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Abstract 

Associative learning theories regard the probability of reinforcement as the critical factor 

determining responding. However, the role of this factor in instrumental conditioning is 

not completely clear. In fact, free-operant experiments show that participants respond at a 

higher rate on variable ratio than on variable interval schedules even though the 

reinforcement probability is matched between the schedules. This difference has been 

attributed to the differential reinforcement of long inter-response times (IRT) by interval 

schedules, which acts to slow responding. In the present study, we used a novel 

experimental design to investigate human responding under random ratio (RR) and 

regulated probability interval (RPI) schedules, a type of interval schedule that sets a 

reinforcement probability independently of the IRT duration. Participants responded on 

each type of schedule before a final choice test in which they distributed responding 

between two schedules similar to those experienced during training. Although response 

rates did not differ during training, the participants responded at a lower rate on the RPI 

schedule than on the matched RR schedule during the choice test. This preference cannot 

be attributed to a higher probability of reinforcement for long IRTs and questions the idea 

that similar associative processes underlie classical and instrumental conditioning.  

 

Keywords: reinforcement schedules; associative theories; habits; goal-directed behaviour; 

instrumental learning; causal learning 
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Introduction 

In both his learning texts, The psychology of animal learning (1974) and Conditioning and 

associative learning (1983), Nicholas Mackintosh  argues that common associative learning 

processes underlie Pavlovian and instrumental conditioning on the basis of the empirical 

commonalties between the different forms of learning. For example, in a series of experiments, 

Wagner demonstrated that when a target cue is trained in compound with another stimulus, the 

amount of conditioning accruing to the target depends upon its validity as a predictor of the 

reinforcer relative to the other stimulus (Wagner, 1969; Wagner, Logan, & Haberlandt, 1968). 

Mackintosh then notes that instrumental conditioning of wheel running shows comparable 

sensitivity to the relative validity of this response as a predictor of a food reinforcer (Mackintosh 

& Dickinson, 1979). 

The effect of relative validity in Pavlovian conditioning is most readily explained by 

associative theories that deploy a prediction error to modulate learning (Mackintosh, 1975; 

Rescorla & Wagner, 1972; for a review, see Vogel, Castro, & Saavedra, 2004). At the core of all 

such theories is the claim that the net associative strength of a stimulus normally increases when 

it is paired with a reinforcer and normally decreases when it is presented in the absence of the 

reinforcer. As a consequence, a primary determinant of conditioning is the probability of 

reinforcement, a factor that raises a potential problem for the application of such associative 

theories to instrumental conditioning. 

The problem arises from the contrast between different schedules of instrumental 

reinforcement. On variable ratio (VR) schedules, reinforcers are delivered after the agent 

performs a certain number of responses, whereas on variable interval (VI) schedules these are 

delivered for the first response made after a certain period of time has elapsed since the last 

reinforcer. The required number of responses or intervals vary after each reinforcement around a 



 
 
Human ratio and interval performance  4 

 

pre-determined average. For example, a VR10 schedule will return a reinforcer, on average, after 

every 10 responses; a VI10 schedule will reward the first response made after, on average, 10 

seconds since the last reinforced response. These schedules are thought to model, respectively, 

the non-depleting and depleting and regenerating resources that animals may find in their natural 

environments (Dickinson, 1994). The idealized versions of these two schedules are the random 

ratio (RR) and random interval (RI) schedules, where the probability of reinforcement per 

response —in the ratio case—and the probability of a reinforcer becoming available per second 

—in the interval case—are given by binomial (or geometric) distribution (see Cardinal & Aitken, 

2010). Using a variety of species and target instrumental responses, a wealth of evidence has 

shown that ratio schedules support higher response rates than interval schedules despite the 

probability of reinforcement or the reinforcement rate being matched (Bradshaw, Freegard, & 

Reed, 2015; Bradshaw & Reed, 2012; Catania, Matthews, Silverman, & Yohalem, 1977; 

Dawson & Dickinson, 1990; Peele, Casey, & Silberberg, 1984; Reed, 2001a, 2001c; Zuriff, 

1970).  

Mackintosh (1974) was fully aware of the ratio-interval contrast and discussed whether ratio 

and interval schedules differentially reinforce divergent response rates; that is, whether different 

response rates bring about different reinforcement probabilities on ratio and interval schedules. 

While dismissing the misconception that VR schedules differentially reinforce high rates of 

responding he notes that, unlike ratio schedules, interval schedules differentially reinforce long 

inter-response times (IRT), or the pause between responses. On an interval schedule, the longer 

that an agent waits before responding again, the more likely it is that a reward will have become 

available. This contingency implies that long IRTs will be correlated with higher probabilities of 

reinforcement for the next response. Because the reinforcement probability on VR schedules 

does not vary with IRT size, it follows that agents should emit longer IRTs, or pauses between 

responses, on VI schedules, and therefore respond less often than on a VR schedule. Thus, by 
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focusing on the temporal control of responding under interval contingencies, Mackintosh’s 

argument retains the probability of reinforcement as the cardinal determinant of responding.  

Kuch and Platt (1976) proposed a schedule for evaluating the role of the differential 

reinforcement of long IRTs while retaining the relative independence of response rates and 

reinforcement rates characteristic of interval schedules. The regulated probability interval (RPI) 

schedule sets a probability of reinforcement for each response that will generate an average inter-

reinforcement interval that matches the schedule parameter if the agent continues to respond at 

the current rate. This regulated probability is calculated as P =
t

Tm
, where t denotes the time it 

took the subject to perform the last m responses and T is the scheduled inter-reinforcement 

interval. The equation can be also written as 𝑃 =
1

𝑇𝑏𝑚
, where 𝑏𝑚 can be regarded as the local 

response rate during the memory size 𝑚.  Therefore, if the agent decreases 𝑏𝑚 from a particular 

level, the probability of reinforcement will adjust—increasing in this case—so that the reward is 

delivered on average after a pre-set interval, thereby keeping the reinforcement rate constant at 
1

𝑇
 

rewards per second. Suppose, for example, that 𝑚 = 10 and the interval between reinforcers that 

the experimenter aims to achieve is 10 sec (T = 10). Moreover, assume that the participant has 

performed 20 responses in the last 10 sec, so that 𝑡 = 5. Then the reinforcement probability for 

the next response will be 
5

10∗10
 =  .05: at this rate, one every 20 responses on average will be 

rewarded. Because, on average, it takes the subject 10 sec to perform 20 responses, then with a 

reinforcement probability of one in 20 (.05) the average interval between reinforcers will be 10 

sec. Suppose now that the agent responds less vigorously, so that it took 10 sec to perform the 

last 10 responses (𝑡 = 10). Then the reinforcement probability will be 
10

10∗10
= 0.1: at this new 

rate, 1 out of 10 responses on average will be rewarded. Since it takes the agent 10 sec to 

perform them, the interval between reinforcers will be again 10 sec.  
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The previous example shows that, in contrast with RI schedules, in the RPI schedule the 

reinforcement probability is fixed prior to the emission of a response so that it does not vary with 

the duration of the preceding IRT, but rather depends on a set of IRTs given by the memory size 

𝑚. As a result, the RPI prevents the differential reinforcement of any particular IRT size while 

maintaining the pre-set average inter-reinforcement interval. Thus, if probabilities of 

reinforcement are matched, associative theories predict similar levels of responding for VR and 

RPI schedules.  

Only a few studies have investigated the VR/RPI contrast. Dawson and Dickinson (1990) 

compared responding on VR, VI, and RPI schedules with triads of rats when the reinforcement 

rate of the interval schedules was matched to that generated by the ratio schedule by yoking 

within each triad. The fact that the rats responded more slowly on the VI than on the RPI 

schedule suggests that the differential reinforcement of long IRTs does slow responding under an 

interval contingency, whereas the higher response rate on the VR than on the RPI schedule 

indicates that this factor cannot be the sole cause of the ratio-interval difference. More recently, 

Tanno and Sakagami (2008) observed similar response rates when rats responded on VR and 

RPI schedules. However, in a further study with human participants, Tanno (2008) replicated the 

ordering of response rates observed by Dawson and Dickinson (1990)—although the critical 

contrast between the VR and RPI performance did not reach the standard criterion of statistical 

significance. Given the theoretical importance of this contrast, we re-examined human 

instrumental performance on VR and RPI schedules. 

To this end, we matched the probability of reinforcement across RPI and random ratio 

(RR) schedules by yoking the value generated by performance on a master RPI schedule to that 

programmed by the RR contingency on both a within-participant and between-participant basis. 

In addition, we trained some of the participants on an RPI schedule that programmed an average 

inter-reinforcement interval that matched the interval generated by their prior performance on an 
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RR schedule. Following this training on the single RPI and RR schedules, we gave a choice 

between responding on the two types of schedules. If, as anticipated by associative theories, the 

probability of reinforcement is the primary determinant of responding, the participants should 

have responded at similar rates on the RR than on the RPI schedule in this choice test.  

Method 

Participants  

 Forty-five undergraduates from the University of Cambridge, who were naïve to the 

experimental procedure, participated in the experiment and gave informed consent. They were 

randomly assigned to one of 4 groups and were paid £3 plus a chocolate bar for their 

participation.  

Apparatus 

Participants were tested individually inside one of two testing rooms and presented with the task 

on a laptop (15.4” Acer Aspire 5930 or 15.4” Asus K52J) running Windows 7. The experiment 

was programmed using Microsoft Visual Studio 2008. To prevent participants from being 

distracted by outside noise, all of them were asked to wear headphones during the task. 

(Table 1 about here) 

Design 

There were four groups and two stages; training followed by the choice tests. As represented in 

the rows of Table 1, training started with a sequence of four 3-minute trials in each of which 

responding  was reinforced on a different schedule. For Group A1, training started with the 

master RPI 30-s schedule followed by training in the second trial on a yoked RR schedule, 

designated as a RRy30 schedule. For each participant, the mean probability of reinforcement 

generated by performance on the RPI 30-s schedule was used as the parameter for the RRy30, 
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thereby yielding within-participant yoking of reinforcement probability. The next two training 

trials recapitulated this sequence with an RPI 10-s master schedule. This sequence was then 

repeated to generate a total of 8 trials so that each schedule received a total of 6 min of training. 

The purpose of training on the RPI 10-s schedule was to yield a yoked RRy10 schedule with a 

higher reinforcement probability than the yoked RRy30 so that we could verify that performance 

on our task was sensitive to this well-established determinant of instrumental responding. To this 

end, the first 3-min choice test trial offered a choice between responding on the RRy10 and 

RRy30 schedules. If performance on this task is sensitive to reinforcement probability, the 

RRy10 schedule should have attracted more responding. Finally, the critical test offered a choice 

between the RPI 30-s and RRy30 schedules for participants in A1 or A2 groups. 

Each participant in Group B1 was paired with a master participant in Group A1 so that, 

through between-participant yoking, the performance of the master on the RPI 30-s schedule set 

the probability of reinforcement scheduled by the initial RRy30 schedule received by the yoked 

B1 participant. This participant was then trained on an RPIy30 schedule for which the parameter 

was the mean inter-reinforcement interval generated by her prior performance on the RRy30 

schedule. The next two trials recapitulated this yoking procedure for the 10-s parameter. The two 

choice test trials were the same as those for Group A1 except that the final trial gave a choice 

between the RRy30 and RPIy30 schedules. 

Finally, Groups A2 and B2 received the same training and testing as Groups A1 and B1, 

respectively, except for the fact their participants were initially trained on the master RPI 10-s 

schedule and the associated yoked schedules so that the order of training was counterbalanced 

across groups. 

Procedure   
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The scenario required as the response the insertion of coin icons into dispensers in order to 

obtain M&M sweets as the reinforcer or outcome. Each schedule was associated with a different 

dispenser. Following the procedure used in similar studies (Bradshaw et al., 2015; Bradshaw & 

Reed, 2012; Reed, 2001c), the participants were given written instructions with the following 

text below: 

During your time today you will be using coins to invest into M&Ms dispensers. You will have the opportunity to use 

your coins in different M&Ms dispensers, but only one of them will be turned on at each time. At any time you may 

invest a coin on a dispenser by pressing the spacebar. If you receive a return on your coins, then you will get one 

M&Ms bag. The total number of candies you have won and your total coin credit will be displayed on the top of the 

screen so you can monitor your performance. 

Your aim is to make the most profits, i.e., to get the most M&Ms with the fewest coins. In doing so, you will need to 

use your coins the best way you can. Due to the nature of the dispenser machines it is to your advantage to insert 

coins some of the time and not to insert coins at other times. You need to discover this by yourself.   

You will be shown 4 dispenser machines, only one of which is active at a time. You have to select the active machine 

by clicking on it. To indicate that the machine is active, a hand holding a coin will be shown above the selected 

machine. To insert a coin in the active machine, press the spacebar. You may insert coins at any time. Every time a 

coin earns you a reward (M&Ms candy), you have to collect it by clicking on the “collect” image that will appear 

on the screen and then select the machine again to be able to insert coins again. The following screenshot explains 

the display you will see: (a screenshot of the task was presented) 

Your performance will be recorded and ranked among the performance of other participants; the 3 participants who 

used their coins most efficiently (i.e. highest number of M&Ms collected with the fewest coins) will receive special 

rewards. 

After checking that participants understood the instructions, they started responding on 

the first training schedules assigned to their group, as outlined in the design section. Four M&M 

dispensers were aligned in the lower part of the screen from left to right (see Figure 1). The 

combination of the image of each machine and the position was randomised between subjects. 
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The active schedule was signalled by a hand holding a coin on top of the dispenser; a banner in 

front of the other machines with the phrase “not in use” signalled that the other schedules were 

inactive. Upon completion of 3 minutes of training on the first schedule, the next schedule was 

activated and the hand moved to its corresponding position. The banner now appeared in front of 

the previous dispenser. This process continued until the 8 trials were completed.  

(Figure 1 about here) 

In the upper part of the screen, the number of M&Ms obtained in the task and the number 

of coins spent were shown in the upper corners. In contrast to the majority of human studies 

using free-operant schedules (Bradshaw et al., 2015; Bradshaw & Reed, 2012; McDowell & 

Wixted, 1986; Reed, 2001a, 2001b, 2001c), participants were not shown the number of credits 

remaining, but only the total number they had so far spent during the task. This display informed 

participants the overall number of responses performed, but no information about current 

performance was provided. Based on a previous pilot study, we thought this procedure would 

encourage participants to maintain responding and not to consider stopping as a strategy for 

maximizing the amount of credits obtained in the task. 

We also added a collection procedure. To collect the M&M, participants were asked to 

click on the upper part of the screen where an image of an M&M bag appeared. They then had to 

return to the dispenser and click on it in order to activate it and start responding again. Every 

time a reward occurred, the timer for the task was paused and re-started only after the participant 

clicked on the M&M bag. The addition of this “consummatory” response was based on previous 

data suggesting that, under certain conditions, this response might be necessary for human 

participants to show performance similar to that observed in non-human animals (Bradshaw & 

Reed, 2012; Reed, 2007a).  
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The choice test started immediately after training finished (see Table 1). Two different 

dispensers were active at the same time and, in order to insert coins, participants had to choose 

one of the dispensers by clicking on it. The hand holding the coin appeared on top of the 

dispenser every time the choice occurred.  

Both RR and RPI schedules specified the probability that each insertion of a coin into a 

dispenser would yield M&Ms. In the case of the RR schedule, the reinforcement probability was 

simply the reciprocal of the schedule parameter, which was determined for each participant and 

schedule by the yoking procedure. If, for example, the yoking procedure led to an RR schedule 

delivering reinforcement after five responses on average, then reinforcement probability was 

simply 1/5. The probability of a response being rewarded on a RPI schedule was 
t

Tm
, where the 

schedule parameter T was the programmed mean inter-reinforcement interval that the schedule 

aimed to maintain, and t was the total duration of the last m IRTs which, when divided by m, 

represented the mean IRT during this period, or the local rate of responding. Therefore, on the 

RPI schedule, the probability that a particular response was reinforced did not depend on the last 

IRT, but on a set of m IRTs. As Dawson and Dickinson (1990) found that the performance of 

their rats was unaffected by the value of m when varied between 1, 5, and 50, we assigned a 

value of 5 to m.  The algorithm for the regulated probability was set so that if the number of 

responses was less than the memory size of 5, the probability of reinforcement for the next 

response was calculated by taking the response rate for the number of responses currently 

emitted since the beginning of the trial. After five responses were emitted, the regulated 

probability was calculated with the memory size of 5 for the rest of the trial.  

Results 

Nine participants in total were discarded from the analysis because they either failed to respond 

in at least one of the master schedules, thereby producing undefined parameters for the yoked 
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schedules, or because response rates for at least one master RPI schedule were so high that 

probabilities of reinforcement for the yoked participant were less than .02, which would not 

allow the yoked participant to experience the schedule contingency during a 3-minute trial. 

Participants that did not meet the criteria were excluded immediately after testing by examining 

their performance and before testing the next participant. This resulted in the following number 

of participants excluded from each group: Group A1: 2 participants; Group B1: 2 participants; 

Group A2: 4 participants; Group B2: 1 participant. Following these exclusions, each group 

consisted of nine participants.  

 (Figure 2 about here)  

Choice Test 

As shown in Figure 2, participants responded at a higher rate on the RRy10 schedule than on the 

RRy30 (F(1,34)=21.01, p<.01, η2 =.38, 90% CI [.17, .53]), thereby confirming that performance 

in this choice test is sensitive to a major determinant of instrumental responding, the 

reinforcement probability. Of most theoretical significance, however, is the finding that the 

RRy30 schedule attracted a higher rate of responding than the RPI30/y30 schedules 

(F(1,34)=5.53, p=.02, η2 =.14, 90% CI [.01, .31]) despite the reinforcement probabilities being 

the same. The magnitudes of these schedules effects did not vary reliable across the four groups. 

There was no significant effect of group on the response rate nor a significant schedule x 

group interaction for the RRy10-RRy30 contrast  (F(1,34)=0.26, p=.61, η2 =.01, 90% CI [.00, 

.11]; (F(3,34)=0.91, p=.35, η2 =.07, 90% CI [.00, .18], respectively) and the RRy30-RPI30/y30 

contrast (F(1,34)=0.29, p=.60, η2 =.01, 90% CI [.00, .11]; F(3,34)=1.15, p=.29, η2 =.09, 90% CI 

[.00, .20], respectively).  

(Table 2 about here) 
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Training 

Table 2 shows that the response rates were uniformly high during the last four trials of training 

(the second 3-min trials for each schedule). Neither the effects of schedule (F(3,102)=0.28, 

p=.84, η2 =.01, 90% CI [.00, .03]) or group (F(1,34)=1.06, p=.31, η2 =.03, 90% CI [.00, .17]), 

nor their interaction (F(3,102)=0.60, p=.62, η2 =.02, 90% CI [.00, .05]) were significant. We 

suspect that the effects of these factors, which were evident during the choice test, were not 

observed in training because the low cost of responding did not constrain performance in the way 

that the choice of one option at test constrained performance on the other option.  

Yoking analysis 

As noted in the introduction, the reason for using the RPI schedule to examine the ratio-

interval contrast is the fact that this schedule controls the differential reinforcement of long IRTs 

by standard interval schedules. Therefore, if our yoking procedure was successful in controlling 

for reinforcement probability, then associative theories predict similar levels of responding for 

RR and RPI schedules in the choice test. To investigate whether these conditions were met, we 

analysed the IRTs and reinforcement probabilities during the last four training trials.  

As well as presenting the standard analysis of variance, we also evaluated the predicted 

null hypotheses for the IRTs and reinforcement probabilities using Bayesian procedures (Bayes 

Factor, BF01). We interpreted, in each case, the level of evidence in favour of the null following 

the guidelines provided by Jenkins (1961; cited by Kass, 1993). Following suggestions from 

Rouder et al. (2009), we assigned a width of 1 for a prior Cauchy distribution.   

Probability of reinforcement. The reinforcement probabilities, which are displayed in 

Table 2, were analysed in accordance with the two pre-planned contrasts of the choice test. Two 

separate 2(schedule) x 4(group) ANOVAs were run for the RRy10-RRy30 and for the 

RPI30y30-RRy30 contrasts. The probability of reinforcement for the RR schedule whose master 
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interval was 10 s was higher than for the RR schedule whose master interval was 30 s 

(F(1,32)=34.0, p<.01, 𝜂2 =.52, 90% CI [.29, .64]), but neither the effect of group (F(3,32)=2.05, 

p=.13, 𝜂2 =.16, 90% CI [.00, .29]) nor the group x schedule interaction (F(3,32)=0.21, p=.89, 

𝜂2 =.02, 90% CI [.00, .07]) were significant. By contrast, the probabilities for the RRy30 and 

RPI30/y30 were identical (.08) (F(1,32)=0.07, p=.80, 𝜂2 =.00, 90% CI [.00, .08], BF01 = 7.47 

(moderate)) and therefore higher response rate generated by the RRy30 schedule relative to the 

RPI30/y30 schedule in the second choice test cannot be attributed to a difference in 

reinforcement probability. There were no effects of group (F(3,32)=1.61, p=.20, 𝜂2 =.13, 90% 

CI [.00, .26]) nor significant interactions between schedule and group (F(1,32)=1.06, 

p=.38, 𝜂2 =.03, 90% CI [.00, .17]) for this contrast.    

IRTs. For the IRT analysis, we used as the dependent variable the ratio of the mean 

reinforced IRT to the mean IRT emitted on each schedule, which is also displayed in Table 2. 

Because neither the RPI nor the RR schedule reinforced any particular IRT size, we did not 

expected this ratio to differ significantly across schedules. In line with this prediction, the ratio 

did not differ for the two pre-planned schedules of the choice test (RRy10-RRy30: F(1,28)=0.02, 

p=.89, 𝜂2 =.00, 90% CI [.00, .03], 𝐵𝐹01 = 7.08 (moderate); RPI30y30-RRy30: F(1,23)=1.23, 

p=.27, 𝜂2 =.05, 90% CI [.00, .23], 𝐵𝐹01 = 4.57 (moderate)). Therefore, the higher response rate 

generated by the RRy30 schedule relative to the RPI30/y30 schedule in the second choice test 

cannot be attributed to a differential reinforcement of long IRTs.  No effects of group or 

interactions were found (all Fs<1.47).  

Discussion 

After a training stage with RR and RPI schedules, we presented participants with two 

choice tests where they had to distribute responding between pairs of schedules that they 

experienced during training. In the first test, participants responded more to the RR schedule 



 
 
Human ratio and interval performance  15 

 

with a higher probability of reinforcement, thereby demonstrating the sensitivity of our 

procedure to the variable that associative theories assume is a critical determinant of learning. 

Additionally, and of more theoretical importance, in a second choice test an RR schedule 

attracted more responding than an RPI schedule with a comparable probability of reinforcement. 

Taken together, these two results pose a challenge for the application of associative theories to 

instrumental learning.  

Mackintosh (1974, pp. 216-222; 1983, pp.86-99) underscored the importance of the 

parallels between instrumental and classical conditioning by noting that numerous phenomena 

from Pavlovian conditioning appeared to have an instrumental counterpart (Dickinson, Watt, & 

Griffiths, 1992; Dickinson, Peters, & Shechter, 1984; Hammerl, 1993; St. Claire-Smith, 1979). If 

the conditions that brought about these phenomena appeared to be the same, then the 

mechanisms should also be similar. In order to explain instrumental data, an associative theory 

simply needs to replace the Pavlovian stimuli with the instrumental response as the target event; 

the mechanisms for learning the action-outcome (A-O) association could then be analysed in the 

same terms as in the Pavlovian case.  

Most associative theories of Pavlovian conditioning are formalised by using a prediction 

error to modulate the amount of learning acquired with successive stimulus-outcome pairings (N. 

J. Mackintosh, 1975; Pearce & Hall, 1980; Rescorla & Wagner, 1972). The most influential 

theory, the Rescorla and Wagner model (R-W) states that the change in associative strength of a 

particular stimulus will be a function of the prediction error, λ − ∑V, where λ is the maximum 

associative strength supported by the outcome and ∑V is the total associative strength of all the 

stimuli present on the trial.  The basic idea embodied in the prediction error term—and, in 

particular, in the summation term—is that conditioning would take place not only by contiguous 

stimulus-outcome pairings, but only if the target event provides subjects with further information 

about the occurrence of the outcome upon its presence. If, furthermore, the function relating 
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learning and performance is monotonically increasing and reinforcement is always contingent to 

a response being performed, then those actions with higher probabilities of reinforcement should 

be performed more vigorously than those with lower probabilities.  

The problem that arises when trying to reconcile this idea with free-operant experiments 

is the observation that RR schedules support higher levels of responding than yoked RI 

schedules when the probability of reinforcement is matched (Catania et al., 1977; Reed, 2001c). 

Moreover, the result also holds when the reinforcement rates are matched, and hence the 

reinforcement probability is higher for interval schedules (Bradshaw et al., 2015; Bradshaw & 

Reed, 2012; McDowell & Wixted, 1986; Peele et al., 1984; Zuriff, 1970). For this reason, 

models grounded in the basic law of effect have mostly relied on the differential reinforcement 

of different IRT durations, by arguing that on RI schedules the probability of reinforcement is 

higher for longer IRTs and therefore the distribution of emitted IRTs should have its peak on 

longer IRTs for RI schedules, thus generating lower response rates.  

A number of mechanistic models have been proposed following this reasoning. Peele, 

Casey & Silberberg (1984), for example, proposed a model in which a number of past IRTs are 

saved in subjects’ memory and responding is generated by sampling an IRT duration from the 

resulting distribution of reinforced IRTs. As a result of this algorithm, they were able to replicate 

the ratio/interval difference observed for regular VI schedules. A similar IRT model was recently 

proposed by Tanno & Silberberg (2012; see also Wearden & Clark, 1988), who modified the 

sampling procedure and extended Peele et al.’s model to predict a wider range of data. However, 

the problem of any mechanistic model based on IRT reinforcement comes from the fact that on 

the RPI schedule the reinforcement probability is set for the following response, so it is 

independent of the current, or last IRT. In other words, the distribution of reinforced IRTs cannot 

be predicted prior to subjects’ actual performance, making these models silent with respect to a 

ratio/interval contrast if the interval schedule does not reinforce any particular IRT size.   
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Mechanistic models have been challenged in recent years by Reinforcement Learning 

(RL)  models of decision-making (Daw & Doya, 2006; Daw, Niv, & Dayan, 2005; Dezfouli & 

Balleine, 2012, 2013; Niv, 2007; Niv, Daw, Joel, & Dayan, 2007). Inspired by the computer 

science literature, these models consider subjects as maximizing agents in an uncertain world. By 

deciding which action to perform in a certain state (a particular set of stimuli;  some 

environmental condition), their goal is to obtain the maximum number of rewards in an 

experimental session. Through experience, the agent is assumed to be capable of learning a 

policy of actions that is consistent with such maximization. An example of this class of models 

was proposed by Niv (Niv, 2007; Niv et al., 2007). In this model, for each state the agent selects 

the latency, or instantaneous response rate (see Killeen & Sitomer, 2003; Killeen, 1994), with 

which to perform the action. Each action has a cost, and the variable that the agent aims to 

maximize is the difference between the number of reinforcers per session and the total cost of 

responding to obtain those reinforcers. Crucially, the expected rate of reinforcement is a function 

of the probability of reinforcement per action in a particular state: for the same type of reinforcer, 

the agent will prefer those actions with higher probabilities of reinforcement; once the action is 

chosen, the agent will choose a latency —and, consequently, a response rate— such that the 

tradeoff  between responding (and getting more rewards) and not responding (and losing 

otherwise obtainably rewards) is optimal. In this model, the probability of transition to a 

rewarded state on RI schedules is given by P(Sr|τ) = 1 − exp {−
τ

T
}, where T is the scheduled 

interval and 𝜏 is the latency of the response (Niv, Daw, & Dayan, 2005). It follows from this 

expression that, as τ increases, so does P(Sr|τ), which results in the selection of a lower response 

rate. It is thus evident that Niv’s (2007) model still relies on a similar argument to that of IRT 

reinforcement models and, as a consequence, lacks the explanatory power to predict the 

ratio/interval difference when the interval schedule explicitly controls for IRT reinforcement 

through the use of an RPI schedule  
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Perhaps the best explanation for the present data was offered by Baum (1973) more than 

40 years ago. In his paper, Baum argues for a law of effect that is not based on probability of 

reinforcement, but rather on the linear correlation between responses and reinforcers. Baum 

(1973) offered a systematic analysis of such an approach to establish that instrumental 

responding based on correlations provides better predictions than one based on reinforcement 

probability. In his paper, he proposed that the correlation could be instantiated by dividing an 

experimental session in k different time-windows, and considering the number of responses and 

reinforcers in each window. Formally, if bi and ri represent, respectively, the number of 

responses and reinforcers in the i-th window, then each window can be regarded as an ordered-

pair (bi, ri), i = 1, … , k, from which a standard correlation coefficient can be calculated as ρbr =

∑
(bi−b̅)(ri−r̅)

sbsr
=

COV(b,r)

sbsr

k
i=1 , where COV(b, r) is the covariance between b and r, b̅ and r̅ the 

average responses and reinforcers per window, and sb and sr the standard deviations of b and r, 

respectively.  

Following Baum (1973), Dickinson (1985; 1994; Dickinson et al., 1995) outlined a 

correlational-based theory of instrumental goal-directed responding, arguing that goal-directed 

actions might be assumed to be driven by a mechanism whereby subjects’ experience of the A-O 

correlation results in the formation of a causal link between the representations of these two 

events. Although several predictions can be anticipated from this view, the one that is most 

important for our purposes is the one that anticipates that schedules that bring about positive A-O 

correlations  should support higher levels of responding than those that do not hold this property 

(Dickinson, 1985, 1994; Dickinson, Balleine, Watt, Gonzalez, & Boakes, 1995; Kosaki & 

Dickinson, 2010).Because on ratio schedules response rates are linearly correlated with 

reinforcement rates, these can be regarded as the cardinal example of such a schedule. Training 

under RR schedules should thus result in the formation of a causal A-O connection. By contrast, 

because on interval schedules the relationship between response rate and reinforcement rate is 
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constrained by the programmed interval parameter, these schedules produce low A-O 

correlations. This, in turn, should result in a weak casual A-O connection. As a result, when 

presented with a choice test between the RR and the RPI schedules for the same probability of 

reinforcement, subjects should decide to distribute their responding in favour of the RR schedule 

because in this scenario a higher correlation implies higher causal control. The approach is also 

consistent with the results of the first choice test in that participants should prefer the RR with 

the higher A-O correlation. 

Figure 3 shows a simulation of a correlational approach. The left panel shows the 

correlation coefficient obtained for RR10 and RR30 schedules; the right panel shows the 

simulation of a master RPI-30 s group and a RR with matched probabilities of reinforcement. 

The simulations were run assuming an experimental session comprising 360 10-sec windows, 

using a response rate similar to that obtained in the last trial of training of this study (50 

responses/min) and a number of simulations equal to the number of data points for each schedule 

(i.e., 36 subjects per schedule). Although several rules for calculating the correlations are 

possible—such as considering only a local response rate—for simplicity we calculated the 

correlations across the whole experimental session simulated. Responding was generated by 

simulating, for each second, a Bernoulli trial with a constant probability of success equal to 

.83—so that 50 responses on average were generated in a minute. This implementation ensures 

that the number of responses varies across windows and therefore the correlation coefficient can 

be calculated.   

(Figure 3 about here) 

As can be seen in the figure, a correlational approach offers qualitative predictions in 

line with the present data: If instrumental responding is a monotonic transformation of the 
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A-O correlation, then subjects should respond more to the RR10 than to the RR30, and more 

to the RRy30 than to the RPI30. 

 The correlational approach to goal-directed responding may also shed light into the topic 

of judgments of causality in humans, where it has been demonstrated that response rates 

(Shanks, 1993; Shanks & Dickinson, 1991) and also causal judgments of the A-O relationship 

tend to correlate with the ΔP metric (Chatlosh, Neunaber, & Wasserman, 1985; Dickinson, 

Shanks, & Evenden, 1984; Shanks, 1991, 1995). In variance with this view, studies on 

reinforcement schedules have reported both higher response rates and causal ratings for RR than 

for RI schedules despite having controlled for the probabilities of reinforcement or reinforcement 

rates (Bradshaw & Reed, 2012; Reed, 2001a, 2001c). The idea of causal control, however, can 

account for these results by arguing that ratings for ratio schedules are higher due to the higher 

A-O correlation they support. Likewise, given the low A-O correlation of the RPI schedule, 

participants should report lower causal ratings on the RPI than on the RR schedule for the same 

probability of reinforcement. A  study by Tanaka, Balleine & O’Doherty (2008) provided further 

data in support to this idea. In their study, Tanaka et al. calculated the contingency levels 

experienced by participants during the task by using a procedure similar to that offered by Baum 

(1973). This procedure allowed them to show not only that causal ratings were correlated with 

these different levels, but also that the BOLD signal in the medial prefrontal cortex followed the 

same pattern, suggesting that such brain structure might be involved in the on-line computation 

of an A-O correlation as proposed by Baum (1973). 

The role of the A-O correlation as a determinant of instrumental performance has also 

found support in some studies with human participants using random interval plus-linear-

feedback (RI+) schedules. RI+ schedules, like standard interval schedules, differentially 

reinforce long IRTs, while at the same time instantiating a ratio-like positive A-O correlation, 

and therefore complement RPI schedules in the analysis of the ratio-interval difference. Whereas 
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a correlational theory of goal-directed behaviour argues that RR schedules maintain a higher 

response rate than matched RPI schedules, it also anticipates equivalent responding on RR and 

RI+ schedules. Such equivalence has been reported for the RR-RI+ contrast (McDowell & 

Wixted, 1986; Reed, 2007a), at least at high response rates (McDowell & Wixted, 1986; Reed, 

2007b, 2015).  

Whatever the merits of our new experimental design, the present study suggests that the 

probability of reinforcement might not be the only variable involved in the acquisition of 

instrumental responding. Although associative theories could provide a reasonable explanation in 

terms of the representation of the events involved in an instrumental learning scenario, they do 

not provide an account of the mechanisms involved in the acquisition of instrumental 

performance in free-operant procedures. In fact, it seems plausible that schedules’ differences are 

partly brought about by different A-O correlations—or any other extended measure of this 

relationship—and that is this variable the responsible in setting up a causal A-O representation. 

Our results thus challenge the notion advocated by Mackintosh of similar associative processes 

underlying classical and instrumental conditioning.  
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Table 1.  Design of the experiment. 

Group Training (trials 1 to 8)        Choice Tests (trials 9 and 10) 

A1 RPI30 RRy30  RPI10 RRy10 RRy10-RRy30 RRy30-RPI30 

  
 

 
 

     

B1 RRy30  RPIy30 RRy10 RPIy10 RRy10-RRy30 RRy30-RPIy30 

          

A2 RPI10 RRy10 RPI30 RRy30 RRy10-RRy30 RRy30-RPI30 

  
 

 
 

     

B2 RRy10 RPIy10 RRy30 RPIy30 RRy10-RRy30 RRy30-RPIy30 

     2 blocks of 3 min each schedule 3 min (choice) 3 min (choice) 

Notes: Black arrows represent within-participant yoking; grey arrows represent between-participant 

yoking. Master RPI schedules are in bold. The numerical schedule parameter for the master RPI schedules 

represent the average programmed inter-reinforcement interval in seconds. The schedule parameter y 

signifies that the parameter was determined by yoking and the associated numerical parameter signifies 

the parameter of the master RPI schedule. Each presentation of each schedule was considered as a trial 

(training stage: trials 1 to 8; choice stage: trials 9 and 10). Parameters for the schedules in the choice tests 

were assigned within-subjects taking the average values experienced by each subject during the previous 

training stage (see Methods section).   
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Table 2. Mean values and 95% CIs for response rates (responses per min), ratio of mean reinforced 

IRT to mean overall IRT, and probability of reinforcement for RR and RPI schedules during the 

final four trials of training.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Response Rate IRT ratio Probability of reinforcement 

Schedule Mean CI Mean CI Mean CI 

RPI10/y10 48.8 [32.0, 65.6] 1.2 [1.0, 1.5] .17 [.12, .21] 

RPI30/y30 48.9 [26.7, 71.0] 1.3 [0.8, 1.7] .08 [.05, .10] 

RRy10 48.5 [33.8, 63.2] 1.0 [0.9, 1.1] .23 [.17, .28] 

RRy30 54.4 [33.1, 75.6] 1.0 [0.7, 1.2] .08 [.05, .12] 



 
 
Human ratio and interval performance  25 

 

Figure 1. A screenshot of the task as seen by participants.  
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Figure 2. Mean response rates in the two choice tests (trials 9 and 10). Error bars indicate 95% 

confidence intervals. 
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Figure 3. Simulations of a correlational theory of instrumental responding for the present data. 

Error bars represent 95% confidence intervals. 
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