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Long-term coding of personal and universal
associations underlying the memory web in
the human brain
Emanuela De Falco1, Matias J. Ison1,2,w, Itzhak Fried3,4,5,6 & Rodrigo Quian Quiroga1,2

Neurons in the medial temporal lobe (MTL), a critical area for declarative memory, have been

shown to change their tuning in associative learning tasks. Yet, it is unclear how durable these

neuronal representations are and if they outlast the execution of the task. To address this

issue, we studied the responses of MTL neurons in neurosurgical patients to known concepts

(people and places). Using association scores provided by the patients and a web-based

metric, here we show that whenever MTL neurons respond to more than one concept, these

concepts are typically related. Furthermore, the degree of association between concepts

could be successfully predicted based on the neurons’ response patterns. These results

provide evidence for a long-term involvement of MTL neurons in the representation of

durable associations, a hallmark of human declarative memory.
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I
t has long been recognized that the hippocampus and its
neighbouring structures in the medial temporal lobe (MTL)
play an essential role in declarative memory1–4, involving, in

particular, the encoding of associations between items3,5. Studies
in animals have shown the engagement of MTL neurons in
associative learning6–13. Consistent with these findings, we
have recently shown that MTL neurons in humans rapidly
change their tuning to encode new associations14. However, in all
of these studies, recordings were done while subjects performed
associative learning tasks. Therefore, it is not clear whether the
MTL provides a transient encoding during learning that is created
afresh for each new memory and then consolidates in cortex2, or
a more stable representation that persists after task execution1.
Evidence in favour of one or the other model has been based
on lesion or imaging studies15, but there is so far no direct
evidence of neurons coding (or not) previously acquired and not
task-related associations.

To address this issue, following a previous observation of
neurons responding to well-known and allegedly associated
concepts (for example, two co-stars in a television show)16,17, we
designed a systematic study to determine if these co-activations
were just random coincidences or if there is a consistent tendency
for MTL neurons to encode meaningful associations, independent
of the execution of an associative learning task. For this, we
evaluated the neurons’ responses to presented images and, in 24
experimental sessions performed by 12 patients, we asked the
subjects to rate how much they related a subset of 10–15 images
(including those eliciting responses) with each other.
Complementing these results, we then used a web-based metric
of ‘universal associations’ to study an eventual encoding of
associated items with a larger number of experimental sessions
(N¼ 99) in 49 patients.

We found that MTL neurons tend to fire to associated
concepts, an effect that cannot be attributed to visual similarity
between the stimuli, familiarity effects, recall of associated items
or broad semantic categorizations. Moreover, we show a non-
topographically organized distribution of responses, which is
ideal for the fast formation of new associations.

Results
Personal association metric. In the 24 experimental sessions for
which we obtained the patients’ personal association scores, we
found 32 units (19 single units and 13 multi-units) that responded
to more than 1 of the presented pictures (mean: 3.1 pictures per
neuron; s.d.: 4.8). The number of units used for this and the
following analyses is displayed in Supplementary Table 1. Figure 1a
shows one of these neurons, which significantly responded
(see Methods) to the pictures of 3 relatives of the patient and 2
celebrities. On the basis of the patient’s association scores (Fig. 1b)
the relatives were clearly related to each other and the two
celebrities were related to one of the relatives (stimulus 5). Note
that the neuron did not fire to all family members (for example, it
did not fire to stimulus 7) or celebrities, but only to a subset of the
people that the patient considered to be related. From the
patients’ entries, for each unit we calculated a mean association
score between the pairs of stimuli eliciting responses (ASR-R) and
between the pairs of stimuli, where one of them elicited a response
but not the other one (ASR-NR) (see Methods). In the example of
Fig. 1, the mean association score between pairs of stimuli eliciting
responses (ASR-R¼ 0.89) was larger than the one for the other
pairs (ASR-NR¼ 0.12). In line with this observation, ASR-R values
were significantly larger than ASR-NR ones when considering the
population of 19 single units with more than 1 response (Po0.005;
Wilcoxon signed-rank test; n¼ 19). The same tendency was
observed for the population of 13 multi-units, although in this case

the difference was not significant (which can be attributed to the
fact that some of the response pairs may correspond to the firing of
different neurons).

Web-based association metric. Given that it is not, in practice,
possible to ask subjects to rate all of the few thousand pairwise
associations between the about 100 images shown in an
experimental session, we defined a web-based association score
that we applied to a database of 99 experimental sessions (recorded
in 49 patients), in which we had identified 261 units (129 single
units and 132 multi-units; Supplementary Fig. 1) with more than
one picture eliciting a response (mean: 3.0 pictures per neuron;
s.d.: 3.9). The web-based score rates the degree of association
between two images based on the number of ‘hits’ given by a joint
search, normalized by the number of hits of the individual searches
(see Methods). Figure 2a displays the matrix of web-association
scores for the pictures used in all the experimental sessions, where
we observe a clustering of values according to the broad categories
of the images (actors, sportsmen and so on). The category
labels shown in the figure were manually assigned for each
stimulus, but a similar classification was also obtained using a
clustering algorithm (see Methods; Supplementary Fig. 2). The
scores shown in Fig. 2a reflect ‘universal associations’ between
items, given by the shared inputs of billions of internet users,
whereas the inputs by the patients reflect not just universal
associations but also relationships given by the subject’s
preferences and personal experiences. Figure 2b shows the
correlation between the personal and the web-based association
scores (see Methods). As expected, we observe a strong correlation
for highly associated items (for example, Bill Clinton and Hilary
Clinton are associated both for the patients and for the web)
and more variability for those that are less associated. The personal
and web-association scores were significantly correlated for 11 out
of 12 subjects (rank test with Po0.05; 1,000 surrogates;
see Methods) and, considering the data of all subjects, the corre-
lation between both association scores was significantly higher
than chance (Po10� 3; Wilcoxon signed-rank test; n¼ 12;
see Methods). On the basis of these results, we took the universal
web-association scores as a proxy for the personal scores by the
patients, which, in spite of individual differences, gave a reasonable
approximation on average.

Using the web-based scores with the 261 units (recorded in
49 patients) with more than one response, we also found that
pairs of images for which the neuron fired (AR-R) were
significantly more associated than other pairs of images
(AR-NR; Fig. 3), both for the single units (Po10� 7; Wilcoxon
signed-rank test; n¼ 129) and the multi-units (Po10� 5;
Wilcoxon signed-rank test; n¼ 132). Performing a visual
similarity analysis, we found that this effect cannot be trivially
attributed to the perceptual similarity between the images: three
different visual similarity metrics gave significantly lower
differences between the R-R and the R-NR values compared
with the ones obtained with the web-based association scores
(see Methods). This is in agreement with the fact that MTL
neurons do not represent visual features, as they show visual
invariance (that is, they respond to completely different pictures
of the same person)16 and their firing can be triggered by
different sensory modalities (responding to the person’s written
and spoken name)17. Another potential confound is given by the
familiarity of the images: since familiar pictures are represented
by more neurons18, there is in principle a higher chance of
finding neurons firing to pairs of familiar pictures compared with
non-familiar ones. To rule out this possibility, we performed two
control analyses (see Methods: ‘Effect of the relative number of
hits’). First, we found that ‘joint familiarity scores’ (equation (6))
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for pairs of pictures to which the neurons fired were not
statistically different than the ones for the other pairs. Second, we
divided the image set into highly familiar and less familiar
pictures, and found that results were statistically the same when
considering association scores for pairs of responses where both

pictures were highly familiar, where both pictures were less
familiar and where one was highly familiar and the other was not
(see Methods).

In addition, these results cannot attributed to a broad encoding
of semantic categories, as AR-R versus AR-NR differences remained
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Figure 1 | Exemplary neuron encoding long-term associations. (a) A single neuron in the hippocampus that fired to pictures of the patient’s relatives

(pictures covered for confidentiality reasons) and to two celebrities that were related, according to the patient’s report, to one of the relatives (stimulus 5).

The red frame marks significant responses. Time zero marks the onset of picture presentations, shown for 1 s. (b) Personal association matrix filled by the

patient with a z-score normalization. The association scores for the pictures to which the neuron fired (mean: 0.889) were higher than the scores obtained

for other pictures (mean: 0.122). Owing to copyright issues, the images depicting people are replaced by their names. For the original figures see https://

www2.le.ac.uk/centres/csn/publications-1/2016/longtermcoding.
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significant when constraining the comparisons to be within the
same category (when the items eliciting responses belonged to the
same category) or across the same categories (when they belonged
to different categories) (see Methods). In other words, MTL
neurons showed specific encoding of associations within and across
semantic categories. Furthermore, for single units the difference
between the web-association values for the pairs of images to
which the neurons responded and the values for the other pairs
(ASR-R–ASR-NR) (first two columns in Fig. 3b) were significantly
lower than the ones obtained with the personal scores (first two
columns of Fig. 3a) (Po0.05; Wilcoxon rank-sum test; n¼ 129 and
19, respectively—the difference was not significant for the multi-
units), in line with the fact that the web-based scores reflect
universal associations and not the unique relationships made by
each subject.

Response latencies. It is in principle possible that the responses
to associated pictures are due to the fact that the neurons encode
only one of the pictures, and the responses to the other ones are

due to cue-recall—that is, the associated picture acts as a cue to
evoke the one encoded by the neuron, thus making it fire.
Note, however, that the subjects saw about 100 images per session
without doing any associative learning task. So, with such large
number of images it seems unlikely that the subjects will
spontaneously and consistently recall specific relationships that
could explain the responses to associated items. To give further
support, we estimated the latency of the responses using the same
latency estimation method of Kreiman et al.19 (see Methods),
who studied human MTL single-neuron responses in a
cue-recall paradigm. They report that the mean latency of
human MTL responses obtained by evoking an image from a cue
was of 409 ms (s.d.: 291 ms)—about 130 ms longer than the one
they found for the visual responses (triggered by the picture
presentations). In our case the mean latency of the responses was
253 ms (s.d.: 129 ms), which is well below the one reported by
Kreiman et al. for cue-recall responses. Moreover, the mean
latency difference of the responses to different stimuli (in the
same neurons) was of 78 ms (s.d.: 89 ms), whereas the latency
difference reported by Kreiman et al. for recall responses was
more than 60% larger.

Topographic organization. Using similar calculations, we also
studied whether there is a topographic organization of responses in
the MTL, namely, that nearby neurons tend to respond to
associated concepts. For this, we focused on the responses from 72
electrodes that had more than one unit (single- or multi-unit)
separated after spike sorting, with at least one significant response
each. We then quantified the degree of association between these
pairs of responses and compared them with the ones for the other
pairs. In line with previous evidence from studies in the rodent
hippocampus20, as well as from illustrative cases showing that
neighbouring human MTL neurons tend to fire to completely
unrelated things21, the mean association score between the stimuli
eliciting responses in these close-by units was not significantly
different from the one for the other stimuli pairs (Wilcoxon
signed-rank test; Fig. 4a), both when considering only the single
units (N¼ 49) or all units together (N¼ 159), thus arguing against
a topographic organization of responses.

More broadly, to compare the tendency of neurons to fire to
associated concepts across the different MTL areas, we pulled together
all units (given that results with the web-based scores were similar for
single- and multi-units). For all areas, the association scores for the
pairs of responsive stimuli ASR-R were significantly larger than the
ones to other pairs (ASR-NR) (in all cases Po0.05; Wilcoxon signed-
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rank test; for sample sizes see Supplementary Table 2). The difference
between association scores for response pairs and other pairs
(ASR-R–ASR-NR) across MTL areas showed a tendency, being largest
in the hippocampus and lowest in the parahippocampal cortex
(Fig. 4b), which, however, did not reach statistical significance
(P¼ 0.07; analysis of variance, n¼ 129 and 132).

Probability of responses to associated concepts. With the
web-based scores, we also assessed how the probability of neurons
responding to a pair of items depends on the degree of association
between the items. That means, given a neuron that responds to a
picture, we quantified the probability that the neuron responds to
a second picture as a function on its association with the first one
(see Methods). Figure 5 shows the population average, where we
observe a psychometric-like nonlinear increase of the
probability of pair responses with the degree of association
between the items. In particular, the probability of neurons
responding to highly associated items saturated at about 4%,
going down to about 1% for weakly associated ones. This
difference might, however, be larger considering that certain
items, which were not associated according to the web metric,
may have had a particular relationship for the patient, whereas
there is more consistency between the subjective and web-metric
scores for the highly associated items (Fig. 2b).

Cell-by-cell and decoding analysis. For each responsive neuron
we performed a cell-by-cell analysis by correlating the matrix
of ‘joint-neural responses’—that is for each pair of pictures (i,j),
the product of the responses to pictures i and j—with the matrix
of web-association values. To illustrate this, Fig. 6a shows a
neuron that fired to a few basketball players and to other
sportsmen. Figure 6b,c shows the corresponding joint-neural and
web-association matrices between all 86 stimuli shown in this
experimental session. We observe a clustering in the joint-neural
responses, which partially matches the clustering present in the
matrix of web-association scores. As described before—that is,
consistent with the fact that the maximum probability of
pair responses is about 4%—the neural responses encode
relatively few of the associations between the stimuli. This partial
matching was, however, enough to give a significant correlation
between the neural and the web-association matrices, as assessed
with a permutation test (Fig. 6d; see Methods). Figure 7 shows
another example of a neuron firing to two researchers performing
experiments with the patient, which are very much related

according to the web-based metric. Note that the neuron
did not fire to a third experimenter (stimulus 3) that was also
related to the first two. As in the previous case, the correlation
between web-association and joint-neural matrices was
significant. More examples are shown in the Supplementary
Information (Supplementary Figs 4–7). Repeating this analysis
with the 399 responsive units (174 single- and 225 multi-units)
with a non-zero joint-neural response matrix (Supplementary
Table 1), we obtained a significant correlation between the
neural and web-association matrices in 19% of the cases
(38 single- and 38 multi-units; rank test with Po0.05;
1,000 surrogates). This relatively low number of significant
correlations is, again, due to the fact that neurons encode
relatively few of the associations. For example, the neuron in
Fig. 8 responded to two clearly associated concepts (Superman
and Mr. Incredible), but the correlation between the joint-neural
and the web-association matrices was not significant due
to the sparseness of the joint-neural matrix (see Supplementary
Fig. 7 for a similar example). However, considering the
population of 399 neurons, the correlation values were sig-
nificantly larger than chance (Po10� 6 Wilcoxon signed-rank
test; n¼ 399). In line with this result, the correlation between
the average joint-neural and web-association matrices obtained
when considering all responses and pictures (that is, the matrices
of Supplementary Fig. 3 and Fig. 2a, respectively) was also
significantly larger than chance (Po0.01, rank test, 1,000
surrogates).

We also used the neural responses to predict the degree of
association between items (see Methods). We applied this analysis
to 345 units (136 single- and 209 multi-units) with at least two
non-zero entries in the joint-response matrix (Supplementary
Table 1) and found that predictions were significantly larger than
chance for 62 (18%) of these units (27 single- and 35 multi-units),
using a rank test with Po0.05 and 1,000 surrogates. The reason
for this relatively low rate of success is, again, due to the fact that
MTL neurons encode relatively few of the associations between
the stimuli (see examples in Fig. 8 and Supplementary Fig. 7). In
line with this observation, we found a significant correlation
(Po0.005; Spearman rank correlation test; n¼ 345) between the
prediction error obtained for each neuron (minus the prediction
error for the 5-percentile of the surrogates; see Methods) and the
number of non-zero responses (which gives the number of
non-zero entries in the joint-neural response matrix and
eventually the number of associations coded by the neuron).

0.6

P=0.7

Association for
close-by neurons

ASR-R

ASR-NR

Association across
MTL areas

P=0.5
0.4

0.2

A
ss

oc
ia

tio
n 

sc
or

es

A
S

R
-R

–A
S

R
-N

R

–0.2

–0.4
Single

unit
Single +
multi unit

0

0

N
=

72

Hipp. Amyg. Ent.C. Parah.C.

N
=

46

N
=

56

N
=

870.1

0.2

0.3

0.4

0.5

0.6

0.7

N=49 N=159

a b

Figure 4 | Topographic analysis. (a) Mean association scores ASR-R

(green) and ASR-NR (grey) between pictures eliciting responses in nearby

neurons, which were recorded from the same electrode and separated after

spike sorting. In this case N indicates the number of electrodes with at least

two responsive units separated after spike sorting. (b) Mean association

score for the pairs of images eliciting responses for the different MTL areas.

0.055

0.05
Single units
Multi-units

0.045

0.04

0.035

P
ro

ba
bi

lit
y 

of
 p

ai
r 

re
sp

on
se

s

0.03

0.025

0.02

0.015

0.01

0.005
–3 –2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2

Association score

Figure 5 | Probability of responses to associated concepts. Probability of

responses to a pair of pictures as a function of their degree of association

(see text for details). Error bars show s.e.m.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13408 ARTICLE

NATURE COMMUNICATIONS | 7:13408 | DOI: 10.1038/ncomms13408 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications


Altogether, considering the whole population of neurons,
predictions were larger than chance with Po0.05 (Wilcoxon
signed-rank test; n¼ 345).

Discussion
By analysing the association scores given by the subjects and by
using a web-based association metric with a much larger database
of responses, we demonstrated that whenever MTL neurons fire
to more than one concept, these concepts tend to be associated.
This claim is supported by three different analyses: first, the
association scores for pairs of pictures to which neurons fired
were significantly larger than the ones for other pairs of pictures.
Second, a cell-by-cell analysis showed a correlation above chance
between the neural responses and the association matrices
(without using a criterion to define a response). Third, based
on the neuron’s responses we could predict the degree of
association between pictures significantly better than chance.
Moreover, we have shown that these results could not be trivially
attributed to an effect given by the visual similarity of the images,
their relative familiarity or the recall of a single picture triggered
by associated ones.

Following on from these results, we also showed that the
responses to associated items were more correlated to the
subjects’ scores, determined by their own personal experiences,
than to ‘universal’ web-association values. In line, the neurons’
responses reflected specific relationships between individual items
and cannot be merely attributed to broad semantic categories—
which is in contrast to findings in the monkey hippocampus22,
although in this case, category responses were argued to arise to
optimally perform a delay match to sample task involving large
number of images. In fact, MTL neurons tended to fire to some,

but not all of the pictures in a category—for example, the
neuron shown in Fig. 1 fired only to some of the family
members presented; the neuron in Fig. 7 fired to two of the
experimenters, but not to another one and so on. To quantify this
observation at the population level, we showed that first, when the
items that a given MTL neuron fired to belonged to the same
category (for example, two actors), the association scores for
these items were, on average, significantly larger than the ones for
other items in the same category (other actors); second, MTL
neurons also responded to pairs of pictures belonging to different
semantic categories (for example, an actor and a place) and in this
case the association scores for the specific items the neuron fired
to were, on average, significantly larger than the association
scores for other items across the same categories (other actors
and places).

In terms of regional organization, there was a close to significant
statistical tendency for a non-homogeneous coding of associations
within the MTL areas, being largest in the hippocampus and lowest
in the parahippocampal cortex. Furthermore, as reported in the
rodent hippocampus20, and in contrast to findings in (monkey)
cortical areas23, close-by neurons did not fire to related items.
Such non-topographically organized representation is indeed
ideal for the fast creation of associations between arbitrary
(that is, not related) concepts21. In line with this observation,
we have recently shown that human MTL neurons can rapidly
encode newly learned associations between (at first) unrelated
items14 and another recent work24 has reported that MTL neurons
encode associations between contiguous items shown in a
sequence.

We have previously postulated that associations in the MTL are
encoded via partially overlapping assemblies; this means that a
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Figure 6 | Correlation analysis with a neuron in the hippocampus. (a) A single neuron in the hippocampus that fired to pictures of basketball players and

to other sportsman. (b,c) Web-association and joint-neural response matrices (see text for details). Colour bars on the right denote association and join-

response strength, respectively, in arbitrary units. (d) Correlation between the web-association and joint-response matrices (red dotted line) and for a

distribution of 1,000 surrogates, which were obtained by randomly shuffling the responses (see text). The original correlation value was significantly larger

than chance (rank test compared with the population of the 1,000 surrogates) with Po0.005.
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proportion of neurons firing to a certain concept may also fire to
related ones21. This way, the neural representation corresponding
to different instances of the same concept will have a relatively
large overlap—for example, different pictures of Luke Skywalker,
as well as his written or spoken name, will trigger the firing of a
similar set of neurons—whereas the neural representation of
associated concepts will have a much lower overlap, as the Luke
Skywalker assembly may trigger the firing of the one representing
Yoda, but also the one representing Darth Vader, Han Solo and
so on. With this model in mind, an intriguing finding from our
previous study was the relatively large proportion of neurons
(about 40%) that encoded newly learned associations14. In this
respect, we now show that the long-term probability of joint
responses to picture pairs is an order of magnitude lower (about
4% for highly related concepts and o1% for non-related ones).
Therefore, we can argue that from a relatively high proportion of
neurons initially encoding new associations, only a small fraction
of these will consolidate this information into long-lasting
representations in the MTL.

There is a long ongoing debate about the specific role of the
MTL in the consolidation of declarative memory. One view,
the standard consolidation model2, is that the MTL has only a
temporary role during learning and then memories consolidate
into stable representations in cortex. An alternative view, the
memory trace theory1, is that the MTL provides a long-lasting
representation that continues to play a critical role for declarative
(and particularly episodic) memory after learning. Evidence in
support of one or the other model has been largely based on
lesion studies and the investigation of human amnesic
patients2,15,25–29, and has provided mixed results, which can be

attributed to the varying degrees of the lesions and the presence
of compensatory mechanisms that can be used to perform the
behaviour at test. Direct evidence from neuron’s recordings is
scarce. In particular, about 15% of place cells in the rodent
hippocampus have been shown to maintain their tuning for up to
30 days in a familiar environment30. This result supports the idea
of a long-term coding in the hippocampus, but it is an open issue
whether, and to what extent, rodent place cells can be taken as a
model of declarative memory. Miyashita and colleagues used a
pair learning task and showed that perirhinal cortex activations
preceded the ones in visual cortical areas, thus suggesting a long-
term involvement of the MTL in encoding associations and giving
feedback to visual areas31, in line with their previous finding of a
disruption of pair coding neurons in visual cortical areas on
lesions in the entorhinal and perirhinal cortices32. Closer to our
study, selective responses to well-learned associations were
described in the monkey11 and the rat hippocampus12.
Moreover, using an eye-blink conditioning paradigm, neurons
in the rabbit CA1 were shown to be active at the recall of remotely
acquired associations13. In line with these findings, we have
shown, in humans, the presence of a long-term coding of
associations between known concepts. Note that our results do
not rule out the possibility that these type of associations (beyond
semantic category relationships) might be also encoded in cortex,
but the fact that MTL neurons code previously existing, and not
task related, associations—that is, independent of the specific task
performed by the subjects—shows a long-term representation
that goes beyond a temporary and malleable coding and offers
new insights to our understanding of the role of the MTL in
memory coding, its stability and capacity.
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Figure 7 | Correlation analysis with a neuron in the parahippocampal cortex. (a) A single neuron in the parahippocampal cortex that fired to pictures of

two researchers performing the experiments with the patient, but not to the picture of a third researcher also working with the patient (stimulus 3). (b,c)

Web-association and joint-neural response matrices (see text for details). Colour bars on the right denote association and joint-response strength,

respectively, in arbitrary units. (d) Correlation between the web-association and joint-response matrices (red dotted line) and for a distribution of 1,000

surrogates. In this case the correlation between the web-association and joint-response matrices was significantly larger than chance (Po0.05, rank test,

1,000 surrogates).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13408 ARTICLE

NATURE COMMUNICATIONS | 7:13408 | DOI: 10.1038/ncomms13408 | www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications


Methods
Subjects and recordings. The data come from 99 experimental sessions in 49
patients with pharmacologically intractable epilepsy. Extensive non-invasive
monitoring did not yield concordant data corresponding to a single resectable
epileptic focus. Therefore, the patients were implanted with chronic depth elec-
trodes for 7–10 days to determine the seizure focus for possible surgical resection33.
Here we report data from sites in the hippocampus, amygdala, entorhinal cortex
and parahippocampal cortex. All studies conformed to the guidelines of the
Medical Institutional Review Board at University of California, Los Angeles, and all
patients provided signed consent forms. The electrode locations were based
exclusively on clinical criteria and were verified by CT co-registered to preoperative
magnetic resonance imaging. Each electrode probe had a total of nine micro-wires
at its end, eight active recording channels and one reference. For the first 41
patients (84 sessions), the differential signal from the micro-wires was amplified
using a 64-channel Neuralynx system, filtered between 1 and 9,000 Hz and sampled
at 28 kHz. For the remaining patients, a 128-channel Blackrock system was used
using a filter between 0.3 and 7,500 Hz and a sampling frequency of 30 kHz.

Experimental paradigm. Subjects sat in bed, facing a laptop computer on which
about 100 different pictures of known people and places (for example, actors,
politicians and landmarks) were shown for 1 s, six times each in pseudo-random
order. These pictures were partially chosen according to the subjects’ interests and
preferences. To check that the subjects were paying attention, after each
presentation they had to respond whether the picture corresponded to a person or
not. Each recording session lasted about 30 min. After the recordings, in a subset of
24 (out of the 99) sessions in 12 (of the 49) patients, subjects were asked to fill a
‘personal association matrix’, in which they ranked between 0 and 10 how much a
subset of between 10 and 15 pictures were related to each other (between 45 and
105 comparisons in total). Entries given by the subjects were normalized with a
z-score. The subset of the stimuli comprised those images eliciting responses in the
recorded neurons, as well as other pictures presented in the experiments.

Spike sorting and responsiveness criteria. From the continuous wide-band data,
spike detection and sorting was carried out using ‘Wave_Clus’, an adaptive and
stochastic clustering algorithm34. The mean number of detected neurons per
micro-wire was 1.6 (s.d.: 0.8). Neurons were classified into single- or multi-units

based on the following: (1) the spike shape and its variance; (2) the ratio between
the spike peak value and the noise level; (3) the interspike interval (ISI) distribution
of each cluster; and (4) the presence of a refractory period for single units; that
is,o1% spikes within o3 ms ISI17. For each stimulus we defined a ‘response
window’ between 200 and 1,000 ms, and a corresponding ‘baseline window’
between � 1,000 and � 200 ms. As in previous works17, a response to a picture
was considered significant if it fulfilled the following criteria: (i) the median
number of spikes in the response interval was higher than the average baseline plus
5 s.d.’s; (ii) the median number of spikes in the response window was at least 2; (iii)
the number of spikes in the response period was significantly higher than the one
in baseline, according to a paired t-test (P value o0.05). For each significant
response, the response latency was estimated from the spike density function
(s.d.f.), as in previous works19. The s.d.f. was obtained convolving the spike train
with a Gaussian of 100 ms width and then averaging across trials. The latency was
then computed as the time where the s.d.f. crossed the baseline plus 2 s.d. value for
at least 50 ms.

Web-based association metric. The matrices of associations filled by the patients
included only a small subset (of the order of hundreds) of all possible association
pairs (of the order of thousands) between the images shown in each recording
session. Then, to automatically estimate the degree of relationship between the
concepts presented in each recording session (and to include sessions where we did
not have personal scores by the patients) we used an internet search engine (BING)
and compared the number of hits to the joint searches with the number of hits to
the individual searches. This type of metric is based on the pointwise mutual
information35, which has been used, for example, in linguistics to search for words
synonyms36. It relies on the idea that the name of associated concepts will often
appear together in web pages. The association score for each picture pair was
defined as

aij¼ log2

hitsðconcepti AND conceptjÞ
hitsðconceptiÞ � hitsðconceptjÞ

 !
ð1Þ

where the AND operator used in an internet search gives the number of pages
containing both concepts. We limited the web search to famous people and
places—that is, those concepts that are ‘searchable’ on the web and give a
reasonable number of hits to have a reliable statistic (excluding names of family
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members). As with the personal matrices, the values for each recording session
were normalized using a z-score.

The stimuli were manually assigned to broad semantic categories (actors,
sportsmen and so on; Fig. 2a). This manual classification had an 84% overlap with
the classification obtained using a clustering analysis (Louvain community
detection algorithm37,38), considering the same number of categories.

Correlation between personal and web-association metrics. The normalized
association scores given by the subjects and the ones obtained with the web
searches for the same pairs of items (again, excluding in both cases family
members) were compared using the scalar product between both association
scores. To assess statistical significance, for each subject we statistically compared,
using a rank test with Po0.05, the original correlation value with the ones obtained
from a distribution 1,000 surrogates, created by randomly permuting the index of
one of the association scores. At the population level we compared the original
correlation values with the median of the surrogates for each subject using a
right-sided (that is, our hypothesis is that the original values are higher than the
ones of the surrogates) Wilcoxon signed-rank test. Moreover, to illustrate the
correlation between the personal and web-based scores, we considered the
web-based association scores for which we had the personal score given by the
patient; then we binned these web-based scores into 10 equally spaced intervals,
and plotted the mean (±s.e.m.) value in each bin (x axis) against the mean
(±s.e.m.) value of the corresponding personal score (y axis) (Fig. 2b).

Mean association scores. For each neuron with a significant response to two or
more images we defined a mean association score between the pair of images
eliciting responses (ASR-R), and a mean association score between the pair of
images, where one elicited a response and the other did not (ASR-NR). In other
words, for each responsive picture we compared its association scores with the
other pictures eliciting responses to the ones with the other pictures not eliciting
responses. More specifically, denoting by N the number of pictures presented in a
session and by k the number of responsive stimuli, we defined the mean association
score ASR-R as

ASR-R ¼
1
k
2

� � Xk� 1

i¼1

Xk

j¼iþ 1

aij ð2Þ

where aij are the z-score-normalized association scores from the personal matrices

(or from equation (1) for the web-based scores), and the binomial coefficient
k
2

� �
is the total number of possible pair combinations with k responsive stimuli.
Analogously, we defined the mean association score for the other pairs ASR-NR as

ASR-NR¼
1

k � N � kð Þ
Xk

i¼1

XN

j¼kþ 1
aij ð3Þ

Topographic organization. For each electrode with at least two responsive units
separated after spike sorting, we considered the degree of association between the
images eliciting responses in the different units (of the same electrode). This way,
we assessed if there is a topographic organization of the responses, with nearby
neurons (that is, recorded from the same electrode) tending to fire to associated
items. As before, we defined a mean association score between the images eliciting
responses in the different neurons using equation (2), and compared it with the
mean association score between the images eliciting responses in one of the
neurons but not in the other one (equation (3)).

Probability of pair responses. The previous analyses were focused on neurons
(and nearby neurons for the study of topographic organization) with more than
one response, to assess whether these pairs of responses were to images that tend to
be highly associated. We also evaluated the probability of neurons to respond to a
pair of images, as a function of the degree of association between the images. But in
this case we should as well consider neurons with single responses, because to
evaluate the probability of neurons firing to two pictures with a given association
score, we should consider not only the cases where neurons fired to both of them
but also the cases where neurons fired to one (even if this was the neuron’s unique
response) and not the other one. Therefore, for this analysis we considered all 550
neurons (260 single units and 290 multi-units) with at least one response. To
obtain a curve of probability of ‘pair responses’ as a function of degree of asso-
ciation, we binned the z-score-normalized web-association scores between all the
presented images into 10 equally spaced bins, and we calculated, for each
responsive neuron and bin, the ratio between the number of ‘pair responses’ and
the number of responses to one but not the other image of the pair, and then
averaged across neurons.

Correlation between web-association and neuronal responses. For each of the
550 responsive units we calculated a matrix of joint neural responses Fij¼ Fi � Fj,
where Fi and Fj are the responses (that is, the median number of spikes in the

‘response window’; see above) to pictures i and j, respectively, normalized by the
maximum response. Note that for this analysis we did not use a criterion of what
should, and what should not, be considered a significant response, but values below
the neuron’s mean baseline activity plus 2 spikes were capped to zero, to decrease
the influence of background noise. This resulted in 151 units with a matrix F filled
with zeros (that is, there were not two or more responses different from zero) and
we therefore focus in the remaining 399 units (174 single- and 225 multi-units)
with non-zero matrices (Supplementary Table 1). We also computed the web-
association scores between all the pictures shown in the corresponding experi-
mental session, and created the matrix of association scores A, where in this case
we normalized each row using a z-score, given that the joint response matrix is
non-zero for relatively few pairs and the fact that, in spite of the normalization of
equation (1), some items (for example, a very famous actor) tended to have higher
association scores than others. Then, for each neuron we computed the scalar
product between the matrix of joint neural responses F and the matrix of
web-association scores A:

r¼
XN

i¼1

X
j 6¼ i

AijFij ð4Þ

To assess the significance of the correlations between the neural and web-asso-
ciation matrices, for each neuron we statistically compared, using a rank test with
Po0.05, the original correlation value of equation (4) with the ones obtained from
a distribution 1,000 surrogates, created by randomly permuting the index of the
responses F. At the population level we compared the original correlation values
with the median of the surrogates for each neuron using a right-sided (that is, our
hypothesis was that the original values were higher than the ones of the surrogates)
Wilcoxon signed-rank test.

The average joint-neural activation matrix (Supplementary Fig. 3) was obtained
by averaging all the matrices of joint neural responses obtained from the 550
responsive neurons. Since not all the possible pairs of stimuli were shown together
in at least one session, the matrix contains some holes corresponding to the
untested pairs.

Decoding analysis. To predict the association scores, we took each non-zero entry
Fij in the joint-neural response matrix and predicted the association score between
the corresponding items (i,j) using a nearest-neighbour approach with a leave-one
out validation (one at a time, each value was predicted based on the rest). That
means, if we denote by F0 ij the closest value to Fij in the joint-neural response
matrix, and by A0 ij its corresponding association score, we took A0 ij as an esti-
mation of Aij. As before, the web-association matrices were normalized row by row
and we used the mean of the symmetric values in the matrix, cAij¼ðAij þAjiÞ=2
(for i4j), because otherwise the closest value would trivially tend to be the
symmetric counterpart. Note that this analysis could only be applied to joint-neural
response matrices with at least two entries different than zero, which was the case
for 345 units (136 single- and 209 multi-units; Supplementary Table 1). We
quantified the accuracy of the predictions with the mean square error,

e¼ 1
K

X
K

cAij
0 �cAij

� �2
ð5Þ

where cAij
0and cAij are the predicted and real association scores, respectively, and K

is the number of non-zero values in the joint-neural response matrix (with i4j). As
before, for each neuron we used a rank test with Po0.05 to compare the mean
square errors of the original estimations with the ones obtained from a distribution
1,000 surrogates, created by randomly permuting the index of the responses F.
At the population level, we compared the original errors with the median of
the surrogates for each neuron using a left-sided (that is, our hypothesis was
that the original errors were lower than the ones of the surrogates) Wilcoxon
signed-rank test.

Visual similarity. In principle, it could be argued that the tendency of MTL neu-
rons to respond to associated concepts could just reflect perceptual similarities
between pictures (for example, a picture of an actor is more similar to a picture of
another actor than to one of a landscape). To rule out this confound, we estimated
the visual similarity vij between each pair of stimuli i and j, as the cross-correlation
between the images (each with 160� 160 pixels, greyscale and z-score-normalized).
Then, we calculated the tendency of neurons to respond to perceptually similar
images, by replacing aij by vij in equations (2) and (3). The difference in the values
between the response pairs (R-R) with the other pairs (R-NR) was significantly
higher when considering the web-association scores compared with the visual
similarity scores for the single units (Po0.005; Wilcoxon signed-rank test;
n¼ 129—differences for the multi-units were not significant), thus showing that
results cannot be just attributed to perceptual similarity between the images. To
further support this claim, we also repeated this analysis using the two-dimensional
cross-correlation between the images and the Earth Mover’s Distance39, which are
less sensitive to alignment issues. In both cases, the visual similarity metric gave
significantly lower differences between the R-R and the R-NR values compared with
the ones obtained with the web-based association scores (Po10� 3 in all cases, both
for the single- and the multi-units; Wilcoxon signed-rank test; n¼ 129 and 132).
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Effect of the relative number of hits. Given that MTL neurons tend to respond
to familiar people or places (for example, a very famous actor, landscape and so
on)18, it is in principle possible that our results could be explained by a higher
probability of having responses (and joint responses) to very familiar items,
irrespective of their degree of association. To rule out this confound, we calculated
the product of the number of hits obtained for each independent search:

fij¼ log2 hits concepti

� �
� hitsðconceptjÞ

� �
ð6Þ

Then, we replaced aij by fij in equations (2) and (3) and found that the scores for
the pairs to which the neurons responded (R-R) were not significantly different to
the ones for the other pairs (R-NR) (P¼ 0.8 for single units, n¼ 129 and P¼ 0.4
for multi-units, n¼ 132; Wilcoxon signed-rank test), thus showing that results
cannot be explained by an effect introduced by the larger number of hits of familiar
pictures.

As an alternative control, for each experimental session we divided the pictures
of each category (actors, places, sportsmen and so on) into two groups: high
familiarity (H; pictures with number of hits above the median) and low familiarity
(L; pictures with number of hits below the median). We then calculated the
association scores (equations (2) and (3)) for pair responses where pictures where
both highly familiar (HH), both with low familiarity (LL) and one highly familiar
and the other one not (HL). Replicating the results shown in Fig. 3b, for each of the
three subgroups (HH, LL and HL) ASR-R was significantly higher than ASR-NR

(Po0.05 in all cases, both for single- and multi-units; Wilcoxon signed-rank test;
n¼ 64, 63 and 93 for the single units, and n¼ 72, 71 and 106 for the multi-units).
Moreover, the difference between the three subgroups was not significant (P¼ 0.3
for single- and 0.08 for multi-units; analysis of variance; n¼ 220 and 249), thus
showing that our result cannot be attributed to the familiarity of the pictures used.

Encoding of semantic categories. To test that our results were not simply due to
broad semantic category responses, we performed the following analyses. For pairs
of items eliciting responses in a neuron that belonged to the same category (taking
the categories of Fig. 2a), we compared the difference between the AR-R and AR-NR

values of equations (2) and (3) but considering only association values within this
category. The difference between AR-R and AR-NR remained significant for the
single units (Po0.005; Wilcoxon signed-rank test; n¼ 103) and was close to
reaching significance for the multiunits (P¼ 0.06; Wilcoxon signed-rank test;
n¼ 116). For pair of items eliciting responses that belonged to different categories
(for example, an actor and a place), we constrained the comparisons to be across
the same categories (for example, comparing the original association value with the
ones between other actors and places). In this case, the difference between AR-R and
AR-NR remained significant for the single units (Po0.01; Wilcoxon signed-rank
test; n¼ 102) and showed a tendency for the multi-units (P¼ 0.09; Wilcoxon
signed-rank test; n¼ 112). These results show that the association coding described
in the main text cannot be just attributed to semantic categorizations.

Data availability. The data that support the findings of this study are available
from the corresponding author on reasonable request.
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