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Abstract
In this paper, the Dirac-Feynman path calculation approach is applied to analyse finite
time ruin probability of a surplus process exposed to reinsurance by capital injections. Sev-
eral reinsurance optimization problems on optimum insurance and reinsurance premium
with respect to retention level are investigated and numerically illustrated. The retention
level is chosen to decrease the finite time ruin probability and to guarantee that reinsur-
ance premium covers an average of overall capital injections. All computations are based
on Dirac-Feynman path calculation approach applied to the convolution type operators per-
turbed by Injection operator (shift type operator). In addition, the effect of the Injection
operator on ruin probability is analysed.

Keywords Ruin probability · Reinsurance · Capital injection · Retention level ·
Dirac-Feynman approach

Mathematics Subject Classification (2010) 91B30 · 83C47 · 97K60

1 Introduction

The paper considers the application of the Quantum mechanic technique to compute the
ruin probability of modified surplus process with reinsurance and the optimal reinsurance.
Reinsurance is a risk sharing arrangement between a primary insurer and a reinsurer. There
are different types of reinsurance agreements and various optimality approaches to reinsur-
ance such as Castaner et al. (2013), Denuit and Vermandele (1998), Dickson and Waters
(1996), Schmidli (2002), Zhou and Yuen (2012).

We consider the following reinsurance agreement motivated by Nie et al. (2011, 2015):
the insured companies pay reinsurance premium in advance in order to get capital injections
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at times when the capital goes below a given retention level. Capital injection is an impor-
tant topic in risk management, especially in case of unpredictable economic crisis or some
natural disasters (Schmidli 2002; Dickson and Waters 2004; Eisenberg and Schmidli 2011).

Several optimal strategies with different distributions are discussed and numerically
illustrated for the reinsurance agreement. All the methods have a main objective on the one
hand to decrease the finite time ruin probability and on the other hand, to guarantee that
reinsurance premium covers an average of overall capital injections. In addition, the 1st type
of optimality is to find the optimal reinsurance premium and retention level to obtain the
smallest ruin probability. The second type is to find the smallest premium rate against the
retention level and a specific risk level.

In all our calculations, we apply the Dirac matrix approach (Baaquie 2007; Tamturk and
Utev 2018). More exactly, all computations are based on the perturbed Dirac-Feynman path
calculation approach applied to the convolution type operators such as the Dirac-Feynman
operator, defined in Eqs. 4, 5 and 6, and Picard-Lefevre operator, defined in Eq. 1. The
perturbation is defined as the Injection operator (shift type operator, introduced in Eq. 8)
and associated with the particular reinsurance scheme.

In Section 2, following Tamturk and Utev (2018) we present several approaches to com-
pute the finite time ruin probability. In Section 3, the modified ruin process and injection
operator are introduced. In addition, a peculiar connection between the capital injection
operator and the convolution operator is established and the effect of the injection opera-
tor is analysed in Section 3. The main numerical applications on optimization are stated in
Sections 4 and 5. In Section 6, the difference between finite time reinsurance contracts and
their infinite time counterparts is analysed.

2 Preliminary

Classical ruin process Asmussen and Albrecher (2010) (also referred to as surplus process)
is defined by

Rt = u + ct − St

where u is initial capital, c is premium rate per unit time, t is time, and St =
N(t)∑

i=1
Xi is total

claim amount determined by claim occurrences process Nt , homogeneous Poisson process
with rate λ, and i.i.d. claim amounts Xi which are also independent of Poisson process
N(t).

The ruin time and the finite time ruin probabilities associated with the surplus process
Rt are then defined by

T = min{t > 0, Rt ≤ 0} , Pu(T > t) = P(T > t |R0 = u).

Unlike infinite time, the finite time ruin probabilities do not admit simple expressions even
in classical cases such as an exponential claim amount distributions.

Picard and Lefevre (1997) suggested a powerful approach based on the expansions via
Appell polynomials, which also linked to the Seal-type formula (Rulliere and Loisel 2004;
Lefevre and Loisel 2008).
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Lemma 1 (Picard-Lefevre). Fix non-negative integer j such that u + ct − j ≥ 0. Then,

Pu(St = j, T > t) = e−λtAj (t), where (1)

Aj (t) = ej (t) for 0 ≤ j ≤ u, Aj (t) = ej (
j−u

c
)
cx−n + u

cx−j + u
en−j (x+ u−j

c
) for j > u,

and ej (t) =
j∑

k=0

(λt)k

k! P(X1 + . . . + Xk = j).

The formula has been applied in different areas. In the recently published paper (Tamturk
and Utev 2018), it’s shown that Quantum Mechanic method and Picard- Lefevre method
give very close results in computation of ruin probability for integer values.
General surplus process. Motivated by the Dirac-Feynman path integral approach, our
starting point is to treat surplus process Rt which admits the Hamiltonian representation

P
(τ)
i,j = P(Rτ = j |R0 = i) = 〈i| e−τH |j〉 .

By choosing a small time grid size ε, we then derive the path calculation approximated
version of the finite time ruin probability by

Pu(Rt = j, T > t) = (1 + o(ε))
( ∑

x1=1

〈u| P |x1〉

. . .
∑

xn−2=1

〈xn−2|P |xn−1〉
)

〈xn−1| P |j〉 . (2)

where P = P(ε) = e−εH .

The operator P does not have to be the transition operator. By conditioning on each claim,
the Markov property and the Chapman-Kolmogoroff argument then imply the following
lemma.

Lemma 2 Under assumption that 0 is an absorption state representing ruin probability,
and the observing unit time ε for bounded continuous function with f (0) = 0

E[f (Rt )I (T > t)|R0 = u] = (1 + o(ε))P [ t
ε
]f (u) (3)

with Eq. 2, ruin and non-ruin probability can be computed by

Pu(T > t) = (1 + o(ε))

∞∑

j=1

P
[ t
ε
]

u,jε , Pu(T ≤ t) = (1 + o(ε))P
[ t
ε
]

u,0

where the error terms depend on the grid time size ε.

The choice of operator P even for the same stochastic is not unique. For the classical
surplus process, one way to state is to apply a quantum mechanics formalizm mentioned in
(Tamturk and Utev 2018; Baaquie 2007)

P(xi → xi+1) = < xi |e−εH |xi+1 >=
∫ 2π

0

dp

2π
< xi |e−εH |p >< p|xi+1 >

= 1

2π

∫ 2π

0
e
ip(xi−xi+1)+εicp−ε

∑∞
j=1 λj (1−e−jip)

dp. (4)
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On the other hand, it is possible to apply here a standard Panjer algorithm or the following
straightforward approximations for i + c > j

P (Rε = j |R0 = i) = P(i + c − Sε = j)

= λεP (X1 = i + c − j) + O(ε2).

Alternatively, we can apply the naive statistician approach and replace the Rt process by
the Gaussian process, which then results in the operator P(t) = e−tH−V where

P(xi → xi+1) = < xi |e−εH−V |xi+1 >

= 1
√
2πσ 2

ε

e

−(xi+1−(xi+cε−mλε))2

2σ2ε e−V (xi+1) (5)

where the potential V (xi+1) for the non-ruin probability is taken by

V (xi+1) =
{
0, if xi+1 > 0,
∞, if xi+1 ≤ 0.

The variance is found by

σ 2
ε = Var(Sε) = E[Nε]Var(X) + Var(Nε)E[X]2.

Notice that (5) defines an operator

Pf (xi) =
∑

xj

P (xi → xj )f (xj ). (6)

refereed to as Dirac-Feynman operator (convolution type operator).

3 Modified RuinModel

In this section, we will introduce the modified surplus process which incorporates the
reinsurance by capital injections.

3.1 Ruin Probabilities for theModified Ruin Model

As mentioned above, there are various types of reinsurance agreements provided by rein-
surers. In this paper, we consider the reinsurance contract as discussed in Nie et al.
(2011).

For this contract, the first insurance company has to pay the initial premium amount z in
advance to the second insurance company (referred to as reinsurer) that restores the surplus
of first insurance company to a fixed retention level (k) when the surplus process is below
this retention level.

To make it more realistic, additionally, we assume the primary insurance company put an
upper level for compensation of claims. Then, the aggregating claim amount with h upper
limit is defined by

H(St ) =
Nt∑

i=1

XiI (Xi ≤ h) + hI (Xi > h) . (7)

Although we are not dealing directly with model (7), we work with it in all numerical
examples. The level h depends on m, e.g. for m = 12, h = 300.
The modified surplus process is then defined by

Rt = w + ct − H(St ) + Y (t)
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where w = u − z is the new initial capital after buying reinsurance and

Y (t) = Y (w, k, t) =
[ t
ε
−1]∑

i=1

yi

is total injection amount up to time t , defined by the retention level k, grid time size ε and
exact initial capital w. Notice that under this reinsurance agreement the capital injections yi

happen at times iε, i = 1, 2, . . ..
Now, let us introduce an Injection operator (shift type operator) with 0 absorption and

k retention level

(Kf )(x) =
⎧
⎨

⎩

f (x), if x ≥ k

f (k), if 0 < x < k

f (0), if x ≤ 0.
(8)

Let P
k

w(T > t) and P
k

w(T ≤ t) be non ruin and ruin probabilities of the modified surplus
process. From Eq. 3 of Lemma 2 and Eq. 2, we derive

P
k

w(T > t) = (1 + o(1))
∑

x1=1

< u|PK|x1 >
∑

x2=1

< x1|PK|x2 >

· · ·
∑

xn=1

< xn−1|P |xn >

= (1+o(1))
∑

j=1

(
PKPK . . .K︸ ︷︷ ︸

[ t
ε
−1] times

P
)

w,jε
= (1+o(1))

∑

j=1

(
(PK)[

t
ε
−1]P

)

w,jε

and similarly

P
k

w(T ≤ t) = (1 + o(1))
(

PKPK . . .K︸ ︷︷ ︸
[ t
ε
−1] times

P
)

w,0
= (1 + o(1))

(
(PK)[

t
ε
−1]P

)

w,0
.

In particular, we derive the following proposition.

Proposition 1 Under notation in above,

P
k

w(T > t) = (1 + o(1))
∑

j=1

(
(PK)[

t
ε
−1]P

)

w,jε
,

P
k

w(T ≤ t) = (1 + o(1))
(
(PK)[

t
ε
−1]P

)

w,0

where the error term depends on the grid time size ε.

3.2 Effect of the Injection Operator for the Convolution Operator P

Notice that Kn = K and it is easier to work with

P nKnP = P nKP .

Operators (PK)nP and P nKP are type of transition matrices. Note that in (PK)nP , we
apply injection n times whereas in P nKP , it is applied only once.

Unfortunately, the operators K and P are non-commutative in general, which clearly
poses numerical complications.
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Stochastic comparison of (PK)nP and PnKP We first model the movement of the capital
with initial capital w via the operators (PK)nP and P nKP by a coupling construction. Let
R(n + 1) and R(n + 1) be capitals of surplus process at time (n + 1)ε via (PK)nP and
P nKP . By abuse of notation, here by K we also denote a function

K(x) =
⎧
⎨

⎩

x if x ≥ k

k, if 0 < x < k

0, if x ≤ 0.

Notice that
K(x) ≥ x. (9)

Let

pi,j = P(R0 + ξ = j |R0 = i) = P(ξ = j − i|R0 = i) where ξ = c − X1.

For P nKP , the transition for one step n = 1,

w −→ w + ξ1 −→ K(w + ξ1) −→ K(u + ξ1) + ξ2 .

For two steps n = 2

w −→ w + ξ1 −→ K(u − z + ξ1) −→ K(u − z + ξ1) + ξ2 −→ K(K(w + ξ1) + ξ2)

−→ K(K(w + ξ1) + ξ2) + ξ3 .

In general for n steps, and w > 0

[(PK)nP ]w,R(n+1) = w

(PK)nP
︷︸︸︷−→ R(n + 1)

= K(K(· · ·K(w + ξ1) + ξ2) + · · · ) + ξn+1 . (10)

Similar pattern for P nKP is given by

w

P n

︷︸︸︷−→ w + ξ1 + ξ2 + · · · + ξn

K
︷︸︸︷−→ K(w + ξ1 + ξ2 + · · · + ξn)

P
︷︸︸︷−→ K(w + ξ1 + ξ2 + · · · + ξn) + ξn+1

which gives the capital at time n+1 when initial capital is u and the grid size is 1. Therefore,

[P nKP ]wR(n+1) = w

P nKP
︷︸︸︷−→ R(n + 1) = K(w + ξ1 + ξ2 + · · · + ξn) + ξn+1 (11)

From Eqs. 10, 11 and 9, we derive the following coupling inequality

R(n + 1) = K(K(· · · K(w + ξ1) + ξ2) + · · · ) + ξm+1

≥ K(w + ξ1 + ξ2 + · · · + ξm) + ξm+1 = R(n + 1)

which implies the following result.

Proposition 2 Under notation in above, for any integers x ≥ 1 and n ≥ 0,
∑

j=x

((PK)nP )w,j ≥
∑

j=x

(P nKP )w,j

implying that the Ruin probabilities computed via (PK)nP are approximately smaller than
corresponding Ruin probabilities computed via P nKP .

By inspecting the proof, we see that the argument for the comparison holds provided the
operator P is non-decreasing, that is Pf maps non-decreasing functions to non-decreasing.
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Due to the stochastic comparison and Kamae et al. (1977) the Wasserstein distance can
be computed via the Monte Carlo approach simultaneously

dw(R(t), R(t)) = E[R(t) − R(t)] ≈ 1

N

N∑

j=1

[Rj (t) − R
j
(t)].

Numerical experiments were conducted for several groups of values of time t =
30, 45, 60 and retention levels k = 5, 10, 15, 30, 45 with the initial capital being fixed
u = 50, premium rate c = 20 , the claim sizes have a discretized exponential distribution
with claim mean 18, claim frequency 1, and for upper barrier h = 500.
In the criteria of selection of the parameters, since it is not feasible to check all possibili-
ties, we consider firstly net profit condition (c > λm). Secondly, smaller claim frequency is
preferred because it causes smaller errors.

According to the numerical results in Table 1, the ruin probabilities via (PK)nP are
smaller than P nKP as expected and somewhat surprisingly close. The Wassertstein dis-
tance is relatively small when retention level k is small. However, it is significantly
increasing with the retention level k and time t while the ruin probabilities might still be
close.

3.3 Expectation of the Total Capital Injections Amount

For the reinsurance to be reasonable for the reinsurance company, reinsurance cost z is
required to cover the average of the total injection amount, that is

E[Y (u − z, k, t)] < z.

We begin by stating the ready numerical formula for the expected total injection amount
E[Y (w, k, t)].

Proposition 3 Let 0 be the absorption level and ε be the grid time size. Then, with (PK)0 =
I identity operator

E[Y (w, k, t)] =
[ t
ε
−1]∑

j=1

k
ε
−1∑

i=1

(k − iε)
(
(PK)j−1P

)

w,iε
.

Table 1 Ruin probability via
(PK)nP and P nKP Time k via (PK)nP via P nKP dw(R(t), R(t))

30 5 0.4513 0.4527 0.1588

30 10 0.4463 0.4526 0.7519

30 15 0.4084 0.4524 5.6104

45 5 0.4837 0.4851 0.1745

45 15 0.4700 0.4850 2.0119

45 30 0.4206 0.4849 9.1205

60 5 0.5005 0.5018 0.1777

60 30 0.4376 0.5017 9.2851

60 45 0.3602 0.5015 21.6717
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Proof For simplicity, let ε = 1. Let us fix time j and the corresponding capital Rj = i.
Notice that if 0 < i < k then at time j we will add the injection amount yj = k − i.

Clearly, the expectation of capital injections paid by reinsurer at time j is defined by

E[yj ] =
k−1∑

i=1

(k − i)
(
PKPK ...KP

)

w,i
=

(
(PK)j−1P

)

w,i
.

Then, the total injection amount is found by combining all the added amounts over times
j = 1, . . . , t − 1 and possible injection capitals i = 1, . . . , k − 1.

E[Y (w, k, t)] =
t−1∑

j=1

E[yj ] =
t−1∑

j=1

k−1∑

i=1

(k − i)
(
(PK)j−1P

)

w,i
.

4 Optimization in Gaussian Hamiltonian

4.1 Optimization of Reinsurance Cost z

In this part, finite time ruin probability of modified surplus process and expected total injec-
tion amount are numerically computed using the methods above. The results are analysed
for the time t = 20, initial capital u = 20, premium rate c = 14, claim frequency λ = 1,
claim mean m = 12, var(X) = 144 and h = ∞.

From Lemma 2, we find that the finite time ruin without reinsurance is equal to

P20(T ≤ 20) = 0.6110.

In addition, for simplicity we analyse the modified surplus process for reinsurance costs
z = {1, 2, ..., 10} and retention levels k = {5, 6, ..., 10} (Table 2).

Our aim is to minimise the finite time ruin probability and corresponding reinsurance
premium z, that is to find

min{P k

u−z(T ≤ t) : z > E[Y (u − z, k, t)] and P
k

u−z(T ≤ t) < Pu(T ≤ t)}. (12)

Table 2 Ruin probability of the modified surplus process with respect to z and k

P
k

w(T ≤ 20)

k=5 k=6 k=7 k=8 k=9 k=10

z=1 0.616 0.612 0.6071 0.6011 0.594 0.5859

z=2 0.6285 0.6244 0.6195 0.6135 0.6064 0.5983

z=3 0.6409 0.6369 0.6319 0.6259 0.6189 0.6107

z=4 0.6535 0.6495 0.6445 0.6385 0.6315 0.6233

z=5 0.666 0.662 0.6571 0.6511 0.6441 0.636

z=6 0.6786 0.6746 0.6696 0.6637 0.6568 0.6487

z=7 0.6911 0.6871 0.6822 0.6764 0.6695 0.6615

z=8 0.7036 0.6997 0.6948 0.689 0.6822 0.6743

z=9 0.716 0.7122 0.7074 0.7016 0.6949 0.6871

z=10 0.7284 0.7246 0.7198 0.7141 0.7075 0.6999
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According to numerical results, it is clear that the reinsurance is appropriate for several
values of k and z. However, we choose the value of reinsurance cost z = 3 and the retention
level k = 10 because it gives the smallest ruin probability (0.6107) under the conditions

that z > E[Y (u − z, k, t)] and P
k

u−z(T ≤ t) < Pu(T ≤ t)}.

4.2 Optimization of the Premium Rate c

A numerical example to find the minimal premium c is considered. We find it via optimiza-
tion of the retention level k with respect to specific risk level L. Smaller insurance premium
plays an important role in competitive sector to increase number of customers which effects
the income of insurance companies. In this case,

u = 20, , λ = 1, m = 12, t = 40, V ar(X) = σ 2
X = 144,

z = 5, k = {5, 6, . . . , 10}, h = ∞ and c = {10, 11, 12, 13, 14, 15}.
The ruin probabilities now depends on the premium rate c written as Pu(T ≤ t |c) and

P
k

w(T ≤ t |c). The goal is to find minimal c such that there exists k satisfying

L ≤ P
k

15(T ≤ 40|c) ≤ P20(T ≤ 40|c) and z > E(Y ).

Again, the optimal c depends on the level L and k. For L = 0.8 and k = 8, the minimal

premium rate is attained for c = 12 corresponding to P
8
15(T ≤ 40|c) = 0.8045.

5 Optimization in Compound Poisson Hamiltonian for Claim Sizes
Distributed Exponentially

5.1 Optimization of Reinsurance Cost z

Similar to Section 4.1, the ruin probability and total injection amount are analysed in case
that claims are exponentially distributed for initial capital u = 20, premium rate c = 14,
claim frequency λ = 1, claim mean m = 12, time t = 20 and h = ∞.

In case of no reinsurance, the ruin probability is

P20(T ≤ 20) = 0.5438.

According to numerical results, optimum reinsurance where the reinsurance agreement is
reasonable is attained by k = 8 and z = 1 because

min{P k

u−z(T ≤ t)} = P
8
19(T ≤ 20) = 0.5385

providing that

z > E[Y (u − z, k, t)] and P
k

u−z(T ≤ t) < Pu(T ≤ t).

5.2 Optimization of the Premium Rate c

If the ruin probability and the expected total injection amount for exponential claim
distribution are taken into consideration for u = 20, z = 5, t = 40, λ = 1 and m = 12.

Table 3 shows that the ruin probabilities under reinsurance agreement are higher than the
case without reinsurance. Therefore, reinsurance agreement is not reasonable for the values.
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Table 3 Ruin probability with respect to k and c

P20(T ≤ 40)
(No reinsurance)

P
k

15(T ≤ 40)

k=5 k=6 k=7 k=8 k=9 k=10

c=10 0.9129 0.9256 0.9245 0.9231 0.9214 0.9194 0.9171

c=11 0.8537 0.8733 0.8718 0.87 0.8678 0.8652 0.8622

c=12 0.781 0.8068 0.8051 0.8029 0.8003 0.7973 0.7938

c=13 0.6988 0.7313 0.7294 0.727 0.7242 0.7209 0.7171

c=14 0.6148 0.6525 0.6505 0.648 0.6451 0.6418 0.638

c=15 0.5344 0.5767 0.5748 0.5724 0.5696 0.5664 0.5628

6 Comparison of Finite and Infinite TimeMethods

In this section, we compare our finite time ruin probabilities with the infinite time ruin
probabilities of modified surplus processes. In finite time, all computation are produced via
the quantum path calculation approach stated in Lemma 2 (and Eqs. 4, 5 and 6).

Recall that Pu(T < ∞) and P
k

u(T < ∞) denote the ultimate ruin probabilities for the
classical and modified surplus processes with retention level k, respectively.

To compare finite time ruin probability with infinite time ruin probability, the following
fact will be applied

P(T ≤ M)

P(T ≤ L)
→ 1 (as L, M → ∞), and so

P(T < ∞)

P (T ≤ L)
→ 1, (as L → ∞).

We apply infinite time ruin probabilities of modified surplus processes derived in Nie et al.
(2011):

P
k

w(T < ∞) = Pw−k(T < ∞) − G(w − k, k)
1 − P0(T < ∞)

1 − G(0, k)
(13)

where u − z > k, G(x, k) = Px(T < ∞)(1 − e−αk) and the claim size has an exponential
distribution with rate α. Moreover, the expectation of the total injection amount is defined
by

E[Y (w, k)] =
∫ k

0
yg(w − k, y)dy + E[Y (k, k)]G(w − k, k)

where g(w − k, y) = Pw−k(T < ∞)αe−αy .
Our finite time method introduced in Eqs. 2 and 1 with discretized, truncated exponential

claim sizes will be compared with the infinite time formula above. Remind, that the ultimate
ruin probability of classical surplus process is defined by (e.g. Nie et al. 2011)

Pu(T < ∞) = λm

c
e−( 1

m
− λ

c
)u.

In the following two Tables 4 and 5, the ruin probabilities for normal and modified surplus
processes under capital injections are compared for our finite approach with the infinite tie
approach as in Eq. 13. In both tables, we let R0 = u − z = w in case of reinsurance while
R0 = u without reinsurance.

Ruin probability and expected total injection amount in the finite and infinite time meth-
ods for the initial capital u = 20, insurance premium c = 1, claim frequency λ = 0.03,
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Table 4 Ruin probabilities and total injection amount

Infinite time method Finite time method

Reinsurance premium w=u-z P
k

w(T < ∞) E[Y(w, k)] P
k

w(T ≤ 1400) E[Y(w, k, 1400)]

z=1 19 0.8437 0.3719 0.8374 0.2746

z=2 18 0.8465 0.3731 0.8404 0.2758

z=3 17 0.8493 0.3744 0.8435 0.2771

z=4 16 0.8521 0.3756 0.8466 0.2784

z=5 15 0.855 0.3769 0.8496 0.2797

z=6 14 0.8578 0.3781 0.8527 0.281

z=7 13 0.8607 0.3794 0.8558 0.2823

z=8 12 0.8636 0.3807 0.8589 0.2836

z=9 11 0.8665 0.3819 0.862 0.2849

z=10 10 0.8694 0.3832 0.8652 0.2862

claim mean m = 30, the retention level k = 5 are listed with respect to various reinsurance
premium z = 1, 2, ..., 10 in Table 4.

For the same values but different retention level (k=10), the results are listed in Table 5
As seen from Tables 4 and 5, Infinite time method gives larger ruin probability and

expected injection amount compared to the finite time method. As expected, an increase
in the retention level k cause a decrease in ruin probability with larger expected injection
amount.

Now, let’s observe ruin probabilities of surplus process with and without reinsurance for
both methods by keeping the initial capital w = u − z being fixed.
Ruin probabilities of modified surplus process and the expected total injection amount for
w = 10, c = 1, λ = 0.01,m = 90 are listed in Table 6.

Similarly, for w = 40 with same parameters c, λ, m, the results with various retention
level k = [5, 10, 15, ..., 40] will be in the following Table 7.

Table 5 Ruin probabilities and total injection amount

Infinite time method Finite time method

Reinsurance premium w=u-z P
k

w(T < ∞) E[Y(w, k)] P
k

w(T ≤ 1400) E[Y(w, k, 1400)]

z=1 19 0.8402 1.5697 0.8339 1.301

z=2 18 0.843 1.575 0.8369 1.307

z=3 17 0.8458 1.5802 0.84 1.3131

z=4 16 0.8486 1.5855 0.843 1.3192

z=5 15 0.8514 1.5908 0.8461 1.3253

z=6 14 0.8543 1.5961 0.8492 1.3315

z=7 13 0.8571 1.6014 0.8522 1.3377

z=8 12 0.86 1.6068 0.8553 1.3439

z=9 11 0.8629 1.6122 0.8584 1.3501

z=10 10 0.8657 1.6175 0.8616 1.3563



Methodology and Computing in Applied Probability

Table 6 Ruin probabilities and total injection amount

Infinite time method Finite time method

Retention level P
k

w(T < ∞) E[Y(w, k)] P
k

w(T ≤ 1400) E[Y(w, k, 1400)]

k=1 0.8901 0.005 0.8073 0

k=2 0.89 0.0199 0.8073 0.009

k=3 0.89 0.045 0.8073 0.027

k=4 0.89 0.0803 0.8073 0.0542

k=5 0.8899 0.1259 0.8072 0.0906

k=6 0.8899 0.182 0.8071 0.1364

k=7 0.8898 0.2486 0.807 0.1916

k=8 0.8897 0.3259 0.8069 0.2564

k=9 0.8896 0.414 0.8067 0.3309

k=10 0.8895 0.513 0.8066 0.4151

Discussion The tables above show that the reinsurance is not always appropriate (as also
discussed in Nie et al. 2011). This is because the conditions in Eq. 12 are not satisfied; in
addition, higher reinsurance cost z does not imply smaller ruin probability in general.

Notice that the finite time methods even work when the ultimate ruin probability is 1, i.e.
the net profit condition is violated (c 	> λm).

The advantage of the Dirac-Feynman approach is that we do not need to choose a
particular Hamiltonian operator. In addition, together with the discrete time and state
approximation it allows to avoid the need to obtain the joint distribution of the time to ruin
and the deficit at ruin in order to obtain quantities of interest. Therefore, it makes the method
more flexible. The disadvantage of the method is that the computation involved takes more
time for the Levy processes.

As numerically illustrated in the previous paper (Tamturk and Utev 2018), the Quantum
mechanics method for the Compound Poisson Hamiltonian, the Picard-Lefevre formula and
Markov Chain methods give very close results, so by replacing the computation for the finite
time ruin probability the similar results in optimization cases are expected. In the Gaussian

Table 7 Ruin probabilities and total injection amount

Infinite time method Finite time method

Retention level P
k

w(T < ∞) E[Y(w, k)] P
k

w(T ≤ 1400) E[Y(w, k, 1400)]

k=5 0.8512 0.1218 0.7519 0.0843

k=10 0.8509 0.4962 0.7513 0.3861

k=15 0.8503 1.137 0.7503 0.917

k=20 0.8494 2.0581 0.7488 1.6881

k=25 0.8482 3.274 0.7468 2.7104

k=30 0.8467 4.799 0.7444 3.9944

k=35 0.845 6.6478 0.7415 5.5502

k=40 0.8523 8.8351 0.738 7.3873
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Hamiltonian case, the results are slightly different due to the poor Gaussian approximation
for the small initial capital or small time t .

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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