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Abstract

Terahertz imaging (frequency between 0.1 to 10 THz) is a modern technique

for public security check. Due to poor imaging quality, traditional machine

vision methods often fail to detect concealed weapons in Terahertz samples,

while modern instance segmentation approaches have complex multiple-stage

concatenation and often hunger for massive and accurate training data. In this

work, we realize a novel Conditional Generative Adversarial Nets (CGANs),

named as Mask-CGANs to segment weapons in such a challenging imaging

quality. The Mask-Generator network employs a “selected-connection U-Net”

to restrain false alarms and speed up training convergence. The loss function

takes reconstruction errors and sparse priors into consideration to preserve pre-

cise segmentation. Such a learning architecture works well with a small training

dataset. Experiments show that the proposed model outperforms CGANs (more

than 16-32 % in Recall, Precision and Accuracy) and Mask-RCNN (more than

3-6 %). Moreover, its testing speed (69.7 FPS ) is fast enough to be implemented

in a real-time security check system, which is 44 times faster than Mask-RCNN.

In the experiments for mammographic mass segmentation on INBreast dataset,

the Dice index of the proposed method is 91.29, surpasses the-state-of-the-art
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Figure 1: Images in our dataset. These four samples show weapons concealed in different

positions on four subjects from fore and back views (weapons are marked by red bounding

boxes).

medical issue segmentation methods. The full implementation (based on Ten-

sorFlow) is available at https://github.com/JXPanzz/THz )
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1. Introduction

Detecting concealed objects underneath clothing is a critical task in pub-

lic security check, while the traditional manual check is often criticized with

inefficiency, invasion of privacy, and high rates of missed detection. Terahertz

imaging technology [1, 2, 3], provides a non-contact and non-destructive way to5

acquire samples of objects concealed underneath clothing with no harmful to

health. However, due to the inherent physical properties of Terahertz imaging,

samples have low contrast and signal to noise ratio. Fig.1 shows our Terahertz

imaging samples, where the concealed weapons are inconspicuous in intensity

value, yet the boundary of objects are partially indistinguishable from the hu-10
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man body.

A typical use of modern deep convolutional networks is on classification

tasks, where the output to an image is a single class label. However, in many

visual tasks, especially in a security check system, the desired output should

include localization, i.e., a class label is supposed to be assigned to each pixel.15

Traditional object recognition often follows the detection-first regime. Unfortu-

nately, the imaging quality mentioned above leads to poor detection. Our idea

is to first accurately segment concealed objects from subjects’ body without

any prior supervised label. Following this way, actually, detection is just the

post-processing following segmentation – When the segmentor provides a none-20

zero blob, then provide a bounding-box to highlight the region. Obviously, this

is a instance-segmentation regime. Modern instance segmentation approaches

based on deep convolutional neural networks [4, 5, 6, 7, 8, 9, 10, 11, 12, 13] have

great potential in this task. But segmentation and detection often belong to two

relatively independent units, which makes the modeling structure rather com-25

plex resulting in a slow processing speed and less robustness. Moreover, modern

deep convolutional networks often hunger for massive training data. Since the

imaging highly depends on specific equipment, thousands of training images for

each class are beyond reach in this task.

Generative adversarial nets (GANs) [14] were introduced for training genera-30

tive models in order to sidestep the difficulty of approximating many intractable

probabilistic computations when just relying on a small dataset. It can produce

state of the art log-likelihood estimates and realistic samples. A conditional

GANs (or CGANs) model [15] by giving the model additional information, is

possible to direct the data generation process. Such conditioning could be based35

on class labels, on some part of data for inpainting, or even on data from dif-

ferent modalities. CGANs have been applied in many image generation tasks,

such as image forgery and super resolution.

In this work, we realize this particular instance segmentation task as an

image-to-image transformation process that translates input samples into masks40

containing interested objects while dropping unrelated ones. We propose Mask-
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CGANs shown in Fig.2. To meet the specific needs, the loss function of Mask-

CGANs takes reconstruction errors and sparse prior knowledge into consider-

ation. In the Mask-Generator net, a “selected-connection U-Net” is designed

to preserve objects and discard useless image details which makes a trade-off45

between Recall and False Alarm rates. Experiments show that the proposed

Mask-CGANs outperform CGANs and the state of the art instance segmenta-

tion approach Mask-RCNN in both robustness and processing speed.

The contributions of this work are:

• Introducing adversarial learning to deal with a small training dataset.50

• Designing a “selected-connection U-Net” for the Mask-Generator to make

a balance between Recall and False Alarm rates.

• Introducing reconstruction errors and sparse priors into consideration for

the loss function of the proposed Mask-CGANs, to provide precise seg-

mentation.55

• It is appropriate to be implemented in a real-time Terahertz security in-

spection system.

The outline of this paper is organized as follows: the related work will be

introduced in Section 2, the proposed Mask-CGANs used in this task will be

introduced in detail in Section 3, Dataset preparation and augmentation, ex-60

periment set-up and results, and the discussion about results will be presented

in Section 4, conclusion and future work will be provided in Section 5.

2. Related Work

As the samples got from Terahertz waves are under poor quality, finding

the prohibited items from the present low quality electromagnetic imaging data65

becomes particularly difficult. Early work focused on statistical modeling. Shen

[16] proposed multilevel thresholds segmentation by using a Gaussian Mixture
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Model (GMM) to model the probability density function of radiometric tem-

perature and segment objects by tacking the evolution of boundaries during

threshold changing, and the anisotropic diffusion algorithm is applied as a pre-70

processing to remove noise. Lee [17] builds GMM for the samples and then

human bodies and objects are divided by Bayesian boundaries in two Expec-

tation Maximization (EM) processing respectively. Yeom et al [18] applied a

multilevel segmentation process based on GMM and vector quantization used

before EM for real-time detection. These statistical modelling methods are ap-75

plicable to segment object in the weak supervised way which lack the capability

in accurate detection without any label, and the segmentation performance is

poor under bad imaging quality.

Modern general instance segmentation approaches based on deep convolu-

tional networks have great potential in this task. This kind of approaches could80

be roughly divided into two families. One family relies on the R-CNN proposals,

which is a bottom-up pipeline that the segmentation results are based on the

proposals and then labelled by a classifier [4, 5, 6, 7, 8, 9]. The other family relies

on semantic segmentation results [10, 11, 12, 13] where instance segmentation

following semantic segmentation by classifying pixels into different instances. A85

state-of-the-art method Mask-RCNN [19], built upon object detectors [20, 21],

also depends on the proposals but features are shared by classes, box predictors

and mask generators, then all results are collected in parallel. However, all of

those algorithms contain complex multiple-stage cascading which is slow and

less robust. In addition, the deep convolutional networks based framework is90

typically requiring big training datasets to guarantee their generalization for

new data while our dataset is rather small (with 1440 samples in 2 classes for

both training and testing).

GANs provides a generative model which can achieve image-to-image map-

ping. A GANs [14] aims to fit a mapping function f from noise z input to its95

output sample g, f : z → g, who doesn’t need the prior knowledge about a

latent data distribution and captures it just through an adversarial process. A

typical GANs model contains two parts. One is Generator (G) which tries to
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Figure 2: Mask-CGANs framework for segmenting weapons in Terahertz samples. Image x

is added into Mask-Generator as a condition to achieve CGANs. Segmentation masks are

generated by Mask-Generator under the supervision of Discriminator and loss function during

training phase. Masks are output from the trained Mask-Generator during testing phase.

generate fake samples but more and more realistic then tries to fool the other

one called Discriminator (D) to make mistakes. And the assignment for D is to100

distinguish whether the samples received are fake generated by G or real ones

sampled from real data. Then the ultimate outcome is that G can generate

samples where D cannot determinate if they are fake or not. A mount of new

training data produced during this adversarial process can release pressure on

small datasets. Outwardly, it is fully under an unsupervised manner, so that105

original GANs can be seen just as a noise mixer to generate samples with a la-

tent noise distribution. Additional information is added into the unsupervised

model to direct the generating process, for example, CGANS aims at generating

images under certain constraints [15, 22, 23, 24, 25, 26], which could be seen as

6



a supervised label for each training sample. We argue that object segmentation110

can be regarded as a special sample generation task. The difference is that the

generated sample is the mask of the object. Thus, the inner structure of GANs

should be designed to meet this particular aim.

3. Model Structure of Mask-CGANs

As a supervised segmentation task, the location of the object should be115

preserved. As it is shown in Fig.2, during the training phase, Mask-CGANs

learns the mapping function f from a Terahertz sample x to its ground truth

y. The training is supervised by a Terahertz sample x as condition along with

its ground truth y and a noise z produced by the drop-out process in the Mask-

Generator model to output a fake sample G(x, z), correspondingly. While the120

inputs Discriminator receiving include two parts: one is the real pair: a Tera-

hertz sample with its ground truth, the other contains a real Terahertz sample

and a fake sample produced by the Mask-Generator. In the testing phase, given

a condition sample, the mask sample is generated deterministic by the trained

Mask-Generator. For the Discriminator of GANs, we follow the Discrimina-125

tor net model used in [15], a convolutional “PatchGAN” classifier, which only

penalizes structure at the scale of image patches.

3.1. Selected-connection U-Net for Mask-Generator

For the designing of the Mask-Generator, ablation studies and Occam’s Ra-

zor are guiders for our study. We provide the discussion and explanation why130

we design a “Selected-connection U-net” structure.

For the Mask-Generator net, our model and another two candidates are

illustrated in Fig.3 (a). As a generator, traditional “Encoder-Decoder” [27] is

the basic feature mapping model. It represents the mapping function from a

Terahertz sample x to its segmentation mask G(x, z). Image x passes through135

several down-sampling layers until a bottleneck layer and then up-sampling

process applied symmetrically. In another word, all information flows through
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Figure 3: (a) Mask-Generator “selected-connection U-Net” model and two other candidates.

The white blocks mean the down-sampling layers’ features and the up-sampling layers’ are in

gray color. The connection lines (in green) copy features from the beginning layers to terminal

layers. (b) We sample some feature maps produced by the first three encoder layers. Rich

low-level features like edges are shown in those feature map which will cause a higher False

Alarm rate when concatenated to the layers nearby the output layers. So our model drops

this feature from “U-net”.

all layers where low-level features are lost. However, there is a great deal of

low-level information shared between the input and output, and it would be

desirable to shuttle this information directly across the net. For example, in the140

case of tiny objects segmentation, the input and output share the location of

prominent edges, which are important to help find the objects.

“U-Net” [28] employed in [15] concatenates all the layers before the bot-

tleneck layers with richer fine-grained features to hold more realistic samples.

In experiment, we found it provides image details, but, produces many false145

alarms, which can be seen in Table 1. The original “U-net” essentially propa-

gate information from the down-sampling layers to all corresponding symmet-
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rical up-sampling layers. For a segmentation task, the low-level feature layers

contain too much redundant interference. However, we should take care of the

balance between recalling hidden objects as many as possible and making mis-150

takes as few as possible. As shown in Fig.3 (b), the feature maps sampled from

the first three down-sampling layers who carry too much edge information and

background which we want to discard when segmenting the objects of interested.

Such low-level features may lead to higher false alarms when they emerge in the

up-sampling layers nearby the output one.155

The above mentioned is the motivation why we propose a “selected-connection

U-Net”, to discard the feature channels between low-level feature layers, and to

preserve the ones between high-level feature layers. The experimental results

indicate this improvement works much better than original U-net and Encoder-

Decoder. Along with the loss function (will be introduced in Section 3.3), it160

makes a good tradeoff between Recall and False Alarm rates.

The Mask-Generator, selected-connection U-Net is shown in Fig.4. This

model is a fully convolutional net with 16 layers, and each layer has a 5*5

convolution kernel with stride equal to 2*2 and padding. So the image size

will be reduced by halve after each process of downsampling which consists 8165

convolution layers and Leaky Relu function is taken as activation function. In

contrast to the downsampling, the image size is twice as large as the upsampling,

but the number of features is halved. When up-sample, selected output feature

maps are merged with the corresponding feature maps from the down-sampling

network to make well trade-off on richer fine-grained features and lower false170

alarm rate.

3.2. The role of noise z

Input z is Gaussian noise, a standard operation in GANs, applied to the

Mask-Generator during the training process. Without z, the net could still

learn a mapping from x to G(x), but would produce deterministic outputs, and175

therefore fail to match any distribution other than a loss function. For our

models, we provide noise only in the form of drop-out, applied on layers of the
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Figure 4: The model structure of selected-connection U-Net. The model is a fully convolutional

net with 16 layers, each layer has a 5*5 convolution kernel with stride equal to 2*2 and padding.

Mask-Generator. The drop-out noise show minor stochasticity in the output

of the Mask-Generator and thereby capture the entropy of the conditional dis-

tributions it model. The introducing of Gaussian noise z allows the model to180

ignore the prior knowledge about the latent data distribution and to captures

it just through an adversarial process. New training data is produced during

this adversarial process which can release the pressure of overfitting on a small

dataset. It makes the trained model more robust in our task.

3.3. Loss Function185

3.3.1. Basic CGANs Loss

To segment concealed objects in a Terahertz sample comes, the basic loss

function comes from CGANs [15]. Compared to traditional GANs, these ap-
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proaches applied certain restrictions. In this work, the condition x (Terahertz

sample) is added into each net. The loss function is:

LCGANs = Ex,y∼data(x,y)logD(x, y) + Ex∼data(x),z∼p(z)log(1−D(x,G(x, z)))

(1)

In this loss function, both the Mask-Generator and Discriminator have a

chance to observe the real input samples x during the training phase. Dis-

criminator maximizes this Expectation term (E) by outputting a high score for

the pair (x, y) sampled from distribution data(x, y) while giving the fake pair190

(x,G(x, z)), where x is sampled from real data distribution data(x) and z is pro-

duced by p(z), a low score (the score measures the possibility of the sample the

Discriminator received to be sampled from real data, and the higher the more

realistic). However, the Mask-Generator wants to optimise this function and

generate fake samples as realistic as possible to get a higher score for the fake195

pair. logD(x, y) and logD(x,G(x, z)) indicate the logarithm scores for real pair

(x, y) and fake pair (x,G(x, z)), respectively. In practice, z is a drop-out pro-

cess in Mask-Generator layers to generate variant outputs. More new samples

are generated help to capture latent distributions and enhance the robustness.

Condition x is employed to ensure the output mask G(x, z) is in pair with con-200

dition x and locate at the corresponding position. Without condition x, the

mask would be generated in any arbitrary position.

3.3.2. Reconstruction Error

Since the Mask-Generator is an encoder-decoder type generative model and

aims to take in noise-perturbed input and reconstruct original input, the loss

function take reconstruction error into consideration. The reconstruction error

measures the Manhattan distance between the ground truth and the generated

one in the pixel level. This part directs the generation process under the shape

constrains and enhance the supervision efficiency that restricts the mask output.

Also, We use L1 instead of L2 as the latter brings more blurs [15].This term is

expressed as:

LL1
= ‖y−G(x, z)‖1 (2)
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3.3.3. Sparse Constrain

Here, we also take sparse priors as a constrain term where L1-norm is applied

instead of theoretical L0-norm or common L2-norm that avoids solving a NP

hard problem in the former norm whilst L2-norm cannot make most values to

zero but small numbers. The sparse prior constrain is measured as:

LS = ‖G(x, z)‖1 (3)

The sparse prior helps to keep the generated mask within the bounds and205

reduce False Alarms thereby. The sparse assumption is made for the targeted

object just occupy a small area in the whole sample. Multiple targeted objects

don’t mean the area will cover most area of the sample. So the sparse constraint

also work with multiple targeted objects.

Then the final loss function is reorganized as three main parts:

Goal(G,D) = argmin
G

max
D

LCGANs + λLL1
+ βLS (4)

Condition x and the reconstruction error provided as supervised terms en-210

sures the generated result to be in pair with the input Terahertz sample. Other-

wise, the generated results will be much casual and diversified that is unsuitable

for our needs. And precise segmentation performance can be guaranteed by min-

imizing the distance between mask outputs and its ground truth. What’s more,

sparse constrain, as prior knowledge, reduces False Alarm rates. The functions215

of these terms are shown and discussed in Section 4.

4. Experiments

In this section, we apply our Mask-CGANs and other models to segmenting

hidden objects in Terahertz samples. Experimental results will be demonstrated

and discussed in detail.220

4.1. Dataset Preparation

The dataset contains 1440 Terahertz samples. Those samples are sampled

from 4 subjects (360 for each one including fore and back views) containing
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Figure 5: Experiment results (12 groups). For each sample, it has three columns illustrated

the original Terahertz sample (left), sample with ground truth (middle, marked with green

area), sample with ground truth and output of Mask-CGANs model (red area) from left to

right.

weapons like guns, knives or nothing. In experiments we do not distinguish the

sample between fore or back view and kinds of weapons, with 2 classes (with225

weapon or not). We define samples without any hidden weapon as negative

while others are positive. Ground truth labels are provided for each sample by

manually segmenting the weapon areas by three guys, and using the majority

voting to produce the final ground truth. For the positive samples with weapons,
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segmentation masks are applied as the ground truth, while for the negative230

samples which don’t contain any weapons, their ground truths are the black

background.

4.2. Training Dataset Augmentation

Data augmentation is essential to teach the network the desired invariance

and robustness properties, when only few training samples are available. We235

primarily undertake shift and rotation invariance as well as robustness to defor-

mations and gray value variations, to increase the variants of the trained data

during the training phase. Especially random deformations and gray value vari-

ations of the training samples seem to be the key concept to train a segmentation

network with very few annotated images. We generate smooth deformations us-240

ing random displacement vectors on a coarse 3 by 3 grid. The displacements

are sampled from a Gaussian distribution with the 10 pixels standard devi-

ation. Per-pixel displacements are then computed using bicubic interpolation.

Drop-out layers at the end of the contracting path perform further implicit data

augmentation.245

4.3. Experiment Settings

In practice, 2/3 of the samples with their ground truths, selected randomly,

are put into the Mask-CGANs model for training. While the remaining 1/3

samples are used for testing. In this experimental evaluation, the validation set

and training set are overlapped. Although this way seems to be redundant for250

training, it is a safe way when the training set is relatively small.

The evaluation methodology is based on “overlapping threshold” [29]. It is

strict and rigorous:

(1) A image sample is true positive (TP) if and only if its ground truth blob

(connected region containing at least one pixel) is positive, and the overlapping255

area between the ground truth blob and the generated mask blob is over a pre-

determined threshold ratio of the total object domain. Otherwise it is regarded

as false negative (FN) sample.
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(2) The true negative (TN) sample is defined as the ground truth is negative

and the output shouldn’t have any positive pixels (each pixel value equals to 0).260

Otherwise it is regarded as false positive (FP) or false alarm sample. Namely, if

there is one false positive pixel in the image sample, the sample will be counted

as a FP sample.

For quantitative analysis, four evaluation metrics, Precision, Recall,Accuracy

and FalseAlarm were utilized,

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

Accuracy =
TP + TN

P +N
(7)

FalseAlarm = FalsePositiveRate =
FP

N
(8)

where P and N represents the number of all positive and negative image sam-

ples, respectively. Note that, the False Alarm will not be affected while the265

threshold changes because if there is one false positive pixel, the image sample

will be counted as a FP case.

A compared method in the experiment is Mask-RCNN [19], a state-of-the-art

method for instance segmentation. It bases on ResNet-101 [30], and it was pre-

trained on COCO dataset. In the following experiment, it is fine-tuned using270

our Terahertz dataset. Another compared method, CGANs [15] models were

trained using our Terahertz dataset with different Generators and loss functions,

including the proposed Mask-CGANs, without any pre-trained network.

4.4. Experimental Evaluation

Fig.5 shows some samples segmented by our model. For visualization, we275

display the original Terahertz on the left, put ground truth (green) onto the

sample in the middle and segmentation result (red) with the sample and the
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Figure 6: The Precision and Accuracy, Recall and False Alarm rates are changed with over-

lapping area threshold changing.

ground truth on the right. Our model can segment concealed weapons in noisy

Terahertz samples where weapons are hidden at different locations by different

persons with different postures. When the sample contains hidden weapons,280

our model can output a mask to cover its area, and the model outputs a black

background for the samples without any concealed object.

The quantitative results in Table 1 have shown the efficiency of our Mask-

CGANs model with appropriate loss function and model structure in this task.
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Table 1: Overall Evaluation Comparisons

Generator or Method Loss Function Recall Accuracy Precision False Alarm

Encoder-Decoder [27] LCGANs + LL1
0.6375 0.5083 0.6296 0.7500

U-Net(CGANs) [15] LCGANs 0.7500 0.5000 0.6000 1.0000

U-Net LCGANs + LL1
0.9125 0.7750 0.7849 0.5000

selected-connection U-Net LCGANs + LL1
0.9125 0.8000 0.8111 0.4250

Mask-RCNN [19] – 0.8563 0.7583 0.7965 0.4375

selected-connection U-Net LCGANs + LL1
+ LS 0.9125 0.8208 0.8343 0.3625

Without the LL1
constrain (“U-Net”), which is a strong guidance to reach one-285

to-one match between the input and the output, the generation process is able

to achieve suitable results for the segmentation task and its Precision and Ac-

curacy rates are cut down much with a high False Alarm rate. For the model

without concatenating low-level features (“Encoder-Decoder (LCGANs, LL1
)”)

which play important role in finding tiny objects, its Recall rate is affected290

greatly (0.6375 Vs. 0.9125 (“U-Net (LCGANs, LL1
)”). However, our model

structure is different from “U-Net” and gets good tradeoff between Recall and

False Alarm rates in contrast to the other two candidates (False Alarm rate:

0.425 Vs. 0.5 and 0.75). For sparse priors, the False Alarm rate decreased

sharply (0.3625 Vs. 0.4250), and Precision and Accuracy increases correspond-295

ingly.

Fig.6 displays some comparison results, about Recall, Precision, Accuracy

and False Alarm rates of different models, as the overlapping threshold changes.

Because of our strict judgement method, the False Alarm rate will not be

changed whatever the threshold is. Our final model Mask-CGANs with selected-300

connection U-Net and Loss Function (LCGANs, LL1
, LS) outperforms others

both in Precision and Accuracy rates at each threshold, even though Recall

rates are affected slightly at some threshold points.

As for Mask-RCNN, our model surpasses this state-of-the-art instance seg-

mentation method in such small and noisy specific dataset both in the indexes305

shown in Table 1 and segmentation testing speed. As shown in Fig.7, our model’s

testing speed is 69.7 FPS, while Mask-RCNN’s is 1.6 FPS. Note that the sig-
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Figure 7: The testing speeds of Mask-RCNN and our Mask-CGANs in this task.

nificant advantage in the processing speed makes it possible to be implemented

in a real-time security inspection system.

Our model is trained for about 7.6 hours in 400 epochs with 8 samples as310

a mini batch (all samples are resized to 256 × 256). All the experiments are

tested on a single GTX1080G1 GPU within a Windows 10 operating system

and TensorFlow.

4.5. Test on INBreast dataset

In this part, we show experiments on another dataset INBreast dataset [31],

which is a mammographic mass analysis dataset, providing accurate contours of

lesion region and the mammograms are of high quality. For mass segmentation,

the dataset contains 116 mass regions. We use the first 58 masses for fine-tuning

the model and the rest for test. For consistent medical comparison, the Dice

index metric is used for the segmentation results and is defined as

Dice =
2TP

2TP + FP + FN
(9)

As shown in Table 2, the Dice index of the proposed method is 91.29%, sur-315

passes the-state-of-the-art medical issue segmentation methods: Mask-RCNN

[19] 91.07%, Multi-FCN-CRF with Adversarial Training [32] 90.97%, FCN with

Adversarial Training 89.71%, FCN [33] 89.48%, CGANs with U-net [15] 90.40%,

and U-net [28] 89.79%.

4.6. Interface Implementation320

The graphic user interface is built to show the experimental results more

intuitively. The GUI is based on PythonQt as shown in Fig.8. It displays the
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Table 2: Test on INBreast dataset

Methods Dice index

the proposed 91.29%

Mask-RCNN [19] 91.07%

Multi-FCN-CRF with Adversarial Training [32] 90.97%

FCN with Adversarial Training 89.71%

FCN [33] 89.48%

CGANs with U-net [15] 90.40%

U-net [28] 89.79%

Figure 8: The graphic user interface based on PythonQt, displays the original Terahertz

images (fore and back view), the segmented mask, and the bounding box based on the mask

(red bounding box added on the original image).

original Terahertz images (two images for one subject in fore and back view),

the segmented mask of the concealed objects, and the bounding box based on

the mask (the red bounding box added on the original Terahertz image).325
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4.7. Discussion

4.7.1. Dataset size and overfitting

A concern is that the dataset size is rather small compared with some deep

learning standard datasets. Actually, the class number in our dataset is also

small (1440 samples with 2 classes). Some deep learning datasets usually has330

samples more than 1000 in one class, but the number of the training samples

is not the essence, the representativeness of data is one of the most important

concerns for a machine learning task. Also, we applied data augmentation ap-

proaches, shift, rotation, deformations and gray value variations, in the training

phase for each comparison method, which increased the number of the training335

data.

To test the generalisation of the proposed method, even our dataset is small,

we still decide to use 1/3 independent data for testing. This rate is much larger

compared with the traditional 10 folders or 5 folders testing.

GANs itself is a better choice when the training data is of a small number,340

that is also a consideration when we design this framework.

In summary, our model is trained with random data augmentation under an

adversarial learning framework, and tested using a relative large independent

testing dataset, to grantee the generalisation of this method.

4.7.2. False Alarm rate345

Although the False Alarm rate of the proposed method is better than that of

any other methods in our comparison, it is not so low due to our strict evaluation

methodology [29] that one single positive pixel will result a false alarm sample.

Our model is a generative method and some sparse local noise may not be fully

removed. This kind of false alarm samples can be removed through a simple350

post-process like median filtering.

5. Conclusions and Future Work

We have presented a method to segment concealed weapon in Terahertz sam-

ples with poor imaging quality. Mask-CGANs with an optimal model structure
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and a proper loss function, has abilities in segmenting concealed objects in such355

low quality and noisy Terahertz samples within a small training dataset. The

experimental results also prove that our system achieved much shorter process-

ing time than Mask-RCNN. The fast processing speed means it is appropriate

to be implemented in a real-time Terahertz security inspection system.

Mask-CGANs model still has a great improvement space. Improvements can360

be achievable in a more precise model with object class labels and then extend

it to large-scale instance segmentation. Also, it provides a promising solution

for other complex and low quality electromagnetic imaging environments, such

as medical sample segmentation.
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