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ABSTRACT
We present calculations of the auroral radio powers expected from exoplanets with magneto-
spheres driven by an Earth-like magnetospheric interaction with the solar wind. Specifically,
we compute the twin cell-vortical ionospheric flows, currents, and resulting radio powers re-
sulting from a Dungey cycle process driven by dayside and nightside magnetic reconnection,
as a function of planetary orbital distance and magnetic field strength. We include saturation of
the magnetospheric convection, as observed at the terrestrial magnetosphere, and we present
power-law approximations for the convection potentials, radio powers and spectral flux den-
sities. We specifically consider a solar-age system and a young (1 Gyr) system. We show
that the radio power increases with magnetic field strength for magnetospheres with saturated
convection potential, and broadly decreases with increasing orbital distance. We show that the
magnetospheric convection at hot Jupiters will be saturated, and thus unable to dissipate the
full available incident Poynting flux, such that the magnetic Radiometric Bode’s Law (RBL)
presents a substantial overestimation of the radio powers for hot Jupiters. Our radio powers
for hot Jupiters are ∼5–1300 TW for hot Jupiters with field strengths of 0.1–10 BJ orbiting
a Sun-like star, while we find that competing effects yield essentially identical powers for
hot Jupiters orbiting a young Sun-like star. However, in particular, for planets with weaker
magnetic fields, our powers are higher at larger orbital distances than given by the RBL, and
there are many configurations of planet that are expected to be detectable using SKA.

Key words: planets and satellites: aurorae – planets and satellites: detection – planets and
satellites: magnetic fields – planetary systems.

1 IN T RO D U C T I O N

The radio waveband offers an extremely favourable contrast ratio
for the direct detection of exoplanets, with e.g. Jupiter’s non-thermal
bursts as bright as the typical solar low-frequency emissions (Zarka
1998, 2007). Interest in the radio emissions of exoplanets has fur-
ther grown recently owing to commencement of observations of
the Low-Frequency Array (LOFAR), which has the potential to de-
tect spectral flux densities of order �1 mJy in 1 h integration at
∼10 MHz (Farrell et al. 2004), and the imminent deployment of the
Square Kilometre Array (SKA), which is expected to have a sensi-
tivity of ∼10 μJy in Phase 1 and ∼1 μJy in Phase 2 (Zarka, Lazio
& Hallinan 2015). Potentially detectable exoplanetary radio emis-
sions are envisaged to be excited by the electron cyclotron maser
instability (CMI), the process responsible for generating coherent,
powerful auroral radio emissions at the Earth and other planets in
the Solar system (Wu & Lee 1979; Treumann 2006). Attention has
primarily focused on so-called hot Jupiters orbiting close to their
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parent star (e.g. Farrell, Desch & Zarka 1999; Farrell et al. 2004;
Zarka et al. 2001, 2007; Lazio et al. 2004; Grießmeier et al. 2004,
2005; Grießmeier, Zarka & Spreeuw 2007b; Stevens 2005; Jardine
& Collier Cameron 2008; Smith et al. 2009; Fares et al. 2010;
Reiners & Christensen 2010; Hess & Zarka 2011; Vidotto, Jardine
& Helling 2011; Saur et al. 2013; Vidotto et al. 2015; See et al. 2015),
although Nichols (2011, 2012) showed that further-orbiting, fast-
rotating, massive planets orbiting XUV-bright stars are also capable
of generating detectable radio emissions, and related emissions have
possibly already been detected from fast-rotating ultracool dwarfs
(Hallinan et al. 2008; Berger et al. 2010; McLean, Berger & Reiners
2012; Nichols et al. 2012; Route & Wolszczan 2012).

In the case of hot Jupiters, the auroral radio emission is assumed
to be generated by a star–planet interaction, mediated either by
Alfvén waves such as for the sub-Alfvénic Io–Jupiter interaction,
or via magnetic reconnection as at the Earth. In the former case,
magnetic field lines convecting past the satellite are locally slowed
owing to the generation of electric currents in the conductive man-
tle, forming a steady-state Alfvén wave, or Alfvén wing, structure
propagating away from the satellite. Saur et al. (2013) considered
the Poynting flux radiated away from such Alfvén wing structures,
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Figure 1. Schematic of the open magnetosphere produced by the Dungey
cycle at the Earth. Closed field lines are shown in red, while open field lines
are shown in blue. Adapted from Milan (2009).

based on observations of the Galilean satellites, and computed ra-
diated powers of ∼1019 W in some cases. In the latter case, Jardine
& Collier Cameron (2008) considered the energy dissipated fol-
lowing reconnection of the planetary and interplanetary field lines,
and showed that radio power emitted by such a process would
saturate as the orbital distance decreases, owing to the competing
effects of increasing stellar wind number density and decreasing
magnetospheric size. However, to date no study has computed the
ionospheric plasma flows and currents, and thus the radio power,
determined from the resulting ionospheric convection, a process
which drives the majority of Earth’s auroras. As shown in Fig. 1,
open magnetic flux is created at the dayside magnetopause by recon-
nection between the planetary and interplanetary magnetic fields,
and is then dragged antisunward over the poles by the flow of the
solar wind to form a long (several thousand Earth radii) magnetotail.
Further, reconnection in the tail closes open flux in episodic, ener-
getic events, following which newly closed flux convects back to
the dayside at lower latitudes, completing the process known as the
Dungey cycle (Dungey 1961). This convection cycle drives a twin-
cell vortical flow pattern in the ionosphere, along with an associated
magnetospheric current system. The component of the current sys-
tem that flows upward along the magnetic field (associated with
downward-precipitating electrons) is responsible for the generation
of auroral emissions and the CMI. In estimating the radio power
generated by these processes at exoplanets, the typical procedure
is to employ an empirical scaling relation based on observations
of bodies in the Solar system, known as the ‘Radiometric Bode’s
Law, (RBL), which relates incident Poynting or kinetic energy flux
to output radio power (e.g. Farrell et al. 1999; Zarka 2007). Ex-
trapolation of the RBL to the estimated input energy fluxes at hot
Jupiters (orbiting at typically ∼10 stellar radii from of their par-
ent stars) has led to the expectation that the next-generation radio
telescopes may be able to detect such objects (Farrell et al. 1999,
2004; Grießmeier et al. 2007b; Zarka 2007). However, its empirical
nature limits how much can be inferred from the RBL. For exam-
ple, the radio powers, for each planet, are assumed to be associated
with the solar wind, although for the outer planets the dominant
source of power for the auroral current system is the planets’ ro-
tation. The radio powers are assumed to scale linearly with the

power incident on the dayside of the magnetosphere, although ex-
perience at solar wind-driven magnetospheres in the Solar system
(Earth being the most studied, of course) indicates that the Dungey
cycle convection-induced cross-polar cap (PC) potential saturates
for high values of the motional electric field of the solar wind (e.g.
Hill, Dessler & Wolf 1976; Siscoe et al. 2002; Hairston, Drake
& Skoug 2005; Kivelson & Ridley 2008), limiting the power dis-
sipated in the coupled magnetosphere-ionosphere system. In this
paper, we thus present calculations of the radio power generated by
an Earth-type Dungey cycle at hot Jupiters. We compute the den-
sities of the magnetosphere–ionosphere coupling currents and the
associated precipitating electron energy flux, taking into account
the stellar wind conditions and ionospheric conductance at differ-
ent orbital distances, and PC potential saturation. We show that the
radio powers do not increase as quickly with decreasing distance
as for the RBL, which leads to lower power values in the region
associated with hot Jupiters, but higher powers further out. We show
that the young systems are likely to generate higher powers than
those of a solar age, such that although detection with LOFAR may
prove challenging for systems beyond ∼15 pc, many configurations
of planets should be detectable with SKA.

2 TH E O R E T I C A L BAC K G RO U N D

2.1 Convection model and field-aligned current

In this section, we present the theoretical background to the prob-
lem, and outline the model we employ to estimate the radio pow-
ers. In planetary magnetospheres, CMI-induced radio emissions are
beamed from the magnetic field lines at high latitudes, above the
auroral zone. The auroras and CMI are both excited by upward
magnetic field-aligned currents (i.e. electric currents flowing along
a planet’s magnetic field lines, away from the planet), which are
in general driven by field-aligned voltages that accelerate magne-
tospheric electrons down the field lines. Those electrons that are
not mirrored then precipitate to the atmosphere, and their kinetic
energy is dissipated as heat and auroral emissions. The low-β, unsta-
ble plasma population between the ionosphere and the field-aligned
voltage, is then favourable for the generation of the CMI, which
converts precipitating electron kinetic energy flux to radio power at
the rate of ∼1 per cent (Wu & Lee 1979; Treumann 2006; Zarka
1998; Lamy et al. 2010).

In an ideal collisionless magnetized plasma, electric currents
cannot flow perpendicular to the magnetic field, as described by
Alfvén’s frozen-in theorem. In a collisional ionosphere, however,
such perpendicular currents can occur, the ‘Pedersen’ current flow-
ing parallel to any imposed electric field and the ‘Hall’ current
flowing perpendicular to the electric field (i.e. along plasma flow
streamlines). Magnetic field-aligned currents are then a result of
current continuity, occuring if there exits a divergence in these field-
perpendicular currents. Such a divergence is the result of the nature
of the ionospheric electric field, which is generated by the driving
of plasma flows in the ionosphere by some external process. In the
case of a magnetosphere driven by a Dungey-type interaction, the
flow pattern is shown schematically in Fig. 2. The antisunward flow
of the solar wind drags newly opened flux across the open–closed
field line boundary (OCFB) at the dayside through a narrow region
termed the dayside merging gap. Open flux then flows across the
PC as it sinks through the tail lobe towards the equatorial plane.
Reconnection in the tail forms a second, night side, merging gap,
whereupon newly closed flux then forms a return flow (RF) back
to the dayside at lower latitudes forming the twin-cell convection
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Figure 2. Schematic of the Dungey cycle flow mapped into the ionosphere,
where the arrowed solid lines are the plasma streamlines, the short arrows
give the direction of the electric field, and the dashed line in the OCFB. The
direction of the field-aligned currents is indicated by the circular symbols,
such that the circles with a dot represents upward current, while the circles
with a cross indicate downward current. Adapted from Cowley (2000).

pattern in Fig. 2. In the presence of the planet’s magnetic field, these
ionospheric plasma flows generate, through E = −V × B, roughly
horizontal electric fields in the Pedersen layer of the ionosphere per-
pendicular to the flow streamlines and the magnetic field (which is
near-radial in polar regions). As discussed above, the divergence of
these near-horizontal electric fields requires the presence of field-
aligned currents, which form concentric rings known as the Region
1 (R1) current, which flows at the OCFB at co-latitude θR1, and the
Region 2 (R2) current, which flows at the equatorward edge of the
RF region at co-latitude θR2 as shown in Fig. 2. These field-aligned
currents act to communicate the torque between the magnetosphere
and the ionosphere, and the upward R1 and R2 currents together
form the auroral oval and the region of CMI-generation. For a given
planet of radius Rp, the magnitude of the field-aligned current den-
sity (in A m−2) is dependent on the velocity of the ionospheric
plasma flow, characterized by the cross-PC convection potential
�conv induced by reconnection at the dayside magnetopause and
in the magnetotail, and the ionospheric Pedersen conductance �P,
such that

j‖i ∝ �P�conv

R2
p

. (1)

The details of this relation and its implementation in the present
model are deferred to Appendix A, and we now discuss the compu-
tation of the convection potential �conv.

2.2 Cross-PC potential

Dungey cycle convection is driven by reconnection at the nose of
the magnetosphere and the tail, and is characterized by a rate of
flux transport or, equivalently, a potential induced across the PC as
discussed above. The available magnetospheric convection potential

�m, is given by the product of the motional electric field of the stellar
wind in the rest frame of the planet Esw and the width of the solar
wind channel that reconnects, which is in practice some fraction χ

of the magnetopause standoff distance Rmp, where observationally
χ � 0.5 (Milan et al. 2004), which thus also employ here. Hence,
we have

�m = χRmpEsw, (2)

where the magnetopause standoff distance Rmp is given by

(
Rmp

Rp

)
=

⎛
⎝ k2

mB2
p

2μ0(kswpdyn sw + B2
sw

2μ0
+ psw th)

⎞
⎠

1
6

, (3)

where Bp is the planetary surface equatorial magnetic field strength,
km = 2.44 represents the factor by which the magnetospheric field
at the magnetopause is enhanced by magnetopause currents (e.g.
Mead & Beard 1964; Alexeev 2005), pdyn sw is the solar wind
dynamic pressure, ksw = 0.88 for a monatomic stellar wind flow
(Spreiter & Alksne 1970), Bsw is the interplanetary magnetic field
(IMF) strength, and psw th is the (typically negligible) solar wind
thermal pressure. While we have employed standard values for
these constants, it is worth noting that the exponent of 1/6 renders
the results insensitive to the exact values. The stellar wind electric
field is dependent on the stellar parameters as discussed below in
Section 2.4.

This magnetospheric convection potential given by equation (2)
is impressed on to the ionosphere via (to a first approximation)
equipotential field lines to become the convection potential �conv.
The simplest procedure, therefore, would be to take a simple linear
dependence of �conv = �m, which would then imply a magneto-
sphere whose convection potential increases linearly with the stellar
wind electric field. This is similar to the assumptions inherent in
the RBL. However, observations of the Earth’s magnetosphere (and
MHD modelling results) indicate that for high values of Esw, the
above values of �m systematically overestimate the actual convec-
tion potentials in the PC (see e.g. Hairston et al. 2005, and refer-
ences therein). This phenomenon, which we now briefly review, is
known as PC potential saturation, discussed initially by Hill et al.
(1976) and developed in a form that expresses the saturation in terms
of solar wind parameters by Siscoe et al. (2002) and Kivelson &
Ridley (2008), the latter two studies approaching the problem from
somewhat different physical perspectives. Initial studies argued that
saturation results when the magnetic field associated with the R1
currents (whose sense on the dayside is opposite to the planet’s)
becomes large enough to reduce the magnetic field at the dayside
magnetopause by some significant fraction, thus, inhibiting recon-
nection (Siscoe et al. 2002). On the other hand, Kivelson & Ridley
(2008) argued that the saturation results since Alfvénic perturba-
tions on the open field lines carry signals of the presence of a
conducting obstacle (in this case the Pedersen conducting layer of
the ionosphere), which are partially reflected from the ionosphere
when the solar wind Alfvén conductance �A is less than the iono-
spheric Pedersen conductance �P. While both physical processes
envisaged are distinctly different, the resulting saturation of the
convection potential with respect to the solar wind motional elec-
tric field is very similar, although for brevity we show results using
the model of Kivelson & Ridley (2008) (hereafter KR), which we
now discuss.

The KR model appeals to the fact that the field-aligned component
of the magnetosphere–ionosphere coupling currents, which transmit
stress between the open field lines and the ionosphere as part of the
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Figure 3. Plot illustrating the saturation of the terrestrial PC potential φconv

in kV with solar wind motional electric field Esw in mV m−1. The dashed
line shows the convection potential values if the IMF magnetic pressure
is neglected, the solid line shows the values if this pressure term is in-
cluded, and the dotted line shows the available magnetospheric convection
potential φm.

Dungey cycle, is carried by shear mode Alfvén waves. The Alfvén
conductance is

�A = 1

μ0vA
, (4)

where vA is the Alfvén speed given by

vA = B

(μ0ρ)1/2
. (5)

Where the current flows into the ionosphere, the signals are partially
reflected owing to the change in impedance between the open field
lines and the ionosphere, analogous to the situation for a transmis-
sion line for which the impedance of the line does not match that of
the load. The potential transmitted to the ionosphere is

�conv = 2γ�m�A

�P + �A
, (6)

where the factor γ = (0.1π/χ ) accounts for the specification of
0.1πRmp for the width of the interaction channel by Kivelson &
Ridley (2008). Saturation occurs when �P � �A, such that the
convection potential tends towards

�S = 2γ�m�A

�P
. (7)

The saturation effect is illustrated in Fig. 3, in which we plot �conv

and �m versus Esw using terrestrial parameters Bp = 31 000 nT,
vsw = 400 km s−1, ρsw = 20 × 10−20 kg m−3 and �P = 6 mho. A
profile in which the IMF magnetic pressure is not included in the
magnetopause pressure balance (equivalent to the case in fig. 2 of
Kivelson & Ridley (2008)) is shown by the dashed line and the
case including this pressure term is shown by the solid line. It is
evident that, while �m shown by the black dotted line increases
linearly with Esw, high values of the solar wind motional electric
field (which, assuming constant solar wind velocity, is equivalent
to low �A) results in saturation of �conv at value of �s � 230 kV
if IMF magnetic pressure is not included. With the inclusion of this
term, the profile turns over as the magnetopause stand-off distance
decreases with increasing IMF strength, and the available convec-
tion potential �m no longer increases linearly. As shown below, the
IMF pressure values are not negligible in the hot Jupiter regime,
such that we include this term in calculating Rmp.

2.3 Field-aligned acceleration and energy flux

The field-aligned currents computed, as above, will in most cases
be larger than that which can be carried by unaccelerated magneto-
spheric electrons alone, and must then be driven by a field-aligned
voltage. Specifically, the maximum field-aligned current density
that can be carried by an unaccelerated isotropic Maxwellian pop-
ulation is

j‖i0 = en

(
Wth

2πme

)1/2

, (8)

and the corresponding unaccelerated kinetic energy flux is

Ef 0 = 2enWth

(
Wth

2πme

)1/2

, (9)

where e, me, n, and Wth are the charge, mass, number density,
and thermal energy of the electron source population, respectively,
the latter being equal to equal to kBT, where kB is Boltzmann’s
constant, and T is the temperature. We discuss values of these
parameters below, but at planets in the Solar system, the high-
latitude magnetospheric electron source population parameters are
such that this limiting current is generally much smaller than the
field-aligned currents j‖i that are required by the ionospheric flows,
such that field-aligned voltages must develop to drive the current.
In order to compute the field-aligned voltage, in common with pre-
vious works on powerful exoplanetary and ultracool dwarf radio
emissions (Nichols 2011, 2012; Nichols et al. 2012), we employ
Cowley’s (2006) relativistic current-voltage relation given by

(
j‖i
j‖i◦

)
= 1 +

(
e�‖
Wth

)
+

(
e�‖
Wth

)2

2
[(

mec2

Wth

)
+ 1

] , (10)

where c is the speed of light and �‖ is the minimum voltage required
to drive the current j‖i at the ionosphere. This formulation assumes
that the field-aligned voltage is compact and located high enough
up the field line, such that the field strength is much less than that
in the ionosphere. For a dipole field, the magnitude of which drops
off with the cube of the distance, this assumption is valid beyond a
few planetary radii. The resulting precipitating electron energy flux
is

(
Ef

Ef 0

)
= 1 +

(
e�‖
Wth

)
+ 1

2

(
e�‖
Wth

)2

+
(

e�‖
Wth

)3

2
[
2

(
mec2

Wth

)
+ 3

] ,

(11)

from which the precipitating power for each current, Pe R1 and Pe R2

are obtained by integration over the region of upward current. In the
model, the currents are opposite in the dawn and dusk hemispheres,
such that

Pe R1 = πR2
P �θj‖i sin θR1

∫ π

0
Ef R1 dϕ, (12)

and

Pe R2 = πR2
P �θj‖i sin θR2

∫ 2π

π

Ef R2 dϕ, (13)

and the total precipitating power is then given by

Pe = Pe R1 + Pe R2. (14)

Assuming that we can observe the beam from only one hemisphere
at once, and that the electron CMI has a generation efficiency of

MNRAS 461, 2353–2366 (2016)

 at L
eicester U

niversity L
ibrary on O

ctober 19, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


Exoplanet radio emissions 2357

∼1 per cent, as discussed above, the total radio power is then given
by

Pr = Pe

100
. (15)

And the spectral flux density is finally obtained using

Fr = Pr

1.6 s2�ν
, (16)

where �ν is the emission bandwidth, s is the distance to the system
from Earth, and the emission is assumed to be beamed into 1.6 sr
in conformity with Jupiter’s DAM and HOM emissions (Zarka,
Cecconi & Kurth 2004). The radio emission is generated at the local
electron cyclotron frequency, such that the bandwidth is determined
by the difference between the field strengths at the ionosphere and
the field-aligned voltage, i.e. large as discussed above. We thus
assume that the bandwidth �ν is given by the electron cyclotron
frequency in the polar ionosphere, i.e.

�ν = eBi

2πme
, (17)

an approximation validated by observations of Solar system planets
Zarka (1998).

2.4 Application to exoplanets

2.4.1 Sun-like star

The above formulation in principle applies to any planet with a
Dungey cycle-type stellar wind–magnetosphere interaction, and we
thus consider here the appropriate parameters for exoplanets orbit-
ing at arbitrary distances, with an emphasis on close-orbiting hot
Jupiters. As discussed above, whereas for the RBL the radio powers
are computed as functions of incident kinetic or Poynting flux, in our
model, the powers are principally functions of the motional electric
field of the solar wind, the dynamic pressure of the stellar wind
and the Pedersen conductance of the ionosphere, all of which are
dependent on further stellar and planetary parameters as described
below. We examine results for both a solar-like stellar wind, and
that representative of a young Sun-like star with high-mass-loss rate
and magnetic field strength relative to the Sun. Considering first the
Sun-like stellar wind, the relevant parameters are shown in Fig. 4
versus radial distance d normalized by the solar radius Rs [we trun-
cate the inner radial distance of the plot at 2 Rs, being the canonical
location of the heliospheric magnetic field ‘source surface’ (Owens
& Forsyth 2013)]. Absolute distances in au are shown on the top
axis for information, although we recognize that in reality the con-
version from Rs to au depends on the individual star. Specifically,
Fig. 4(a) shows with the solid line the incident velocity of the solar
wind on the magnetosphere vm, which is a function both of the
stellar wind speed and the planet’s orbital speed. For simplicity,
we employ Parker’s isothermal solution for the stellar wind speed
vsw (Parker 1958), which is fully parametrized by the sound speed
cs, and which, as shown by Cranmer (2004) has the closed-form
solution

vsw
2 =

{−v2
c W0[−D(d)] ifd ≤ dc,

−v2
c W−1[−D(d)] ifd ≥ dc,

(18)

where W0 and W−1 are branches of the Lambert W function, dc is
the critical distance at which vsw passes through the sound speed cs,
given by

dc = GMs

2c2
s

, (19)

where Ms = 1.9891 × 1030 kg is the solar mass and D(d) is given
by

D(d) =
(

d

dc

)−4

exp

[
4

(
1 − dc

d

)
− 1

]
. (20)

For the Sun-like wind, we employ a sound speed cs = 130 km s−1

(which, for a Sun-like average particle mass of 1.92 × 10−27 kg
corresponds to a temperature of ∼1.18 MK, though note for the
present Sun calculation we actually make no assumptions in this
regard), yielding a velocity at 1 au of ∼480 km s−1, consistent with
observations, and ∼50–200 km s−1 in the hot Jupiter region of 3–
10 Rs (indicated by the grey region). The dotted line indicates the
Keplerian speed of a planet in a circular orbit vorb, and the solid line
is the sum in quadrature of the two, giving the resultant incident
stellar wind speed vm. Note that the two speeds are comparable
in the inner region associated with hot Jupiters, and although this
will modify the orientation of the magnetosphere with respect to
the radial vector, it will not significantly alter the magnetospheric
dynamics. We further show with the loosely dotted and dot–dashed
lines the (constant) sound speed cs and the Alfvén speed vA given
by equation (5). It is evident that the interaction is everywhere
supersonic (modestly so in the hot Jupiter region, with a Mach
number of ∼2) but becomes sub-Alfvénic inside of ∼15 RS, such
that Alfvén wings will form along the IMF field lines, as discussed
by Saur et al. (2013), effectively shielding the stellar wind mo-
tional electric field and is related to KR saturation of the convection
potential.

In Fig. 4(b), we show the IMF components for the Parker Spiral,
i.e.

Br = B0

(
d0

d

)2

, (21)

and

Bϕ = Br

�sd

vsw
, (22)

where here d0 = 1Rs, B0 is the stellar surface field strength (note
that we employ the stellar surface here to compare with previous
works that consider this parameter; the interplanetary magnetic field
is typically considered to be radial at the source surface rather than
the solar surface; though for our purposes, this distinction is not
important as we only consider planets outside this radius), and �s

= 2.904 × 10−6 rad s−1 is the solar angular velocity. As with
Grießmeier et al. (2007a), we employ the solar value B0 = B0s =
143 000 nT (equivalent to 1.43 G), yielding the canonical observed
solar minimum value of Bsw = 4 nT at 1 au. The dotted and dot–
dashed lines indicate the radial and azimuthal components of the
magnetic field Br and Bϕ , the solid line shows the total field |B|, and
the dot–dashed line indicates the component perpendicular to the
stellar wind incidence direction B⊥, i.e. which it gives rise to the
motional electric field in the rest frame of the planet, given by

B⊥ = Bsw sin

[
arctan

(
Bϕ

Br

)
− arctan

(
vorb

vsw

)]
. (23)

As discussed by Zarka (2007), the ‘notch’ in the vicinity of
∼35 Rs is where the IMF becomes parallel to the incident solar
wind velocity, such that in this model the electric field reduces to
zero at this point, although it is unlikely that in practice the con-
vection would reduce to zero, owing to either reconnection on the
flanks or convection driven by a viscous interaction. In the inner
region, B⊥ thus varies with distance somewhat faster than does Bsw,
i.e. approximately as B⊥ ∝ d−17/6. The magnitude of the stellar wind
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Figure 4. Plot of the relevant stellar wind parameters versus orbital distance d in stellar radii Rs. Panel (a) shows the stellar wind velocity Vsw (dashed line),
the Keplerian velocity of a planet in a circular orbit vorb (close-dotted line), and the resultant impinging stellar wind velocity vm (solid line), along with the
stellar wind sound speed cs (loose-dotted line), and Alfvén velocity vA (dot–dashed line), all in km s−1. Panel (b) shows the interplanetary magnetic field
components, i.e. the azimuthal component Bϕ (dotted line), the radial component Br (dot–dashed line), the resultant IMF magnitude |B| (solid line), and the
component perpendicular to the incident stellar wind velocity v⊥ (dashed line), all in nT. Panel (c) shows the stellar wind electric field Esw in Vṁ−1. Panel (d)
shows the stellar wind mass density ρsw in kg m−3 (left axis), and the equivalent number density nsw in cm−3 assuming solar average particle mass. Panel (e)
shows the solar wind dynamic pressure (dashed line), IMF magnetic field pressure (dot–dashed line) and thermal pressure (loose dotted line) in nPa. Finally,
panel (f) shows the stellar wind Poynting flux N in W m−2. Also, shown by the grey bar is the region associated with hot Jupiters, i.e. 3–10 stellar radii. The
vertical dashed grey lines indicate the orbits of Mercury, Earth, and Jupiter. The top axis indicates the conversion of distance to au, valid in the case that the
stellar radius is equal to the solar radius.

motional electric field Esw, shown in Fig. 4(c), is then given by Esw

= vmB⊥. Its value in the hot Jupiter region between 3 and 10 Rs is
∼0.2–4 Vm−1, i.e. roughly two orders of magnitude larger than that
typically experienced by the Earth. The stellar wind mass density,
ρsw, follows from the stellar wind velocity and the stellar mass loss

rate Ṁs, and is given by

ρsw = Ṁs

4πd2vsw
, (24)
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which is shown in Fig. 4(d), along with the corresponding number
density if the average particle mass were solar. Here, we take the
solar value of Ṁs = 2 × 10−14Ms yr−1, such that the densities in
the hot Jupiter region are ∼1–45 × 10−17 kg m−3, which would
correspond to number densities, nsw, of ∼5–230 × 109 m−3 with
solar average particle mass. The stellar wind dynamic pressure,
given by

pdyn sw = ρswv2
m, (25)

is shown by the solid line in Fig. 4(e), along with the solar wind
thermal pressure (loose-dotted line) and IMF pressure (dot–dashed
line). The thermal pressure is everywhere negligible compared to
the dynamic and magnetic field pressures, which take values be-
tween 3 and 10 RS of ∼0.6–29.5 × 103 and ∼0.8–100 × 103 nPa,
respectively. Thus, in the hot Jupiter region, the IMF magnetic field
pressure dominates the pressure balance. Finally, in Fig. 4(f), we
show the magnitude of the stellar wind Poynting flux, N, given by

N = EswB⊥/μ0, (26)

which increases rapidly and has values of ∼0.09–47 W m−2 in the
hot Jupiter region. It is this rapid increase in the Poynting flux that
has led to the previous suggestions that strongly driven magneto-
spheres of hot Jupiters may be detectable using e.g. LOFAR.

We now consider the planetary parameters derived from the above
stellar wind conditions, as shown in Fig. 5, with numerical values
of key parameters extracted at 3 RS and 10 RS given in Table 1. We
first show in Fig. 5(a) the size of the magnetosphere computed using
equation (3), where we have taken Rp = RJ, recognizing that there is
considerable variation in this parameter. We consider three values of
the planetary magnetic field strength, Bp, equal to 0.1, 1, and 10BJ,
shown by the blue, red, and black lines, respectively. Under the as-
sumption of constant vsw, equation (3) yields Rmp ∝ RpB

1/3
p d1/3 in

the outer region, where the solar wind dynamic pressure dominates
and Rmp ∝ RpB

1/3
p d2/3 in the inner region, where the IMF magnetic

pressure dominates. It is thus evident that higher field strengths yield
larger magnetospheres, and smaller orbital distances yield smaller
magnetosphere size, i.e. ∼2–4, ∼4–8, and ∼8–17 Rp for the three
magnetic field strengths, owing to the increased dynamic pressure.
The effect of this is to decrease the width of the channel that is
able to reconnect, partially offsetting the increased electric field
experienced in this region.

Considering now the variation of the Pedersen conductance
shown in Fig. 5(b), we employ an expression derived from the jovian
value and the modelled Pedersen conductance derived by Koskinen
et al. (2010) for a hot Jupiter (in particular, HD 209458b), as we
now discuss. First, the conductivity generated by stellar X-ray and
Extreme ultraviolet (EUV; together, XUV) photons introduces both
a dependence on the XUV luminosity of the star LXUV, such that
�P ∝ L

1/2
XUV, and on radial distance, i.e. �P ∝ d−1 (see e.g. Nichols

2011). We take the X-ray luminosity as a proxy for the XUV band as
a whole, since X-ray and EUV luminosities are broadly correlated
(Hodgkin & Pye 1994). Further, the increased scale height of the
atmosphere with decreased orbital distance leads to a taller iono-
sphere, further increasing the conductance over that introduced by
increased conductivity alone. Values of the conductance at Jupiter
are not well constrained, although values of order ∼0.1–0.5 mho are
typically employed (e.g. Cowley & Bunce 2001; Cowley, Nichols &
Bunce 2002), while for HD 209458b orbiting its (assumed Sun-like)
star at 0.047 au, Koskinen et al. (2010) computed Pedersen conduc-
tances of 9 × 103 and 7 × 107 mho for ‘strong’ (i.e. Bp = BJ) and
‘weak’ (i.e. Bp � 0.01BJ) planetary magnetic field strengths, respec-
tively. Note that the stronger planetary field yields a lower Pedersen

conductance owing to the lower altitude (and thus lower ionization
fraction) of the Pedersen conducting layer, such that canonically
�P ∝ B−1

p (Rassbach, Wolf & Daniell 1974). Drawing these var-
ious dependences together, we thus employ a power law of the
form

�P = κ

(
d

1 au

)λ (
BJ

Bp

) (
LXUV

LXUV�

)μ

mho, (27)

where κ = 15.475, λ = −2.082, and μ = 1/2, such that for a Sun-
like star and a Jupiter-like planetary field strength �P = 0.5 mho at
d = 5.2 au and �P = 9 × 103 mho at d = 0.047 au, while different
stellar and planetary magnetic field values modify the conductance
accordingly. It is worth noting that this expression also yields �P �
2.6 mho for Saturn, consistent with modelled values (Moore et al.
2010). For hot Jupiters, this expression yields ∼9 × 104–1 × 106,
∼9 × 103–1 × 105, and ∼9 × 102–1 × 104 mho for Bp = 0.1, 1,
and 10 BJ, respectively. Such conductances are significantly greater
than the Alfvén conductance shown by the dashed black line in
Fig. 5(b), which for constant vsw would vary as �A ∝ d, although in
reality varies in the hot Jupiter region approximately as �A ∝ d1/2.
The saturation condition of �P � �A is thus satisfied in the hot
Jupiter region and some way beyond.

Turning now to the convection potential shown in Fig. 5(c), we
show the available potential �m obtained using the simple linear de-
pendence on Esw, i.e. equation (2), with the dashed lines, along with
the saturated potentials (solid lines) computed as discussed above.
It is evident that the saturated profiles asymptote to the linear pro-
files in the outer region, for which the above considerations yield
φm ∝ RpB

1/3
p d−2/3 assuming constant vsw and Bϕ-dominated IMF

(i.e. B⊥ ∝ d−1). In the inner region, the saturated profiles diverge to
significantly lower values, whilst the linear profiles continue to rise
as Esw increases. With Bsw ∝ d−2, B⊥ ∝ d−17/6 as discussed above,
and again assuming constant vsw, the available convection potential
varies as �m ∝ RpB

1/3
p d−13/6, while the saturated potential varies

with �conv ∝ RpB
4/3
p d−(7/3+λ) under the same assumptions. In fact,

as vsw is not constant, the variation is somewhat less steep, ap-
proximately as �conv ∝ RpB

4/3
p d−(5/3+λ). Thus, while the available

magnetospheric convection potential increases to values of up to
∼20–1100 MV, the saturated potentials decrease to substantially
lower values of ∼0.3–280 kV, depending on the planetary field
strength, in the hot Jupiter region. The convection potential is es-
sentially saturated in the inner region, where �P � �A, though the
limiting potential is dependent on φm and thus deviates to lower
values in the ‘notch’ region. In reality, the convection potential is
unlikely to decrease to zero, owing to contributions from reconnec-
tion on the flanks and any viscous interactions.

Considering now the radio powers Pr, we show in Fig. 5(d) the
values computed by the model using the solid lines, along with the
powers given by the RBL, shown by the dashed lines for comparison
(note that unless otherwise stated, in results that follow we employ
the incident Poynting flux for the RBL, rather than the incident ki-
netic energy flux). In the absence of knowledge of the plasma popu-
lation, in computing the powers we take the jovian electron densities
and temperatures as fiducial values, and note that the powers would
be modified according to equations 9 and 11 in the event that they
differ. It is apparent that all three profiles exhibit a broadly similar
variation, in that (notch region aside) the powers tend to increase for
decreased orbital distance. Specifically, for the RBL results shown
by the dotted lines, larger magnetic field strengths yield higher radio
powers everywhere owing to greater magnetospheric cross-section,
such that again assuming constant vsw and B⊥ ∝ d−17/6, for the
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2360 J. D. Nichols and S. E. Milan

Figure 5. Plot of the planetary parameters versus orbital distance d in stellar radii Rs, for Bp = 0.1BJ (blue lines), BJ (black lines), and 10BJ (red lines). Panel
(a) shows the sub-solar magnetosphere standoff distance Rmp from equation (3) in planetary radii. Panel (b) shows the ionospheric Pedersen conductance �P

(solid lines) and the stellar wind Alfvén conductance �A (dashed line) in mho. Panel (c) shows the magnetospheric convection potential φconv (solid lines),
along with the available magnetospheric convection potential (dashed lines), in V. Panel (d) shows the radio power Pr for the saturated case (solid lines), and
the RBL (dashed lines) in W. Panel (e) shows the spectral flux density Fr in mJy assuming a distance of 15 pc, using the same format as in panel (e), except
dotted and loose -dotted lines show 1 my and 1μJy, respectively. The grey region and vertical dashed lines are as in Fig. 4.

inner region yields Pr ∝ R2
pB

2/3
p d−13/3, and for the outer region with

B⊥ ∝ d−1, we have Pr ∝ R2
pB

2/3
p d−5/3. This rapid variation in power

computed using the RBL in the hot Jupiter region leads to values of
∼0.1–260 PW. However, the profiles including convection poten-
tial saturation exhibit a somewhat more complex behaviour. In the
outer region where the potential is not saturated, the power varies as
Pr ∝ R2

pB
−4/3
p d2(λ−2/3), assuming constant vsw, Bϕ-dominated IMF,

and employing the non-relativistic limit of the current-voltage rela-
tion (i.e. Ef ∝ j 2

‖i). As the potential saturates, however, the power
profiles switch to Pr ∝ R3/2

p B1/2
p d−5/2, in this case employing the

relativistic limit of the current–voltage relation (i.e. Ef ∝ j
3/2
‖i ).

The constant of proportionality for the inner region power law is
∼7 × 1015. Note that in this case the power is independent of λ,
i.e. the dependence of the Pedersen conductance on radial distance.
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Table 1. Table showing numerical values of key parameters for planets with
Bp = 0.1, 1, and 10 BJ, each at orbital distances of 3 Rs and 10 Rs.

Property 3RS 10RS

0.1 BJ BJ 10 BJ 0.1 BBJ BJ 10 BJ

Rmp/Rp 1.8 3.8 8.3 3.8 8.1 17
�P/kmho 1129 113 11 92 9.2 0.9
�m/MV 249 535 1153 23 47 105
�conv KR/kV 0.33 7.0 151 0.61 13 284
Itot/GA 12 26 57 2.7 5.9 12.6
Pr RBL/TW 12 000 56 000 258 000 100 480 2200
Pr KR/TW 110 377 1262 4.6 17 63
Fr RBL/mJy 1465 680 316 12 5.9 2.7
Fr KR/mJy 13 4.6 1.5 0.6 0.2 0.08

Overall then, the radio power values in the hot Jupiter region are
∼5–1300 TW, as given in Table 1. While for brevity we do not
show details of the plasma flows and currents it is, however, worth
noting that for the representative case of a hot Jupiter with magnetic
field strength BJ, orbiting at 10 RS the precipitating electrons are
accelerated to ∼1 MeV, while energy fluxes peak at ∼60 W m−2, the
total precipitating power is ∼1 PW, and the total power dissipated
by Joule heating is ∼600 TW.

Turning now to the spectral flux densities Fr shown in Fig. 5(e), it
is apparent that, owing to its inverse dependence on the bandwidth
and thus the magnetic field strength as in equations (16) and (17),
planets with lower magnetic field strengths exhibit higher flux den-
sities over the whole radial range. Specifically, power law approx-
imations under the same assumptions as discussed above are Fr ∝
R2

pB
−7/3
p d2(λ−2/3) for the outer region and Fr ∝ R3/2

p B−1/2
p d−5/2 for

the inner. We have chosen 15 pc as the fiducial distance for which
to calculate the spectral flux density, as it is apparent that planets lie
on the threshold of LOFAR detectability at this distance, although,
as discussed above, the detection threshold of SKA is much lower
at 1 μJy. The saturated magnetospheres yield spectral flux densities
in the hot Jupiter region of ∼0.2–13 mJy, lower field strength and
smaller orbital distances yielding higher flux densities, such that
at 10 RS no planets would be detectable using LOFAR, whereas
at 3 RS all profiles are above the 1 mJy threshold. This contrasts
significantly with the (undetected) very large flux densities of up
to a few thousand Jy given by the RBL in this region. The max-
imum orbital distances at which these model flux density profiles
are greater than the 1 μJy detection threshold of SKA are ∼3.7,
1.4, and 0.4 au for Bp = 0.1, 1, and 10 BJ, respectively, comparable
with or modestly greater than the values of ∼2.2, 1.3, and 0.7 au
for the RBL. However, the steeper gradients of the unsaturated re-
gions of the flux density profiles compared with the RBL in the
outer region are such that the modelled flux densities are, for the
weaker planetary fields, considerably larger than the RBL results.
For example, for a planet with Bp = 0.1 BJ orbiting at 1 au, the
modelled flux density is ∼30 μJy, compared with the RBL’s barely
detectable ∼3 μJy.

2.4.2 Young Sun-like star

It has been suggested, using the kinetic RBL, that young, fast-
rotating stars possessing hot, fast stellar winds with high mass loss
rate are likely to produce brighter emissions owing to greater im-
pinging energy fluxes on the magnetospheres of planets (Grießmeier
et al. 2007a). Here, we thus consider the powers computed using our
model for planets orbiting a young main-sequence (∼1 Gy) Sun-like
star. To estimate the stellar wind properties, we employ relations

which provide the expected variation of the key solar parameters
with age, as determined by observations of solar analogues (see e.g.
the review by Güdel 2007). We first determine the rotation period
P in days using the relation given by Dorren, Guinan & Dewarf
(1994), i.e.

P = 0.21t0.57
6 , (28)

where t6 is the age of the star in My since arriving on the zero-age
main sequence, yielding P � 10.8 d. From this we compute the
X-ray luminosity LX in erg s−1 using the relation of Güdel, Guinan
& Skinner (1997), given by

LX = 1031.05P −2.64, (29)

which yields LX = 1028.32 erg s−1, i.e. a factor of ∼9.4 larger than
the mean solar value of LXs = 1027.35 as given by Judge, Solomon
& Ayres (2003). The X-ray luminosity is then used to estimate a
number of other parameters as follows. The coronal (and, under the
isothermal assumption, stellar wind) temperature Tsw in MK using
the relation given by Güdel (2007), i.e.

Tsw =
(

LX

1.61 × 1026

)0.247

, (30)

which gives Tsw = 3.3 MK and thus, for solar wind composition,
a stellar wind sound speed of ∼219 km s−1. This temperature is
within the range of ∼1–10 MK observed in solar analogues. The
stellar wind mass loss is calculated from LX via the relation given
by Wood et al. (2005), i.e.

Ṁ = Ṁs

(
LX

LXs

)1.34

, (31)

such that Ṁ = 4 × 10−13 Ms yr−1. We finally assume that the stellar
surface field strength B0 is, for fixed Rs and field geometry, propor-
tional to the total stellar magnetic flux, such that we determine B0

from LX using the relation of Pevtsov, Fisher & Acton (2003), i.e.

B0 = B0s

(
LX

LXs

)0.885

, (32)

which yields B0 = 1.04 × 106 nT (equivalent to 10.4 G).
We thus show in Fig. 6 the stellar wind parameters of a young

Sun-like star versus radial distance, in the same format as Fig. 4. The
velocities shown in Fig. 6(a) are ∼310–540 km s−1 in the hot Jupiter
region, i.e. a factor of ∼3–6 higher than for the present Sun. Hence,
while the Alfvén speed is also increased, the interaction becomes
super-Alfvénic outside of ∼18 RS. The perpendicular magnetic field
shown in Fig. 6(b) is ∼72 000–2200 nT in the hot Jupiter region, i.e.
a factor of ∼3–4 greater than for the present Sun. Overall, then, the
stellar wind electric field shown in Fig. 6(c), which takes values of
∼1–29 Vm−1, i.e. a factor of ∼7 higher than for the current Sun. The
mass densities shown in Fig. 6(d) are ∼8 − 152 × 10−17 kg m−3,
which corresponding to number densities of ∼4 − 79 × 1010 m−3

with solar average particle mass. The solar wind dynamic pressure
shown in Fig. 6(e) is ∼2.4 − 24 × 104 nPa, i.e. ∼8–39 times that of
the present Sun in the hot Jupiter region, while the IMF magnetic
field pressure is ∼4.3 − 534 × 104 nPa, i.e. a factor of ∼52 higher
than the present Sun. Finally, the Poynting flux shown in Fig. 6(f) is
∼2–1626 W m−2 in the hot Jupiter region, i.e. a factor of ∼24–34
greater than for the present Sun.

Turning then to the planetary parameters determined from the
above stellar wind characteristics, we show profiles in Fig. 7 in
the same format as Fig. 5 and give numerical values in Table 2.
As shown in Fig. 7(a), the higher dynamic pressure yields smaller
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Figure 6. As Fig. 4 but for a young Sun-like star.

magnetospheres for a given magnetic field strength than for the
present Sun, i.e. ∼0.96–2, 2–4, and 4–9 Rp. Note that for the 0.1
10BJ case, the magnetopause radius becomes less than the planetary
radius at ∼3.3RS, such that in the panels below, blue profiles which
depend on this parameter are truncated at this distance. Considering
the Pedersen conductance, the values are a factor of ∼3 larger
those for the present Sun, at ∼280-3500 kmho, ∼28-350 kmho, and
∼2.8-35 kmho for Bp = 0.1, 1, and 10 BJ, respectively. Although the
available magnetospheric convection potentials are somewhat larger
than for the present Sun, reaching almost ∼5 GV at 3 RS for Bp = 10
BJ, the saturated potentials are decreased by a factor of ∼0.3, with
values of ∼0.1–140 kV, depending on the planetary field strength, in

the hot Jupiter region. Thus, the ratio between the two cases of the
combined parameter (�P�S) is ∼1, and the ionospheric currents
and radio powers and flux densities are essentially unchanged in
the saturated region from those of the present Sun. Hence, the
flux densities in the hot Jupiter region are generally 2 orders of
magnitude below those for the RBL, which reaches few thousand
mJy at 3 Rs. The powers are, however greater than the present
Sun values in the outer region where the convection potential is
not saturated. The maximum orbital distances at which these flux
densities exceed the detection threshold of SKA are ∼13, 5, and
2 au for Bp = 0.1, 1, and 10 BJ, respectively, somewhat less than the
distances of ∼33, 19, and 11 au for the RBL owing to the steeper
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Figure 7. As Fig. 5 but for a young Sun-like star.

gradient in the outer region. However, the flux densities of the 0.1 BJ

case are greater than the RBL values between ∼0.4–8.6 au and for
a planet orbiting at 1 au, the flux densities are ∼3–150 μJy, which
should be detectable with SKA.

3 D ISCUSSION AND SUMMARY

The radio powers discussed here are the first to be computed for
exoplanets assuming a Dungey-type stellar wind-planet interaction,
resulting from magnetospheric convection driven by magnetic re-
connection. They are also the first to be computed considering PC
potential saturation, which is known to occur at Earth when the

magnetosphere is subject to high values of the solar wind motional
electric field. We have determined the powers and flux densities
at the representative distance of 15 pc for planets orbiting a Sun-
like star and a young 1 Gy Sun-like star. We have employed the
Kivelson & Ridley (2008) model of PC potential saturation, such
that saturation occurs when the ionospheric Pedersen conductance
is substantially larger than the interplanetary Alfvén conductance,
and signals propagating into the ionosphere are partially reflected.
The resulting powers are dependent on the available magnetospheric
convection potential φm and thus decrease to zero where the IMF be-
comes aligned with the incident stellar wind velocity. In reality, the
convection potential is unlikely to actually decrease to zero owing
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Table 2. As for Table 1 but for a young Sun-like star.

Property 3RS 10RS

0.1 BJ BJ 10BJ 0.1 BJ BJ 10BJ

Rmp/Rp 0.96 2.1 4.4 2.0 4.3 9.3
�P/kmho 3469 347 35 283 28 2.8
�m/MV 973 2097 4518 88 189 406
�conv KR/kV 0.11 2.3 49 0.29 6.3 136
Itot/GA 42 91 196 9.7 21 45
Pr RBL/PW 119 553 2564 0.69 3.2 15
Pr KR/TW 109 376 1258 9.0 33 119
Fr RBL/mJy 14,547 6752 3134 84 39 18
Fr KR/mJy 13 4.6 1.5 1.1 0.41 0.14

to natural variations from the Parker spiral direction, reconnection
along the flanks, and viscous interactions. We have further produced
power law approximations to the flux densities that are applicable in
the hot Jupiter region with saturated cross PC potential, and for the
unsaturated profiles in the region further out. We have shown that
the radio powers and flux densities broadly increase with decreasing
radial distance, though more slowly in the inner region where the
convection potentials are saturated than further out, in contrast to
the RBL powers which, ‘notch’ region aside, increase more quickly
with decreasing distance. The saturated profiles also increase with
magnetic field strength, in constrast with the unsaturated regime,
though the flux densities decrease with field strength everywhere
owing to the dependence of the bandwidth on the electron cyclotron
frequency at the ionosphere.

For a Sun-like star, the computed radio powers for the hot Jupiter
region are ∼5–1300 TW, roughly two orders of magnitude below
those for the RBL. The flux densities are ∼0.6 mJy for a field
strength of 0.1 BJ at 10 Rs, increasing to ∼13 mJy at 3 Rs. Such
fluxes are ∼1-2 orders of magnitude below those for the RBL,
which thus presents a significant overestimation of the detectability
of these exoplanets. At further distances the powers are everywhere
less than the detection threshold for LOFAR, but are greater than
1 μJy out to ∼0.4–3.7 au depending on the planetary field strength.
For a planet with Bp = 0.1BJ orbiting at 1 au, the flux density is
up to ∼30 μJy, which may be detectable with SKA. For a young
Sun-like star, we find that, while the powers estimated by RBL are
increased by a factor of ∼10, for our model the decreased saturation
potential and increased Pedersen conductance provide essentially
identical competing effects on the powers, which are thus almost
identical to those of the present-day Sun. In the outer unsaturated
region, however, the powers the young system are increased over
the Sun-like star, and the flux densities are above the SKA detection
threshold out to ∼2–13 au, depending on the field strength. Specifi-
cally, for planets orbiting at 1 au, the flux densities are ∼3–150μJy,
depending on the field strength.

As part of the model, we compute the flows and currents in the
ionosphere. A key parameter is the energy of the precipitating elec-
trons and the energy flux. Our results indicate that, for a hot Jupiter
with Bp = BJ orbiting at 10 RS, the precipitating auroral electron
energies are around ∼1 MeV, carrying an energy flux of a few tens
of W m−2, for a total precipitating power of ∼1 PW into the polar
atmosphere. This is a significant energy source whose implications
should be considered in atmospheric circulation models for hot
Jupiters. Joule heating from the ionospheric Pedersen currents will
then form a further source of heating of the upper atmosphere, as
has been suggested e.g. by Buzasi (2013) and Cohen et al. (2014).
Our model yields total Joule heating of ∼600 TW for the planet at
10 Rs, i.e. lower than the estimate of Buzasi (2013) by several orders

of magnitude, though our magnetospheric convection is saturated
and cannot dissipate the total available incident solar wind power.

There are some limitations to the model presented here. The sim-
ple steady-state representation of the dynamics of convection in a
magnetosphere does not take into account the significant bursty na-
ture of the process, as is evidenced by the sub-storm cycle at Earth
(Russell & McPherron 1973). Nightside reconnection in particular
is bursty, and energy is built up and stored in the magnetotail mag-
netic field until a burst of reconnection closes a substantial quantity
of open flux in a short interval of time, resulting in expanded and
brightened auroral emission for a short period of time (an hour or
so at Earth). Typical terrestrial substorms occur with frequencies of
∼3 h (Borovsky, Nemzek & Belian 1993), releasing ∼160 per cent
of the energy in the 2 h post-onset than in the preceding 2 h (Newell
et al. 2001). Such bursty behaviour may significantly increase the
detectability of auroral radio emissions from exoplanets above those
considered by the present model, at the cost of limited temporal op-
portunity for detection. This inherent bursty nature of the process
is in addition to the variability expected via variation of the stel-
lar wind parameters with time and stellar longitude (e.g. See et al.
2015). Further, the size of the PC at any one time is determined by
the quantity of open flux in the tail, which changes significantly over
the course of the substorm cycle. We have taken a PC radius of 15◦

in conformity with observations of the typical PC size in the Solar
system, although we note that MHD models of hot Jupiter mag-
netospheres indicate that the PC radii may be significantly larger.
Tests indicate that taking a PC radius of ∼45◦ raise the emitted pow-
ers from those presented here by approximately a factor of 2. The
present model does not consider any convection potential driven
by a viscous interaction at the magnetopause boundary (Axford &
Hines 1961), and the effects of such a process should be exam-
ined in future works. Further, the radio powers would be modified
from those presented here if parameters of the high-latitude electron
source population differ from those assumed here, and indeed any
observations of exoplanetary radio emissions will act as a probe for
these parameters. Further, we have assumed a constant ionospheric
conductance, which would not be the case for strongly irradiated hot
Jupiters, for which the ionospheric currents would be confined to the
dayside, and the feedback on the ionospheric convection should be
examined using more complex MHD models. While we have con-
sidered the effects on the radio emissions of the parameters of stars
of different ages, we have not examined any corresponding changes
in the intrinsic planetary parameters over a several Gyr timespan.
Finally, we have not considered interplay with the flows and cur-
rents arising from planetary rotation and internal plasma sources
(Nichols 2011, 2012), which is likely to be a factor for Jupiter-like
planets orbiting outside the tidal locking radii, and which should be
examined in future using MHD models.
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A P P E N D I X A : D E TA I L S O F T H E
C O N V E C T I O N MO D E L

We employ a simple, extensively used and validated analytic model
of ionospheric convection, originally developed to model the plasma
flows and currents in and around the expanding and contracting PC
of Earth (e.g. Siscoe & Huang 1985; Freeman & Southwood 1988;
Freeman 2003; Milan, Gosling & Hubert 2012; Milan 2013). The
details of the model are given e.g. by Milan (2013), but briefly, the
model assumes that the planet is a sphere of radius Rp, such that
positions in the ionosphere are given by co-latitude θ and azimuth
ϕ, the latter defined such that ϕ = 0 is oriented towards midnight
and ϕ increases in the direction of planetary rotation for the case
of a planet with a magnetic moment of the same sense as that of
the Earth, i.e. southward. The ionospheric electric field E(ϕ, θ ) =
Eϕϕ̂ + Eθ θ̂ is described by the gradient of a scalar potential �,
such that E = −∇�. The field-perpendicular current j⊥ is related
to the ionospheric electric field by

j⊥ = �P E + �H B̂ × E, (A1)

where �P and �H are the height-integrated Pedersen and Hall con-
ductances, respectively, and B̂ is the unit vector of the magnetic
field. The divergence of the field-perpendicular current yields the
field-aligned current intensity, i.e. current per unit azimuthal dis-
tance in A m−1, at the top of the ionosphere i‖i given by

i‖i = ∇ · j⊥ = �P∇2� + ∇� · ∇�P + (∇� × B̂) · ∇�H. (A2)

In general, the conductances �P and �H are spatially variable,
modified locally by e.g. photoionization and the precipitating elec-
tron energy flux, but in the light of the lack of detailed models
of the ionospheres of strongly irradiated hot Jupiters, we simply
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take the conductances to be equal and uniform across the planet’s
surface, with values computed as discussed further below. Milan
(2013) showed that, with the form of the electric potential for the
model (given by their table 1), the R1 and R2 field-aligned current
intensities, which flow at co-latitudes θR1 and θR2 = θR1 + �θ ,
respectively, are then given by

i‖i R1 = �P

Rp sin θR1

N∑
m=1

smm sin mϕ [ coth m(�R1 − �R2) − 1]

(A3)

and

i‖i R2 = �P

Rp sin θR2

N∑
m=1

smm sin mϕ csch m(�R1 − �R2), (A4)

where � = ln tan 1
2 θ and sm is given by

sm = − 1

m2π

[
(−1)m

�D sin mϕD

ϕD
− �N sin mϕN

ϕN

]
, (A5)

where ϕD,N are the angular half-widths of the day- and nightside
merging gaps and �D,N are the day- and nightside reconnection
voltages, related to the rate of flux transport through the merging
gaps via Faraday’s Law. The typical PC size at planets in the Solar
system is ∼15–20◦ (e.g. Iijima & Potemra 1976; Jinks et al. 2014),
such that here we take θR1 = 15◦, along with �θ = 10◦ and ϕD =
ϕN = 30◦ following Milan (2013). At any one time the day- and

nightside reconnection voltages are in general different, indicating
differing rates of dayside and nightside reconnection, but are iden-
tical in the steady state and when averaged over many convection
cycles, and in which case are parametrized by a single cross-PC
potential associated with the convection �D = �N = �conv. We
discuss the calculation of the values of �conv in Section 2.2 below.
The sum over m can in principle be taken to any arbitrary N, and is
taken by Milan (2013) up to N = 20, which we thus also employ
here. The currents given by equations A3 and A4 are formally as-
sumed to infinitely thin sheets, although computing the precipitating
electron energy flux requires the current density j‖i in A m−2, and
we thus assume that these currents form thin annuli of small but
finite thickness �θj‖i , with uniform latitudinal distributions, such
that

j‖i R1 = i‖i R1

�θj‖i Rp
, (A6)

and

j‖i R2 = i‖i R2

�θj‖i Rp
, (A7)

and in conformity with observations at Earth, Jupiter and Saturn,
we take the thickness �θj‖i = 1◦. We note that our results are not
strongly dependent on realistic choices of this width.
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