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Abstract. Three epochs in development of chemical dynamics are presented. We try to un-
derstand the modern research programs in the light of classical works.

The first Nobel Prize in Chemistry was awarded in 1901 to Jacobus H. van’t Hoff “in recognition
of the extraordinary services he has rendered by the discovery of the laws of chemical dynamics and
osmotic pressure in solutions”. This award celebrated the end of the first epoch in chemical dynamics,
discovery of the main laws. This epoch begun in 1864 when Waage and Guldberg published their first
paper about Mass Action Law [42]. Van’t Hoff rediscovered this law independently in 1877. In 1984 the
first book about chemical dynamics was published, van’t Hoff’s “Études de Dynamique chimique [40]”,
in which he proposed the ‘natural’ classification of simple reactions according to the number of molecules
that are simultaneously participate in the reaction. Despite his announcement, “I have not accepted a
concept of mass action law as a theoretical foundation”, van’t Hoff did the next step to the development
of the same law. He also studied the relations between kinetics and thermodynamics and found the
temperature dependence of equilibrium constant (the van’t Hoff equation). In particular, he proved the
“principle of mobile equilibrium”: the equilibrium in a system tends to shift in such a direction as to
oppose the temperature change which is imposed upon the system. This principle was later on generalized
by Le Chatelier. The temperature dependence of the reaction rate constants was analyzed further by
Arrhenius (Nobel prize in chemistry in 1903). The famous Arrhenius equation is a particular case of
the van’t Hoff equation. Chemical dynamics was developed in line with thermodynamics. In particular,
chemical equilibrium was recognised as a dynamic process, i.e. the balance between the forward and
backward reactions. Their rates must be equal at the chemical equilibrium. During this period, Gibbs
created modern chemical thermodynamics [14]. The kinetic law of a single reaction and its relation to
thermodynamics were studied in full. Chemical dynamics was prepared to the next epoch, that is to the
analysis of complex reaction networks.

The scientific context of the first decades of chemical dynamics was also very important. Maxwell [28]
and Boltzmann [5] developed physical kinetics of gases. They used analogue of the Mass Action Law
for collisions and discover the principle of detailed balance: at the equilibrium, each elementary process
should be equilibrated by the reverse process. Maxwell used the principle of sufficient reason to justify
detailed balance. For the same purpose Boltzmann employed reversibility of collision (for more detail
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see [16]). Detailed balance was used by Boltzmann to prove the H-theorem (entropy growth) in kinetics.
Lorentz raised an objection against this theory [30]. He stated that the collision of polyatomic molecules
are irreversible and therefore the principle of detailed balance is wrong. Boltzmann immediately invented
a weaker condition, the principle of cyclic balance (it is known also as semidetailed balance or complex
balance) [6] which is sufficient for the proof of H-theorem. Much later, Stueckelberg proved that the cyclic
balance condition should hold for all systems with Markov micro-description [38] (he used the S-matrix
representation of collisions, for more detail see [20]). Finally, in 1981, it was demonstrated that Lorentz
was wrong and detailed balance holds for collisions of polyatomic molecules [8]. In 1902, equilibrium
statistical mechanics was developed by Gibbs and mechanical backgrounds of thermodynamics became
clear [15].

In 1901, Wegscheider studied reaction networks which consist of several elementary reactions [43].
He discovered that the equilibrium of such a network may not be an equilibrium of each reaction from
the network if we define their rate constants independently (“Wegscheider’s paradox”). He found the
conditions on the reaction rate constants which are necessary and sufficient for coincidence of the equi-
librium of the network with the joint equilibrium of their elementary reactions (Wegscheider’s conditions
of detailed balance). For example, in a simple linear cycle these conditions state that clockwise and
anticlockwise products of reaction rate constants coincide. (The modern explanation could be found in
many textbooks [44].) Of course, if we define the rate of each backward reaction thermodynamically,
through the thermodynamic equilibrium constant and the reaction rate of the forward reaction, then
Wegscheider’s conditions are satisfied automatically and Wegscheider’s paradox vanishes: the elementary
reactions “do not know” about other reactions, they all “just know” the same thermodynamic properties
of the reagents. Wegscheider’s conditions were used by Onsager [32] in his work about reciprocal relations
awarded by Nobel Prize in Chemistry in 1968. The Onsager relations are, in their essence, the detailed
balance conditions linearized near thermodynamic equilibrium.

Wegscheider’s work was a first milestone in analysis of chemical reaction networks. The great achieve-
ment here was the theory of chain reactions and of the critical effects in chain reactions [22,37] In 1956,
Nobel Prize in Chemistry was awarded to Semenov and Hinshelwood “for their researches into the mech-
anism of chemical reactions”. The great problem approached by the theory of chain reaction may be
formulated as follows: how the structure of reaction network affects its dynamics? Of course, it is solved
only partially and remains the source of challenges for several generations of researchers. It appears that
the work with this problem requires methods for model reduction [9]. Besides the obvious reason (it
is easier to analyse systems of smaller dimension) there is a very important issue: in the whole system
the critical effects are hidden. To see the critical effect, we have to simplify the model and to sepa-
rate variables into fast and slow ones. The bifurcations in the fast subsystem correspond to observable
critical phenomena like inflammation, ignition or, inverse, to quenching. This trick allowed Semenov
and Hinshelwood to study critical effects in chain reactions. Several methods for model reduction were
developed. Most famous of them are: quasi-steady states, quasi-equilibrium states and limiting steps
and subsystems. Later on they were integrated into several more general technologies: methods of in-
variant manifolds [18, 19] and computation singular perturbations [29]. The mathematical backgrounds
of all these methods are the theory of singular perturbations [35] and the theory of invariant manifolds
of dynamical systems. Non-trivial dynamics of chemical systems attracted much attention and various
oscillations, bifurcations and non-linear waves were found. Among them the famous example gives the
Belousov-Zhabotinskii oscillatory reaction [45].

In 1965, the scientific program of new synthesis and rational analysis of chemical reaction networks
was proposed by Aris [3,4]. His enthusiasm, creativity and research reputation attracted many scientists
and a series of research project was performed [12,13,23,25,33,36]. The Aris program was driven by the
needs of chemical engineering [2]. Nevertheless, the fundamental results of this program spread wider
and are now important to various areas of science. Horn, Jackson and Feinberg rediscovered Boltzmann’s
cyclic balance in the context of chemical kinetics [12, 23] (they call it the “complex balance” condition).
This complex balance condition is sufficient for positivity of entropy production (it is the exact analogue
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of the 1887 version of Boltzmann’s H-theorem [6]). It guarantees decrease of the Helmholtz free energy
of closed systems under isothermal isochoric conditions and of the Gibbs free energy (the free enthalpy)
under isothermal isobaric conditions. It appears that this condition is important not only in chemical
engineering [39] but also in algebraic geometry and related areas, in particular, in the theory of toric
dynamical systems [10]. There are numerous links between chemical dynamics and modern algebraic
geometry. Classification of the limits of systems with detailed balance when some of reactions become
irreversible [21] practically coincides with the recently proved classification of binomial manifolds [11].
The methods of tropical geometry are efficient for model reduction in large reaction networks [31].

It is worth to mention other types of global Lyapunov functions which exist for some reaction mecha-
nisms. For example, if we consider the reaction networks with elementary reactions of the formmAi → . . .

(with various coefficients m and right hand sides of the reaction equations, but with a positive linear
conservation law like conservation of mass) then the l1-distance between all kinetic curves decreases in
time [17]. For systems with arbitrary monotone kinetics the Lyapunov functions are constructed from
reaction rate functions [1].

The question about connection between the structure of reaction network and its dynamics, remains
one of the central problem of chemical dynamics. In parallel with answering this question we need to
answer the question what is a kinetic law of complex chemical reaction. If we separate times and select
fast and slow subsystems then this second question could be understood as an elimination problem: what
are equations of slow dynamics after elimination of fast variables? This problem stimulated development
of a new chapter of computer algebra [7]. For several classes of catalytic reactions this exclusion was
performed and the steady-state kinetic law of the single overall reaction was presented as the single
polynomial regarding the reaction rate. Such a polynomial may have several roots which correspond to
different steady-states. At the same time its free term has a rigorous thermodynamic form and validates
thermodynamic correctness of this presentation [26].

Various methods of graph theory were employed for analysis of chemical reaction networks. The general
theory of equations on graphs was developed [41]. Now, several areas of applied and pure mathematics
are used in chemical dynamics and are developed further due to this applications. “The beginning of this
era was marked by the concerted effort of a few to raise the mathematical consciousness of the profession
to think fundamentally about processes” [34]. After these 50 years of efforts we have to look back, to
review the past and to ask about the future: what should we expect soon? New technologies will generate
new questions. The quantum world will become closer to industry. Biological engineering will be as usual
as is chemical engineering. The artificial intelligence and rapid computation will change the practice of
mathematical modelling.

Three eras (or waves) of chemical dynamics can be revealed in the flux of research and publications.
These waves may be associated with leaders: the first is the van’t Hoff wave, the second may be called the
Semenov–Hinshelwood wave and the third is definitely the Aris wave. The ‘waves’ may be distinguished
based on the main focuses of the scientific leaders:

– Van’t Hoff was searching for the general law of chemical reaction related to specific chemical properties.
The term “chemical dynamics” belongs to van’t Hoff.

– The Semenov-Hinshelwood focus was an explanation of critical phenomena observed in many chemical
systems, in particular in flames. A concept “chain reactions” elaborated by these researchers influenced
many sciences, especially nuclear physics and engineering.

– Aris’ activity was concentrated on the detailed systematization of mathematical ideas and approaches.

Of course, the whole building was impossible without efforts of hundreds of other researchers. Few of
them are mentioned in our brief review, more are cited in the papers of the issue.

This issue is opened by the reprint of the classical paper of A.I. Volpert, where he introduced the dif-
ferential equations on graphs. The work of Gorban and Kolokoltsov analyzed appearance of Mass Action
Law with complex balance conditions and their generalizations in the Michaelis–Menten–Stueckelberg
limit of general Markov processes. Joshi and Shiu studied minimal reaction networks with multiple
steady states. In the paper by Bykov and Tsybenova the classical nonlinear models of catalytic reaction
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were augmented by the additional variable, i.e. temperature, and the extended models were system-
atically studied. Müller and Hofbauer applied the formalism of chemical reaction networks to kinetics
of genetic recombination and analyze existence, uniqueness, and global stability of an equilibrium in
such networks. Grigoriev, Samal, Vakulenko and Weber developed algebraic algorithms for analysis and
reduction of larger metabolic reaction networks and studied several biochemical networks. Constales,
Yablonsky and Marin analyzed kinetics of pulse-response experiments in the Temporal Analysis of Prod-
ucts (TAP) setup and demonstrated that in these special conditions the activity profile of a prepared
catalytic system depends only on the total amount of admitted substance. Gorban demonstrated how to
use a special geometric procedure, forward-invariant peeling, to produce forward-invariant subset from a
given set in concentration space space and to prove persistence of a chemical dynamic system.
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