loaded and

fixed boundary pairing in turn, and a parametric solver was used to sweep through

the 10 loading conditions.

2.3.2 Results

The principal strain with largest magnitude was plotted on the surface of the

femur for each of the loading conditions (figure 2.9). This plot shows the largest

strain regardless of its sign, but also shows whether the surface is extended (red) or

compressed (blue).

Highly localised areas of high strain can be observed around the fixed and loaded

boundaries. These local high strain concentrations are caused by small discrete load-

ing areas, and are not seen in real hip fractures, as the bone is surrounded by soft
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Figure 2.9: Maximum surface principal strain induced on the surface of the PVC femur under 1 N
load for each combination of α and φ: posterior (top row) and anterior (bottom row) view. The
range of strains mapped was limited to ±5 µstrain.
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Figure 2.10: Location of the three sampled test points. Suitable locations were selected by observa-
tion of the strain distribution, and under the condition that the femoral surface must be relatively
smooth.

tissue which reduces the pressure caused by impact. The force of the bodyweight

passed to the femur in a fall is transferred through the acetabulum, which provides

a large area over which to spread the force. Measures taken in experiments done

with the bone sample to avoid the localised high pressure seen in this simulation

will include the use of PMMA bone cement (see chapter 3), a plastic acetabular cup

simulant (chapter 4), and foam soft tissue simulant (chapter 5). These will eventu-

ally be included in future finite element models. Highly strained areas are observed

on the shaft immediately above the fixed boundaries. The proximity of this highly

strained region to the fixed boundary indicates that these too are a result of an un-

naturally rigid constraint on the distal end of the femur. The purpose of this model

is to investigate strains in the proximal femur. The high strains caused by the fixed

constraints at the distal end are not near the strained areas in the proximal part of

the femur, indicating that the strain induced in the proximal femur is not sensitive

the boundary conditions at the distal end.

Highly strained areas are seen along the neck of the femur, most noticeably

on the posterior side. The highest magnitude principal strains were sampled from

three points on the neck, the superior (a), posterior (b), and inferior (c) sides (figure
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Figure 2.11: Maximum principal strain vs. α: PVC model.

2.10). These points were selected in areas where the surface geometry was fairly

flat, and it was feasible that a strain gauge could be applied here. The largest

magnitude principal strain is plotted in figure 2.11. Point a is in compression for

all loading conditions. Point b is in compression for lower values of α, but crosses

into extension between α = 110◦ and α = 130◦ (for both φ = 0◦ and φ = 10◦).

Under all loading conditions, point c is in extension. Point b experiences the largest

range in strain (4.3764 µstrain), followed by point a (3.1714 µstrain) then point c

(1.3439 µstrain). Point a sees the largest strain (−4.4284 µstrain), followed by point

b (−3.4874 µstrain) then point c (2.0764 µstrain).

2.4 Preliminary Finite Element Model - Bone

The morphology of the proximal femur of a sheep is quite different from that of a

human. This, along with the spatially-varying Young’s modulus of the bone sheep’s

bone sample, means that the dependence of strain distribution upon loading angle

cannot be assumed to be identical in the PVC and sheep’s bone samples.

A preliminary model investigation, similar to that of the PVC model described

in the previous section, was carried out with the sheep’s femur. This time, there is

the additional complexity of the spatially dependent Young’s modulus. Two models

were created, one with a spatially dependent modulus function, the other homoge-

neous. The models were otherwise identical. The Young’s modulus used for the
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Figure 2.12: Position on the sheep femur of a) boundary loads and b) fixed boundaries for each
loading condition. c) the fixed boundaries for all loading conditions at the distal end of the femur

homogeneous model was the mean modulus found by integration over the volume

of the spatially dependent model.

2.4.1 Model

The sheep’s femur STL file was imported into Comsol. For the spatially depen-

dent model, the modulus was entered through a linearly interpolated function using

the method described in section 2.2. The ash density was limited to a minimum of

ρash = 0.05 g cm−3. The upper and lower limit of ash density values present in the

model, and the corresponding Young’s modulus calculated from equations 2.3-2.4

are found in table 2.1. The Young’s modulus of the homogeneous model was set

to 1 GPa. Rotations were applied as in the PVC model to align the femur along

the coordinate axes. Fixed boundaries were applied to the distal 3 cm (figure 2.12c).

Minimum Maximum

ρash (g cm−3) 0.05 1.1
E (GPa) 0.015 12

Table 2.1: Minimum and maximum values of ash density and Young’s modulus.
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Figure 2.13: Angles α and φ defining the loading conditions of the sheep bone model. Arrow
shows point and direction of application of 1 N load. A workplane touching the greater trochanter
represents the floor.

The same range of α and φ angles were used as in the PVC model, with the

same method of using workplanes to select the load and fixed boundaries (figure

2.12a and 2.12b). As these models used the geometry acquired from a left femur, as

opposed to the right femur used in the PVC model, the direction of α was reversed.

The convention used was that α = 0 when the lesser trochanter is pointing towards

the floor. Figure 2.13 shows both angles, with the workplane representing the floor

and the arrow showing the point of application of the load. Again, a load of 1 N

was applied to each of the load faces in turn.

2.4.2 Results

The maximum principal strains were mapped onto the surface of the femur for

each set of loading condition for homogeneous model (figure 2.14) and spatially

dependent model (figure 2.15). High strains are found around loading and fixed

boundaries, similar to those calculated by the PVC model. Highly strained areas

are found on the neck of the femur. This was also the case for the PVC model, so

three sample points were taken on the superior, posterior, and inferior sides of the

neck.

The strain distribution is broadly similar to that of the PVC femur, with high
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Figure 2.14: Maximum surface principal strain for each combination of α and φ for the homogeneous
sheep femur model under 1 N load. The range of strains mapped was limited to ±10 µstrain.
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Figure 2.15: Maximum surface principal strain for each combination of α and φ for the spatially
dependent sheep femur model under 1 N load. The range of strains mapped was limited to
±10 µstrain.
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Figure 2.16: Location of the three sampled test points on both sheep bone models.

strain concentrations around the neck. Three strain sampling points were applied

in a roughly analogous position to the sampling points in the PVC model (figure

2.16). The maximum strain is plotted for each loading condition for each of the two

models is shown in figure 2.17.

For both models, the strain calculated at point a is always compressive. Point

b is in compression at low angles and switches to extension between α = 110◦ and

130 in both models for both φ = 0◦ and 10). Point c is always in extension in the

homogeneous model, whereas it switches switches from extension to compression

between α = 110◦ and 130◦ for both φ values in the spatially dependent model.

In the homogeneous model, point a has the largest range of strains (6.1821 µstrain),

followed by b (4.0395 µstrain) then c (1.7426 µstrain). The largest maximum strain

is calculated at point a (−8.0440 µstrain), then b (−3.6264 µstrain), and the lowest

at point c (1.9016 µstrain).

Point b shows the the largest range in strains calculated in the spatially depen-
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Figure 2.17: Maximum principal strain vs. α: bone models.

dent model (9.4505 µstrain), followed by a (4.3022 µstrain) then c (3.019 46 µstrain).

The largest maximum strain is calculated at point a (−9.4514 µstrain), then b

(−5.952 µstrain), and then c (2.2427 µstrain).

2.5 Discussion

The results of this simulation have shown that loading the femur between the

femoral head and the greater trochanter causes a highly strained area on the poste-

rior side of the neck of the femur. This is in keeping with the expected location of

hip fracture initiation.

Changing the orientation of the femur has a significant effect on the size of the

strains observed. Rotation about the shaft can cause strains to change from com-

pression to extension. Changing the angle between the shaft and the ground also

has an affect.

Sampling strain data from the three test points in this model has shown that the
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superior and posterior sides of the neck see the largest ranges in strain measurement

across the simulated loading conditions, with the inferior side of the neck seeing a

smaller but still significant range in strain.

The strains simulated in these models are not expected to match real fall situa-

tions, as 1 N is an unrealistically small impact load. The purpose of these models is

to assess how strain distribution is affected by loading angle, and to eventually be

able to compare with experimental results.

2.6 Conclusion

Computed tomography has been used to generate a geometric mesh of both a

PVC proximal femur model, and the proximal portion of a sheep’s femur. A K2HPO4

CT phantom was created and used to calculate ash density in bone samples, which

was used to develop a linear interpolated spatial function for Young’s modulus for

the sheep’s femur.

Preliminary models were created for the both the PVC and sheep’s femur to

give an idea of how strain distribution is affected by loading angle, and to help

determine where the largest strains are found on the surface of the femur. This will

be a useful resource when designing experiments, for both deciding how to load the

bone, and where to attach the strain gauges. Two sheep bone models were used to

investigate the effect of the interpolated Young’s modulus function determined from

the CT scan. The data collected from these two models show that, while the strain

distribution is largely determined by the geometry of the femur, the spatial variation

of the Young’s modulus has an effect on the strains. Although the morphology of

the sheep’s femur is quite different from the human femur, the strain distribution is

similar, and the strains are largest around the neck. Strain gauges are best applied

around the neck in both cases. A sensible choice would be to apply strain gauges

to analogous points on the PVC and the sheep’s femur. The sheep’s femur is much

smaller than the PVC femur, which will have a factor in where gauges can be placed.
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This will be considered in chapter 5.
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Chapter 3

Strain Measurement Techniques

for Femoral Bone

3.1 Introduction

A central part of this project involves measuring strain in a bone sample. This

needs to be done reliably, reproducibly, and without damaging the bone. The meth-

ods used to measure strain will be discussed in this chapter, including the choice

of strain measurement configuration, the gauges used, and the procedures used to

bond the gauges to the sample.

The way in which the samples will be attached to any loading apparatus will

also be considered. Only the proximal portion of the femur is used, so the fixture of

the distal end must be considered.

It is not known whether repeatedly freezing and defrosting strain gauged-bone

has an effect of the reliability of the strain measurements. If the freeze-thaw cycles do

cause the measurements to become unreliable, an upper limit will have to be placed

on the number of times the bone is frozen and defrosted after the application of the

strain gauges, potentially restricting the possibility of repeating measurements. An

experiment was devised to assess the reproducibility of strain measurements taken

after multiple freeze-thaw cycles.
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Figure 3.1: a) The rosette gauges used in this project consist of three single strain gauges stacked
a single backing foil. The gauges are aligned at 0◦, 45◦, and 90◦. b) Circuit diagram of the
strain gauge quarter-bridge circuit in the two-wire and three-wire arrangement. Both lead wires
are connected to the same arm of the bridge, resulting in an increased resistance in this arm
and causing the bridge to become unbalanced. In the three-wire circuit, the lead wire resistances
RL1 and RL2 are joined to separate arms of the bridge, one either side of the output sensor. If
RL1 = RL2, the bridge will be balanced when RG = R2 = R3 = R4.

3.2 Strain Measurement

3.2.1 Apparatus

As stated in chapter 2, strain gauges will be used to take the experimental surface

strain measurements. Strain gauges measure strain along one axis. In a system with

changing load positions and directions, the direction of the largest surface strain at

the gauge location is liable to change, meaning that a change in strain direction

could be misinterpreted as a change in strain magnitude. Tri-axial (rosette) strain

gauges consist of three single gauges laid on top of each other, aligned along three

different directions (figure 3.1a). This allows for the measurement of the two linear

strain components as well as the shear strain. This means that the largest measur-

able surface strains can always be measured, regardless of their direction.

An eight channel strain amplifier (Fylde Electronic Laboratories Ltd, Preston,

United Kingdom) was used to provide strain measurements. The amplifier was con-

nected to a PC where the data was acquired with Madaq, a labview executable file

designed by Fylde for use with the Fylde amplifier. Each channel can be used to

record the data from one single strain gauge when attached in quarter-bridge con-
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figuration. Rosette gauges require one channel per component gauge, so this allows

for the use of a maximum of two rosette gauges and two single gauges. In chapter

4, the positioning of the four gauges will be considered.

Two 120 Ω single strain gauges (RS Components Ltd., Corby, UK) and two

120 Ω rosette gauges (0◦/45◦/90◦, Omega Engineering Limited, Manchester, United

Kingdom) were bonded to each sample. The gauges were acquired pre-wired. The

single gauges are sold with adhesive contact pads to provide a point to solder gauge

wires and lead wires to. The pads allow the lead wire to be secured to the surface

of the sample, this avoids putting large tensions through the delicate gauge wires.

Terminal pads (Omega) were glued to the samples to perform the same task for

the rosette gauges. The strain gauges were connected to the strain gauge amplifier

channels in a quarter bridge arrangement. A three-wire arrangement was used to

help eliminate lead wire resistance (figure 3.1b). In a two-wire circuit, the resis-

tances of the lead wires are both connected to one arm of the bridge, causing an

imbalance in the bridge which could be misread as strain. In the three-wire case,

one arm of the strain gauge is soldered to two leads, one connected to the bridge

circuit and the other to the sensor. The other gauge arm is connected to another

arm of the bridge circuit. If the resistances of the two lead wires connected to the

bridge are assumed to be identical, they cancel one another out. In reality, the resis-

tances of the lead wires are not identical and so do not cancel out perfectly, but the

three-wire arrangement helps to reduce the imbalance. The third wire acts only as

a voltage sensing wire, and does not contribute to the resistance of the bridge circuit.

The strain measured by a strain gauge is affected by thermal expansion of the

material to which it is bonded. Strain gauges are frequently designed to compensate

for the thermal expansion matched to aluminium or steel samples. The thermal

expansion coefficient of bone is 27.5× 10−6/◦C, [51], and the coefficients listed by

RS for aluminium and steel matched gauges are 23.4× 10−6/◦C and 10.8× 10−6/◦C

respectively. The aluminium matched gauge has the closest coefficient to bone, so

this one was used. As this is not a perfect compensation, it is important prevent

the temperature of the bone from changing drastically. Any bone samples stored
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in a freezer will be allowed to reach thermal equilibrium for 30 minutes before any

measurements are taken. A large excitation voltage can cause an increase in gauge

wire temperature. The strain amplifier was set to the smallest possible excitation

voltage, 2.5 V, to minimise this effect.

The principal strains are the components of the strain measured at an angle

where the shear strain is zero. They are the maximum measurable strains at that

specific point. As the principal strains do not depend on the direction in which the

gauge is aligned along, they were chosen as a suitable variable to use for comparison

between the experimental data and the finite element analysis. Strain measurements

from each of the three components gauges of a rosette gauge, ε1, ε2, and ε3, can be

used to compute two principal strains on the surface of a sample [52],

εp1 =
ε1 + ε3

2
+

1√
2

√
(ε1 − ε2)2 + (ε2 − ε3)2 (3.1a)

εp2 =
ε1 + ε3

2
− 1√

2

√
(ε1 − ε2)2 + (ε2 − ε3)2 (3.1b)

3.2.2 Applying Strain Gauges to Bone

The surface of the bone must be prepared before bonding strain gauges to it.

Uneven or greasy surfaces provide poor adhesion for the glue, so it is possible that

the bond might fail if the surface is not prepared adequately. The exact technique

implemented to do this varies, but most studies follow a procedure of stripping the

bone of soft tissue, degreasing and then abrading the bone surface, before finally

bonding the gauge.

Ota [20] used a knife and sandpaper to remove soft tissue from the bone and

then cleaned it with isopropyl alcohol, before bonding the gauges with adhesive

cyanoacrylate. Write [53] used multiple applications of a procedure that consisted

of applying chloroform methanol to degrease the surface and then scraping with

sandpaper. An ammonium solution was used to neutralise the surface, and cello-

phane tape was used to hold the gauge in place while an adhesive was used to bond

it to the bone. Yosibash [22] used ethanol to degrease the bone, then sanded the

the surface and cleaned it again with ethanol. Cyanoacrylate was used to bond the
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gauges.

Cordey and Gautier [54] provide a guide for bonding pre-wired strain gauges to

bone in-vivo. They recommend stripping the periosteum where the gauge will be

applied, degreasing with chloroform and wetting with sterile water. Cyanoacrylate

is applied to the underside of the gauge which is then placed on the prepared surface

and pressed down for 30 seconds. Teflon foil is used to prevent gloves from sticking

to the bone. Finally, cyanoacrylate is applied to the top of the gauge to prevent

slipping.

The following procedure was used to stick both gauges and terminal pads to the

bone:

1. Remove all excess soft tissue with number 10 scalpel blade. This step is de-

scribed in section 2.2.2, as it is necessary to remove soft tissue before scanning.

2. Sand surface of gauge site with 40-grit sandpaper.

3. Apply isopropyl alcohol to the surface to remove any remaining grease.

4. Apply a small length of foil-backed tape to across the gauge to hold it in place

on the surface of the bone. The foil is peeled back, along with the gauge, and

cyanoacrylate is applied to the back of the gauge. The tape is pressed back

down onto the bone, pressure is applied by hand for 30 seconds, then the tape

is removed after 10 minutes.

5. A thin layer of cyanoacrylate is applied to the top of the gauge to protect it.

The terminal pads need to provide a surface that solder will adhere to, so they

are not coated in cyanoacrylate.

The same procedure is used when bonding gauges to the PVC femur model.

3.3 Distal Fixture

The apparatus which will be designed to load the PVC and bone samples will

be constructed largely from steel and aluminium. In the body, bone is protected
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by soft tissue which dampens impact and spreads load across a wide area to re-

duce pressure. The irregular morphology of bone means that, if an exposed bone

is placed in a steel clamp or pressed against a steel plate, the contact area will be

small so pressure will be comparatively high. The results of the preliminary models

described in chapter 2 show that small discrete loading areas lead to a very high

localised strain concentration, which could potentially cause damage to the bone. If

a sample is damaged during testing, it will not be possible to compare results from

before and after the damage occurred. Any method used to hold the sample in the

apparatus must use a sufficiently large surface area to avoid damaging the bone.

Section 2.2 stated that both the bone and PVC samples needed to be cut down to

fit in scanner. The distal end of the femur must be fixed in the loading apparatus

without being damaged.

A frequently used solution is to embed the distal end of the proximal femur in

polymethyl methacrylate (PMMA) bone cement [16,20,22]. The PMMA is moulded

to the surface of the bone, so the force can be applied through a large contact area.

It also seals the cut face, helping to prevent water and mineral loss. PMMA (or

similar materials) is often used to make a cap through which a compressive load is

applied, spreading the load across a greater surface area than would be achieved by

a flat plate [14,16,20].

PMMA bone cement was used to fix the distal ends of the samples into metal

cylinders, which could then be fixed to the loading apparatus. A 50 mm diameter

aluminium tube was cut to 50 mm long. A 30 mm thick plate was cut to the same

cross section as the tube and welded to one end to seal the cylinder. The end plate

was thick enough that a threaded hole could be drilled into it so that it could be

screwed into apparatus. The rest of the design of the apparatus will be discussed in

chapter 4.
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3.3.1 PMMA

Palacos R PMMA bone cement (Heraeus Medical, Newbury, United Kingdom)

was used throughout this project. This cement is supplied as a monomer liquid and

a polymer powder. A polymerisation reaction occurs once the two components are

combined and the the cement forms a paste which gradually hardens to a mould-

able dough, and continues to harden into a hard solid. This cement comes with

instructions for polymerisation by hand-mixing. The liquid component is to be put

in the mixing vessel first followed by the powder, as reversing the order can result in

powder nests. The quantity of powder in a sachet is matched exactly to the amount

of liquid in an ampoule, so the entirety of one sachet and one ampoule are used. The

components are hand mixed for 30 seconds, then left to harden for approximately 15

to 30 seconds (depending on the room temperature), or when it no longer adheres

to rubber gloves.

The density of the mixed cement needs to be as high as possible, as the in-

troduction of air into the cement could compromise the strength of the structure.

It is desirable to achieve good contact between cement and bone, and cement and

cylinder. The technique described above was tested with an aluminium cylinder (de-

scribed above) and a 30 mm diameter aluminium cylinder to simulate the femoral

shaft. An aluminium rod (diameter 3 mm) was used to stir the cement in an 8 cm

diameter glass mixing vessel. The instructions given in the manual were followed,

with rapid mixing. Following the waiting time, the cement was removed from the

vessel and shaped into a cylinder of a similar diameter as the aluminium cylinder.

It was pressed into the aluminium cylinder, ensuring that there were no air pockets

at the base. A well was made in the centre of the cement, and the inner cylinder

was pressed into it.

A CT scan was performed to investigate the internal structure of the cement (145

kVp, 310 mAs, 0.04477 mm voxel size, 1920 × 1920 pixel slice area, 1536 slices) (fig-

ure 3.2a). Some large voids are present (of around 5 mm across), including one void

which spans the entire width of the channel of cement which surrounds the side of

the central cylinder.
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Figure 3.2: Images from the CT scans of the bone cements test using a) only the instructions
supplied with the cement and b) the procedure recommended by Eyerer and Jin.

The outer cylinder was removed in order to inspect the voids present in the

surface of the cement. PMMA bone cement does not chemically bond to surfaces,

but it is held in place by friction. The relatively smooth surface of the aluminium

meant that it was possibly to twist the cement free from the outer cylinder using

a vice. The void passing all the way through the cement at the side of the cement

can clearly be seen in figure 3.3. It is clear that a refined method must be used to

reduce the size and number of the air voids.

Eyerer and Jin [55] investigated the effect using different mixing techniques on

the quality of a number of different cement brands, including Palacos R, specifically

comparing density, hardness, and strength. They reported on an improved mixing

technique. They recommend mixing the cement in a 6-8 cm diameter porcelain or

plastic vessel with a rounded-off sheet-metal strips or plastic. The cement is mixed

for 30 seconds at a rate of 10 rpm, as extensive and vigorous mixing leads to a

higher porosity. After mixing, a kneading time of 20-30 seconds is recommended.

Kneading bursts surface bubbles, reduces overall porosity.

Another test was performed using this method. An 8 cm diameter plastic beaker

was used, along with a 5 mm wide length of aluminium sheet to stir. The sheet
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Figure 3.3: The result of the first PMMA test, outer cylinder removed. The void spanning the
entire thickness of the side of the cement is visible in the centre of the image.

provides a larger surface area than the rod, and helps to mix the cement more effi-

ciently with less agitation. The powder and liquid were mixed together as gently as

possible until the two were just combined. This is more practical than enforcing a

strict time because it means that the point where the two are properly mixed can

be determined by eye, but overmixing is still avoided. The cement was left for 15

seconds after mixing, then kneaded for 20 seconds. Care was taken to avoid intro-

ducing folds into the cement while kneading.

Eyerer and Jin also recommend applying force to the cement during polymerisa-

tion to increase the density. The femur was pushed firmly into cement by hand, and

the aluminium mixing strip was used to press the cement around the femur down

and towards the side of the femur to make sure there were no gaps at the sides.

A CT scan of the cement made with this method was performed (140 kVp, 287

mAs, 0.0335 mm voxel size, 1920 × 1920 pixel slice area, 1536 slices), and the results

of the scan were compared with those of the previous scan (figure 3.2b). This time,

the outer cylinder was removed prior to scanning. Small voids are still present, up

to around 1.5 mm in diameter, but none as large as those seen in the previous scan.
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The method described by Eyerer and Jin will therefore be implemented in all future

uses of the Palacos R bone cement.

3.4 Freeze-Thaw Cycling

Due to the short time frame at which organic tissue decays, it is useful to be

able to store the bone samples in a freezer between uses. Studies have been done to

to show that patellar [56] and fibular [57] allograft bone samples can both be put

through eight freeze-thaw cycles without significant change to the mechanical prop-

erties. The bones used in our experiments will have strain gauges bonded to them,

so it is necessary to investigate whether the gauge-glue-bone bond will deteriorate

during the freeze thaw cycles, thus affecting the strain readings. In order to test

this, an experiment was designed that could be exactly replicated once a week for

six weeks.

3.4.1 Freeze-Thaw Experiment

An experiment was designed to measure the strain response in a pig rib bone

(Joseph Morris, Wigston, United Kingdom) under mechanical loading. A relatively

straight rib was chosen to make loading and fixing easier. The experiment was de-

signed to be repeatable, the aim is to observe whether the results change over time so

it is important that the loading conditions are easily repeatable between repetitions.

Each end of the rib was set in PMMA bone cement. The cement was moulded

around each end of the rib, covering approximately 10 mm along the length of the

bone to ensure the cement would not slip off once it had set. Prior to hardening,

each cemented end was pressed into a greased square aluminium mould. This gives

the cement flat edges so that it can be easily held in a clamp.

The rib was loaded by suspending two weight holders off it. By using two points

of application, the highly strained portion of the bone is distributed between the two

weight holders. If a single holder was used, the strain would be concentrated in a
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smaller area beneath the load point, making it more susceptible to fracturing. Two

PMMA “saddles” were made for the weight-holders to rest on to ensure that they

sit in the same place each time. The PMMA also serves to spread the stress across

the surface of the bone, avoiding crushing due to high pressures. Two small pieces

of PMMA were moulded against the surface of the rib, and the weight holders were

used to press a groove into the PMMA. Care was taken to ensure that the PMMA

was wrapped around the rib so that it would not come away from the bone once it

was set, while also ensuring that the two saddles did not touch, and that space was

left between them on the underside of the bone for a strain gauge to be attached.

A single strain gauge was bonded to the underside of the rib using the technique

described in section 3.2.2.

The load frame for this experiment is shown in figure 3.4. A frame was built

consisting of two aluminium end bars which rested on either end of the rib. Each end

bar was bolted to a separate steel sheet, which were bolted to a steel frame leaving

50 mm space between them, and 200 mm vertical clearance beneath them. One end

bar was fixed in place and the other was bolted along two slots which allowed it

to move towards and away from the other end bar, but remain parallel. Two holes

were drilled into the moving bar, and a threaded rod was passed through each hole.

The threaded rods were positioned so that their ends touched the other bar when

the rib was in place. They were bolted into place so that the distance between the

two bars could easily be replicated the next time the experiment was carried out.

Each bar had two side bars bolted to it, one fixed and one movable, which held the

sides of the PMMA in place.

The rib was placed between the bars and held in place with the side bars, all

of which were then screwed into place. The bolts were adjusted so that they met

the stationary bar, and the bolts were tightened. This ensures that the bars are the

same distance apart each time the experiment is carried out.

The strain measurement was set to zero with the weight holders not suspended

from the rib. The holders were placed onto the PMMA saddles with three 50 g
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Figure 3.4: The loading frame, with loaded rib, shown from above (photo) and the side (diagram).

masses attached to each, and the strain was measured. The strains induced in this

experiment are not time dependent, so it is not necessary to record them over time.

The strains were read by eye from Madaq’s display. After the strain was recorded,

another 50 g mass was added to each holder, and the strain was recorded again.

This process was continued until there were 10 masses on each holder. The holders

were removed from the rib, and the rib was removed from the load frame. The rib

was secured back in the frame and the process was repeated. This is to reduce the

potential error caused by incorrectly clamping or loading the rib. After four loading

cycles, the rib was wrapped in polythene again, with the PMMA, strain gauge, and

lead wires still attached, and returned to the freezer for seven days. The experiment

was repeated every week for six weeks.

3.4.2 Results

Data from each week is displayed in figure 3.5. A statistical test is required to

compare the data from week to week to determine whether it can be considered

consistent throughout the duration of the experiments or if there is a change. This
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Figure 3.5: Strain vs. number of masses for the data collected from each week. The data taken in
each of the four loading cycles is plotted separately, but the intercept and slope is calculated for
the all the data taken that week pooled together. It is assumed that the strain response to leading
is linear.
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can be done by separately comparing the intercepts and slopes of the lines of best

fit calculated for each week. If the results change over time, the possibility that the

strain measurements are affected by frequent freeze-thaw cycles cannot be ruled out.

3.4.2.1 Statistical Data Analysis

The data taken across each iteration of the experiment was compared statisti-

cally to determine whether there was any variation from week to week. Analysis of

covariance (ANCOVA) is a tool used to statistically compare dependent variables

(in this case strain) which have an associated covariate (number of masses), and

determine whether they are equal. A version of ANCOVA was used which consists

of two tests of two separate null hypotheses. The null hypotheses associated with

the first test is that the slopes of all datasets shown in figure 3.5 are equal, and the

second is that the intercepts are all equal [58].

A test statistic is calculated from the strain data for each null hypothesis. If the

test statistic lies below a threshold value (a critical value of the F-distribution deter-

mined by the degrees of freedom for this test and the desired threshold probability),

the null hypothesis is not rejected and the data from each week can be considered

to have the same slope (in the case of the first test) or intercept (in the case of the

second test). If the test statistic exceeds the threshold, the variation in the data is

considered to be statistically significant and unlikely to have happened by chance.

In this case, the null hypothesis is rejected, and the strain is considered to differ

between weeks.

The formula used to determine the test statistic, F1, associated with the null

hypothesis that all of the slopes are the same, requires the calculation of the pooled

residual sum of squares, SSp, and the common residual sum of squares, SSc. SSp is

the sum of the residual sum of squares for each week j, over a total of k weeks. This

is calculated from the deviations of xji (number of masses) and yji (strain) from
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their respective week means (x̄j, ȳj), and their cross product.

Aj =

ni∑
i=1

(xji − x̄j)2 (3.2a)

Bj =

ni∑
i=1

(xji − x̄j)(yji − ȳj) (3.2b)

Cj =

ni∑
i=1

(yji − ȳj)2 (3.2c)

SSp =
k∑

j=1

(
Cj −

B2
j

Aj

)
, (3.2d)

where ni is the number of results gathered each week.

SSc is the residual sum of squares calculated from the sums of Aj, Bj, and Cj

across all weeks,

Ac =
k∑

j=1

ni∑
i=1

(xji − x̄j)2 (3.3a)

Bc =
k∑

j=1

ni∑
i=1

(xji − x̄j)(yji − ȳj) (3.3b)

Cc =
k∑

j=1

ni∑
i=1

(yji − ȳj)2. (3.3c)

SSc =Cc −
B2

c

Ac

. (3.3d)

The number of degrees of freedom associated with each of these residuals are

DFp =k(ni − 2) (3.4a)

DFc =kni − k − 1. (3.4b)

The test statistic of the first null hypothesis is

F1 =
(SSc − SSp)/(k − 1)

SSp/DFp

(3.5)

with degrees of freedom k − 1 and DFp.

The second hypothesis requires the calculation of the total residual sum of
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squares. This number, SSt, is the residual sum of squares when all of the data

has been pooled together. The test statistic for the second null hypothesis is

F2 =
(SSt − SSc)/(k − 1)

SSc/DFc

. (3.6)

The degrees of freedom are k − 1 and DFc. For the null hypotheses to be rejected,

the test statistic must exceed a threshold value decided by a desired level of signifi-

cance. The desired level of significance for both test statistics is 0.05.

All statistical calculations presented here were implemented in statistical pro-

gramming language R, including the calculation of the thresholds for each F1 and

F2 value. The calculations were initially run for the entire data set, with k = 6

weeks and ni = 8 × 4 = 36 data points for each week. The first test statistic was

calculated to be F1 = 2.183, which falls below the threshold value F1thresh = 2.2643.

The null hypothesis is not rejected and the slopes are considered to all be equal. The

second test statistic is F2 = 13.56, exceeding the threshold F2thresh = 2.2629. The

associated p-value for this statistic is 2.8234×10−11. The null hypothesis is rejected,

signifying a difference in intercept between weeks. This result indicates that there is

statistically significant variation in the strain measurements as a response to load-

ing between weeks. It does not include information about when this variation arises.

The ANCOVA tests were carried out five more times, this time including the

data after each repeated week. The first test compared data from the first and

second weeks (k = 2), the next tests compared the first, second, and third weeks

(k = 3), and so on. The test statistics, along with their associated p-values (p1

and p2, associated with the first and second null hypotheses respectively) and the

threshold test statistics for a significance level of 0.05, are displayed in table 3.1.

F1 < F1thresh after each repetition, confirming that there is no significant variance

in the slopes. F2 is below the threshold after the second, third, and fourth weeks,

and exceeds the threshold in weeks five and six. The second null hypothesis can-

not be rejected after three freezing and defrosting cycles, but is rejected after four.

There is no significant variation in the data collected within the first four weeks of
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Week 2 3 4 5 6

F1 0.005270 0.1694 1.422 1.528 2.183
F1thresh 4.001191 3.097698 2.680168 2.431965 2.264310
p1 0.94237 0.84444 0.23984 0.19674 0.058049

F2 2.500 1.071 1.235 12.71 13.56
F2thresh 3.998494482 3.095432750 2.678300858 2.430384512 2.262937383
p2 0.11902 0.34690 0.29998 5.8022× 10−9 2.8234×−11

Table 3.1: Test statistic, p=0.05 threshold test statistic, and p-value associated with the two null
hypotheses calculated for data collected following each repeated week.

the experiment.

The results of this experiment imply that strain measurements taken after one,

two, and three freeze thaw cycles will be reliable, but the reliability of measurements

taken after any further cycles cannot be guaranteed. It cannot be concluded without

further investigation that this result is definitely caused by a change in the strain

gauge-bone bond, only that some change has occurred to change the results of the

experiment over time. Although attempts were made to make the conditions of the

experiment as similar as possible each week, it is possible that the inconsistency

of the results was caused by a change to the set up of the apparatus, or to the

bone itself. For the purpose of this project, however, this must be understood as a

limitation on the number of allowable freeze-thaw cycles. The sheep femur can be

refrozen a maximum of three times after the gauges are bonded, the results of any

experiments taken after a fourth cycle cannot be considered reliable.

3.5 Conclusion

Single and rosette strain gauges have been selected for measuring surface strain

in both the PVC and bone samples, as has a technique for preparing the samples

and bonding the gauges.

A method for sealing the distal end of the femur and embedding it into an alu-

minium cylinder using PMMA bone cement was refined. This method employs the
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gentle mixing and kneading of the cement to minimise the introduction of air into

the mixture.

The PMMA cement was used with a pig rib in the design of a mechanical loading

experiment to test the effect of multiple freeze-thaw cycles on strain measurement

with strain gauges. Strain measurement was confirmed to be consistent after three

freeze-thaw cycles, but the reliability of any measurements taken after four cycles

could not be guaranteed. Although it is not possible to attribute the inconsistency

of the strain measurements to the gauge-bone bond without further investigation,

the freeze-thaw cycles limit must be adhered to in order to ensure that inaccuracies

due to this factor are eliminated.



Chapter 4 Computational and Experimental Investigation of Strain in a PVC
Femur Model 52

Chapter 4

Computational and Experimental

Investigation of Strain in a PVC

Femur Model

4.1 Introduction

One of the aims of the work presented in this thesis is to develop a finite element

model to simulate strain in a femur under various loading conditions. The model

will be validated by an experiment with results which will be compared with the

model. The experiment and model will be designed and implemented with the PVC

femur prior to any work being carried out with bone sample. The PVC femur has

homogeneous material properties, making the model less susceptible to error than it

would be for the sheep femur with its spatially dependent Young’s modulus. PVC

is an easier material to work with as none of the safety precautions associated with

organic tissue are necessary, and, unlike bone, it does not decay over time. The

amount of time that the bone sample can be kept at room temperature is limited.

There is no limit to the number of readings which can be taken with the PVC femur.

The information gathered from the PVC femur model and experiment can be used

to select a subset of loading conditions to investigate with the bone sample.

The results of the experiment performed with the PVC model femur will affect

the way that the bone experiment is designed. Carrying out this experiment with
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the PVC femur will indicate any problems with the experimental design which can

be remedied or improved before any experiments are carried out with the real bone

sample.

This chapter will describe the design of the apparatus used to hold the distal end

of the femur when it is loaded. This apparatus will be used with both the PVC and

sheep femur samples. Many of the studies done on loading femoral bone have used a

loading condition which replicates stance or gait. Often, the distal end of the bone

is embedded into a fixture attached to the loading frame, and the load is applied

to the femoral head through a moulded cap [14, 16, 20]. Depending on the purpose

of the study, strain is measured as the load is increased slowly over time [14,22], or

the strain due to a static load is measured [20]. In some cases, the femur is tested

to failure [14,16,20].

Keyak [16] compares fracture conditions in both the stance and fall configura-

tions. In the latter case, the distal end is embedded in a fixture, and PMMA caps

are moulded to the points of contact on the femoral head and the greater trochanter.

A moulded PMMA cap provides a large contact area, but only to part of the surface

of the femoral head. If the angle of the femur is to be altered, the point at which

the femur contacts the apparatus will also change. It is preferable to use a socket

more like a real acetabulum, in which the femoral head can rotate freely.

A quasi-static applied load was used for the experiment described in this chapter,

the load was increased slowly and strain was measured at the same time. Keyak [16]

reported an average failure load in the fall configuration of 2.4 kN, so the maximum

load was much lower than this. Strain per Newton of applied force was measured at

each of the gauge sites, this was calculated from the gradient of the strain measure-

ment. This is preferable to setting a static load and measuring strain, as the strain

can be calculated from all of the data sampled by the strain gauge amplifier rather

than a single strain reading, thus reducing the effect of any errors. The application

of a static load can be unreliable and difficult to carry out precisely, as the load

applied to the bone tends to decrease as soon as it is applied due to compliance in
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the system [20].

A load frame was designed and manufactured to hold the femur inside the alu-

minium cylinder in a sideways fall position, and allow the bone to be held at a range

of angles. The load was applied to the femoral head through a load cell attachment

designed to simulate the contact conditions of the acetabulum. The femur was able

to rotate freely inside the attachment, as it would in the hip joint.

A finite element model similar to the the preliminary model reported in section

2.3 was built, but with forces applied by contact simulation instead of boundary

loads. The preliminary model shows where the areas with the largest strain con-

centration are, the selection of the gauging points was based on this information.

Trilateration was used to match the location of the gauges to the corresponding

strain measurement points on the model. This technique, which has not been used

for this purpose before, was used to compute the model coordinates corresponding

to each strain gauge location from the distances between each gauge and a number

of easily identifiable reference features on the surface of the femur.

4.2 Experiment

4.2.1 Design

The results of the finite element model reported in Chapter 2 show that the

orientation of the bone has an effect on the magnitude and distribution of the strain

induced in the femur. This information influenced the decision to carry out an ex-

periment where the femur is held at various loading angles with respect to the load

cell and loading platform.

A Hounsfield tensometer (Instron 3300) with a 500 N maximum load cell was

used to apply compressional force to the samples. The loading frame is connected

to a PC running Instron’s testing software, Bluehill, which allows the application of

the load to be automated by entering the rate of increase of load per minute, along



Chapter 4 Computational and Experimental Investigation of Strain in a PVC
Femur Model 55

with a maximum load. Any apparatus designed to hold the femur must be bolted

to the loading frame of the tensometer. The interface used to apply the load to the

must be attached to the tensometers load cell, which has a clevis attachment.

In section 2.3, two angles, α and φ, were used to categorise each loading con-

dition. The same two angles will be used for this experiment, with the addition of

a third angle, θ, measuring the angle between the load cell and the surface of the

apparatus in contact with the greater trochanter.

A right femur model was initially used for this project, and was used to provide

the geometry for the preliminary model described in section 2.3, however a broken

gauge resulted in this sample being unusable for the experiment. Pre-wired gauges

were not used for the right femur, and wires had to be soldered directly to the solder

pads on the gauges. The small size of these pads meant that the solder join was

not strong enough for the gauge to be soldered prior to bonding to the surface of

the femur, and the irregular geometry of the femur made it difficult to solder once

it was bonded to the surface. As a result, one of the solder pads became damaged,

and the sample was unusable. A left PVC femur acquired from the same source was

obtained, as a right model was not available. The femur was identical apart from

the geometrical reflection. Pre-wired gauges were acquired from the same source as

the wireless gauges, and proved to be much easier to use. The convention used in

chapter 2 of labelling α = 0◦ when the lesser trochanter is pointing down is used.

The PVC left femur was sawn to 17 cm long and scanned just as the right PVC fe-

mur was in section 2.2. The distal end was set in PMMA using the method detailed

in section 3.3.

4.2.1.1 Load Cell Attachment

A load cell attachment was designed to to act as an acetabulum surrogate in

which the femoral head can freely rotate. It had a slightly larger radius than the

head to allow free movement. An object was designed in CAD software SolidWorks

which could be bolted to a steel plate on the upper side and attach to the load cell,
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Figure 4.1: CAD drawing of load cell attachment.

and had the simulated acetabulum on the lower side, which would be the point of

contact with the femur. The design of this object is shown in figure 4.1.

The STL file of the PVC proximal femur was imported into the SolidWorks envi-

ronment, and a sphere was laid over the femoral head. The radius of the sphere was

adjusted until it closely matched the size of the femoral head at a 23 mm radius. It is

not easy to measure the dimensions of the femoral head directly as it is not a perfect

sphere, so this method provided an estimate of the radius with visual confirmation

of its accuracy. The femoral surface was removed and the sphere was centred 5 mm

below the lower face of the object. The radius of the sphere was increased by 2 mm

and the overlapping spherical sector was removed from the object. Figure 4.1 shows

the 3-dimensional object in contact with the proximal femur, along with the CAD

drawing showing the dimensions of the attachment.



Chapter 4 Computational and Experimental Investigation of Strain in a PVC
Femur Model 57

The CAD design was manufactured with a rapid prototyping machine from acry-

lonitrile butadiene styrene (ABS, E = 2.3 GPa, ν = 0.3 [59]). The hollow spherical

surface was polished to remove the stepped surface which is an artefact of the pro-

totyping process. Four holes were drilled into the attachment, and it was screwed

onto a 2 mm thick steel plate cut to match the surface area of the upper face of the

attachment. A clevis pin was welded to the steel plate so that it could be attached

to the tensometer’s load cell.

4.2.1.2 Tower

Apparatus was designed and manufactured to support the distal end of the femur

in a range of different angles, and provide an angled surface to contact the greater

trochanter. The design of the apparatus can be seen in figure 4.2. A tower con-

sisting of four threaded rods and a bracket is used to support the distal end of the

femur. The bracket includes an aluminium tab resting on a pivot, which is bolted

to the aluminium cylinder containing the femur. The bolt can be rotated within the

tab and screwed into place, changing the angle α. The pivot allows the femur to

be rotated, thus altering φ. The bracket rests on four nuts which are moved along

the threaded rods to compensate for this rotation and keep the greater trochanter

in contact with the surface. The tower is welded to a steel plate (E = 205 GPa,

ν = 0.28 [46]), which provides the contact surface for the greater trochanter. This

plate is supported at an angle by two nuts on threaded rods, which are welded to a

steel base plate. Changing the hight of the bolts changes the angle θ of the contact

surface with respect to the load cell. A 3 mm sheet of steel was used for the angled

plate to unsure that it does not bend under the force applied to the femur. The

base plate is clamped to a third steel plate which is bolted to the load frame. The

bolted plate and the base plate was designed to extend over the edge of the load

frame to provide a point to clamp them together. This is so that the base plate can

be secured to the load frame, but it can also be moved so that the femoral head lies

directly below the hemispherical surface of the load cell attachment.

The method used to embed the distal end of the femur into an aluminium cylin-
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Figure 4.2: Apparatus used to support the distal end of the femur and provide an angled contact
plane for the greater trochanter. The tab which is bolted onto the cylinder is visible in the right
hand image.

der is described in chapter 3. The threaded hole at the closed end of the cylinder was

designed to be bolted onto an aluminium tab attached to the bracket. The angle φ

could be altered by moving the distal end of the femur in the vertical axis by rais-

ing or lowering the bracket. α was altered by rotating the bolt in the aluminium tab.

The femur was set to the desired orientation defined by the angles α, φ, and θ

using a protractor and parallax. A seam artefact from the casting process running

along the femoral head in the mediolateral direction was used as a reference for mea-

suring α, along with the horizontal lower face of the load cell. φ is the angle between

the axis of the cylinder and the base plate bolted to the loading frame. θ is simply

the angle between the angled plate and the base plate. Figure 4.3 shows the lines

along which the angles are measured. A small source of error in the measurement of

α was caused by the cylinder rotating when tightening the nut holding it in place.

The femur was positioned at the desired α angle then the nut was tightened with a

spanner. α was then measured again and, if it deviated from the desired angle by

more than an admissible error of 2◦, the angle was re-set.
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Figure 4.3: The upper two images are taken from the CAD drawing of the apparatus, and shows
the angles describing the loading conditions of the femur. The right femur is shown, as this
model was used in the initial design of the apparatus. The angles are the same for the left femur,
but the direction of α is reversed. The photograph shows the sheep’s bone femur fixed into the
apparatus and positioned in the loading frame beneath the load cell attachment. Exactly the same
arrangement was used for the experiments with the PVC femur. The sheep’s femur experiment
will be discussed in the following chapter.

4.2.2 Measuring and Recording Strain

The strain gauge amplifier used in this experiment samples the strain at a rate

of 1,000 readings per second. The data recorded in Madaq was later downsampled

to 10 per second to increase the speed of data processing. This was considered a

sufficiently fine time resolution to observe the strain evolution.

The tensometer was programmed to increase the load applied to the femur at a

steady rate of 50 N/minute. Figure 4.4 shows a typical load vs. time graph output

by Bluehill. The regression line is calculated from the readings from 15 seconds

onwards. It shows a very small error of 0.006% in the gradient, indicating that the

the load rate input into program is accurate.

PVC behaves elastically in response to mechanical compression, so the strain is

expected to increase linearly with time. Strain per Newton can be calculated by

multiplying the gradient of the strain vs. time graph by 60/(N per minute). Figure

4.5 shows a sample graph of strain plotted over time (recorded at 0.1 second inter-
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Figure 4.4: Load plotted against time output from Bluehill software. Red line shows regression
line. First 15 seconds not used for regressional analysis.

Figure 4.5: Strain plotted against time, demonstrating the linear response to load (which increases
linearly with time). The data taken during the first 15 seconds were removed when calculating the
gradient, as the load measurements shown in figure 4.4 indicate that the programmed load increase
per second cannot be assumed for these data.
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vals) measured by the eight channels connected to the six rosette component gauges

and two single gauges bonded to the surface of the PVC femur, under the steadily

increasing load. After an initial settling period of around 15 seconds, the change in

strain is approximately linear with time. When the load cell initially makes contact

with the femur, the strain appears to respond in a non-linear way with the load.

This is caused by the compliance of the apparatus and can be eliminated from re-

sults when taking gradients.

Each component gauge of a tri-axial rosette requires a separate amplifier chan-

nel. A Matlab program was written to calculate the two principal strains for each

rosette gauge from the gradients of the data from the three channels.

4.2.3 Experimental Method

The femur was tested at nine α values, with the same range of 50◦ to 130◦ used

in the preliminary models described in sections 2.3 and 2.4, but with an interval

of 10◦ between each test. Eighteen loading configurations were used, one set with

φ = 10◦, θ = 5◦, another with φ = 15◦, θ = 10◦. The femur will be tested un-

der each loading condition three times and the average strain measurements will be

compared with the results of the finite element model, using the standard deviation

of the measurements as the experimental error. The load was increased at a rate of

50 N/minute, with an upper limit of 450 N. Loading was typically terminated once

a load of 100 N was reached.

The results of the model presented in section 2.3 indicate highly strained areas

on the neck of the PVC femur. The largest range in strain measurements was found

in the centre of the posterior surface of the neck, followed by the superior and then

the inferior surfaces. One rosette gauge and one single gauge were bonded to the

centre of the posterior surface of the neck, the other rosette gauge was bonded to the

superior surface of the neck, and the final single gauge was bonded to the inferior

surface. The directions along which the single gauges were aligned were determined

from the direction of the maximum principal strain at the corresponding point in
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the preliminary model. An arrow surface was plotted on the femur showing the

principal strain direction, and the gauge was bonded in approximately the same

direction as the arrows in the corresponding part of the surface.

The surface was prepared and gauges were bonded to the surface, using the tech-

nique described in section 3.2. Rosette gauges were applied to the top and middle

of the neck, and single gauges were applied to the lower side and middle of the neck.

4.3 Identification of Gauge Locations

In order to compare the results of the finite element model with the strain gauge

measurement, the measurement points on the model surface must be selected to

match up with the gauge locations.

Various techniques have been implemented to achieve this. Bessho et al. [14]

scanned the sample with a number of epoxy resin fiducials attached to the surface.

The coordinates of the fiducials were obtained from the CT scan data, and their

locations were registered with a two-dimensional photograph of the sample by ob-

servation. The location of the gauges is then transformed from the two-dimensional

coordinate system to the three-dimensional system of the scan data used by the

finite element model. Anderson et al. [60] scanned a pelvis sample with a registra-

tion block attached to iliac crest. The block coordinates of the block are registered

between the model and lab coordinates.

Trilateration is a technique used to find the coordinates of points by measure-

ments of distances from locations with known coordinates. It is frequently used in

navigation and surveying, and is not known to have been used for determining the

location of strain gauges. Trilateration was used for this experiment as it requires

very basic computation and apparatus and is not time consuming. In addition, no

fiducials or reference objects are required for this method. As this technique has

not been used for this purpose, its was assessed by investigating the effect of error
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Figure 4.6: Schematic representation of the geometric problem solved in the process of three-
dimensional trilateration. The three spheres are constructed at the measured radii from the cor-
responding reference points. The spherical surfaces around P1 and P2 intersect along a circle c.
The third sphere intersects c in at two points, Pa and Pb.

in measuring distance.

4.3.1 Trilateration

Trilateration is a method of defining the coordinate location of a point in a three-

dimensional space using its distance from three points of known location [61]. This

technique was applied by measuring the distance from the gauge to three selected

reference points. The reference points must be distinctive, as they must be matched

by eye between the model geometry and on the surface of the sample.

Reference points were selected at the tip of the greater trochanter (P1), the

centre of the ligament pit (P2), and at the depression in the lateral surface of the

femoral head where it meets the neck (P3). The locations of the reference points

and gauge points are shown mapped onto the model geometry in figure 4.7. The

distances between the gauge and each of the reference points were measured with

callipers. These three distances can be seen as the radii of spheres around each

reference point (figure 4.6), and are labelled r1, r2, and r3. The three spheres can

intersect at one or two points, one of which is the gauge location. If they intersect

in two locations, points are entered into the model geometry at these location and
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Figure 4.7: Locations in the model 3 reference points P1, P2, and P3, and strain gauge points R1,
R2, S1, and S2.

the point which appears to be closer to the gauge location is selected. Radii for each

gauge listed in table 4.1.

radii (mm)

r1 r2 r3
R1 29 60 22
R2 36 51 23
S1 33 49 20
S2 41 39 47

Table 4.1: Distances of each gauge from each of the three reference points.

A transformed coordinate system is used to find the location of the gauge point.

The problem is constrained to two dimensions by considering the plane on which

all three reference points, P1, P2, and P3, lie. P1 is defined as the origin, and P2

lies on the x-axis. The new coordinates of the three reference points are defined as

follows:

P′1 =[0, 0, 0] (4.1a)

P′2 =[X2, 0, 0] (4.1b)

P′3 =[X3, Y3, 0]. (4.1c)
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The coordinates of the two points of intersection in the new coordinate system

are expressed in terms of the measured radii and the coordinates of the reference

points,

X ′ =
r21 − r22 +X2

2

2X2

(4.2a)

Y ′ =
r21 − r23 +X2

3 + Y 2
3

2Y3
− X3

Y3
X ′ (4.2b)

Z ′ =±
√
r21 −X ′2 − Y ′2. (4.2c)

X2 is the length of the vector between P1 and P2. Expressed in the original Carte-

sian coordinate system the basis vector of the x-axis, êx, is parallel to this vector.

X2 =|P2 −P1| (4.3a)

êx =
P2 −P1

X2

. (4.3b)

X3 is the length of the component of the vector between P1 and P3 parallel

to êx. The basis vector of the y-axis, êy, is the perpendicular vector to êx in the

plane of the three reference points. Y3 is the length of the component of the vector

between P1 and P3 parallel to êy. The third basis vector, êz, is perpendicular to

both êx and êy.

X3 =êx · (P3 −P1) (4.4a)

êy =
P3 −P1 − iêx

|P3 −P1 − iêx|
(4.4b)

Y3 =êy · (P3 −P1) (4.4c)

êz =êx × êy. (4.4d)

X2, X3, and Y3 are used in equations 4.2a, 4.2b, and 4.2c to calculate the coordi-

nates of the points of intersection in the new coordinate system. These coordinates

may now be transformed back to the original Cartesian coordinate system using the

following equation:

Pa,b = P1 +X ′êx + Y ′ŷx + Z ′êz. (4.5)

Points were placed at the two solutions of equation 4.5 for each gauge, and the
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point which appeared to match the gauge point was selected. The nearest node on

the surface of the femur was then used as the sample point for that gauge.

4.3.2 Analysis of Errors in Gauge Location Measurement

The calliper measurements have an estimated error of 0.5 mm. The effect that

this error have on the decision of which node is selected as the gauge point was

assessed. The trilateration calculation was performed with 0.5 mm added to or sub-

tracted from one, two, or three of the radii measured for the first rosette gauge. The

original radii are r1 = 29, r2 = 60, and r3 = 22. Table 4.2 contains the distance from

points calculated with each of these altered radii and the node originally chosen as

the gauge point.

r3 − 0.5 r1 − 0.5 r1 r1 + 0.5
r2 − 0.5 1.046543417 0.537913477 1.755132113
r2 2.527498844 1.165965692 0.870980576

r2 + 0.5 4.243478157 2.688449981 1.508354391

r3 r1 − 0.5 r1 r1 + 0.5
r2 − 0.5 0.97143007 0.474724775 1.735748679
r2 2.391683263 0.970006538 0.665570292

r2 + 0.5 4.060192518 2.499531005 1.253745173

r3 + 0.5 r1 − 0.5 r1 r1 + 0.5
r2 − 0.5 1.196342538 0.867874085 1.871299981
r2 2.401468605 1.080475355 0.850605725

r2 + 0.5 3.975501101 2.448113834 1.233319674

Table 4.2: Distance from selected gauge node in mm of points with deviations of ±0.5 mm from
the original measurements of one, two, or three radii.

The average distance between the originally chosen gauge point node and each

of its nearest neighbouring nodes is 5.267184 mm. The distance between the solu-

tion to the trilateration calculation and the originally selected node would have to

be less than half of this distance to ensure that the original node was selected and

not one of its nearest neighbours. Four of the 27 calculated differences exceed this

distance. This means that they may result in the selection of a different node from
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the original, although this is not guaranteed. All potential gauge point nodes are

found on the surface of the femur, but the solutions to the trilateration calculation

are not constrained to the surface. Only the component of the distance between the

node and the solution parallel to the surface has an effect on the choice of the gauge

point node. This means that a lower limit of 22 out of 26 of the tested radii (not in-

cluding the original measurements of r1, r2, and r3) result in the same node selection

as the original measurements. Because of this, this technique was considered suf-

ficiently reliable to be used for the selection of gauge point nodes in this experiment.

The use of a more accurate method of measuring distance than callipers would

result in a smaller error in the measurement of the radii. The same test was carried

out with a radius measurement error of 0.25 mm. The distances between the origi-

nally selected node and the solutions for each of the 27 configurations are listed in

table 4.3. None of the differences exceed the limit of half of the average distance

between the originally chosen node and each of its nearest neighbours. If the error

in measuring the radii could be reduced to 0.25 mm, the error due to measurement

could be considered to have no effect on the selection of the gauge point node.

r3 − 0.5 r1 − 0.5 r1 r1 + 0.5
r2 − 0.5 0.961769783 0.338839188 0.525516496
r2 1.706978957 1.033983707 0.553078768

r2 + 0.5 2.494342638 1.785106424 1.172099242

r3 r1 − 0.5 r1 r1 + 0.5
r2 − 0.5 0.929608976 0.285274105 0.506548046
r2 1.654918769 0.970006538 0.455203825

r2 + 0.5 2.429411548 1.714414112 1.084463855

r3 + 0.5 r1 − 0.5 r1 r1 + 0.5
r2 − 0.5 0.981727573 0.449347243 0.620848782
r2 1.653130446 0.98687954 0.512984691

r2 + 0.5 2.400477196 1.691736994 1.067899104

Table 4.3: Distance from selected gauge node in mm of points with deviations of ±0.25 mm from
the original measurements of one, two, or three radii.
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Figure 4.8: Contact. Most convex object is labelled “destination”, most concave labelled and
“source”. Force acts between point on destination boundary and closest point on destination
boundary in the perpendicular direction.

4.4 Model

The results of the experiment were compared with analogous results of a finite

element model. This model was based on the one presented in section 2.3, but with

the inclusion of contact mechanics to more closely match the conditions of the ex-

periment designed in this chapter.

4.4.1 Contact Physics

4.4.1.1 Comsol

The surfaces of the femoral head and greater trochanter are irregular and it is

not easy to predict the contact area or the distribution of contact pressure [62]. It

is preferable to apply load by modelling the contact forces in the hip joint, as well

as between the greater trochanter, rather than applying conditions to individual

boundaries as was done in section 2.3.

Comsol can model the contact between two groups of boundaries. One group

is labelled “source” and the other “destination”, as shown in figure 4.8. Ideally,

the boundaries belonging to the object with the greater Young’s modulus should be

designated the source, and the source should concave and the destination convex.

The destination boundaries should have a finer mesh than the source [63].

Real contact problems are non-continuous, the force between the two objects is
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only present when they touch. A finite element treatment must make the problem

continuous in order to reach a converged solution. A small overlap between the

contact surfaces is allowed. The source boundaries are allowed to penetrate the

destination boundaries but not vice versa. The distance between each destination

point and its corresponding source point, dg, is positive when the objects are not

touching and negative when they overlap. The penalised contact pressure has a

form which increases exponentially as dg decreases when the boundaries are not

touching, and linear when when there is overlap. It is constrained so that it is

continuous between these two conditions:

Tnp =

Tn − Pndg if dg ≤ 0

Tne
−Pndg

Tn otherwise.

(4.6)

4.4.1.2 Hertzian Contact

Comsol’s augmented Lagrangian contact model requires the user to input an

estimate for the contact pressure between the source and destination boundaries.

It is not easy to directly calculate the contact pressure for the irregular surface of

the femur, but it is possible to use similar, regular shapes to estimate the pressure.

The pressure on the contact surfaces between curved objects can be calculated from

Hertzian contact stress theory. This theory is concerned with contact between elas-

tic solids in non-adhesive contact [64, p.84]. By calculating the pressure between

similar shapes, an approximation of the pressures present between the contact sur-

faces in the model can be obtained.

The solution to Hertzian contact stress problem applies to a system where the

surfaces are frictionless and non-conforming, so that the initial contact area is negli-

gibly small with respect to the rest of the surface area of the object. An applied load

brings the objects together, causing deformation at the contact point and causing

the contact area to become finite.

The hip joint is a ball-and-socket joint, so it can be modelled as a sphere (diam-

eter D1) in a hemispherical cup (D2), as shown in figure 4.9a. The mechanics of this
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Figure 4.9: Contact pressure is calculated between regular shapes to provide an estimate of pres-
sures between a) femoral head and acetabulum (sphere and cup), and b) greater trochanter and
base plate (ellipsoid and plane).

problem are simply defined [65, p.702]. The effective radius of curvature is defined

as:

KD =
D1D2

D1 −D2

. (4.7)

The effective modulus of elasticity is a function of the Young’s moduli and the

Poisson’s ratios of the two objects:

CE =
1− ν21
E1

− 1− ν22
E2

. (4.8)

The radius of the circular contact area between the two surfaces once loaded, a, is

defined by:

a = 0.721 3
√
PKDCE. (4.9)

The contact pressure is given by the following equation:

(σc)max =
1.5P

πa2
. (4.10)

The contact pressure induced between a 23 mm sphere and a 25 mm socket with

a load of 1 N, with the material properties of PVC and ABS already reported, is

calculated as 1.7 MPa.

The contact pairing of the greater trochanter and the flat base plate can be

reasonably well defined as an ellipsoid and an infinite plane (figure 4.9b) [65, p.704].
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In this case, the radius of curvature is defined by the semiaxes of the ellipsoid

KD =
1.5

1/R1 + 1/R′1
. (4.11)

Three variables, α, β, and γ, are taken from a table of values, and are determined

from another variable, θ [65, p.704]:

cos θ =
KD

1.5

√(
1

R′1
− 1

R1

)2

. (4.12)

α, β, and γ are used to calculate c and d, the semiaxes of the elliptical contact area.

c =α 3
√
PKDCE (4.13a)

d =β 3
√
PKDCE. (4.13b)

The contact pressure is calculated from the contact area in much the same way

as in equation 4.10

(σc)max =
1.5P

πcd
. (4.14)

The appropriate size of the ellipsoid which represents the greater trochanter was

determined in a similar way to the spherical representation of the head, by laying an

ellipsoid over the femur in Solidworks and altering the dimensions until the match

was considered acceptable. The semiaxes of the ellipse were R1 = 25 mm and

R′1 = 30 mm. The calculated contact pressure for these dimensions along with the

material properties of PVC and steel was 13.75 MPa.

4.4.2 Model Design

A finite element model was then created using the same procedure used for the

preliminary model described in section 2.3, but with the application of the forces

through contact with objects rather than fixed and load boundaries. Figure 4.10

shows the model geometry. A flat floor represented by a 70×40×5 mm steel block,

and load cell attachment is represented by an ABS block. The load cell attach-

ment geometry consists of a 65 × 65× 28 mm cuboid with 25 mm radius spherical

segment removed from the lower surface to mimic the design of the real load cell
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Figure 4.10: Geometry of the PVC femur finite element model, including the imported femur
geometry and the load cell attachment and floor block drawn in the Comsol environment.

fitting described in section 4.2.1.1. The attachment was fixed in space and the femur

translated so that the femoral head was in contact with the hemispherical surface.

Two contact pairs were set up, one between the femoral head (source) and the

load cell attachment (destination), and another between the floor block (source) and

the greater trochanter (destination). The contact pressure between each contact pair

was set to the values calculated from equations 4.10 and 4.14.

The femur was set to revolve around a point at the centre of the femoral head,

chosen by selecting the centre of the sphere removed from the attachment block.

α and φ can be changed without breaking the contact between the femur and the

attachment. The floor block was revolved around the z-axis to change θ. The floor

block was manually translated to bring it into contact with the greater trochanter

for each loading condition once the angles have been set. Contact surfaces chosen

are shown in figure 4.11.
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Figure 4.11: Surface boundaries where the contact force was applied.

Boundaries at the distal end were fixed exactly as described in section 2.3. The

base of the floor block (the face opposite to the face in contact with the femur)

was set as a fixed boundary. It is easier to achieve a stable solution in a finite ele-

ment contact problem if load is applied via a prescribed displacement rather than

a boundary load. A displacement of 1× 10−8 mm was applied to the upper surface

of the load cell attachment. A prescribed displacement of 1 × 10−8 was applied to

the top face of the load cell fitting along the y-axis, towards the floor block, and the

face was constrained to not move along the x- and z-axes. In order to calculate the

strain per newton, all resultant strains were divided by the total stress integrated

across this surface.

4.4.3 Calculating Strains in the Model

4.4.3.1 Strain Direction in Single Gauges

The model is solved in a three-dimensional environment, providing three princi-

pal strains. The strains measured with the rosette strain gauges only calculate two.

The second principal strain calculated from the gauge data corresponds with the

third principal strain calculated by the the model.

The calculation of principal strains at the rosette strain gauge points in the
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Comsol model does not depend on the orientation of the gauge at that point. The

strain measured with a single gauge does depend on the orientation of the gauge.

A coordinate frame was generated in Comsol with two components tangential to

the surface of the object, one component normal to the surface. The strain in the

direction of the gauge can be calculated using the strain calculated along one of the

tangential components and the angle between this component and the gauge axis.

The vector representing the gauge axis in the Cartesian frame, g, is determined

from the line between the gauge point and the nearest neighbouring point in roughly

the direction of the gauge. The position of the femur differs between loading condi-

tions because it is rotated with respect to the stationary load cell attachment, so g

is calculated separately for each loading configuration. The unit vector of the gauge

direction is the normalised vector between the coordinates of these two points. The

unit vector of the first component of the new coordinate system at the gauge point,

t1, is calculated by Comsol. The scalar product of the two unit vectors is equal to

the cosine of the angle between them. The sine of the angle is given by the magni-

tude of the vector product of the unit vectors. The 2-argument arctangent function

of the ratio of these two numbers gives the angle between the vectors in the interval

−π ≤ θ ≤ π.

In order to calculate the strains in the new coordinate system, ε′, the strain

tensor in the original Cartesian system, ε, must be transformed using the transfor-

mation matrices calculated by Comsol, T.
T11 T12 T13

T21 T22 T23

T31 T32 T33



ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33



T11 T21 T31

T12 T22 T32

T13 T23 T33

 =


ε′11 ε′12 ε′13

ε′21 ε′22 ε′23

ε′31 ε′32 ε′33

 (4.15)

All components of ε′ involving strain normal to the surface are ignored, as the strain

gauges can only measure strain tangential to surface. The strain tensor is symmet-

rical, so ε′21 = ε′12. Only three components of the tensor need to be considered, ε′11,

ε′12, and ε′22.



Chapter 4 Computational and Experimental Investigation of Strain in a PVC
Femur Model 75

Figure 4.12: The surface strain tensor ε′ calculated in the boundary coordinate system is rotated
to give ε′′, the 2-dimensional strain tensor in plane with the surface and with one component,
ε′′11=εgauge, parallel with the gauge. Anti-clockwise rotation (from t1 to g) is positive.

The angle θ between t1 and g is calculated from their scalar product. A clockwise

angle is defined as positive according to the right-hand rule. The vector product

of the two unit vectors is used to determine whether θ is positive (t1 × ε′ > 0) or

negative (t1×ε′ < 0). Figure 4.12 shows how the surface strain tensor is rotated to

determine the strain in the direction of the gauge. The equation for strain rotation

is used to calculate the strain in the gauge direction [65, p.24],

εgauge =
ε′11 − ε′22

2
+
ε′11 − ε′22

2
cos (2θ) + ε′12 sin (2θ) . (4.16)

4.4.3.2 Strain Direction in Rosette Gauges

Another variable which can be compared between the model and the experimen-

tal results is the orientation of the principal strains. The angle β between the first

principal strain and ε1, the first gauge component, was determined from the results

of the simulation and the experiment and compared. β is determined from strain

gauge data with the following equation [52]:

tan(2β) =
(ε2 − ε3)− (ε1 − ε2)

ε1 − ε3
. (4.17)

To determine β from the model results, the unit vector representing the orientation

of the gauge component must be identified. This was done by taking the coordinates
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Figure 4.13: Determination of β in the model. β is the angle between gauge direction vector dg
and the first principal strain εp1.

of a node adjacent to the gauge node, using the method explained in section 4.4.3.1

to determine the gauge direction vector. The direction of the first principal strain,

εp1, is calculated in Comsol, and β is the angle between ε1 and εp1. Figure 4.13

shows the geometry of this problem.

4.5 Results

Figures 4.14-4.19 show the mean value of each group of three strains per Newton

measurements taken for each loading condition, plotted against the angle α for each

combination of φ and θ. The error bars represent the standard deviation of each

group.

Figures 4.14 and 4.15 show the first and second principal strains per Newton at

the first rosette gauge point. The second principal strain is larger than the first for

all loading conditions, so this point is always in compression. Compressive strain at

this point is largest here at low angles.

Figures 4.16 and 4.17 show that the second rosette gauge point is in compression

at low angles, and switches to extension at some angle between α = 90◦ and 100◦

in both cases when φ = 10◦, θ = 4◦ and φ = 5◦, θ = 9◦. The strain is largest at the

higher and lower extremes of α.
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Figure 4.14: First principal strain at rosette gauge point R1. Correspondence between model
and experimental results is good for both φ− θ configurations. Experimental results show largest
positive strains at extreme high and low α angles.

The strain measured at the first single gauge point (figure 4.18) is compression

for low angles and switches to extension for higher angles between 90◦ and 100◦ for

φ = 10◦, θ = 4◦ and between 100◦ and 110◦ for φ = 5◦, θ=9◦. Again, the strain is

largest at the extremes of α. The strain measured at the second single gauge point

(figure 4.19) is in extension for low alpha and becomes compressed at high alpha,

switching between 100◦ and 110◦ for φ=10◦, θ=4◦ and 110◦ and 120◦ for φ = 5◦,

θ=9◦. The largest strains found at low α.

Principal strains are the largest measurable strain at a certain point. The ex-

perimentally measured principal strains measured at the first gauge point, on the

superior surface of the neck of the femur, were lowest at low α angles. At low α the

femur is rotated so that the posterior side of the bone is angled towards the floor.

The largest principal strains measured at the centre of the posterior surface of the

neck, at the second gauge point, were recorded at both high and low extremes of α.
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Figure 4.15: Second principal strain at rosette gauge point R1. Good correspondence between
model and experimental results at low α angles, deviation begins at 90◦ degrees for both φ − θ
configurations. Experimental results show largest negative strains at low α angles.

Figure 4.16: First principal strain at rosette gauge point R2. Good correspondence between model
and experimental results at low α angles, deviation starts at 110◦ for φ = 5◦, θ = 9◦, 120◦ for
φ = 10◦, θ = 4◦. Experimental data show largest positive strain at high α angles
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Figure 4.17: Second principal strain at rosette gauge point R2. Good correspondence between
model and experimental results for both φ − θ configurations. Experimental data show largest
negative strain at low α angles.

Figure 4.18: Strain at single gauge point S1. The agreement between model and experimental
results is visibly poor. Experimental data show highest negative strains at low α angles, and
highest positive strains at high α.
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Figure 4.19: Strain at single gauge point S2. As with the results from the S1 gauge, the agreement
between model and experimental results is poor. Experimental data show highest positive strains
at low α angles, and switches to negative once α exceeds 100◦ (φ = 10◦, θ = 4◦) and 110◦ (φ = 5◦,
θ = 9◦)

The results of the finite element model for the first principal strain measured at

the first gauge point follows a similar path as the experimental data data, although

most of the model results are larger (figure 4.14). The same is the case for the

second principal strain at this point (figure 4.15) for angles below α = 90◦, above

which point the magnitude of the finite element results increase and the experimen-

tal results decrease.

The finite element and experimental results for the first principal strain mea-

sured at the second gauge point is similar for 50◦ ≤ α ≤ 90◦. Above 90◦, the results

diverge, with the experimental results increasing with α at a much higher rate. The

results for the second principal strain at the second gauge point appear to match

fairly well. The agreement between the data sets for each of the single gauges (fig-

ures 4.18 and 4.19) is not good.

The range of strains calculated from the model over the range of α angles for one

θ and φ pairing is, in general, larger than the difference between strains calculated
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for each θ and φ for a single α value. For example, the range in first strain calculated

at the first gauge point when θ = 10◦ and φ = 4◦ is ±0.403 95 µstrain N−1, whereas

the largest difference between first principal strains for a given alpha at this point is

±0.209 16 µstrain N−1. This is also true of the experimental data, and in many cases

the error bars overlap. Altering φ and θ in this case does not provide a significantly

more varied data set when compared to just changing α for one φ and θ setting.

The second principal strain measured at the first gauge point, and both principal

strains measured at the second gauge point, all show much better agreement between

the model and experiment at low angles than at high. It could be the case that,

at the higher angles, the conditions of the model begin to differ from the experiment.

There is a significant amount of variation in the experimental data, some error

bars are quite large and the data sets are not as smooth as the model. There is

clearly a discrepancy between the model and experimental data, but the scatter in

the experimental data makes it difficult to observe the extent of this discrepancy.

Some potential causes of discrepancy between the model and the experiment, and

variation within the experimental results, have been identified.

Figure 4.20 shows the angle between the first gauge component of the rosette

gauges and the direction of the first principal strain, calculated for both the exper-

imental and model data using the methods described in section 4.4.3.2. Although

there is some difference between values for this variable calculated from the experi-

mental and model data, the significant deviations between data sets seen in in figures

4.15 and 4.16 are not present here. This indicates that inconsistencies between the

loading conditions of the model and experiment are considerably more consequential

on the size of the principal strains than on their direction.

The contact physics incorporated into the model does not include friction be-

tween the surfaces, although there will be some friction present in the experiment.

This could cause a difference in the magnitude and distribution of the strain induced

in the femur.
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Figure 4.20: Angle between first component of strain gauge and first principal strain, calculated
from experimental and model results. There is deviation between data sets than is the case for
the strain/load data, suggesting that difference between the model and the experiment have little
effect on the direction of the principal strains.
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The measurement of α is not exact, there is an estimated error of 2◦ caused

by rotation when tightening the nut holding the cylinder in place. The apparatus

was set, then the three load cycles were performed without resetting the angle, so

this should not cause any difference between measurements with the same loading

condition.

It was stated in section 4.2.2 that compliance in the frame causes a waiting time

of a few seconds before the apparatus settles and the measured strain takes on an

elastic response to the increasing load. This is partially caused by the apparatus

shifting and bending very slightly when first loaded, mostly due to the bolts sup-

porting the angled plate not being perfectly parallel or the femoral head moving

within the concave spherical surface of the load cell attachment. This should not

cause a large error as it was ensured that nothing visibly moved, and the test was

terminated if there was any visible motion.

Another possible cause for error is inaccuracy in measuring the strain/Newton

from the gradient of the strain vs time graphs. Some noise is present in the signal,

and they are not totally linear at start due to compliance in apparatus. Tests re-

sulting in data sets with excessive noise were repeated, but this did not remove the

effect entirely.

4.6 Conclusion

The aim of the work presented in this chapter is to develop the techniques nec-

essary for mechanical testing of femoral samples, as well as a finite element model

with loads applied through contact mechanics, and comparing the strains present

in each. The purpose of this was to test out the methods that will be used with a

real bone femur sample with a more robust, easily available, and structurally simple

PVC model femur.
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Trilateration was used to determine the coordinates of the points in the geome-

try of the Comsol model corresponding to the location of the strain gauges on the

surface of the PVC femur. This technique has not been used for this purpose before,

so its reliability was assessed and considered acceptable.

Both the experiment and the model quantified the loading condition of the fe-

mur with three angles, α, φ and θ. Altering φ and θ in this experiment does not

provide a significantly more varied data set when compared to just changing α and

keeping φ and θ the same. This may not be the case for all φ and θ combina-

tions but, given that it is important to keep testing time with the bone femur to

a minimum, only the effect of changing α will be investigated with the sheep’s femur.

The results of the experiment indicate that, under the conditions of this exper-

iment, strains in the neck of the femur are largest when the body is rotated away

from an exclusively sideways fall, and is angled forwards or backwards.

The results show some discrepancy between the experimentally measured strain

and the strain calculated in the model, particularly at large angular deviations

from the idealised sideways fall (α = 90◦). A potential cause of this is the friction

between the contact surfaces, which was not included in the simulation. The effect

of friction at the interface between the femoral head and the load cell attachment

will be investigated when the sheep’s femur is tested. There is a significant level of

scatter within the experimental data. Attempts will be made to remove sources of

this variation in the data by continuing to ensure that the apparatus is adequately

bolted together and the femoral head is aligned with the load cell so that there is

no detectable movement when the load is applied.
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Chapter 5

Computational and Experimental

Investigation of Strain in a Sheep’s

Femur

5.1 Introduction

The next stage of the investigation is to create a model for sheep’s bone and

compare with experimental results. Sheep bone was used because it is more readily

available than human bone, and therefore easier to replace if it gets damaged.

The differences between the sheep and PVC femurs must be taken into account,

both in terms of the properties of the material and the shape of the sample. The

sheep bone cannot be left at room temperature indefinitely or it will decay, so care

must be taken to minimise the length of time spent carrying out the experiments,

while ensuring that a sufficiently varied data set is generated. The techniques nec-

essary for bonding strain gauges to bone have already been successfully used with

the PVC femur, so no changes need to be made. A significant difference between

the PVC and bone models is that the spatially dependent Young’s modulus must

be included in the sheep’s femur model.

Although there is a layer of hard cortical bone surrounding the sheep’s femur,

it is quite thin at the greater trochanter. The greater trochanter of the PVC femur
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was allowed to rest directly on the angled steel plate. Protection of the greater

trochanter was considered necessary to protect the sheep’s femur from damage dur-

ing the experiment. A PMMA cap was used, as was skin-simulant foam, and the

dependence of strain on which of these two was used was assessed. The apparatus

was made with the dimensions of both the PVC and the sheep femur in mind, so it

can be used for both samples without need for modification.

The smaller size of the sheep bone meant that the gauges could not all be bonded

to the same places as they were on the PVC femur. A single gauge was not bonded

to the posterior side of the neck, as was the case in for the PVC femur, but was

instead bonded to the anterior side of the neck. The new configuration of the gauges

is further discussed in section 5.2.3.

A new load cell attachment was required to fit the smaller sized head of the

sheep’s femur. Two attachments were made, one perspex and the other PTFE.

The results presented in the previous chapter showed some difference between the

strains measured in the experiment and the model. A potential cause for this is the

friction between the contact surfaces, which is present in the experiment but were

not included in the model. By testing the bone with two attachments with different

frictional coefficients and comparing the strain measured in otherwise identical ex-

periments, it can be confirmed whether the friction between the femoral head and

the load cell attachment has an effect on the strain measured by the gauges.

5.2 Experiment

The distal end of the sheep’s femur was set into an aluminium cylinder with

PMMA bone cement as described in section 3.3, and bolted to the apparatus in

place of the PVC femur.

In order to reduce the amount of time taken to carry out the tests, and therefore

reduce the length of time at which the bone is at room temperature, a subset of
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the loading angles used in the PVC femur experiment was used. The experimental

results from section 4.5 showed considerably more variation in results caused by

varying α across the range of nine angles tested than between the two φ and θ an-

gles. For the sheep’s femur experiment, only α was varied, and the other two loading

angles were kept at φ = 10◦, θ = 4◦ for all tests. The test was run for each loading

configuration three times, as before, to provide a mean and standard deviation.

5.2.1 Load Cell Attachments

The load was applied through a load cell attachment designed to simulate the

acetabulum in much the same way as was done with the PVC experiment. The

attachment used in that experiment cannot be used as it was custom made to fit

the PVC femur. The PVC femur is cast from human bone, which has a much larger

femoral head than sheep bone. A new attachment was made in the same way, but

designed to fit the sheep femur.

The attachment was designed in SolidWorks using the same method of super-

imposing a sphere over the femoral head described in section 4.2.1.1. The radius of

the femoral head was determined to be 10.5 mm, a radius of 11.25 mm was used for

the concave spherical surface of the attachment. The drawing of the attachment is

shown in figure 5.1.

The rapid prototyping machine was not operational when the bone attachment

needed to be made, so 3D printing was not an option. Instead, the shape of the

attachment was machined from plastic. This provided the opportunity to exper-

iment with the materials used to make the attachment. The contact mechanics

implemented in the finite element model do not incorporate a frictional component.

Comparing results taken with two different load cell attachments with different co-

efficients of friction with the model results will show whether this is a reasonable

assumption to make or if the friction between the acetabulum and the femur needs

to be taken into account. Perspex and polytetrafluoroethylene (PTFE) were used.

The two load cell attachments are shown in figure 5.1.
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Figure 5.1: The two load cell attachments used in the experiments with the sheep’s femur: ma-
chined from perspex (left) and PTFE (right). The PTFE attachment was machined from a cylinder,
the full 100 × 65 mm base could not be included. It has a large enough base to accommodate the
four drill holes, so this does not compromise the structure.

5.2.2 Greater Trochanter protection

In a real fall scenario, the femur does not make direct contact with the floor. The

impulse travels through fat and muscle tissue before reaching the greater trochanter.

The soft tissue dampens the impact, lessens the amplitude, and widens the area over

which the force is delivered to the bone [35, 37]. The purpose of this experiment is

not to simulate fracture loads, as the femur must be put through many load cycles so

it is important to avoid damaging the bone in the process. The force-reducing effect

of the soft tissue is not of concern here, nor is its damping effects as the applied

load is quasi-static, but the effect of spreading the load over a wider area is impor-

tant. No soft tissue surrogate was used in the experiments with the PVC femur,

the greater trochanter was rested directly on the steel angled plate. The cortical

shell is very thin at the greater trochanter, measured to be 0.6 ± 0.1 mm from the

scan of the sheep bone sample, so a load large enough to cause significant strain in

neck could potentially cause crushing here. It is necessary to use some protection at

the greater trochanter to avoid large contact pressures which could cause permanent

damage to the bone.
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Figure 5.2: Two greater trochanter protectors. Left: PMMA, right: foam.

Some studies involving the application of force to the proximal femur involve

the use of PMMA caps to distribute the load over a wider area [14, 16, 20]. This is

a hard material which, unlike the soft tissue, does not dampen the force at all. It

only serves to increase the contact area and reduce the pressure. Other studies use

polymer foams as a surrogate for soft tissue, particularly when simulating impact

forces in the hip joint [34–37]. Taking one set of data with a PMMA cap and another

with foam between the greater trochanter and the floor and comparing the two will

show whether the foam makes a difference to the relationship between strain and

load. Figure 5.2 shows each of the greater trochanter protectors and their placement

in the experiment.

The sheep’s femur was removed from the freezer and left to thaw for 12 hours

in a refrigerator prior to the casting of the PMMA cap. The PMMA cement was

mixed as in section 3.3.1, then the greater trochanter was greased and a layer of

cement approximately 3 mm thick was moulded to the surface. Care was taken to

ensure that the cement cap did not wrap around the bone too much, so that it could

be removed after setting, but also that it wrapped around the bone sufficiently that

it did not slip of during loading, and that the cap fit the greater trochanter in a

unique way. Once the cement had hardened, a marker pen was used to draw around

the cap onto the surface of the bone to indicate where the cap should fit each time

it was placed on the greater trochanter.

The thickness of the soft tissue over the greater trochanter varies between indi-
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Figure 5.3: Left: perspex attachment and PMMA cap. Right: PTFE attachment and foam.

viduals. Robinovitch et al. [35] sampled the tissue thickness of nine cadavers, all

over the age of 60 at time of death, and found a range of 8 to 45 mm, with a mean

of 24 ± 3 mm. A thickness of 20 mm was selected for the soft tissue surrogate. A

block of open-cell polyether foam was used with a 1.5 mm layer of silicone rubber to

simulate skin. Blocks of foam (290× 210× 100 mm) already coated in a 2 mm layer

of silicone were sourced from the left-over materials from a previous experiment [66],

and so did not have to be prepared for this experiment. The foam was cut to 50

mm square, 20 mm thick with a hand saw. The foam was placed silicone side down

onto the angled steel base plate directly underneath the greater trochanter. Three

foam squares, all with a layer of silicone on one side, were cut so that they could

be cycled throughout the testing to allow the foam to rest between testing. Each

square was used for the three load cycles applied for one of the loading angles, then

allowed to return to its original shape while the next two loading angles were tested

with the other two squares.

5.2.3 Method

Four sets of data were taken, for each combination of the two load cell attach-

ments and the two greater trochanter protectors. Figure 5.3 shows the experimental

set up with the sheep’s bone, with two configurations that show both attachments

and both protectors.

The results of the experiment reported in chapter 3 do not confirm that strain
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measurements taken from the bone sample can be considered reliable following four

freeze/thaw cycles after the gauges are bonded to the surface. All tests must be

carried out after no more than three cycles, or their reliability cannot be confirmed.

The femur was taken out of freezer and the distal end was set in PMMA as described

in section 3.3. The PMMA cap was made then gauges and solder terminals were

bonded to the bone and the wires were soldered before the femur was returned to

the freezer. The bone could now be tested on three separate occasions, with the

bone being returned to the freezer twice between them. The femur was removed

from the freezer around 15 hours before testing and left to thaw in a refrigerator.

It was removed from the refrigerator 30 minutes before testing and allowed to reach

thermal equilibrium at room temperature.

During the first testing period, the experiment was carried out with the PMMA

cap and perspex attachment. The PMMA cap and PTFE attachment were used

during the second testing period. Two data sets were taken during the third period,

with the foam greater trochanter protector and each of the two load cell attach-

ments. The femur was returned to the freezer after each testing period, and was at

room temperature for between five and seven hours.

The same gauge configuration was used as in the PVC femur experiment, two

tri-axial rosette and two single gauges. The gauges and solder terminals were bonded

using method outlined in section 3.2. The results of the spatially dependent model

reported in section 2.4 showed high strain concentration around the neck, so a simi-

lar selection of gauge locations as were used for the PVC femur was considered. An

identical set of locations could not be used, as the sheep femur is much smaller that

the human femur used to cast the PVC model. It was not possible to fit both a

single and a rosette gauge in the middle of the posterior surface of the neck along

with the with solder terminals for all four component gauges. Instead, only the

rosette gauge was placed in the middle of the posterior surface of the neck, and the

single gauge was bonded to the anterior surface of the neck.

The femur was loaded using a similar method as was used for the PVC femur, by
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gradually increasing the load to a maximum, but with a smaller loading rate of 20 N

per minute, and a smaller maximum load of 35 N. This was so that the femur could

be closely observed so that any sign of damage to the bone would be noticed and the

experiment could be terminated. No signs of damage were observed during any of

the tests. The smaller maximum load was used as a precaution against overloading

the bone and causing damage.

Figure 5.4: a) Sample strain vs. time plot taken with foam greater trochanter protector. b) Load
vs. time with foam protector. c) Comparison of load vs. vertical displacement of the load cell
(measured by control software) for the different greater trochanter protectors.

Figure 5.4a shows an example of the strain measured by one of the gauges on

the sheep’s femur taken with the foam greater trochanter protector. The smaller

gradient before the foam was crushed is more a measure of the properties of the

foam than the bone, the second gradient from when the foam was fully crushed is a

measure of the deformation of the bone, so the gradient of only this part of the data

was used to provide a measure of the strain per Newton. Figure 5.4b shows that the

load still changes linearly with time when foam is used, and at the expected rate of

20 N per minute. Figure 5.4c shows a typical load vs. displacement graph output

by the tensometer control software when testing the femur with the PMMA and

foam protectors. With the PMMA cap, the loading is linear with extension once

the system is settled. In the case of the foam, the gradient increases with load as
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the structure effectively hardens as it is compressed. The early part of the graph,

up to around 50 seconds, shows a much slower increase in strain per second than

the latter part of the graph.

5.3 Model

The femur used in this experiment had previously been used to generate the mesh

and linear interpolation function used to create the bone model in section 2.4. The

same STL file and linear attenuation data were used to generate this contact model.

The bone geometry was imported into Comsol and partitioned using the same set-

tings used in the model described in chapter 2. The load cell attachment geometry

was drawn just as in chapter 4, but with the dimensions of the cells designed to

match the attachment designed to use with the sheep femur. The interpolation

function was applied across the bone geometry, material properties were assigned

according to equations 2.2.1-2.2.5. Contact was modelled between the femoral head

and acetabular face of the load cell. The contact pressure was again estimated by

calculating the pressure between a sphere and spherical cup using equation 4.4.5.

The Young’s modulus of the surface of the femoral head was estimated to be 20

GPa by sampling the modulus of 10 points at the surface of the femoral head. The

estimated contact pressure was calculated to be 4.5 MPa.

Including the contact mechanics between the greater trochanter and the foam

would significantly complicate the model, as it would need to simulate the large

displacements of the foam. Since the strain per Newton measurement of the ex-

perimental results was based on measurements taken when the foam is compressed,

there is no need to model the load dependant Young’s modulus of the foam. The

PMMA cap was moulded to the surface of the bone, so the contact area is much

larger than that of the PVC femur and the flat steel plate, which is dependent on

the magnitude of the load. Similarly, the foam deforms to match the surface it is

in contact with, creating a large surface area. The large surface area of the contact

which, unlike the ellipse-plane interface assumed in the PVC model, does not depend
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Figure 5.5: Alignment of femur and load cell attachment with respect to coordinate axes. High-
lighted boundaries in left image show fixed boundaries.

on the applied load, means that the contact mechanics at this interface does not

have such a significant effect on the strain induced in the femur. A fixed constraint

was applied to boundaries on the greater trochanter (figure 5.5).

A single model was created to simulate the strain measurements to be compared

with all four experimental data sets. This was to keep the model as simple as pos-

sible. If the experimental data sets significantly differ from one another, this will

indicate that the greater trochanter protection and the load cell attachment material

have an effect on the strain induced in the sample, and that one single model cannot

legitimately be used to simulate all conditions. The load cell attachment was given

the material properties of perspex (E =3.3 GPa [46], ν = 0.415 [47, p.277]).

The PVC femur was rotated about a point at the centre of the femoral head

while the load cell attachment remained stationary. In the case of the sheep bone

model, the interpolated Young’s modulus function is spatially dependent and as-

signed based on coordinates which use the same coordinate system as the STL file

used to generate the femur geometry. Rotating the femur geometry would cause the

geometry and the function to no longer match up in space. Instead, the attachment

was rotated around the femoral head. This means that the normal direction to the
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top surface of the attachment is no longer aligned along one of the axes within the

Comsol environment. The shaft of the femur was aligned vertically in the scanner, so

it pointed along the z-axis. The rotation of the load cell attachment is therefore ex-

clusively about the z-axis (figure 5.5). Instead of aligning the displacement applied

to the face along one of the axes (which, in the PVC model was perpendicular to the

surface), the displacement was applied normally to the surface. The portion of the

greater trochanter covered by the PMMA cap was estimated and these boundaries

were fixed.

Comsol can be used to directly calculate linear and shear stress along the co-

ordinate axes. In the PVC model presented in chapter 4, the top surface of the

attachment was aligned perpendicular to the y-axis under all loading conditions. In

this model, the attachment rotates around the stationary femur, so the plane of the

top surface is not always in alignment with one of the axes. The stress tensor must

be transformed so that it is perpendicular to the surface.

The stress tensor is rotated angle θ about the z-axis:
cos θ − sin θ 0

sin θ cos θ 0

0 0 1



σx τxy τxz

τxy σy τyz

τxz τyz σz




cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 =


σ′x τ ′xy τ ′xz

τ ′xy σ′y τ ′yz

τ ′xz τ ′yz σ′z


(5.1)

The y-component of the linear stress is being transformed, so only the linear

y-component of the transformed tensor, σ′y, is needed.

σ′y = σx sin2 θ + σy cos2 θ + 2τxy sin θ cos θ (5.2)

The rotated y component of the stress is integrated over the top surface of the

attachment as before to find the total load. Figure 5.6 shows the rotation of the

stress tensor and the direction of the stress which needs to be measured.
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Figure 5.6: Load cell attachment is rotated about z axis, stress perpendicular to top surface is
integrated across plane.

5.3.1 Trilateration

The coordinates of the gauge points were located in the model geometry with

trilateration. Figure 5.7 shows the location of the reference points and the gauge

points. No visible depression at the the lateral side of the head is present in the

sheep’s femur, unlike the PVC human analogue, so another reference point was

needed. The most prominent point of the lesser trochanter was selected instead.

The distances of each of the gauge points from each of the reference points, r1, r2,

and r3, are included in table 5.1. As with the PVC model, the first and third prin-

cipal strains were calculated in the Comsol model for the rosette gauges, and the

method described in section 4.4.3 was used to calculate the strains along the gauge

directions for the single gauges.

radii (mm)

r1 r2 r3
R1 34 38 19
R2 29 27 20
S1 32 36 31
S2 22 27 44

Table 5.1: Distances of each gauge from each of the three reference points on the sheep femur.
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Figure 5.7: Location of reference points used in trilateration (marked red) and the calculated gauge
points (blue).

5.4 Results

The strains measured in the experiment and calculated by the finite element

model are plotted in figures 5.8 to 5.13. As with the PVC femur study, the strain at

each rosette gauge point has been split into first and second principal strains, and

the strain at the single gauge points is measured along the gauge direction. It is

clear that the model results differ significantly from all four experimental datasets.

The angle between the first strain gauge component and the first principal strain

calculated from the results of the experiment and the model is plotted in figure 5.14.

There is visibly less deviation between the data sets for this variable than there is

for the principal strains.

5.4.1 Comparison of Experimental Results

In order to assess whether the greater trochanter protector and the load cell at-

tachment material have a significant influence on the strain measured, a statistical

test is required to assess whether the data sets differ significantly from one another.

The Student’s t-test was used to compare individual data points, each consisting of

three measurements, between sets to confirm whether the means can be considered

to be the same.
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Figure 5.8: First principal strain measured experimentally and calculated with the finite element
model at rosette gauge point R1. The simulated strain is considerably greater than the experimental
strains for α < 120◦.

Figure 5.9: Second principal strain measured experimentally and calculated with the finite element
model at rosette gauge point R1. The model results are closer to the experimental data than was
the case for the first principal strain.
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Figure 5.10: First principal strain measured experimentally and calculated with the finite element
model at rosette gauge point R2. The strains calculated with the model are considerably larger
than the experimental data. This is particularly visible at the high and low extremes of α.

Figure 5.11: Second principal strain measured experimentally and calculated with the finite element
model at rosette gauge point R2. The simulated strains are again much larger than the experimental
data, particularly at the high and low extremes of α.
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Figure 5.12: Experimental strain and strain calculated with the finite element model at single
gauge point S1. Simulated strains are typically significantly larger than the experimental strains,
and feature a large change in strain from positive to negative between α = 60◦ and 70◦. This is
not seen in the experimental strains, which are exclusively negative.

Figure 5.13: Experimental strain and strain calculated with the finite element model at single
gauge point S2. Simulated strains are significantly larger than experimental strains for α ≤ 90◦.
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Figure 5.14: Angle between first component of strain gauge and first principal strain, calculated
from experimental and model results. As was the case for the results of the PVC study, there is
less deviation between the data sets. This indicates that any differences between the model and
the experiment have little effect on the direction of the principal strains.

The Student’s t-test is a statistical test of the null hypothesis that the means of

two samples are equal [67, p.158]. The test statistic, t, is calculated from the means

of the two samples, x1 and x2, the size of each sample, Nx1 and Nx2 , and S, the

pooled estimate of the standard deviation,

t =
x̄1 − x̄2

S
√

(1/Nx1) + (1/Nx2)
, (5.3)

S is calculated from the standard deviations of each sample, sx1 and sx2 ,

S =

√
(Nx1 − 1) s2x1

+ (Nx2 − 1) s2x2

Nx1 +Nx2 − 2
. (5.4)

The critical values of t are defined by the Student’s t-distribution.

The Student’s t-test was used to determine whether various measurements could

be considered to be the same for data taken with different greater trochanter pro-

tectors, or different load cell attachments. t was calculated for each value of α,

comparing data under the following four combinations of conditions:

1. Perspex load cell attachment, compare greater trochanter protectors

2. PTFE load cell attachment, compare greater trochanter protectors

3. PMMA greater trochanter protector, compare load cell attachments
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Perspex R1 R2 S1 S2

PMMA vs foam ep1 ep2 ep1 ep2

50 9.0530 0.5400 6.5840 5.0264 0.5474 1.9177
60 1.7274 2.5538 0.0176 2.8457 1.7853 0.3461
70 0.6595 1.9082 3.3037 0.0404 0.7207 3.6538
80 0.6701 2.2668 1.4881 1.1025 1.1765 0.8506
90 2.0859 1.8143 0.3053 0.1722 0.5127 3.5797
100 3.6828 2.3162 1.5019 1.7734 0.9404 0.2695
110 2.6904 7.0741 2.7059 0.4141 1.0324 2.1154
120 0.1733 3.1354 2.8212 0.4749 0.8035 0.4125
130 0.6097 1.4482 1.4462 0.6962 3.8307 1.2847

PTFE R1 R2 S1 S2

PMMA vs foam ep1 ep2 ep1 ep2

50 7.0009 4.0504 5.8066 6.7482 2.0852 0.6619
60 5.5441 3.5525 3.6930 0.0505 1.8236 2.5098
70 20.8884 0.5272 0.5893 0.1396 0.3934 0.6712
80 2.6489 7.4697 0.8950 0.0338 1.2136 1.2241
90 9.2227 9.4630 2.2515 2.0573 0.7001 0.7584
100 10.2037 6.1818 2.9883 0.9077 12.9316 5.0928
110 1.2185 5.0201 0.2520 1.5663 4.0290 2.2006
120 2.9365 5.2373 0.5440 1.0513 0.0064 1.0461
130 1.1058 1.4897 1.3803 7.3563 0.9192 0.5529

Table 5.2: t-test statistics calculated from results taken with the same cells

4. Foam greater trochanter protector, compare load cell attachments

The size of all of the samples was Nx1 = Nx2 = 3, the number of mechanical tests

carried out for each data point.

Tables 5.2 and 5.3 contains the t-test statistics for each pair of strain measure-

ments. 49 of the 216 t-values exceed the 0.05 confidence limit of 2.776. 12 exceeded

the limit under combination 1, 21 under combination 2, 6 under combination 3, and

10 under combination 4. 14.8% of results are different at the 0.05 significance level

when comparing the load cell attachments. 30.6% of results are different at the 0.05

significance level when comparing greater trochanter protectors. This is an indica-

tion that both the interfaces between the load cell attachment and the femoral head,

and between the greater trochanter and the base plate have an effect on the strain

response to loading. It is clear from figures 5.8 – 5.13 that the difference between

the experimental data sets is much smaller than that of the experimental and model
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PMMA R1 R2 S1 S2

Perspex vs PTFE ep1 ep2 ep1 ep2

50 1.1081 0.1554 1.0871 0.0223 0.1651 0.5762
60 1.7743 0.1662 0.1009 0.8492 1.7862 0.1297
70 1.4849 1.6960 1.7745 1.7925 1.7881 7.6921
80 0.2828 0.5568 4.2405 1.5730 1.2557 0.3037
90 0.8591 0.4140 0.0404 0.9575 1.0683 6.1670
100 0.7488 0.5284 0.7708 1.6196 2.1823 3.0255
110 5.6227 1.3845 2.2608 0.9103 0.5933 0.9660
120 1.9526 2.2854 0.3647 0.5743 1.1479 3.0605
130 2.0778 1.0488 0.1780 2.2588 0.2213 1.7234

Foam R1 R2 S1 S2

Perspex vs PTFE ep1 ep2 ep1 ep2

50 1.5468 3.9739 1.8211 1.8724 3.3062 1.8625
60 4.0332 5.8632 7.1574 3.6434 1.9480 1.3873
70 0.1644 0.9044 1.3134 3.2210 3.3858 0.0080
80 2.0746 0.9562 1.6555 0.8346 2.5808 0.0430
90 0.7787 1.2470 1.0640 1.8179 0.6667 0.2652
100 0.0916 0.7573 0.3897 0.6041 0.6185 2.3353
110 0.2552 0.0934 4.2744 4.6064 2.7318 0.6278
120 0.2390 1.6900 0.5645 0.1021 1.7620 0.7566
130 0.1098 1.7671 0.2206 1.9354 0.3647 1.1689

Table 5.3: t-test statistics calculated from results taken with the same greater trochanter protectors
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data.

Figure 5.15 shows only the experimental data. For all datasets, the strain at the

first rosette gauge point is compressive for all loading angles. The largest strains

were measured at lower α values. The strain is always larger at the first rosette

gauge point than it is at the second. The strains at the second rosette gauge point

are also all compressive, aside from at α = 50◦ for the PMMA:perspex dataset,

where the magnitude of the first principal strain exceeds that of the third. The

largest strains are found at the high and low extremes of α.

The strain measured at the first single gauge point is compressive for all angles,

and largest for lower α angles. At the second single gauge point, the strain is com-

pressive between the angles 0◦ < α < 0◦, and otherwise tensile. The strain peaks at

90◦.

5.4.2 Comparison of Experimental and Model Results

A possible cause for discrepancy between the model and experimental results

is an insufficiently high resolution of data imported into the linear interpolation

function which characterises the spatially dependent Young’s modulus of the bone.

The linear attenuation data was downsampled so that each value represented the

average linear attenuation in a 1 mm × 1 mm × 1 mm volume, in order to create

a sufficiently small file which could be imported into Comsol without the software

crashing. Much of the cortical bone at the head and neck of the femur can be

smaller than 1 mm in thickness. The linear attenuation data in voxels covering

the the boundaries between cortical bone and air is averaged across the two media,

artificially lowering the linear attenuation, and therefore Young’s modulus of the

cortical bone at these points. Figure 5.16 shows Young’s modulus plotted along

a line through the neck of the femur in the plane perpendicular to the main axis

of the femur, starting from the location of the second rosette gauge, R2. A two-

dimensional plot of the Young’s modulus on this plane is also shown. One would

expect that the highest moduli would be found at the edges of the line, where the



Chapter 5 Computational and Experimental Investigation of Strain in a Sheep’s
Femur 105

Figure 5.15: First and second principal strains calculated from strains measured with rosette
gauges, and strain measured with the single gauges. The largest strains measured at the first
gauge point are positive, and measured at the lowest α angles. The strains measured at the second
gauge point largest at the low (positive strain) and high (negative) extremes of α. The strain at
the first single gauge point is largest at the lowest α angles, and is negative. The strain at the
second single gauge point peaks at α = 90◦, and is negative.
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Figure 5.16: Young’s modulus plotted along a line through neck of femur, and plotted onto a plane.
The “arc length” plotted on the x-axis is the length of the line running from point a (the location
of R2) to point b.
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cortical bone is found, with lower values in the centre which consists of much softer

tissue. Instead, there is a portion of the line approximately 1 mm long with very

low modulus at either end of the line, at the edges of the structure. The modulus

reaches a peak at 1.5-2 mm from boundary. The largest moduli calculated along

this line are considerably smaller than the average cortical bone Young’s modulus

of 20 GPa given in section 5.3. The partial volume effects caused by downsampling

the linear attenuation file cannot be responsible for the lowering of the modulus over

this large a scale, however, the coarseness of the mesh will also have an effect. The

average volume of the tetrahedral mesh elements is 1.958 mm3. To improve this, a

finer mesh would have be to used.

The mesh was refined as much as possible, further refinements resulted in a fail-

ure to generate the mesh as a degenerated triangle was created. Instead of refining

the entirety of the mesh, a triangular surface mesh was applied to the bone, and this

was meshed to a finer degree than the bulk tetrahedral mesh. This mesh configu-

ration resulted the solver failing to find a solution when α was set to 50◦ and 60◦,

but a solution was successfully found for the seven other simulations. The principal

strains calculated at the rosette gauge points from these simulations, along with

the results from the original mesh, are shown in figure 5.17. The average difference

between the strains measured by two models with the same loading conditions and

different meshes is 23.2%. The instances where the difference is largest are typi-

cally found where the change in strain as a function of α is largest. The difference

is observably large in all four graphs for α = 130◦. The deviations between the

model and experimental results at the second rosette gauge point have been found

to be largest for the most extreme values of α (figures 5.10 and 5.11). The use of

the refined mesh reduces the scale of the deviation in this case, but there is still a

significant difference between the results of this model and the experimental data.

Another possibility is that the mathematical relations used to characterise the

Young’s modulus of the bone do not apply to sheep bone. The equations used to

calculate the Young’s modulus were taken from studies into human bone [17, 33],

and the equation used to determine the ash density from the K2HPO4 concentration
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Figure 5.17: First and second principal strain/load measured at each rosette gauge points, calcu-
lated from models using the original tetrahedral mesh and the mesh with a finer triangular surface
mesh. Solutions were not found with the refined mesh for α = 50◦ and 60◦. Largest deviations are
seen where the change in strain as a function of α is largest, and at α = 130◦
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was taken from a study which used bovine bone [32]. No studies have been found

which determine whether the relationship between ash density and Young’s modulus

is dependent on species.

5.4.2.1 Young’s Modulus Compensation

The effect of the reduction in the Young’s modulus of the cortical bone caused by

partial volume effects on the strain induced in the model was observed by altering

the material properties. A coefficient, A, was added to equation 2.2, which describes

the Young’s modulus of the cortical bone using the ash density of the bone. The

inclusion of this coefficient allows for simple manipulation of the Young’s modulus

of the cortical tissue, the part of the bone with the greatest responsibility for its

strength, so that any artificial lowering of the modulus may be compensated for.

Equation 2.4, the interpolated equation allocated to the ash density values between

the thresholds used for cortical and cancellous bone, was also amended.

Ecort =10.2Aρ2.01ash (5.5a)

Eint =0.49

[
7.49A− 1

0.33
(ρash − 0.27) + 1

]
(5.5b)

The model was run under a single orientation, α = 80◦, and A was swept from

0.1 to 1 at an interval of 0.1, then from 1 to 3.5 at an interval of 0.5. The principal

strains at each rosette gauge points were recorded after each simulation, and a power

function was fit to each set of data (figure 5.18). The power functions were used

to find the appropriate value of A to which would give the average strain results

measured during the experiment. The solution to the power functions which give

the experimental average strains for the first and second principal strain at the

first rosette point, and the second principal strain at the second rosette points, are

3.00, 1.53, and 9.08 respectively. There is no solution to the power function fit

to the results of the first principal strain at the second rosette point which gives

the mean experimental strain. This function has a significantly lower coefficient

of determination than the other three, and so does not describe the model data as

well. It is observed from the graph, however, that the strains calculated in the model
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Figure 5.18: First and second principal strain measured at each rosette gauge point, as a function
of the multiplication coefficient A. Results of the finite element model are plotted (points), as
are the power functions fit to the points (solid line), and the mean values of the principal strains
measured in the experiment (dashed line).

at this point are much larger than the experimental mean, and that any solution

would require a coefficient outside of the range used in this investigation. The

three solutions which were possible to find are significantly different, the smallest

is approximately six times smaller than the largest. This investigation shows that

altering the equation which characterises the Young’s modulus of the cortical bone

according to the ash density does have a significant effect on the strains calculated in

the model, and that it is possible to achieve strains close to the experimental results

by increasing the Young’s modulus of the cortical bone. It has not been possible

to create a model which accurately simulates the magnitude of strain measured

experimentally in more than one location on the surface of the bone by applying

a multiplication factor to the equation, due to the complexity of the geometry and

the inhomogeneity of the femoral structure.

5.5 Conclusion

This chapter consists of an investigation similar to that carried out with PVC

femur, but this time with sheep bone. This involved the inclusion of foam and

PMMA greater trochanter protectors in the experiment, along with the addition of
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two load cell attachments with significantly different coefficients of friction. The

contact mechanics simulation used in the PVC model at the greater trochanter -

base plate interface was replaced by fixed boundaries.

Data was taken with all four possible combinations of the load cell attachments

and greater trochanter protectors. 30.6% of results taken with different protectors

were considered to significantly differ from one another. While significant, the differ-

ence between experimental datasets was considerably smaller than the discrepancy

between the experimental results and those simulated by the model. The foam pro-

tector is a much closer simulant of the soft tissue which protects the proximal femur

during impact, so a way of refining the model would be to more closely model the

conditions of the foam. It is not clear at this stage whether that would require

the simulation of contact between the foam and the femur, along with the material

properties of the foam, or simply an alteration of the fixed boundaries.

14.8% of corresponding results taken with different attachments were considered

to significantly differ from one another. This is smaller than the variation caused by

using different greater trochanter protectors, but it is still significant. It is preferable

to use low-friction materials to simulate the acetabular surface and the low frictional

forces in a real hip joint. Use of lubrication would also help reduce friction in the

experiment. Addition of a frictional component to the contact model could also be

considered.

There is a clear difference between the results of the model and the experiment.

A potential cause for this could be inaccuracy in defining the material properties

of the bone, either due to the use of mathematical relations which do not correctly

characterise ovine bone, or to partial volume effects causing the lowering of the per-

ceived Young’s modulus of the cortical bone.

The experimental data shows that the largest strains are measured at the first

rosette gauge point, on the superior surface of the neck, and are compressive. The

largest strains occur at low α values, when the femur is oriented so that contact
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between the femur and the base plate occurs at the posterior face of the greater

trochanter.
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Chapter 6

Conclusion

6.1 Overview

The aim of the work presented in this thesis was to use a finite element model

and experimental testing to simulate the loading conditions caused by a fall, and

investigate how changes to the loading conditions can affect the strains measured in

the proximal femur.

The technique for using CT data to develop finite element models of proximal

femur bone samples was tested. Mathematical relations were used to calculate the

Young’s modulus of bone based on its ash density, calculated from the linear attenu-

ation of the bone measured in the CT scan. Chapter 2 contained a preliminary study

into the effect of loading orientation on strain distribution in the proximal femur.

The strain distribution was confirmed to be significantly dependent on orientation,

and that strain peaked in the neck of the femur, particularly when the bone was

rotated away from the lateral fall position.

Techniques necessary for bonding strain gauges to bone, and for using PMMA

bone cement to fix the distal end of the proximal femur sample to the apparatus

were tested and implemented. The investigation into the effect of multiple freeze-

thaw cycles on strain measurements showed that strain readings could be considered

reliable after no more than three freeze-thaw cycles. Inconsistencies were found in

the strain measurements after four cycles, but more work must be done to confirm
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whether this is caused by the freezing and thawing, or if variation was introduced

by some other factor. The confirmed number of cycles was sufficient to carry out

the tests needed for this project, but further work is required to establish whether

freezing and thawing a strain gauged bone has an effect on the strain measurements.

The models created in this study include the contact mechanics in the hip joint,

as well as between the grater trochanter and the floor in the PVC model. This

has not been done before now, point loads or boundary loads are frequently used

to apply load to the femur. The surfaces of the femoral head and the acetabulum

are irregular, so the contact area between the two depends on the orientation of

the femur in the acetabulum. This study modelled the acetabulum with a smooth

concave spherical surface. In a real hip joint, the femoral head and acetabulum are

coated in a layer of cartilage. Further modifications to the model could include a

simulation of these layers.

The requirement for the models and experiments to be directly comparable meant

that strain gauge data needed to be compared with strains computed in the model

at the same points on the surface of the femur. Trilateration was successfully used

to locate points in model geometry to match the locations of the strain gauges used

in the experiment. This is a novel use of this technique, which has not been used

for registration locations of points on a CT-derived geometry before, and has shown

to be used to select points to an acceptable level of accuracy.

6.2 Outcomes

Previous finite element studies on the proximal femur have shown that falls onto

the posterolateral aspect of the greater trochanter are associated with the lowest

fracture forces [13, 21, 23]. Both PVC and sheep bone experiments showed highest

strains at extreme angles of α in both rosette gauges. The highest strains overall

measured in the sheep bone experiment were found at the lowest angles of α, repre-

senting a fall in the posterolateral direction. A fully sideways fall is approximated
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when α = 90◦, and a fully backwards fall when α = 0◦, so the lower α, the further

the femur is rotated towards a backwards fall.

Previous simulations into the initiation and propagation of fractures in the prox-

imal femur caused by loading in a fall configuration have shown that fractures most

frequently occur in the neck of the femur, specifically the top of the neck [13]. The

preliminary models presented in chapter 2 of this thesis showed large strain concen-

trations around the neck of the femur, and the sheep’s bone experiment and model

results showed the largest strains at the gauge point at the top of the neck. Although

the sheep’s femur is quite different from a human femur, this result is promising.

This is in keeping with the statistical analysis of real hip fracture incidences, which

find that the majority of hip fractures are intracapsular [8].

The results of the sheep’s bone model are not a close estimate of the results of the

experiment. It is suspected that the cause of this discrepancy is inaccuracy in defin-

ing the material properties of the bone in the model. The mathematical relations

used to define the Young’s modulus of bone tissue are based on studies involving

human and bovine bone, it is possible that they do not correctly characterise ovine

bone. Inaccurate calculation of the Young’s modulus of the bone tissue could be

attributed to the the limited resolution of the linear attenuation data imported into

the model and the coarseness of the mesh. These factors cause a partial volume

effect responsible for the perceived lowering of the calculated Young’s modulus of

the cortical bone.

6.3 Limitations and Future Work

This investigation was designed to show the effect of changing the orientation

of the femur in a fall configuration, to show that the model is useful and can be

applied to real fall simulations. This work can potentially be developed to model

the real-life conditions of fall mechanics. Very little is known about what happens

during a fall, as it is impractical to observe and monitor them when they naturally
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occur. It is possible to simulate a fall with healthy volunteers, but it is not possible

to identically replicate the conditions of a real fall.

Finite element analysis allows for the simulation of a vast number of scenarios,

and to examine the effects of changing a single variable in a complicated problem.

In the case of the analysis of the mechanics of falling, finite element analysis can

be used to isolate boundary conditions associated with a high probability of hip

fracture. The risk of hip fracture could then be reduced by taking measures to avoid

these conditions in the event of a real fall. This study explored the effect of altering

the orientation of the femur with respect to the impact surface. The largest strains

were measured under conditions equivalent to a fall in the posterolateral direction.

This information could be considered in the design of hip protectors. It could also

influence the positioning of furniture in a room to decrease the likelihood of this

kind of fall.

The samples used in this study were a PVC surrogate femur cast from a full

size human femur, and a sheep femur. The investigations carried out with each of

these samples allowed us to simulate separately the shape of the human proximal

femur, and the spatially varying material properties of a femoral bone sample. The

successful use of the apparatus in supporting both samples at a range of loading

angles without slippage or damage to the samples shows that it can be used in tests

with real human proximal femur samples.

A soft tissue simulant foam was used in the sheep femur experiment reported in

chapter 5, with the same thickness of foam used for each loading orientation. In a

real body, the thickness of the soft tissue is not consistent all the way around the

hip joint. The soft tissue thickness profile also varies between individuals. As this

model is static, soft tissue thickness only effects the size of the load, so study is

required into how the orientation of the femur affects impact force given soft tissue

thickness.

The size of the load delivered to the femur in a fall depends on a large number
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of factors, including the mass of the faller, the angle a person falls at, and the thick-

ness of the soft tissue at the greater trochanter. The strains compared in this study

were induced by a load of 1 N, a very small load compared to those seen in falls.

The strains associated with real fall conditions could be estimated from the results

of this model by applying a realistic fall load. As neither of the models created

for this project simulated a real human bone, this step was not considered useful

at this stage. The effect of falling technique on impact load and femur orientation

upon impact would have to be assessed in order to estimate the appropriate force

for each femur orientation. The experiment and model used in this study do not

include the reaction forces caused by muscles and ligaments. A further refinement

to the investigation would include these forces, potentially defined by studies into

whole-body modelling of reaction forces in a fall [68].

Experiments and models used in this study involved static or quasi-static loading

to induce strain in the femurs. This is adequate for assessing the strain distribu-

tion and can potentially be used to calculate the size of strains caused by a real

fall, but it cannot capture the dynamic response of a fall scenario. A study of the

time-dependent strain evolution may be applied to create a greater understanding

of fracture initiation and propagation in the proximal femur. The contact mechanics

simulation incorporated into the models presented in this thesis have the potential

to capture the dynamic interaction within the hip joint, as well as between the femur

and the impact surface. There is potential to adapt the finite element model created

in this project to include a time dependent force caused by impact through simu-

lated contact boundaries at the femoral head and greater trochanter. The reliability

of the results of this model would need to be tested by comparison against strains

measured in an impact experiment. It would be necessary to model the soft tissue

over the greater trochanter, as well as the compliance of the hip joint and pelvis.

The circumstances of a fall vary between individuals and falls. The nature of

the fall depends on environment, such as the surface of the floor and objects around

the faller. The condition of the proximal femur, such as whether the faller has os-

teoporosis or has suffered a hip fracture before, will also have an effect on the strain
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distribution caused by a fall. Other factors include the mass of the faller, and the

thickness of the soft tissue covering the greater trochanter. The benefit of using finite

element modelling is that a large number of conditions can be simulated. An aim of

this study is to develop the techniques necessary for building a model where the ef-

fect of changing the conditions of the fall can be assessed, and the conditions causing

hip fracture can be identified. By identifying these conditions, steps can be taken to

create a safer environment to reduce the proportion of falls that lead to hip fracture.
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