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Abstract

Long-term Coding of Associations in the Human Medial

Temporal Lobe

EMANUELA DE FALCO

This PhD thesis aims to investigate the role of human medial temporal
lobe (MTL) neurons in the encoding of associations between items and the
characteristics of single neuron activity in response to related items. The
invaluable opportunity to record single neuron activity occurs when patients
suffering from refractory epilepsy have to be implanted with intracranial depth
electrodes to treat their clinical condition.

It has been long recognised that the MTL plays a critical role for declarative
memory functions. MTL neurons have been shown to change their tuning
during associative learning tasks. However, it is still not clear whether their
involvement is confined to the task execution or goes beyond it. To address this
issue, we studied the responses of MTL neurons in neurosurgical patients to
known concepts (people and places), in conjunction with two different metrics
measuring the degree of association between items (one metric based on the
patients’ evaluations and the other based on web searches). We found that
whenever MTL neurons responded to more than one concept, these concepts
were typically related, therefore providing evidence for a long-term involvement
of MTL neurons in the representation of durable associations, which is essential
to declarative memory functions.

We also analysed the differences between spiking responses elicited by
different stimuli in a single neuron, and how these differences related to the
degree of association between stimuli. We found that, in general, MTL neurons
exhibit a similar neural activity in response to different stimuli, and that eventual
differences in the responses are smaller the more two stimuli are associated to
each other. Our results support the idea that a process of unitisation of neural
responses occurs in the MTL, and that information about the stimulus identity
is not encoded in individual neurons, but rather at the neural assembly level.
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Introduction

Some of the pioneering and most famous studies about the nervous system

structure were done by Santiago Ramón y Cajal, considered the father of

modern neuroscience. The Spanish neuroscientist widely used Golgi’s dark

staining technique to analyse the microscopic structure of the brain, producing

incredibly detailed illustrations of brain cells and structures, and laying the

basis for single neuron theory [Ramón y Cajal, 1904]. Figure 1 shows his famous

drawing of the basic circuit of the hippocampus, the main component of the

medial temporal lobe.

Figure 1 – Drawing of the rodent hippocampal formation by Santiago Ramón
y Cajal. Main hippocampal areas: B, subiculum; C, Ammon’s horn; D, dentate
gyrus [Ramón y Cajal, 1909]

The essential role of the medial temporal lobe in explicit memory processing

was firmly established in 1957 when the devastating effects of MTL resection

were systematically studied by William Beecher Scoville and Brenda Milner

in a patient known as H.M. [Scoville and Milner, 1957]. In the following

decades, many behavioural and lesion studies in animals, together with indirect
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Introduction 14

measurements from human subjects, have deepened our knowledge on the

anatomical components of the medial temporal lobe and their roles in memory

functions (see for a review: Squire and Zola-Morgan [1991], Squire et al. [2004],

Eichenbaum et al. [2007]).

The development of single cell recording techniques in human MTL [Halgren

et al., 1978] has allowed us to study, directly, the activation of single neurons

in behaving patients, leading to several studies exploring the role of MTL

in language, memory and perception processing (e.g. Ojemann et al. [1988],

Heit et al. [1988], Fried et al. [1997], Kreiman et al. [2000b]). This technique

brought to the recent discovery, in human MTL, of the so-called concept

cells [Quian Quiroga et al., 2005]. Concept cells are neurons that respond

selectively to different representations of a single concept (e.g. a specific person

or place) and have been postulated to form the basis of MTL declarative

memory processing [Quian Quiroga, 2012].

Moreover, MTL neurons have been reported to change their tuning during

associative learning tasks in several animal studies (e.g. Miyashita et al. [1989],

Cahusac et al. [1993], Erickson and Desimone [1999], Wirth et al. [2003], Yanike

et al. [2004]) and, very recently, also in humans [Ison et al., 2015]. However,

in all of these reports, recordings were done during associative learning tasks,

leaving it unclear whether the MTL provides only a transient encoding of

associations during learning or whether more stable representations persist

after the execution of the task.

Following previous observations of MTL neurons responding to presumably

associated concepts (e.g. two co-stars in a television show, Quian Quiroga et al.

[2005, 2009]), we addressed the open question of whether there is a consistent

tendency for MTL neurons to encode meaningful associations, independent

from the performing of associative learning tasks, and how similar (or dissimilar)

the activation of a single neuron firing in response to different stimuli was.
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Organisation of the thesis

This thesis describes, in detail the motivation, techniques and results of my

PhD work, and it is organised as follows.

Chapter 1 contains a literature review about the MTL and its role in

long-term declarative memory processing. In particular, the anatomical and

connectivity structures of the MTL will be described here, followed by evidences

and theories about the MTL role in memory functions, and by the latest findings

based on human intracranial recordings.

A description of all the methodological tools employed in this work will be

presented in Chapter 2. Here I will report the technical details for data recording

and processing, extraction of single neuron activity, and the experimental

paradigms used. Moreover, this chapter also contains detailed descriptions of

the two metrics used to estimate the degree of association between concepts,

together with the validation of the web-based method.

Chapter 3 will describe my main PhD project, aimed to prove the encoding

of long-term associations in the MTL. Here I will illustrate the details of the

different analysis performed and the results supporting our main claim, together

with several other remarks from the study.

Chapter 4 contains the details and results of our follow up study, aimed

at analysing the response features of single neurons firing to more than one

stimulus. I will describe here how the findings from this study support the idea

that abstract representations are encoded in the MTL through the activation

of sparse neural assemblies, rather than in the activity of single neurons.

Finally, in Chapter 5 I will summarise the main contributions of the present

work to the current discussion about MTL and associative coding, highlighting

the novelty and implications of our findings, and suggesting possible future

directions to follow.



Chapter 1

Literature review: The medial

temporal lobe memory system

The medial temporal lobe (MTL) is located, as its name suggests, in the medial

(internal) part of the temporal lobe. It comprises the hippocampus and sur-

rounding structures, known as the parahippocampal region. The hippocampal

and parahippocampal areas lie at the end of the hierarchy for processing visual

stimuli perception and recognition [Logothetis and Sheinberg, 1996]. The first

clear evidence of the MTL’s essential role in explicit memory storage was the

case of patient H.M. His profound and selective memory impairment, following

a bilateral resection of medial temporal lobes, was systematically studied and

reported by Milner and Scoville in the 1957 [Scoville and Milner, 1957]. This

evidence gave arise to several behavioural and lesion studies in rats, monkeys,

and other animals aimed to better understand the anatomical components of

the medial temporal lobe and their roles in memory functions [Squire et al.,

2004, Squire and Zola-Morgan, 1991]. In addition, over recent decades, the

development of intracranial recording techniques in epileptic patients [Halgren

et al., 1978] has allowed to directly study the activity of single neurons in the

human MTL, leading to several major findings about the role of MTL neurons

16



1.1. The visual pathways 17

in processing external stimuli (e.g. Fried et al. [1997], Kreiman et al. [2000b],

Quian Quiroga et al. [2005, 2009]).

This chapter is organized as follows. Firstly, I briefly review the visual

pathways that carry visual information from the retina to the MTL. Next, I

describe the anatomical and connectivity structure of the MTL followed by

evidences and interpretations about its fundamental role in declarative memory.

Finally, I review the latest literature based on single cell recordings in the

human MTL, focusing in particular on the so-called concept cells and the

encoding of associations in the MTL.

1.1 The visual pathways

Visual perception is a constructive process that goes from the discrimination of

low level features (colour, orientation, contrast) up the to conscious perception

of the visual scene. This process involves multiple pathways and structures of

the brain.

The primary visual pathway constitutes the first stage of the visual percep-

tion process; it starts from the retina and reaches the primary visual cortex.

The visual information from retinal photoreceptors is passed to retinal ganglion

cells. Ganglion cell axons bundle together to form the optic nerve, run through

the optic chiasm and reach their major target: the lateral geniculate nucleus

(LGN) of the thalamus. The LGN neurons analyse low level features as contrast

and colour and send projection to the primary visual cortex, also referred

as V1 or Brodmann’s area 17 (see Figure 1.1 for a schematic of Brodmann’s

areas), located in the posterior portion of the occipital cortex. Neurons in the

primary visual cortex are able to identify orientation, lines and boundaries

(the contours in the image), binocular disparity, and direction of movement.

From area V1 cortical projections are sent forward along two parallel major
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Figure 1.1 – The structure of the human neocortex. Areas in the lateral surface
(a) and in the medial surface (b) as identified by the neuroanatomist Korbinian
Brodmann based on the cytoarchitectural organization of neurons [Brodmann,
1909]. Adapted from [Purves et al., 2004].
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processing pathways: the ventral visual pathway and the dorsal visual pathway

(see Figure 1.2)[Kandel et al., 2013, Purves et al., 2004]. The ventral stream

(also called ”what” pathway) is responsible for object recognition. The dorsal

stream (also called ”where” or “how” pathway) is responsible for the spatial

aspects of vision such as the object’s relative locations and the analysis of

motion [Ungerleider and Mishkin, 1982, Goodale and Milner, 1992]. The two

pathways are hierarchically organised, each level has strong projections to the

next one and the selectivity to complex features increases along the pathways.

However, these connections are also widely reciprocal, with feedback pathways

running in the opposite direction of the two streams.

The ventral visual pathway projects ventrally and anteriorly from V1 through

V2, V4, and the temporal-occipital junction to the inferior temporal cortex

(IT, constituted of areas TEO and TE). This stream carries information about

the objects perceived, neurons in this stream are sensitive to colour, shape and

texture, which are important features for object recognition. Inferior temporal

cortex represents the highest level of cortical visual processing. Here, a large

amount of different visual information is integrated to encode complex visual

stimuli and recognize the objects, regardless of the different viewing conditions.

The dorsal visual pathway goes through several areas in the parietal lobe

(V3, V3A, middle temporal area MT, medial superior temporal area MST

and additional areas in the inferior parietal cortex) to the prefrontal cortex.

Neurons within this stream show selectivity for spatial aspects of stimuli such

as the direction and speed of movement, providing visual guidance towards

where an object is.

The two visual pathways are not strictly segregated, but are interconnected.

Along them information is shared to create a unified and coherent visual percept

of what an object is and where it is. Moreover, the neuronal object repres-

entation does not rely only on visual perception, it also incorporates different
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sensory modalities, object categorization, associated concepts, memories, and

emotional meanings. In fact, the IT cortex is connected with several cortical

areas (parahippocampal region, prefrontal cortex, amygdala and multimodal

sensory areas) that, all together, participate in object recognition and repres-

entation. A large part of the projections from IT cortex are directed to the

parahippocampal and perirhinal cortices of the medial temporal lobes. From

there, information is then sent through the entorhinal cortex to the hippo-

campus, contributing in forming long-term memory of visual objects and their

context. Notably, from IT cortex information also reaches the prefrontal cortex

(important area for working memory) and the amygdala (emotional valence)

[Kandel et al., 2013, Purves et al., 2004].

Figure 1.2 – Dorsal (cyan) and ventral (red) visual pathways in the cerebral
cortex of the macaque monkey. The ventral visual pathway is involved with object
recognition, while the dorsal visual pathway is involved with spatial aspects of
visual perception. Abbreviations: AIP, anterior intraparietal cortex; FEF, frontal
eye field; IT, inferior temporal cortex; LIP, lateral intraparietal cortex; MIP,
medial intraparietal cortex; MST, medial superior temporal cortex; MT, middle
temporal cortex; PF, prefrontal cortex; PMd, PMv, dorsal and ventral premotor
cortices; TEO, occipitotemporal cortex; VIP, ventral intraparietal cortex; V1–V4,
areas of visual cortex. Adapted from Kandel et al. [2000].
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1.2 Medial temporal lobe structure and con-

nections

The medial temporal lobe (MTL) consists of the hippocampus (or hippocampal

region), the adjacent regions of parahippocampal cortex, perirhinal cortex

and entorhinal cortex (called, all together, parahippocampal region), and the

amygdala [Squire and Zola-Morgan, 1991, Eichenbaum et al., 2007]. The

parahippocampal structures are located in the parahippocampal gyrus and tem-

poral pole. Figure 1.3 shows a lateral view of the human brain and approximate

position of the hippocampus and parahippocampal structures within.

Figure 1.3 – Hippocampal system structures in lateral view of the human brain.
Abbreviations: HF, hippocampal formation; PH, parahippocampal cortex; EC,
entorhinal cortex; PER, perirhinal cortex. Adapted from Burwell and Agster
[2008].

The hippocampus or hippocampal formation comprises the dentate gyrus,

Ammon’s horn fields (CA1, CA2 and CA3, also called hippocampus proper),

and the subiculum. The hippocampus, greek for seahorse, is named for its

shape that resembles the small marine fish. Figure 1.4 shows a microscopy

photograph of the human hippocampus formation where it is easy to recognise

the characteristic C-shape of the dentate gyrus interlocked with the CA fields

structures. The components considered part of the hippocampus have a typical
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trilaminar structure (also known as paleocortex), as opposed to the six-layered

neocortex [Purves et al., 2004] and are mainly connected by unilateral pathways

starting from the dentate gyrus input to the CA3 field. CA3 pyramidal cells

project unidirectionally to the CA1 area, that in turn provides input to the

subiculum. The unidirectionality of this circuit is unique, as corticocortical

connections in the brain are usually widely reciprocal [Burwell and Agster,

2008].

Figure 1.4 – Bright-field microscopy photograph of immunohistochemical prepar-
ations from the human hippocampal formation, stained for non-phosphorylated
neurofilament, from Insausti and Amaral [2012]. Abbreviations: DG, dentate
gyrus; CA, Ammon’s horn fields ; S, subiculum.

The entorhinal cortex (EC) is identified as Brodmann area 28 [Brodmann,

1909](see Figure 1.1), situated medial to the caudal half of the rhinal sulcus.

It is the highest order area of the parahippocampal region. The EC receives

most of its inputs (95%) from other polymodal association areas, in particular

two-thirds of them come from the parahippocampal and perirhinal cortices,

and no input from the unimodal visual areas TE, TEO and V4 [Insausti et al.,

1987, Suzuki, 1996].

The perirhinal cortex is composed of Brodmann areas 35 and 36 [Brodmann,

1909], situated lateral to the rostrocaudal extent of the rhinal sulcus. Both
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area 35 and 36 of perirhinal cortex receive similar cortical inputs, with robust

projections from unimodal visual areas TE and TEO (64% of the received

cortical inputs) and from other sensory modality areas [Suzuki, 1996]. The

parahippocampal cortex is located caudal to the entorhinal and perirhinal

cortices and it consists of two areas: TH and TF.

Perirhinal and parahippocampal cortices receive massive projections from

the IT cortex and from the other sensory cortical areas. However, visual object

information (“what” stream) from areas TE/TEO is mainly directed to the

perirhinal cortex, while visuospatial information (“where” stream) from the

dorsal pathway (in particular retrosplenial cortex, posterior parietal cortex and

area 46) reaches, predominantly, the parahippocampal cortex. Inputs from

the auditory cortex arrive mainly to area TH of the parahippocampal cortex,

while the signal from somatosensory association areas reaches, equally, both the

cortices [Squire et al., 2004]. Parahippocampal and perirhinal cortices project

respectively to the medial and lateral areas of the entorhinal cortex, that in

turn project to the hippocampus. The described connections are reciprocal:

feedback projections go back from the hippocampus to the entorhinal cortex,

then to the rest of parahippocampal region and finally back to neocortical areas

[Lavenex and Amaral, 2000, Eichenbaum et al., 2007, Burwell, 2000].

The medial temporal lobe exhibits a unique hierarchy of associational net-

works that characterizes its neuroanatomy. The perirhinal and parahippocampal

cortices provide a first level of associativity and integration of multimodal poly-

sensory information. In the entorhinal cortex the information reaches a higher

level of integration before it is transmitted to the hippocampus. The hippocam-

pus represents the ultimate level of integration and abstraction of information

thanks to its several associational networks. Finally, its output is distributed

via feedback connections back to the neocortex [Lavenex and Amaral, 2000].

The connectivity and structure of the medial temporal lobe is shown in Figure
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1.5.

Figure 1.5 – Structure and connectivity of the human medial temporal lobe
(regions in blue), connections within the medial temporal lobe (marked in black)
and with the visual and auditory cortex (marked in grey). From Quian Quiroga
[2012].

The amygdala (or amygdaloid complex) is an almond shaped complex of grey

matter located rostral to the hippocampus in the anterior-medial portion of the

temporal lobe. Its structure comprises different subnuclei and cortical regions.

The amygdala is part of the limbic system (together with the hippocampus,

cingulate gyrus, hypothalamus and anterior thalamic nuclei) and it is involved

in a wide range of functions including the processing and expression of emotions,

especially fear, and some forms of memory. Sensory inputs to the amygdala

come mainly from the olfactory bulb, olfactory cortical areas, visual IT cortex,

auditory association areas and somatic sensory areas. The amygdala also has

reciprocal connections with the brain stem and hypothalamus, from which it

receives visceral inputs, and with other structures of the limbic system. Hence

the amygdala connects cortical regions that process sensory information with

both somatic and visceral effector systems, playing an important role in the

expression of emotional behaviour. The amygdala has several interconnections
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with other MTL regions, in particular the hippocampus subiculum, but also the

entorhinal and perirhinal cortex. However, these connections are weaker than

the ones described above between the rest of the MTL [Suzuki, 1996, Purves

et al., 2004].

1.3 Memory functions

Learning and memory are complex functions of the human brain, that are

essential to our survival and everyday life. Learning is defined as a change of

behaviour following the acquisition of new information, while memory consists

of the ability to encode, store and retrieve learned information. Until the middle

of the 20th century memory functions had not been localised in the brain; the

hippocampus was thought to simply be a part of the limbic emotional system

and some psychologists even doubted that memory was a discrete function of

the brain. These beliefs changed completely during the mid-1950s following

several studies on amnesic patients with medial temporal lobe resections, with

the first and best-known case being patient H.M. [Scoville and Milner, 1957].

Nowadays we recognise memory as a distinct psychophysiological function and

the hippocampus as central to that function. Unlike other mental functions

(e.g. language or voluntary movement) mediated by discrete areas of the brain,

memory functions involve different parts of the brain. These parts are not

equally important and cover distinct roles related to different types of memory

[Kandel et al., 2013, Eichenbaum, 2013].

1.3.1 Classification of memory

Memory can be classified according to the time over which information is

stored and to the nature of the information stored. Temporally we distinguish

between short-term and long-term memory. Short-term memory is the ability
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to maintain a transient representation of information from new experiences

that can last from seconds to minutes. Long-term memory is a more permanent

form of storage that can last from days to years. Through the process of

consolidation, information from short-term memory is selectively transferred to

long-term memory [Purves et al., 2004].

Long-term memory has been classified in two qualitatively different types

of memory: declarative (or explicit) and nondeclarative (or implicit) memory.

These two memory types differ in whether conscious awareness is required to

recall them. They were identified for the first time by Milner [Milner, 1962],

while working with amnesic patient H.M., and labelled later (as explicit vs

implicit) by Graf and Schacter [Graf and Schacter, 1985], examining both

healthy and amnesic subjects.

Implicit memory is an unconscious form of memory (also known as proced-

ural memory). Implicit memory involves skills, habits and associations acquired

unconsciously (or without consciousness being necessary to the acquisition)

and manifested in an automatic manner, by improved performance or altered

bias [Schacter, 1987]. Examples of nondeclarative memory are procedural

skills, priming, conditioning and habituation (see Figure 1.6 for a schematic of

long-term memory classification).

Explicit memory is closer to our intuitive notion of memory, it regards

information that can be expressed by language (hence “declarative”) and are

stored and retrieved consciously. Unlike implicit memory, explicit memory is

very flexible, as information can easily be associated together under different

circumstances. Explicit memory can be further classified into episodic and

semantic [Tulving and Donaldson, 1972]. Episodic refers to the memory of

personal experiences and autobiographical memory, while semantic memory

refers to factual knowledge (e.g. facts, concepts or the meaning of words).

Explicit memory processing comprises four different operations: encoding,
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storage, consolidation and retrieval. Factors like attention, motivation to re-

member and emotional valence can influence the encoding process. Moreover,

memory is a constructive process much like perception, as shown by Sir Fredrick

Bartlett [Bartlett, 1932]. During retrieval we use cues and several cognitive

strategies like comparison, inference or guessing to create a memory repres-

entation that is coherent to us. For this reason explicit memory, at least the

episodic one, is subject to transformation over time (omissions, deletions and

distortions) [Kandel et al., 2013, Purves et al., 2004].

Figure 1.6 – Long-term memory classification. Adapted from Kandel et al.
[2013].

1.3.2 The case of H.M.

The case of patient H.M. was studied by the psychologist Brenda Milner and

the surgeon William Scoville [Scoville and Milner, 1957] and later also by many

of their students and colleagues. His real name (Henry Molaison) was revealed

after his death in 2008. H.M. was a 27-year-old man suffering from untreatable

and debilitating temporal lobe epilepsy. On September 1953, to control his

seizures, H.M. underwent brain surgery where a large portion of his medial

temporal lobe was removed bilaterally. In particular, the resection involved

the amygdala, hippocampal gyrus, and most of the hippocampus region. After

the surgery, despite his seizures being more manageable, he manifested a
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severe anterograde amnesia. He was unable to retain new long-term memories

for the events following the surgery and performed very poorly in standard

psychological memory tests. For instance, even after having met Milner every

month for several years, every time she arrived in the room he thought he

had never met her before. In contrast to this, H.M. had intact perceptual and

cognitive abilities, including language, and his IQ stayed unchanged at the

level of his preoperative score [Kandel et al., 2013, Purves et al., 2004]. His

long-term memory was intact for information acquired long time before the

surgery, even though memories from the years just before the surgery were

very weak [Milner et al., 1968, Corkin et al., 1983]. Moreover, he seemed

to be unaware that he had undergone surgery and of his subsequent deficit.

On the other hand, his short-term memory was still working; he could retain

information for short periods of time and even engage in a conversation as long

as he was not distracted by interfering mental activity [Corkin, 1984]. Further

tests on H.M. showed that his implicit memory was not impaired either. For

instance, over three days of training, he improved significantly his score in a

mirror drawing test [Milner, 1962]. He was still able to learn how to perform

new tasks through procedural or reflexive learning, even though he did not

consciously remember being trained in the task [Corkin, 1965, 1968].

1.3.3 MTL and declarative memory

The case of patient H.M. with his global and yet not generalised memory

impairment, opened the way to a new era for memory investigation. Similar

cases of patients with extensive bilateral lesions in the hippocampal area

contributed to our understanding of the role of medial temporal lobe structures

in the memory process. These different cases of impairment, following MTL

damage, share three fundamental aspects [Squire et al., 2004]:

1. Memory is affected regardless of the sensory modality in which information
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is presented (i.e. verbal, nonverbal, visual or auditory)[Corkin, 1984].

This is in accordance with the fact that in the MTL there are convergent

inputs from all different sensory modalities (as seen in Section 1.2).

2. Short-term memory remains intact. Even when the size of a MTL lesion

is large, patients can retain a normal amount of information over a brief

time course (for instance they have a normal digit span) [Milner et al.,

1968].

3. Memory impairment happens despite perceptual and intellectual abilities

remaining intact. In particular, patients with more localised damage (e.g.

limited to the hippocampus) have been shown to perform similarly to

controls [Schmolck et al., 2002]. Patient H.M. himself, despite his lesion

being more extensive, scored normally in IQ tests and exhibited only mild

impairment on a few semantic knowledge tests [Milner et al., 1968].

The studies on amnesic patients, together with numerous works on animal

models, contributed to very important findings about the memory process and

the role of MTL. First of all, it is now clear that memory is an actual distinct

psychological function and not simply a function related to each particular

modality of processing. In fact impairment in amnesic patients involved all

sensory modalities. Next, all those evidences prove that the hippocampus and

adjacent areas are specifically important for declarative memory (both semantic

and episodic), while they are not necessary to the processing of nondeclarative

memory (skills, habits, conditioning, priming) [Squire, 1992]. In particular, the

MTL seems to support the consolidation of new information from short-term

memory to long-term memory [Alvarez and Squire, 1994]. In fact, H.M., as

the other patients, had most of his older memories intact and was still able

to retain information in working memory over a short period of time, but he

dramatically lacked the ability to encode new information in a more permanent



1.3. Memory functions 30

way [Eichenbaum, 2013].

A still debated issue is whether the hippocampus is uniquely involved in

episodic, or also in semantic memory. One view is that the hippocampal

region is required for both episodic and semantic memory functions [Squire

and Zola, 1998, Manns et al., 2003b], while another possible view affirms that

the role of the hippocampal region is confined to episodic memory functions

while adjacent structures are involved in semantic memory [Vargha-Khadem

et al., 1997, Tulving and Markowitsch, 1998]. In the computational model

described by Kesner and Rolls [2015] the hippocampus and neocortex are seen

as complementary memory systems, with the hippocampus being used for rapid

and unstructured storage of information, while the neocortex gradually builds

and adjusts semantic representations. In this model, episodic information,

stored in the hippocampus, can be recalled to the neocortex and be used to

help form semantic memories.

Moreover, it appears clear that all the different structures in the MTL

contribute to the declarative memory process [Squire et al., 2004]. Clinical

evidence for this comes from several patients with damage strictly limited to the

hippocampus (see for example the case patient R.B. in Zola-Morgan et al., 1986).

These patients exhibit quantitatively less severe memory impairment than that

affecting patients with damage extended to the parahippocampal area (e.g.

H.M), even though the deficits are qualitatively very similar. Similar findings

arrive from a comparison of studies in monkeys [Zola-Morgan et al., 1994],

where damages limited to the hippocampus were found to cause much milder

impairment than lesions extended to the adjacent area. On the other hand,

even damage limited to the perirhinal cortex has been shown to cause severe

recognition memory impairment in multiple versions of the object recognition

memory task [Nemanic et al., 2004]. These findings support the idea that

different MTL structures contribute in different ways to declarative memory
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[Eichenbaum et al., 2007]. The neuroanatomical structure of MTL supports

this view, since information from neocortex reaches the medial temporal lobe at

different locations. As seen in Section 1.2, information about the object (“what”)

from ventral cortical stream converges mainly in the perirhinal cortex and then

in the lateral entorhinal cortex. Spatial visual information (“where”) from the

dorsal cortical stream reaches mainly the parahippocampal cortex and then the

medial entorhinal cortex. Evidence from animal models [Squire and Zola, 1996,

Parkinson et al., 1988, Malkova and Mishkin, 2003] and neuroimaging studies

in humans [Bellgowan et al., 2003] lead to the hypothesis that the two classes

of information are mainly encoded separately along these two MTL streams.

Subsequently, the hippocampus that receives information from both streams

may cover the special role of integrating the ”what” information (objects, people,

actions) with the spatial and temporal one (”where”) to encode composite

representation of an episode. The comparison between new representations and

pre-existent memories would lead to reorganising the memories according to

the relevant interaction between them. In this view, the combination of these

processing functions is thought to constitute the basis of declarative memory

[Eichenbaum et al., 2007].

Finally, the amygdala seems to be involved in the acquisition and storage

of memories of emotional experiences, playing a complementary role in the

memory processes. The encoding of emotional episodic memories compared to

non-emotional ones is characterized by increased resources and arousal-driven

enhancements that improve consolidation [Kensinger et al., 2001, Dolcos et al.,

2004, Ritchey et al., 2008]. According to the modulation theory [McGaugh,

2004, LaBar and Cabeza, 2006], the emotional enhancement of memories is due

to the modulatory effect of the amygdala on the MTL that boosts consolidation

of arousing stimuli via noradrenergic projections.
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1.3.4 Spatial memory

In 1971 place cells in the rat hippocampus were discovered by O’Keefe and

Dostrovsky [O’Keefe and Dostrovsky, 1971]. Hippocampal place cells are

neurons that dramatically increase their firing rate when the animal is in a

specific location (place field). They are observed in extracellular recordings

from CA1 and CA3 of freely behaving rats. A task-free environment provides

a cleaner observation of place cells, since the introduction of a task in the

experimental setup brings these neurons to respond to features of the task

[Wood et al., 1999, Eichenbaum et al., 1999]. Much later, similar cells, known

as grid cells, have been discovered in the rat entorhinal cortex [Hafting et al.,

2005]. Grid cells also exhibit a spatial-related firing, but their firing fields cover

a spatial grid instead of a single place. In the primate hippocampus ‘spatial

view’ neurons have been found to respond to the place at which the monkey is

looking during the execution of an object–place memory task [Rolls et al., 1989,

1999]. In addition, several findings from neuroimaging studies in humans have

shown spatial activation of parahippocampal cortex and hippocampus during

learning and memory tasks while navigating in a virtual reality environment

[Maguire et al., 1997, 1998, Shelton and Gabrieli, 2002, Hartley et al., 2003].

Further evidence supporting the link between the hippocampal area and spatial

navigation in humans is illustrated by the impairment of navigation skills in an

amnesic patient [Maguire et al., 2006] and the activation of single neurons in

epileptic patients while moving around a virtual map [Ekstrom et al., 2003].

The discovery of place cells brought to the hypothesis that the hippocampus’

primary function is to support spatial memory and that it does this through a

neural representation of physical space, a so called ‘cognitive map’ [Tolman,

1948, O’keefe and Nadel, 1978]. This spatial view of hippocampus’ function

contrasts with the memory view, which suggests a broader role played by the

hippocampus in declarative memory. An agreement between these two views



1.3. Memory functions 33

has been difficult to find, due to the fact that most experiments on memory

have investigated declarative memory in humans, while spatial cognition has

been mainly studied in behaving animals [Schiller et al., 2015]. To reconcile the

spatial and declarative memory views of MTL one possibility is to view spatial

memory as a subset of the broader category of declarative memory [Squire,

1992]. In the model proposed by Treves and Rolls [1994] hippocampal CA3

neurons store episodic memories through an autoassociation mechanism. Such

episodic memory functions are often required to perform spatial computations

(in agreement with the existance of rat place cells and primate ‘spatial view’

cells), but the actual spatial computation is thought to happen in the neocortex

[Kesner and Rolls, 2015]. In line with this interpretation, Eichenbaum et al.

[1999] suggested that place cells might be encoding the experience of the

animal in each place, rather than the location itself. According to this view, the

hippocampus supports declarative memory generating a“memory space”, that is

a relational representation in which the different elements of memories are bound

by means of their common features [Konkel and Cohen, 2009, Eichenbaum and

Cohen, 2014].

1.3.5 Consolidation models

An open question about the medial temporal lobe concerns the consolidation

process within the cortical-hippocampal system. There are three main hypo-

thesis about how this process happens that I will outline here (see McKenzie

and Eichenbaum [2011] for a review).

One of the findings from patients with hippocampal damage is a selective

impairment in “recent memory” over a period extending up to 10 years before

the damage occurred. On the contrary, knowledge obtained remotely prior to

the damage is intact [Corkin, 1984, Manns et al., 2003a, Bayley et al., 2006].

Temporally retrograde graded amnesia is often taken as evidence in support of
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the standard model of consolidation [Squire and Alvarez, 1995]. According to

this model, long-term memory is created as outcomes of processing between

the MTL and the regions of neocortex specialised for the kind of information

remembered [Mishkin, 1982, Squire, 1987]. Initially, the hippocampus and

adjacent structures of the MTL bind new information from the neocortex in a

memory trace. Then the hippocampus works together with neocortical areas to

create a representation of information in cortex (hippocampus-dependent stage).

With time and recalls, the corticocortical connections become stronger, until

eventually the memory becomes independent from hippocampal representation.

In this view, the hippocampus plays only a temporary role and it is no longer

needed once memories are permanently stored in the neocortex. This is a

dynamic process that can extend for years. The different degrees of consolidation

would be responsible for the temporally graded amnesia findings. Cases of

intact remote autobiographical memories in patients with MTL damage [Bayley

et al., 2006] also seem to support to this model.

On the other hand, the multiple trace theory [Nadel and Moscovitch, 1997,

Moscovitch et al., 2005] proposes that memories are initially stored as episodic

(defined as context-specific) and then converted into semantic during consolida-

tion. At the beginning, episodic memories are stored in the cortical-hippocampal

circuitry. Each reactivation of a memory trace, because it is happening in a

different neuronal and experimental context, results in the creation of a new

trace. These multiple traces created share information about the initial episode.

From the multiple traces factual information (free of contextual details) is

extracted and integrated with pre-existent semantic memories. In this view,

semantic memories are independent from the hippocampus, while, in contrast

with the standard model, the involvement of the MTL remains necessary for

recalling the richness of episodic details. Evidences in support of the multiple

traces model come from cases of patients with temporally ungraded retrograde
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amnesia (e.g. Steinvorth et al., 2005) and functional imaging studies that

have shown the activation of MTL for both recent and remote episodic (and

autobiographical) memories [Ryan et al., 2001, Maguire et al., 2001]. However,

in contrast with this model there are reports of modulation in MTL activity

related to the age of semantic memories (e.g. Smith and Squire, 2009).

A third possible model, the “schema modification” was originally proposed

by Bartlett [1932] and recently extended from a consolidation point of view by

McClelland et al. [1995]. According to this model, the hippocampus (with its

rapid synaptic modification) acquires the new memories and gradually stores

them through modification of a pre-existent cortical schema. This schema is

the organisation of related knowledge, that contains both semantic and episodic

information (in contrast with the multiple trace theory). Memories in the

schema are interleaved according to common features and elements, but they

are still hippocampus-dependent for detailed information. Moreover the modi-

fication of our schemas continues as long as new memories need to be integrated

[McKenzie and Eichenbaum, 2011]. In support to this model, Tse et al. [2007]

have shown how rats can develop a schema of food/location associations where

new elements can be integrated within a single trial (in contrast to a slower

learning of new associations in a different environment). Several other studies

in humans and animals support the existence of networks of related memories,

showing that hippocampal neurons encode both distinct experiences and their

common overlapping elements (for a review see Eichenbaum [2004]).

1.4 Single cell recordings in human MTL

Most of the evidences about the role of the MTL in explicit memory processing

in humans (reviewed in Section 1.3) comes from indirect measurements (e.g.

lesion studies, functional imaging or scalp EEG). While knowledge about the
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neuronal level processing is mainly based on data from animal models [Engel

et al., 2005]. The development of single cell recording techniques offered the

opportunity to observe the direct activation of neurons in behaving patients

(see Engel et al. [2005], Mukamel and Fried [2012], Rey et al. [2014b] for reviews

on invasive recordings in humans). Invasive recording in patients are sometimes

necessary for the treatment of certain conditions (e.g. Parkinson’s disease or

epilepsy) when the pharmacological approach fails. In particular, for certain

forms of temporal lobe epilepsy intracranial recordings in the human MTL

are carried out to precisely localise the seizure focus [Kandel et al., 2013].

Intracranial electrodes and microelectrodes allow us to record the local field

potentials (LFPs, reflecting the coherent activity of cell assemblies) and the

activity of individual neurons [Quian Quiroga and Panzeri, 2009]. Technical

details of this technique will be described in Section 2.1.

Experimental studies based on human single cell recordings in the human

MTL started almost 40 years ago, with the investigation of memory-related

single-cell activity [Halgren et al., 1978]. In the following years several studies

have explored language processing, memory and perception in the temporal

lobe [Ojemann et al., 1988, Heit et al., 1988]. Fried et al. [1997] reported

the presence of neurons in the human MTL responding selectively to either

faces or objects with an increase (excitatory) or decrease (inhibitory) in their

firing rate. More recently, MTL neurons have been found to fire selectively

in response to specific categories of visual stimuli (e.g. animals, food, famous

faces, landscapes) [Kreiman et al., 2000b] and even during imagery [Kreiman

et al., 2000a].

1.4.1 Concept cells

The recent discovery [Quian Quiroga et al., 2005] of neurons that fire selectively

and invariantly at the presentation of different photos of a particular person,
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animal or place, has been a major breakthrough in the study of single cell

activity in human MTL. These neurons are known as ”Jennifer Aniston neurons”

or, more recently, ”concept cells”. I will briefly outline here some of the more

salient findings surrounding concept cells, for a more complete review see

Quian Quiroga [2012].

Concept cells exhibit a high degree of visual invariance [Quian Quiroga

et al., 2005]; they respond to the presentation of a specific subject, regardless

of the particular features of the image (viewing angle, contrast etc.), as long

as the subject of the image is recognised [Quian Quiroga et al., 2008b]. A

following study found that these neurons could also be activated by different

modalities of presentation, i.e. written or spoken name of the individual/object

[Quian Quiroga et al., 2009]. Interestingly, this study also revealed different

levels of invariance among the hippocampal areas, with neurons in the parahip-

pocampal cortex being responsive only to visual stimuli, and those in the

entorhinal cortex, amygdala and hippocampus being responsive to both visual

and auditory ones. Moreover, neurons in the parahippocampal cortex have

been shown to be more responsive (they fired in response to a higher number

of stimuli in the session) but less invariant than the other MTL areas, while

the hippocampus exhibits the highest selectivity of the MTL [Mormann et al.,

2008, Ison et al., 2011]. The latency of responses in the MTL has been reported

to be around 300-400 ms, with the exception of parahippocampal responses

that happen about 50-100 ms earlier [Mormann et al., 2008, Quian Quiroga

et al., 2009]. Since these responses occur much later than expected if they were

direct projections from the IT cortex (latency in IT cortex is about 100-150

ms after stimulus onset), it leads to the belief that some lateral processing

has to happen before the information reaches the MTL. These findings, about

multimodal invariance, selectivity, and latency, are all in agreement with the

hierarchical structure of the MTL seen in Section 1.2, with the hippocampus
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lying at the end of a processing hierarchy that starts in the parahippocampal

cortex.

The involvement of MTL neurons during memory retrieval has also been

shown in single cell studies in human patients [Cameron et al., 2001, Gelbard-

Sagiv et al., 2008]. In particular Gelbard-Sagiv et al. [2008] have shown that

neurons activated selectively during the viewing of specific short videos also

increase their firing rate right before the subjects’ verbal recall of viewing

the specific clip. In addition, MTL neurons have been shown to more likely

fire to personally relevant concepts [Viskontas et al., 2009], in line with their

involvement in memory processing.

Because of their peculiar features, concept cells are thought to encode

the abstract content of the perception (its meaning) rather than the physical

stimulus presented [Quian Quiroga et al., 2008a, Quian Quiroga, 2012]. Further

evidence in support of an explicit representation in the MTL comes from

Quian Quiroga et al. [2007] and Cerf et al. [2010]. In the first study the

authors reported that it was possible to use a decoder to infer the identity

of the presented stimulus from the firing patterns of MTL neurons, while

it was generally not possible to distinguish between several pictures of the

same subject. The latter study demonstrated that humans could voluntarily

modify the firing of their MTL neurons to control an external hybrid image

(superposition of two familiar stimuli), just by focusing onto a single image. In

addition, other studies suggest directly that neurons in the MTL are related to

the conscious aspect of perception [Kreiman et al., 2002, Quian Quiroga et al.,

2008b].

Concept cells have been proposed to constitute the basis of declarative

memory functions in the MTL [Quian Quiroga, 2012]. In this view, the level

of abstraction is thought to vary according to the hierarchical organisation of

the MTL, with the hippocampus encoding the highest level. Each concept is
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represented by a network of cells whose activation brings the related concept

into awareness and the association between related concepts is encoded in the

partial overlap of the cell networks. In this configuration the creation of a new

link between pre-existing concepts can happen very quickly, in accordance with

experimental evidence.

1.4.2 Encoding of associations

One of the key mechanisms by which we create and retrieve declarative memory

is association. Our brain has the ability to link novel information to pre-

existing representations and to create new relationships between previously

unrelated items. Therefore, MTL declarative memory functions (discussed in

Section 1.3) involve, in particular, the encoding of associations between different

elements [Rolls, 1996, Wallenstein et al., 1998, Eichenbaum, 2004]. Several

neurophysiological and lesion studies in animals have proved the importance

of the MTL for associative learning [Miyashita et al., 1989, Cahusac et al.,

1993, Erickson and Desimone, 1999, Bunsey and Eichenbaum, 1996, Sakai and

Miyashita, 1991, Day et al., 2003, McKenzie et al., 2014, Hattori et al., 2015].

In particular, during the execution of an object-place association task, Rolls

et al. [2005] reported the presence, in the monkey hippocampus, of neurons

that responded to: objects (independently of their locations); spatial views

(independently of the object shown); and combinations of objects and places.

Analogously to primate object-spatial view neurons, concept cells in the human

MTL have been found to fire to a specific person or place [Quian Quiroga et al.,

2005], and, recently, to combinations of a person and a spatial view [Ison et al.,

2015]. The existance of separate as well as combined representations of places

and objects (or people) is a fundamental requirement for an episodic memory

system like the MTL [Rolls et al., 2005].

The previously mentioned work by Ison et al. [2015], based on single cell
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recordings, reported that new associations could be formed very quickly in the

MTL. In this study two unrelated pictures (a person and a place) were merged

together to create a meaningful association. A large percentage of neurons

initially firing in response to a single picture was found to start firing to the

associate one as well within a few trials. Such fast creation of new associations

is also found to be essential to episodic memory formation [Quian Quiroga,

2012].

Hippocampal representations of well-learned association have been described

in both monkeys [Yanike et al., 2004] and rats [McKenzie et al., 2014]. Activation

of hippocampal neurons have been reported also during retrieval of already

consolidated associations in rabbits [Hattori et al., 2015].

Despite the evidences of MTL involvement in the encoding of associations,

all of these studies were based on associative learning tasks performed by the

subject. Therefore, they were not able to answer whether the MTL representa-

tions are only temporary and newly created each time or whether they persist

in time (see discussion in Section 1.3.5).

Consistent with these findings, single cell recordings in human MTL have

shown several cases of neurons firing to associated concepts (such as: two

characters of the Star Wars saga; two co-stars in a TV show; some of the

researchers performing the experiment with the patient etc.)[Quian Quiroga

et al., 2005, 2009]. Starting from this observation, the first aim of this thesis is

to perform a systematic analysis on MTL neurons responding to more than

one stimulus, in order to evaluate whether these units respond more likely to

related concepts (encode association), rather than to randomly paired stimuli.



Chapter 2

Experimental Methods

In this chapter, the experimental techniques and procedures employed for my

PhD project are reported. In the first section I describe the equipment used

to record intracranial activity in the human brain and the processing of the

signal. Following this, I explain the experimental paradigm and the criteria

to identify responsive neurons. In the last section I describe the two metrics

used to measure the degree of association between items, their definition and

validation.

2.1 Intracranial recordings

As seen in Section 1.4, intracranial recordings offer the opportunity to directly

study neural activity in the MTL. The use of this technique in human subjects

is possible in some exceptional circumstances, when patients suffering from pre-

existing conditions (e.g. epilepsy, dystonia, Parkinson’s disease) need invasive

recordings for clinical purposes. Specifically, in the case of intractable epilepsy

(in which seizures are not controllable with medication), surgical removal of the

epileptic focus could be necessary. When seizures originate from deep regions of

the brain and non-invasive monitoring cannot provide a concordant conclusion,

the patient is implanted with depth electrodes and monitored for several days

41
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in order to localise the epileptic focus [Engel et al., 2005].

The electrodes’ locations are based on clinical criteria and preliminary

information obtained by non-invasive techniques. Precise targeting is obtained

through preoperative magnetic resonance imaging (MRI) and the use of a

stereotactic frame. The positioning is verified after surgery by a co-registration

of computed tomography (CT) scan and pre-operative MRI [Rey et al., 2014b].

Depth clinical electrodes (macroelectrodes) consist of several low impedance

platinum-iridium contacts arranged along a polyurethane probe (see Figure

2.1). They allow the recording of an intracranial electroencephalogram (iEEG)

and to localise the origin of epileptogenic discharges or seizures. Microwires

can be inserted into the core of the clinical probe, allowing the acquisition of

single cell activity and depth local field potential (LFP) [Rey et al., 2014b].

Figure 2.1 – Microwires for single cell recording are inserted along the inner
part of the clinical depth macroelectrodes. Adapted from Rey et al. [2014b]

These microelectrodes are able to record the extracellular field potential,

that is, the mean electrical potential in that point of the extracellular medium,

generated by the contribution of all active processes within a volume of neural

tissue. The different contributions from individual sources depend on: the

distance between source and recording site (potential’s amplitude scales with the

inverse of the distance), the inclusion of interfering signals, and the attenuation

characteristic of the neural tissue. Since passive neurons act as capacitive

low-pass filters, this attenuation affects fast-rising events (e.g. action potentials)

much more than slower ones (e.g. postsynaptic potentials) that are therefore

able to propagate much farther in extracellular space [Logothetis, 2003, Buzsaki,
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2006, Buzsaki et al., 2012].

The extracellular signal recorded can be processed in two different ways in

order to extract the LFP or the spiking activity (see Figure 2.2):

� By low-pass filtering the recorded extracellular signal (typically up to

100-300 Hz), we obtain the LFP signal [Quian Quiroga and Panzeri, 2013].

LFPs capture the slow components of neural assembly dynamics in the tis-

sue surrounding the electrode. They reflect several subthreshold integrat-

ive processes, including synchronised synaptic potentials [Mitzdorf, 1985,

Logothetis, 2003], afterpotentials of somatodendritic spikes [Gustafsson,

1984], and voltage-gated membrane oscillations [Harada and Takahashi,

1983, Kamondi et al., 1998].

� By high-pass filtering the signal (typically over 300 Hz) we obtain the

superimposed spiking activity of neurons close-by the electrode tip, plus

the background activity of neurons further away [Quian Quiroga and

Panzeri, 2009, Rey et al., 2015]. In fact, a neuron firing a fast action

potential produces a large-amplitude deflection (spike) in the electrical

field recorded near its soma [Buzsaki et al., 2012]. The extracellular action

potential recorded from each neuron has a particular shape. The spike

amplitude and waveform are determined by the cell characteristics (size

of the soma, morphology of dendritic tree, and ionic channel distribution),

the relative positioning of recording electrode and cell, and the properties

of the extracellular medium [Gold et al., 2006]. These spikes can be

detected from the high-pass filtered signal and then classified to separate

the activity of different putative neurons (a process known as spike sorting

[Quian Quiroga, 2007]) as we will see, in detail, in the following section.
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Figure 2.2 – Procedure for the processing of extracellular recordings. (a) Tip
of the microelectrode recording the activity of nearby neurons. The amplified
row signal (b) can be low-pass filtered to obtain the local field potential (c) or
high-pass filtered to obtain the single cell activity (d). In the high-pass filtered
trace (d) the firing of nearby neurons appears as spikes on top of the background
noise. The red horizontal line is the amplitude threshold used for spike detection.
(e) Spike shapes are sorted in four clusters using a sorting algorithm. For neurons
closer to the electrode tip (50–100 μm), the activity of each single unit can be
distinguished (inner circle in panel a; spikes in red, green and cyan in panel e).
For more distant neurons (up to approximately 150 μm), spikes can be detected
but the signal-to-noise ratio is too small to differentiate them. These spikes
are grouped together in a multi-unit cluster (outer circle of panel a, spikes in
blue in panel e). Spikes from neurons further away from the tip (shown in light
grey in panel a) cannot be detected and contribute to the background noise.
The example data shown corresponds to five seconds of recording in the left
hippocampus of an epileptic patient. Adapted from Quian Quiroga and Panzeri
[2009].
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2.1.1 Spike detection and sorting

In our experimental setup we employed platinum-iridium microelectrodes with a

diameter of about 40µm and high impedance (300-1000 kΩ). Each clinical probe

had a total of nine microwires protruding from its tip, eight active recording

channels and one reference channel, used to obtain a differential signal. The

differential signal from the micro-wires was amplified, filtered and sampled [Rey

et al., 2014b]. Different recording systems were used across the two studies

to acquire the signal. Details about the recording systems and numbers of

sessions/patients recorded with each of them will be given in Chapter 3 and

4, respectively, for the two separate studies presented. Once the preprocessed

signal was acquired, it was then processed offline to extract the single cell

activity. The spike detection and sorting were performed using the Wave clus

algorithm. The algorithm procedure will be outlined here, but further details

and performance evaluation can be found in Quian Quiroga et al. [2004].

The first step of offline spike detection processing consists of high-pass

filtering the signal (between 300 Hz and 3000 Hz) to separate the neural action

potential from the low frequency activity. After filtering, spikes are detected

using an amplitude threshold. The threshold (Thr) is based on the estimation

of the standard deviation of the background noise (σn) and is defined as:

Thr = 4σn; σn = median

(
|x|

0.6745

)
(2.1)

where x is the filtered signal (see Rey et al. [2015] for details on the definition

of σn). The standard deviation of background noise is preferred to the standard

deviation of the signal because it reduces the interference of spikes that could

lead to very high threshold [Quian Quiroga et al., 2004]. All the detected spikes

are aligned to their maximum to reduce temporal jitter and for each spike 64

samples (corresponding to∼ 2.2ms) are saved.
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The following step is the extraction of relevant features from the spike shapes.

For this purpose, Wave clus employs the wavelet transform, a time-frequency

decomposition of the signal that gives optimal resolution in both time and

frequency domains [Quian Quiroga et al., 2004]. Briefly, the spike waveforms are

convolved with wavelet functions of different sizes to obtain a set of coefficients

that represents the signal decomposition at the various scales [Rey et al., 2015].

For each spike a four-level multi-resolution decomposition [Mallat, 1989] using

Haar wavelets is calculated, obtaining 64 wavelet coefficients. Afterwards, the

ten most informative coefficients (i.e. the ones that give the best separation

between spike classes) are automatically selected. The selection is based on

the criterion of largest deviation from normality, since a coefficient able to

separate different spike shapes is expected to have a multimodal distribution

[Quian Quiroga et al., 2004].

Finally, a superparamagnetic clustering (SPC) [Blatt et al., 1996] procedure

is used to separate the spikes in classes [Quian Quiroga et al., 2004]. The SPC

algorithm implements simulated interactions between each data point (i.e. each

spike) and its K-nearest neighbours. The m selected features of each spike are

used to calculate the interaction between spikes in an m-dimensional space,

while a Monte Carlo procedure simulates the iterations. The SPC is based on a

generalisation of the Ising model, where instead of spins with values ±1/2, there

are q different possible states per particle [Potts, 1952, Heermann and Binder,

1988]. In this model, the temperature parameter controls the probability

of neighbouring points to change state together, with lower temperatures

corresponding to higher probability. Changing the temperature, the system

transitions from the ferromagnetic phase (low temperature), where all the spikes

change state together (i.e. grouped in a single cluster), to the paramagnetic

phase (high temperature), where the spikes mainly change state independently

and are grouped in many clusters with a few elements each. In between the two
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there is the superparamagnetic phase, where only the points grouped together

change their state simultaneously; in this phase the algorithm identifies clusters.

The clustering results depend mainly on the temperature and are robust to small

changes in the other parameters (e.g. k and q) [Blatt et al., 1996, Quian Quiroga

et al., 2004].

The algorithm automatically localises the superparamagnetic phase using

a criterion based on cluster sizes. A manual refinement of the final clustering

is possible using the graphic user interface. After clustering, the SPC runs a

template matching to assign all the unclassified spikes to a cluster.

The whole procedure leads to group the detected spikes into different clusters.

Ideally, each cluster corresponds to a single neuron activity. However, spikes

coming from neurons not close enough to the electrode tip have usually a low

signal-to-noise ratio, therefore they cannot be separated accurately. These

spikes typically converge in a “multi-unit” cluster (e.g. Figure 2.2e, blue cluster)

whose spikes have a relatively low amplitude and violate the refractory period

of single neurons (i.e. spikes appear within less than 2.5 ms) [Rey et al., 2014b].

The spike sorting procedure is essential when working with extracellular

recordings as it allows identification of the simultaneous activity of several

neurons. Moreover, it is particularly important for the study of very sparsely-

firing neurons, since, without spike sorting, their activity could not be untangled

from that of more active neurons [Quian Quiroga, 2007, Rey et al., 2014b].

2.2 Experimental paradigms

As seen in Section 1.4.1, neurons in the MTL can fire very selectively to a

few stimuli. In order to identify responsive neurons and the stimuli eliciting

responses in these neurons, we used a simple visual paradigm (screening session,

see Figure 2.3). During a screening session, the patient sat in bed, facing a
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laptop computer on which about 100 different pictures of known people and

places (for example, actors, politicians and landmarks) were shown for one

second, six times each, in pseudo-random order. At the end of each trial the

patient had to answer whether the image depicted a person or not. This simple

task was totally irrelevant to the goal of our study and it was used only to

make sure the subject paid attention during the stimulus presentation. Each

screening session lasted about 30 minutes [Quian Quiroga et al., 2005, Rey

et al., 2014b].

The pictures in the set were partially chosen according to each subject’s

interests and preferences. This was done in order to maximise the probability of

finding responsive stimuli, as MTL neurons are known to respond preferentially

to personal relevant concepts [Viskontas et al., 2009].

Data from screening sessions were employed for the project presented in

Chapter 3. The paradigm used in the study described in Chapter 4 was a

longer version of the one described above (long screening session). In this setup,

fewer images (about 20) were presented for one second each in pseudo-random

order but many more times (25 to 30 trials). The images for the long screening

sessions were selected among the responsive stimuli identified from a previous

screening session.

2.2.1 Responsiveness criteria

Data from each screening session were processed as detailed in Section 2.1.1.

Neurons were classified in single- or multi-units based on the following: 1. the

spike shape and its variance; 2. the ratio between the spike peak value and the

noise level; 3. the interspike-interval (ISI) distribution of each cluster; 4. the

presence of a refractory period for single units (<1% spikes within <3 ms ISI)

[Quian Quiroga et al., 2009].

For the study presented in Chapter 3, the units responding significantly to
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Figure 2.3 – Screening session paradigm. In each trial a fixation cross is
presented on the screen for 500 ms. Next, a picture is shown for 1000 ms. Then
the screen goes black, and the patient has to press a key to indicate whether he
saw a person or not. The trial ends with random inter-trial interval (between 600
and 800 ms). Each screening session contains a set of ˜100 pictures of animals,
celebrities and landmarks, each of them presented six times. Adapted from Rey
et al. [2014b].

a particular picture were identified using a heuristic criterion as in previous

works [Quian Quiroga et al., 2009]. For each stimulus, spikes were aligned with

the stimulus onset time, taken as time 0, for all the trials. A response window

between 200 and 1000 ms, and a corresponding baseline window between -1000

and -200 ms were defined. A unit was considered to have a significant response

to the given picture if it fulfilled the following criteria: (i) the median number of

spikes in the response interval was higher than the average baseline (across all

stimuli) plus 5 s.d.; (ii) the median number of spikes in the response window was

at least 2; and (iii) the number of spikes in the response period was significantly

higher than the one in baseline, according to a paired t-test (p < 0.05).

As in previous studies based on the long-screening sessions [Rey et al.,

2014a,b], in our second study (Chapter 4) we applied a responsiveness criterion

similar to the previous one. In this case the response window was defined

between 200 ms and 700 ms while the baseline window was between -900 ms

and -100 ms. A unit response was considered significant if: (i) the median
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number of spikes in the response window was higher than the average baseline

plus 5 s.d.; (ii) the median number of spikes in the response window was

at least 1; (iii) the p-value of a sign-test between the spike count on each

trial for the post stimulus and baseline windows was less than 0.01; and (iv)

the instantaneous firing rate (calculated by convolving the spike train with a

Gaussian kernel) crossed over a threshold for at least 75 ms. The threshold was

computed as the average baseline value plus 4 s.d.

2.3 Association metrics

The main aim of this project was to analyse the responses from MTL neurons in

relation to the degree of association between items eliciting multiple responses

in the same neuron. Therefore, we needed a way to quantify the degree of

association between the stimuli presented in our recording sessions. For this

purpose, we employed two different metrics: one based on evaluations given by

the patients themselves, and the other one based on the results of web-searches.

2.3.1 Personal association metric

After all recordings were completed, 12 of our patients (that participated in

24 screening sessions from study in Chapter 3) were asked to fill a ‘personal

association matrix’. In this matrix they ranked between 0 and 10 how much a

subset of between 10 and 15 pictures from the recording sessions were related

to each other (between 45 and 105 comparisons in total). Each of the matrices

filled by the subjects was normalised to standard z-score according to its mean µ

and standard deviation σ (normalised score = (x− µ)/σ). Figure 2.4 contains

an example of the personal association matrix obtained by one patient.

The personal metric is, in theory, the best way to evaluate the associations

between pictures. In fact, it captures the personal perception and valence of the
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Figure 2.4 – Personal association matrix filled by one patient, with z-score
normalisation. Note the cluster of associated stimuli in the top-left corner
corresponding to 5 different patient’s relatives (stimuli 2, 3, 4, 5, and 7; pictures
covered for confidentiality reasons).

relationship between concepts related to personal experiences and memories.

However, this metric has a big limitation since we can only obtain ratings for

a small subset of stimuli (for a single screening session with 100 stimuli, the

complete association matrix should contain about 5000 ratings). To overcome

this limitation and to include sessions where we did not have personal scores

by the patients, we decided to use a second, more generic, way to estimate the

degrees of association between concepts, employing web-search results.

2.3.2 Web-based association metric

Today, the World Wide Web represents the largest easy-to-access source of

information about virtually everything. Web search engines, such as Google,

Bing or Yahoo! have huge searchable databases of web documents updated by

regularly crawling the web. The hit count is the number returned by a search

engine in response to a submitted query. It is an estimation of the number of

web pages indexed that contain that specific query. Search engine hit counts
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are currently widely adopted for several research and commercial purposes

and their reliability has been investigated by a few studies [Thelwall, 2008,

Funahashi and Yamana, 2010].

Our web-based metric employs the hit counts to estimate the degree of

association between two concepts, comparing the number of hits of a joint

web-search with the numbers of hits obtained from the individual searches.

This measure is based on the Pointwise mutual information (PMI) [Fano, 1961].

PMI is a well-known measure of association widely used in information theory,

statistics and linguistics that has also been employed in conjunction with web-

search results, for example, in the context of word synonyms [Turney, 2001].

Our metric relies on the idea that the names of associated concepts will appear

more often together in a database of web pages rather than non-associated

ones. The association score for each pair of pictures i and j was defined as:

aij = log2

(
hits (conceptiAND conceptj)

hits (concepti) · hits (conceptj)

)
(2.2)

where concept refers to the searched name for each picture and the AND

operator used in an internet search gives the number of pages containing both

searched names.

We employed the Bing search engine for our metric, as it gave a more

reliable estimation of associations compared to Google (see next section). We

limited the web search to famous people and places; that is, to those concepts

that are ‘searchable’ on the web and give a reasonable number of hits to have a

reliable statistic (excluding names of family members). As with the personal

matrices, the values for each recording session were normalised using a z-score.

Considering the whole set of 611 different stimuli (from the dataset of

99 screening sessions in the study presented in Chapter 3) whose degrees of

association were estimated using the defined web-base metric, we obtained a

web association matrix of 611x611 elements (Figure 2.5). The stimuli were
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Figure 2.5 – Web-based association values between the 611 stimuli presented
in the screening sessions from the study in Chapter 3 with z-score normalisation.
Note the clustering of values according to the broad categories of the images
(manually assigned categories are shown on the left/bottom). The colour bar on
the right shows the strength of association values in arbitrary units.
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manually assigned to broad semantic categories (actors, sportsmen and so on, see

categories listed in Figure 2.5) and sub-categories when possible (e.g. the stimuli

in the sportsmen category were further classified according to each particular

sport). The association matrix was sorted according to this classification and the

underlying cluster-like structure of the data, with blocks of highly associated

elements along the main diagonal, emerged. A clustering analysis using a

modularity optimisation algorithm (Louvain community detection, [Blondel

et al., 2008, Rubinov and Sporns, 2010]) with the resolution parameter tuned

to consider the same number of broad categories led to an 84% overlap with

our manual classification.

2.3.3 Correlation personal and web-based metrics

The scores shown in Figure 2.5 reflect ‘universal associations’ between items,

given by the shared inputs of billions of internet users, whereas the inputs by the

patients reflect not just universal associations, but also relationships given by

the subject’s preferences and personal experiences. We tested the reliability of

the web-based association metric by measuring the cross-correlation between the

normalised association scores given by the subjects and the ones obtained with

the web searches for the same pairs of items (excluding, in both cases, family

members). For each subject we calculated the scalar product between personal

and web-based evaluations. To assess statistical significance, we compared,

using a rank test, the original cross-correlation value with the ones obtained

from a distribution 1,000 surrogates, created by randomly permuting the index

of one of the association scores. At the single subject level, we found a positive

and significant (p < 0.05) correlation in 11 out of 12 subjects, with a mean

correlation coefficient of 0.4.

At the population level we found that the overall correlation for the whole set

of evaluations (i.e. the one obtained by pulling together all the data points from
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the 12 subjects) was significantly higher than chance (p < 10−21, Spearman’s

rank correlation test). Moreover, when we compared the original correlation

values with the median of the surrogates for each subject, using a right-sided

(that is, our hypothesis is that the original values are higher than the ones of the

surrogates) Wilcoxon signed-rank test, we found a significant effect (p < 10−3).

In order to illustrate the correlation between the personal and web-based

association scores, we considered all the web-based association scores for which

we also had the personal score given by the patient; then we binned these

web-based scores into 10 equally spaced intervals, and plotted the mean (±SEM)

value in each bin (x axis) against the mean (±SEM) value of the corresponding

personal score (y axis) (see Figure 2.6). In this plot we observed a strong

correlation for highly associated items (for example, Bill Clinton and Hilary

Clinton were clearly associated both for the patients and for the web) and more

variability for those that are less associated. On the basis of these results, we

could consider the universal web-association scores as a proxy for the personal

scores by the patients, which, in spite of individual differences, gave a reasonable

approximation on average.

The results reported so far refer to the web-based metric obtained employing

Bing search engine. We also tested the results obtained with Google search

engine. However, the Google-based metric did not correlate well with the

personal one (only 4 matrices out of 12 were significantly correlated, with a

mean correlation coefficient of 0.14). This was probably due to the instability of

its hits count that does not seem to be accurate enough Funahashi and Yamana

[2010], therefore we chose to use Bing for our study.

2.3.4 Definition of mean association scores

For each neuron with a significant response to two or more images (pluri-

responsive neuron) we defined a mean association score between the pair of
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Figure 2.6 – Correlation between the personal and the web-based association
scores (mean±SEM). The positive correlation between the two metrics was found
significant both at the single subject level and at the population level.

images eliciting responses (ASR−R), and a mean association score between the

pair of images, where one elicited a response and the other did not (ASR−NR).

In other words, for each responsive picture we consider its association scores

with the other pictures eliciting responses and with the ones not eliciting

responses. Specifically, if N is the total number of pictures presented in the

session, and k is the number of responsive stimuli for the given neuron then

N-k is the number of non-responsive ones. We identify with indices [1,. . . ,k]

the responsive pictures and with indices [k+1,. . . ,N] the non-responsive ones.

Then, for each pluri-responsive neuron the mean association scores were defined

as follows:

ASR−R =
1(
K
2

) k−1∑
i=1

k∑
j=i+1

aij (2.3)

where aij are the z-score-normalised association scores from the personal

matrices (or from equation 2.2), and the binomial coefficient
(
K
2

)
is the total

number of possible pair combinations with k responsive stimuli. Analogously,
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we defined the mean association score for the other pairs as:

ASR−NR =
1

k · (N − k)

k∑
i=1

N∑
j=k+1

aij (2.4)

where the notation is the same as above.

For each neuron, the first score (ASR−R) indicated the average strength

of association between pairs of responsive pictures that we compared with

the average strength of association between all pairs of responsive and non-

responsive pictures (ASR−NR). The results obtained will be presented in

Chapter 3 and 4 for the two separate studies.



Chapter 3

Long-term coding of personal

and universal associations in the

human MTL

In this chapter I describe the results of my main PhD project about the encoding

of long-term associations in the human MTL. These results have been recently

reported in a peer-reviewed journal [De Falco et al., 2016].

As seen in Section 1.4.2, the role of hippocampus and its neighbouring MTL

structures in declarative memory functions involves, in particular, the encoding

of associations between items. However, this involvement has only been shown

through studies based on associative learning tasks, leaving unclear whether the

MTL engagement is confined to the task execution or goes beyond it. In fact,

MTL neurons could be showing their involvement (i.e. responding to learned

associations) during the execution of associative tasks, but then carry out a

different function afterwards. Moreover, there is, so far, no direct evidence of

MTL neurons coding naturally-formed associations (i.e. not acquired through

an associative learning task). The available evidences leave open the question

whether associations are encoded temporarily in the MTL or persist in a more

58
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stable representation that outlasts the task execution (see discussion in Section

1.3.5). To address this issue, following previous observations of MTL neurons

firing to well-known associated concepts (e.g. two co-stars in a TV show,

Quian Quiroga et al. [2005]), we performed a systematic study to determine if

these co-activations were just random coincidences or if there is a consistent

tendency for MTL neurons to encode meaningful associations, independent of

the execution of an associative learning task. To do this, we analysed MTL

neurons’ responses to presented images in relation to two different association

metrics (Sections 2.3.1 and 2.3.2) measuring the degree of association between

stimuli.

3.1 Subjects and recordings

The data came from 99 experimental sessions in 49 patients with pharmacolo-

gically intractable epilepsy recorded at University of California, Los Angeles.

Patients were implanted with chronic depth electrodes for 7–10 days to determ-

ine the seizure focus (see Section 2.1). All studies conformed to the guidelines

of the Medical Institutional Review Board at University of California, Los

Angeles, and all patients provided signed consent forms. I performed the data

processing and analysis described in this chapter, but I was not personally

involved in the data recordings.

The electrode location was based exclusively on clinical criteria; here we

report findings from sites in the hippocampus, amygdala, entorhinal cortex and

parahippocampal cortex. For the first 41 patients (84 sessions), the differential

signal from the micro-wires was amplified and recorded using a 64-channel

Neuralynx system (filtering between 1 and 9,000 Hz and sampling at 28 kHz),

while for the remaining patients we used a 128-channel Blackrock system

(filtering between 0.3 and 7,500 Hz and sampling at 30kHx). The experimental
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paradigm employed (screening session) is described in Section 2.2. For all the

99 screening sessions the signal was processed as described in Section 2.1.1 to

detect and separate the neural spikes. Through the spike sorting process, we

identified a total of 4078 units; 1648 single units (SU) and 2430 multi-units

(MU). Single- and multi-units were classified according to the spike shape and

cluster properties as detailed in Section 2.2.1. For each unit, we identified the

significant responses according to the criteria in Section 2.2.1. In particular, we

found 260 single- and 290 multi-units that were responding significantly to at

least one picture, and, among them, 129 single- and 132 multi-units responsive

to more than one picture. We will refer to these units as pluri-responsive

neurons in the following text.

3.2 Personal association metric

From the 24 screening sessions (from 12 patients), for which we had the personal

evaluations of associations (see Section 2.3.1), we found a total of 32 units

firing significantly to more than one stimulus (mean: 3.1 pictures per neuron;

s.d.: 4.8); 19 of them were classified as single-units and 13 as multi-units. For

each of these pluri-responsive neurons, from the related personal association

matrix, we calculated a mean association score across pairs of responsive stimuli

(ASR−R, equation 2.3) and a mean association score across pairs of responsive

and non-responsive stimuli in the session (ASR−NR, equation 2.4).

Figure 3.1a shows an example of a single unit firing to the pictures of three

relatives of the patient and two celebrities. Note that although these responses

do not appear very strong in terms of absolute and sustained firing level, their

firing rates were significantly higher compared to the neuron’s spontaneous

activity (as assessed with the responsiveness criteria in Section 2.2.1). From

the patient’s association matrix shown underneath (Figure 3.1b), the relatives
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Figure 3.1 – (a) A single neuron in the hippocampus that fired to pictures of
the patient’s relatives (pictures covered for confidentiality reasons) and of two
celebrities that were related, according to the patient’s report, to one of the
relatives (stimulus 5). For each stimulus, the raster plot containing the single
spikes detected at each time (each row is associated to a trial, staring from the
top) and the firing rate histogram are shown. Time zero marks the onset of
picture presentations which lasted for 1 sec. (b) Personal association matrix
filled by the patient with a z-score normalisation. The association scores for the
pairs of pictures to which the neuron fired (mean: 0.89) were higher than the
scores obtained for the other pairs of pictures (mean: 0.12).
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appear highly related to each other and the two celebrities appear related to

one of the relatives (stimulus 5). In this example, the Association Score for

pairs of responses (ASR−R = 0.89) was higher than the score obtained for the

other pairs (ASR−NR = 0.12), meaning that the stimuli eliciting response in

this neuron were more associated between each other than with the rest of the

stimuli in the session. Moreover, it is interesting to notice that this neuron did

not fire to all family members (for example, it did not fire to stimulus 7) or

celebrities, but only to a subset of the people that the patient considered to be

related.

Figure 3.2 – Mean across units (±SEM) of association scores for pairs of
responses (ASR−R, green) and for the other pictures pairs (ASR−NR, grey) based
on the patients’ association scores. For single units, the population of ASR−R
values was significantly higher than the population of ASR−NR values according
to a right-sided Wilcoxon signed-rank test.

At the population level, for the 19 single-units (SU) and 13 multi-units

(MU) with more than one significant response, we compared the association

scores on responsive pairs (ASR−R values) with the association scores for the
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other pairs (ASR−NR values). Figure 3.2 shows this comparison for each of

the two groups of units: here the green bar and grey bars represent the mean

values of ASR−R and of ASR−NR, respectively, across the units considered. For

the single-unit population the ASR−R values were significantly higher than the

ASR−NR, according to a right-sided Wilcoxon signed-rank test (p < 0.005).

The same tendency was observed for the population of 13 multi-units, although

in this case the difference was not significant (which can be attributed to the

fact that some of the response pairs may correspond to the firing of different

neurons).

Table 3.1 contains a summary of the numbers of neurons tested against the

personal association metric. Frequency distribution of number of images to

which these neurons responded to is shown in Figure 3.3.

Units

Single

units

Multi

units

Recorded units 777 396 381

Units responding to at least 1 stimulus 86 54 32

Units responding to at least 2 stimuli 32 19 13

Units responding to related stimuli according to the

personal association metric (ASR−R > ASR−NR)

19 14 5

Units responding to unrelated stimuli according to the

personal association metric (ASR−R ≤ ASR−NR)

13 5 8

Units responding to a single stimulus 54 35 19

Units not significantly responding to any stimulus 691 342 349

Table 3.1 – Number of units tested against the personal association metric (24
recording sessions).
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Figure 3.3 – Distribution of the numbers of responses across the neurons tested
against the personal association metric (396 single-units and 381 multi-units). (a)
Non-responsive units. (b) Units responding to one or more stimuli in the personal
association metric (mean numbers of responses (±SD):1.8(±1) for multi-units
and 1.6(±1) for single-units). Note that the two panels have different y-axis
scales for better visualisation.

3.3 Web-based association metric

To overcome the limitations of the patients’ association scores we defined a

web-based association metric. This metric, discussed in detail in Section 2.3.2,

estimates the degree of association between two concepts from the numbers of

hits obtained as results of web searches. It allowed us to consider the whole

set of “searchable” stimuli (famous people and famous places) across all the

recorded screening sessions. The web-based metric was applied to the whole

dataset of 99 experimental sessions (recorded in 49 patients), in which we had

identified 261 units (129 single-units and 132 multi-units) with more than one

picture eliciting a response (mean: 3.0 pictures per neuron; s.d.: 3.9). As we did

before for the personal metric, we calculated the association scores ASR−R and

ASR−NR (Section 2.3.4) for each pluri-responsive neuron using the web-bases

association metric. We then compared the two populations of values, for both
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single and multi-units, with a right-sided Wilcoxon signed-rank test and found

that pairs of images for which the neuron fired (ASR−R) were significantly more

associated than other pairs of images (ASR−NR), for the single-units (p < 10−7)

and, in this case, also for the multi-units (p < 10−5).

Figure 3.4 – Mean across units (±SEM) of association scores for pairs of
responses (ASR−R, green) and for the other pictures pairs (ASR−NR, grey) based
on the web-association scores. For both single- and multi-units the population
of ASR−R values was significantly higher than the population of ASR−NR values
according to a right-sided Wilcoxon signed-rank test.

Figure 3.4 shows this comparison which, in agreement with the one obtained

with the personal association metric, showed that MTL neurons fire preferen-

tially to associated items. Furthermore, for single units, the difference between

the web-association values for the pairs of images to which the neurons respon-

ded and the other pairs (ASR−R − ASR−NR) (first two columns in Figure 3.4)

were significantly lower than the ones obtained with the personal scores (first

two columns of Figure 3.2), according to a Wilcoxon rank-sum test (p < 0.05

); while the difference was not significant for the multi-units. This is in line

with the fact that the web-based scores reflect universal associations, while the

personal metric captures unique and more meaningful relationships for each
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subject.

Several control tests, described in the following sections, ruled out the

possibility that this result could be attributed to familiarity effects, visual

similarity between the stimuli, broad semantic categorisations or recall of

associated items.

Units
Single

units

Multi

units

Recorded units 4078 1648 2430

Units responding to at least 1 stimulus 550 260 290

Units responding to at least 2 stimuli 261 129 132

Units responding to related stimuli according to the

web-based association metric (ASR−R > ASR−NR)

187 92 95

Units responding to unrelated stimuli according to the

web-based association metric (ASR−R ≤ ASR−NR)

74 37 37

Units responding to a single stimulus 289 131 158

Units not significantly responding to any stimulus 3528 1388 2140

Table 3.2 – Number of units tested against the web-based association metric
(99 recording sessions).

Table 3.2 contains a summary of the numbers of neurons tested against the

web-based association metric. The complete frequency distribution of numbers

of images to which these neurons responded to is shown in Figure 3.5. From

the distribution of number of responses it was possible to calculate the mean

fraction of stimuli in the set eliciting response across responsive units, which

was: 2.5%(±2%) for single-units and 2.7%(±2%) for multi-units, in line with

literature results on MTL neurons selectivity [Quian Quiroga, 2012].
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Figure 3.5 – Distribution of the numbers of responses across the neurons tested
against the web-based association metric (1648 single-units and 2430 multi-
units). (a) Non-responsive units. (b) Units responding to one or more stimuli
(mean numbers of responses (±SD): 2.6(±3) for multi-units and 2.4(±2) for
single-units). Note that the two panels have different y-axis scales for better
visualisation.

3.3.1 Effect of relative number of hits

From previous findings [Viskontas et al., 2009], it is known that MTL neurons

tend to respond more likely to familiar items (for example, a very famous actor,

landscape and so on). Therefore, since familiar pictures are represented by

more neurons, there is, in principle, a higher chance of finding neurons firing

to pairs of familiar pictures compared with non-familiar ones. In this case

it could be argued that our findings are simply due to a random overlap of

cell assemblies firing to very familiar concepts, irrespective of the degree of

association between them. To rule out this possibility we performed two control

analyses based on the concept’s relative number of hits, where the number of

hits for a single concept was taken as an estimation of its familiarity. First, for

each pair of concepts we defined a joint-familiarity score as:

fij = log2 (hits (concepti) · hits (conceptj)) (3.1)
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Then, we replaced aij with fij in equations 2.3 and 2.4 and calculated the

familiarity scores for each pluri-responsive neuron. We found that the scores for

the pairs to which the neurons responded (R-R) were not significantly different

to the ones for the other pairs (R-NR) (p = 0.8 for single units and p = 0.4

for multi-units; Wilcoxon signed-rank test), thus showing that results cannot

be explained by an effect introduced by the larger number of hits of familiar

pictures.

Second, for each experimental session we divided the pictures of each

category (actors, places, sportsmen and so on; categories as shown in Figure

2.5) into two groups: high familiarity (H; pictures with number of hits above

the median) and low familiarity (L; pictures with number of hits below the

median). This grouping in high and low familiarity was done by category to

balance the fact that some categories were naturally more “familiar” (e.g. the

actor category have on average a higher number of hits than the others). We

then calculated the association scores (equations 2.3 and 2.4) for pair responses

where pictures were both highly familiar (HH), both not very familiar (LL), and

one highly familiar and the other one not (HL). Replicating the results shown

in Figure 3.4 for each of the three subgroups (HH, LL and HL), ASR−R was

significantly higher than ASR−NR in all groups, both for single- and multi-units

(p < 0.05, Wilcoxon signed-rank test). Moreover, the difference in both ASR−R

and ASR−NR across the three subgroups was not significant according to an

ANOVA test (p = 0.3 for single- and p = 0.08 for multi-units), thus showing

that our result could not be attributed to the familiarity of the pictures used.

3.3.2 Visual similarity analysis

To rule out the possibility that the tendency of MTL neurons to respond to

associated concepts could just reflect perceptual similarities between pictures

(e.g. a picture of an actor is more similar to a picture of another actor than to
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one of a landscape), we performed a visual similarity analysis. For each pair of

stimuli i and j, we estimated the visual similarity vij between them as the cross-

correlation between the images (that is the normalised scalar product between

images’ pixels, each with 160x160 pixels, greyscale and z-score normalised). We

then computed the visual similarity scores V SR−R and V SR−NR using equations

2.3 and 2.4 where aij was replaced with vij, for the whole population of pluri-

responsive neurons. The difference between the scores obtained for response

pairs and other pairs was significantly higher for the web-association metric

(ASR−R −ASR−NR) compared to the visual similarity one (V SR−R − V SR−NR)

for single-units (p < 0.005; Wilcoxon signed-rank test) while the difference

was not significant for multi-units. Since the simple cross-correlation can be

sensitive to alignment issues, we repeated this analysis employing both the 2D

cross-correlation between the images and the Earth Mover’s Distance [Rubner

et al., 2000] as estimations of visual similarity. Both metrics gave significantly

lower differences between the V SR−R and the V SR−NR values compared to the

ones obtained with the web-based association scores (p < 10−3 in all cases,

both for the single- and the multi-units; Wilcoxon signed-rank test). This test

showed that our results cannot be trivially attributed to perceptual similarity

between stimuli. These results are in agreement with the fact that MTL neurons

do not represent visual features, as they show visual invariance responding to

completely different pictures of the same person [Quian Quiroga et al., 2005]

and can also fire upon different sensory modalities of presentation of the same

concept (to the person’s written and spoken name) [Quian Quiroga et al., 2009].

3.3.3 Effect of semantic categories

Previous studies (e.g. Kreiman et al. [2000b]), reported neurons in the MTL re-

sponding to stimulus categories (e.g. all the animals or all the places presented).

To test that the effect found in the association scores was not due to category
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responses, we ran the following analyses. First, we verified that the result still

stood when restricting our association scores calculation only to the stimuli

presenting faces (the largest group in our set of stimuli). This excluded the

possibility that the presence of place-selective cells could have driven our result.

In the 99 sessions analysed we found 103 single-units and 99 multi-units (202

neurons in total) firing significantly to more than one face. For this population

the degree of association for paired responses (ASR−R) was still statistically

higher than the degree of association for the other pairs (ASR−NR) of stimuli

both for single-units (p < 10−5, Wilcoxon signed-rank test) and multi-units

(p < 0.05).

Next, to test that our results were not simply due to broad semantic cat-

egory responses, we verified that the degree of association for pairs of items

eliciting responses was still higher than for the other pairs when constraining

the comparisons to be within the same category (when the items eliciting

responses belonged to the same category) or across the same categories (when

they belonged to different categories). Specifically, considering the list of broad

categories shown in Figure 2.5, for each category and each pluri-responsive

neuron, we calculated ASR−R and ASR−NR from equations 2.3 and 2.4, consid-

ering only association values within each category (i.e. only the pairs of stimuli

belonging to the specific category). Pulling together the association values

for all the categories considered, the difference between ASR−R and ASR−NR

remained significant for the single units (p < 0.005; Wilcoxon signed-rank test;

number of values = 103) but did not reach significance for the multi-units

(p = 0.06; Wilcoxon signed-rank test; number of values = 116). Similarly,

for pairs of items eliciting responses that belonged to different categories (for

example, an actor and a place), we constrained the comparisons to be across

the same categories (in our example, comparing the original association value

with the ones between other actors and places). Also in this case, the difference
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between ASR−R and ASR−NR remained significant for the single units (p < 0.01;

Wilcoxon signed-rank test; number of values = 102) and showed a tendency for

the multi-units (p = 0.06; Wilcoxon signed-rank test; number of values = 112).

These results proved that the association score difference described in Section

3.3 could not be just attributed to semantic categorisations.

3.3.4 Response latency

Another possible objection to our finding is that it is, in principle, possible that

the responses to associated pictures were just caused by a cue-recall effect. In

other words, it is possible that the neurons we recorded from encoded only one

of the pictures, and then the presentation of a second associated stimulus acted

as a cue, evoking the one encoded - thus making the neuron fire indirectly. This

case is actually very unlikely given the large number of stimuli presented in a

session (about 100 images) and since no associative learning task is performed.

In fact, with such a large number of images it does not seem realistic that

the subjects will spontaneously recall the same specific relationships at each

trial. To further support our view, we ran a latency analysis on our responses.

A study based on single neuron responses in human MTL in a cued-recall

paradigm [Kreiman et al., 2000a], reported that the mean latency of human

MTL responses obtained by evoking an image from a cue was 409 ms (s.d.:

291 ms), about 130 ms longer than the one they estimated for the visual

responses (i.e. triggered by the picture presentations). Using the same method

reported by Kreiman et al. [2000a], we estimated the latencies of our responses.

Specifically, for each significant response, we obtained the spike density function

(sdf) convolving the spike train with a Gaussian of 100 ms width and then

averaging across trials. The latency was then computed as the time where the

sdf crossed the baseline plus 2 s.d. value, and stayed up for at least 50 ms.

The baseline value was computed as the average value of the sdf on all stimuli
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estimated in the time window preceding the stimulus presentation (between

-900 ms and -100 ms, where time zero is the time of stimulus onset). We

obtained that the mean latency of our responses was 253 ms (s.d.: 129 ms),

which is well below the one reported by Kreiman et al. [2000a] for cue-recall

responses. In addition, the mean latency difference of the responses to different

stimuli (in the same neurons) was of 78 ms (s.d.: 89 ms), while the latency

difference reported for recall responses was more than 60% larger.

3.4 Location analysis

As seen in sections 1.2, hippocampus and parahippocampal regions are struc-

tured in a hierarchical way. Moreover, MTL neurons exhibit different levels of

selectivity [Ison et al., 2011], visual invariance, and multimodal convergence

[Quian Quiroga et al., 2009] across the distinct MTL areas, suggesting an in-

crease of abstraction along the MTL hierarchy [Quian Quiroga, 2012]. In order

to find out whether there were differences in the encoding of association across

MTL areas, we separated our results according to the area from where they

were recorded. First, for each of the four areas we recorded from (hippocampus,

amygdala, entorhinal cortex and parahippocampal cortex), we compared the

association scores ASR−R and ASR−NR (equations 2.3 and 2.4). For all the

areas the association scores for pairs of responsive stimuli were significantly

larger than the ones for other pairs (Figure 3.6, p < 0.05 in all cases; Wilcoxon

signed-rank test).

Next, we compared the difference between association scores for response

pairs and other pairs (ASR−R − ASR−NR) across the different MTL areas. For

this analysis we pulled together single- and multi-units to increase statistical

power (i.e. to have a good number of units in each area), given that results

obtained with the web-based scores in the two groups were similar. We found
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Figure 3.6 – Mean association scores for pairs of responses ASR−R (green) and
other pairs ASR−NR (grey) in the different MTL areas. Difference between the
two scores was assessed with a Wilcoxon signed-rank test.
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a tendency for the score difference to vary across regions, being largest in the

hippocampus and lowest in the parahippocampal cortex (Figure 3.7), which,

however, did not reach statistical significance (p = 0.07; ANOVA test).

Figure 3.7 – Difference between mean association scores for the pairs of images
eliciting responses across the different MTL areas for single- and multi-units
together.

Furthermore, when looking at the responses separated by categories, we

observed a larger proportion of responses to scenes in the parahippocampal

cortex compared to other areas. This result was supported by a significant

modulation of the proportion of responses to scenes across the different MTL

areas (analysis of variance, p < 10−6), while no effect was found for the other

categories (categories defined as in Figure 2.5).

Neurons responding to view of landscapes or places have been reported before

in the human MTL (e.g. Ekstrom et al. [2003], Quian Quiroga et al. [2005],

Rey et al. [2014b], Kreiman et al. [2000b]). These scene-responding neurons

are reminiscent of ‘spatial view’ neurons found in the monkey hippocampus

[Rolls et al., 1989, 1999]. Spatial view neurons respond selectively when the

monkey is looking at a particular part of a spatial environment [Rolls et al.,
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1999] and, in line with findings from concept cells [Quian Quiroga et al., 2005],

they exhibit a low spontaneous activity [Rolls et al., 1999]. Moreover, spatial

view cells represent allocentric information (they respond to the where the

monkey is looking independently from the animal location, relative position

or head direction). In humans, a similar feature has been reported for view

neurons during a virtual navigation task [Ekstrom et al., 2003], where 70%

of the view cells were reported to respond independently from the subject’s

location. Such representation of space in the MTL could be fundamental in

respect to its memory functions by providing the spatial context component to

episodic memories (i.e. remember where a particular object/person was seen)

[Rolls et al., 1999].

3.5 Non-topographic organisation

We investigated whether there is a topographic organisation of responses in the

MTL, namely, that nearby neurons tend to respond to associated concepts. For

this, we focused on the responses from 72 electrodes that had more than one unit

(single- or multi-unit) separated after spike sorting, with at least one significant

response each. For each electrode we defined a mean association score between

the images eliciting responses in the different units (recorded from the same

electrode) using equation 2.3, and compared it with the mean association score

between the images eliciting responses in one of the neurons but not in the

other one (equation 2.4). In other words, we assessed whether nearby neurons

(recorded from the same electrode) tended to fire to associated items. In line

with previous evidence from studies in the rodent hippocampus [Redish et al.,

2001], as well as from illustrative cases showing that neighbouring human MTL

neurons tend to fire to completely unrelated things [Quian Quiroga, 2012], the

mean association score between the stimuli eliciting responses in these close-by
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units was not significantly different from the one for the other stimulus pairs

(Wilcoxon signed-rank test; Figure 3.8), both when considering only the single

units (N=49) or all units together (N=159), thus arguing against a topographic

organisation of responses.

Figure 3.8 – Average value (±SEM) across electrodes of the association scores
ASR−R (green) and ASR−NR (grey) between pictures eliciting responses in nearby
neurons, which were recorded from the same electrode and separated after spike
sorting. In this case N indicates the number of electrodes with at least two
responsive units separated after spike sorting. The difference between ASR−R
and ASR−NRwas not significant according to a Wilcoxon signed-rank test.

3.6 Probability of pair responses

Furthermore, using the web-based scores, we assessed how the probability of

neurons responding to a pair of items depends on the degree of association

between the items. That is, given a neuron firing to one stimulus, we estimated

the probability of firing to a second stimulus as a function of the degree of

association with the first one. Differently from the previous analyses presented

(focused on neurons with more than one response), in this case we also considered

neurons with a single significant response. In fact, when calculating the



3.6. Probability of pair responses 77

probability of neurons firing to two pictures with a given association, we had

to consider not only the cases where neurons fired to both stimuli, but also

the cases where neurons fired to one stimulus (even if this was the neuron’s

unique response) but not the other. Therefore, for this analysis we considered

all 550 neurons (260 single-units and 290 multi-units) with at least one response

found in our dataset. Briefly, the associations scores for all the pairs of stimuli

presented together in the 99 sessions were pulled together, z-score normalised,

and binned into 10 equally-spaced intervals (first and last bins were forced to

contain first and last 2.5% of points to handle outliers). For each responsive

neuron and bin, we calculated the ratio between the number of “pair responses”

and the number of responses to one but not the other image of the pair. We

then averaged across neurons to obtain the percentage (and standard error) of

paired responses for each bin.

Figure 3.9 – Probability of responses to a pair of pictures as a function of
their degree of association. Mean value (±SEM) on 260 single-units and 290
multi-units with psychometric fit of the data-points.

The results obtained, for both single- and multi-units (Figure 3.9) showed

a psychometric-like non-linear increase of the probability of pair responses
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with the degree of association between items. In particular, the probability of

neurons responding to highly associated items saturated at about 4%, going

down to about 1% for weakly-associated ones. This difference might, however,

be larger considering that items that were not associated according to the web

metric may have had a particular relationship for the patient, whereas there is

more consistency between the subjective and web-metric scores for the highly

associated items (Figure 2.6).

3.7 Cell-by-cell analysis

For each responsive neuron we performed a cell-by-cell analysis comparing the

neural activity in response to the different pairs of stimuli with their degrees of

association. For this analysis we did not use any criterion to separate responses

and non-responses (as opposite to what we did in the previous tests), but

employed directly a filtered version of the neural activity. In particular, for

each of the 550 responsive units detected we calculated a matrix of joint neural

responses F, with elements Fij = FiFj . Here Fi and Fj are the neural responses

(i.e. the median number of spikes in the ‘response window’; defined as in Section

2.2.1 between 200 ms and 1000 ms post stimulus onset) to pictures i and j,

respectively, normalised by the maximum response. Response values below the

neuron’s mean baseline activity plus 2 spikes were capped to zero, in order to

decrease the influence of background noise. Basically, for each unit, the matrix

F contained the combined neural activity in response to each pair of stimuli

presented in the corresponding session. Its calculation resulted in 151 units

with a matrix of joint neural responses filled with zeros (i.e. there were not

two or more responses different from zero) and we therefore focused on the

remaining 399 units (174 single- and 225 multi-units) with non-zero matrices.

For each neuron we also computed the web-association scores between all the
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pictures shown in the corresponding experimental session, and created the

matrix of association scores A. Each row of this matrix was normalised using

a z-score, given that, in spite of the overall z-score normalisation, some items

(e.g. a very famous actor) tended to have higher association scores than others.

3.7.1 Correlation between neural responses and associ-

ation

As first step, we performed a cell-by-cell analysis to measure the correlation

between joint neural responses and association matrices. For each of the 399

units (174 single- and 225 multi-units) with at least one non-zero value in F ,

we computed the scalar product between the matrix of joint neural responses

(F ) and the matrix of web-association scores (A):

r =
N∑
i=1

∑
j 6=i

AijFij (3.2)

To assess significance of the correlations between the neural and web-association

matrices, for each neuron we statistically compared the original correlation

value from equation 3.2 with a distribution of 1000 surrogates values (rank test).

Each surrogate in the distribution was obtained by randomly permuting the

indexes of the responses and generating a surrogate version of the joint neural

responses matrix (Fsi). Fsi was then employed in equation 3.2 to calculate each

surrogate correlation value rsi for the distribution.

Figures 3.10 and 3.11 show two examples of pluri-responsive neurons where

the described analysis was performed. Note that in these figures significant

responses are not marked, but they are reported in caption. In particular, from

panels b) and c) that contain the heat-maps for the web-based association

matrix and the joint-neural responses, it is already possible to visualise in

both cases that the pattern in the joint-neural matrix partially matches the
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clustering in the association matrix. However, this matching is just partial, due

to the fact that the neurons are not firing to all the associations presented in

the session, but only to few of them. Despite of this limitation, in both cases

this partial matching was enough to give a significant correlation (above chance)

between the two matrices (the real value for the correlation was higher than

95% of surrogate values, as shown in panel d of the figures). On the other hand,

the neuron shown in Figure 3.12 responded to two clearly associated concepts

(Superman and Mr. Incredible), but the correlation between the joint-neural

and the web-association matrices was not significant due to the sparseness of

the joint-neural matrix. Considering all the 399 units, we obtained a significant

correlation between the neural and web-association matrices only in 19% of the

cases (38 single- and 38 multi-units; rank test with p < 0.05). Nevertheless,

at the population level we compared the original correlation values with the

median of the surrogates for each neuron using a right-sided (i.e. our hypothesis

is that the original values are higher than the ones of the surrogates) Wilcoxon

signed-rank test and found that the correlation values were significantly larger

than chance (p < 10−6, n=399). Furthermore, to control for any semantic

category effect (as for the control in Section 3.3.3), we performed the same

statistical comparisons but constrained the permutations to be within the same

category (broad categories defined as in Figure 2.5). In this case, 35 units

(17 single- and 18 multi-units) showed a significant correlation between the

neural and web-association matrices. Considering the whole population, the

original correlations were still significantly larger than the ones obtained with

the category-constrained surrogates (p < 0.05; Wilcoxon signed-rank test).
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Figure 3.10 – a) A single neuron in the hippocampus that fired to pictures
of basketball players and to other sportsman (significant responsive stimuli: 59,
60, 61, 66 and 62). The panel contains the neural responses to the first 12
most responsive stimuli; significant responses are not marked as no responsive
criterion was employed for this analysis. (b,c) Web-association and joint neural
response matrices. Colour bars on the right denote association and join-response
strength, respectively, in arbitrary units. (d) Correlation between the web-
association and joint-response matrices (red dotted line) and for a distribution
of 1,000 surrogates, which were obtained by randomly shuffling the responses.
The original correlation value was significantly larger than chance (rank test
compared with the population of the 1,000 surrogates) with p < 0.005.
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Figure 3.11 – A single neuron in the parahippocampal cortex that fired to
pictures of two researchers performing the experiments with the patient (signi-
ficant responsive stimuli: 2 and 1), but not to the picture of a third researcher
also working with the patient (stimulus 3). Conventions are the same as for
Figure 3.10. In this case the correlation between the web-association and joint-
response matrices was significantly larger than chance (p < 0.05, rank test, 1,000
surrogates).
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Figure 3.12 – A single neuron in the entorhinal cortex that fired to pictures
of two cartoons, Superman and Mr. Incredible (significant responsive stimuli:
96 and 104), but not to other cartoons, like Homer Simpson (stimulus 106).
Conventions are the same as for Figure 3.10. In this case, the correlation between
the web-association and the joint-response matrices was not significant (p = 0.13,
rank test, 1000 surrogates), due to the fact that the neuron encoded relatively
few of the associations in the web-association matrix.

Finally, an average joint-neural activation matrix (Figure 3.13) was obtained

by averaging all the matrices of joint neural responses obtained from the

550 responsive neurons. This matrix contained some holes (empty values)

corresponding to untested pairs, since not all the possible pairs of stimuli were

shown together in at least one session. In line with the other results in this

section, we found that the correlation between this average joint-neural matrix

and the web-association matrix shown in Figure 2.5 (obtained when considering

all responses and pictures) was also significantly larger than chance (p < 0.01,

rank test, 1000 surrogates).
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Figure 3.13 – Average joint-neural activation map containing the neural co-
activation for each pair of stimuli averaged on 550 units. The white points in
the map are empty entries in the matrix corresponding to pairs of stimuli that
were never tested together.
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3.7.2 Decoding analysis

We applied a decoder approach to prove that we could predict the association

score between responsive stimuli, from the corresponding neural activity, better

than chance. For every unit, we considered each non-zero entry Fij in the

joint-neural response matrix and predicted the association score between the

corresponding items (i, j ) using a nearest-neighbour approach with a leave-one

out validation (one at a time, each value is predicted based on the rest). That

means, if we denote by F
′
ij the closest value to Fij in the joint-neural response

matrix, and by A
′
ij its corresponding association score, we took A

′
ij as an

estimation of Aij . Since we only employed the upper triangular portion of both

matrices (otherwise the closest value would trivially tend to be the symmetric

counterpart), the web-association matrices were normalised row-by-row and

then symmetrised: Âij = (Aij+Aji)/2 (for i > j). Note that this analysis could

only be applied to joint-neural response matrices with at least two entries

different than zero in the upper triangular portion, which was the case for

345 units (136 single- and 209 multi-units). We quantified the accuracy of the

predictions with the mean square error,

ε =
1

K

∑(
Â

′
ij − Âij

)2
(3.3)

where Â
′
ij and Âij are the predicted and real association scores, respectively,

and K is the number of non-zero values in the joint-neural response matrix for

i>j. As before, for each neuron we used a rank test to compare the mean square

error of the original estimations with the ones obtained from a distribution

1000 surrogates, created by randomly permuting the indexes in the responses

F. For each neuron tested the level of chance was equal to the median value

of the surrogate distribution of mean square errors. Considering the whole

population of 345 units, we found that predictions were significantly larger than
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chance (p < 0.05, surrogate rank test) for 62 (18%) of them (27 single- and 35

multi-units). At the population level, we compared the original errors with the

median of the surrogates for each neuron using a left-sided (i.e. our hypothesis

is that the original errors are lower than the ones of the surrogates) Wilcoxon

signed-rank test and found that predictions were larger than chance (p < 0.05).

3.8 Firing rate distributions and sparseness

In order to analyse the firing characteristic of the single-units identified we

looked at their spontaneous and peak firing rates. For each unit, the mean

baseline firing rate was calculated as mean number of spikes across trials fired

by the unit in a time window between -1000 ms and -300 ms preceding the

stimulus onset (time zero). The spontaneous firing rate was obtained as the

mean of the baseline firing rates across all presented stimuli. Likewise, the

response firing rate was calculated as the mean number of spikes across trials

in a time window between 100 ms and 800 ms. The peak response firing rate

corresponds to the maximum response firing rate (i.e. the firing rate in response

to the most effective stimulus). Figure 3.14 shows the spontaneous and peak

firing rate distributions for the 260 responsive single-units identified. From the

distribution of peak response firing rates it appears that several responses have

a low response activity (15% of values <3 Hz). However, it is important to note

that these values are calculated on a time window of 700 ms seconds; therefore,

transient responses lasting no more than 100 ms (see for example the response

to stimulus 5 in Figure 3.1) will have a peak response firing rate much smaller

than the maximum value of their instantaneous firing rate. At the population

level, the mean baseline firing rate was 1.9 Hz (SD: 3 Hz) with only 9.3% of

values over 6 Hz, while the mean value for the peak response firing rate was

9.3 Hz (SD: 7.6 Hz); in line with the values reported by Ison et al. [2011] for a
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similar population of responsive units in the human MTL (mean baseline firing

rate 1.3 Hz, mean peak firing rate 7.8 Hz).

Figure 3.14 – Distribution of firing rates for the 260 responsive single-units. a)
Spontaneous firing rates. b) Peak response firing rates (in response to the most
effective stimulus).

3.8.1 Sparseness of the representation

As seen in section 1.4.1, MTL neurons are highly selective, in the sense that

each unit fires to very few of the pictures presented. Typically these neurons

are found to respond to about 2–3% of the stimuli presented [Quian Quiroga,

2012], as reported in several studies (e.g. Quian Quiroga et al. 2005, 2007),

and in agreement with what we obtained from our dataset (Figure 3.5) where

only 2.5% of the stimuli presented elicited a response in the neural population

considered (single-units). These findings suggest that MTL neurons provide a

rather sparse representation, in which each unit responds to a small proportion

of stimuli.

For a set on S stimuli, the single neuron sparseness as can be quantified

as proposed by Rolls and colleagues [Rolls and Tovee, 1995, Rolls and Treves,
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2011] as:

as =

(∑S
i=1 yi/S

)2(∑S
i=1 y

2
i

)
/S

(3.4)

where yi is the mean firing rate of the neuron in response to the stimulus i.

Single cell sparseness has a maximum value of 1 and approaches 0 for very

selective units. Using this definition, we calculated the single cell sparseness for

the whole population of 260 responsive single-units, the complete distribution

is shown in figure 3.15(panel a). We found a mean value for as of 0.35(±0.31),

in agreement with the selectivity values reported by Quian Quiroga et al. [2007]

for a similar population of MTL neurons (median value for as = 0.39, median

selectivity S = 0.71, with S approaching 1 for very selective units).

Furthermore, when looking at the responses of a population of N neurons

to a given stimulus, we can estimate the population sparseness ap [Rolls and

Treves, 2011], defined as:

ap =

(∑N
i=1 yi/N

)2(∑N
i=1 y

2
i

)
/N

(3.5)

where, in this case, yi is the mean firing rate of neuron i to the specific

stimulus. Using this definition, the population sparseness ap was calculated for

the set of 300 stimuli that were shown to a population of at least 10 single-units

(across the total 260 units). The mean value for ap was 0.36 (±0.11), which

is very close to the mean value obtained for the single cell sparseness. The

complete distribution of apvalues is shown in Figure 3.15(panel b).

The values found for asand ap suggest a rather sparse representation in

this area, and are in line with the values reported for spatial view cells in the

monkey hippocampus (< as >= 0.34;< ap >= 0.33, [Rolls et al., 1998, Rolls

and Treves, 2011]). In a sparse representation, information about a specific

stimulus is provided by the activity of a relatively small population of neurons.
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Figure 3.15 – a) Distribution of single cell sparseness (as) for the 260 responsive
single-units identified. Mean: 0.35±0.31. b) Distribution of population sparseness
(as) for the 300 stimuli that were shown to al least 10 single-units across the
recording sessions. Mean value: 0.36± 0.11

A sparse representation is consistent with the MTL’s memory functions, as

low values of sparseness increase the number of memories that the system is

able to store and retrieve [Rolls and Treves, 1990, 2011]. In contrast, a more

distributed representation means that information about a specific stimulus is

provided by the firing activity of a large population of neurons [Abbott et al.,

1996]; a distributed representation is more likely to be expected in sensory

systems [Rolls, 2008].

On the other extreme of sparse representation there is local representation,

in which a single cell activity provides all the information about a particular

stimulus. These hypothetical cells are also referred to as grandmother cells (a

grandmother cell activates when a person sees a specific subject, such as his

grandmother) [Barlow, 1995]. Although the coding found in the MTL is very

sparse and explicit (see Section 1.4.1), it is far from the one-to-one mapping

proposed by a grandmother cell representation [Quian Quiroga et al., 2008a].

In fact, the idea that there is only one cell responding to a given concept would

make it highly improbable to find such neurons in a limited experimental setup
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like ours, and contrasts with the population sparseness values found in our

data. Moreover, several MTL neurons are found to respond to more than one

concept (see distribution of responses in Figure 3.5), while a grandmother cell is

expected to be activated by a single identity. In line with the model described

in Section 1.4.1, our findings here support the idea that concepts are encoded

in the MTL by very sparse, but not local, cell assemblies.

3.9 Summary on the distribution of responses

This section contains a summary about the numbers of units and responses used

in this study and their distribution across patients, locations, and semantic

categories. Because of the different requirements for each kind of analysis

performed, the number of neurons effectively available to each test varied.

Table 3.3 contains a recap of the numbers of neurons employed in the different

cases.

Units
Single
units

Multi
units

Total number of recorded units 4078 1648 2430

Number of units with more than 1 response for which
we had the patient’s association scores (Figure 3.2)

32 19 13

Number of units with more than 1 response for which
we used the web-based metric scores (Figures 3.4, 3.6
and 3.7).

261 129 132

Number of responsive units (with at least 1 response)
used to study the probability of pair responses (Figure
3.9). The same units were used for the study of
topographic representation (Figure 3.8).

550 260 290

Number of units with a non-zero joint-neural response
matrix used for the cell-by-cell correlation analysis
(Section 3.7.1).

399 174 225

Number of units with at least two non-zero values in the
upper half of the joint-neural response matrix used for
the decoding analysis (Section 3.7.2).

345 136 209

Table 3.3 – Number of units recorded and used for the different analyses.
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Figure 3.16 – a) Distribution of responsive neurons (Table Summary on
the numbers of units per analysis, row 4) across patients. b) Distribution of
responsive neurons per MTL area across patients. The numbers around the
pie-charts identify the patients.

Figure 3.16 contains the proportions of responsive neurons across patients

(all together in panel a and separated by MTL area in panel b). These plots
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show that the responsive units were distributed across the whole cohort of

patients. In line with this observation, the percentages of responses per category

across patients (Figure 3.17c) also appeared spread across the different patients.

Figure 3.17 – Proportion of responses to each defined category for all responsive
neurons (a) and for each MTL area (b). c) Percentage of responses per category
for each patient. The percentage of responses for each category was calculated
separately for each category (number of responsive stimuli divided by the number
of stimuli presented for that category) and it is plotted with stacked bars only
for space reasons.

Figure 3.17 shows the proportions of responses to each category considering
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all the MTL areas together (panel a) or separately (panel b). We found a larger

proportion of responses to scenes in the parahippocampal cortex compared to

other areas, in line with the well-known scene-selectivity of the parahippocampal

neurons [Epstein and Kanwisher, 1998, Mormann et al., 2017]. This observation

was supported by a significant modulation of the proportion of scenes across

the different MTL areas (ANOVA test, p < 10−6), while no effect was found

for the other categories.

3.10 Conclusions to Chapter 3

Summarising, we demonstrated that whenever MTL neurons fire to more than

one concept, these concepts tend to be associated. To begin with, this tendency

was proved for concepts considered associated by the subjects themselves:

showing, in particular, that the patients’ association scores for pairs of pictures

to which neurons fired were significantly larger than the ones for other pairs

of pictures. Next, three different analyses based on a web-based association

metric further supported our claim: first, in line with the personal metric

results, we found that the web-based association scores for responsive pairs of

stimuli were higher than for other pairs. Second, a cell-by-cell analysis showed

a correlation above chance between the neural responses and the association

matrices (without using a criterion to define a response). Third, based on the

neuron’s responses we could predict the degree of association between pictures

significantly better than chance. Moreover, we showed that these results could

not be trivially attributed to an effect given by the visual similarity of the images,

their relative familiarity, or the recall of a single picture triggered by associated

ones. Following on from these results, we also showed that the responses to

associated items were more correlated to the subjects’ scores, determined by

their own personal experiences, than to ‘universal’ web-association values.
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In addition, the neurons’ responses reflected specific relationships between

individual items and could not be merely attributed to broad semantic categories.

In fact, MTL neurons tended to fire to some, but not all of the pictures in a

category (see for example the neuron shown in Figure 3.1a that fired only to

some of the family members presented). This observation was quantified at

the population level, showing that the association scores for pairs of responsive

stimuli was still higher than for the other pairs when restricting the comparison

to be in the same category. In other words, the items eliciting responses in

a specific category (for example two actors) were on average more associated

to each other than to the rest of the the items in the category (e.g. the other

actors). Moreover, we showed that neurons also responded to pairs of pictures

belonging to different semantic categories (for example, an actor and a place)

and that, also in this case, the association scores for the specific items the

neuron fired to were, on average, significantly larger than the association scores

for other items across the same categories (other actors and places).

The trend to fire more likely to associated concepts showed a tendency to be

different among neurons in the different MTL areas, in particular, being highest

in the hippocampus and lowest in the parahippocampal cortex. Moreover, as

reported in the rodent hippocampus [Redish et al., 2001], and in contrast to

findings in monkey cortical areas [Tanaka, 1996], close-by neurons did not tend

to fire for associated concepts, thus supporting a non-topographical organisation

of the MTL. Such non-topographically organised representation is in line with

the random synaptic connections reported by Li et al. [1994] between neurons

in CA3 (the hippocampal area proposed to be involved in the creation of

associations [Treves and Rolls, 1994] ), and it is indeed ideal for the fast

creation of associations between arbitrary concepts [Quian Quiroga, 2012].

Our results showed that MTL neurons tend to encode well-established

relationships between concepts. Furthermore, we showed that the probability
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of getting responses to pairs of items increases with the strength of association

between stimuli, going from 1% for non-associated items to 4% for highly

associated ones. Findings from a recent study [Ison et al., 2015], where human

MTL neurons rapidly encoded newly learned associations between (at first)

unrelated items, showed that the proportion of neurons that changed their

selectivity to encode the new associations was relatively large (about 40%).

Therefore, we can argue that from a relatively high proportion of neurons

initially encoding new associations, only a small fraction of these will consolidate

this information into long-lasting representations in the MTL.

In line with previous reports from human MTL [Quian Quiroga et al.,

2007], we found that the single cell and population sparsenesses in our set of

neurons/stimuli (< as >= 0.35;< ap >= 0.36, Section 3.15) suggested a very

sparse representation in this area, which is consistent with what is expected

for a memory system [Rolls and Treves, 1990, 2011], but it is still far from a

grandmother cell representation [Quian Quiroga et al., 2008a].

Our results are in line with a recent interpretation about the role of MTL

neurons in declarative memory [Quian Quiroga, 2012]. According to this view,

each concept is represented in the MTL by a network of cells that, when

activated, brings the concept into awareness. In this framework the associations

between concepts are encoded via partially overlapping assemblies; meaning

that a proportion of neurons firing to a certain concept may also fire to related

ones (as shown in our study).

The long ongoing debate about the specific role of the MTL in the consol-

idation of episodic memory (see Section 1.3.5) opposes two alternative views

about whether MTL representations are just temporary or more permanent.

According to the standard consolidation model [Squire et al., 2004], the MTL

has only a temporary role during learning and MTL representations are no

longer held once memories consolidate in the cortex. Alternatively, the multiple



3.10. Conclusions to Chapter 3 96

trace theory [Nadel and Moscovitch, 1997] argues that the MTL provides a

long-lasting representation that continues to play a critical role for declarative

(and particularly episodic) memory after learning. Evidence in support of one or

the other model has been largely based on lesion studies and the investigation

of human amnesic patients [Squire and Zola-Morgan, 1991, Moscovitch et al.,

2005, Rosenbaum et al., 2005, Bayley et al., 2006], and has provided mixed

results. There is little direct evidence from neuron’s recordings. In particu-

lar, about 15% of place cells in the rodent hippocampus have been shown to

maintain their tuning for up to 30 days in a familiar environment [Ziv et al.,

2013], even though it is still an open issue whether, and to what extent, rodent

place cells can be taken as a model of declarative memory. Further results in

support of a long-term involvement of the MTL in encoding associations come

from Miyashita and colleagues that showed how memory-retrieval activation

appeared earlier in perirhinal cortex than in visual cortical areas [Naya et al.,

2001], in line with their previous finding of a disruption of pair coding neurons

in visual cortical areas on lesions in the entorhinal and perirhinal cortices

[Higuchi and Miyashita, 1996]. Closer to our study, selective responses to

well-learned associations were described in the monkey [Yanike et al., 2004]

and the rat hippocampus [McKenzie et al., 2014]. Moreover, using an eye-blink

conditioning paradigm, neurons in the rabbit CA1 were shown to be active at

the recall of remotely acquired associations [Hattori et al., 2015]. In line with

these findings, we have shown, in humans, the presence of a long-term coding of

associations between known concepts. As seen in Section 1.3.3, the role of MTL

in the formation of semantic memories is still debated. Therefore, note that

our results do not rule out the possibility that the long-term associations found

in the MTL (that are beyond semantic category relationships) might be also

encoded or formed in neocortex, and that they might just reflect the semantic

associative structure of the inputs coming into the MTL from neocortical areas.
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In conclusion, the fact that MTL neurons code previously existing asso-

ciations that are independent of the specific task performed by the subjects,

shows a long-term representation that goes beyond a temporary and malleable

coding and offers new insights to our understanding of the role of the MTL in

memory coding, its stability and capacity, which further support the role of

these neurons in long-term memory.



Chapter 4

Firing properties of

pluri-responsive neurons in the

human MTL

In this chapter I describe the results of my follow-up study about the charac-

terisation of spiking responses in single neurons firing to different concepts. In

Chapter 3, we proved that MTL neurons encode associations. In fact, we found

that whenever MTL neurons fired significantly to more than one concept, these

concepts were usually related. However, it remained unclear how the individual

neurons encoded these different concepts and associations. In this study we

aimed to test whether the single units exhibited different firing properties in

response to different stimuli and if those differences were eventually related to

the relationship between concepts. In particular, we characterised the neural

responses in terms of their electrophysiological characteristics: the response

strength (the firing rate in response to a given stimulus) and the latency of

spiking response (the time when the spiking response begins). We employed a

modification of the paradigm used in Chapter 3 with a larger number of trials

(25-35), which allowed us to measure the firing properties in a better way than

98
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with only six trials.

The Chapter is organised as follows: First, I describe the data employed

in the study and their processing. Next, I illustrate the analyses and results

concerning the variability of response strength and latency across responses.

The following section contains the results obtained in relation to our web-based

association metric. Finally, I present the results obtained by comparing the

firing properties in units firing to one or more stimuli.

4.1 Subjects and recordings

The data for this project were recorded at King’s College Hospital in London

during 21 recording session from six different patients with pharmacologically

intractable epilepsy. Patients were implanted with intracranial electrodes

for clinical reasons for 7–10 days. The study was approved by King’s College

Hospital Research Ethics Committee and all patients gave their written informed

consent to participate. I was personally involved in setting up and performing

these investigations; recording and pre-processing the data; and I performed

all the analyses presented here. The electrodes were implanted bilaterally

in the areas of hippocampus (24 probes) and amygdala (12 probes), their

locations were based exclusively on clinical criteria. For the first 2 patients

(7 sessions), the micro-wires signal was recorded with a 64-channel Neuralynx

system (filtered between 0.1 and 9,000 Hz, and sampled at 32,556 Hz); for the

remaining patients and sessions we used a 64-channel Blackrock system (filtered

between 0.3 and 7,500 Hz, and sampled at 30,000 Hz). The experimental

paradigm used was a long screening session in which 10-25 pictures were shown

25–35 times each in pseudorandom order. These pictures were selected following

the results of a screening session recorded a few hours before (see Section 2.2

for the paradigm’s details).
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As for the study described in Chapter 3, the data recorded were processed

using Wave clus (as described in Section 2.1.1) to detect and separate the

neural spikes. For each of the 393 single units detected, we identified the

significant responses based on the spiking activity in the baseline and response

windows (the responsiveness criteria are detailed in the second part of Section

2.2.1). Overall, we identified a total 165 significant responses. These responses

came from 81 units in 69 different microelectrodes (11 from amygdala, 55 from

anterior hippocampus, and 15 from posterior hippocampus), firing significantly

to at least one stimulus. Among them, 37 units were responsive to more

than one concept (7 from amygdala, 23 from anterior hippocampus, and 7

from posterior hippocampus). We will refer to them as pluri-responsive units.

Considering these 37 pluri-responsive units we identified 208 pairs of stimuli

eliciting responses in the same unit (responsive pairs). The complete frequency

distribution of number of images to which the neurons responded to is shown

in Figure 4.1.

Figure 4.1 – Distribution of the numbers of responses across the 393 recorded
units. a) Non-responsive units. b) Units responding to one or more stimuli. Note
that the two panels have different y-axis scales for better visualisation.
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4.1.1 Spike-shape surrogate test

As a first control, we assessed whether the spike sorting correctly separated the

spikes from different units, or if there was any contamination in the clusters (i.e.

an incorrect spike sorting procedure could have merged in one cluster spikes

fired from different units despite significant differences in their spike-shapes).

Given a pair of stimuli st1 and st2 eliciting response in the same unit, we

considered all the spikes S1 and S2 fired in the response window [100 ms - 800

ms] following each stimulus, across all trials. Each spike-shape consists of a

vector of 64 elements (as sampled during the spike detection processing, Section

2.1.1). If n1 and n2 are the numbers of spikes fired in response to stimuli st1 and

st2, then S1and S2 are two matrices of sizes n1 × 64 and n2 × 64, respectively.

The spike-shape difference ∆S, associated to the two responses, was evaluated

by means of the Mahalanobis pairwise distance between the two populations of

spikes S1 and S2 as follows:

∆S =

√√√√ n1∑
j=1

DM(S1j, S2) +

n2∑
k=1

DM(S2k, S1) (4.1)

where the notation Sxj indicates the j-esim row of Sx (i.e. the vector of

64 elements sampling the shape of the j-esim spike fired in response to stx);

while DM indicates the Mahalanobis distance between a single vector and a

distribution of vectors, defined as:

DM(Xj, Y ) =
√

(Xj − µ) · σ−1 · (Xj − µ)T (4.2)

with µ and σ being the rowwise mean and covariance of the matrix Y.

Statistical significance of the spike-shape difference was evaluated with a

permutation test where the original value ∆S was compared with a distribution

of 1000 surrogate values calculated on random permutations of the spike labels

between the two stimuli in the pair. Specifically, for each re-arrangement of
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the labels, we obtained two surrogate populations of spikes and a surrogate

spike-shape distance ∆Si. The ranking of the original value (∆S) among the

population of surrogate values, gave the p-value for the null hypothesis that

the shape for the two spike populations was the same. We found that only 5

out of 208 responsive pairs (2.4%) exhibited a statistically significant difference

in spike-shape (p < 0.05). Therefore, we concluded that the sorting procedure

was done correctly and other potential differences between pairs of responses

could not be explained by poor spike sorting.

4.2 Quantification of spiking activity

In order to analyse how the neural spiking activity differed before and after

the stimulus presentation, we compared the spike counts in the time window

preceding and following the stimulus onset. Considering the stimulus onset as

time zero, we set the baseline window between -1000 ms and -300 ms and the

response window between 100 ms and 800 ms. The mean strength of spiking

activity (in Hz) was defined as mean number of spikes, across trials, fired by

one unit in the specific time window, normalised by the window length.

Figure 4.2 shows the strength of spiking activity distribution for the 81

responsive units. For each unit, the spontaneous firing rate was calculated as

mean strength of activity in the baseline window across all presented stimuli,

while the maximum response firing rate corresponds to the maximum strength of

activity in the response window across all presented stimuli. The mean baseline

firing rate was 3.1 Hz (SD: 4.6 Hz) and the mean value for the maximum

response firing rate was 11.6 Hz (SD: 9 Hz). These values are slightly higher

than the ones found for the dataset in Chapter 3 (Figure 3.14). This effect is

probably due to the more restrictive response criteria employed in this case to

identify the responsive units (see Section 2.2.1) and to the different experimental
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paradigm (in which we targeted the more strongly responding cells, see Section

2.2).

Figure 4.2 – Distribution of firing rates for the 81 responsive units. a) Spon-
taneous firing rates. b) Maximum response firing rates (in response to the most
effective stimulus).

In order to investigate whether these neurons encode a graded type of

representation or a more binary one, we looked at the distributions of firing

rates in response to different stimuli. For each responsive unit, we calculated

the baseline corrected strengths of response to each of the stimuli presented

in the session; these strengths were then normalised between 0 and 1 (with 1

corresponding to the strength of response to the most effective stimulus). The

distribution of normalised firing rates for all the responsive units is reported

in Figure 4.3, separated for responsive and non-responsive stimuli. From the

two histograms we can see that neurons show a zero strength in response

(corresponding to their spontaneous firing rate) to most of the non-responsive

stimuli, whereas they respond maximally and similarly to most of the responsive

stimuli. This result suggests a nearly binary coding for these neurons, which

will be further supported by the following analyses described in this section. A

binary coding would have strong implications for the capacity of the MTL to
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encode and retrieve memories (as discussed in Section 4.6).

Figure 4.3 – Histograms for the normalised strength of activity in all the
responsive units. Strength was computed for all the stimuli presented in each
session, and separated according to whether or not they were responsive. The
total areas of the two histograms were normalised to 1.

Next, for each of the 165 significant responses, we calculated the mean

strength of baseline activity as the mean number of spikes in the baseline

window. The mean strength of response was calculated both for individual

responses (mean number of spikes across trials in the response period for each

of the 165 individual responses) and multiple responses (mean number of spikes

across all trials of all responsive stimuli for each of the 37 pluri-responsive

neurons). Specifically, given a pluri-responsive neuron, all the trials from the

different responsive stimuli were put together. The mean strength for each

multiple response was then calculated as mean number of spikes in the response

window across all the collapsed trials.

Similarly, from the spike counts in the three cases (baseline, individual

responses, and multiple responses) we calculated the strength variability (as the

mean absolute deviation across trials) and the coefficient of variation (standard

deviation divided by mean across trials) of spiking activity.

The comparison results are reported in Figure 4.4, where the empirical
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Figure 4.4 – Empirical cumulative distribution function (CDF) for strength (a),
variability (b), and coefficient of variation (c) of the spiking activity. Vertical
dotted lines denote the median of each distribution. In each case, the quantities
were computed during baseline (red, 165 points) and response period (in blue for
the 165 individual responses, and in green for the 37 multiple responses). In all
three cases we observed significant differences between baseline and individual
responses, but no difference between individual and multiple responses.
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cumulative distribution functions (CDF) for the three cases are shown. We

observed a significant difference between the strength of spiking activity for

baseline and for individual responses (paired sign test, p < 10−36). A significant

difference was also found in the variability and coefficient of variation of

spiking activity, when comparing baseline and individual responses (paired

sign test, p < 10−12 for the variability and p < 10−34 for the coefficient of

variation). The difference between baseline and individual responses was indeed

expected, considering the criteria we used to identify the responses (based

on the comparison of baseline and response activities). When comparing the

distributions for individual and multiple responses we did not find significant

differences in any of the quantities considered (Kolmogorov Smirnov test,

p = 0.3 for the strength of spiking activity, p = 0.4 for the variability, and

p = 0.9 for the coefficient of variation), suggesting that the spiking activity

across different responses is not dissimilar from the one for individual responses.

In addition, the median value of the coefficient of variation for baseline activity

was very close to 1 (0.9± 0.3), which is consistent with a Poisson process [Goh

and Barabasi, 2008]. On the contrary, we found that the coefficient of variation

was smaller than 1 for both individual and multiple responses; indicating that,

despite the increase in the strength of response, the spike count variability of

the responses was smaller than their spike count average.

4.2.1 Pairwise response strength comparison

Subsequently, we investigated differences in strength of spiking activity of pluri-

responsive neurons responding to different stimuli. The spike counts in the

response period, for each of the 208 responsive pairs identified, were compared

using a surrogate test (similar to the one employed on the spike-shapes).

Specifically, given a responsive pair, we compared their difference in response

strength (mean value of the spike count in the response period, as defined in
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Section 4.2) to a distribution of 1000 surrogate values, created by randomly

permuting the trial labels for the two responses. From the ranking of the

original response strength difference among the population of surrogate values

we obtained a p-value for the null hypothesis that the two responses had the

same strength.

Figure 4.5 – a) A pluri-responsive unit in the posterior hippocampus, responding
to the pictures of a Boeing, the interior of a plane, and Leslie Nielsen (leading actor
in the movie “Airplane!”). Time zero marks the onset of picture presentations
which lasted for 1 sec. For each stimulus, the raster plot (blue lines) containing
the single spikes detected at each time (each row is associated to a trial, staring
from the top), the instantaneous firing rate (red curve) and the spike shapes
(green) in the response period (100 ms to 800 ms) are shown. The red frame
around the picture marks a significant response. The responsive stimuli were
strongly related to each other according to the unit association scores (ASR−R =
0.3, ASR−NR = −0.06, see Section 4.4). b) Distribution of response strength
differences of the surrogate populations (histograms) for the three responsive
pairs. Vertical dotted lines mark the original difference values.

Figure 4.5 shows an example of a pluri-responsive neuron significantly firing

to the presentation of three different pictures. In this example, the surrogate

test for each of the three responsive pairs gave no significant difference in the

response strength (panel b; stimuli 10-15, p = 0.61; stimuli 10-18, p = 0.34;
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stimuli 15-18, p = 0.66).

At the population level, only 24% of the pairs (50 out of 208) exhibited a

significant difference (p < 0.05) in the response strength. Figure 4.6 shows the

complete distribution of p-values for this test.

Figure 4.6 – Distribution of p-values for the surrogate test on response strength
for the 208 responsive pairs; only 24% of them exhibited a significantly different
response strength. Red dotted line marks significance threshold (p = 0.05).

4.2.2 Strength difference between responsive pairs

As an alternative way to look at the population results, we compared the

response strength differences between responsive pairs and between random re-

arrangements of the pairs. In particular, for each responsive pair we calculated

the normalised response strength difference as the strength difference of the

pair divided by the maximum strength value in the pair (this normalisation

corrected for the different levels of activity across neurons). The shuffled pairs

were obtained by randomly re-pairing the 122 significant responses coming

from pluri-responsive neurons. We created 1000 surrogate pair distributions

(each one consisting of 208 pairs), and found that the original distribution of
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strength differences was significantly smaller than the random pair distributions

(surrogate rank test on the medians, p < 10−3). Figure 4.7 shows that the

strength differences for the responsive pairs were significantly smaller than the

differences for a representative random pair distribution, selected as the closest

to the median value of surrogate distributions (rank-sum test, p < 10−33).

Figure 4.7 – Distribution of normalised response strength difference for the 208
responsive pairs (blue line) and for a representative population of random pairs
of significant responses (red line). The two distribution are statistically different
according to a rank-sum test (p < 10−33). Arrows mark the median value of
each distribution.

4.2.3 Decoding analysis of response strength

Next, using a decoder approach, we compared the response strength at the

single trial level. A naive Bayesian decoder with leave-one-out cross-validation

was run on each pluri-responsive unit to test whether it could discriminate

single trial differences in the response strength across stimuli. For a single

pluri-responsive unit, the trials from all different responsive stimuli were pulled

together. The spike count in the response period (Ci) for the single trials and

the corresponding label (li, telling which stimulus the trial belonged to) were

considered. For each trial i the Bayesian decoder was trained with the spike

counts and labels for all trials except i, and the label for the left-out trial was
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then predicted by the classifier. The decoding performance was estimated as

percentage of trials predicted correctly, and its statistical significance (for the

significance level p = 0.05) was assessed in comparison to the performances

obtained on a population of 1000 surrogates created by randomly shuffling

the trial labels. For each neuron tested, the level of chance for the decoding

performance was equal to 1/N, with N being the number of its responsive

stimuli.

Figure 4.8 – Decoding analysis results for the exemplary unit in Figure 4.5. a)
Confusion matrix for the decoder based on the single trial spike counts of the
three responsive stimuli. b) Distribution of the decoding performance for the
population of 1000 surrogates (histogram) and real decoding performance (red
dotted line). The decoding performance was 22.2%, not significantly different
from the chance level of performance (33.3%), p = 0.82.

For the exemplary unit considered (Figure 4.5), the decoding analysis results

are shown in Figure 4.8: a confusion matrix (panel a) illustrates the decoding

performance (22%), which was in this case not significantly different from

chance (panel b, p = 0.82, chance level of performance = 33.3%).

Considering all 37 pluri-responsive units, only 7 (19%) showed statistical

significance for this test (p < 0.05). The complete distribution of p-values is

reported in Figure 4.9.

These results, together with the ones reported in the previous sub-sections,

show that, in most cases, pluri-responsive neurons do not exhibit differences in
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response strength across different responsive stimuli; suggesting that, in general,

it is not possible to discriminate a certain responsive stimulus from the single

unit strength of activity.

Figure 4.9 – Distribution of p-values for the significance of decoding perform-
ance based on single trial response strength for the 37 pluri-responsive units. In
only 19% of units the decoding performance was above chance. Red dotted line
marks significance threshold (p = 0.05).

4.2.4 Response strength difference vs number of trials

The difference in response strength could, in principle, depend on the number

of trials considered (e.g. we may not find a significant difference when using,

for example, only 6 trials, but the difference could appear when considering a

larger number of trials). In order to rule out the possibility of having larger

differences if more or less trials were used, we assessed how the estimation of

strength difference between responses changed with the number of trials. For

a given number of trials (nt), the strength of the single response was defined

as the mean number of spikes fired in the response window (100 ms to 800

ms) across trials 1 to nt. For each pair of responses (208 pairs in total), we

estimated the normalised absolute strength difference as a function of number
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of trials, spanning from 1 to the maximum number of trials in the session (for

each pair the strength difference was normalised by the maximum strength

in the pair, as in Figure 4.7). We then computed the grand average across

all pairs and found a systematic decrease in the response strength difference

with stimulus repetition. Finally, the data points were fitted with a negative

exponential function to verify the existence of a plateau (i.e. if the estimation

remained stable after a certain number of trials nt).

Figure 4.10 – Strength difference estimation with the number of trials used.
Grand average of the normalised response strength difference across responsive
pairs ±SEM (blue). The exponential fit of the data (red line) shows that the
estimation reached an asymptotic value (0.16) when using at least 17 trials.

Figure 4.10 shows how the estimation reached an asymptotic value and

became stable when using more than about 16 trials (less than 1% change

for more trials), far fewer than the minimum number of trials we used (25).

Therefore, the lack of differences found in the response strength cannot be

attributed to a low number of trials.
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4.3 Spiking response latency

Next, we moved to examine the latency of spiking responses. For all individual

responses we computed a response onset - that is, the time following the stimulus

presentation when the spiking response started. The response onset was defined

as the time when the rate (IFR) crossed over a threshold for at least 75 ms

(short periods of less than 20 ms going below threshold were ignored). The IFR

was obtained from the convolution of the spike train with a Gaussian kernel

with σ = 10ms (truncated at 1% amplitude). The threshold was set to the

mean plus 4 standard deviations of the IFR in the baseline window (from -900

ms and -100 ms) computed across all stimuli (for neurons with low baseline

activity, a minimum of 5 Hz was imposed for the threshold). Similarly, the

response offset was defined as the first time, following the response onset, when

the IFR went below the set threshold for at least 100 ms.

4.3.1 Latency estimation with number of trials

In order to verify the stability of our estimation, we examined how the response

latency changed with the number of trials used for its computation. For each

of the 165 responses, we estimated the response onset (using the calculation

described above) considering a number of trials (nt) spanning from 6 to the

maximum number of trials in the session. The trials were considered in the

order they were presented (i.e. considering nt trials here meant to consider

trials from 1 to nt). The average onsets across all the responses as a function of

nt were then fitted with a negative exponential function. Note that the number

of estimated onsets for each nt varied because for certain responses a spiking

onset could not be effectively estimated, or the stimulus was presented less than

nt times in the session. Figure 4.11 shows that the average onset estimation

became stable when using more than about 12 trials (less than 1% change
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with more trials). In our case, since we considered a minimum of 25 trials, any

eventual lack of differences in latency cannot be due to a low number of trials.

Figure 4.11 – Grand average of the estimated latency across responses ±SEM
(black line) with the number of trials used for the calculation. The exponential
fit shows the existence of an asymptotic value in the estimation. The estimate
became stable when using at least 12 trials (less than 1% change).

Moreover, we looked at the variation of latency estimation when moving

from the first to the last trial. We calculated the response onsets on the whole

population (165 responses) considering a sliding window with fixed number of

trials (nt =6) moving from the top to the bottom of the trial list (i.e. if N is the

maximum number of trials for the given response, the window starts in trials 1

to 6 and slides to trials N-5 to N). The average latency as a function of the

last trial number in the window is reported in Figure 4.12. The estimate did

not change with the position of the window. Statistically, latency estimations

based on trials 1 to 6 were not different to the ones based on trials 20 to 25

(paired sign test, p = 0.93). Therefore, the estimation bias seen with 6 trials

(panel a) was due to the number of trials and not to the presentation order.
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Figure 4.12 – Latency estimation with a sliding window of 6 trials (for each
trail number, the estimation was done with the preceding 6 trials). No significant
difference was found comparing the estimations based on trials 1 to 6 with the
ones based on trials 20 to 25 (paired sign test, p = 0.93).

4.3.2 Pairwise latency comparison

Next, we looked at differences in spiking response latency for pluri-responsive

units responding to different stimuli. Similar to the analysis performed with

the strength difference, for each pair of significant responses from the same

unit, the difference in response latency (calculated as described above) was

compared to the population of 1000 surrogate values. Each surrogate value was

the latency difference estimation on a surrogate pair of responses (obtained by

randomly permuting the trials from the two original responses).

Figure 4.13 shows an exemplary unit recorded from the hippocampus re-

sponding to two stimuli. The spiking onsets and offsets for the significant re-

sponses are marked on top of the instantaneous firing rate (IFR) plot (magenta

dashed lines). There was no difference in the response latency between the two

responses according to the surrogate test performed (p = 0.3).

When looking at the population of 208 responsive pairs, we found that only

19% of them (40 out of 208) presented a significant difference in spiking latency.

Figure 4.14 shows the complete distribution of p-values.
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Figure 4.13 – A single unit recorded from left anterior hippocampus responding
to the pictures of John Terry (player and captain of Premier League club Chelsea)
and of the Chelsea club badge. Conventions are as in Figure 4.5. Magenta dotted
line on top of the IFR mark the response onsets and offsets. The responsive
stimuli were strongly related to each other according to the unit association scores
(ASR−R = 1.8, ASR−NR = 0.19, see Section 4.4). b) Distribution of latency
differences for the surrogate populations (histogram) and original difference value
(red dotted line). The original value was not significantly different from the
surrogate population (p = 0.3).

4.3.3 Latency difference on responsive pairs

Similar to what was observed for the response strength differences (Section

4.2.2), we found that the population of latency differences for the responsive

pairs was smaller than for random pairs of responses. Considering the 122

significant responses coming from pluri-responsive units, we randomly permuted

their pair labels to obtain surrogate pair populations (containing 208 pairs

each). The original distribution of latency differences was significantly smaller

than the random pair distributions (rank test on median with 1000 surrogates,

p < 10−3). Figure 4.15 shows the latency differences for the responsive pairs

compared to a representative random pair distribution, selected as the closest to
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Figure 4.14 – a) Distribution of p-values for the surrogate test on latencies for
the 208 responsive pairs; only 19% of them exhibited a significantly different
latency. Red dotted line marks significance threshold (p = 0.05)

the median of surrogate distributions. The original distribution was significantly

smaller than the shuffled one (rank-sum test, p < 10−9).

Figure 4.15 – Distribution of latency difference for the 208 responsive pairs
(blue line) and for a population of 208 random pairs of significant responses (red
line). The two distributions were statistically different according to a rank-sum
test (p < 10−9). Arrows mark the median value of each distribution.
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4.4 Association metric results

The relationship between responsive and non-responsive stimuli in pluri-responsive

units was analysed with the same approach used for the study in Chapter 3.

Essentially, for each pair of stimuli we defined an association score based on the

numbers of hits found with a web search engine (see Section 2.3.2 for details),

which we took as a measure of the association strength between them. The

values obtained were z-score normalised on a session-by-session basis.

4.4.1 Association scores

For each pluri-responsive unit, the normalised association scores between pairs

of stimuli were averaged within two groups, depending on whether both stimuli

led to significant responses (R–R), or one was a response and the other not

(R–NR) (see Section 2.3.4). Therefore, for each pluri-responsive unit, we

calculated a mean association score for pairs of responses (ASR−R, eq. 2.3) and

for other pairs (ASR−NR, eq. 2.4) .

Figure 4.16 – Mean (±SEM) of association scores across 35 pluri-responsive
single units for pairs of responses (ASR−R, blue) and for the other pictures pairs
(ASR−NR, red) based on the web-association metric. The population of ASR−R
values was significantly higher than the population of ASR−NR values according
to a right-sided Wilcoxon signed-rank test (p < 0.05).
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Considering all the 35 pluri-responsive units with at least two searchable

responsive stimuli, we found that the association scores for responses were

significantly higher than the scores for other pairs (right sided Wilcoxon signed-

rank test, p < 0.05, Figure 4.16). This result reproduces the finding from our

previous study (Section 3.3), that MTL pluri-responsive neurons fire more likely

to associated concepts.

For the exemplary units shown in Figures 4.5 and 4.13 the association scores

(reported in the figures’ captions) reflected the population trend, with ASR−R

being larger than ASR−NR in both examples. Hence, for these particular units,

the responsive stimuli were strongly associated to each other. On the other hand,

some pluri-responsive units did not follow the population trend and exhibited an

association score for responses smaller than for other pairs (ASR−R < ASR−NR).

In particular, when looking only at the units showing a significant decoding

performance (Section 4.2.1), we found that ASR−R < ASR−NR in 5 out of 7

cases. Moreover, in some cases, this opposite trend effect could be explained

by the fact that the responsive stimuli were related by personal associations

(only meaningful for the patient) that the web-score could not capture.

Table 4.1 contains a summary of the number of neurons tested against the

personal association metric.

Units

Recorded units 393

Units responding to at least 1 stimulus 76

Units responding to at least 2 stimuli 35

Units responding to related stimuli according to the

web-based association metric (ASR−R > ASR−NR)

23

Units responding to unrelated stimuli according to the

web-based association metric (ASR−R ≤ ASR−NR)

12

Units responding to a single stimulus 41

Units not significantly responding to any stimulus 317

Table 4.1 – Number of units tested against the web-based association metric
(21 recording sessions).
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4.4.2 Differences in neural responses and association

We further analysed the relationship between association strength and similarity

in the electrophysiological responses. First, we studied the correlation between

association scores and strength/latency differences for the responsive pairs.

Considering all the pairs of significant responses with a valid association score

(i.e. the pairs of stimuli that were searchable on the web, 139 pairs from

35 units), we calculated the Pearson correlation coefficient (r) between the

normalised differences in response strength and the corresponding association

scores. As in Figure 4.7, the strength difference was normalised by the highest

strength value in the pair. The same test was used to assess the correlation

between absolute differences in spiking latencies and association scores on pairs

of responses (139 pairs, as before).

Figure 4.17 shows these correlations. Panel a illustrates that the association

score had an inverse correlation with the normalised difference in the response

strength (Pearson correlation, r = -0.21, p < 0.05). A similar correlation

value was found between the association score and spike latency difference

(panel b, Pearson correlation, r = -0.28, p < 10−3). The negative value of

the correlation coefficients indicates that more associated stimuli exhibited

smaller differences in both electrophysiological quantities examined (strength

and latency), meaning that they triggered a more similar neural response

compared to less associated stimuli.

Furthermore, the set of responsive pairs was split in two halves (Low and

High association groups) based on the median value of the normalised association

scores between all responsive pairs. Consistently with the correlation results,

the High association group showed significantly smaller differences than the

Low association one, in both normalised strength and spike latency (rank-sum

test, p < 10−2 and p < 10−3 respectively).

For each group of responsive pairs, separated by association score, we
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Figure 4.17 – a) Normalised difference in response strength vs association
strength (association score for each pair of responsive stimuli) for 139 responsive
pairs plus linear regression line (red). Pearson correlation r = -0.21 (p < 0.05).
b) Difference in spike response latency vs association strength for 139 responsive
pairs. Pearson correlation r = -0.28 (p < 10−3).
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calculated the proportion of significant comparisons (pL and pH) obtained

from the surrogate tests (Figure 4.18). The two proportions pL and pH were

compared using a right-sided Z test to test the null hypothesis that the high

association group contained fewer differences. We found that the pairs of

responses highly associated exhibited a smaller percentage of differences in

response strength (pH=17%) compared to the ones with low scores (pL=32%,

Z test, p < 0.05). The percentage of difference in spike latency followed the

same trend ( pH=14% and pL=20%), but the comparison did not reach the

significance threshold (Z test, p = 0.17). Moreover, when considering differences

in both strength or spike latency, the percentage of pairs with at least one

significant difference went down from 33% overall to 25% in the high association

group (and reached 42% in the low association group).

Figure 4.18 – a) Percentage of responsive pairs exhibiting significant difference
in response strength (according to the surrogate test) separated by Low and
High association scores (groups split according to the median association values).
The number of different pairs is higher in the Low association group (Z test,
p < 0.05). b) Percentage of responsive pairs exhibiting significant difference in
spike latency separated by Low and High association scores. The difference in
percentage between the two groups did not reach statistical significance (Z test,
p = 0.17).
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4.5 Response characteristics with number of

responses

Finally, we analysed whether responsive units exhibited variations in the re-

sponse characteristics according to the number of significant responses.

Figure 4.19 – Response strength of individual responses (green dots), separated
by number of responsive stimuli in the unit. Pluri-responsive units exhibited
a larger response strength (Spearman correlation, ρ = 0.43, p < 10−6). Mean
values ± SEM across units in each group are shown in magenta, while boxplots
are shown in blue.

The whole set of 81 responsive units was grouped according to the number of

stimuli eliciting a response. The three units with more than five responses were

excluded from this computation as they led to groups with a single element,

leaving a total of 78 units classified in five groups (from 1 to 5 significant

responses). For each unit, we considered the response strength of individual

responses. The correlation between the response strength values and the number

of significant responses for the 78 units was assessed with a non-parametric

correlation analysis. We found a direct correlation between response strength

and number of responsive stimuli (Figure 4.19, Spearman correlation, ρ = 0.43,

p < 10−6). That is, units firing to more stimuli exhibited higher firing rates
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than units firing to fewer ones. The fact that pluri-responsive units responded

with higher firing-activity could suggest that they were either more strongly

wired into the network [Yassin et al., 2010, Barth and Poulet, 2012], or that

they had a higher intrinsic excitability (since more excitable neurons might

have a higher chance of being recruited to encode associations, e.g. [Epsztein

et al., 2011]).

Figure 4.20 – Spike response latencies for individual responses (green dots)
separated by number of responsive stimuli in the unit. Latencies were significantly
correlated with the number of responses in the unit (Spearman correlation,
ρ = −0.45, p < 10−7). Mean values ± SEM across units in each group are shown
in magenta, while boxplots are shown in blue.

In the same way, we tested the correlation between the number of significant

responses and spike latency for the 78 units. In this case, we found that the

two quantities had an inverse correlation (Figure 4.20, Spearman correlation,

ρ = −0.45, p < 10−7), meaning that pluri-responsive units tended to fire earlier

than units firing to just one stimulus. This result could be simply related to the

higher excitability of pluri-responsive neurons found before (i.e. more excitable

units might fire more quickly) or could be the effect of a process of neural

unitisation (i.e. when two stimuli become encoded in a unitised manner the

unit adopts the earlier latency between them, as discussed below). To rule
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out the possibility that the effect was due to the higher firing rate found for

pluri-responsive units, we run an extra control test. We chose 20 units from the

single and pluri-responsive groups with similar baseline strengths (estimated

in the window from -1,000 ms to -300 ms, centred around the average of the

median strength of each distribution) and still found that the latencies for the

pluri-responsive group were significantly earlier than the others (rank-sum test,

p < 10−2). Therefore, the earlier latencies found for pluri-responsive units are

not related to the neuron excitability, but could actually be the result of a

process of neural unitisation. In this context we refer to neural unitisation in

the sense that a neuron responds equally (in terms of firing rate and latency)

to different associated stimuli; as reported by Fujimichi et al. [2010], where

neurons in area 35 of the macaque perirhinal cortex have been observed to

respond similarly to pairs of stimuli during a pair-association task. When more

stimuli encoded by a single neuron become unitised, the neural responses to

each of the associated stimuli will have a similar electrophysiological signature

(i.e. showing similarity in terms of response strength and latency). Therefore,

a neuron encoding unitised responses will adopt a single latency, which we

hypothesise should be the earliest one among the latencies of the individual

stimuli.

4.6 Conclusions to Chapter 4

The first finding of this study was that when MTL single neurons responded

to more than one stimulus, the spiking activity across the different responses

was generally the same. In particular, we showed that: 1) the distribution of

normalised firing rates in response to different stimuli was nearly binary, and

the distribution of spiking activity in response to individual responsive stimuli

and across responsive stimuli did not differ in mean, variability, or coefficient
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of variation; 2) the firing rates of single units responding to different stimuli

was the same in most cases (76% of responsive pairs exhibited no difference in

the response strength); 3) this effect was not due to already small differences

between the individual response (as proved by the random pairing analysis); and

4) the response spiking activity at the single trial level was not distinguishable

across different responses (the stimuli could not be significantly decoded in

81% of pluri-responsive units). These results are in line with the all-or-none

character of spiking response for a unit firing to the same consciously perceived

stimulus [Quian Quiroga et al., 2008b], and extend this feature to the case of

different responsive stimuli. Therefore, the type of representation encoded by

these neurons is nearly binary, as opposed to the graded coding reported from

cortical areas (e.g. Rolls and Tovee [1995], Logothetis and Sheinberg [1996],

Tanaka [1996], Freiwald and Tsao [2010], Pasupathy and Connor [2002]). It

has been shown that a graded coding can potentially store more information

per pattern, but it reduces the number of patterns that can be stored in the

network [Rolls et al., 1997]. The existence of a relatively binary encoding in the

hippocampus represents an advantage in terms of robustness to noise, efficacy

for retrieval and effective capacity of this memory system [Rolls et al., 1997,

Rolls and Treves, 2011].

An analogous result was obtained analysing the response latencies of single

units firing to different stimuli. In fact, 81% of responsive pairs exhibited no

significant difference in latency and, again, the effect was not due to small

difference between the population of responses (random pairing analysis on

latencies). In addition, when considering differences in both response strength

or latency, we found that more than half of cases did not exhibit any difference

(67% of responsive pairs were not different in either strength or latency).

These findings suggest that, in general, the activity of a single unit is not

enough to distinguish between different concepts. Therefore, they enforce the
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interpretation [Quian Quiroga, 2012] that the information about the stimulus

identity is encoded in the neural assembly.

According to the MTL associative model proposed by Quian Quiroga [2012]

(discussed in Sections 1.4.1 and 3.10), the association between two items is

created by overlapping of the neural assemblies encoding the individual concepts.

Therefore, when a new association is formed some neurons from the individual

assemblies will be recruited to be part of the overlap encoding it. In this regard,

we have here replicated the main result from the study in Chapter 3 that MTL

neurons in the overlap of two assemblies (firing to more than on stimulus)

encode associations. In addition, we have now shown that the differences in

firing characteristic were smaller for strongly associated stimuli (Section 4.4.2).

Moreover, when looking only at the highly associated pairs of responses we

found that the proportion of total differences dropped from 33% to 25% (i.e.

more than three quarters of pairs showed no difference in either strength or

latency).

Previous evidence [Ison et al., 2015] demonstrated that it is possible for MTL

neurons to learn new associations very quickly (in just one trial). However, these

newly-encoded associations showed more differences in strength and response

latency compared to our dataset: 71% differences in strength of spiking activity

; and 38% of new responses with significantly later response onset (8 out of 21

units), assessed with rank-sum test on Poisson latencies.

A possible explanation to the discrepancies between newly-formed and long-

term associations is in the process of association unitisation. The idea of neural

unitisation presented here should not be confused with the concept of unitisation

described in psychology literature, which defines unitisation as the encoding

of previously separate items as a single unit [Graf and Schacter, 1989]. In our

work, we refer to unitisation as whether different stimuli can be discriminated

at the single neuron level, by the strength and latency of the neural response,
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but without implying whether such stimuli can be discriminated or not at the

behavioural level. At the single neuron level, when two items are encoded in

a unitised manner, the neuron responds equally to both (as notably reported

by Fujimichi et al. [2010] in area 35 of monkey perirhinal cortex). Besides, we

know that only a small fraction of newly-encoded associations consolidates in

a long-term representation in the MTL. In fact, as already noted in Section

3.10, the proportion of neurons that changed their selectivity to encode the new

associations (about 40%, as reported by Ison et al. [2015]) was substantially

larger than the maximum proportion of long-term association found in our

previous study (4%, Section 3.6). Therefore, we expect that once associations

are well consolidated in time, the different elements will become unitised and

their neural responses will become more similar, which is in agreement with our

results (fewer response differences in long-term associations). Unitisation of the

representations at the single neuron level increases the overall capacity of the

MTL and the robustness of the information encoded. Moreover, the existence

of a unitisation process does not reduce the ability of MTL to distinguish the

individual items, since, as we noted before, single concepts seem to be encoded

in neural assemblies rather than at the single neuron level.

Finally, we showed a significant correlation between spiking activity and

number of responsive stimuli, and an inverse correlation between response

latency and number of responsive stimuli. The observed electrophysiological

characteristics of pluri-responsive neurons (higher responsive firing rates and

earlier latencies) can be explained in the framework of partially overlapping as-

semblies encoding associations in the MTL [Quian Quiroga, 2012]. In particular,

the first result could reflect the fact that the more excitable units in an assembly

are more easily recruited to be part of the overlap and encode new associations

(in agreement with findings from rodent’s place cells [Epsztein et al., 2011]),

and/or that the stronger connectivity of the network (following the recruitment
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in the overlap) gives them more excitatory drive [Barth and Poulet, 2012].

In addition, the earlier latencies of pluri-responsive units compared to single

responsive ones, are consistent with the possibility of a unitisation process of

MTL representations. In fact, once more responsive concepts become unitised

in a single neuron, the unit will start responding equally to them and will adopt

a single latency for the unitised representation. This latency has to be the

earliest across the latencies of individual encoded concepts in order to allow the

representations of individual concepts to be integrated in the respective neural

assemblies (i.e. if the representation of an individual concept was delayed in a

particular neuron, that neuron could not participate in the activation of the

assembly encoding the concept).



Chapter 5

Conclusions and future

directions

The main objective of this thesis was to deepen our understanding of the

role of human MTL neurons in the encoding of associations. Specifically, we

conducted a systematic study to determine whether the activation of single

neurons in response to different stimuli was just coincidental, or whether there

was a significant tendency for MTL neurons to respond to associated items.

Subsequently, we analysed the differences between spiking responses elicited by

different stimuli in a single neuron, and how these differences related to the

degree of association between stimuli. We proposed and employed a method

to measure the degree of association between concepts based on the results of

web searches. This approach (described in Chapter 2) was proved to be a good

approximation of the patients’ evaluations of associations and allowed us to

extend our analysis to recording sessions for which we did not have a patient’s

report.

130
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5.1 MTL neurons encode well-established as-

sociations

The main finding from the study described in Chapter 3 was that pluri-

responsive neurons in the MTL tend to respond preferentially to associated

items. This tendency was shown, at first, using the patient’s evaluation of

associations (comparing the ‘personal’ association scores for stimuli eliciting

and not eliciting response in a single neuron, Section 3.2). This finding was

further supported by several analyses based on our web-based association metric

(described in Sections 3.3, 3.6, and 3.7) and replicated in our second study

(Section 4.4.1). Moreover, we ruled out alternative explanations for the results

observed. In particular, we controlled for the effect of relative familiarity of the

stimuli, visual similarity of the images, semantic category coding, and cue-recall

responses (detailed in Sections 3.3.1, 3.3.2, 3.3.3, and 3.3.4, respectively). In

addition, in agreement with the MTL hierarchical structure, we showed a

tendency for the level of association between responsive stimuli to vary across

MTL regions (being be the highest in the hippocampus and the lowest in

the parahippocampal cortex). Therefore, we concluded that MTL neurons

encode well-established naturally-formed associations (the associations were

pre-existent and not acquired through an associative learning task, since no

such task was involved) and that the coding is not homogeneous among the

different MTL areas.

In the ongoing debate about the role of the MTL in the consolidation of

episodic memory (detailed in Section 1.3.5), our result supports the idea that the

involvement of MTL in encoding episodic memories goes beyond a temporary

coding, in line with the prediction of the multiple trace model [Moscovitch

et al., 2005] (further details about the models and evidences in favour of the

different views have been discussed in section 3.10). It is important to notice
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that our findings do not rule out the possibility that the same associations

might be still encoded in cortex, but rather provide new evidence about the

MTL coding capacity, the stability of its representations, and its long-term

involvement in memory processing.

5.2 Overlapping assemblies encode associations

As discussed in Section 1.4.1, it is well established that some neurons in the MTL

respond in a very selective and invariant way to specific concepts [Quian Quiroga

et al., 2005]. These so-called concept cells are thought to encode the ‘meaning’

of the presented stimuli rather than the perceptual details [Quian Quiroga

et al., 2008a] and have been proposed to constitute the basis of declarative

memory functions in the MTL [Quian Quiroga, 2012]. According to this view

[Quian Quiroga, 2012], each concept is encoded in a cell assembly that, when

activated, brings the specific concept into awareness. Concept cells represent

single nodes of these neural assemblies. In addition, the association between

concepts is thought to be encoded in the partial overlap of these cell networks.

Specifically, two assemblies encoding related concepts will have some nodes

(neurons) in common that encode both items. In line with this view, new

associations can be created very quickly in the MTL, by changing the tuning

of few neurons in the assemblies to encode the new information (in line with

recent findings by Ison et al. [2015]).

Our results are in agreement with this framework of interpretation of

the MTL processing. In fact, we have shown that when MTL neurons fire

to more than one stimulus, these stimuli tend to be associated, suggesting

that these pluri-responsive neurons belong to the overlap of two or more

assemblies. Moreover, in agreement with findings from the rodent hippocampus

[Redish et al., 2001], we found a lack of topographical organisation in the
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MTL (close-by neurons do not tend to fire to associated concepts, Section

3.5). A non-topographical organisation of representations is indeed ideal for

the rapid integration of new memories, since it allows the quick creation of new

associations between arbitrary concepts [Quian Quiroga, 2012].

From the study presented in Chapter 4 we found that in most cases (67%),

when a neuron responds significantly to more than one stimulus, its neural

activity does not differ either in strength or latency in response to the different

stimuli. In other words, this means that MTL neurons exhibit an all-or-none re-

sponse (in line with evidence for responses to the same stimulus [Quian Quiroga

et al., 2008b]) and that, in general, the spiking activity of a single unit is

not enough to distinguish between different responsive concepts. This finding

supports the idea [Quian Quiroga, 2012] that information about the stimulus

identity is encoded in the neural assembly rather than at single neuron level.

In addition, when analysing the activity of neurons firing to one or multiple

stimuli, we found a significant correlation between strength spiking activity and

number of responsive stimuli (Section 4.5), that is: neurons in the overlap of

assemblies (pluri-responsive) exhibit a higher responsive firing rate. This effect

could mean that the more excitable units in an assembly are more likely to be

recruited to encode new associations, and/or that the neurons that are part

of the overlap, being more strongly connected, receive more excitatory drive

[Barth and Poulet, 2012].

5.3 Unitisation of the neural responses

In Section 3.6, we have shown that the probability of getting responses to pairs

of items increases with the strength of association between stimuli. Specifically,

going from 1% for non-associated items to 4% for highly associated ones. The

highest percentage value still seems to be quite small when compared to the pro-
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portion of neurons that changed their selectivity to encode the new associations

reported by Ison et al. [2015] (about 40%). This discrepancy suggests that only

a small fraction of the newly-encoded associations consolidates into long-lasting

representations in the MTL. Moreover, the newly-encoded associations (in

Ison et al. [2015]) exhibited larger proportions of differences in both strength

and response latency compared to the ones we found for the long-term ones

(Sections 4.2.1, 4.2.3 and 4.3.2).

The existence of a process of neural unitisation of the responses could

explain this difference between newly-formed and long-term associations. As

detailed in Section 4.6, the concept of neural unitisation postulated here should

not be confused with the one described in psychology literature [Graf and

Schacter, 1989]. In this context, neural unitisation indicates that the responses

to each of the associated stimulus have similar electrophysiological signatures.

In other words, that a neuron responds equally (in terms of firing rate and

latency) to different associated stimuli. A neuron responding to two items could

initially exhibit distinct neural responses to each of them (i.e. different strength

of response or latency), and then start to respond equally to the two items

once they become unitised. Responses become unitised with consolidation in

the MTL, in line with our finding that different elements of well consolidated

associations trigger a more similar neural response than those of newly-encoded

associations. Consistent with this process, we found that pluri-responsive

neurons tend to fire earlier than neurons responding to just one stimulus

(Section 4.5). This suggests that once representations become unitised in a

single neuron, the unit will adopt a single latency which is the earliest among

the latencies of the single responsive stimuli.

The existence of a unitisation process is in agreement with the small per-

centage of different neural responses found in Chapter 4. Unitisation of the

representations at the single neuron level makes the encoded information more
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robust to noise. In this regard, it increases the overall capacity of the MTL

and does not lessen its ability to separate individual items (since concepts are

encoded at the assembly level).

5.4 Future directions

The work presented in this thesis has addressed the questions asked at the

beginning of the manuscript, helping to uncover unknown features of associ-

ation coding in the MTL. However, many other open issues about the MTL

functionality are left to investigate. Some of the possible future directions to

explore are suggested here.

Firstly, it would be interesting to investigate the activity of several neurons

firing to the same concepts (in other words, neurons belonging to the same neural

assembly encoding that specific concept). Comparing their firing characteristics

could help understand how information is transmitted through the assembly.

For instance, we could ask if there is a temporary alignment of the firing

activity in these neurons or whether single trial differences seen for one unit

are replicated in the rest of the assembly.

Another possible future development of this line of research has to do

with the plasticity of hippocampal representations. As we have seen before,

MTL neurons can form new associations very rapidly and some associations

are stably encoded in time (long-term associations). We might then ask

what happens in between the two time-scales, how newly-encoded associations

become strengthened, weakened or altered with the passing of time, and if we

can interfere in the process and manipulate this outcome. Modern recording

systems already allow the continuous recording of patients’ intracranial activity

up to several days. However, the current challenge is to be able to track the

activity of single neurons over many hours of recording. In order to do so, we
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will need to develop adaptive sorting algorithms able to take into account the

slow happening changes in the spike-shape of single units (e.g. due to electrode

drifting or to changes in the intrinsic cell characteristics), the sudden appearance

or disappearance of active units, variation of noise level, and the contamination

artefacts. Moreover, these algorithms will have to be computationally and time

efficient in dealing with the large size of the datasets recorded (in the order of

hundreds of gigabytes).

Once we are able to track the activity of single units for a longer time span

we will also be able to explore whether, and in which manner, concept cells

are involved in the different phases of memory processing. For example, we

could investigate what happens in the single neurons during the conscious recall

of a memory or whether there are endogenous reactivations of those neurons

during consolidation (e.g. single neurons activated during the task might fire

spontaneously during off-task periods), and how these events impact on memory

performance. More generally, longer recordings of single neuron activity will

unlock many new possibilities in the design of experimental paradigms that go

beyond the execution of a single task.
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