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Abstract: Modern assembly line systems utilize robotics to replace human resources to achieve higher 
level of automation and flexibility. This work studies the task assignment and robot allocation in a robotic 
U-shaped assembly line. Two new mixed integer programming linear models are developed to minimize 
the cycle time when the number of workstations is fixed. Recently developed migrating birds 
optimization (MBO) algorithm is employed and improved to solve large-sized problems. Problem-
specific improvements are also developed to enhance the proposed algorithm including modified 
consecutive assignment procedure for robot allocation, iterative mechanism for cycle time update, new 
population update mechanism and diversity controlling mechanism. An extensive comparative study is 
carried out to test the performance of the proposed algorithm, where seven high-performing algorithms 
recently reported in the literature are re-implemented to tackle the considered problem. The 
computational results demonstrate that the developed models are capable to achieve the optimal solutions 
for small-sized problems, and the proposed algorithm with these proposed improvements achieves 
excellent performance and outperforms the compared ones.  
Keywords: Robotic U-shaped assembly line; Integer programming; Migrating birds optimization; 
Artificial intelligence 
 
1. Introduction 

Assembly lines have great applications in assembling standardized products and widely used across 
industries. Assembly lines can be categorized into three types based on their layouts: one-sided (straight) 
assembly line, two-sided assembly line and U-shaped assembly line. U-shaped assembly line differs from 
the other two assembly line types since there exists an entrance side and exit side. A task in U-shaped 
assembly line is assignable when all its predecessors or successors have been allocated to the same or 
earlier workstation (Miltenburg and Wijngaard, 1994; Scholl and Klein, 1999). When compared with the 
straight assembly line, U-shaped line has higher flexibility to meet the changes in demand with reduced 
cycle time and reduced cost (Nilakantan and Ponnambalam, 2016).  

Robots play an essential role in modern manufacturing industry and it helps to reduce assembly cost 
and achieve higher flexibility. Robots can be programmed to operate different tasks and operate for 24 
hours a day without fatigue (Gao et al., 2009). The assembly line equipped with robots to perform the 
tasks is referred to as robotic assembly line. Robotic assembly line balancing problem (RALBP) aims to 
assign tasks and allocate the best fit robots to workstations (Nilakantan et al., 2015a). If utilizing robots 

mailto:zixiangliwust@gmail.com
mailto:mukund.janardhanan@leicester.ac.uk
mailto:amirasashour@yahoo.com
mailto:neelanjandey@gmail.com


in U-shaped assembly line, a new assembly line called robotic U-shaped assembly line arises. To 
increase the efficiency of robotic U-shaped assembly line, optimization methods are necessary to reduce 
the workstation number or the cycle time. This results in robotic U-shaped assembly line balancing 
problem (RUALBP), where tasks and best fit robots are allocated to workstations in U-shaped assembly 
line with one or several optimization criteria.  

Regarding the literature reported on the U-shaped assembly line, Miltenburg and Wijngaard (1994) 
propose dynamic programming formulation to minimize the number of workstation numbers. Later, 
Urban (1998) present an integer programming formulation for the same problem. In addition, many 
researchers applied exact, heuristic and meta-heuristic methods for this problem. Scholl and Klein (1999) 
develop an exact method based on a branch and bound known as ULINO. Other studies on exact methods 
include those reported in Miltenburg (1998), Nakade and Ohno (1999), Gokcen and Agpak (2006) and 
Ogan and Azizoglu (2015). Regarding the literature with regards to heuristic and meta-heuristic methods, 
the applied methods include simulated annealing algorithms (Erel et al., 2001), a genetic algorithm 
(Hwang et al., 2008), ant colony optimizations (Baykasoglu and Dereli, 2009; Li et al., 2017d; 
Sabuncuoglu et al., 2009) and a critical path method (Avikal et al., 2013), to cite just a few. Many variants 
of U-shaped assembly line balancing problem have been solved using heuristics and meta-heuristics 
algorithms due to the NP-hard nature of the problem (Bagher et al., 2011; Chiang and Urban, 2006; Kim 
et al., 2006; Kim et al., 2000; Kucukkoc and Zhang, 2015; Rabbani et al., 2012).  

The studies related to the robotic assembly line balancing are categorized based on the layout of the 
assembly lines and they are: general RALBP, RUALBP and robotic two-sided assembly line balancing 
problems (RTALBP). Rubinovitz and Bukchin (1991) report the seminal study related to the RALBP 
which is followed by another study that reports a heuristic method to solve the problem (Rubinovitz et 
al., 1993). Later, Levitin et al. (2006) and Gao et al. (2009) develop well-known genetic algorithm to 
tackle type II RALBPs. Yoosefelahi et al. (2012) address a multi-objective RALBP and Daoud et al. 
(2014) optimize the line efficiency. Nilakantan et al. (2015b) propose two bio-inspired methods for 
RALBP with the objective of minimizing cycle time and later they investigate energy consumption 
optimization in robotic assembly line (Nilakantan et al., 2015a). More recently, Çil et al. (2017a) propose 
the beam search to solve the type II mixed-model RALBP and Çil et al. (2017b) extend this method for 
parallel RALBP. Furthermore, type II RTALBP is tackled in Li et al. (2016a) and Li et al. (2017a). Li et 
al. (2016b) study the energy consumption using multi-objective simulated annealing algorithm, while 
Aghajani et al. (2014) tackle the mixed-model RTALB with simulated annealing algorithm. Nilakantan 
and Ponnambalam (2016) employ the particle swarm optimization to solve type II RUALBP. From the 
aforementioned literature, it is established that there is limited research on RUALBP. The only available 
nonlinear model proposed by Nilakantan and Ponnambalam (2016) is hard to be solved optimally using 
exact techniques for large-sized or even small-sized problems and it is also observed that only few 
evolutionary algorithms have been utilized in solving RUALBP, whereas literature reports extensive 
usage of evolutionary algorithms for solving RALBP problems.  

Hence, this work presents two major contributions to the literature as follows: 1) Two new mixed-
integer linear programming models are developed to minimize the cycle time in a U-shaped robotic 
assembly line. These two new linear models outperform the non-linear model proposed in Nilakantan 
and Ponnambalam (2016) in the comparative study conducted. 2) A newly developed metaheuristic 
algorithm, migrating birds optimization (MBO) algorithm is employed and improved to tackle the 
considered RUALBP in an acceptable computational time. It is to be noted that, this is for the first time 
MBO is applied to solve RUALBP. In addition, this research also improves and enhances the performance 



of MBO by employing several problem-specific improvements such as modified consecutive assignment 
procedure for robot selection, iterative mechanism for cycle time update, new population update 
mechanism and diversity controlling mechanism. MBO is selected due to its superiority over others in 
solving problems similar to the considered problems such as planning and scheduling area as reported in 
Duman et al. (2012), Gao and Pan (2016) and Zhang et al. (2017). A comprehensive comparative study 
demonstrates that these improvements enhance the performance of MBO to a large extent, and the 
proposed MBO outperforms eight other algorithms statistically.  

The outline of the remaining sections is presented as follows. Section 2 introduces the developed 
models. Section 3 details the proposed MBO. An example is provided in Section 4, and the proposed 
algorithm is evaluated in Section 5, where a comprehensive comparative campaign is conducted. Finally, 
Section 6 concludes this research.  
 
2. Mathematical model 

Although many researchers have presented the mathematical models for U-shaped assembly line such 
as Urban and Chiang (2006), Fattahi and Turkay (2015) and Li et al. (2017d). However, none of the 
models report the considered RUALBP or is able to tackle robot assignment. The only available model 
on RUALBP is a nonlinear model proposed by Nilakantan and Ponnambalam (2016) and this model 
might not be able to achieve the optimal solution even for small-sized instances. Hence, this section 
develops two new mixed-integer linear programming models to solve the considered problem. 

 
2.1 Problem description and assumptions 

Robotic U-shaped assembly line inherits the main features of U-shaped assembly line and robotic 
assembly line. On the basis of assumptions considered in Levitin et al. (2006) and Nilakantan and 
Ponnambalam (2016), the main assumptions in this paper are presented as follows: 
• Each task is assigned to a workstation and operated by a robot.  
• Each workstation is allocated with only one robot.  
• The number of utilized robots is equal to the number of workstations.  
• The processing time of a task depends on the robot assigned in the workstation.  
• A task can be operated by any robot or the processing time by a robot is set to a very large positive 

number when this task cannot be operated by this robot. 
• All types of robots are available without any limitations.  
• Only one type of product is assembled in this robotic U-shaped line. 
• The material handling, set-up, tool changing, loading and unloading factors are negligible.  
 
RUALBP comprises of two interrelated sub-problems: task assignment and robot allocation. For task 

assignment, the assembly tasks are to be assigned to workstations without violating the precedence 
constraint and cycle time constraint. Specifically, a task is assignable when all its predecessors or 
successors have been assigned. The total operation time of the tasks on each workstation should be equal 
or smaller than the cycle time. On the other hand, robot allocation allocates the best robot to each 
workstation. A layout of the robotic U-shaped assembly line is illustrated in Figure 1, where 10 tasks are 
assigned to five workstations equipped with five robots.  
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Figure 1. Layout of robotic U-shaped assembly line 

 

2.2 Proposed mathematical models  
This section presents two mathematical models to formulate the RUALB, notations used in the models 

are introduced first. 
Indices: 
i, p, q A task, 𝑖𝑖 ∈ I. 
j A workstation, 𝑗𝑗 ∈ J. 
r A robot, 𝑟𝑟 ∈ R. 
Parameters:  
CT Cycle time. 
m Upper bound on the number of workstations. 
tir Operation time of task i by robot r. 
Decision Variables: 

airj 
Binary variable. airj is equal to 1 when task i is operated by robot r on workstation j; 0, 
otherwise. 

xirj 
Binary variable. xirj is equal to 1 when task i is operated by robot r on the entrance side of 
workstation j; 0, otherwise. 

yirj 
Binary variable. yirj is equal to 1 when task i is operated by robot r on the exit side of 
workstation j; 0, otherwise. 

wrj Binary variable. wrj is equal to 1 when robot r is allocated to workstation j; 0, otherwise. 
ui Binary variable. ui is equal to 1 when task i is allocated to the entrance side; 0, otherwise. 

 
For RUALBP, the main characteristic is the precedence relationship which differentiates the RUALBP 

from the RALBP. Specifically, a task is assignable when all its predecessors or successors have been 
allocated in RUALBP. On the basis of Fattahi and Turkay (2015), the first model (Model 1) is built as 
follows. In this model, ℘ denotes the set of immediate precedence relationships (℘={(p, q)}, where p 
is the immediate predecessor of task q). Major difference from Fattahi and Turkay (2015) is that the 
developed Model 1 utilizes airj and wrj to describe the allocation of tasks and robots  

 

Minimize CT   (1) 

∑ ∑ airj𝑗𝑗∈𝐽𝐽𝑟𝑟∈𝑅𝑅 =1  ∀i ∈ I   (2) 

∑ 𝑤𝑤𝑟𝑟𝑗𝑗𝑟𝑟∈𝑅𝑅 = 1  ∀𝑗𝑗 ∈ 𝐽𝐽  (3) 

∑ ∑ 𝑗𝑗 ∙ aprj𝑗𝑗∈𝐽𝐽𝑟𝑟∈𝑅𝑅 - ∑ ∑ 𝑗𝑗 ∙ aqrj𝑗𝑗∈𝐽𝐽𝑟𝑟∈𝑅𝑅 ≤m⋅�1+up-2∙uq� ∀(p,q)∈℘   (4) 

∑ ∑ 𝑗𝑗 ∙ aqrj𝑗𝑗∈𝐽𝐽𝑟𝑟∈𝑅𝑅 - ∑ ∑ 𝑗𝑗 ∙ aprj𝑗𝑗∈𝐽𝐽𝑟𝑟∈𝑅𝑅 ≤m⋅up ∀(p,q)∈℘   (5) 

∑ ∑ 𝑡𝑡𝑖𝑖𝑟𝑟 ∙ 𝑎𝑎𝑖𝑖𝑟𝑟𝑗𝑗𝑟𝑟∈𝑅𝑅𝑖𝑖∈𝐼𝐼 ≤ 𝐶𝐶𝐶𝐶  ∀𝑗𝑗 ∈ 𝐽𝐽  (6) 



∑ 𝑎𝑎𝑖𝑖𝑟𝑟𝑗𝑗𝑖𝑖∈𝐼𝐼 ≤ ψ⋅𝑤𝑤𝑟𝑟𝑗𝑗   ∀𝑟𝑟 ∈ 𝑅𝑅, 𝑗𝑗 ∈ 𝐽𝐽  (7) 

 
The objective in expression (1) minimizes the cycle time. Constraint (2) ensures that each task is 

assigned to one workstation and operated by a robot. Constraint (3) guarantees that each workstation is 
equipped with a robot. Constraint (4) and (5) tackle precedence constraints. Constraint (4) makes sure 
that task q (the successor of task p) is allocated to the latter or the same workstation when both tasks are 
operated on the entrance side, whereas constraint (5) makes sure that task q is allocated to the former or 
the same workstation when both tasks are operated on the exit side. These two constraints also permit 
the allocation of task p to the entrance side and task q to the exit side and deny the allocation of task p to 
the exit side and task q to the entrance side. Constraint (6) deals with the cycle time constraint, demanding 
that the total operation time on each workstation is less than or equal to cycle time. Constraint (7) 
connects airj and wrj, which guarantees that tasks on the same workstation are operated by the same robot.  

The second model (Model 2) which proposes a different method to tackle the precedence constraint is 
developed based on the model reported in Urban and Chiang (2006). Different from Urban and Chiang 
(2006), the developed Model 2 utilizes xirj and 𝑦𝑦irj  the task assignment, and wrj to describe robot 
allocation. 

 

Minimize CT (8) 

∑ ∑ �𝑥𝑥irj + 𝑦𝑦irj�𝑗𝑗∈𝐽𝐽𝑟𝑟∈𝑅𝑅 =1  ∀i ∈ I  (9) 

∑ 𝑤𝑤𝑟𝑟𝑗𝑗𝑟𝑟∈𝑅𝑅 = 1  ∀𝑗𝑗 ∈ 𝐽𝐽  (10) 

∑ ∑ (𝑚𝑚 − 𝑗𝑗 + 1) ∙ �𝑥𝑥prj − 𝑥𝑥qrj�𝑗𝑗∈𝐽𝐽 ≥ 0 𝑟𝑟∈𝑅𝑅  ∀(p,q)∈℘  (11) 

∑ ∑ (𝑚𝑚 − 𝑗𝑗 + 1) ∙ �𝑦𝑦qrj − 𝑦𝑦prj�𝑗𝑗∈𝐽𝐽 ≥ 0 𝑟𝑟∈𝑅𝑅  ∀(p,q)∈℘  (12) 

∑ ∑ 𝑡𝑡𝑖𝑖𝑟𝑟 ∙ �𝑥𝑥irj + 𝑦𝑦irj� ≤ 𝐶𝐶𝐶𝐶𝑟𝑟∈𝑅𝑅𝑖𝑖∈𝐼𝐼  ∀𝑗𝑗 ∈ 𝐽𝐽  (13) 

∑ �𝑥𝑥irj + 𝑦𝑦irj�𝑖𝑖∈𝐼𝐼 ≤ψ⋅𝑤𝑤𝑟𝑟𝑗𝑗   ∀𝑟𝑟 ∈ 𝑅𝑅, 𝑗𝑗 ∈ 𝐽𝐽  (14) 

 
Similarly, Equation (8) optimizes the cycle time. Constraint (9) guarantees that each task is allocated 

to the entrance side or exit side of a workstation and operated by a robot. Similar to Model 1, Constraint 
(10) also allocates a robot to each workstation. Constraint (11) and Constraint (12) deal with the 
precedence relationship. They achieve the same goal as the expression (4) and expression (5) in Model 
1. Inequality (11) requires that task q (the successor of task p) is allocated to the latter or the same 
workstation when task p and task q are operated on the entrance side. And Constraint (12) guarantees 
that task q is allocated to the former or the same workstation when task p and task q are operated on the 
exit side. Constraint (13) makes sure that the total operation time of tasks allocated to entrance side and 
exit side of each workstation is smaller than or equal to the cycle time. Constraint (14) connects xirj, yirj 
and wrj, ensuring that the tasks on the entrance side or exit side of the same workstation are operated by 
the same robot. Model 1 and Model 2 are capable to solve small-sized instances using Cplex solver for 
and the results obtained using these two models will be compared with non-linear model solution in 
Section 5.2. 
 



3. Migrating birds optimization 
Migrating birds optimization (MBO) is a bio-inspired meta-heuristic algorithm developed based on 

birds’ migration behavior in a V-shaped flight (Duman et al., 2012). Since the first work in Duman et al. 
(2012), this method has attracted many researchers attention (Gao and Pan, 2016; Zhang et al., 2017). It 
has been reported that this method and has the capability of outperforming many other metaheuristic 
methods for solving combinatorial optimization problems. Along with the MBO’s effectiveness, this 
work proposes the first attempt in employing this method to solve RUALBP. The proposed MBO 
algorithm is introduced in the following sections.   

 
3.1 Solution representation  

In order to tackle the RUALBP, this work utilizes a task permutation vector for encoding based on the 
procedure reported in Nilakantan and Ponnambalam (2016) and Nilakantan et al. (2015b). For instance, 
one possible encoding for 11 tasks is {1, 3, 2, 4, 5, 6, 7, 9, 8, 10, 11}. The former tasks in this task 
permutation are allocated at first, e.g. task 1 is firstly allocated. The task permutation is not a feasible 
solution and a decoding procedure is requisite. This work utilizes a decoding procedure inheriting the 
consecutive assignment procedure in Levitin et al. (2006) and the iterative mechanism for type II two-
sided assembly line in Li et al. (2017c). The decoding procedure, referred as modified consecutive 
assignment procedure, is explained as follows. The main difference between the proposed method and 
the method proposed in Levitin et al. (2006) is with respect to assigning the task when it can be finished 
within cycle time by any robot. By making this difference, the proposed method allocates as many as 
possible tasks to this workstation. On the contrary, the original consecutive assignment procedure 
allocates maximal number of tasks that a robot can perform in the given task permutation. In other words, 
the proposed method allows the task allocation sequence to be conflicted for the given task permutation, 
whereas the original method requires the task allocation sequence to be same as the given task 
permutation.  

 
Procedure: Proposed modified consecutive assignment procedure 

Step 1: Set the initial cycle time.  

Step 2: Open a new workstation.  

Step 3:  

Step 3.1: Add the tasks whose predecessors or successors have been allocated to the assignable 

task set.  

Step 3.2: Remove the task, whose possible finishing time is larger than cycle time when being 

operated by any robot, from the assignable task set for all the former workstations except for the 

last workstation.  

Step 3.3: If no assignable task exists, go to Step 2; else, execute Step 3.4.  

Step 3.4: Assign the task on the former position of the corresponding task permutation. 

Step 3.5: Update the remained capacity of the current workstation.  

Step 4: Allocate the best fit robot to the current workstation and assign the tasks operated by the best 

fit robot to the current workstation.  

Step 5: If all tasks have been allocated, terminate the decoding procedure. Otherwise, execute Step 

2.  
 

 



Another underlying issue is determining the initial cycle time. In this work, the initial cycle time is set 
to a big value as 𝐶𝐶𝐶𝐶 = 2 ∙ ∑ ∑ 𝑡𝑡𝑖𝑖𝑟𝑟𝑟𝑟∈𝑅𝑅𝑖𝑖∈𝐼𝐼 (𝑁𝑁𝑟𝑟 ∙ 𝑁𝑁𝑁𝑁)⁄ , where Nr is the number of the available robot types 
and Ns is the number of workstations. This initial cycle time is updated when new best cycle time, CTBest, 
is achieved using  𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 − 1 . Furthermore, once a new best cycle time is achieved, all the 
individuals are re-decoded using this new CT and their objective values are updated accordingly. The 
initial cycle time update ensures that the achieved cycle time is decreasing gradually. This method, 
referred to as iterative mechanism, is developed based on a similar concept reported in Li et al. (2017c). 
It ensures that all the individuals are evaluated using the same initial cycle time and helps to preserve the 
tiny improvements on the individuals.  
 

3.2 Classic migrating birds optimization algorithm 
MBO algorithm is inspired by birds’ migration behavior in a V-shaped flight, where one leading bird 

leads the whole flock containing two set of birds on left and right sides. The birds in each side fly in a 
line resulting in V-shape. The algorithm has been applied to solve quadratic assignment problem and 
solve combinatorial optimization problems successfully (Ulker and Tongur, 2017). 

 MBO consists of four main steps and have four parameters, where n represents the number of initial 
individuals, k is the number of neighbor solutions, x is the number of neighbor solutions to be shared 
with the next individual and m is the number of tours. MBO starts with population initialization, where 
n initial individuals are generated. Subsequently, leader improvement, block improvement and leader 
replacement consist of the main loop. These steps in this loop are repeated until a termination criterion 
is satisfied. Within the loop, the leader is tried for improvement by generating k neighbor solutions (leader 
improvement). If the improvement is achieved, the current leader is replaced with the best neighbor 
individual among all the neighbor solutions. In addition, the other individuals are updated when its (k-x) 
neighbor solutions (block improvement) or x unused best neighbor individuals of the front solution front 
achieves the better fitness. The sharing of neighbor solutions of other individuals (referred to as benefit 
mechanism) promotes the communication among individuals and the evolution of the whole population. 
After the leader improvement and the block improvement are conducted for m consecutive times, the 
leader replacement is carried out, which moves the leading individual to the end and forward one of the 
following individuals to the leading position.  

As the considered problem is a discrete optimization problem, this research utilizes swap operation 
and insert operation following Li et al. (2016a) and Li et al. (2017a) in order to achieve high-quality 
neighbor solutions. Specifically, a number between 0.0 and 1.0 is randomly generated. If this number is 
less than 0.5, swap operation is performed; otherwise, insert operation is performed. The utilization of 
two neighbor operations helps to increase the search space.  
  



Generate n initial individuals randomly;               % Initialization    

While (Termination criterion is not met) do  

For i=1 to m do 

Generate k neighbor solutions of the leader solution. %Leader improvement 

Replace the current leader solution with the best individual from the neighbor 

solutions when the same or better fitness is achieved. 

For each individual on the left and right sides      %Block improvement 

Generate (k-x) neighbor solutions of this solution;  

Replace this individual when its (k-x) neighbor solutions or x unused best 

neighbor solutions of the front solution achieve the better fitness. 

Endfor 

Endfor                       

Move the leading individual to the end.              %Leader replacement 

Forward one of the following individuals to the leading position.  

Endwhile 

 
3.3 Improved migrating birds optimization algorithm 

Initial experiments showed that the original MBO might get trapped into local optima due to fast 
convergence. Technique to enhance MBO utilized by Gao and Pan (2016) and Zhang et al. (2017) did 
not help in improving the performance of the MBO in solving the proposed problem. This could be 
mainly due to two reasons: 1) there are many solutions with the same cycle time and it is impossible to 
determine which one is better. 2) there are many sequences of tasks in one workstation and there are 
many different task permutations with the same task assignment. Hence, the task permutation is not 
enough to distinguish the solutions and the MBO gets trapped into local optima. Therefore, this section 
presents an improved migrating birds optimization algorithm. 

Due to the aforementioned reasons, this research develops several problem-specific improvements. 1) 
When a better solution is achieved in the leader improvement or block improvement, the incumbent 
individual is replaced with the new neighbor solution immediately. 2) The incumbent individual is 
replaced with the new neighbor solution even when the same fitness is achieved. 3) The fitness of the 
neighbor solution is set to a very large positive value if it shares the same fitness as the incumbent one. 
The rationality of these improvements is explained as follows. The replacement of the incumbent 
individual immediately after achieving better solutions guides the search to the most promising area and 
avoids searching around a poor individual. The incumbent individual is replaced by the new neighbor 
solution with the same fitness since there are many solutions sharing the same fitness value. This 
modification makes it possible to explore more solutions and hence enhances the exploration. The fitness 
of a neighbor solution, which shares the same fitness value as the incumbent one, is set to a very large 
positive value (in this research it set to 10,000) to avoid the premature convergence of the proposed 
algorithm. In fact, if this modification is not conducted, all the individuals will have the same fitness 
value very soon. 
Apart from the aforementioned modifications, this research also develops a diversity controlling 
mechanism when no improvement on the best cycle time is achieved before leader replacement. In 
general, two individuals might be regarded as two different solutions if they utilize two different task 
permutations. Nevertheless, this situation is not suitable for RUALBP, where there are many different 
task sequences within one workstation. Hence, this research utilizes the following procedure, where Ns 



is the workstation number. The rationality of this diversity controlling mechanism is explained in this 
section. If solution i has the same task assignment as solution j (m=Ns), the solution i is abandoned by 
setting the fitness of solution i a very large positive value. If the solution i has a large similarity as the 
remained 𝑛𝑛 + 1 − 𝑗𝑗  solutions in the swarm ( 𝑙𝑙 ≥ (𝑁𝑁𝑁𝑁 − 2) × (𝑛𝑛 + 1 − 𝑗𝑗) ), the solution i is also 
abandoned by setting the fitness of solution i to a very large positive value.  

 
%Leader improvement 

For j=1 to k do    

Generate a neighbor solution of the leader solution. 

Replace the current leader solution with the neighbor solution when the same or 

better fitness is achieved. 

Endfor  

Replace the current leader solution with the best individual from the neighbor solutions 

when the same or better fitness is achieved. 

Set a large value to the fitness of the individual whose fitness is the same to that of the 

incumbent one.   

For each individual in the on the left and right sides            

%Block improvement 

For j=1 to (k-x) do    

Generate a neighbor solution of this solution; 

Replace the current solution with the neighbor solution when the same or better 

fitness is achieved. 

Endfor 

Replace this individual by the best individual from the (k-x) neighbor solutions of it 

and x unused best neighbor solutions of the solution in the front when the same or 

better fitness is achieved. 

Set a large value to the fitness of the individual whose fitness is the same to that of 

the incumbent one.   

Endfor 

 
Procedure: Diversity controlling mechanism 

% i and j refer to solutions, and m and l are utilized to check the similarity 

between solution i and solution j . 

For i:=1 to n-1 do 

𝑙𝑙: = 0; 

For j:=i+1 to n do 

𝑚𝑚: = 0; 

For k:= 1 to Ns do 

If (the task set on the former k workstations in solution i is the same to 

that on the former k workstations in solution j) 

𝑚𝑚: = 𝑚𝑚 + 1; 𝑙𝑙: = 𝑙𝑙 + 1;   

Endif 

Endfor 

If (m=Ns)  



Set the fitness of solution 𝑖𝑖 a very large positive value;  

Break; 

Endif  

Endfor 

If (𝑙𝑙 ≥ (𝑁𝑁𝑁𝑁 − 2) × (𝑛𝑛 + 1 − 𝑗𝑗))  

Set the fitness of solution 𝑖𝑖 a very large positive value;  

Endif 

Endfor  

 
 

4. An illustrated example 
This section provides a detailed example to present the solution representation. This instance with 25 

tasks and 4 robots is taken from Gao et al. (2009). The precedence relationships and the operation times 
are presented in Table 1.  

 
Table 1 Precedence relationships and operation times of tasks 

Tasks Successors Operation times 
Robot 1 Robot 2 Robot 3 Robot 4 

1 2 85 42 38 81 
2 3 47 74 48 43 
3 4 87 107 63 53 
4 5,8 50 55 57 41 
5 6 60 58 39 38 
6 7,10 70 47 49 74 
7 11,12 44 47 33 37 
8 9,11 113 47 84 39 
9 10,13 68 35 43 32 
10 - 81 131 73 63 
11 13 124 70 47 52 
12 15 51 90 32 36 
13 14 117 89 44 45 
14 16,19,20 34 71 42 67 
15 17,22 65 79 36 84 
16 18 109 115 60 103 
17 18,23 59 36 31 35 
18 25 82 61 50 54 
19 22 39 84 65 53 
20 21,25 66 150 52 69 
21 22,24 49 36 36 44 
22 - 46 63 32 43 
23 25 71 70 58 57 
24 - 54 48 24 52 
25 - 77 62 63 90 

 
Table 2 and Figure 2 present the detailed task assignment and robot selection procedure. Specifically, 

this table shows the detailed task assignment in the second row and the total operation times by robots in 
the remaining rows. Among the robots, the robot which has the smallest total operation time is selected 
as the best fit robot for each workstation. These selected best fit robots are shown in the second last row 
in the table and in bold in Figure 2. The cycle time of the considered problem is 278 units which is the 
maximum of the total operation times of workstations. 

 
 
 
 



Table 2 Detailed task assignment and robot allocation 
 Workstation 1 Workstation 2 Workstation 3 Workstation 4 

Tasks 25, 24, 10, 1, 2, 22 3, 19, 4, 8, 9, 23 18, 5, 6, 16, 7,11 21, 17, 15, 13, 14, 12, 20 
Robot 1 390 428 489 441 
Robot 2 420 398 398 551 
Robot 3 278 370 278 273 
Robot 4 372 275 358 380 
Selected robot 3 4 3 3 
Cycle time 278    
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Figure 2. Task assignment and robotic allocation procedure 

 
To highlight the main features of the proposed MBO, Figure 3 illustrates the evolution process of the 

proposed MBO without diversity controlling mechanism when solving the considered instance, where 
the initial cycle time is set to 278 units. Specifically, Figure 3 exhibits the minimum cycle time (Min), 
average cycle time (Avg) and maximum cycle time (Max) achieved by the whole flock during the 
iteration process (Iteration time). It can be seen clearly that the individuals converge to 278 when iteration 
time reaches about 96. It can also be observed that all the values of Min, Avg and Max decreases clearly 
with increased iteration time. This situation is attributed to the benefit mechanism and the greedy 
acceptance mechanism. Especially, the benefit mechanism makes the value of Max decrease quickly by 
sharing the neighbor solutions of high-quality individuals with the poor individuals. From Figure 3 it can 
be concluded that the proposed methodology has faster convergence speed and is capable of avoiding 
poor individuals by utilizing benefit mechanism. 
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Figure 3. Evolution process of the proposed MBO 

 
 

5. Experimental tests and results 
This section presents the results obtained from the tests conducted using the developed models and a 

comparative study between MBO and other well-known algorithms.  
 
5.1 Experimental design  

To test the performance of the proposed MBO, MBO is compared with seven other published 
algorithms. Although there exist a number of optimization algorithms, they might not be able to solve 
the considered problem directly and hence this research mainly re-implements the methods applied to 
RUALBP and other assembly line balancing problems. The methods considered for comparative study 
are: simulated annealing algorithm (SA) (Khorasanian et al., 2013), particle swarm optimization (PSO1) 
(Hamta et al., 2013), particle swarm optimization (PSO2) (Li et al., 2016a), genetic algorithm (GA) 
(Levitin et al., 2006), teaching-learning-based optimization algorithm (TLBO) (Tang et al., 2015), 
artificial bee colony algorithm (ABC) (Saif et al., 2014), discrete cuckoo search (DCS) (Li et al., 2017a). 
The main operators of PSO1, PSO2, GA and ABC are selected based on the reported ones in Li et al. 
(2017c). Refer Appendix for the detailed pseudocodes of the implemented algorithms. The MBO without 
diversity controlling mechanism (OMBO) is also included in the comparison.  

The benchmark problems summarized in Gao et al. (2009) are selected as the test instances, where 
eight sets of problems are solve: P25, P35, P53, P70, P89, P111, P148 and P297 (numbers represent the 
number of tasks) and each of them containing four cases. One small sized problem with 11 tasks reported 
in Nilakantan and Ponnambalam (2016) is also solved, resulting in a total of 33 cases. Termination 
criterion for each case is set as an elapsed CPU time which is set to Nt × Nt × τ milliseconds, where 
Nt is the number of tasks and τ is a parameter. In order to observe the performance of the algorithms 
from short to large computational time, τ is set to 10, 20, 30, 40, 50 and 60; respectively. Based on the 
parameter calibration method reported in Li et al. (2017c) , the full factorial design is proposed and the 
multifactor analysis of variance (ANOVA) technique is applied to select the parameter values. 
Specifically, the largest case with 297 tasks and 29 workstations is selected and is solved for ten times 
by any combination of the parameter levels, with the termination criterion of Nt × Nt × 10 milliseconds. 
Once all the experiments are conducted, the relative percentage deviation or RPD is selected as the 
response variable usingRPD = 100 ∙ (𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵 − 𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) 𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵⁄ , where 𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵  is the achieved cycle 
time by a combination and 𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  is the smallest cycle time yield by all combinations. Subsequently, 



the ANOVA technique is utilized to analyze these RPD values after checking the fulfillment of the 
normality, homogeneity of the variances and the independence of the residuals. Detailed ANOVA test is 
not presented due to space restrictions. But they are available upon request. All the algorithms are codes 
using C++ programming language and the experiments are conducted on a set of virtual machines in a 
tower type of server. The server has two Intel Xeon E5-2680 v2 processors (40 processor cores) at 2.8 
GHz and 64 GB of RAM memory. All the virtual machines have one virtual processor and 2 GB of RAM. 
The mathematical models are solved using the Cplex solver in General Algebraic Modeling System 23.0. 

 
5.2 Model evaluation 

This section evaluates the performance of the developed models in Table 3, where Model-N is the 
developed model in Nilakantan and Ponnambalam (2016) and Model 1 and Model 2 refers to the two 
models developed in this paper. The models could only solve the small-size instances as they cannot 
achieve satisfying results for large-sized instances within acceptable running time. All the model 
terminates when the running time reaches 3600 second (s), and the achieved optimal cycle times or upper 
bounds (lower bounds) are reported. The results obtained by MBO are also reported and the reported 
ones are the best solution obtained in 10 runs with a termination criterion of Nt × Nt × 10 milliseconds.  
 

Table 3 Results obtained from testing of proposed models and MBO algorithm 

Cases Ns 
Model-N Model 1 Model 2 MBO 

Results CPU(s) Results CPU(s) Results CPU(s) Results CPU(s) 

P11 4 125 1.80*  115 1.20  115 2.01  115 1.21 

P25 3 489 1.78* 468 3.88  468 4.90  468 6.25 

P25 4 296 15.58*  278 208.00  278 138.18  278 6.25 

P25 6 185 18.66*  175(163.25) 3600.00  179(162.45) 1495.50**  172 6.25 

P25 9 104 3600.00  105(91) 1317.55**  102(91) 1566.94**  99 6.25 

P35 4 341(340.25) 3600.00  341(339.59) 3600.00  341 256.25  341 12.25 

P35 5 313 208.47*  302 3363.01  302 2265.18  302 12.25 

P35 7 192(189.75) 3600.00  193(182) 1322.44**  193(182) 2303.19**  188 12.25 

P35 12 98(89.94) 3600.00  98(86) 1927.40**  102(86) 3169.17** 89 12.25 

Note: * refers to solution obtained due to termination on non-linear programming worsening; ** refers to the solution 

obtained after the model terminated due to out of memory.  

 

From Table 3, it is clear that Model 1 and Model 2 achieves 4 and 5 optimal solutions; respectively. 
Model-N, on the contrary, cannot achieve the optimal solution as it terminates on non-linear 
programming (NLP) worsening. This is mainly due to Model-N being a non-linear model whereas the 
two developed models are linear model. Additionally, the proposed Model 1 and Model 2 outperforms 
Model-N for most cases, which further demonstrate the superiority of the proposed models. With respect 
to the proposed MBO, it could achieve solutions similar to optimal solution for all the cases with less 
running time, especially for P35. This finding reveals the reasons of utilizing the metaheuristics and 
suggest the superiority of the metaheuristics in solving large-sized instances.  
 

5.3 Algorithm comparative study  
This section provides the results obtained by the implemented algorithm and conducts a comparative 

study among the considered algorithms. All implemented methods are solved using the benchmark 



problems for ten times iteratively. After conducting the experiments, the RPD is applied to transfer the 
obtained results. Table 4 exhibits the average RPD values for ten repeated runs for each problem under 
three termination criteria (τ = 20, 40, 60). In the table, each cell reports the average RPD value of several 
cases in ten repeated runs. For example, each cell for P297 shows the average RPD of four cases: P297 
with 19, 29, 38 and 50 workstations. Detailed results under other termination criteria are available upon 
request. 

From Table 4, it can be established that MBO and OMBO are the two best performers when τ =
20 with the overall RPD values of 1.04 and 1.21; respectively. ABC and DCS are the third and fourth 
best performers with the overall RPD values of 1.57 and 2.33. Based on the increasing order of the overall 
RPD values, MBO ranks the first, OMBO, ABC, DCS and SA rank the second, third, fourth and fifth and 
GA, PSO2, TLBO, and PSO1 rank the sixth, seventh, eighth and ninth. It can be also seen that OMBO 
and MBO outperform the other methods with smaller RPD values in solving large-sized instances such 
as P89, P111, P148 and P297. For the other two termination criteria, MBO obtains the smallest overall 
RPD values of 0.78 and 0.64, and OMBO obtain the second smallest overall RPD values of 0.95 and 
0.79. MBO and OMBO also show clear superiority over other algorithms with smaller RPD values in 
solving large-sized instances, P89, P111, P148 and P297. When observing the performances of one 
algorithm under three terminate criterion, the overall RPD value reduces while increasing the running 
time for most algorithms, whereas PSO1 shows no clear improvement due to being trapped into local 
optima. However, the proposed MBO shows clear improvement although the obtain results are near to 
the optimal solutions, thereby demonstrating the strong exploration and exploitation capacity of the MBO 
method. All these computational results validate that the proposed MBO is quite effective for solving 
RUALBP, especially for large-sized problems, and also demonstrate the effectiveness of the diversity 
controlling mechanism. 
 

Table 4 Average RPD values by implemented algorithms 

Problem Ns 
Average relative percentage deviation 

CPU(s) 
PSO1 TLBO PSO2 GA SA DCS ABC OMBO MBO 

τ = 20 

P11 4 0.09  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  2.4 

P25 3, 4, 6, 9 1.71  0.03  0.10  0.31  1.25  0.19  0.00  0.24  0.00  12.5 

P35 4, 5, 7 ,12 4.22  1.68  1.73  1.67  2.08  1.09  0.43  0.63  0.14  24.5 

P53 5, 7, 10, 14 5.33  2.38  2.97  2.08  1.74  1.52  0.80  1.09  0.62  56.2 

P70 7, 10, 14, 19 9.73  5.74  4.93  3.78  3.05  2.91  1.65  1.33  1.25  98 

P89 8, 12, 16, 21 8.21  4.84  4.68  2.94  3.68  2.55  1.54  1.35  1.16  158.4 

P111 9, 13, 17, 22 11.51  8.01  6.62  4.18  2.48  3.21  2.33  1.65  1.79  246.4 

P148 10, 14, 21, 29 12.49  11.29  7.99  4.83  2.62  3.81  2.93  1.78  1.80  438.1 

P297 19, 29, 38, 50 11.72  9.37  7.93  4.60  2.55  3.92  3.25  1.89  1.79  1764.2 

Overall RPD 7.87  5.25  4.48  2.95  2.36  2.33  1.57  1.21  1.04  - 

τ = 40 

P11 4 0.09  0.00  0.00  0.00  0.00  0.00  0.00  0.00 0.00  4.8 

P25 3, 4, 6, 9 1.71  0.03  0.03  0.25  1.25  0.08  0.00  0.24 0.00  25 

P35 4, 5, 7 ,12 4.22  1.56  1.46  1.45  2.08  0.84  0.40  0.57 0.10  49 

P53 5, 7, 10, 14 5.33  2.11  2.63  1.85  1.72  1.29  0.74  1.09 0.60  112.4 

P70 7, 10, 14, 19 9.73  5.42  4.59  3.31  2.91  2.60  1.48  1.07 1.16  196 



P89 8, 12, 16, 21 8.21  4.57  4.46  2.65  3.60  2.34  1.31  1.26 0.97  316.8 

P111 9, 13, 17, 22 11.51  7.59  6.30  3.83  2.34  2.78  1.74  1.23 1.29  492.8 

P148 10, 14, 21, 29 12.49  10.42  7.55  4.37  2.17  3.31  2.07  1.28 1.23  876.2 

P297 19, 29, 38, 50 11.71  8.17  7.62  3.78  1.73  3.13  2.23  1.07 1.08  3528.4 

Overall RPD 7.87  4.83  4.20  2.60  2.16  1.98  1.21  0.95 0.78  - 

τ = 60 

P11 4 0.09  0.00  0.00  0.00  0.00  0.00  0.00  0.00 0.00  7.3  

P25 3, 4, 6, 9 1.71  0.03  0.00  0.21  1.25  0.08  0.00  0.24 0.00  37.5  

P35 4, 5, 7 ,12 4.22  1.40  1.42  1.38  2.08  0.79  0.32  0.57 0.09  73.5  

P53 5, 7, 10, 14 5.33  2.06  2.22  1.50  1.72  1.09  0.74  1.05 0.51  168.5  

P70 7, 10, 14, 19 9.73  5.27  4.27  3.10  2.91  2.49  1.40  1.00 1.09  294.0  

P89 8, 12, 16, 21 8.21  4.52  4.22  2.52  3.58  2.15  1.22  1.15 0.91  475.3  

P111 9, 13, 17, 22 11.51  7.14  5.98  3.54  2.23  2.57  1.48  1.02 1.07  739.3  

P148 10, 14, 21, 29 12.49  10.13  7.33  4.07  1.93  3.07  1.66  0.94 0.95  1314.2  

P297 19, 29, 38, 50 11.69  8.09  7.50  3.38  1.24  2.76  1.74  0.55 0.64  5292.5  

Overall RPD 7.87  4.68  3.99  2.39  2.05  1.82  1.04  0.79 0.64  - 
*Best overall RPD in bold 
 

In order to have a better observation of the performance of algorithms under different termination 
criterion and ascertain the observed difference among the algorithms is statistically significant, this 
research conducts the statistical analysis, namely the multifactor ANOVA test. The average RPD value 
of one algorithm in one run is selected as the response variable following Li et al. (2017c) as the 
algorithms have diverse performance on different instances. Subsequently, the multifactor ANOVA test 
is also carried out with algorithm type and computational time as two factors after checking the 
fulfillment of the normality, homogeneity of the variances and the independence of the residuals. Detailed 
AVOVA table is omitted for space reasons, but it is sufficient to say that there are statistically significant 
differences between these algorithms, termination criteria and the interaction of the two factors. The 
means plot of the interactions between algorithms and termination criteria is illustrated in Figure 4, where 
only 5 best algorithms and three termination criteria (τ = 20, 40, 60) are plotted for a better vision.  

From Figure 4, it is clear that MBO is the best performer for all the three termination criteria, and 
OMBO is the second-best performer. It is to be noted that the overlapping interval means there is no 
significant statistical difference, and hence it is sufficient to state that MBO is statistically better than 
ABC, DCS and SA as there are no overlapping intervals between MBO and ABC, DCS or SA. OMBO 
is also statistically better than ABC, DCS and SA as there are no overlapping intervals between OMBO 
and ABC, DCS or SA. In summary, the statistical analysis demonstrates that the proposed MBO and 
OMBO outperforms other algorithms by a significant and larger margin under all the three termination 
criteria. From the statistical analysis and the results in Table 4, it further demonstrates the superiority of 
the proposed MBO methods and the effectiveness of the proposed diversity controlling mechanism.  

The superiority of the proposed MBO should be attributed to problem-specific improvement such as 
modified consecutive assignment procedure, cycle time iterative mechanism, new population update 
mechanism and diversity controlling mechanism. The modified consecutive assignment procedure 
allocates more tasks to the former workstation, and hence reduces the total operation time in the last 
workstation or the cycle time. The iterative mechanism ensures that all the individuals are evaluated 
using the same initial cycle time and helps to preserve the tiny improvements on the individuals. These 
two improvements greatly improve the performance of the algorithms and hence help the algorithms to 



update many upper bounds reported in the literature. In addition, improved MBO algorithm proposed in 
this paper utilizes new population update mechanism and diversity controlling mechanism to avoid the 
algorithm getting trapped into local optima and escape from being trapped into local optima. In summary, 
these improvements are in favor of the MBO having strong local search capacity, maintaining diversity 
of the population and having a proper balance between exploitation and exploration.  
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Figure 4 Means plot and 95% Tukey HSD confidence intervals for the interactions between algorithm types and 

termination criteria 

 

As the proposed algorithm is capable to update the current upper bounds, Table 5 presents the 
comparison between the reported best results and the results obtained using the proposed MBO, where 
the result obtained by MBO when τ=10, 20 are illustrated. First and second column presents the problem 
size and number of workstations followed by the best cycle times and CPU times obtained using particle 
swarm optimization (PSO-N) as reported in Nilakantan and Ponnambalam (2016). It should be noted that 
PSO-N is the only method available which addresses the considered RUALBP. Table 5 reports the best 
cycle times (best), the percentage improvement rate (I.R.), the average cycle time (Avg.) for ten runs. 
The percentage improvement rate is calculated using 100 × (𝐶𝐶𝐶𝐶𝑃𝑃𝑆𝑆𝑃𝑃−𝑁𝑁 − 𝐶𝐶𝐶𝐶𝑀𝑀𝐵𝐵𝑃𝑃) 𝐶𝐶𝐶𝐶𝑃𝑃𝑆𝑆𝑃𝑃−𝑁𝑁⁄ , where 
𝐶𝐶𝐶𝐶𝑃𝑃𝑆𝑆𝑃𝑃−𝑁𝑁 and 𝐶𝐶𝐶𝐶𝑀𝑀𝐵𝐵𝑃𝑃 are the best cycle time obtained using PSO-N and MBO. From Table 5, it can be 
observed that MBO updates the upper bounds for all the tested cases, especially for large-sized datasets. 
The average improvement rates by MBO are 14.80% and 15.06% when τ=10 and 20. It is also observed 
that MBO is able to obtain the better results in a shorter computation time. This comparative study further 
demonstrates the efficiency and effectiveness of the considered MBO for solving RUALBP.  
 

Table 5 Comparison between the published best cycle times and the results by MBO  

Problem Ns 
PSO-N* 

MBO 

τ = 10 τ = 20 

Results CPU(s) Best I.R. Avg. s.d. CPU(s) Best I.R. Avg. s.d. CPU(s) 

P25 3 500 8.0 468 6.40 468.3 0.48 1.2  468 6.40 468.3 0.48 2.4  
 4 318 9.2 278 12.58 278 0.00 6.3  278 12.58 278 0.00 12.5  
 6 188 10.5 172 8.51 173.2 1.55 6.3  172 8.51 173.2 1.55 12.5  



* Running using Intel core i5 processor (2.3 GHz). 

 

6. Conclusion and future research 
This work studied the robotic U-shaped assembly line balancing problems (RUALBP), where robots 

are utilized to assemble the products for achieving higher flexibility and reduced cost. Two new mixed-
integer linear programming models are first developed with the cycle time minimization criterion. Due 
to the NP-hard nature of this considered problem, this work utilizes and improves the migrating birds 
optimization algorithm (MBO) for solving the large-sized problems for the first time. Meanwhile, several 
problem-specific improvements are also proposed to enhance the MBO, including modified consecutive 
assignment procedure for robot selection, iterative mechanism for cycle time update, new population 
update mechanism and diversity controlling mechanism. These improvements are in favor of the MBO 
maintaining diversity of the population and having a proper balance between exploitation and exploration. 

Model comparison shows that the two new linear models outperform the published non-linear model 
and could achieve the optimal solutions for small-sized instances. A comprehensive computational and 
comparative study among the implemented algorithms on a set of 33 benchmark problems is also carried 

 9 114 13.5 99 13.16 99.2 0.63 6.3  99 13.16 99.2 0.63 12.5  

P35 4 355 16.8 341 3.94 341 0.00 12.3  341 3.94 341 0.00 12.5  
 5 332 19.5 302 9.04 304.1 2.02 12.3  302 9.04 304.1 2.02 24.5  
 7 221 27.5 188 14.93 189.9 1.20 12.3  188 14.93 189.9 1.20 24.5  
 12 103 31.5 89 13.59 89.7 0.95 12.3  89 13.59 89.7 0.95 24.5  

P53 5 459 32.5 425 7.41 426.5 2.07 28.1  425 7.41 426.5 2.07 24.5  
 7 286 34.8 256 10.49 257.7 2.41 28.1  256 10.49 257.7 2.41 56.2  
 10 220 35.6 193 12.27 195.3 1.42 28.1  193 12.27 195.3 1.42 56.2  
 14 148 41.2 125 15.54 126.3 0.95 28.1  125 15.54 126 0.94 56.2  

P70 7 447 60.1 372 16.78 376.5 3.14 49.0  372 16.78 375.9 2.73 56.2  
 10 272 66.8 222 18.38 223.4 1.17 49.0  222 18.38 223.1 0.99 98.0  
 14 211 72.4 166 21.33 166.5 0.53 49.0  165 21.80 166 0.47 98.0  
 19 144 82.2 117 18.75 117.9 0.57 49.0  116 19.44 117.1 0.74 98.0  

P89 8 496 84.5 407 17.94 410.1 2.88 79.2  407 17.94 410.1 2.88 98.0  
 12 326 87.1 275 15.64 277.6 2.37 79.2  275 15.64 277.5 2.27 158.4  
 16 224 91.2 193 13.84 193.9 0.88 79.2  192 14.29 193.2 0.79 158.4  
 21 174 95.3 147 15.52 147.6 0.52 79.2  146 16.09 147.1 0.88 158.4  

P111 9 545 234.2 446 18.17 458.3 5.40 123.2  446 18.17 456.8 4.83 158.4  
 13 320 253.7 265 17.19 267.9 2.08 123.2  264 17.50 266.3 1.95 246.4  
 17 256 298.5 208 18.75 209.1 0.74 123.2  207 19.14 208.3 0.67 246.4  
 22 186 348.9 151 18.82 151.9 0.57 123.2  150 19.35 151.1 0.74 246.4  

P148 10 629 445.8 518 17.65 524.1 4.72 219.0  517 17.81 522.2 4.57 246.4  
 14 421 519.2 339 19.48 344.1 3.14 219.0  337 19.95 341.6 2.72 438.1  
 21 283 595.1 225 20.49 225.7 0.67 219.0  223 21.20 223.7 0.67 438.1  
 29 187 655.3 157 16.04 157.1 0.32 219.0  155 17.11 155.6 0.52 438.1  

P297 19 597 1573.2 502 15.91 506.1 3.07 882.1  500 16.25 502.4 2.32 438.1  
 29 394 1693.8 334 15.23 334.9 0.99 882.1  330 16.24 332.1 1.37 1764.2  
 38 293 1752.9 250 14.68 251.5 0.71 882.1  248 15.36 249.3 0.82 1764.2  
 50 224 1802.3 190 15.18 191.2 0.63 882.1  189 15.63 189.6 0.70 1764.2  



out to test the performance of the proposed MBO. In the comparative study, seven other recent and 
effective algorithms reported in the literature are re-implemented and compared under six termination 
criteria from short to large computational times. The computational study, along with strong statistical 
analysis, demonstrates that the proposed improvements enhance the performance of the MBO algorithm 
by a significant margin and the proposed MBO outperforms all the compared algorithms statistically. 
Additionally, the proposed MBO is capable to update the upper bounds for 32 cases with less 
computational time in a comparison between reported best cycle times and the results by MBO.  

Due to the superiority of the new proposed algorithm, it is suggested to utilize this new algorithm to 
solve different or more complex assembly line balancing problems, such as mixed-model robotic 
assembly line (Aghajani et al., 2014; Li et al., 2017b), worker assignment (Zacharia and Nearchou, 2016) 
and parallel workstations (Akpınar and Mirac Bayhan, 2011). Since the real industrial contexts are 
diverse and more complex, another interesting avenue is related to the robotic assembly line itself by 
involving more realistic features. For instance, in some occasions cooperative robots support the human 
worker, where workers and robots work in the same workstations simultaneously. In this regard, the 
research related to collaboration between humans and robots is beneficial and interesting. In addition, in 
some assembly lines only a fraction of workstations are assigned with robots, whereas the workers 
operate the tasks on other workstations.  
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Appendix. Pseudocodes of the tested algorithms and utilized operators 

The implemented and compared algorithms in this paper are: simulated annealing algorithm (SA), 

particle swarm optimization (PSO1), particle swarm optimization (PSO2), genetic algorithm (GA), 

teaching-learning-based optimization algorithm (TLBO), artificial bee colony algorithm (ABC), discrete 

cuckoo search (DCS). The psuedocdoes of the implemented algorithms are listed in sequence as follows.   



 
A) SA algorithm 
The main procedure of SA algorithm is presented in Algorithm 1.  

Algorithm 1: Procedure of SA algorithm  
Set T:=T0 and obtain an initial solution S;  
While (Termination criterion is not satisfied)  
For n:=0 to N do 
Obtain a neighbor solution S′;  

Calculate △= Fit �𝑆𝑆′� − Fit(𝑆𝑆); 

% Fit(𝑆𝑆) is the fitness of solution S. 

If (△≤ 0) 𝑆𝑆 ⟵ 𝑆𝑆′; 
Else If (Rand ≤ 𝑒𝑒𝑥𝑥𝑒𝑒−△ �𝑇𝑇×𝐹𝐹𝑖𝑖𝐵𝐵(𝑆𝑆)�⁄ )  𝑆𝑆 ⟵ 𝑆𝑆′;   
% Rand is a randomly generated number within [0,1] 
Endfor 
𝐶𝐶 = 𝐶𝐶 × 𝛼𝛼 
Endwhile 
%Parameter T0 is the initial temperature; parameter α is the cooling 
rate; parameter N is the iteration time before the temperature updates. 

 
B) PSO1 algorithm  
PSO1 utilizes the random-key method to tackle the considered discrete problem. Supposed that there are 
nine tasks and the original 𝑥𝑥𝑖𝑖,0 is [0.42, 0.68, 0.35, 0.01, 0.70, 0.25, 0.79, 0.59, 0.63], the floating-point 
vector is transferred into the task permutation in the following method. Here, the tasks with lowest value 
has the highest priority and thus task 4 with the lowest value 0.01 is allocated to the first position in the 
task permutation; the task 6 with the second lowest value 0.25 is allocated to the second position in the 
task permutation. Subsequently, the floating-point vector is transferred into the task permutation [4, 6, 3, 
1, 8, 9, 2, 5, 7]. In short, by employing the random-key method, the original evolution techniques in PSO 
can be applied directly, where the task permutation is applied in decoding to obtain the fitness values. 
 

Algorithm 2: Procedure of PSO1 algorithm  
For i:=1 to PS do   %Initialization 
𝑥𝑥𝑖𝑖,0 = 𝑥𝑥𝑆𝑆𝑖𝑖𝑚𝑚 + 𝑟𝑟𝑎𝑎𝑛𝑛𝑟𝑟𝑟𝑟𝑚𝑚(𝑥𝑥𝑆𝑆𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑆𝑆𝑖𝑖𝑚𝑚); 
𝑣𝑣𝑖𝑖,0 = 𝑣𝑣𝑆𝑆𝑖𝑖𝑚𝑚 + 𝑟𝑟𝑎𝑎𝑛𝑛𝑟𝑟𝑟𝑟𝑚𝑚(𝑣𝑣𝑆𝑆𝑚𝑚𝑚𝑚 − 𝑣𝑣𝑆𝑆𝑖𝑖𝑚𝑚); 
Obtain the fitness value of solution 𝑥𝑥𝑖𝑖,0; 
Endfor 
While (Termination criterion is not satisfied)  
Select the global best particle 𝑥𝑥𝑖𝑖,𝑘𝑘

𝑔𝑔𝑔𝑔𝐵𝐵𝐵𝐵𝐵𝐵and local best particle 𝑥𝑥𝑖𝑖,𝑘𝑘
𝑙𝑙𝑔𝑔𝐵𝐵𝐵𝐵𝐵𝐵; 

For i:=1 to PS do    %Population evolution 
𝑣𝑣𝑖𝑖,𝑘𝑘+1 = 𝑐𝑐1 ∙ 𝑟𝑟1 ∙ �𝑥𝑥𝑖𝑖,𝑘𝑘

𝑔𝑔𝑔𝑔𝐵𝐵𝐵𝐵𝐵𝐵 − 𝑥𝑥𝑖𝑖,𝑘𝑘� + 𝑐𝑐2 ∙ 𝑟𝑟2 ∙ �𝑥𝑥𝑖𝑖,𝑘𝑘
𝑙𝑙𝑔𝑔𝐵𝐵𝐵𝐵𝐵𝐵 − 𝑥𝑥𝑖𝑖,𝑘𝑘� + 𝑤𝑤𝑘𝑘 ∙ 𝑣𝑣𝑖𝑖,𝑘𝑘; 

𝑥𝑥𝑖𝑖,𝑘𝑘+1 = 𝑥𝑥𝑖𝑖,𝑘𝑘 + 𝑣𝑣𝑖𝑖,𝑘𝑘+1; 
Obtain the fitness value of solution 𝑥𝑥𝑖𝑖,𝑘𝑘+1; 
Endfor 
Endwhile 



%Parameter PS is population size; 𝑘𝑘 denotes the iteration number of the 
algorithm. 

 
C) PSO2 algorithm 
PSO2 is a discrete PSO utilizing neighbor operator and crossover operator to update the population. The 
main procedure of PSO2 is presented in Algorithm 3.  

Algorithm 3: Procedure of PSO2 algorithm  
Initialize the PS individuals;  
While (Termination criterion is not satisfied)  
Select the global best particle 𝑥𝑥𝑔𝑔𝑔𝑔𝐵𝐵𝐵𝐵𝐵𝐵  and local best particle  𝑥𝑥𝑙𝑙𝑔𝑔𝐵𝐵𝐵𝐵𝐵𝐵; 
Utilize the  𝑥𝑥𝑔𝑔𝑔𝑔𝐵𝐵𝐵𝐵𝐵𝐵  as the first individual in the new population; 
For i:=2 to PS do 
If (𝑟𝑟𝑎𝑎𝑛𝑛𝑟𝑟(0,1) < 𝑟𝑟) 
Obtain a new individual ii utilizing the crossover operator with individual 
i and 𝑥𝑥𝑔𝑔𝑔𝑔𝐵𝐵𝐵𝐵𝐵𝐵  as parents; 
Else  
Obtain a new individual ii utilizing the crossover operator with individual 
i and 𝑥𝑥𝑙𝑙𝑔𝑔𝐵𝐵𝐵𝐵𝐵𝐵 as parents; 
Endif 
Obtain a new individual iii utilizing neighbor operator on the individual 
ii; 
Replace individual i with the new individual iii; 
Endfor 
Endwhile 
%Parameter PS is population size; 𝑟𝑟 is a parameter within (0,1). 

 
D) GA algorithm 
The main procedure of GA algorithm is presented in Algorithm 4. 

Algorithm 4: Procedure of GA algorithm  
Initialize the PS individuals;  
While (Termination criterion is not satisfied)  
%Selection and crossover 
  While ( the number of offspring is not larger than 𝑃𝑃𝐶𝐶 ∙ 𝑃𝑃𝑆𝑆)   
Select Parent 1 from the parent population utilizing tournament selection; 
Select Parent 2 from the parent population utilizing tournament selection; 
Obtain Child 1 and Child 2 utilizing two-point crossover operator; 
Endwhile 
% Mutation  
While (the number of offspring is not larger than 𝑃𝑃𝑆𝑆 − 1)  
Obtain one parent individual from the parent population utilizing 
tournament selection; 
Obtain a new child individual utilizing neighbor operator; 
Endwhile 
% Elitist strategy 



Select the best individual from the parent population; 
Clone this best individual to the offspring as the last child individual; 
Endwhile 
%Parameter PS is population size; 𝑃𝑃𝐶𝐶  is the crossover probability (the 
mutation probability = 1- crossover probability); 

 
E) TLBO algorithm  
TLBO utilizes the random-key method to tackle the considered discrete problem. Supposed that there 
are nine tasks, nine floating-point numbers between 0 and 1 are generated for one individual. For a vector 
ψ = (0.42, 0.68, 0.35, 0.01, 0.70, 0.25, 0.79, 0.59, 0.63), the floating-point vector is transferred into the 

task permutation in the following method. Here, the tasks with lowest value has the highest priority and 
thus task 4 with the lowest value 0.01 is allocated to the first position in the task permutation; the task 6 
with the second lowest value 0.25 is allocated to the second position in the task permutation. 
Subsequently, the floating-point vector is transferred into the task permutation [4, 6, 3, 1, 8, 9, 2, 5, 7]. 
In short, by employing the random-key method, the original evolution techniques in TLBO can be applied 
directly, where the task permutation is applied in decoding to obtain the fitness values. 

Algorithm 5: Procedure of TLBO algorithm  
Initialize the PS individuals;  
While (Termination criterion is not satisfied)  
For i:=1 to PS do    % Teacher phase 
𝐶𝐶𝐹𝐹 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟�1 + 𝑟𝑟𝑎𝑎𝑛𝑛𝑟𝑟(0,1)�; 
% 𝑟𝑟𝑎𝑎𝑛𝑛𝑟𝑟(0,1) is random number within (0,1). 
𝑋𝑋𝑆𝑆𝐵𝐵𝑚𝑚𝑚𝑚 ← Calculate mean value of the population; 
𝑋𝑋𝐵𝐵𝐵𝐵𝑚𝑚𝑟𝑟𝑡𝑡ℎ𝐵𝐵𝑟𝑟 ← Best solution; 
𝑋𝑋𝑖𝑖

𝑚𝑚𝐵𝐵𝑛𝑛 = 𝑋𝑋𝑖𝑖 + 𝑟𝑟. (𝑋𝑋𝐵𝐵𝐵𝐵𝑚𝑚𝑟𝑟𝑡𝑡ℎ𝐵𝐵𝑟𝑟 − 𝐶𝐶𝐹𝐹 ∙ 𝑋𝑋𝑆𝑆𝐵𝐵𝑚𝑚𝑚𝑚); 
Replace 𝑋𝑋𝑖𝑖 with 𝑋𝑋𝑖𝑖

𝑚𝑚𝐵𝐵𝑛𝑛 when Fit(𝑋𝑋𝑖𝑖
𝑚𝑚𝐵𝐵𝑛𝑛) ≤ Fit(𝑋𝑋𝑖𝑖); 

Endfor 
For i:=1 to PS do    % Learner phase 
Select a different individual ii randomly (𝑖𝑖 ≠ 𝑖𝑖𝑖𝑖); 
If (Fit(𝑋𝑋𝑖𝑖) ≥ Fit(𝑋𝑋𝑖𝑖𝑖𝑖))  𝑋𝑋𝑖𝑖

𝑚𝑚𝐵𝐵𝑛𝑛 = 𝑋𝑋𝑖𝑖 + 𝑟𝑟. (𝑋𝑋𝑖𝑖𝑖𝑖 − 𝑋𝑋𝑖𝑖); 
Else 𝑋𝑋𝑖𝑖

𝑚𝑚𝐵𝐵𝑛𝑛 = 𝑋𝑋𝑖𝑖 + 𝑟𝑟. (𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑖𝑖𝑖𝑖); 
Endif 
Replace 𝑋𝑋𝑖𝑖 with 𝑋𝑋𝑖𝑖

𝑚𝑚𝐵𝐵𝑛𝑛 when Fit(𝑋𝑋𝑖𝑖
𝑚𝑚𝐵𝐵𝑛𝑛) ≤ Fit(𝑋𝑋𝑖𝑖); 

Endfor 
EndWhile 
%Parameter PS is population size; 𝑟𝑟 is a random number within [0,1]; 
Fit(𝑒𝑒) is the fitness of solution p. 

 
F) DCS algorithm  
The main procedure of DCS algorithm is presented in Algorithm 5. 

Algorithm 6: Procedure of DCS algorithm  
Generate initial population with PS host nests;  %Initialization 
While (termination criterion is not met) do 
For p=1 to PS do                   %Population update 



Get a cuckoo (say a) randomly using neighbor operators on randomly 
selected individual;  
Select a nest (say b) randomly from current population; 
Replace solution b with solution a if Fit(𝑎𝑎) ≤ Fit(𝑏𝑏); 
Endfor 
Ranks the individuals based on the fitness; 
Replace a fraction 𝑃𝑃𝑚𝑚  of worse nests with the neighbor solutions of 
randomly selected solutions from the remained better individuals; 
EndWhile 
%Parameter PS is population size; Fit(𝑒𝑒) is the fitness of solution p. 

 
G) ABC algorithm 
The main procedure of ABC algorithm is presented in Algorithm 6.  

Algorithm 7: Procedure of ABC algorithm  
Initialize the PS food sources;  
While (Termination criterion is not satisfied)  
For p:=1 to PS do    % Employed bee phase 
Generate a neighbor solution 𝑒𝑒′ of the individual p; 

Replace p with 𝑒𝑒′when Fit �𝑒𝑒′� ≤ Fit(𝑒𝑒); 

Endfor 
For p:=1 to PS do    % Onlooker phase 
Obtain the probability value for each individual; 
Select one individual S using roulette wheel selection scheme; 
Generate a neighbor solution 𝑆𝑆′ of the individual S; 

Replace S with 𝑆𝑆′when Fit �𝑆𝑆′� ≤ Fit(𝑆𝑆); 

Endfor 
% Scout phase 
Select one duplicated solution or the solution with the worst fitness;            
Replace selected individual with the neighbor solution of a randomly 
selected solution from the remained individuals; 
Endwhile 
%Parameter PS is population size; Fit(𝑒𝑒) is the fitness of solution p. 

 
H) Neighbor operator 
The implemented algorithms employ the insert operator and swap operator as the neighbor operator, and 
the two-point crossover operator to combine two individuals. Specifically, the insert operator or swap 
operator is randomly selected and applied to obtain one new task permutation. Figure 5 depicts an 
example of insert operator and swap operator with nine tasks, and Figure 6 depicts an example of utilizing 
two-point crossover operator.  
 



Task permutation 2 3 6 1 9 4 5 7 8

Swap

Insert

 

Figure 5 Insert operator and swap operator  
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Figure 6 Two-point crossover operator 
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