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SUMMARY

Mesothelioma is a fatal tumor of the pleura and is
strongly associated with asbestos exposure. The
molecular mechanisms underlying the long latency
period of mesothelioma and driving carcinogenesis
are unknown. Moreover, late diagnosis means
that mesothelioma research is commonly focused
on end-stage disease. Although disruption of the
CDKN2A (INK4A/ARF) locus has been reported in
end-stage disease, information is lacking on the sta-
tus of this key tumor suppressor gene in pleural
lesions preceding mesothelioma. Manufactured car-
bon nanotubes (CNTs) are similar to asbestos in
terms of their fibrous shape and biopersistent prop-
erties and thus may pose an asbestos-like inhalation
hazard. Here we show that instillation of either long
CNTs or long asbestos fibers into the pleural cavity
of mice inducesmesothelioma that exhibits common
key pro-oncogenic molecular events throughout the
latency period of disease progression. Sustained
activation of pro-oncogenic signaling pathways,
increased proliferation, and oxidative DNA damage
form a common molecular signature of long-
CNT- and long-asbestos-fiber-induced pathology.
We show that hypermethylation of p16/Ink4a and
p19/Arf in CNT- and asbestos-induced inflammatory
lesions precedes mesothelioma; this results in
silencing of Cdkn2a (Ink4a/Arf) and loss of p16 and
p19 protein, consistent with epigenetic alterations
playing a gatekeeper role in cancer. In end-stageme-
sothelioma, silencing of p16/Ink4a is sustained and
deletion of p19/Arf is detected, recapitulating human
disease. This study addresses the long-standing
question of which early molecular changes drive
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carcinogenesis during the long latency period of me-
sothelioma development and shows that CNT and
asbestos pose a similar health hazard.

INTRODUCTION

Malignant mesothelioma is an aggressive, incurable tumor

strongly associated with asbestos exposure and with increasing

incidence reported worldwide. Length-dependent retention of

asbestos fibers in the pleural cavity is crucial for disease devel-

opment, with chronic inflammation playing an important role in

carcinogenesis [1, 2]. The latency period of this disease extends

to 40 years, and molecular events leading to malignant transfor-

mation are poorly understood. Mesothelioma in humans is

considered to be a ‘‘disease of gene loss,’’ rather than being

associated with driver mutations [3]. Genetic analyses identified

several key genetic alterations in end-stage disease, with most

common deletions or mutations in CDKN2A, NF2, and BAP1

genes [4], and suggested that two main pathways, p53/DNA

repair and PI3K-AKT, were associated with mesothelioma pro-

gression [5]. Compromised antioxidant response due to muta-

tion of DNA repair genes may also contribute to oncogenesis

[6]. Epigenetic alterations play a gatekeeper role in cancer as

they are the earliest observable genetic change [7]. DNA hyper-

methylation is commonly associated with tumor suppressor

gene silencing. Transcriptional inactivation of these genes and

the loss of their functions most frequently occur during the early

stages of the carcinogenesis and at the pre-cancerous stages of

tumor [7, 8]. Although disruption of the CDKN2A locus, including

p16/INK4A silencing, has been reported in end-stage disease

[4, 9], the keymolecular events that occur during the long latency

period of mesothelioma are unknown. Due to their high aspect

ratio and biopersistent properties, carbon nanotubes (CNTs)

may pose an asbestos-like inhalation hazard [10–12]. Several

thousand tons of CNTs are produced each year, and these

new compounds have many commercial and medical appli-

cations, including their incorporation into sports equipment,
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computers, and building materials. In vivo studies have indicated

that CNTs can cause sustained inflammation and fibrosis of the

pleura [1] and can also induce tumor development; however, this

has only been shown in genetically susceptible or peritoneally

exposed rodent models [12–15]. Data comparing prolonged

pleural exposure of wild-type animals to occupationally relevant

doses of CNTs or asbestos is lacking, and the molecular mech-

anisms underlying fiber-induced carcinogenesis have not been

explored [16].

Here we investigate the effect of instillation of long CNTs and

long asbestos into the pleural cavity of mice, the major site of tu-

mor development in humans. We show that long CNTs and long

asbestos induce mesothelioma with deletion of p19/Arf and

silencing of p16/Ink4a, highlighting that epigenetic alterations

play a gatekeeper role in mesothelioma. Importantly, this study

identifies, for the first time, key molecular events underlying pro-

gression of long-CNT-induced inflammatory lesions tomalignant

mesothelioma and addresses the long-standing question of

which molecular changes drive carcinogenesis during the la-

tency period of asbestos-induced mesothelioma.

RESULTS

Common Molecular Signature of Inflammatory Lesions
Induced by Asbestos and CNTs
In three parallel studies, we exposed mice to low, occupationally

relevant doses of CNTs, consecutively reducing the dose and

increasing exposure time: 5 mg/mouse for 1–12 weeks; 2.5 mg

for 1 year; and 1 mg, 0.5 mg, and 0.2 mg for up to 20 months. In

each study, a comparator group of animals was subjected to

25 mg amosite asbestos fiber exposure. Long (pathogenic) and

short (not associated with disease) fiber amosite asbestos

(LFA and SFA, respectively; [17, 18]) and long and short CNTs

(LNTs and SNTs, respectively) were injected into the pleural cav-

ity of mice, the major site of mesothelioma development (Fig-

ure S1 and STAR Methods), and the responses along the pleura

were assessed at time points up to 20 months post-injection.

This approach reflects the localization of fibers in the pleural

space observed after translocation of fibers from the lungs [19].

Direct instillation of long, but not short, asbestos and CNTs

into the pleural cavity of mice resulted in the development and

marked progression of inflammatory lesions along the pleura

(Figure 1A). The cellular profile of the lesions, comprising meso-

thelial cells and stromal cells as assessed by immunostaining,
Figure 1. Asbestos and CNT Fiber-Induced Pleural Lesions Exhibit Co

(A) Left: transmission electron microscopy (TEM) images of the fiber panel; scale b

at 1 and 12 weeks post-injection of the fiber panel (SFA, SNT, LFA, or LNT) com

(B) Cell types within the lesion were quantified (700–1,000 cells per cell marker, pe

1 week and 12 weeks.

(C) Gene expression pattern in control and fiber-exposed animals at 12 weeks p

from the diaphragms of animals exposed to SFA, SNT, LFA, or LNT and VC (n = 4 p

(D and E) Antibody array-based kinome profiling. (D) Common pattern of kinase a

(100%). (E) Activation of signaling pathways in human mesothelioma tissue from

cells (control).

(F) Human mesothelioma tissue was analyzed for phospho-STAT3 (Y705), pho

western blotting and compared to normal primary mesothelial cells (control). Rep

(G) Immunostaining of signaling proteins in paraffin-embedded sections of hu

(L, lymphocytes; F, fibroblasts) cells. Representative data from three patients are

See also Figures S1–S3 and Tables S1–S3.
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reflected the transition from acute to chronic inflammation [20]

and was similar for both LFA and LNTs at 1 week, 12 weeks,

and 6 months post-injection (Figures 1B and 2A).

mRNA array analysis (GEO: GSE51636) showed a common

pattern of gene expression changes in both LFA- and LNT-

induced lesions. When analyzed using hierarchical clustering,

the samples from LFA- and LNT-exposed mice clustered

together, whereas vehicle control (VC), SFA, and SNT groups

formed a separate cluster (Figure 1C). The major network identi-

fied was associated with the inflammatory response (Table S1).

To examine which signaling pathways were activated in

CNT-exposed tissues, we determined the status of 64 kinases

in pleurae from fiber-exposed and control animals. Antibody-

based array analysis showed activation of pro-oncogenic

signaling pathways, including Src family kinases, Akt, mTOR,

ERK1/2, and STAT3, that was sustained in the pleurae of animals

exposed to long, but not short, fibers (Figure S3). Acute and sus-

tained kinase activation in both LFA- and LNT-exposed pleurae

was strikingly similar, both in terms of the specific pathways

identified and in their degree of activation (Figure 1D). Impor-

tantly, stimulation of these pathways was also observed in hu-

man mesothelioma tumor tissue from five patients compared

to normal primarymesothelial cells (Figures 1E and 1F). Immuno-

staining of mesothelioma patient tissue demonstrated positive

staining for the mesothelial marker HBME-1 and phosphorylated

mTOR, 4EBP1, and Src in mesothelioma cells, as well as phos-

pho-ERK1/2 in mesothelioma cells and fibroblasts, while phos-

pho-STAT3 was predominant in lymphocytes and fibroblasts

(Figure 1G).

Similar to that observed in mesothelioma patient samples,

specific signaling pathways were activated in different cell types

within LFA- and LNT-induced lesions. Thus, activation of ERK

was restricted to the mesothelial cells overlaying the inflamma-

tory lesions; Src, mTOR, and Akt were stimulated in both meso-

thelial cells and stroma, whereas STAT3 activation was most

apparent in the stroma (Figure S4).

STAT3 expression is known to link inflammation and cancer

[21]; therefore, to dissect the role of Stat3 and related genes,

we isolated mRNA from specific areas of the lesions by laser

microdissection (Figure 2B), thus enabling quantification of

gene expression to be correlated to different cell types (meso-

thelial cells and stroma). Stat3 was upregulated (>3-fold) in

both the mesothelial layer and stroma isolated from animals

exposed to either LFA or LNTs, and its expression correlated
mmon Length-Dependent Molecular Changes

ars, 1 mm. Right: hematoxylin and eosin (H&E) images of the chest wall of mice

pared to VC. Scale bars, 20 mm.

r treatment group; n = 4 per group) according to immunostaining (Figure S2) at

ost-injection. The heatmap displays the expression level of mRNAs extracted

er group). Legend bar shows the color code for the normalized intensity values.

ctivation induced by exposure to LFA and LNT at 1 and 12 weeks relative to VC

five patients is shown relative to kinase activity in normal primary mesothelial

spho-ERK1/2 (T202/204), phospho-Akt (S473), and phospho-Src (Y418) by

resentative data from six patients are shown.

man mesothelioma tissue in relation to cancerous (M) and non-cancerous

shown. Scale bars, 100 mm.



Figure 2. Sustained Inflammation and Activation of Pro-oncogenic Signaling Pathways in LFA- and LNT-Induced Lesions at 6 Months

Post-injection

(A) Cell types in LFA- and LNT-induced inflammatory lesions at 6 months post-injection were quantified by immunostaining with a panel of cell markers (pan-

cytokeratin, mesothelial cells; CD68, macrophages; CD45, leukocytes; CD3, T cells; Ly6g, granulocytes).

(B) Specific areas of tissue were isolated from fresh frozen diaphragms (n = 4) by laser microdissection in order to examine gene expression levels in different cell

types (muscle, mesothelium, and lesion). For validation of the cell-type selection, the expression level of the cell markers mesothelin and CD68 in the different

areas sampled wasmeasured by qPCR. The expression level of the genes encoding STAT3, IL-6, and PI3K was examined by qPCR in muscle, mesothelium, and

lesion (where present) microdissected from mice exposed to VC, LFA, or LNT at 12 weeks post-injection. *p < 0.05, **p < 0.01.

(C) Activation of signaling pathways in the chest wall tissue of mice 6 months post-injection was analyzed by immunostaining. Positive staining for signaling

proteins was observed in both mesothelial and non-mesothelial cells (black arrows). Scale bar, 20 mm.

See also Figure S4.
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Figure 3. Progressing LNT-Induced Inflammatory Lesions Display Increased Proliferation and DNA Damage

(A) Representative H&E-stained sections of pleurae from VC-, LFA-, and LNT-exposed mice at 6 months post-injection. Callouts show plump proliferating

mesothelial cells (M) on the pleural surface of LFA- and LNT-exposedmice (positive for pan-cytokeratin; proliferationmarker, Ki-67; andmitotic marker, p-Histone

H3). Scale bars, 50 mm.

(B) Increased proliferation in lesions of LFA- and LNT-exposed mice at 12 weeks and 6 months post-injection compared to VC, quantified by cells stained

positively for Ki-67 and p-Histone H3 (700–1,000 cells per cell marker, per animal; n = 3 per group).

(C) Sustained DNA damage in LFA- and LNT-induced lesions. The percentage of genomic DNA containing 8-hydroxy-20-deoxyguanosine (8-OHdG) progressively

increased in diaphragms of mice exposed to LFA or LNT compared to VC (n = 4 per group).

Graphs (B and C) show mean ± SD; *p < 0.05, **p < 0.01 (two-tailed Student’s t test).
with mRNA levels of IL-6, a well-characterized inducer of STAT3

in the IL-6/JAK2/STAT3 cascade [22, 23]. Signaling via the PI3K/

mTOR axis is also important in asbestos-induced carcinogen-

esis [24]; consistent with this, the Pik3cg gene was upregulated

in both LFA- and LNT-treated mice (Figure 2B).
3306 Current Biology 27, 3302–3314, November 6, 2017
Progression of Fiber-Induced Lesions Is Characterized
by Increased Proliferation and Oxidative DNA Damage
At 6 months post-injection, both LFA- and LNT-induced lesions

expanded to become contiguous with the surface of the chest

wall and diaphragm (Figure 3A), containing zones of dense



(legend on next page)
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fibrous stroma, active fibroblasts, and scattered mononuclear

cells. Again, a distinct pattern of signaling pathway activation

was common to both LFA- and LNT-induced lesions (Fig-

ure 2C). To assess the extent of proliferation resulting from sus-

tained aberrant signaling, we examined expression of the pro-

liferation marker Ki-67 and the mitotic marker p-Histone H3.

Increased phosphorylation of Histone H3 is also associated

with chromatin accessibility and forms part of an epigenetic

regulatory mechanism required for malignant transformation

[25, 26]. A sustained increase in proliferating cells was seen

throughout both LFA- and LNT-induced lesions (Figure 3B).

Oxidative DNA damage is often characteristic of chronic inflam-

mation [27] and facilitates epigenetic modifications, thereby

promoting carcinogenesis [28]. Importantly, the level of

8-hydroxy-20-deoxyguanosine (8-OHdG), a marker of oxidative

stress and genotoxicity, progressively increased to a similar de-

gree in DNA samples from both LFA- and LNT-induced lesions

(Figure 3C).

LNTs and LFA Display Similar Carcinogenic Potential in
the Pleura of Exposed Animals
To explore the carcinogenic potential of long fibers in the

pleura, we examined fiber-induced pathology at later time

points (12–20 months) following exposure to LNTs or LFA. All

fiber-exposed animals displayed advanced pleural lesions

with mesothelial hyperplasia, fibrosis, and chronic inflammation

(Figures 4A and 5A). In 10%–25% of animals across three inde-

pendent studies, LNT-induced lesions progressed to pleural

mesothelioma (1/4 wild-type animals exposed to 2.5 mg LNTs

for 1 year; 1/4 animals exposed to 1 mg LNTs for 18 months,

1/5 animals exposed to 0.5 mg LNTs, and 1/12 animals

exposed to 0.2 mg LNTs for 20 months) (Figures 4A, S5, and

S7). Out of 32 animals exposed to asbestos (25 mg or 50 mg)

for 18–20 months, three mice developed mesothelioma (Fig-

ure S6). This incidence of mesothelioma is consistent with the

15%–37% (overall or high levels of exposure, respectively) re-

ported in humans exposed to asbestos [29].

Both LNT- and LFA-induced tumors, involving the chest wall,

diaphragm, and pericardium, stained positive for the mesothelial

markers pan-cytokeratin and WT1 and exhibited histopathology

consistent with malignant mesothelioma [30] (Figures 4B, S6A,

and S7A). Aberrant signaling pathway activation, observed in

earlier lesions (Figures 2C and S4), was sustained in the LNT-

induced tumors (Figure S5C).
Figure 4. LNT- and LFA-Induced Inflammatory Lesions Progress to Ma
Proteins

(A) LNT-inducedmesothelioma at 12months post-injection (animal ID: no. 610). Th

cells infiltrating into the underlying muscle (arrow). Adjacent to the tumor is an in

(B) Immunostaining of LNT-induced mesothelioma (animal ID: no. 610). Tumor ce

(arrows); the tumor areas stained positively (arrows) or negatively (circle) for the

(C) Immunostaining of LNT-induced tumor (animal ID: no. 610) for p16 and p19. N

collected by power-assisted laser micro-dissection (PALM) for gDNA extraction a

tumor after collection of selected areas. Scale bars, 100 mm.

(D) Relative quantification (mean of 2�DDCT) of p16Ink4a and p19Arf gene copy nu

animal or VC, showing allelic loss of p19Arf in p19-negative tumor areas compare

(significant difference is defined by Z score analysis; see also STAR Methods).

(E) Immunostaining of LFA-induced tumor (animal ID: no. 398) for p16 and p19 p

negatively stained areas in the lower panels thatwere dissected and collected byPA

See also Figures S5–S7.
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To explore the molecular events underlying progression of

LNT- and LFA-induced inflammatory lesions to mesothelioma,

was examined the status of the tumor suppressor gene

Cdkn2a and its products p16 and p19, known to be disrupted

in asbestos-induced mesothelioma in humans [31, 32] (Fig-

ures 4B–4E, S6, and S7). Large areas of LNT-induced tumor

(#610) or LFA-induced tumor (#398), which were predomi-

nantly negative for p16 or p19 protein expression, were mi-

cro-dissected and examined for p16Ink4a and p19Arf status

(Figure 4C). In LNT-induced tumors, relative quantification of

gene copy number [33] confirmed loss of the p19Arf locus in

the p19-negative areas, as evidenced by �60% reduction in

p19Arf genomic DNA (gDNA) compared to controls (Figure 4D).

Loss of p16Ink4a, which is frequently co-deleted with p19Arf

[34], was not detected at this stage (Figures 4D), suggesting

that allelic deletion of p19Arf is an early event in LNT-induced

carcinogenesis and indicating an alternative mechanism for

p16 protein loss. Similarly, LNT tumor (#461) induced by a

lower fiber dose (1 mg versus 2.5 mg) displayed loss of

p16 and p19 protein expression, a reduction in Cdkn2a

mRNA, and allelic loss of p19Arf (Figure S7). In LFA-induced

mesothelioma, loss of p16 and p19 protein was evident by a

patchy pattern of immunostaining (Figure 4E) and reduced

Cdkn2a mRNA levels (Figure S6B), although no reduction

in p19Arf gene copy number was detected at this stage

(Figure S6C).

Both LNTs and LFA Induce Disruption of Tumor
Suppressor Genes in the Mesothelial Cells of
Inflammatory Lesions
The molecular changes that occur during the latency period of

mesothelioma and drive the transition from pre-neoplastic to

neoplastic stage of disease are largely unknown. To explore

whether disruption of Cdkn2a occurred prior to tumor develop-

ment, we examined the status of Cdkn2a in laser-dissected

mesothelial cells from advanced inflammatory lesions. LNT-

induced chronic inflammatory lesions from animals that did not

develop tumors at the 1 year study end point (Figure 5A) dis-

played no reduction in p16Ink4a or p19Arf gene copy number (Fig-

ure 5D); however, mRNA levels were reduced (data not shown),

and both p16 and p19 protein expression was absent in the

majority of mesothelial cells in LNT-induced lesions (Figures

5B and 5C). Consistent with loss of the CDKN2A-encoded

proteins p16/p14 in human mesothelioma, loss of p16 and p19
lignant Mesothelioma with Disruption of Cdkn2a Gene and Encoded

e callout shows themesothelioma composed of pleomorphic epithelioid tumor

flammatory lesion (L). Scale bars, 100 mm.

lls stained positively for the mesothelial cell markers pan-cytokeratin and WT1

Cdkn2a-encoded proteins p16 and p19. Scale bars, 100 mm.

egatively (circled) and positively (red arrows) stained areas were dissected and

nd qPCR analysis. Callouts show a subsequent crystal violet-stained section of

mber in gDNA from micro-dissected tumor and healthy tissue from the same

d to controls or p19-positive tumor areas. Graphs show mean ± SD; *p < 0.05

rotein. Callouts show positively stained areas (circled) in the upper panels and

LM for gDNAextraction and qPCRanalysis (see FigureS6C). Scale bars, 100 mm.



Figure 5. Chronic Inflammatory Lesions Induced by Long Fibers Display Loss of p16 and 19 Expression

(A) Representative H&E-stained sections of diaphragm from LNT- and LFA-exposed animals that did not have tumors at the 1 year study endpoint, displaying

extensive chronic inflammatory lesions (L) with fibrosis, infiltrating inflammatory cells, and plump reactive mesothelial cells on the surface of pleural lesions (blue

arrows). Scale bars, 100 mm.

(legend continued on next page)
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protein expression was also evident in advanced LFA-induced

lesions from animals that did not develop mesothelioma at the

1 year study end point (Figures 5B and 5C). No loss of NF2-en-

coded Merlin expression was detected in either LFA- or LNT-

induced tumors (Figure 5E). Mesothelial expression of Merlin in

the LFA- and LNT-induced inflammatory lesions was not altered

(data not shown).

DNA hypermethylation is frequently associated with tumor

suppressor gene transcriptional inactivation. Importantly, loss

of function often occurs during the early stages of carcinogen-

esis and predominately at the pre-cancerous stage [7, 8]. To

explore possible epigenetic mechanisms of fiber-induced carci-

nogenesis, we examined gDNA from animals with advanced

LNT-induced inflammatory lesions and inflammatory lesions

and/or tumors from animals with LNT-induced mesothelioma

(#610 and #461), as well as inflammatory lesions and/or tumors

from animals with LFA-induced mesothelioma (#398), for

p16Ink4a or p19Arf methylation status. Bisulphite sequencing

confirmed hypermethylation of CpG islands in p16Ink4a and

p19Arf (located in exon 1a and the 50 region flanking exon 1b,

respectively) in mesothelial cells in advanced LNT- and LFA-

induced lesions, as well as in LFA- and LNT-induced tumors,

compared with VC (Figures 6 and S7E).

DISCUSSION

Here, we show for the first time that common molecular events

underlie the development of LFA- and LNT-induced pleural le-

sions that progress to mesothelioma (Figure 7). Aberrant cell

signaling was detected as early as 1 week post-instillation and

sustained during the entire time of disease progression, including

end-stage disease, in mice. Importantly, this pattern of pro-onco-

genic signaling was strikingly similar in mesothelioma patients.

The potential role of the stromal component of human mesotheli-

oma in tumor progression has been highlighted previously [35,

36]. In this regard, we now show that sustained activation of

pro-oncogenic signaling pathways in fiber-induced lesions oc-

curs largely in non-mesothelial (stromal) cells as fiber-induced le-

sions progress.Our data therefore suggest that proliferation of the

mesothelial cell layer and the presence of ‘‘reactive’’ (changed

morphology) mesothelial cells within the lesions occurs as a

consequence of the crosstalk between stromal cells with acti-

vated pro-oncogenic pathways and target mesothelial cells.

Inflammatory signals cause alterations in the cellular epige-

netic program and induce hypermethylation [37]. The presence

of oxidative DNA damage could also contribute to pro-onco-

genic events within the microenvironment, favoring aberrant

DNA methylation in target cells [38], with hypermethylation of

Cdkn2a (Ink4a/Arf) in LNT- and LFA-induced lesions prior to

tumor development leading to allelic loss of p19Arf, as has
(B) Loss of p16 expression in mesothelial cells in LNT- and LFA-induced inflam

dominantly negatively stained (black arrows) and only a few (boxed) positively st

(C) Loss of p19 protein expression in mesothelial cells in LNT- and LFA-induced

predominantly negatively stained (black arrows) and only a few (boxed) positivel

(D) Relative quantification (mean of 2�DDCT) of p16 Ink4a and p19Arf gene copy num

mesothelial cells in the LNT-induced inflammatory lesions (animal IDs: nos. 621,

(E) Immunostaining for the NF2-encoded protein Merlin in LNT (animal ID: no. 46

cytoplasmic staining of tumor areas. Scale bars, 100 mm.
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been suggested in other cancers [17]. Consistent with a role

for hypermethylation, DNMT3a and DNMT3b mRNA levels

were increased in mesothelial cells from LFA- and LNT-induced

tumors (data not shown).

Alteration of the CDKN2A locus in human malignant mesothe-

lioma has been reported with inactivation of p16 in more than

a half of mesothelioma patients [9] and, in more recent

studies, with hypermethylation and silencing of p19 in 44% of

patients [39].

Significantly, we discovered that epigenetic silencing of

Cdkn2a (Ink4a/Arf) and deletion of p19Arf observed in LNT-

induced tumors recapitulates common features of human

asbestos-induced mesothelioma (Figure 7). Overall, these find-

ings provide important new insights into the early molecular

changes that occur during the long latency period between fiber

exposure and mesothelioma development and identifies epige-

netic and/or genetic disruption of Cdkn2a as a key event in

long-fiber-induced malignant transformation (Figure 7). Impor-

tantly, these findings facilitate the identification of potential

biomarkers for earlier detection of asbestos-induced mesotheli-

oma, as well as the development of new therapeutic avenues

by which to tackle early-stage disease.

Immunostaining of both LFA-and LNT-induced mesotheli-

omas for the tumor suppressor protein BAP1 revealed positive

cytoplasmic staining in all tumor cells and positive nuclear stain-

ing in �10% tumor cells (data not shown). In view of the latest

findings of separate activities of BAP1 in the nucleus and cyto-

plasm, as well as a possible requirement for both cytoplasmic

and nuclear forms to exert a tumor suppressor function, the

molecular involvement of BAP1 in carbon nanofiber-induced

carinogenesis will be a focus of our future work.

The long latency of malignant mesothelioma, with decades-

long chronic inflammation accompanied by an aberrant micro-

environment and the presence of ROS and oxidative DNA

damage, would advocate a multifactorial mechanism of disease

development, with a clear contribution via loss of tumor suppres-

sor genes such as p16 and p19, as reported here.

Overall, the common signature of LFA- and LNT-induced

pathology demonstrates that there is a conserved molecular

mechanism through which long fibers induce pleural disease,

including mesothelioma, and crucially our data place long

CNT fibers on the same adverse outcome pathway as

asbestos. Notably, other nanofibers have been shown to pro-

duce length-dependent inflammatory effects in the pleura

similar to LNTs [40], suggesting that any respirable long fiber

that is biopersistent may pose a similar hazard. Given that

the increasing manufacture of long CNT fibers raises the poten-

tial for human exposure, our findings reinforce the need for

caution when using these agents if long-term harm is to be

avoided.
matory lesions. Representative images of immunostaining for p16 show pre-

ained (green arrows) mesothelial cells. Scale bars, 100 mm.

inflammatory lesions. Representative images of immunostaining for p19 show

y stained (green arrows) mesothelial cells. Scale bars, 100 mm.

ber by qPCR analysis in gDNA isolated from positively and negatively stained
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1) and LFA (animal ID: no. 398) tumors. Representative images show positive



Figure 6. Chronic Inflammatory Lesions and Malignant Mesothelioma Induced by LFA and LNT Display Hypermethylation of the Cdkn2a

(p16 Ink4a/p19Arf) Locus

(A) Schematic representation of the hypermethylation profile of the p16Ink4a CpG island in exon 1a determined by bisulphite sequencing of gDNA. All CpG di-

nucleotides are shown by vertical lines. Hypermethylated CpG sites were identified in gDNA extracted from p16-negative areas of LNT-induced tumor (animal ID:

no. 610; red-filled circles), in gDNA isolated from mesothelial cells in inflammatory non-neoplastic lesions from the same animal (hatched circles), and in gDNA

(legend continued on next page)

Current Biology 27, 3302–3314, November 6, 2017 3311



Figure 7. LNTs Replicate Asbestos-Induced Mesothelioma with Disruption of the Tumor Suppressor Gene Cdkn2a (Ink4a/Arf)

Schematic depicting the sequence of events in the pleurae of animals exposed to LFA or LNT showing commonality in LFA- and LNT-induced disease pro-

gression that replicates mesothelioma development in humans.
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Long Carbon Nanotubes University of Manchester, (Manchester, UK) Produced and characterized by Dr. Ian

Kinloch

South African amosite Manville Corporation, USA N/A

Short Carbon Nanotubes Nanostructured & Amorphous Materials

(TX, USA)

Cat#1246YJS

TRIzol Fisher Scientific Cat#12044977

Invitrogen SuperScript III Reverse

Transcriptase

Fisher Scientific Cat#18080093
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Phospho-Kinase Array Kit R&D Systems Cat#ARY003b
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Microarray Kit

Agilent Technologies Cat#G4852B

Agilent Low Input Quick Amp one-color

Labeling Kit

Agilent Technologies Cat#5190-2305
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GeneJET Genomic DNA Purification Kit Fisher Scientific Cat#K0721
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Quantification Direct Kit (Colorimetric)
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with One Shot TOP10 Chemically
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Histostain Plus Broad Spectrum Invitrogen Cat#859043

LSAB2 System-HRP Dako Cat#K0675

Rabbit specific HRP/DAB (ABC)

Detection IHC Kit

Abcam Cat#ab64261

TaqMan Genotyping Master Mix Fisher Scientific Cat#4371355

SYBR Green PCR Master Mix Applied Biosystems Cat#4309155

Deposited Data

The ‘‘Gene changes in response to

asbestos and carbon nanotube exposure

in the pleural cavity, measured using

microarrays’’ have been deposited in the

NCBI GEO database https://ww.ncbi.nlm.

nih.gov/geo/ under ID code GSE51636

https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE51636

GEO: GSE51636

Experimental Models: Cell Lines

Human adult mesothelial cells, 4 female

donors

Zenbio Cat#MES-F

Experimental Models: Organisms/Strains

Mouse: C57BL/6 Charles River Laboratories Strain code 027

Oligonucleotides

Primers for qPCR, Gene copy number and

Bisulfate Sequencing, see Table S4

This paper N/A

Software and Algorithms

Ingenuity Pathways Analysis software Ingenuity Systems Cat#830003

Primer Express v3.0.1 Software Fisher Scientific Cat#4363991

GeneSpring GX Software Agilent Cat#G3778AA
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Experimental animals
Eight-week-old female C57BL/6 strain mice (Charles River Laboratories, UK) were used in this study. Mice were kept in a maximal

group size of five in standard caging with sawdust bedding within a pathogen-free Home Office approved facility. Mice were main-

tained on a normal 12 hr light and dark cycle. Prior to treatment, mice were kept for 7 days in the facility to acclimatize. The work was

carried out by staff holding a valid UK Home Office personal license under a Home Office approved project license.

Human subjects
Informed consent was obtained from all subjects with Ethical Committee Approval – LREC 08/H0406/226. Tissues from 13 patients

were analyzed in this study, including 1 female and 12 males aged 45–78 years [41].

Fiber samples
The fiber panel consisted of one sample of short, straight CNT (SNT), one sample of long, straight CNT (LNT), short-fiber amosite

asbestos (SFA) and long-fiber amosite asbestos (LFA). The SNT sample, produced by the catalytic vapor discharge method

(CVD), was purchased commercially (Nanostructured & Amorphous Materials, TX, USA). The LNT sample was produced in an aca-

demic research laboratory (University of Manchester, Manchester, UK) using the CVD method. Mixed-length amosite asbestos en-

riched for long fibers (LFA), and shortened amosite asbestos [17] were used to link the response to asbestos pathogenicity. Both LFA

and SFAwere created from the same batch of South African amosite [18] obtained from theManville Corporation, United States. SFA

was prepared by grinding long fibers in a ceramic ball mill, and the resulting fiber preparation sedimented in water. Physical charac-

teristics (diameter and length) were measured from scanning electron microscopy (SEM) and transmission electron microscopy

(TEM) images of the dispersed fiber samples, as previously described by Poland et al. [11] (Figure S1). Trace soluble metal contam-

inants previously tested and reported by Poland et al. [11] were low and, thus, not considered to play a role in these studies.

Intrapleural injection
Injection directly into the pleural space without perforating the lungs was enabled by the addition of a sleeve over the tip of the

27-Gauge needle, which prevented the needle from passing through the pleural space into the lungs [1]. Mice were randomly allo-

cated to the treatments and received injection of one of the following: vehicle control (VC), SFA, LFA, SNT or LNT. For 1 and 12 weeks

exposure, CNT sampleswere injected into the pleural cavity at a dose of 5 mg/mouse, n = 4 in each treatment group. For 6months and

1year exposure, the treatments were as follows: VC, LFA and LNT, with n = 4 in each treatment group, at a dose of 2.5 mg/mouse

(100 mL) of LNT. For prolonged (up to 20 months) exposure, mice were injected with 1 mg/mouse of LNT (n = 4), 0.5 mg/mouse of

LNT (n = 5) or 0.2 mg/mouse of LNT (n = 12). Asbestos fiber samples were administered at a dose of 25 mg/mouse (100 mL) (n = 4

for short-term studies and n = 16, prolonged exposure) or at 50 mg/mouse (n = 16, prolonged exposure). 0.5% BSA/saline

(100 mL) was injected into mice as a vehicle control (VC). After 1 week, 12 weeks, 6 months, 1 year and 18-20 months, mice were

humanely killed and tissues were collected for further examination. Animal IDs, indicated in the Figures, were as follows: #610 -

LNT-exposed mouse that developed mesothelioma at 1 year study completion point; ## 621, 622, 623 - LNT-exposed mice that

did not have a tumor at 1 year study completion point; ## 612, 613, 614, 615 - VC; #398 - LFA-exposed mouse; #461 - low-dose

LNT-exposed mouse that developed mesothelioma after 17 months exposure; ## 616-620 - LFA-exposed mice with inflammatory

lesions.

METHOD DETAILS

Experimental Design
All experiments were reproduced in at least three biological repeats. For in vivo experiments, sample sizes were chosen on the basis

of prior experiments which have elicited significant results with a similar number of mice. With the exception of histological analysis,

data collection and analyses were not performed blind. Data were considered statistically significantly different at p < 0.05. No data

were excluded from any dataset.

Tissue dissection
The lower-right posterior portion of the chest wall and half of the diaphragm were carefully removed from the mice. The tissue was

washed in ice-cold saline, fixed in 10% formalin for 4 hr and transferred to 70% ethanol. Samples were embedded in paraffin,

sectioned, and used for H&E, immunostaining and PALMmicrodissection. The pleurae were dissected from the surface of the chest

wall and snap frozen for kinome profiling. The other half of the diaphragm was snap frozen for RNA extraction and PALM

microdissection.

Kinome profiling
Kinome profiling was performed using Phospho-Kinase Array Kit according to manufacturer’s protocol (R&D Systems, Oxford, UK).

Pleural tissues from fiber-exposed and control mice were collected by dissection, homogenized and lysed, the lysates from

the pleurae of 4 animals were pooled for each treatment group. Lysates, cleared by centrifugation, were loaded onto the provided
Current Biology 27, 3302–3314.e1–e6, November 6, 2017 e3



membranes pre-coated with capture antibodies, and the presence of bound phospho-proteins was determined by western blotting

with amixture of detection antibodies. The signal intensities for kinase phosphorylation were determined in duplicate by densitometry

and normalized on the provided positive control. The status of kinase phosphorylation in the pleurae of fiber-exposed animals is re-

ported relative to the vehicle control.

RNA microarrays
Total RNA from control and fiber-exposed animals (n = 4) was extracted by TRIzol (Fisher Scientific, Loughborough, UK) and then

used for labeling and hybridization. Hybridization to 60K whole mouse genome microarray gene expression chips was conducted

following manufacturer’s protocol (Agilent Technologies, Berkshire, UK). Briefly, total RNA from control and fiber-exposed mice,

12 weeks post-injection, was used for labeling and hybridization. RNA samples were Cy3-labeled using Agilent Low Input Quick

Amp 1-color Labeling Kit (Agilent Technologies, Berkshire, UK). The level of dye incorporation was evaluated using a spectropho-

tometer (NanodropND1000, LabTech). Labeled RNAwas then fragmented in the appropriate buffer (Agilent Technologies, Berkshire,

UK) for 30 min at 60�C before dilution (v/v) in hybridization buffer. Hybridization to 60K high-density oligonucleotide microarray slides

was performed in a microarray hybridization oven (Agilent Technologies, Berkshire, UK) overnight at 65�C. Following hybridization,

the slides were rinsed in gene expression wash buffers 1 and 2 and immediately scanned using a DNA Microarray Scanner (Model

G2505C, Agilent Technologies, Berkshire, UK).

Immunohistochemistry
Chest wall or diaphragm sections (5 mm) were deparaffinized with xylene and rehydrated. Antigen retrieval was carried out by incu-

bating the slides in citrate buffer (pH 6.0) at 95�C for 15 min. Sections were blocked with 10% goat serum for 30 min at room tem-

perature. Primary antibodies were diluted in 1% goat serum/0.1% BSA/PBS. Sections were incubated with primary antibodies (KEY

RESOURCE TABLE) overnight at 4�C. Sections were washed with Tris-buffered saline with 0.1% Tween 20 (TBST) and incubated

with 3% H2O2 for 10 min at room temperature to block endogenous peroxidase activity. Sections were washed before incubation

with biotin-labeled secondary antibodies (anti-Rabbit: Abcam, pre-diluted; anti-Mouse: DAKO LSAB2 System-HRP, anti-Rat: Invi-

trogen Histostain Kit pre-diluted) for 30min at room temperature. Staining was visualized using a HRP/DAB detection system Abcam

(Cambridge, UK) or Histostain-Plus detection System (Life Technologies). Control IHC experiments (data not shown) were performed

without primary antibody. All sections were counterstained with Gill’s hematoxylin andmounted for digital slide scanning using a Ha-

mamatsu slide scanner (NanoZoomer-XRDigital slide scanner C12000-01;WelwynGardenCity, Hertfordshire, UK). An ImageJColor

Balance Plugin, set with the same scaling factor for all images, was applied to all scanned images to normalize scanner background.

The proportion of each cell type in the lesions was determined by counting the number of positively stained cells in 5 random fields

of view and dividing by the total number of cells (between 700-1000 cells per cell-marker per treatment group were counted).

Quantification of Ki-67 and phospho-Histone H3-positive cells was carried out by counting the number of positively stained cells in

5 random fields of view and dividing by the total number of cells (between 700-1000 cells per animal were counted, n = 3 per group).

Data presented as mean ± SD. Statistical significance of data was estimated using two-tailed Student’s t test.

Laser microdissection and RNA analysis
Collection of tissues for RNA from selected areas of normal diaphragms (VC) and fiber-induced lesions (LFA, LNT) and collection of

tissues for genomic DNA (gDNA) from tumor areas, predominantly positively or negatively stained for p19 or p16 protein, and from

control tissues was performed by contact-free lasermicrodissection using the PALMRobot-MicroBeam system (P.A.L.M.Microlaser

Technologies AG, Bernried, Germany), Motorised Zeiss Observer Z.1 inverted microscope (Zeiss, Germany) with high precision XY

stage, pulsed UV laser and Robomover (PALM RoboSoftware, P.A.L.M. Microlaser Technologies AG, Germany). Laser catapulting

was used for non-contact capture of excised samples in microcentrifuge tubes. Total RNA was isolated by using TRIzol (Fisher Sci-

entific, Loughborough, UK). First strand cDNA synthesis was carried out using Superscript III (Fisher Scientific, Loughborough, UK).

PCR primers were selected using the Primer Express v3.0.1 Software program (Fisher Scientific, Loughborough, UK). Primer se-

quences are shown in Table S4. Primers were designed to cross exon-exon boundaries and the concentration optimized (300 -

900 nM) to ensure that the efficiency of the target gene amplification and the efficiency of the endogenous reference amplification

are approximately equal. Real-time PCR was performed using SYBR Green PCR Master Mix, primers, and 10 ng of reverse-tran-

scribed cDNA in the ABI PRISM 7500 Sequence Detection System (Applied Biosystems, Foster City, CA). The thermal-cycler pro-

tocol was: stage 1, 50�C for 2 min; stage 2, 95�C for 10 min; and stage 3, 40 cycles at 95�C for 15 s and 60�C for 1 min. Each sample

was run in triplicate. The CT values for the target amplicon and endogenous control b2-microglobulin were determined for each sam-

ple. Quantification was performed using the comparative CT method DDCT). Data presented as mean ± SD (n = 4). Statistical signif-

icance was assessed as p < 0.05 using two-tailed Student’s t test.

Immunoblotting
Proteins were extracted from snap frozen freshly-resectedmesothelioma tumor samples using lysis buffer (0.5%NP-40, 20mMTris-

HCl (pH 8.0), 137mMNaCl, 10%glycerol, 2mMEDTA, 1mM sodium orthovanadate, 10 mg/mL leupeptin, and 10 mg/mL aprotinin) and

brief sonication and run on SDS-PAGE (20 mg protein). Proteins were transferred onto nitrocellulose membranes (Bio-Rad labora-

tories, Hemel Hempstead, UK) using electrophoresis. Membranes were pre-incubated with 5% skimmed milk in TBS-T. After

incubation with primary and secondary antibodies, bands were detected by enhanced chemiluminescence (GE Healthcare, Little
e4 Current Biology 27, 3302–3314.e1–e6, November 6, 2017



Chalfont, Buckinghamshire, UK) and visualized by exposure to X-ray films (Hyperfilm ECL; AmershamBiosciences, Chalfont St Giles,

UK). Primary antibodies were from the following sources:anti-STAT3, anti-phospho-Akt (Ser 473), anti-Akt, anti-phospho-p44/42

MAPK (ERK1/2) (Thr202/Tyr204), anti-p44/42 MAPK (ERK1/2), anti-phospho Src (Y418), anti-Src from Cell Signaling Technology,

(Buckinghamshire, UK); rabbit anti-phospho-Stat3 (Tyr705) from Abcam (Cambridge, UK), mouse anti-b Actin (loading control)

was from Sigma–Aldrich (Gillingham, UK).

DNA damage assessment
Genomic DNAwas isolated from the diaphragms of mice exposed to LFA and LNT for 12 weeks or 6 months using a DNA isolation kit

GeneJET Genomic DNA Purification Kit (Thermo Fisher Scientific, Paisley, UK); 8-OHdG was measured using an EpiQuik 8-OHdG

DNA Damage Quantification Direct Kit (Colorimetric) (Insight Biotechnology Ltd, Wembley, UK) according to manufacturer instruc-

tions and compared to VC (n = 4 per group). Briefly, 300 ng genomic DNAwas bound to strip wells with high DNA affinity and 8-OHdG

was detected using capture and detection antibodies. The detected signal was enhanced and then quantified colorimetrically in a

microplate reader. Quantification was performed by using a standard curve and plotting the OD values versus the amount of positive

control at each concentration point. Data presented as mean ± SD. Statistical significance of the data was estimated using a two-

tailed Student’s t test.

Relative quantification of gene copy number by real-time PCR
An assay based on the paralog ratio test and real-time PCR was used to determine the DNA copy number in formalin fixed paraffin

embedded (FFPE) tissue as described previously [33]. Genomic DNA (gDNA) was extracted using PureLink Genomic DNA Mini Kit

(Fisher Scientific, Loughborough, UK) accordingly to the manufacturer’s instruction, from tumor areas positively and negatively

stained for p16 and p19, and control tissues including unaffected tissue (heart) from fiber-exposed mice, diaphragm tissue from

VC group, and liver tissue from a C57/Bl6 mouse. Commercially available murine gDNA from Swiss-Webster albino (CFW) mice

(Promega, Southampton, UK) was also included as a control. Briefly, PCRswere designed inwhich two target sequenceswere ampli-

fied by a pair of primers. The first gene in each pair was from a region of a frequent loss or deletion (p16 or p19), whereas the second

gene was the ‘‘housekeeping’’ gene, Supervillin, from a different chromosome. The Primer Express v3.0.1 Software program (Fisher

Scientific, Loughborough, UK), was used to identify primer pairs and to design minor groove-binding hydrolysis probes. Primer se-

quences (Sigma) and TaqMan Probes (Life Technologies) are listed in Table S4.

Real-time PCRs were performed on a 96-well plate on the ABI 7500 Fast system (Applied Biosystems Foster City, CA). Each of

10 mL reactions contained 3.4 mL of gDNA (5 ng), 0.3 mL of each of the two primers required for each locus (20 pmol/L), 0.2 mL of

each of the probes required (50 to 200 nmol/L), and 5 mL of Genotyping MasterMix (Applied Biosystems Foster City, CA). Master

mixeswere prepared for each reaction, and themastermixes andDNA samples were transferred to 96-well plates using an electronic

multi-channel pipette. The PCR conditions were as follows: 2 min at 50�C; 10 min at 95�C; 15 s at 95�C and 60 s at 60�C. Fifty cycles
were performed. CT values were determined using the automatic threshold settings. Four samples of gDNA (unaffected heart tissue

from the same animal, diaphragm tissue from a VC mouse, liver from C57/BL6 mouse, and commercial gDNA from Swiss-Webster

albino (CFW) mice (Promega, Southampton, UK) were used as controls.

Bisulphite sequencing
Genomic DNA from selected areas of tumor or from mesothelial cells in the inflammatory lesions was isolated using GeneJET

Genomic DNA Purification Kit (Fisher Scientific, Loughborough, UK) and was bisulphite converted and recovered with EZ DNA

Methylation-Direct Kit (Cambridge Bioscience, Cambridge UK), as recommended by manufacturer. The PCR to amplify CpG islands

in the genes of interest was performed on a 3Prime Thermal Cycler (Bibby Scientific Limited, Stone, UK) using EpiMark Hot Start Taq

DNA Polymerase (New England Biolabs Ltd, Herts, UK). The PCR conditions were as follows: 95�C for 3 min, then 40 cycles of 95�C
for 30 s, 55�C for 30 s and 67�C for 2 min. A final incubation at 67�C for 10 min concluded the PCR. Positive control (Universal Meth-

ylated Mouse DNA Standard, Millipore Ltd, Watford, UK) and control (normal mesothelial tissue from VC) samples were included in

each PCR reaction. PCR products were verified by gel electrophoresis, and a small aliquot of the PCR reaction was used with the

TOPO-TA cloning system (Thermo Scientific, Paisley, UK) as suggested by the manufacturer. Clones were picked from Lysogeny

Broth-Ampicillin cultures, and were then screened using restriction analysis. Positive clones were sequenced using M13 primer

by the University of Leicester DNA Sequencing Facility. 25-100 clones were analyzed for each described experimental condition.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of microarray data
Data were verified to be normally distributed. The raw data was uploaded into Agilent’s GeneSpring Software, normalized and fold

changes calculated. For each group of animals the probes with an absolute 2-fold-change in mRNA expression between VC and fi-

ber-exposed mice were included in subsequent analyses. These were subjected to ANOVA unequal variations test with Benjamini-

Hochberg corrections. Significant 2-fold or more changes (p < 0.05) were subjected to hierarchical clustering with average linkage.

The clustered heat-map was visualized using GeneSpring. The network pathways were identified using Ingenuity Pathways Analysis

software (Ingenuity Systems, Redwood City, CA).
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Quantification of Ki-67 and phospho-Histone H3 positive cells
Quantification of Ki-67 and phospho-Histone H3 positive cells was carried out by counting the number of positively stained cells in 5

random fields of view and dividing by the total number of cells (between 700-1000 cells per animal were counted, n = 3 per group).

Data presented as mean ± SD. Statistical significance of data was estimated using two-tailed Student’s t test.

Quantification of DNA damage
Quantification of DNA damage was performed by using a standard curve and plotting the OD values versus the amount of positive

control at each concentration point. Data presented as mean ± SD. Statistical significance of the data was estimated using a two-

tailed Student’s t test.

Real time PCR
Quantification was performed using the comparative CT method (DDCT). Data presented as mean ± SD (n = 4 for each group). Sta-

tistical significance was assessed as p < 0.05 using two-tailed Student’s t test.

Relative quantification of gene copy number by real-time PCR
The DCT score was calculated for each of the reactions using the following equation: CT gene 1 � CT gene 2 = DCT, where gene 1 is

that of common DNA loss and gene 2 is the reference. The mean DCT from the triplicate reactions was used for subsequent analysis.

A series of four gDNA samples acted as control for each PCR run. The relative quantification of copy number was calculated using

the 2-DDCT value. Z scores for the controls and predominantly p19 negative tumor areas were generated using the mean and SD of a

reference population comprising the four control DCT values. This was used to determine which samples were outside of the 99%

reference range for control, with those outside of this range being considered aneuploid.

DATA AND SOFTWARE AVAILABILITY

The dataset for mRNA array, the ‘‘gene changes in response to asbestos and carbon nanotube exposure in the pleural cavity,

measured using microarrays,’’ reported in this paper is NCBI GEO: GSE51636 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE51636).
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