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A B S T R A C T

The objective of this study is to investigate spatial structures of error in the assessment of continuous raster data.
The use of conventional diagnostics of error often overlooks the possible spatial variation in error because such
diagnostics report only average error or deviation between predicted and reference values. In this respect, this
work uses a moving window (kernel) approach to generate geographically weighted (GW) versions of the mean
signed deviation, the mean absolute error and the root mean squared error and to quantify their spatial varia-
tions. Such approach computes local error diagnostics from data weighted by its distance to the centre of a
moving kernel and allows to map spatial surfaces of each type of error. In addition, a GW correlation analysis
between predicted and reference values provides an alternative view of local error. These diagnostics are applied
to two earth observation case studies. The results reveal important spatial structures of error and unusual
clusters of error can be identified through Monte Carlo permutation tests. The first case study demonstrates the
use of GW diagnostics to fractional impervious surface area datasets generated by four different models for the
Jakarta metropolitan area, Indonesia. The GW diagnostics reveal where the models perform differently and
similarly, and found areas of under-prediction in the urban core, with larger errors in peri-urban areas. The
second case study uses the GW diagnostics to four remotely sensed aboveground biomass datasets for the
Yucatan Peninsula, Mexico. The mapping of GW diagnostics provides a means to compare the accuracy of these
four continuous raster datasets locally. The discussion considers the relative nature of diagnostics of error,
determining moving window size and issues around the interpretation of different error diagnostic measures.
Investigating spatial structures of error hidden in conventional diagnostics of error provides informative de-
scriptions of error in continuous raster data.

1. Introduction

All spatial data are subject to error. Remotely sensed (RS) imagery
routinely contains sensor-related errors, atmospheric effects, and geo-
metric errors. Environmental datasets that describe landscape features
and properties from RS products (e.g. forest aboveground biomass,
species distribution, and climate change scenarios) inherently contain
prediction errors. Errors can manifest themselves as systematic devia-
tions and/or noise which require careful assessment in order to avoid
mis-interpretations of the data, to support reliable conclusions and to
make informed decisions (Daly, 2006; Foody, 2002). Error assessments
provide a guide to data quality and reliability (Foody, 2002) and can
provide earth observation (EO) scientists with an understanding of the

sources of error both in RS imagery and products (Liu et al., 2007;
Stehman and Czaplewski, 1998). However, conventional summary
measures of error do not take any spatial information (e.g. spatial
heterogeneity) of error into account (Foody, 2005, 2002). Spatially
explicit approach for the assessment is hence important.

In EO studies, spatial extensions of conventional diagnostics of error
or accuracy have been demonstrated for categorical raster data, such as
land cover classification data (Comber et al., 2017, 2012; Comber,
2013; Congalton, 1988; Foody, 2005). These approaches spatially ex-
tend the usual method of estimating and reporting accuracy through a
confusion matrix, which is the cross-tabulation of predicted and re-
ference classes to generate measures of user’s and producer’s accuracy
that correspond to commission and omission errors, respectively, along
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with an overall accuracy (Congalton, 1991; Stehman and Czaplewski,
1998). Specifically, Comber (2013) demonstrated the use of a geo-
graphically weighted (GW) approach to generate spatial surfaces of
these measures. The GW approach calculates a series of local diag-
nostics of accuracy, using data weighted by their distance to the centre
of a moving window or kernel to explore spatial heterogeneity (Gollini
et al., 2015). This has been used to compare global land cover datasets
(Comber et al., 2013), to assess the consistency of such classification
over time (Tsutsumida and Comber, 2015), and to construct hybrid
global land cover datasets from multiple inputs (See et al., 2015).
Comber et al. (2017) proposed GW confusion matrices for further
generic applications. The GW framework itself (Fotheringham et al.,
2002; Gollini et al., 2015; Lu et al., 2014) has been widely adopted
across many scientific disciplines (e.g. Geography, Ecology, Health),
where GW regression (Brunsdon et al., 1996) is the most popular GW
model.

The developments of spatially explicit approaches for error assess-
ment in continuous raster data in the EO domain have been limited.
Comber et al. (2012) proposed a fuzzy GW difference analysis which
estimates absolute deviations between the predicted and reference
fuzzy membership, essentially applying a fuzzy generalization of the
categorical accuracy measures. Khatami et al. (2017) proposed a spatial
interpolation approach for soft classification maps in which a linear
kernel function was applied to interpolate spatial deviations between
predicted and reference proportions, with a focus on weight of spectral
or class proportion as a soft classification measure. Willmott and
Matsuura (2006) described maps of cross-validation error. Continuous
raster data are commonly assessed using mean signed deviation (msd),
mean absolute error (mae), root mean square error (rmse) and Pear-
son’s correlation coefficient (r). Accurate predictions are reflected by
msd, mae and rmse to be zero, coupled with r to be one. Although these
conventional diagnostics are useful in reporting error, each of them
provides an overall, global or ‘whole map’ measure only. In this respect,
Harris and Juggins (2011) demonstrated GW r for assessing UK fresh-
water acidification prediction accuracy. Harris et al. (2013) demon-
strated GW mae for UK freshwater acidification and London house price
prediction accuracy, as separate case studies. Monteys et al. (2015)
demonstrated GW r for assessing water depth prediction accuracy in

Irish coastal waters. These studies either directly extend GW summary
statistics (e.g. GW averages, GW variances) as first proposed by
Brunsdon et al. (2002), or directly use GW r (Fotheringham et al.,
2002), but in a model accuracy context. Further advances of GW
summary statistics can be found in Harris and Brunsdon (2010) and
Harris et al. (2014). However, the previous studies have only reported
spatial error briefly as part of a suite of diagnostics. That is, spatial
extensions of conventional diagnostics of error for continuous raster
data have not been described in a comprehensive way, specifically in an
EO context. Here we demonstrate the linked use of all four diagnostics,
msd, mae, rmse and r, through their GW msd, GW mae, GW rmse and
GW r counterparts and advance them through the application of Monte
Carlo permutation tests to identify unusual clusters of error applied to
two EO case studies. The first case study evaluates datasets of the
fractional impervious surface area (%ISA) with the aim of investigating
spatial structures of error in multiple predictions by four different
models. The second case study evaluate four different forest above-
ground biomass (AGB) datasets in order to compare spatial structures of
error in multiple independent datasets.

2. Case study data

2.1. Study 1

In order to explore how spatial structures of error can differ ac-
cording to different models, four independent predictions of %ISA in
the Jakarta Metropolitan Area (JMA), Indonesia, for 2012 were pro-
duced. The %ISA was inferred from the enhanced vegetation index
(EVI) stored in moderate resolution imaging spectroradiometer
(MODIS) MOD13Q1 product, which are 16-days composite RS imagery
with a 231m spatial resolution. Annual minimum, mean, maximum,
and standard deviation of EVI were calculated on a pixel by pixel basis
from the 24 images in 2012. These data were classified and assessed
using training and reference (validation) samples collected at 984
randomly selected grid squares of the same size and at the same loca-
tions as the MODIS MOD13Q1 product. The %ISA was visually inter-
preted from fine resolution images in available Google Earth from the
same year (Comber et al., 2016; Tsutsumida et al., 2016; Tsutsumida

Fig. 1. The spatial distribution of the training (left) and reference (right) sample of fractional impervious surface area (%) in the Jakarta metropolitan area,
Indonesia.
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and Comber, 2015). When fine resolution images were not available at
a sampling grid in 2012, %ISA were interpolated from images dated
before and after the year 2012, only if the %ISA is stable over the period
(in most cases, %ISA is zero). It is a reasonable approach because im-
pervious surfaces do not change frequently. The reference values of %
ISA were interpreted twice to minimize human error. The sample grids
were randomly divided into training (n=434) and reference data
(n=550) as shown in Fig. 1.

Four different models were implemented to predict %ISA in the
JMA: Logistic regression, Maximum Entropy (MaxEnt), Random Forest
(RF) regression, and class probability of the RF classifier (hereafter RF
probability). All four models return a continuous classification value
between 0–100%. Logistic regression is a parametric generalized linear
model for response data following a binomial distribution. The out-
comes are within the range between 0 and 1 (rescaled to 0–100%).
MaxEnt is a non-parametric model, which naturally extends from lo-
gistic regression (Phillips and Dudík, 2008). MaxEnt returns the prob-
ability of presence from presence-only training data (i.e. without la-
belled “absent” data), resulting %ISA predictions. RF regression and RF
probability are machine learning techniques using ensemble logistic
trees (Breiman, 2001). For RF regression, each tree is constructed by
bootstrapped random sampling so that random sample selection leads
to a weak correlation between trees. For RF probability, each tree votes
for the most popular class and a random sample selection to grow trees

is used to minimize the classification error. Due to its voting system, RF
produces a probability of class presence, predicting %ISA. The %ISA
predictions of these four models are different and clearly vary spatially
(Fig. 2). Note that apparent water surfaces are masked by a MODIS
MOD44W product which represents the water surface in the same
spatial scale of the MOD13Q1. Thus, submerged areas (e.g., those found
in the North-East edge of the JMA) are excluded in this analysis.

2.2. Study 2

In order to explore how spatial structures of error can differ ac-
cording to available different datasets, four AGB spatial datasets for the
Campeche, Yucatan, and Quintana Roo administrative regions in the
Yucatan peninsula, Mexico are used (Fig. 3). These were developed by
Rodríguez-Veiga et al. (2016); Baccini et al. (2012); Saatchi et al.
(2011), and Hu et al. (2016). Details of these datasets are summarized
in Table 1. Dry forest, moist forest, and mangrove forest are found in
the North-Western region, the central region, and the coastal zone of
the Yucatan peninsula. It is not possible to objectively determine which
dataset is the most accurate from Table 1, as the reported errors are
derived from different reference sources. The reference data for this
case study was provided by the INFyS in-situ observation data which
record measures of AGB (Mg ha−1) at four nested 0.04 ha subplots
within 1 ha field plots (Rodríguez-Veiga et al., 2016). Data from a total

Fig. 2. Predicted fractional impervious surface area (%) by four models for study 1: Logistic regression (Left upper), MaxEnt (Right upper), RF regression (Left
bottom), and RF probability (Right bottom).
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of 286 (1 ha) field plots were used as reference measures of AGB for the
period 2004–2007 (Fig. 4). It is noted that the spatial resolution of
assessed AGB datasets and reference sample is different, which is a
limitation of data availability, similar to the study of Rodríguez-Veiga
et al. (2016).

3. Methods

The GW versions of msd, mae, rmse, and r are described as follows.
At any location i, GW msd: gw msd x y. ( , )i i , GW mae: gw mae x y. ( , )i i , and
GW rmse: gw rmse x y. ( , )i i are defined as:
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where xj and yj are the reference and predicted values at sample
location j, respectively, ωij weights controlled by a distance-decay
kernel function (Eq. (8)) with respect to location i and j, and n is the
total number of sample data points. Observe that this always holds, msd
≤ mae ≤ rmse (Willmott and Matsuura, 2005) and their GW counter-
parts have the same characteristics.

A GW r at any location i, is found using:
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For both case studies, the weights ωij are found using a bi-square
kernel as follows:
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where dij is the Euclidean distance between locations i and j, and
the kernel bandwidth b is specified either as a fixed distance or an
adaptive distance which includes a fixed number of data points for the
local diagnostic calculation. In this study, an adaptive kernel was used
as it suits the reference points of both case studies were not distributed
uniformly. Its size was arbitrarily defined as 10% of nearby data to
location i. The validity of this subjective bandwidth size is discussed in
detail in Section 5.

Observe that the chosen diagnostics complement each other: mea-
sures of msd, mae and rmse and their GW counterparts, all summarize
the error in some manner, whilst r and GW r measure specifically the
slope of the linear relationship between the predicted and reference
values. Furthermore, r and GW r are scale invariant meaning that they
cannot capture a consistent and uniform over- or under-prediction bias.

Fotheringham et al. (2002) presents methods for interpreting GW
summary statistics (including GW r), and advocate Monte Carlo

Fig. 3. Four aboveground biomass datasets (units: Mg ha−1) for the Yucatan peninsula, Mexico for study 2.
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permutation tests. These tests can be adapted for GW error diagnostics
(GW msd, GW mae, and GW rmse), in order to identify clusters where
the diagnostics are ‘significantly’ or ‘unusually’ different to what would
be found by chance or because of random variation in the error. Pre-
dicted and reference sample pairs are successively randomized (999
times in this study) and the local diagnostics are found after each
randomization. A ‘significance test’ is then possible by comparing actual
results with results from a large number of randomized distributions
(i.e. by ranking all 1000 outcomes and ascertaining where the single,
actual outcome lies). In this instance, the randomization hypothesis is
that any pattern seen in the error occurs by chance and therefore any
permutation of the error is equally likely. For GW r, the arguments are
analogous, but where the investigation centers on the correlation be-
tween the predicted and reference values, rather than some summary of
the error. In all instances, the permutation test should be viewed as
informal and conditional on the GW diagnostic specification (i.e.
bandwidth size, kernel type, etc.). Thus, throughout this study, the term
‘significance’ is used in an informal manner also, for this test.

In addition to calculating the global diagnostics of msd, mae, rmse
and r, estimates and p-values for the significance of the Moran’s I of the
deviation between predicted and reference values were calculated.
These provide useful context and global information about spatial au-
tocorrelation in the error. Weights were generated using an inverse
distance squared function for the Moran’s I calculations.

4. Results

4.1. Study 1

Table 2 summarizes the conventional diagnostics of msd, mae, rmse,
r and the Moran’s I of %ISA predictions from logistic regression,
MaxEnt, RF regression and RF probability. The negative msd values
indicate that all four models under-predict, where RF regression pro-
vides the closest msd to zero (−2.95) and less errors than the other
three models, with the smallest mae (15.51) and rmse (21.34) and the
largest r (0.73). The logistic regression is the second most accurate with
mae (15.77), rmse (21.87), and r (0.72). RF probability is the poorest
predictor of %ISA as it shows the largest mae and rmse together with
the smallest r, of all four models. All four models show significant
spatial autocorrelations in their errors, where all p-values for theTa
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Fig. 4. The spatial distribution of in-situ reference sample points for forest
aboveground biomass data (units: Mg ha−1) in the Yucatan peninsula, Mexico.

Table 2
Global diagnostics and Moran’s I of fractional impervious surface area predicted
by four different models for study 1.

msd mae rmse r Moran’s I*

Logistic regression −3.63 15.77 21.87 0.72 0.11
MaxEnt −7.57 15.83 22.74 0.72 0.11
RF regression −2.95 15.51 21.34 0.73 0.06
RF probability −5.12 15.85 24.22 0.71 0.05

* All p-values for estimates of Moran’s I are less than 0.05.
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Fig. 5. Spatial distributions of GW msd, GW mae, GW rmse, and GW r for fractional impervious surface area predicted from logistic regression, MaxEnt, RF
regression, and class probability of RF classifiers for study 1. Black polygons represent ‘significant’ (p-values less than 0.01) areas by the Monte Carlo permutation
tests.
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Moran’s I estimates were less than 0.05. Nevertheless, no local spatial
information about the errors is reported in Table 2.

Next, the spatial structure of the errors resulting from the %ISA
predictions were explored using the three GW error diagnostics, to-
gether with GW r between the predicted and reference values as shown
in Fig. 5. Maps of GW msd indicate where the %ISA values are over- or
under-predicted, with positive values representing over-prediction. The
GW mae and rmse maps reflect the magnitude of errors (absolute and
root squared deviation, respectively, see also Section 5). GW r depicts
how the specified correlation varies across the JMA. Results for the
associated Monte Carlo permutation tests are highlighted for p-values
less than 0.01.

The GW msd results generally suggest that %ISA predictions are
under-predicted when compared to reference values, especially in the
urban core. Permutation tests locate ‘significant’ areas of unusually
large, positive and negative GW msd values. A cluster of ‘significantly’
under-predicted values can be found in the middle of the JMA from all
four models.

The GW mae and GW rmse maps show that peri-urban areas (sur-
rounding the city core) tend to have larger mae/rmse values than
others, suggesting the difficulty in predicting %ISA in complex urban
frontiers between urban/non-urban areas. ‘Significant’ local clusters
differ according to the models, but they tend to be distributed along
such urban frontiers.

The results for GW r show South-Western and South-Eastern areas
have consistently weak negative correlations in all four models, and the
permutation tests indicate that such correlations are ‘significantly’
unusual for all models. As GW r represents spatial variation in the slope
of the linear relationship between the predicted and reference values,
maps of GW r can behave differently from those of the other three GW
diagnostics which relate to error. Here only the GW mae and GW rmse
maps show similarities to each other as expected (see Section 5). As
would also be expected from the results of Table 2, RF regression tends
to provide the best local accuracy in most areas, but with clear spatial
variation in this accuracy.

4.2. Study 2

Conventional diagnostics for the four AGB datasets are shown in
Table 3. Rodríguez-Veiga’s dataset clearly provides the best accuracy
amongst the four AGB datasets, as is evident from the closeness to zero
of msd (−2.05), the smallest mae (31.52), the smallest rmse (39.42),
and the largest r (0.50). Hu’s dataset is clearly the least accurate. The
Moran’s I estimates are all significant (p-values were less than 0.05),
indicating the possibility of existing a spatial structure to the errors in
all four datasets.

Fig. 6 maps the three GW error diagnostics and GW r in the four
AGB datasets. Rodríguez-Veiga’s dataset shows relatively small spatial
variation in these diagnostics whilst Hu’s dataset shows the largest
variation. All four datasets perform very differently to each other with
little spatial correspondence in their error.

In Rodríguez-Veiga’s dataset, there is a ‘significant’ cluster of posi-
tive values of GW msd in the dry forests of the North-West, which is
coupled with relatively small GW mae and GW rmse values and positive
GW r values. Forests in this area are often utilized for slash-and-burn

agriculture, and the re-growth of trees can influence the remote sensing
signals, resulting in potentially large prediction errors, but where it
appears, not so large to adversely influence GW mae, and GW rmse, and
GW r . Conversely, there are ‘significant’ clusters of negative values of
GW msd in the moist forests of central-Eastern areas. These areas are
coupled with ‘significant’ clusters of relatively large GW mae and GW
rmse values and a ‘significant’ cluster of negative GW r values. Thus,
this dataset clearly performs worse in central-Eastern areas, as all four
GW diagnostics indicate so. In this central-Eastern area, the forest is
matured with large AGBs, so the saturation of spectral data from sa-
tellite sensors may be a cause of the inaccurate predictions.

Baccini’s dataset depicts a ‘significant’ cluster of large positive GW
msd values in the south, where the same area provides ‘significantly’
large GW mae, and GW rmse values, all suggesting an area of relatively
poor AGB accuracy. Of note is the spatial behavior of GW r, where
‘significant’ negative correlations are of concern. Such clusters occur in
quite different areas to the cluster observed in south for unusually large
GW mae, and GW rmse values. Similar to the first case study, GW r
provides an alternative assessment of local error to GW mae and GW
rmse. A possible explanation for this, is that GW r can be sensitive to
bandwidth size. For example, a few anomalous pairs of predicted and
reference data points that fall close to the kernel centre can exert an
undue influence on the correlation estimate (see Section 5). In com-
parison to Rodríguez-Veiga’s dataset, Baccini’s dataset consistently
performs worse in terms of AGB accuracy except a small portion of the
central region in terms of GW mae.

Saatchi’s dataset is relatively accurate in central areas with small
GW msd, GW mae, and GW rmse values, whilst it is the least accurate
the South-West, as confirmed by the permutation tests for GW msd, GW
mae, and GW rmse, where ‘significantly’ large values are found. The
GW r map shows negative values in many regions, but where no ‘sig-
nificant’ clusters of this diagnostic are found. In comparison to
Rodríguez-Veiga’s dataset, Saatchi’s dataset appears to perform better
in some central-Eastern areas in terms of GW mae.

Hu’s dataset depicts very different spatial patterns of the GW diag-
nostics to the other three datasets, and is clearly the least accurate with
over-prediction almost everywhere. In particular, ‘significantly’ large
GW msd, GW mae, and GW rmse values can be found in North-Eastern
areas. A ‘significantly’ large negative GW r values are observed in the
south but different areas from other three GW diagnostics.

In summary, mapping GW diagnostics provides useful spatial in-
dications of the reliability of each dataset, not only individually, but
also in comparison with each other. Despite all four datasets depicting
the same AGB measure, the spatial patterns of error and accuracy vary
in each dataset. Rodríguez-Veiga’s dataset would be the best choice in
terms of the conventional diagnostics (Table 3), but not necessarily the
best choice everywhere, for example in central-Eastern areas, where
Saatchii’s dataset may be more accurate and preferred.

5. Discussion

The use of GW diagnostics has allowed investigations of the spatial
structure of error between predicted and reference values for two EO
case studies. This approach extends conventional (single-valued) whole
map diagnostics of error spatially, through their localized (multiple-
valued) counterparts. The associated permutation tests can highlight
unusually accurate or unusually inaccurate error, providing a means to
focus EO or other research activity on specific areas. This work is novel,
but a number of points warrant discussion.

5.1. The effects of sample information

In this study, the use of the same reference data to evaluate the GW
diagnostics of different datasets ensures results are comparable.
However, an independent reference sample is not always available. This
is a limitation for any error assessment: any results are only ever

Table 3
Global diagnostics and Moran’s I in forest aboveground biomass datasets for
study 2.

msd mae rmse r Moran’s I*

Rodríguez-Veiga et al. −2.05 31.52 39.42 0.50 0.08
Baccini et al. −86.36 89.10 105.58 0.36 0.35
Saatchi et al. −45.26 58.78 70.69 0.08 0.29
Hu et al. −136.35 141.76 153.75 0.36 0.24

* All p-values for estimates of Moran’s I are less than 0.05.
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relative to the reference sample. For case study 2, Rodríguez-Veiga’s
dataset yielded the most accurate AGB performance amongst the four
AGB datasets in most parts of the study area. The reference sample used
here, despite being independent from the training data used for the

Rodríguez-Veiga’s dataset, originated from the same source (i.e. in-situ
INFyS data), whilst the other three datasets used a completely different
training dataset (i.e. GLAS footprints). Additionally, Rodríguez-Veiga’s
dataset is at a 250m spatial resolution which is closer to the size of the

Fig. 6. Spatial distributions of GW msd, GW mae, GW rmse, and GW r for four forest aboveground biomass datasets of Rodríguez-Veiga et al. (2016); Baccini et al.
(2012); Saatchi et al. (2011), and Hu et al. (2016) for study 2. Black polygons represent ‘significant’ (p-values less than 0.01) areas by Monte Carlo permutation tests.
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reference data than the other datasets with spatial resolutions of 500m
or 1 km. Such characteristics need to be accounted for when comparing
continuous raster datasets.

5.2. Bandwidth specification

In this work, a user-specified bandwidth of 10% was used for all
outputs. This in part, reflected the need to use only one bandwidth
throughout, so that multiple datasets could objectively be compared.
However, in any GW approaches, the selection of the bandwidth is
critical, to identify which levels of spatial heterogeneity should be fo-
cused. For example, Fig. 7 shows the results of generating GW mae for
Saatchi’s dataset in case study 2, with a range of adaptive bandwidth
sizes (5%–50% in increments of 5%). Small bandwidth sizes result in
highly localized variations in GW mae, while larger bandwidths result
in a greater degree of smoothing and tend to be the global mae of
58.78Mg ha−1. Thus, results and interpretations are dependent on the
user-specified 10% bandwidth. This can be overcome by calculating
and visualizing a series of GW diagnostics over a range of bandwidths as
an exploratory step. Although objective bandwidth selection proce-
dures are available (Gollini et al., 2015; Harris et al., 2014), their use
commonly results in one ‘best on average’ bandwidth choice that
maximizes the precision of the predictor or statistic (e.g. via a leave-
one-out cross-validation). Such data-driven procedures should not be
regarded as a panacea for bandwidth selection or the degree of
smoothing to use (Ruppert et al., 1995).

5.3. The difference between mae and rmse

It is important to acknowledge the difference between mae and
rmse, which is often over-looked. The mae represents average error
magnitude (averaged absolute error) (Willmott and Matsuura, 2005),
and rmse reflects the mean and variation in the error and is therefore
highly sensitive to outliers (Pontius et al., 2008; Willmott and
Matsuura, 2005). In this sense, mapping GW mae captures the spatial
variation of the average error magnitude, whilst GW rmse highlights
larger errors compared to GW mae. This is originated from the fact that
the mean squared error, which is the squared rmse, is composed of the
squared msd and the variance (Friedman, 1997). Because of this char-
acteristic, rmse has no clear interpretation, unlike mae. A GW-based
extension of such discussions would be an interesting topic of future
work.

6. Conclusions

Conventional diagnostics of error, such as msd, mae and rmse pro-
vide global, ‘on-average’ measures. These summary measures of error
do not capture any spatial information of the error. Ignoring spatial
structures in error may result in a false interpretation and misuse of the
data that the errors stem from. This work develops and applies localized
diagnostics of error to investigate spatial heterogeneity of each types of
these diagnostics. Two case studies demonstrate their value for com-
paring multiple models and for comparing multiple datasets.
Comparing multiple models can support a deeper understanding of the
spatial characteristics of errors and in turn can inform analytical
choices and data collection to improve data accuracy and reliability.
Identifying distinct local error clusters can help focus efforts in this
respect. When multiple datasets are compared, understanding the spa-
tial distributions of error in different datasets can inform choices about
which datasets to use and in which areas to use them.
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