Accepted Manuscript

Functional Ct Imaging For Identification Of The Spatial Determinants Of Small Airways Disease In Adult Asthma

Alex J. Bell, MMath, Brody H. Foy, BMath, Dr. Matthew Richardson, PhD, Amisha Singapuri, BSc, Dr. Evgeny Mirkes, PhD, Dr. Maarten van den Berge, PhD, David Kay, PhD, Prof., Chris Brightling, FRCP, PhD, Prof., Alexander N. Gorban, PhD, Prof., Craig J. Galbán, PhD, Prof., Salman Siddiqui, MRCP, PhD., Prof.

PII: S0091-6749(19)30087-9

DOI: https://doi.org/10.1016/j.jaci.2019.01.014

Reference: YMAI 13850

To appear in: Journal of Allergy and Clinical Immunology

Received Date: 12 April 2018
Revised Date: 9 January 2019
Accepted Date: 14 January 2019

Please cite this article as: Bell AJ, Foy BH, Richardson M, Singapuri A, Mirkes E, van den Berge M, Kay D, Brightling C, Gorban AN, Galbán CJ, Siddiqui S, Functional Ct Imaging For Identification Of The Spatial Determinants Of Small Airways Disease In Adult Asthma, *Journal of Allergy and Clinical Immunology* (2019), doi: https://doi.org/10.1016/j.jaci.2019.01.014.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 FUNCTIONAL CT IMAGING FOR IDENTIFICATION OF THE SPATIAL

2 DETERMINANTS OF SMALL AIRWAYS DISEASE IN ADULT ASTHMA

3

- 4 Alex J. Bell, MMath, Brody H. Foy, BMath, Dr. Matthew Richardson, PhD, Amisha
- 5 Singapuri, BSc, a Dr. Evgeny Mirkes PhD, Dr. Maarten van den Berge, PhD, Prof. David Kay,
- 6 PhD, ^b Prof. Chris Brightling, FRCP, PhD, ^a Prof. Alexander N. Gorban, PhD, ^c Prof. Craig J.
- 7 Galbán, PhD, e Prof. Salman Siddiqui, MRCP, PhD. a

8

- 9 ^aNIHR Respiratory Biomedical Research Centre (BRC), Department of Infection, Immunity and
- 10 Inflammation, University of Leicester, Leicester, UK. ^bComputational Biology, Department of
- 11 Computer Science, University of Oxford, Oxford, United Kingdom. ^cDepartment of
- 12 Mathematics, University of Leicester, Leicester, UK. ^dDepartment of Pulmonology, University
- 13 Medical Centre Groningen, Groningen, Netherlands. ^eDepartment of Radiology, University of
- 14 Michigan, Michigan, USA.

15

16 Corresponding author

- 17 Professor Salman Siddiqui, MRCP, PhD
- NIHR Biomedical Research Centre (Respiratory Theme)
- 19 Respiratory BRU Building
- 20 Glenfield Hospital
- 21 Groby Road, Leicester, LE3 9QP, UK

22

23 Telephone: +44-116-250-2873

ACCEPTED MANUSCRIPT

2

Bell	et	al
------	----	----

24 Fax: 0116-250-2787

E-mail: ss338@leicester.ac.uk

26

Declaration of all sources of funding: The current project was funded by the Sir Jules Thorn 27 trust, 'Systems Medicine: Novel Mathematical Approaches to Personalised Care in Asthma 28 29 Patients' via a clinical senior lecturer award (Professor Siddigui). Additional funding was 30 received for the original CT scan and physiological analyses from Roche Pharmaceuticals 31 (Professors Brightling and Siddiqui) and the European Union Airways Disease Predicting 32 Outcomes in Patient Specific Computational Models (AirPROM-FP7) consortium. This paper 33 was also supported by the National Institute for Health Research (NIHR) Leicester Respiratory 34 Biomedical Research Centre (BRC), the views expressed are those of the author(s) and not 35 necessarily those of the NHS, the NIHR or the Department of Health. 36 37 **Conflict of interest statement:** Mr. Bell has nothing to disclose. Mr. Foy reports grants from 38 Rhodes Trust, non-financial support from AirPROM-FP7 grant during the conduct of the study. 39 Dr. Richardson has nothing to disclose. Mrs. Singapuri has nothing to disclose. Dr. Mirkes has 40 nothing to disclose. Dr. Berge has nothing to disclose. Prof. Kay has nothing to disclose. Prof. 41 Brightling reports grants from NIHR BRC, grants from EU FP7, during the conduct of the 42 study; grants and personal fees from GSK, grants and personal fees from AZ, grants and personal 43 fees from MedImmune, grants and personal fees from BI, grants and personal fees from 44 Roche/Genentech, grants and personal fees from Novartis, grants and personal fees from Chiesi, grants and personal fees from Mologic, personal fees from PreP, personal fees from 4DPharma, 45 personal fees from TEVA, personal fees from Glead, personal fees from Glenmark, outside the 46

- 47 submitted work. Prof. Gorban has nothing to disclose. Prof. Galbán has nothing to disclose. Prof.
- 48 Siddiqui reports grants from NIHR Biomedical Research Centre Grant, grants from Sir Jules
- 49 Thorne Trust, clinical senior lecturer award (Professor Siddiqui), grants from EU-FP7 AirPROM
- grant, during the conduct of the study; other from Astra Zeneca, GSK, Owlstone, Mundipharma,
- 51 Boehringer Ingelheim, personal fees from European Respiratory Society, outside the submitted

52 work.

53

54 WORD COUNT: 3,361

55	ABSTRACT
56	BACKGROUND: Asthma is a disease characterised by ventilation heterogeneity (VH). A
57	number of studies have demonstrated that VH markers derived using impulse oscillometry (IOS)
58	or multiple breath washout (MBW) are associated with key asthma patient related outcome
59	measures and airways hyper responsiveness. However the topographical mechanisms of VH in
60	the lung remain poorly understood.
61	
62	OBJECTIVES: We hypothesised that specific regionalisation of topographical small airway
63	disease would best account for IOS and MBW measured indices in patients.
64	
65	METHODS: We evaluated paired expiratory/inspiratory computed tomography in a cohort of
66	asthmatic (n=41) and healthy volunteers (n=11) to understand the determinants of clinical VH
67	indices commonly reported using IOS and MBW. Parametric response mapping (PRM) was
68	utilised to calculate functional small airways disease marker PRM ^{fSAD} and Hounsfield unit (HU)
69	based density change from total lung capacity to functional residual capacity (ΔHU); gradients of
70	Δ HU, in gravitationally perpendicular (parallel), inferior-superior (anterior-posterior) axes, were
71	quantified.
72	
73	RESULTS: ΔHU gradient in the inferior-superior axis provided the highest level of
74	discrimination of both S_{acin} and R5-20. Patients with a high inferior-superior ΔHU gradient
75	demonstrated evidence of reduced specific ventilation in the lower lobes of the lungs and high
76	levels of PRM ^{fSAD} . A computational small airway tree model confirmed that constriction of
77	gravitationally dependant lower zone small airway branches would promote the largest increases

- 78 in R5-R20. Ventilation gradients correlated with asthma control and quality of life but not with
- 79 exacerbation frequency.

80

- 81 CONCLUSIONS: Lower lobe predominant small airways disease is a major driver of clinically
- 82 measured VH in adult asthma.

83

84 WORD COUNT: 248

85	CLINICAL IMPLICATION
86	Asthmatics with abnormal small airways ventilation heterogeneity measurements demonstrated
87	small airways disease and reduced ventilation in the inferior regions of the lung, which may
88	impact the effectiveness of inhaled therapies.
89	
90	CAPSULE SUMMARY
91	This study analyses spatially localised ventilation heterogeneity in adult asthma using CT
92	imaging and modelling, and presents evidence of inferior to superior ventilation gradient reversal
93	in the disease pathogenesis.
94	
95	KEY WORDS
96	Asthma, Computed tomography, Parametric Response Mapping, Imaging, Visualisation, Small
97	airway physiology, Biomarker,
98	
99	ABBREVIATIONS
100	LCI: Lung Clearance Index
101	FRC: Functional Residual Capacity
102	TLC: Total Lung Capacity
103	HU: Hounsfield Unit
104	eHU: HU at expiration state (FRC)
105	iHU: HU at inspiration state (TLC)
106	ΔHU: eHU – iHU (regional density change between FRC and TLC)
107	MBW: Multiple Breath Washout

- 108 IOS: Impulse Oscillometry
- 109 SAA: Stratified Axial Analysis
- 110 VH: Ventilation Heterogeneity
- 111 S_{acin}: Acinar VH, measured using phase three slope analysis of multiple breath washout data
- 112 SF6: Sulphur hexafluoride
- R5-R20: Resistance at 5 Hz minus resistance at 20Hz measured, measured using impulse
- 114 oscillometry
- 115 LDA: Linear Discriminant Function Analysis
- 116 PCA: Principal Components Analysis
- 117 PRM: Parametric Response Mapping
- 118 fSAD: Functional Small Airways Disease
- 119 GINA: Global Initiative for Asthma
- 120 DICOM: Digital Imaging and Communications in Medicine

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

IN	rr <i>(</i>	JD	TI	M	N

Asthma is characterised by spatial heterogeneity in disease and consequent heterogeneity in airways function and lung ventilation [1, 2]. Ventilation heterogeneity (VH) may be captured using imaging approaches that can quantify and regionalise lung ventilation, such as hyper polarised 3-Helium/129-Xenon magnetic resonance imaging (MRI), Oxygen enhanced MR and single photon emission computed tomography (SPECT-CT) [3-7]. Additionally VH can be measured clinically in patients using physiological tidal breathing techniques that measure heterogeneities in lung ventilation (captured using multiple breath washout (MBW) [8, 9]) and mechanical behaviour (captured using impulse oscillometry (IOS) [10]). International guidelines for quality control and assurance of tidal breathing markers of VH derived from IOS and MBW have been proposed [12, 13], supporting their potential role as tools to study early airways disease. We have previously identified that two specific markers of VH, R5-R20 and S_{acin}, derived from IOS and MBW respectively, are associated with impaired asthma control, quality of life and exacerbations [9, 11]. These observations have been replicated by other groups in parallel studies of adult asthma [14, 15]. Additionally we have previously demonstrated, using computational small airway models and diffusion MRI, that IOS derived R5-R20 and MBW derived Sacin values, are anatomically grounded measures of small and acinar airway anatomical disease respectively, in adult asthmatics [9].

141

142

143

Heterogeneity of ventilation within the lungs is likely to be influenced by both gravitational effects and airway branching, as well as other factors that affect regional lung compliance

Bell	et	al

(reviewed in [16]). However little is known about the spatial lung determinants of clinical measurements of VH derived using MBW and IOS. This is important as imaging tools are costly, difficult to implement in clinical trials and standardise across centres; physiological tools, if appropriately validated, could serve as simple surrogates of disease heterogeneity captured by sensitive imaging techniques.

Computed tomography (CT) of the lungs has been exploited widely to study lung structure and function relationships in asthma [17, 18]. More recently image registration applied to inspiratory and expiratory CT imaging has been utilised to derive indices of functional small airways disease [19-22]. One specific and widely deployed approach is parametric response mapping (PRM) [20-22]. The PRM approach offers the potential to characterise spatial deformation of a voxel between different acquired CT lung volumes, e.g. functional residual capacity (FRC) and total lung capacity (TLC), over the entire lung, and hence the potential to identify spatial mechanisms of commonly measured MBW and IOS VH markers.

The purpose of this study was to use a range of global and regional airway density change (from functional residual capacity to total lung capacity) imaging biomarkers to understand how spatial variations in VH may contribute to widely reported clinical measurements of VH and small airways disease, captured by IOS and MBW in adult asthma.

Specifically we hypothesised that abnormal regional variations in ΔHU would be a major contributor to abnormal IOS and MBW physiological indices of VH in the small airways and sought to test this hypothesis using a functional CT imaging and computational simulation study.

167	METHODS
168	
169	(i) SUBJECTS
170	The total population for this study consisted of 52 subjects, 41 adult asthmatic and 11 healthy
171	controls. Asthmatic subjects were recruited from Glenfield Hospital in Leicester, UK.
172	Asthma was defined by a clinician diagnosis with one or more of the following objective
173	criterion (i) bronchodilator reversibility of FEV $_1$ to 400 mcg inhaled salbutamol of \geq 12 % and
174	200 mls (17 of 41 asthmatics), (ii) Methacholine $PC_{20} \le 16$ mg/ml (11 of 41 asthmatics) or (iii)
175	peak flow variation of $\geq 20\%$ over a 2 week period (13/41).
176	
177	Asthma severity was classified according to the current Global Initiative for Asthma (GINA)
178	treatment steps [23]. Severe asthmatics within the cohort had similar lung function (post
179	bronchodilator FEV ₁ /FVC) to previously reported severe asthma cohorts in Leicester, UK [24],
180	but higher average post bronchodilator FEV ₁ % predicted values.
181	Aged matched healthy volunteers were recruited via local advertising and staff with normal
182	airway physiology and no features of respiratory disease. All subjects with asthma had been free
183	from exacerbations for at least 6 weeks prior to study entry.
184	
185	All subjects (asthmatic and healthy volunteers) were non-current smokers, however due to the
186	known association of smoking and small airways disease, pack year smoking exposure was not
187	an exclusion criterion. Only 3/41 patients with asthma had a smoking history of more than 15
188	pack years.
189	

Bell	et	al
------	----	----

4	\sim	\sim
- 1	()	11
- 1	7	1,

191

- (ii) ETHICAL APPROVAL
- 192 The study protocol was approved by the National Research Ethics Committee East Midlands
- Leicester (approval number 08/H0406/189), and all subjects gave their written informed consent.

194

196

197

198

199

200

201

202

203

204

195 (iii) VISITS

Clinical and physiological assessment was performed in the following sequence and over 1-2 study visits, no more than 1 week apart. Asthma control was characterised using the modified 6 item Juniper Asthma Control Questionnaire (ACQ-6) [25] and Asthma quality of life using the standard 32 question Juniper Asthma Quality of Life Questionnaire (AQLQ) [26]. Exacerbations were defined according to ATS/ERS consensus criteria [27]; a moderate-severe exacerbation is defined as one or more of the following: (i) worsening of asthma that requires use of systemic steroids or an increase in systemic steroids (for patients already receiving maintenance oral steroids) for 3 or more days, or (ii) an admission to hospital or an emergency department requiring systemic steroids.

205 (iv) LUNG FUNCTION MEASUREMENTS

All lung function tests were performed following the administration of 400 mcg of inhaled salbutamol. Spirometry was performed according to ATS/ERS standards [28].

- Impulse oscillometry (IOS) was performed in triplicate as previously reported and in accordance
- with international guidelines [12, 13]. Multiple breath washout (MBW) was performed according

Bell	et	al
------	----	----

to current guidelines [13] by using the sulphur hexafluoride (SF₆) wash-in method as previously described [11]. SF₆ was chosen as the inert tracer gas because of its heavy molar mass and based on previous simulation data from Dutrieue *et al* [29] suggesting that phase III slope sensitivity to SF₆ is maximal at the level of the alveolar duct. Lung clearance indices, S_{cond}, and S_{acin}, were calculated by using custom software written with TestPoint (Measurement Computing Corp, Norton, Mass) as previously described [9, 11]. Body Plethysmography was performed with a constant volume plethysmograph, according to the ATS/ERS recommendation [30]. A minimum of three acceptable tests were performed and the test ended when the repeatability criteria was achieved (FRC within 10% between highest and lowest value). Carbon monoxide uptake in the lung was determined using the single-breath method, according to standard guidelines [31]. Alveolar volume (VA) and the carbon monoxide transfer coefficient (KCO) were calculated,

(vi) CT IMAGING AND IMAGE ANALYSIS

Volumetric whole-lung scans were obtained following the administration of 400 mcg of inhaled Salbutamol at FRC and TLC in patients lying supine. CT images were quantified using a panel imaging biomarkers (**TABLE E1**, online supplement).

PRM was performed automatically using Imbio's Lung Density Analysis (LDA[™]) software application (Imbio, LLC, Minneapolis, MN) for all CT data, with registrations performed from TLC to FRC, on segmented voxel sets excluding the major airways (up to 3-4 generations from the trachea). Details on the PRM analysis have been previously reported [19-22]. Relative lung volumes of normal parenchyma (PRM^{Norm}), fSAD (PRM^{fSAD}), emphysema (PRM^{Emph}) and unclassified PRM^{Uncl} were calculated by normalising the sum of all like-classed voxels by the

Bell	et	яl
$\mathbf{p}_{\mathbf{U}}$	· UL	ш

total lung volume. Additionally features of the PRM joint density histogram (ellipse area, minor axis, major axis and angle to horizontal) were derived in MATLAB 2015a (MATLAB Release 2015a, The MathWorks, Inc., Natick, Massachusetts, United States) [FIGURE 1A].

A novel algorithm for evaluating regional density change gradients in a given direction, termed stratified axial analysis (SAA), was developed from per voxel TLC to FRC density change (Δ HU, see **FIGURES E1-E2A**). This allowed us to investigate how ventilation, approximated by Δ HU, varied with respect to axes of interest; particularly the anterior-posterior (approximately parallel to gravity) and inferior-superior (approximately perpendicular to gravity). See **FIGURE 2C and 2D**. Straight line fitting by ordinary least squares criterion was applied to produce $std(\Delta HU)^{AP}$, $\overline{\Delta}H\overline{U}^{AP}$, $std(\Delta HU)^{IS}$ and $\overline{\Delta}H\overline{U}^{IS}$ as the gradients of fitted lines to SAA derived intervals [**FIGURE E1**], where superscript AP (IS) refers to axis used, anterior-to-posterior (inferior-to-superior); std refers to standard deviation, and \overline{x} refers to **arithmetic mean** of x. $\overline{\Delta}H\overline{U}^{IS}$ was calculated as the mean of $\overline{\Delta}H\overline{U}$ values across every decile, equivalent to scaled (1/9) difference of extreme interval averages, in the inferior-superior direction. N.B. Additional markers classifying lung size asymmetry were also derived using custom scripts in MATLAB [**FIGURE E2B**].

(vii) COMPUTATIONAL SIMULATIONS OF REGIONALISED BRONCHOCONSTRICTION

A detailed outline of the computational models is provided in the online supplement (see section M3.0 in methods). Briefly, a computational model of airway impedance was designed, based on previous models in the literature to provide simulations of IOS derived R5-R20. In short, a 1D wave equation was used to estimate the impedance of each branch [32], with total impedance

Bel	Let	al
$\mathbf{p}_{\mathbf{q}}$	ıυι	uı

being calculated through summation of parallel and series contributions [33]. Each terminal bronchiole was subtended by a constant-phase viscoelastic model parameterised using data from the literature [34]. The models were adjusted for potential confounding upper airway shunting [35-36].

Simulations of total lung resistance over the frequency range (1-25Hz) were performed on the healthy conducting airway tree created through a combination of CT segmentation (to an average generation of 6), and algorithmic generation (to an average generation of 16) as previously reported [37]. For each simulation, constrictions were applied to either the lowest or highest 25% of small airways (\leq 2mm in diameter), relative to the supine or orthostatic position, to simulate the effects of gravitationally dependant airways. The constriction rates (the percentage an airway radius was reduced by, denoted c) were drawn uniformly from the range (0-70%), and applied homogeneously, using the same c for all airways, or heterogeneously, drawing each constriction from the normal distribution with mean c, and standard deviation 0.2c. For each simulation the output R5-R20 was calculated.

STATISTICAL ANALYSIS

Statistical analyses were performed in MATLAB 2015a. Kolmogorov-Smirnov tests were applied to check likelihood of a normal distribution. Binary group comparisons were performed using two-sample t-test (parametric data) and Mann-Whitney U-test (non-parametric data); for multiple group comparisons one-way ANOVA test was utilised (parametric data) and Kruskal-Wallis test (non-parametric data). Multiple-comparison procedures were performed with Tukey's honest significant difference criterion. Subgroups were determined by GINA treatment steps, and

	Bell et al
280	according to mean S_{acin} and R5-R20. 16 subjects (roughly one third of total population) at each
281	end of R5-R20 and S_{acin} distributions were utilised in tertile polar analysis, at SAA inferior-
282	superior deciles, where statistical significance was determined using two-sided Wilcoxon Rank-
283	Sum test.
284	
285	Average Pearson's correlation co-efficient (\bar{r}) is reported for simple linear correlations.
286	CT biomarkers sets were defined using Kaiser-Rule determined principal components analysis
287	(PCA) and utilised for linear regression analyses to evaluate correlation with clinical traits and
288	physiology. Linear discriminant analysis (LDA) was applied to determine class separation of VH
289	markers S_{acin} and R5-R20 using combinations of CT imaging features, clinical features and
290	spirometry. Negative binomial regression was used to evaluate the relationship between
291	exacerbations and imaging biomarkers and Pearson correlations for association between asthma
292	control/quality of life and imaging ventilation gradient biomarkers.
293	A p-value of p \leq 0.05 was utilised to define statistically significant results in all tests.

295	RESULTS
296	Clinical characteristics of the population are outlined in TABLE 1 . Asthmatic patients were
297	matched for age and sex to healthy volunteers. The asthmatics population had significantly
298	greater eosinophilic airway inflammation and physiological evidence of airways dysfunction and
299	VH when compared to healthy volunteers. There were no significant differences in VH markers
300	R5-R20 and S_{acin} across GINA treatment intensity groups. Of the 3/41 asthmatic patients with a
301	smoking history of more than 15 pack years, all had a PRM emphysema (PRM ^{Emph}) score that
302	was less than the mean + 1.96 SD [5% PRM ^{Emph}] in a healthy aged matched population of 98
303	subjects [38] and preserved KCO % predicted values [TABLE 1]. The three patients all had
304	evidence of asthma objectively (one had $78\%~\text{FEV}_1$ reversibility, one had a PC_{20} methacholine of
305	2 mg/ml, one had 49% FEV ₁ reversibility). Furthermore of these three patients only 2 patients
306	demonstrated a post BD FEV $_{\rm l}/FVC <$ lower limit of normal (LLN) (63% predicted in both
307	patient respectively with a post BD FEV $_1\%$ of 72% and 57% respectively).
308	
309	Imaging biomarkers of global lung VH are not associated with small airway VH markers
310	R5-R20 and S _{acin} .
311	TABLE E1 in the online supplement outlines the formal definition of all of the CT scan derived
312	imaging biomarkers. TABLE E2 in the online supplement presents comparisons of the global
313	and regional imaging biomarkers comparing asthmatic and healthy cases =across the spectrum of
314	GINA treatment intensity.
315	
316	Asthmatic cases demonstrated significantly smaller PRM ellipse major diameters and smaller
317	ellipse angles and had narrower distributions (standard deviations) of voxel HU change from

340

	Bell et al
318	FRC-TLC (p<0.05) when compared to controls – indicative of less overall VH.
319	
320	Asthmatics did not differ from controls with respect to standard PRM markers (PRM ^{Norm} ,
321	PRM ^{fSAD} and PRM ^{Emph}) [TABLE E2]. In contrast patients who demonstrated FEV ₁ /FVC (%)
322	less than the median population value (primarily asthmatics) had higher levels of PRM ^{fSAD} and
323	smaller PRM global ellipse areas (suggestive of less global heterogeneity) when compared to
324	patients with FEV ₁ /FVC(%) \geq than the median value (p<0.05). [FIGURE 1 B-C]. These
325	observations were not replicated with the small airway indices of VH R5-R20 and S_{acin}
326	[FIGURE E3] and indicate that global PRM indices in the lung track with spirometry defined
327	airflow obstruction in contrast to small airway physiological indices.
328	
329	Imaging biomarkers of regional VH are major determinants of small airway VH markers
330	R5-R20 and S _{acin} .
331	To evaluate the relationship between regional imaging measures and small airways physiology,
332	the population was split into Low/High sub groups (Low ≤ mean, High > mean) according to
333	absolute S_{acin} and R5-R20 values. TABLES 2 and E3 (clinical features) and TABLE E4
334	(imaging markers) summarise clinical and imaging features according to this stratification.
335	Healthy cases predominated in the Sacin Low (9/11) and R5-R20 Low (8/11) groups, and
336	asthmatic cases in the high groups.
337	
338	Regional analysis identified that the gradient markers evaluating inferior-superior axis FRC-TLC
339	

patients in the upper tertile of S_{acin} and R5-R20 when compared to the lower tertile (p<0.05)

[TABLE 2]. Specifically for both S_{acin} and R5-R20 High cases, the ventilation gradient was reversed in the inferior-superior axis ($\overline{\Delta HU}^{IS}$ and $\overline{\Delta HU}^{IS*}$), such that ventilation was significantly reduced at the base of the lung. This is further exemplified in **FIGURE 3**, which presents ventilation gradient maps from the base to the apex of the lung comparing cases within the upper and lower tertiles of R5-R20 and S_{acin} respectively, and two exemplar subjects with and without ventilation gradient reversal. A similar but markedly less pronounced gradient change could be seen in the posterior regions of the lower lobes (anterior-posterior axis ($\overline{\Delta HU}^{AP}$)) when comparing patients with high and low clinical levels of VH (R5-R20, Sacin), demonstrating reduced posterior ventilation in the lower lobes [**FIGURE E4**].

Further examination [**FIGURE 4**] of the distribution of ΔHU and regional PRM^(SAD), in cases with a high and low $\overline{\Delta HU}^{IS*}$, identified that patients with high $\overline{\Delta HU}^{IS*}$ (ventilation gradient

Further examination [FIGURE 4] of the distribution of ΔHU and regional PRM^{ISAD}, in cases with a high and low $\overline{\Delta HU}^{IS*}$, identified that patients with high $\overline{\Delta HU}^{IS*}$ (ventilation gradient reversal) appeared to have focused regionalisation of lung disease (particularly *but not exclusively* in the lower lobes). In contrast patients with a low $\overline{\Delta HU}^{IS*}$ had more homogeneous distributions of both ΔHU and PRM^{FSAD}.

15/16 $\overline{\Delta HU}^{IS*}$ high cases had abnormal regional ventilation in contrast to 5/16 $\overline{\Delta HU}^{IS*}$ low cases. Regionalisation of disease in all of these cases was in the lower lobes, generally focussed at the lung bases (see arrows). A chi squared analysis of the proportions of cases with abnormal regionalisation in each group demonstrated a p-value of p<0.0001. ΔHU and PRM classifications correlated imperfectly [FIGURE 4], however lower ΔHU voxels were consistently associated with PRM^{ISAD} [FIGURE E5].

364	Imaging gradient biomarkers and clinical disease
365	
366	We examined the relationship between the imaging gradient biomarkers and clinical disease
367	expression [TABLE 2]. We found that anterior posterior gradient imaging biomarker std
368	$(\Delta HU)^{AP}$ correlated significantly with both ACQ-6 (r = 0.33, p=0.039) and AQLQ (r=-0.34,
369	p=0.02). We also found a significant association for the inferior-superior gradient imaging
370	biomarker ($\overline{\Delta HU}^{IS*}$) and asthma quality of life (r=-0.39, p<0.01) but not asthma control. None of
371	the gradient biomarkers were associated with exacerbation frequency.
372	
373	Discrimination of S_{acin} and R5-R20 with imaging markers of density change (ΔHU)
374	gradients and lung size asymmetry
375	FIGURE 5 and TABLE E8 presents the results of linear discriminant analysis (LDA) which
376	sought to identify the relative contribution of spatial CT derived VH biomarkers, potential
377	clinical contributors/confounders and spirometry to physiological VH indices S_{acin} and R5-R20.
378	LDA demonstrated that the CT markers of ΔHU in the inferior-superior and anterior-posterior
379	axes as well as right to left lung size asymmetry provided the greatest overall discriminatory
380	value of small airway physiological indices, confirming that these metrics contained most of the
381	information content of the clinical small airway physiological indices.
382	
383	Computational modelling validation of CT imaging PRM gradients
384	Computational modelling of regional bronchoconstriction in small airway patient specific
385	conducting airway models [FIGURE 6] identified that increasing constriction of the small
386	airways (≤ 2mm diameter), that would be most influenced by gravity in the supine posture (lower

lobe and posterior), promoted profound elevations in R5-R20 that were not seen with orthostatic simulations (i.e. constriction of small airways that would be most influenced by gravity in the orthostatic posture). Furthermore, similar regional constriction in the upper lobes did not promote the same difference on R5-R20 when considering orthostatic and supine postures. The computational models therefore provided further insight into the associations between lower lobe regional focus of disease and R5-R20 response seen in the clinical imaging study [**FIGURES 3-4**].

We have performed the first quantitative functional CT imaging study to understand the spatial determinant of small airway VH markers R5-R20 and S_{acin} in adult asthmatics and healthy volunteers. Furthermore we have coupled CT imaging with computational simulation of small airway physiology to understand the impact of disease regional pattern upon abnormal physiological indices of VH.

Using a panel of imaging biomarkers [TABLE E1], derived from inspiratory and expiratory CT scans, we have identified that gradients in ΔHU from the base to apex of the lung are a key determinant of both physiological measurements. Notably there is a reversal of the normal ventilation gradient in this axis, such that ΔHU is reduced at the base of the lung in patients with asthma and indeed occasionally in healthy volunteers with abnormal S_{acin} and R5-R20 values. In addition we have identified that other mechanisms including anterior-posterior ΔHU gradient decrease and other nonspecific regionalisation of ΔHU may underpin abnormal R5-R20 and S_{acin} indices in adult asthma. We found broadly similar but not identical results with the widely reported markers of small airways disease PRM^{rSAD}. Computational small airway tree models were then used to confirm the impact of gravitationally dependant lower lobe disease regional focus on IOS marker R5-R20, and matched our observation closely.

Previous studies have examined the difference in VH, between asthmatic and healthy subjects, using hyperpolarized 3HE MRI [3], and another linked hyperpolarized 3He MRI with computational models to examine airway constriction in asthma [39]. We are also aware of one study in bronchiectasis that attempted to correlate global burden of CT disease with

Rel	ll et a	l
וטעו	псіа	L

physiological indices of VH [40]. This study used correlations and regressions to identify associations between MBW lung clearance index [LCI] (a global marker of VH) and a CT scoring of the extent of bronchiectasis

Our study uses quantitative functional CT derived indices and specifically sheds insight into the topographical origins of abnormal R5-R20 (IOS derived) and S_{acin} (MBW) derived VH markers. Furthermore our observations, coupled with computer simulations [FIGURES 3-4, 6] suggest that regionalisation rather than global disease burden may be key determinants of S_{acin} and R5-R20 in asthma.

Our results are clinically important for a number of reasons. Reduced basal ventilation in asthma may be associated with reduced effective deposition of inhaled drugs, which may be a factor in poor asthma control reported in patients on ICS/LABA combination therapies in European and other populations [41]; this hypothesis would require testing with future studies. Additionally our findings are important as they are the first to use spatial and functional information derived from quantitative PRM based CT imaging to shed insight into empirical lung physiological measurements R5-R20 and S_{acin} that are widely reported as small airway dysfunction detection tools.

Interestingly we found few differences in the PRM whole lung averages for functional small airways disease, emphysema and healthy (normally deforming lung voxels) in patients with and without high levels of clinical VH derived from MBW and IOS. In contrast average whole lung PRM values were associated with airflow obstruction measured using spirometry. The latter

$\mathbf{R}_{\mathbf{A}}$	l et al	
DCII	ct ai	

observations highlight both the importance of using the full information content of spatial imaging when trying to understand the topographical basis of VH indices, and the fact that expiratory flow limitation in asthma is a maker of total burden of lung unit damage rather than the heterogeneity of damage.

A likely factor of the observed ventilation gradients in the lung is the 'slinky' effect, which describes the compression of a slinky coil parallel to the gravitational field under normal gravitational conditions, isogravity and hypergravity [42]. As the dependant regions of the lung are compressed by the weight of the lung above them, they have lower end expiratory volume and the surrounding pleural pressure is more positive (in comparison to the apex), consequently a given respiratory effort and change in pleural pressure will lead to a larger increase in volume.

Other factors responsible for ventilation and perfusion gradients are likely to include lung elastic recoil, nonlinear pressure-volume relationships, the influence of large vessels, and airways closure within dependant airways. These effects have been reported in imaging studies using both protocol MRI approaches [43] and more recently a CT imaging lung deformation study in severe asthma [19].

The finding of a reverse ΔHU gradient at the base of the lung in patients with abnormal S_{acin} and R5-R20 values, and asthma, may occur as consequence of a number of factors in asthmatic patients. Specifically basal airways may close at FRC in asthma, particularly when supine, and this may reduce the specific ventilation to the lung base; one study observed results to this effect in airway constriction due to methacholine challenge [44]. Additionally the average BMI in our

Bel	1	et	al
$\mathbf{p}_{\mathbf{q}}$	1	$-\iota$	aı

cohort was 30 kg/m², fat distribution in the abdomen and near the base of the lung may alter diaphragmatic and basal airway mechanics and promote airways closure. Additionally it is possible that there is preferential remodelling of the airways in the lung base in asthmatics. However this would need to be confirmed by pathological studies. Similar effects including the impact of gravity may promote the smaller anterior-posterior gradient decrease seen in patients with clinical VH. It is important to note that the linear discriminant analysis identified that ventilation gradients were the best discriminant of R5-R20 independent of potential confounders such as BMI, smoking and age.

The current findings in this report add to our previous observations which have identified that both the degree and heterogeneity of small airway obstruction promote abnormal R5-R20 values [45], and that S_{acin} may be driven by asymmetries in the lung at length scales that equate to the level of the alveolar duct [9]. Specifically here we show that ventilation gradients in the lung are a major discriminant factor associated with both abnormal IOS derived R5-R20 and MBW derived S_{acin} values.

There are a number of limitations to our findings that warrant further evaluation. Firstly our study included asthmatics with a smoking pack year history of more than 15 pack years.

Although these patients had no demonstrable imaging or physiological evidence of emphysema it is possible that smoking exposure rather than asthma per se was the driver of disease gradients in these patients. As a consequence larger studies are required to evaluate the gradient biomarkers reported here, across the spectrum of asthma severity and treatment intensity, and in both smoking and non-smoking asthma populations. The same limitation of sample size warrants

further evaluation of the imaging biomarkers in severe asthma populations, and considering the association of the biomarkers with patient related outcome measures in asthma. Such studies are underway and will report in due course [46]. Our imaging gradient biomarkers (derived via image registration of inspiratory and expiratory CT scans) are likely to be sensitive to both reconstruction kernel and lung volumes as reported previously [47]. However all of our CT scans were acquired at a single centre with the same reconstruction kernel and all patients were coached to expire to FRC for expiratory CT imaging prior to scanning. Nonetheless it is possible that expiratory imaging near residual volume would accentuate the imaging findings observed here and future studies are required to assess the impact of expiratory volume upon the imaging biomarkers reported here.

In conclusion, we have shown for the first time, using functional and computational approaches derived from CT imaging, that small airway VH, captured by IOS R5-R20 and MBW S_{acin}, is associated with CT density gradient reversal at the lung base, which is likely to be a direct consequence of reduced specific ventilation and small airways disease. The implications of these findings upon clinical disease expression, inhaled drug deposition and potential use in targeted inhaled drug delivery systems should now be considered in larger imaging cohorts and interventional studies.

504	REFERENCES
505	1) Lui JK, Lutchen KR. The role of heterogeneity in asthma: a structure-to-function perspective.
506	Clin Transl Med. 2017 Dec 1;6(1):29.
507	
508	2) Teague WG, Tustison NJ, Altes TA. Ventilation heterogeneity in asthma. J Asthma. 2014 Sep
509	1;51(7):677-84.
510	
511	3) Tzeng YS, Lutchen K, Albert M. The difference in ventilation heterogeneity between
512	asthmatic and healthy subjects quantified using hyperpolarized 3He MRI. J Appl Physiol. 2009
513	Mar;106(3):813-22.
514	
515	4) Tahir BA, Van Holsbeke C, Ireland RH, Swift AJ, Horn FC, Marshall H, et al. Comparison of
516	CT-based lobar ventilation with 3He MR imaging ventilation measurements. Radiology. 2015
517	Aug 28;278(2):585-92.
518	
519	5) Zha W, Kruger SJ, Johnson KM, Cadman RV, Bell LC, Liu F, et al. Pulmonary ventilation
520	imaging in asthma and cystic fibrosis using oxygen□enhanced 3D radial ultrashort echo time
521	MRI. J Magn Reson Imaging. 2018 May;47(5):1287-97.
522	

ACCEPTED MANUSCRIPT

	Bell et al
523	6) Venegas J, Winkler T, Harris RS. Lung physiology and aerosol deposition imaged with
524	positron emission tomography. J Aerosol Med Pulm Drug Deliv. 2013 Feb 1;26(1):1-8.
525	
526	7) Farrow CE, Salome CM, Harris BE, Bailey DL, Berend N, King GG. Peripheral ventilation
527	heterogeneity determines the extent of bronchoconstriction in asthma. J Appl Physiol. 2017 Aug
528	10;123(5):1188-94.
529	
530	8) Verbanck S, Paiva M. Gas mixing in the airways and airspaces. Compr Physiol. 2011
531	Apr;1(2):809-34.
532	
533	9) Gonem S, Hardy S, Buhl N, Hartley R, Soares M, Kay R, et al. Characterization of acinar
534	airspace involvement in asthmatic patients by using inert gas washout and hyperpolarized
535	3helium magnetic resonance. J Allergy Clin Immunol. 2016 Feb 1;137(2):417-25.
536	
537	10) Galant SP, Komarow HD, Shin HW, Siddiqui S, Lipworth BJ. The case for impulse
538	oscillometry in the management of asthma in children and adults. Ann Allergy Asthma Immunol.
539	2017 Jun 1;118(6):664-71.
540	
541	11) Gonem S, Natarajan S, Desai D, Corkill S, Singapuri A, Bradding P, et al. Clinical
542	significance of small airway obstruction markers in patients with asthma. Clin Exp Allergy. 2014
543	Apr 1;44(4):499-507.
544	

	Bell et al
545	12) Oostveen E, MacLeod D, Lorino H, Farre R, Hantos Z, Desager K, et al. The forced
546	oscillation technique in clinical practice: methodology, recommendations and future
547	developments. Eur Respir J. 2003 Dec 1;22(6):1026-41.
548	
549	13) Robinson P, Latzin P, Verbanck S, Hall GL, Horsley A, Gappa M, et al. Consensus
550	statement for inert gas washout measurement using multiple and single breath tests. Eur Respir J.
551	2012 Jan 1:erj00697-2012.
552	
553	14) Farah CS, King GG, Brown NJ, Downie SR, Kermode JA, Hardaker KM, et al. The role of
554	the small airways in the clinical expression of asthma in adults. J Allergy Clin Immunol. 2012
555	Feb 1;129(2):381-7.
556	
557	15) Thompson BR, Douglass JA, Ellis MJ, Kelly VJ, O'hehir RE, King GG, et al. Peripheral lung
558	function in patients with stable and unstable asthma. J Allergy Clin Immunol. 2013 May
559	1;131(5):1322-8.
560	
561	16) Galvin I, Drummond GB, Nirmalan M. Distribution of blood flow and ventilation in the
562	lung: gravity is not the only factor. Br J Anaesth. 2007 Apr 1;98(4):420-8.
563	
564	17) Gupta S, Hartley R, Khan UT, Singapuri A, Hargadon B, Monteiro W, et al. Quantitative
565	computed tomography-derived clusters: redefining airway remodeling in asthmatic patients. J
566	Allergy Clin Immunol. 2014 Mar 1;133(3):729-38.
567	

	Bell et al
568	18) Shim SS, Schiebler ML, Evans MD, Jarjour N, Sorkness RL, Denlinger LC, et al. Lumen
569	area change (Delta Lumen) between inspiratory and expiratory multidetector computed
570	tomography as a measure of severe outcomes in asthmatic patients. J Allergy Clin Immunol.
571	2018 Feb 10. pii: S0091-6749(18)30219-7.
572	
573	19) Choi S, Hoffman EA, Wenzel SE, Tawhai MH, Yin Y, Castro M, et al. Registration-based
574	assessment of regional lung function via volumetric CT images of normal subjects vs. severe
575	asthmatics. J Appl Physiol. 2013 Jun 6;115(5):730-42.
576	
577	20) Galbán CJ, Han MK, Boes JL, Chughtai KA, Meyer CR, Johnson TD, et al. Computed
578	tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and
579	disease progression. Nat Med. 2012 Nov;18(11):1711.
580	
581	21) Boes JL, Hoff BA, Bule M, Johnson TD, Rehemtulla A, Chamberlain R, et al. Parametric
582	response mapping monitors temporal changes on lung CT scans in the subpopulations and
583	intermediate outcome measures in COPD Study (SPIROMICS). Acad Radiol. 2015 Feb
584	1;22(2):186-94.
585	
586	22) Bhatt SP, Soler X, Wang X, Murray S, Anzueto AR, Beaty TH, et al. Association between
587	functional small airway disease and FEV1 decline in chronic obstructive pulmonary disease. Am
588	J Respir Crit Care Med. 2016 Jul 15;194(2):178-84.
589	
590	23) 2018 GINA Report, Global Strategy for Asthma Management and Prevention, Available at:

	Bell et al
591	https://ginasthma.org/2018-gina-report-global-strategy-for-asthma-management-and-prevention/.
592	Accessed January 9, 2019.
593	
594	24) Heaney LG, Brightling CE, Menzies-Gow A, Stevenson M, Niven RM. Refractory asthma in
595	the UK: cross-sectional findings from a UK multicentre registry. Thorax. 2010 Sep 1;65(9):787-
596	94.
597	
598	25) Juniper EF, Svensson K, Mörk AC, Ståhl E. Measurement properties and interpretation of
599	three shortened versions of the asthma control questionnaire. Respir Med. 2005 May
600	1;99(5):553-8.
601	
602	26) Juniper EF, Buist AS, Cox FM, Ferrie PJ, King DR. Validation of a standardized version of
603	the Asthma Quality of Life Questionnaire. Chest. 1999 May 1;115(5):1265-70.
604	
605	27) Reddel HK, Taylor DR, Bateman ED, Boulet LP, Boushey HA, Busse WW, et al An
606	official American Thoracic Society/European Respiratory Society statement: asthma control and
607	exacerbations: standardizing endpoints for clinical asthma trials and clinical practice. Am J
608	Respir Crit Care Med. 2009 Jul 1;180(1):59-99.
609	
610	28) Miller MR, Hankinson JA, Brusasco V, Burgos F, Casaburi R, Coates A, et al.
611	Standardisation of spirometry. Eur Respir J. 2005 Aug 1;26(2):319-38.
612	
613	29) Dutrieue B, Vanholsbeeck F, Verbanck S, Paiva M. A human acinar structure for simulation

of realistic alveolar plateau slopes. J Appl Physiol. 2000 Nov 1;89(5):1859-67.

615

- 30) Wanger J, Clausen JL, Coates A, Pedersen OF, Brusasco V, Burgos F, et al. Standardisation
- of the measurement of lung volumes. Eur Respir J. 2005 Sep 1;26(3):511-22.

618

- 31) MacIntyre N, Crapo R, Viegi G, Johnson DC, Van Der Grinten CP, Brusasco V, et al.
- 620 Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur
- 621 Respir J. 2005; 26: 720–735.

622

- 623 32) Benade AH. On the propagation of sound waves in a cylindrical conduit. J Acoust Soc Am.
- 624 1968 Aug;44(2):616-23.

625

- 626 33) Kaczka DW, Massa CB, Simon BA. Reliability of estimating stochastic lung tissue
- heterogeneity from pulmonary impedance spectra: a forward-inverse modeling study. Ann
- 628 Biomed Eng. 2007 Oct 1;35(10):1722-38.

- 630 34) Lutchen KR, Gillis H. Relationship between heterogeneous changes in airway morphometry
- and lung resistance and elastance. J Appl Physiol. 1997 Oct 1;83(4):1192-201.

632

- 633 35) Bhatawadekar SA, Leary D, Maksym GN. Modelling resistance and reactance with
- heterogeneous airway narrowing in mild to severe asthma. Can J Physiol Pharmacol. 2015 Jan
- 635 21;93(3):207-14.

636

- 637 36) Cauberghs M, Van de Woestijne KP. Mechanical properties of the upper airway. J Appl
- 638 Physiol. 1983 Aug 1;55(2):335-42.

639

- 640 37) Bordas R, Lefevre C, Veeckmans B, Pitt-Francis J, Fetita C, Brightling CE, et al.
- Development and Analysis of Patient-Based Complete Conducting Airways Models. PLOS
- 642 ONE. 2015 Dec 11;10(12):e0144105.

643

- 38) Boudewijn IM, Postma DS, Telenga ED, ten Hacken NH, Timens W, Oudkerk M, et al.
- 645 Effects of ageing and smoking on pulmonary computed tomography scans using parametric
- response mapping. Eur Respir J. 2015 Jun 25:ERJ-00094.

- 648 39) Campana L, Kenyon J, Zhalehdoust-Sani S, Tzeng YS, Sun Y, Albert M, et al. Probing
- 649 airway conditions governing ventilation defects in asthma via hyperpolarized MRI image
- 650 functional modeling. J Appl Physiol. 2009 Apr;106(4):1293-300.

021	JJΙ
-----	-----

- 40) Verbanck S, King GG, Zhou W, Miller A, Thamrin C, Schuermans D, et al. The quantitative
- link of lung clearance index to bronchial segments affected by bronchiectasis. Thorax. 2017 Sep
- 654 2:thoraxinl-2017.

655

- 41) Partridge MR, van der Molen T, Myrseth SE, Busse WW. Attitudes and actions of asthma
- patients on regular maintenance therapy: the INSPIRE study. BMC Pulm Med. 2006
- 658 Dec;6(1):13.

659

- 660 42) Hopkins SR, Henderson AC, Levin DL, Yamada K, Arai T, Buxton RB, et al. Vertical
- gradients in regional lung density and perfusion in the supine human lung: the Slinky effect. J
- 662 Appl Physiol. 2007 Jul;103(1):240-8.

663

- 43) Henderson AC, Sá RC, Theilmann RJ, Buxton RB, Prisk GK, Hopkins SR. The gravitational
- distribution of ventilation-perfusion ratio is more uniform in prone than supine posture in the
- 666 normal human lung. J Appl Physiol. 2013 Apr 25;115(3):313-24.

667

- 668 44) Soares M, Bordas R, Thorpe J, Timmerman B, Brightling C, Kay D, et al. Validation of
- impulse oscillometry R5-R20 as a small airways dysfunction detection tool in adult asthma. Eur
- 670 Respir J. 2016 48: OA4968.

	Bell et al
672	45) Farrow CE, Salome CM, Harris BE, Bailey DL, Bailey E, Berend N, et al. Airway closure on
673	imaging relates to airway hyper responsiveness and peripheral airway disease in asthma. J Appl
674	Physiol. 2012 Jul 26;113(6):958-66.
675	
676	46) Postma DS, Brightling C, Fabbri L, van der Molen T, Nicolini G, Papi A, et al. Unmet needs
677	for the assessment of small airways dysfunction in asthma: introduction to the ATLANTIS study.
678	Eur Respir J. 2015 Jun;45(6):1534-8.
679	
680	47) Boes JL, Bule M, Hoff BA, Chamberlain R, Lynch DA, Stojanovska J, et al. The Impact of
681	Sources of Variability on Parametric Response Mapping of Lung CT Scans. Tomography. 2015
682	Sep;1(1):69-77.

Bell et al

TABLES
 Table 1. Clinical characteristics of asthmatic and healthy subjects.

		Asthma					
	Healthy volunteers (n=11)	All (n=41)	GINA 1 (n=8)	GINA 2/3 (n=20)	GINA 4/5 (n=13)		
Clinical	inical						
Age (years)	54.1 (± 14.4)	53.7 (± 12.6)	53.0 (± 9.2)	56.5 (± 12.8)	49.7 (± 13.7)		
Sex [male/female]	[6/5]	[18/23]	[3/5]	[10/10]	[5/8]		
BMI (Kg.m ²)	$28.8 (\pm 4.5)$	$27.1 (\pm 4.9)$	$25.2 (\pm 4.4)0$	$26.3 (\pm 4.6)$	29.4 (± 5.3)		
Atopic [Yes/No]	$[3/8]_{1,2}$	[30/11]	$[6/2]_{H}$	[16/4] _H	[8/5]		
Smoking (pack years)	4.2 (± 7.8)	7.3 (± 17.0)	3.0 (± 4.9)	5.0 (± 8.1)	13.4 (± 27.9)		
No. of exacerbations. (past 12 months)	-	$1.4 (\pm 2.1)$	$0.5 (\pm 0.8)$	$1.1 (\pm 2.3)$	2.2 (± 2.1)		
ACQ-6	-	$1.27 (\pm 1.04)$	$0.94 (\pm 0.85)$	$1.22 (\pm 0.85)$	1.56 (± 1.35)		
AQLQ	-	5.37 (± 1.11)	$5.94 (\pm 0.90)$	5.28 (± 1.21)	5.15 (± 1.00)		
Asthma Duration (years) Beclamethasone	-	17.6 (± 16.7)	13.3 (± 9.5)	18.9 (± 18.3)	18.2 (± 18.2)		
Diproprionate Equivalent. ICS Dose (micrograms/24 hours)	-	820 (± 698)	100. (± 282) _{2,3}	650 (± 371) _{1,3}	1523 (± 656) _{1,2}		
Physiology		Y					
Post-BD FEV ₁ (L)	$3.7 (\pm 1.0)_{A,1,2}$	$2.7 (\pm 0.80)_{\rm H}$	$2.5 (\pm 0.68)_{H}$	$2.8 (\pm 0.85)_{\rm H}$	2.7 (± 0.81)		
Post-BD FEV ₁ %	$116 (\pm 19)_A$	$97.2 (\pm 20)_{H}$	99.5 (± 20.8)	97.7 (± 15.5)	95.1 (± 26.3)		
Post-BD FEV ₁ /FVC (%)	80 (± 3.2)	74 (± 11)	76 (± 11)	76 (± 7.6)	72 (± 15)		
Bronchodilator Response (% FEV ₁)	$3.62 (\pm 3.38)_{A}$	12.88 (± 16.33) _H	8.79 (± 8.19)	11.31 (± 13.52)	17.80 (± 22.77)		
RV/TLC (%)	32.10 (±7.71) _A	38.83 (± 8.68) _H	38.36 (± 8.41)	40.43 (± 9.65)	36.48 (± 7.13)		

		ABTIT	O D A D
$\Delta I I I$	H	\wedge	
AU		$A \cup A \cup A$	

Bell et al					36
KCO % pred	96.15 (± 12.69) _A	104.65 (± 15.78) _H	101.13 (± 14.68)	108.30 (± 15.53)	100.92 (± 16.77)
Multiple Breath Washout					
LCI	$7.32 (\pm 1.01)$	$7.80 (\pm 1.28)$	7.51 (± 1.93)	$7.75 (\pm 1.01)$	$8.05 (\pm 1.24)$
S_{acin}	$0.131 (\pm 0.052)_{A}$	0.207 (± 0.116) _H	0.193 (± 0.185)	0.203 (± 0.097)	0.220 (± 0.097)
S _{cond}	0.037 (± 0.034)	0.035 (± 0.024)	0.034 (± 0.026)	0.039 (± 0.026)	0.028 (± 0.018)
Impulse					Y
Oscillometry					/
R5-R20	$0.033 (\pm$	$0.061 (\pm$	$0.055 (\pm$	$0.053 (\pm$	$0.077 (\pm$
$(Kpa.s.L^{-1})$	0.029)	0.058)	0.035)	0.042)	0.085)
AX (Kpa/L)	$0.291 (\pm 0.219)_{A}$	0.639 (± 0.752) _H	0.555 (± 0.423)	0.457 (± 0.298)	0.971 (± 1.209)
Induced					
Sputum					
Eosinophils (%)	0.46 (± 0.30) _{A,2}	10.14 (± 28.17) _H	#	12.94 (± 35.70) _H	6.17 (± 6.76)
Noutrophile (9/)	46.32 (±	59.73 (±	37.13 (±	61.72 (±	63.96 (±
Neutrophils (%)	15.68)	24.47)	15.55)	27.02)	19.12)

LEGEND: M, male; F, female; BMI, body mass index; FEV, forced expiratory volume; FVC, forced vital capacity; BD, bronchodilator; LCI, lung clearance index; AX, area of reactance. Data expressed as mean (\pm standard deviation). Attribute normality was tested using one-sample Kolmogorov-Smirnov test over all subjects. Binary group comparisons ('healthy' vs 'all asthmatics') were performed using two sample t-tests for parametric variables, and Mann-Whitney U-tests for non-parametric variables. Non-intersecting group comparisons were performed using one-way ANOVA for parametric variables, and Kruskal-Wallis test for non-parametric variables. Multiple-comparison procedures were performed with Turkey's honest significant difference criterion. Groups with significant separation (p < 0.05) indicated by subscripts A (all asthma), H (healthy control), 1, 2, 3 (GINA 1, 2/3 and 4/5 respectively) and * (all other groups).

Table 2. Computed tomography imaging biomarkers and ventilation heterogeneity basedstratification.

	Sacin		R5-R20	
	Low (n=29)	High (n=23)	Low (n=32)	High (n=20)
Clinical				R
Asthma/Healthy	[20/9]	[21/2]	[24/8]	[17/3]
Parametric Response Mapping			45) 7
%PRM ^{Norm}	$0.74 (\pm 0.11)$	$0.71 (\pm 0.14)$	$0.72 (\pm 0.14)$	$0.73 (\pm 0.09)$
%PRM ^{fSAD}	$0.19 (\pm 0.10)$	$0.19 (\pm 0.12)$	$0.19 (\pm 0.12)$	$0.18 (\pm 0.08)$
%PRM ^{Emph}	$0.024~(\pm~0.018)$	$0.038 \ (\pm \ 0.037)$	$0.032 \ (\pm \ 0.033)$	$0.028 \ (\pm \ 0.021)$
%PRM ^{Uncl}	$0.046~(\pm~0.036)$	$0.063~(\pm~0.030)$	$0.053~(\pm~0.038)$	$0.055~(\pm~0.028)$
Parametric Response Map Ellipse Properties				
ellMajL	$126.2 (\pm 30.0)$	$130.2 (\pm 28.9)$	$122.0 \ (\pm \ 28.3)$	$137.5 (\pm 29.0)$
ellMinL†	$55.1 (\pm 9.4)$	56.5 (± 11.8)	$52.1 (\pm 9.1)$	$61.4 (\pm 10.0)$
ellArea†	$5590 (\pm 2067)$	5922 (± 2251)	5092 (± 1763)	6769 (± 2312)
ellAngle	$0.21~(\pm~0.13)$	$0.16 (\pm 0.09)$	$0.19 (\pm 0.11)$	$0.20~(\pm~0.11)$
Ventilation gradient (ΔHU)				
$std(\Delta HU)^{AP}$	$0.070~(\pm~0.078)$	$0.059 (\pm 0.057)$	$0.055 (\pm 0.068)$	$0.080 (\pm 0.070)$
$\overline{\Delta H U}^{\mathrm{AP}}$ †	$0.473 (\pm 0.207)$	$0.450~(\pm~0.234)$	0.512 (± 0.226)	$0.386 (\pm 0.183)$
$std(\Delta HU)^{IS} *$	$-0.077 (\pm 0.043)$	-0.046 (±0.035)	-0.064 (± 0.040)	-0.062 (± 0.047)
$\overline{\Delta HU}^{IS} *, \dagger$	-0.043 (± 0.112)	0.021 (± 0.099)	$-0.051 (\pm 0.100)$	$0.044~(\pm~0.102)$
$\overline{\Delta H U}^{IS*} *, \dagger$	-2.033 (± 4.372)	0.489 (± 3.936)	-2.282 (± 4.018)	1.267 (± 3.987)

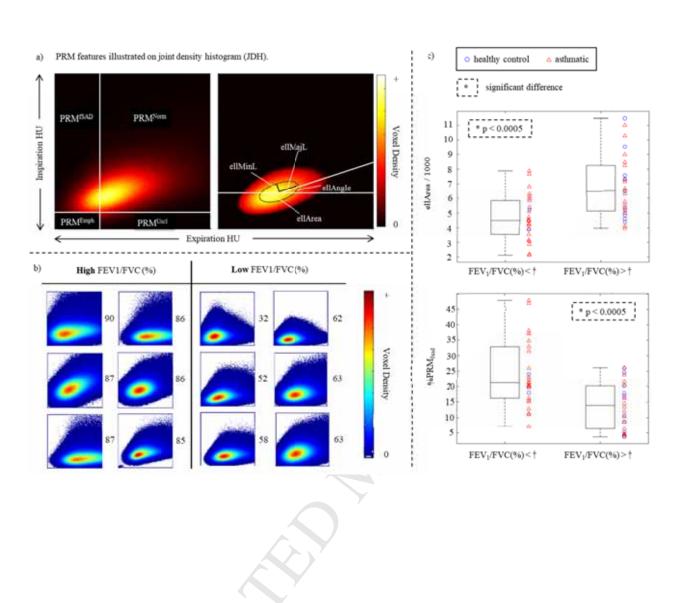
698

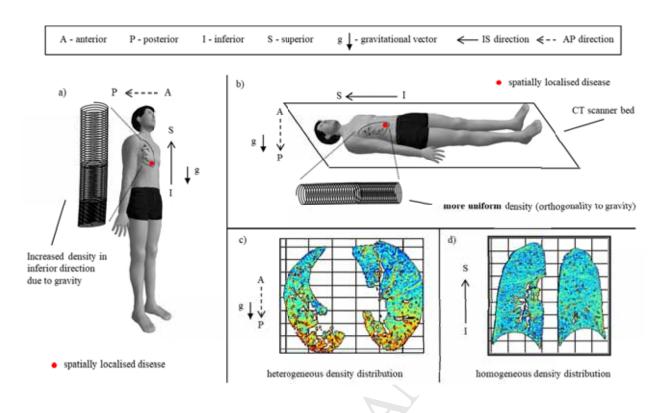
699

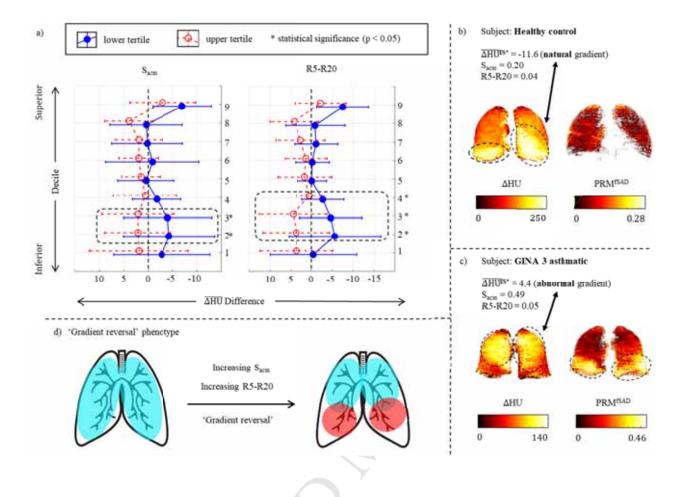
LEGEND: PRM, Parametric Response Map; SAA, Stratified Axial Analysis; Data expressed as mean

(standard deviation). Attribute normality was tested using one-sample Kolmogorov-Smirnov test over all subjects. Binary group (i.e. S_{acin} low vs. S_{acin} high, and R5-R20 low vs. R5-R20 high) comparisons were performed using two sample t-tests for parametric variables, and Mann-Whitney U-tests for non-parametric variables. Groups with significant separation (p < 0.05) of S_{acin} (R5-R20) indicated by * (†).

704	FIGURE LEGENDS
705	FIGURE 1. Global parametric response (PRM) mapping and spirometry. A: PRM features based
706	on TLC and FRC HU joint density histogram (JDH). PRM voxel classification (left) defined by
707	lines of expiration $HU = -856$ and inspiration $HU = -950$ utilised for defining PRM ^{fSAD} and PRM
708	ellipse geometry. B, JDH visualisation of FEV $_1$ /FVC (%) extreme cases, demonstrating compact
709	and left shifted ellipses in patients with airflow obstruction. C, box plot illustrating that patients
710	with spirometric airflow obstruction have smaller PRM ellipse areas and significantly more
711	functional small airways disease on CT imaging %PRMfSAD; groups formed about median
712	FEV ₁ /FVC(%).
713	
714	FIGURE 2. Overview of the slinky effect in the lungs in the standing and supine postures
715	demonstrating the distribution of lung density as a consequence of gravity (A, B). It can
716	therefore be seen that in the supine posture the inferior-superior lung density profile will be
717	largely independent of gravity (C: transverse cross section of expiratory HU voxels) with
718	expected largest volume of ventilation in the lower lobes due to the lower lobe having the largest
719	proportionate lung volume, in contrast the anterior-posterior lung density profile will be
720	predominantly influenced by gravity (D: coronal cross section of expiratory HU voxels) such
721	that posterior ventilation will be proportionately lower than anterior ventilation.
722	The gradients of ΔHU in these two axes were used to understand the determinants of clinical
723	ventilation heterogeneity measurements derived from IOS and MBW.
724	
725	FIGURE 3. Inferior-superior ΔHU gradient analysis in patients with a high/low S_{acin} and $R5$ -
726	R20. A, decile-wise comparison of ΔHU mean differences, in the inferior-to-superior direction,


of groups formed from the lower and upper tertiles of S_{acin} and R5-R20 distributions, specifically the lowest and highest 16 subjects with respect to these two markers. The inferior regions show significant differences when comparing lower and upper tertiles for both S_{acin} and R5-R20. B, joint density histogram of voxel mean ΔHU and PRM^{fSAD} percentage when projected onto coronal plane in subject showing typical (healthy) ventilation (surrogated by ΔHU) pattern and homogenous PRM^{fSAD} . C, as in B in a subject with abnormal ventilation pattern and basally focused PRM^{fSAD} . Colour bars labelled with min and max of occurring mean values. D, the concept of the inferior-superior gradient reversal phenotype is summarised in a simple visual schematic.


FIGURE 4. Coronal section heat maps of ΔHU and PRM^{ISAD} in $\overline{\Delta HU}^{IS*}$ low (no gradient reversal) and high (basal gradient reversal) tertiles of total population (n=52). The images labelled with an ID number assigned with respect to decreasing $\overline{\Delta HU}^{IS*}$ values. e.g. 1 = greatest $\overline{\Delta HU}^{IS*}$ (highest level of inferior/lower zone gradient reversal), 32 = smallest $\overline{\Delta HU}^{IS*}$ (lowest level of basal gradient reversal). H indicates non-asthmatic, G indicates asthmatic, with GINA level. It can be seen that patients with high $\overline{\Delta HU}^{IS*}$ values more often than not have inferior gradient reversal but also exhibit ΔHU and PRM^{ISAD} heterogeneity. In contrast patients with a low $\overline{\Delta HU}^{IS*}$ appear to have more homogeneous distributions of ΔHU and PRM^{ISAD} or upper lobe regionalisation of low ΔHU, as would be expected in the supine posture. Colour bar ranges determined per subject based on feature (ΔHU or PRM^{ISAD}) mean and variance as indicated. Arrows highlight specific disease regionalisation in $\overline{\Delta HU}^{IS*}$ abnormal subjects. Asterisks indicate subjects selected for chi squared test of proportions, having abnormal regionalisation of ventilation.


and 4.

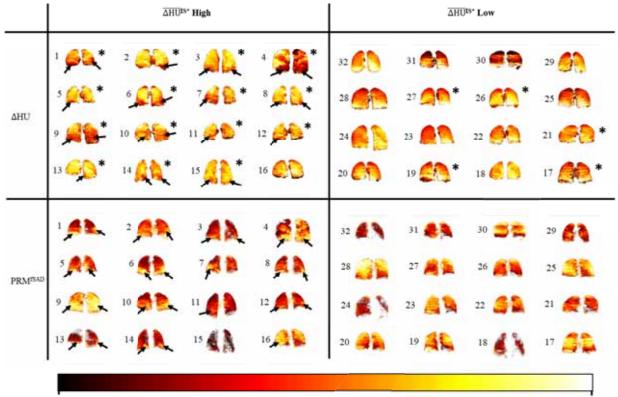
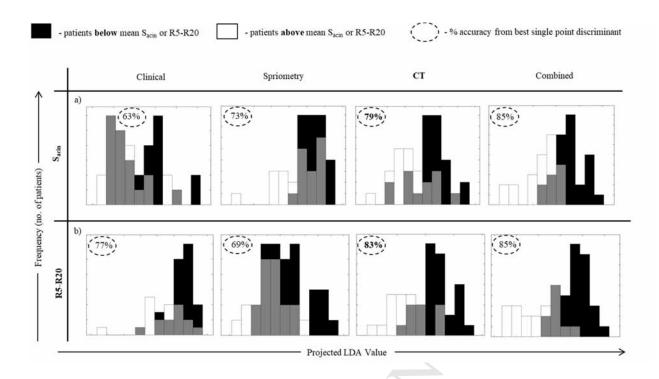
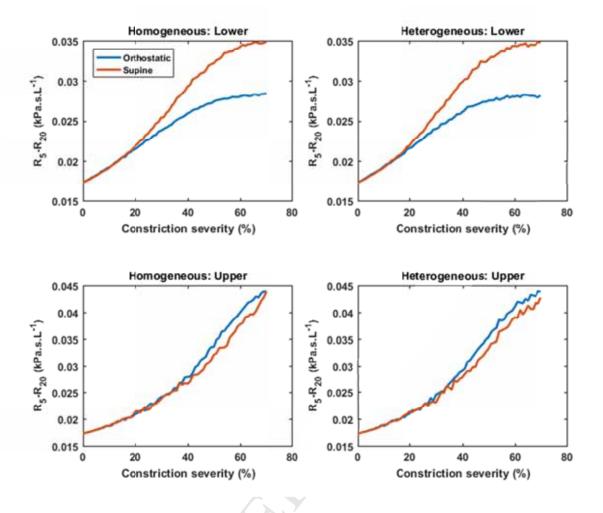

FIGURE 5. Histograms of linear discriminant analysis (LDA) applied to the total population (n=52), illustrating best linear separation of clinical ventilation heterogeneity (VH), R5-R20 and S_{acin}. Limited additional discrimination is added when considering potential clinical confounders of VH (e.g. age, height and weight) and spirometry appears to be less sensitive at discriminating patients with normal and abnormal clinical VH than CT imaging.

FIGURE 6: Comparison of R5-R20 under varying regional small airway constrictions applied to healthy lung structure. The response of R5-R20 can be seen for homogeneous (A, C) and heterogeneous (B, D) constriction of the small airways. In each case constrictions were applied to the lowest or highest 25% of airways, relative to the orthostatic or supine position. It can be seen that lower zone constriction and regionalisation produces far greater elevations in R5-R20 than upper lobe constriction and regionalisation, in keeping with the observations in FIGURES 3





mean +3 standard deviations > 0

Bell et al

1 .	ANI	INIE	REPO	CIT	$\mathbf{OD}\mathbf{V}$
		JINH	KEPU	7211	UKY

- 2 Functional CT Imaging for Identification of the Spatial Determinants of Small Airways
- 3 Disease in Adult Asthma

4

- 5 Alex J. Bell, MMath, Brody H. Foy, BMath, Dr. Matthew Richardson, PhD, Amisha
- 6 Singapuri, BSc,^a Dr. Evgeny Mirkes PhD,^c Dr. Maarten van den Berge, PhD,^d Prof. David Kay,
- 7 PhD, ^b Prof. Chris Brightling, FRCP, PhD, ^a Prof. Alexander N. Gorban, PhD, ^c Prof. Craig J.
- 8 Galbán, PhD, e Prof. Salman Siddiqui, MRCP, PhD. a

9

- ^aNIHR Respiratory Biomedical Research Centre (BRC), Department of Infection, Immunity and
- 11 Inflammation, University of Leicester, Leicester, UK. ^bComputational Biology, Department of
- 12 Computer Science, University of Oxford, Oxford, United Kingdom. ^cDepartment of
- 13 Mathematics, University of Leicester, Leicester, UK. dDepartment of Pulmonology, University
- 14 Medical Centre Groningen, Groningen, Netherlands. ^eDepartment of Radiology, University of
- 15 Michigan, Michigan, USA.

16

- 17 Corresponding author
- 18 Professor Salman Siddiqui, MRCP, PhD
- 19 NIHR Biomedical Research Centre (Respiratory Theme)
- 20 Respiratory BRU Building
- 21 Glenfield Hospital
- 22 Groby Road, Leicester, LE3 9QP, UK

Bell et al 2

24 Telephone: +44-116-250-2873

25 Fax: 0116-250-2787

26 E-mail: ss338@leicester.ac.uk

28	METHODS

29	M1.0 Lung Function Measurements
30	All physiological tests were performed in the seated position by individuals with appropriate
31	training and accreditation. Physiological tests were performed 15 mins after administration of a
32	short-acting bronchodilator (salbutamol 400 μ g). This was administered via a metered dose
33	inhaler and spacer, with each 100 microgram actuation being inhaled in a separate inhalation to
34	TLC, followed by a 5- to 10-s breath-hold.
35	
36	Impulse oscillometry (IOS) was performed in triplicate according to standard guidelines ^{E1} . A
37	volume calibration was performed daily using a 3-L syringe, and the accuracy of resistance
38	measurements was confirmed daily using a standard 0.2 kPaL ⁻¹ s resistance mesh. Participants
39	wore a nose clip and supported their cheeks, while an impulse waveform was delivered to their
40	respiratory system via a loudspeaker connected to a mouthpiece, during 60 seconds of tidal
41	breathing. Resistance at 5 Hz (R5), resistance at 20 Hz (R20), R5-R20, reactance at 5 Hz (X5)
42	and AX were derived from pressure and flow measurements recorded throughout the 60-second
43	period.
44	
45	Multiple breath inert gas washout (MBW) was performed in triplicate according to current
46	guidelines ^{E2} , using the method described by Horsley et al. E3. Volume calibration of the
47	pneumotachograph was performed daily using a 1-L syringe. Participants wore a nose clip and
48	breathed an air mixture containing 0.2% SF ₆ , while respiratory flows and exhaled breath SF ₆
49	concentrations were monitored by an Innocor photoacoustic gas analyser (Innovision A/S,
50	Odense, Denmark). Participants maintained a steady respiratory rate of approximately 12 breaths

per minute, and a constant tidal volume of 1L, using a real-time visual display of inspired
volume as a guide. Once inhaled and exhaled SF ₆ concentrations had equalized, participants
were switched to breathing room air during an expiration and asked to continue breathing at the
same respiratory rate and tidal volume. The test was terminated once the end-tidal concentration
of SF_6 in exhaled breath reached less than 1/40th of the original concentration (0.005%) for three
consecutive breaths. The parameters S_{cond} and $S_{acin}^{\ \ E4}$ were calculated using custom software
written with TestPoint (Measurement Computing Corporation, Norton, MA, USA).
M2.0 CT Imaging and Image Analysis
Volumetric whole-lung scans were obtained with a Siemens Sensation 16 scanner with the
following low-dose protocol: 16×0.75 mm collimation, 1.5-mm pitch, 120 kVp, 40 mA, 0.5-
second rotation time, and scanning field of view of 500 mm, with dose modulation off. Scans
were obtained at full inspiration and at functional residual capacity. Images were reconstructed
with a slice thickness of 0.75mm at a 0.5mm interval by using B35f kernel.
Registration of the inspiratory (at total lung capacity, TLC) and expiratory (at functional residual
capacity, FRC) dicom (Digital Imaging and Communications in Medicine) series was performed
at the University of Michigan (USA), using Imbio's Lung Density Analysis (LDATM) software
application (Imbio, LLC, Minneapolis, MN). The software automatically segments lung volumes
(excluding the major airways, up to approximately 3-4 generations from the trachea), taking
series with least volume as expiration set, and calculates a warping function T to approximate
regional deformation between expiration and inspiration states. Registration is then performed
inspiration-to-expiration (I2E), that is, a voxel v in the expiration image is linked to a set of

Bell et al 5

- voxels in the inspiration image based on T(v). This provides an assignment of both expiratory
- Hounsfield unit (HU), i.e. HU of v, and inspiratory HU, i.e. mean HU of set captured by T(v), to
- a single point in space, specified by Cartesian coordinates (x,y,z). N.B. axes of coordinate system
- are determined by the CT scanner.

78

- 79 CT data was provided to the University of Leicester (UK) in the form of $n \times 5$ matrices, where n
- 80 is the number of voxels, and the 5 columns cover Cartesian coordinates (3 attributes, x, y and z)
- and HU value at expiration and inspiration (2 attributes, expiration HU and inspiration HU). All
- matrices were pre-processed to remove any voxels above -500 HU OR below -1000HU, in either
- 83 inspiration OR expiration HU value. To discuss feature extraction, we use the following
- 84 notation:

85

- $L = \{v_i \mid i = 1, ..., n\}$, denotes a 'lung set' L, of n voxels v_i .
- iHU: $L \to [-1000, -500] \subset \mathbb{Z}$, maps a voxel to its inspiration HU value.
- 88 eHU: $L \rightarrow [-1000, -500]$ ⊂ \mathbb{Z} , maps a voxel to its expiration HU value.
- $c: L \to \mathbb{R}^3$, maps a voxel v_i to its Cartesian coordinates (x_i, y_i, z_i) .
- 90 $\Delta \text{HU}: L \rightarrow [-500,500] \subset \mathbb{Z}. \Delta \text{HU}(v) = \text{eHU}(v) \text{iHU}(v).$

91

92 All extracted CT features are listed in **Table E1**.

- 94 **M2.1** *JDH Features*
- PRM registered inspiration expiration CT features reported by Galbán et al^{E9} were derived from
- onsideration of the inspiration and expiration paired voxel HU distributions. The typical

Bell et al 6

97	Gaussian distribution can be well visualized in a joint density histogram; summarizing voxel
98	concentrations in the eHU iHU plane (see Figure 1 A). In this study, PRM voxel classification,
99	class: $L \to S \cong \mathbb{Z}_4$, was determined by the following algorithm:
100	
101	IF [iHU(v) \geq -950] AND [eHU(v) \geq -856] THEN [class(v) = PRM ^{Norm}]
102	IF [iHU(v) \geq -950] AND [eHU(v) $<$ -856] THEN [class(v) = PRM ^{fSAD}]
103	IF [iHU(v) \leq -950] AND [eHU(v) \leq -856] THEN [class(v) = PRM ^{Emph}]
104	IF [iHU(v) < -950] AND [eHU(v) \geq -856] THEN [class(v) = PRM ^{Uncl}]
105	
106	Taking eHU as the horizontal axis, and iHU the vertical, then PRM ^{Norm} , PRM ^{fSAD} , PRM ^{Emph} and
107	PRM ^{Uncl} classification relates to the 1 st , 2 nd , 3 rd and 4 th quadrants of axes centered at (-856,-950)
108	(see Figure 1 A left), and subscripts abbreviate "normal", "functional small airways disease",
109	"emphysema" and "unclassified" respectively. In this study, the features %PRMs were defined to
110	be the percentage of all voxels classified as PRM ^s , $s \in \{"Norm", "fSAD", "Emph", "Uncl"\}$. E.g.
111	given a set $\{v_i i=1,,n\}$ of n voxels, $\text{%PRM}^{\text{fSAD}} = \#\{v_i class(v_i) = \text{PRM}^{\text{fSAD}}\}/\text{n. N.B.}$
112	percentage has been represented in decimal form for these features.
113	
114	JDH visualization typically demonstrates an approximate 2-dimensional Gaussian distribution, in

115

116

117

118

which one may perceive an ellipse. The geometrical properties of this ellipse may thus form a means of describing the eHU iHU distribution. In this study, the properties chosen to approximate were minor axis length (ellMinL), major axis length (ellMajL), area (ellArea = π . ellMinL · ellMajL) and acute angle between the ellipse and the horizontal (allAngle).

Bell et al

To obtain these properties, the ellipse is first isolated by setting all cells in the JDH, with a voxel
count of below 0.25 · [maximum cell voxel count], to zero. The co-variance matrix of the
resulting voxel count distribution thus provides a description more localized to the ellipse
perceived. Eigenvectors of this matrix provide representations of the major and minor axes, and
so the area. To calculate ellAngle, the longer Eigenvector is identified (directed along major
axis), then if necessary it is negated to obtain vector directed at positive quadrant. Then ellAngle
is calculated from using the dot product theorem with the vector (1, 0), i.e. calculating the
typically acute angle between the major axis and the horizontal.

M2.2 Voxel Count (vCnt) Features

- 130 A number of simple features may be defined using voxel amount and ranges.
- vCnt(L) = n, the number of voxels, a measure of total 'lung tissue' volume.
- vCntX(L) = range({x_i}). vCntY(L) = range({y_i}). vCntZ(L) = range({z_i}). Ranges of
 x, y and z coordinates provide some measure of anterior-posterior, lateral and inferior superior lung dimensions respectively.

M2.3 Global ΔHU Features

 Δ HU as defined may be proportional to ventilation in a voxel, and has been previously studied as an immediate quantifier of ventilation behavior ^{E10, E11, E12}. Mathematical relation between defined PRM voxels classifications and Δ HU function is elucidated in **Figure E5** C. If a voxel at inspiration contains air, and at expiration has released this air, then the density, reported by HU (associated radiation absorption) should increase, i.e. Δ HU > 0. It has been seen that this is true for most voxels in all subjects, and $\overline{\Delta}$ HU \gg 0 on average (arithmetic mean). Associations

between $\overline{\Delta HU}^{IS*}$ and weight also lend credence to this assumption^{E9}, with positive correlation over all subjects of r = 0.51 (2 s.f.) and p < 0.001. It should be noted however that perfusion and imaging artifacts are likely to affect ΔHU and add noise to the ventilation signal.

146

- In statistics, measures of central tendency and spread are two key characteristics that are of
- immediate interest in any distribution, and so naturally we define:

149

- 150 $\overline{\Delta}\overline{H}\overline{U}: L \to \mathbb{R}$. $\overline{\Delta}\overline{H}\overline{U}(L) = \overline{\Delta}\overline{H}\overline{U}(L) = \frac{1}{n}\sum_{i=1}^{n}\Delta\overline{H}U(v_i \in L)$.
- 151 $\operatorname{std}(\Delta HU): L \to \mathbb{R}.$ $\operatorname{std}(\Delta HU)(L) = \sqrt{\frac{\sum_{1}^{n}(\Delta HU(v_{i}) \overline{\Delta HU})^{2}}{n-1}}$

152

- 153 That is the mean and standard deviation (std) of change in HU, intended as a measure of average
- ventilation and variation in ventilation.

155

- 156 **M2.4** Inter-lung Comparison Features
- Let the voxels belonging to the left lung be the voxel set L_{left} , and likewise for the right lung,
- 158 L_{right} , such that $L_{\text{left}} \cap L_{\text{right}} = \emptyset$, $L_{\text{left}} \cup L_{\text{right}} = L$. In this study we applied 2-means clustering
- with centroids initiated at $(\bar{x}, \bar{y} \pm 2\text{std}(y), \bar{z})$, to approximate L_{left} and L_{right} from given data.

160

Using the ascribed 'ΔHU' functions, we naturally define:

- RLmeanDiff: $L \to \mathbb{R}$, RLmeanDiff(L) = $|\overline{\Delta}\overline{H}\overline{U}(L_{\text{left}}) \overline{\Delta}\overline{H}\overline{U}(L_{\text{right}})|$.
- RLstdDiff: $L \to \mathbb{R}$, RLstdDiff(L) = $|\text{std}(\Delta HU)(L_{\text{left}}) \text{std}(\Delta HU)(L_{\text{right}})|$.

Bell et al	0
Den et ai	,

165

166 That is, measuring the difference in average ventilation, and difference in variation of ventilation, between the two lung voxel sets.

168

- An additional feature is provided through considering the difference in lung sizes, RLsizeRat,
- 170 read as 'right-left size ratio'. RLsizeRat : $L \to [0,1) \subset \mathbb{R}_{\geq 0}$,
- 171 RLsizeRat(L) = $1 \min \left\{ \frac{vCnt(L_{left})}{vCnt(L_{right})}, \frac{vCnt(L_{right})}{vCnt(L_{left})} \right\}$. As defined it constitutes a metric (satisfying
- associated axioms), and is meant to measure extent to which lungs differ in size. A value of 0 can
- be achieved only if the lungs are equal in size (biologically abnormal), else the value tends to 1
- as the difference in lung sizes increases. This feature was found to be associated with R5-R20
- 175 (see **Table E4**), indicating a possible role in pulmonary disease.

176

- 177 **M2.5** Stratified Axial Analysis
- 178 Stratified axial analysis (SAA) was developed to provide a basic tool for quantifying ventilation
- behavior, approximated by ΔHU , as the lung is traversed along a cardinal (x, y or z) axis (see
- 180 **Figure E1** and **Figure E2**). It works by stratifying the voxels into groups using one of the co-
- ordinate distributions (x, y or z), then computing a functional average (e.g. $\overline{\Delta HU}$) for each
- stratified voxel group individually, and finally presenting a summary of the gradient for this
- distribution (i.e. on average, how the function changes across the defined strata).

- To describe the process in practice, with some operational intricacies, consider L the entire set of
- voxels for a pair of lungs. Then to stratify in the z axis (see **Figure E1 B**), we used the range
- $= \max(z_i) \min(z_i)$. A portion of the strata at the poles is eliminated, to reduce noise at the

Bell et al

ends of the distribution of interest. 15% of r, of the extremes, are trimmed, retaining the middle 70% r for the remaining steps. This trimming helps deal with low voxel count at the extremities, difference in lung heights, and beam hardening effects in the CT image, common to the conical base and apex of the lungs. The remaining voxels are then split into 10 intervals, of roughly 7% r each, with (9) intermediary points termed 'deciles'. One may consider 10 values determined by the function ΔHU on each interval, providing a smoothed indicator of the average 'ventilation' at each level. Then we take the differences at the deciles, with direction chosen to be 'inferior-to-superior' (by ordering in subtraction).

To describe how $\overline{\Delta HU}$ varies across the intervals, we initially used fitting of a 1 degree polynomial, i.e. straight line, using ordinary least squares (OLS) criterion. The gradient of the resultant line provides a natural measure of change, so we define 4 SAA based attributes as follows:

- $\overline{\Delta HU}^{AP}$, gradient measuring $\overline{\Delta HU}$ change, in the **anterior-posterior** direction.
- $std(\Delta HU)^{AP}$, gradient measuring $std(\Delta HU)$ change, in the **anterior-posterior** direction.
 - $\overline{\Delta HU}^{IS}$, gradient measuring $\overline{\Delta HU}$ change, in the **inferior-superior** direction.
- $std(\Delta HU)^{IS}$, gradient measuring $std(\Delta HU)$ change, in the **inferior-superior** direction.

Lateral $\overline{\Delta HU}$ gradient across the lungs was not investigated. As it became clear that inferior-superior ventilation gradient was strongly linked to VH, another method of measuring gradient was applied to this axis, focusing on $\overline{\Delta HU}$. Termed $\overline{\Delta HU}^{IS*}$, this focuses on simply taking the mean of the decile changes (see **Figure E1 B**), as follows:

211

212
•
$$\overline{\Delta H U}^{IS*} = \frac{1}{9} \sum_{1}^{9} (\overline{\Delta H U}(I_{i+1}) - \overline{\Delta H U}(I_i)) = \frac{\overline{\Delta H U}(I_{10}) - \overline{\Delta H U}(I_1)}{9}$$

213

214

215

Where I_i is the ith interval, travelling from inferior to superior as i ranges from 1 to 10. This happens to be equivalent to a scaled difference between the extreme intervals. This measurement 216 was found to have marginally higher correlational strength, and so possibly a cleaner signal (smoothing measurement to extreme post-trimmed intervals), relative to $\overline{\Delta HU}^{IS}$.

218

219

220

221

222

223

224

225

226

217

M3.0 Computational Simulations of Regionalised Bronchoconstriction

Computational calculations of lung impedance were performed through simulation of an electrical-circuit analogous model on patient-specific virtual conducting zone lung structures. Virtual structures were created in a prior study^{E14} through processing of inspiratory-expiratory CT scan images. From each scan, centrelines of the central airways (typically up to generation 6) were extracted, and lobar boundaries identified. An algorithmic airway generation process^{E11} was used to grow the remainder of the conducting zone (to an average generation of 16) within the defined lobar boundaries.

227

228

229

- Total lung impedance was calculated by assuming each branch had an associated impedance due to oscillatory flow, with each terminal bronchiole being subtended by a viscoelastic acinar unit. The impedance of each individual branch was based off derivations by Benade^{E12}, and
- Thurston E13 , with impedance of a branch j, experiencing flow at a frequency f, given by 231

$$Z_j = \left(i \frac{\omega \rho l}{\pi r_i^2}\right) (1 - F_v e^{i\phi r_j})^{-1},$$

- where ρ is air density, $\omega = 2\pi f$, l and r are the branch length and radius respectively, and
- 233 $i = \sqrt{-1}$. The exponential contribution is defined as

$$F_{\nu}e^{i\phi r_{j}} = \frac{2}{r_{\nu}\sqrt{-i}}\frac{J_{1}(r_{\nu}\sqrt{-i})}{J_{0}(r_{\nu}\sqrt{-i})}, \qquad r_{\nu} = \left(\frac{\omega\rho}{\mu}\right)^{1/2}r,$$

- where r_v is the boundary layer thickness, μ is the air viscosity, and J_0 and J_1 are the zeroth and
- 235 first Bessel functions. The viscoelastic acinar units were described by a homogeneous, constant-
- phase model of the form

$$Z_{acin} = \frac{G - iH}{N \,\omega^{\alpha}},$$

- Where G and H are coefficients for tissue damping and elastance respectively (taken as 0.12, and
- 238 0.57 kPa.s.L⁻¹ E¹⁴), N is the number of terminal bronchioles, and

$$\alpha = \frac{2}{\pi} tan^{-1} \left(\frac{H}{G}\right).$$

- Total impedance of the lung was calculated by adding series and parallel contributions from each
- acinar region and airway over the entire airway tree. Following the work of Bhatawedakar et
- 241 al. E15 this value was then added in series to chest wall, tracheal and glottal resistances and (all
- taken as 0.049kPa.s.L⁻¹) and chest wall elastances (taken as 1.04kPa.s.L⁻¹), and in parallel to a
- 243 non-specific shunt impedance.

244245

M4.0 Statistical Analysis

- 246 MATLAB R2015a (MATLAB Release 2015a, The MathWorks, Inc., Natick, Massachusetts,
- United States) was used to perform all statistics and data processing. Results were obtained as
- output from customized scripts, making use of built-in statistical functions and workflows, for
- 249 which there is extensive description on the MathWorks website. In all tests with a defined p-
- value, significance is determined by p < 0.05.

Bell et al	13	

1	5	1
L	J	1

N / 1	\sim	\sim	•
V14 I	Group	(amn	าหารกทร
TATA.T	Group	Comp	ni isonis

Binary group comparisons were performed using built-in function 'kstest' (Kolmogorov-Smirnov), followed by 'ttest2' (two-sample t-test) if attribute determined parametric, and 'ranksum' (equivalent to Mann-Whitney U-test) otherwise. Multiple group comparison (for 3 or more groups) was computed using built-in function 'kstest' (Kolmogorov-Smirnov), followed by 'anova1' (one-way ANOVA) if attribute was determined parametric, and 'kruskalwallis' (Kruskal-Wallis) otherwise. The 'stats' variable from multiple group comparison testing was passed to the 'multcompare' function, with default Tukey's honest significant difference criterion. Output from 'multcompare' was used to define significance in tables. All multiple group comparisons were performed on groups with empty intersections (no overlapping). To compare ratios of a boolean variable across groups, a 3rd party script 'prop_test.m' was utilized to implement a simple two-sample Chi-square test of proportions.

To perform tertile polar analysis, it required, by design, formation of groups with an unnatural distribution (extreme tertiles of a given 'natural' distribution). In this instance, comparisons were performed pairwise on the two groups, across all intervals or deciles, using the 'ranksum' (Wilcoxon Rank-Sum test) function.

M4.2 Correlation Analysis

Pearson correlation coefficient was calculated using the 'corrcoef' and 'corr' functions. A script
was written to analyze absolute correlation strength above a given threshold, over all pairs of a

 $^{^{1} \}underline{\text{https://uk.mathworks.com/matlabcentral/fileexchange/45966-compare-two-proportions--chi-square-?} focused = 3813016 \& tab=function$

14

273	given set of attributes. In cases of missing data, correlation calculation was restricted to subjects
274	for which data was present. Results for attribute pairs above the threshold were presented in
275	terms of scatter plot with graphed line of best fit, and table listing signed correlation coefficient,
276	p-value, and indexes for attributes.
277	
278	M4.3 Boxplots
279	Box plots and annotations of healthy and asthmatic subjects were created using custom script
280	including 'boxplot' function. In all cases boxplots present differentiation of median split groups
281	for feature included with approximate median value on the horizontal axis. E.g. see Figure 1 C .
282	Outliers with respect to split groups are highlighted with black spots (see Figure E3).
283	
284	M4.4 Tertile Polar Analysis
285	Given a suspected signal in noisy data, it can help to focus on attribute extremes. We chose the
286	highest and lowest 16 values from an attribute distribution to compare following this ideology,
287	being approximately distribution tertile poles, since $^{16}/_{52} \approx ^{1}/_{3}$, chosen to isolate polar
288	behavior whilst preserving numbers for statistical significance. This analysis was applied to
289	relevant attributes to generate groups for comparison in $\overline{\Delta HU}^{IS*}$ and $\overline{\Delta HU}^{AP}$ interval-wise and
290	decile-wise (used in figures) analysis (see Figure 3 A and Figure E4).
291	
292	M4.5 Feature and Feature Set Relational Strength Analysis
293	In order to determine if two variables, or more generally two sets of variables, are 'related', a
294	well understood and standard approach is to look at linear correlation and discriminatory
295	properties. This approach is limited in the sense that not all relationships may be linear, though

many important relationships between variables in nature are. We utilized correlation and regression modelling to study how CT data, represented by a set of 22 features, relates to various single non-CT attributes, and linear discriminant analysis (LDA) to test relational strength of feature sets to VH discrimination.

M4.6 Average Correlation

Given a data matrix $X_{n \times m}$ of m attributes over n subjects, it was desired to see how some submatrix X_s , formed from a selection of columns from X in some order, compares to single attributes from $X \setminus X_s$. Specifically, 22 CT attributes (all that were defined in this study) formed the submatrix X_{CT} , and attributes from spirometry, IOS, MBW and GINA were chosen as target variables. Then average correlation is defined: $\bar{r} = \frac{1}{22} \sum_{1}^{22} |\text{corr}(x, y)|$, where $x \in X_{CT}$, y is a target variable and 'corr' is the Pearson correlation coefficient over all 52 subjects. This provides one of the simplest though apparently prognostic measures of linear relation. Simple rationale is that if there exists a large number of highly correlating (absolute value) CT variables with a variable y, then y is strongly related (linearly) to 'CT data' (as represented by the given feature set). Results presented in first column of **Table E5**.

M4.7 Multicollinearity Limited Subset Linear Regression

Linear regression was utilized to test likelihood (F-statistic) and strength ($R^2 \sim$ variance explained) of linear relation between predictor variables and some outcome variable. In this study we used CT based predictor variables to predict an outcome variable from the aforementioned non-CT attributes. However, the problem of multicollinearity, that is the

Bell et al	16

318	existence of strong absolute correlation between input variables begetting ill posed prediction
319	model, should to be handled to reduce likelihood of spurious results.
320	
321	One method supposed to limit multicollinearity impact, whilst preserving original (un-altered)
322	data values for predictor variables, is to select a 'representative' subset of features, eliminating
323	the occurrence of absolute pairwise correlation above some threshold. An ad hoc approach to
324	feature selection was utilized, whereby data analyst experience and consistency lead decision
325	produced a 14 feature subset (from 22 features) in which no absolute pairwise correlation
326	exceeded 0.7 (see Figure E2 B). Specifically: ellMajL summarized itself, $\overline{\Delta HU}$ and std(ΔHU);
327	ellMinL summarized itself and ellArea; RLmeanDiff, RLstdDiff and RLsizeRat lacked intra-
328	CT correlation (thus were all included); PRM ^{Emph} summarized PRM _s attributes; vCntX , vCntY
329	and vCntZ all appeared to lack intra-CT correlation, whilst vCnt strongly correlated with vCntZ
330	All OLS based SAA features, $\overline{\Delta HU}^{AP}$, $std(\Delta HU)^{AP}$, $\overline{\Delta HU}^{IS}$ and $std(\Delta HU)^{IS}$, lacked intra-CT
331	correlation, and $\overline{\Delta H U^{IS}}$ was chosen to summarize $\overline{\Delta H U^{IS*}}$ for consistency. Reader may refer to
332	Figure E2 A and B for supporting rationale in these decisions. Results presented in Table E5,
333	second column.
334	
335	M4.8 PCA Kaiser Rule Linear Regression
336	Though given rationality, and the arguably preferable aspect of using original data values, the
337	described multicollinearity limited subset method can be highly sensitive to chosen
338	'representatives', and loss of information from eliminating attributes. PCA provides another
339	approach to eliminating multicollinearity within data, since by design it produces orthogonal

	Bell et al 17
340	representative coordinates, principal components, and have correlation strength 0 between any
341	pair of components.
342	
343	In this study we utilized PCA to provide a low dimensional approximation, by principal
344	components, to X_{CT} . Applying the 'Kaiser rule', we selected the first 6 components, as these had
345	variance explained greater than the average variance explained across all components. These 6
346	components were then used as predictor variables in linear regression predicting the outcome
347	variables described. Results presented in Table E5 , third column. One may consider the PCA
348	Kaiser rule (PCA-KR) approach as being a relatively less biased representation of linear strength.
349	Both approaches are presented for consideration.
350	
351	M4.9 Linear Discriminant Analysis
352	In order to assess 'linear relational strength' between sets of features, representing a more
353	general object (e.g. 'CT data', 'spirometry'), we utilized LDA to determine the best linear
354	discriminator between two sets of points, according to Fisher's criteria of maximal inter-class
355	mean separation with minimal intra-class variance. LDA was implemented using custom
356	MATLAB script, written to show histogram of projected value distribution (see Figure 5), and
357	determine classification accuracy from best (least error) one dimensional point of discrimination
358	(see Table E8). Coefficients of LDA across all selected features are reported (see Table E9).
359	
360	M4.10 Joint Density Histogram (JDH) Visualisation
361	JDH visualization was generated using the 'surf' function with re-specified tick locations and
362	labels, applied to a 2-dimensional array with dimensions determined by the floor of the range of

	Bell et al
363	the associated distribution (i.e. bin number for binning point counts with respect to a variable set
364	equal to rounded range of that variable). Colormap 'hot' was applied (see Figure 1 A) to create
365	black and white compatible presentation. Eigenvectors and Eigenvalues of the 2D array were
366	utilized to determine ellipse axes fitting dual Gaussian distribution (see Figure 1 A right),
367	plotted with vectors directed from mean point using square root of associated Eigenvalue to
368	determine length.
369	
370	M4.11 Mass Normalised Min-Max Projections
371	A simple method to perceive information based on high volume point cloud distribution in 3D is
372	'min-max projection', that is to project the distribution to some 2D plane, binning 2D cells to
373	count point frequency and visualize using a heatmap; i.e. essentially applying the JDH algorithm
374	just described to some 2D projection of a 3-dimensional distribution. To visualize functional
375	averages in space, replace 'point frequency' with $\sum f(x)$, where x varies over all points in a cell.
376	Then mass bias is cancelled by dividing by number of points in the cell. In this study, such mass
377	normalized min-max projection was applied in the coronal plane to visualize PRMfSAD
378	concentration and $\overline{\Delta HU}$ in high volume voxel clouds (see Figure 3 B and Figure 4).
379	
380	RESULTS
381	R1 GINA Group Comparisons (Imaging biomarkers of global lung VH are not associated with
382	small airway VH markers R5-R20 and Sacin)
383	Binary and non-intersecting multiple group comparisons were performed over all attributes,
384	using algorithms described in group comparisons, with subjects grouped according to GINA
385	score, with pairs GINA 2 GINA 3 and GINA 4 GINA 5 pooled due to qualitative treatment

19

386	similarity. Specifically, the groups were non-asthmatic (n=11), GINA 1 (n=8), GINA 2 or GINA
387	3 (n=20), and GINA 4 or GINA 5 (n=13). The results of this analysis are displayed in Table 1
388	and Table E2 ; subscripts are used to denote significant differences between groups.
389	
390	Table 1 reports results across all non-CT features, formatted as mean (± standard deviation) or
391	$[n_1/n_2/\dots]$ for discrete variables where appropriate. Features are grouped into classes termed
392	'clinical', 'spirometry', 'MBW' (multiple breath washout), 'IOS' (impulse oscillometry) and
393	'Sputum'. The same formatting and classification is applied in Table E3 .
394	
395	Table E2 reports results across all CT features, formatted as mean (± standard deviation).
396	Features are grouped into classes termed 'PRM' (parametric response map), 'ELL' (ellipse),
397	$^{\circ}\Delta HU^{\circ}$ (change in Hounsfield units, between expiration and inspiration), $^{\circ}ILC^{\circ}$ (inter-lung
398	comparison), 'vCNT' (voxel count) and 'SAA' (stratified axial analysis).
399	
400	R2 Feature and Feature Set Relational Strength Analysis (Imaging biomarkers of regional VH
401	are major determinants of small airway ventilation VH R5-R20 and Sacin)
402	The results of all relational strength analyses are presented in Table E5 , Table E6 , Table E7 ,
403	Table E8, Figure 5 and Figure E6. Linear statistical analyses were applied to the complete data
404	matrix represented (pairwise absolute correlation strength) in Figure E6; these were absolute
405	Pearson's correlation coefficients, multicollinearity reduction through subset selection and PCA
406	selection of first 6 principal components based on Kaiser rule, and observation of JDH extremes
407	for attribute $FEV_1/FVC(\%)$ which had the strongest (linear association) of all features studied.
408	

409	Table E5 presents a high level summary of outcomes for linear analyses (non-LDA). 'Corr.'
410	column presents average absolute Pearson's correlation between all CT attributes and listed
411	target attributes (rows). LR (subset) presents R^2 and F-statistic p-values from linear regression,
412	using the described 14 feature subset as predictor variables. LR (PCA) presents the same with
413	principal components 1 through 6 as predictor variables. PCA-LR Coef. (abs. value) presents the
414	loading scores of the principal components in cases were the F-statistic indicted statistically
415	significant ($p < 0.05$) likelihood of a linear relationship, which should be used with Table E7 for
416	complete interpretation; that is linking principal component loading score magnitude with linear
417	regression co-efficient magnitude to associate CT input features to target non-CT features.
418	
419	Table E6 presents the coefficients derived in the application of linear regression to the 14 feature
420	subset of CT attributes. Since the coefficient magnitude is dependent on ordering of predictor
421	variables, the values for each input are assessed to determine the largest for a given input
422	variable, and this may then be related to an outcome variable. To give an example, predictor
423	variable with ID 9 (column), which is RLsizeRat (see Table E7 subscripts), has .44 as its highest
424	magnitude, which belongs to (observe row) outcome variable R5-R20. In fact the outcome
425	variable AX is associated with magnitude .42, significantly higher than all other magnitudes,
426	suggesting association between RLsizeRat and IOS (over other outcome variables). This result
427	may be linked to the observed significance of feature RLsizeRat in Table E4; that is it appears as
428	one of the CT variables which discriminates R5-R20 extremes.
429	
430	Table E7 serves a similar purpose to Table E6, though it is dedicated the PCA approach used in
431	linear regression. The loading scores of all 22 CT attributes studied (rows) are presented for all 6

principal components used in the linear regression. Combining this with the final column of
Table E5, it is possible to study relational strength between outcome and predictor variables. To
give an example, R5-R20 has P2 as its highest loading principal component, and observing this
column in Table E7 it is clear that CT feature $\overline{\Delta HU}^{IS*}$ (practically equivalent to $\overline{\Delta HU}^{IS}$) has the
greatest absolute loading value, suggesting association between $\overline{\Delta HU}^{IS*}$ and R5-R20. This
association, in addition to vCntX (anterior-posterior segmented lung length) and ellMinL, may
also be observed in Table E4 .
R3 LDA and VH Group Comparisons (Discrimination of Sacin and R5-R20 with imaging
markers of density change (ΔHU) gradients and lung size asymmetry)
LDA results are presented in Figure 5, Table E8 and Table E9. Clinical features chosen were
age, smoking history [pack years] and weight [kg]. Spirometry features chosen were $\text{FEV}_1\%$ and
$FEV_1/FVC(\%). \ CT \ features \ chosen \ were \ ellMinL, \ ellArea, \ std(\Delta HU), \ RL sizeRat, \ vCntX, \ vCntZ,$
$\overline{\Delta HU}^{AP}$, std(ΔHU) ^{IS} and $\overline{\Delta HU}^{IS}$ (all features demonstrating VH discrimination in multiple
comparison tests). Representative feature sets were chosen following advice from domain expert
(clinician).
VH marker mean split groups, R5-R20 low (n=32), R5-R20 high (n=20), S_{acin} low (n=29) and
S _{acin} high (n=23), were subjected to standard 1D statistical comparisons. The results are
presented in Table 2 (most prominent for paper), Table E3 and Table E4 (extended form of
Table 2). Table E3 presents results across all non-CT attributes. Table E4 presents results
across all 22 studied CT features. Features ellMinL, ellArea, $std(\Delta HU)$, RLsizeRat, $vCntX$,

22

455	vCntZ, $\overline{\Delta H U}^{AP}$, $\overline{\Delta H U}^{IS}$ and $\overline{\Delta H U}^{IS*}$ discriminate R5-R20 extremes. Features std($\Delta H U$) ^{IS} , $\overline{\Delta H U}^{IS}$
456	and $\overline{\Delta H U}^{IS*}$ discriminate S_{acin} extremes.
457	
458	$\overline{\Delta HU}^{IS*}$ and $\overline{\Delta HU}^{IS}$ were the only features discriminating both markers of VH, and $\overline{\Delta HU}^{IS*}$ was
459	found to provide marginally stronger correlations against non-CT features; thus we decided to
460	conduct deeper investigations of $\overline{\Delta HU}^{IS*}$ interaction with VH.
461	
462	Correlational, polar and min-max projection analyses were all utilized to study how $\overline{\Delta H U}^{IS*}$
463	relates to non-CT features, to better understand the regionally localized contributions (in inferior-
464	superior strata) to the discrimination of R5-R20 and S_{acin} , and explore possible reasons for the
465	association of inferior-superior ventilation gradient reversal and VH extreme discrimination. The
466	results of this investigative effort are presented in Figure 3, Figure 4 and Figure E5.
467	
468	Mass normalized min-max projections, in coronal plane, of PRM fSAD and $\overline{\Delta HU}$ in the highest and
469	lowest $\overline{\Delta HU}^{IS*}$ scoring 16 subjects, were observed; the visual results are illustrated in Figure 4 .
470	A number of subjects with high $\overline{\Delta HU}^{IS*}$ appear to have a heterogeneous, and basally focused,
471	distribution of disease markers, with apically preferential ventilation distribution, relative to the
472	more homogeneous distributions observed in subjects with low $\overline{\Delta HU}^{IS*}$. A phenotypical
473	suggestion arising from this observation is summarized in Figure 4 D .

474 **References**

- 475 E1. Oostveen E, MacLeod D, Lorino H, Farre R, Hantos Z, Desager K, et al. The forced
- 476 oscillation technique in clinical practice: methodology, recommendations and future
- 477 developments. Eur Respir J. 2003 Dec 1;22(6):1026-41.
- 478 E2. Robinson P, Latzin P, Verbanck S, Hall G, Horsley A, Gappa M, et al. Consensus statement
- for inert gas washout measurement using multiple-and singlebreath tests. Eur Respir J.
- 480 2013;41(3):507-22.
- 481 E3. Horsley AR, Gustafsson PM, Macleod KA, Saunders C, Greening AP, Porteous DJ, et al.
- Lung clearance index is a sensitive, repeatable and practical measure of airways disease in adults
- 483 with cystic fibrosis. Thorax. 2008 Feb 1;63(2):135-40.
- 484 E4. Robinson PD, Goldman MD, Gustafsson PM. Inert gas washout: theoretical background and
- clinical utility in respiratory disease. Respiration. 2009;78(3):339-55.
- 486 E5. Galbán CJ, Han MK, Boes JL, Chughtai KA, Meyer CR, Johnson TD, et al. Computed
- 487 tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and
- 488 disease progression. Nat Med. 2012 Nov 1;18(11):1711-5.
- 489 E6. Lee SM, Seo JB, Kim N, Oh SY, Oh YM. Optimal threshold of subtraction method for
- 490 quantification of air-trapping on coregistered CT in COPD patients. Eur Radiol. 2016 Jul
- 491 1;26(7):2184-92.
- 492 E7. Pennati F, Salito C, Baroni G, Woods J, Aliverti A. Comparison between multivolume CT-
- 493 based surrogates of regional ventilation in healthy subjects. Acad Radiol. 2014 Oct
- 494 31;21(10):1268-75.

- 495 E8. Choi S, Hoffman EA, Wenzel SE, Tawhai MH, Yin Y, Castro M, et al. Registration-based
- assessment of regional lung function via volumetric CT images of normal subjects vs. severe
- 497 asthmatics. J Appl Physiol. 2013 Sep 1;115(5):730-42.
- 498 E9. Holley HS, Milic-Emili J, Becklake MR, Bates DV. Regional distribution of pulmonary
- ventilation and perfusion in obesity. J Clin Investig. 1967 Apr;46(4):475.
- 500 E10. Bordas R, Lefevre C, Veeckmans B, Pitt-Francis J, Fetita C, Brightling CE, et al.
- Development and analysis of patient-based complete conducting airways models. PLOS ONE.
- 502 2015 Dec 11;10(12):e0144105.
- 503 E11. Tawhai MH, Hunter P, Tschirren J, Reinhardt J, McLennan G, Hoffman EA. CT-based
- geometry analysis and finite element models of the human and ovine bronchial tree. J Appl
- 505 Physiol. 2004 Dec 1;97(6):2310-21.
- 506 E12. Benade AH. On the propagation of sound waves in a cylindrical conduit. J Acoust Soc Am.
- 507 44(2): 616-623, 1968.
- 508 E13. Thurston GB. Periodic fluid flow through circular tubes. J Acoust Soc Am. 24(6): 653-656,
- 509 1952.
- 510 E14. Kaczka DW, Ingenito EP, Suki B, Lutchen KR. Partitioning airway and lung tissue
- resistances in humans: effects of bronchoconstriction. J Appl Physiol. 1997 May 1;82(5):1531-
- 512 41.
- 513 E15. Bhatawadekar SA, Leary D, Maksym GN. Modelling resistance and reactance with
- heterogeneous airway narrowing in mild to severe asthma. Can J Physiol Pharmacol. 2015 Jan
- 515 21;93(3):207-14.

516 Table E1. Reference list describing extracted CT attributes investigated in this study.

CT Feature	Description
$\overline{\Delta H U}$	Average ΔHU over all segmented voxels.
$\text{std}(\Delta HU)$	Standard deviation of ΔHU over all segmented voxels.
ellMajL	Length of major axis, of ellipse perceived in JDH.
ellMinL	Length of minor axis, of ellipse perceived in JDH.
ellArea	Area of ellipse perceived in JDH.
ellAngle	Angle (radians) between major axis and horizontal, of ellipse perceived in JDH.
RLmeanDiff	Absolute difference of average ΔHU between the two lungs.
RLstdDiff	Absolute difference of standard deviation in ΔHU between the two lungs.
RLsizeRat	Ratio of lung voxel counts (two lungs), with larger count in the denominator.
%PRM ^{Norm}	Percentage of voxels classified as PRM ^{Norm} .
%PRM ^{fSAD}	Percentage of voxels classified as PRM ^{fSAD} .
%PRM ^{Emph}	Percentage of voxels classified as PRM ^{Emph} .
%PRM ^{Uncl}	Percentage of voxels classified as PRM ^{Uncl} .
vCnt	Total voxel count (segmented voxel set).
vCntX	Maximum difference in voxel x-coordinates (anterior-posterior measure).
vCntY	Maximum difference in voxel y-coordinates (lateral measure).
vCntZ	Maximum difference in voxel z-coordinates (inferior-superior measure).
$\text{std}(\Delta \text{HU})^{\text{AP}}$	Gradient of ΔHU standard deviation variability in anterior-posterior direction.
$\overline{\Delta HU}^{AP}$	Gradient of ΔHU mean variability in anterior-posterior direction.
$std(\Delta HU)^{IS}$	Gradient of ΔHU standard deviation variability in inferior-superior direction.
$\overline{\Delta H U}^{IS}$	Gradient of ΔHU mean variability in inferior-superior direction.
$\overline{\Delta H U}^{IS*}$	Difference of ΔHU mean in extreme deciles, in inferior-superior direction.

517 518 519

HU, Hounsfield Unit; SAA, Stratified Axial Analysis; fSAD, functional small airways disease;

520

521

522

523

Basic descriptions of all 22 CT features considered in this study. Intended reading of names is as follows: $\overline{\Delta HU}$ = average ΔHU , $std(\Delta HU) = \Delta HU$ standard deviation, ellMajL = ellipse major length, ellMinL = ellipse minor length, ellArea = ellipse area, ellAngle = ellipse angle, RLmeanDiff = right-left mean difference, RLstdDiff = right-left standard deviation difference, RLsizeRat = right-left size ratio, %PRM^{Norm} = percent PRM normal, %PRM^{fSAD} = percent PRM fSAD, %PRM^{Emph} = percent PRM emphysema, %PRM^{Uncl} = percent PRM unclassified, vCnt = voxel count, vCntX = voxel count in x-direction (likewise for vCntY, vCntZ), $std(\Delta HU)^{AP} = 1^{st}$ degree polynomial fitting

525

Bell et al 26

to standard deviation in x direction (an SAA based measure, likewise for std(ΔHU)^{IS}), $\overline{\Delta HU}^{AP}$ = as std(ΔHU)^{AP} with averages (likewise for $\overline{\Delta HU}^{IS}$), $\overline{\Delta HU}^{IS*}$ = extreme difference in inferior-superior direction.

Table E2. CT data across all groups, with treatment rationalized GINA stratification applied to asthma cohort.

		Asthma					
	Control (n=11)	All (n=41)	GINA 1 (n=8)	GINA 2/3 (n=20)	GINA 4/5 (n=13)		
PRM							
%PRM ^{Norm}	$0.74 (\pm 0.08)$	0.72 (± 0.13)	$0.69 (\pm 0.20)$	$0.72 (\pm 0.12)$	$0.75 (\pm 0.10)$		
%PRM ^{fSAD}	$0.16 (\pm 0.08)$	$0.20 (\pm 0.11)$	$0.23 (\pm 0.17)$	$0.20 (\pm 0.09)$	$0.17 (\pm 0.10)$		
%PRM ^{Emph}	$0.028 (\pm 0.018)$	$0.031 (\pm 0.031)$	$0.039 (\pm 0.040)$	$0.033 (\pm 0.034)$	$0.023 (\pm 0.019)$		
%PRM ^{Uncl}	$0.072 (\pm 0.029)_A$	$0.049 (\pm 0.034)_{\rm H}$	$0.041 (\pm 0.035)$	$0.045 (\pm 0.032)$	$0.058 (\pm 0.037)$		
ELL					7		
ellMajL	$144.4 (\pm 30.0)_A$	$123.5 (\pm 27.8)_{H}$	118.1 (± 33.2)	122.6 (± 28.8)	128.4 (± 24.0)		
ellMinL	$55.3 (\pm 10.0)$	$55.8 (\pm 10.6)$	$53.4 (\pm 10.9)$	56.1 (± 12.2)	$56.8 (\pm 8.1)$		
ellArea	$6411 (\pm 2375)$	$5556 (\pm 2060)$	5131 (± 2282)	5597 (± 2381)	$5755 (\pm 1401)$		
ellAngle	$0.13 (\pm 0.07)_{A}$	$0.21 (\pm 0.18)_{\rm H}$	$0.25 (\pm 0.16)$	$0.21 (\pm 0.09)$	$0.18 (\pm 0.12)$		
ΔΗU				5			
$\overline{\Delta HU}$	125.98 (± 39.18)	98.16 (± 42.85)	94.70 (± 63.85)	92.12 (± 27.06)	109.60 (± 48.71)		
$std(\Delta HU)$	$112.58 (\pm 12.01)_{A}$	$102.83 (\pm 13.30)_{\rm H}$	97.77 (± 17.29)	$102.11 (\pm 13.60)$	$107.04 (\pm 9.21)$		
ILC							
RLmeanDiff	$11.33 (\pm 8.64)$	$10.42 (\pm 9.91)$	10.05 (± 8.49)	9.46 (± 8.15)	12.13 (± 13.25)		
RlstdDiff	$4.74 (\pm 5.24)$	$4.70 (\pm 3.53)$	$4.89 (\pm 3.70)$	$4.98 (\pm 4.00)$	$4.15 (\pm 2.79)$		
RlsizeRat	$0.198 (\pm 0.074)$	$0.170 (\pm 0.091)$	$0.177 (\pm 0.043)$	$0.159 (\pm 0.077)$	$0.183 (\pm 0.129)$		
vCNT							
vCnt†	$8.23 (\pm 2.07)$	$8.76 (\pm 2.93)$	$8.81 (\pm 3.31)$	$8.66 (\pm 2.93)$	$8.87 (\pm 2.91)$		
vCntX	$240.6 (\pm 23.3)$	$234.5 (\pm 31.5)$	$232.9 (\pm 13.9)$	$235.8 (\pm 35.8)$	$233.6 (\pm 33.9)$		
vCntY	$343.5 (\pm 22.0)$	335.3 (± 25.9)	$327.3 (\pm 20.5)$	$327.7 (\pm 24.6)_3$	$351.8 (\pm 24.4)_2$		
vCntZ	$436.0 (\pm 41.7)$	$439.9 (\pm 50.2)$	$449.3 (\pm 70.0)$	$442.3 (\pm 46.7)$	$430.5 (\pm 43.9)$		
SAA		<u></u>					
$std(\Delta HU)^{AP}$	$0.078 (\pm 0.070)$	$0.061 (\pm 0.069)$	$0.038 (\pm 0.066)$	$0.070 (\pm 0.070)$	$0.063 (\pm 0.071)$		
$\overline{\Delta H U}^{AP}$	$0.580 (\pm 0.182)_A$	$0.432 (\pm 0.217)_{\rm H}$	$0.470~(\pm~0.223)$	$0.397 (\pm 0.211)$	$0.462~(\pm~0.232)$		
$std(\Delta HU)^{IS}$	$-0.071 \ (\pm 0.046)$	$-0.061 (\pm 0.041)$	$-0.073 \ (\pm 0.043)$	$-0.062 (\pm 0.044)$	$-0.053 \ (\pm 0.037)$		
$\overline{\Delta H U}^{IS}$	$-0.023 \ (\pm \ 0.159)$	$-0.013 \ (\pm \ 0.095)$	$-0.084 (\pm 0.083)$	$0.003~(\pm~0.098)$	$0.008 (\pm 0.083)$		
$\overline{\Delta H U}^{IS*}$	-1.460 (± 6.312)	-0.772 (± 3.725)	$-2.835 (\pm 3.085)$	-0.488 (± 4.199)	$0.061 (\pm 3.008)$		

530 531

532

533

534

535

536

537

PRM, Parametric Response Map; ELL, ELLipse measurements; HU, Hounsfield Unit; ILC, Inter Lung Comparison;

vCNT, voxel count; SAA, Stratified Axial Analysis. Data expressed as mean (\pm standard deviation). Attribute normality was tested using one-sample Kolmogorov-Smirnov test over all subjects. Binary group comparisons ('control' vs 'all) were performed using two sample t-test for parametric variables, and Mann-Whitney U-test for non-parametric variables. Non-intersecting multiple group comparisons were performed using one-way ANOVA for parametric variables, and Kruskal-Wallis test for non-parametric variables. Multiple-comparison procedures were performed with Turkey's honest significant difference criterion. Groups with significant separation (p < 0.05) indicated by subscripts A (all asthma), H (healthy control), 1,

2, 3 (GINA 1, 2/3 and 4/5 respectively) and * (all other groups).

Table E3. Non-CT features with ventilation heterogeneity based stratification.

32) (r $5/1/10/6/1$] [3 $0 (\pm 12.3)$ 5 $1/19$] [1	Algh n=20) 8/2/2/7/4/2] 6.6 (± 13.5)
0 (± 12.3) 56 /19] [1	$6.6 \ (\pm \ 13.5)$
0 (± 12.3) 56 /19] [1	$6.6 \ (\pm \ 13.5)$
/19] [1	
	1.1./03
9 (± 15.4) 8	11/9]
	$6.3 (\pm 17.0)$
5.6 (± 11.2)	$69.0 (\pm 9.6)$
$2 (\pm 4.2)$ 2	$9.5 (\pm 5.2)$
/12] [1	11/9]
$5 (\pm 5.76)$ 1:	$2.71 (\pm 22.91)$
(± 1.8) 1	$.2 (\pm 2.2)$
$9 (\pm 15.8)$ 1.	$5.8 (\pm 18.2)$
2.5 (± 726.1) 83	$29.4 (\pm 678.0)$
7.5 (± 19.9) 9	1.4 (± 19.6)
$1 (\pm 6.8)$ 7:	$3.3 (\pm 13.6)$
$2 (\pm 0.94)$ 2	$.28 (\pm 0.79)$
$0 (\pm 0.93)$ 2	$.60 (\pm 0.80)$
$6 (\pm 9.93)$ 1	$6.60 (\pm 19.75)$
0 (± 1.04) 8	.17 (± 1.39)
$76 (\pm 0.097)$ 0	$.214 (\pm 0.126)$
$38 (\pm 0.026)$ 0	$.030 (\pm 0.026)$
2.5 (. 0.021)	.103 (± 0.057)
$25 (\pm 0.021)$ 0	$.025 (\pm 0.929)$
` ′	.023 (± 0.723)
` ′	.023 (± 0.729)
78 (± 0.169) 1	.714 (± 1.867)
. ((((((((((((((((((($\begin{array}{cccccccccccccccccccccccccccccccccccc$

541

M, male; F, female; BMI, body mass index; FEV, forced expiratory volume; FVC, forced vital capacity; BD,

bronchodilator; LCI, lung clearance index; AX, area of reactance; Eos, eosinophil count; Neut, neutrophil count.

543544545

546

Data expressed as mean (± standard deviation). Attribute normality was tested using one-sample Kolmogorov-

Smirnov test over all subjects. Binary group (i.e. Sacin low vs. Sacin high, and R5-R20 low vs. R5-R20 high)

comparisons were performed using two sample t-test for parametric variables, and Mann-Whitney U-test for non-

parametric variables. Groups with significant separation (p < 0.05) of S_{acin} (R5-R20) indicated by * (†).

Table E4. Computed tomography imaging biomarkers and ventilation heterogeneity based stratification (full).

	Sacin		R5-R20	
	Low (n=29)	High (n=23)	Low (n=32)	High (n=20)
PRM				
%PRM ^{Norm}	$0.74 (\pm 0.11)$	0.71 (± 0.14)	$0.72 (\pm 0.14)$	$0.73~(\pm 0.09)$
%PRM ^{fSAD}	$0.19 (\pm 0.10)$	$0.19 (\pm 0.12)$	$0.19 (\pm 0.12)$	$0.18 (\pm 0.08)$
%PRM ^{Emph}	$0.024 (\pm 0.018)$	$0.038 (\pm 0.037)$	$0.032 (\pm 0.033)$	$0.028 (\pm 0.021)$
%PRM ^{Uncl}	$0.046 (\pm 0.036)$	$0.063~(\pm~0.030)$	$0.053 (\pm 0.038)$	$0.055 (\pm 0.028)$
ELL				
ellMajL	126.2 (± 30.0)	130.2 (± 28.9)	122.0 (± 28.3)	137.5 (± 29.0)
ellMinL†	$55.1 (\pm 9.4)$	$56.5 (\pm 11.8)$	$52.1 (\pm 9.1)$	$61.4 (\pm 10.0)$
ellArea†	$5590 (\pm 2067)$	$5922 (\pm 2251)$	5092 (± 1763)	6769 (± 2312)
ellAngle	$0.21 (\pm 0.13)$	$0.16 (\pm 0.09)$	$0.19 (\pm 0.11)$	$0.20 (\pm 0.11)$
ΔΗU				
ΔHU	100.42 (± 48.02)	108.62 (± 36.97)	103.69 (± 45.02)	104.62 (± 41.46)
std(Δ HU) †	$102.37 (\pm 14.32)$	$108.07 (\pm 12.01)$	$101.74 (\pm 12.55)$	$109.93 (\pm 13.81)$
ILC				
RLmeanDiff	8.48 (± 9.37)	13.30 (± 9.36)	$11.05 (\pm 10.38)$	9.91 (± 8.36)
RLstdDiff	$4.15 (\pm 3.94)$	$5.40 (\pm 3.81)$	$5.53 (\pm 4.33)$	$3.39 (\pm 2.68)$
RLsizeRat †	$0.184 (\pm 0.088)$	$0.166 (\pm 0.088)$	$0.201 (\pm 0.087)$	$0.135 (\pm 0.073)$
vCnt			y	
vCnt ¥	8.67 (± 2.99)	8.62 (± 2.51)	8.97 (± 2.80)	8.12 (± 2.68)
vCntX †	$231.9 (\pm 25.3)$	$240.7 (\pm 34.7)$	$225.9 (\pm 27.1)$	$251.7 (\pm 27.6)$
vCntY	$336.9 (\pm 27.5)$	$337.2 (\pm 22.4)$	$335.8 (\pm 25.3)$	$338.9 (\pm 25.4)$
vCntZ†	$438.4 (\pm 45.7)$	$439.9 (\pm 52.1)$	$451.3 (\pm 48.4)$	$419.5 (\pm 41.9)$
SAA				
std(ΔHU) ^{AP}	$0.070 (\pm 0.078)$	$0.059 (\pm 0.057)$	$0.055 (\pm 0.068)$	$0.080 (\pm 0.070)$
∆HU ^{AP} †	$0.473 \ (\pm \ 0.207)$	$0.450 (\pm 0.234)$	$0.512 (\pm 0.226)$	$0.386 (\pm 0.183)$
$std(\Delta HU)^{IS}$	$-0.077 (\pm 0.043)$	$-0.046 (\pm 0.035)$	$-0.064 (\pm 0.040)$	$-0.062 (\pm 0.047)$
$\overline{\Delta HU}^{IS} *, \dagger$	$-0.043 (\pm 0.112)$	$0.021 (\pm 0.099)$	$-0.051 (\pm 0.100)$	$0.044 (\pm 0.102)$
$\overline{\Delta HU}^{IS*} *, \dagger$	$-2.033 (\pm 4.372)$	$0.489 (\pm 3.936)$	$-2.282 (\pm 4.018)$	$1.267 (\pm 3.987)$

⁴ values expressed have multiplier 10°.

551

PRM, Parametric Response Map; ELL, Ellipse measurements; HU, Hounsfield Unit; ILC, Inter Lung Comparison;

vCNT, voxel count; SAA, Stratified Axial Analysis.

554

556

557

Data expressed as mean (± standard deviation). Attribute normality was tested using one-sample Kolmogorov-

Smirnov test over all subjects. Binary group (i.e. Sacin low vs. Sacin high, and R5-R20 low vs. R5-R20 high)

comparisons were performed using two sample t-test for parametric variables, and Mann-Whitney U-test for non-

parametric variables. Groups with significant separation (p < 0.05) of S_{acin} (R5-R20) indicated by * (†).

Table E5. Summary of linear statistical analyses: average correlation and linear regression (raw value & PCA).

Corr.	LR (subset)		LR (PCA)		PCA-LR Coef. (abs. value)				
$ar{r}$	R^2	p	R^2	p	P1 P2	Р3	P4	P5	P6
.158	.45	p < .05	.19	p > .5		-	-	-	-
.244	.63	p < .001	.34	p < .005	.37 .19	.40	.09	.08	.00
.141	.61	p < .001	.29	p < .05	.12 .16	.10	.21	.08	.44
.133	.59	p < .001	.31	p < .05	.09 .10	.10	.30	.15	.42
.133	.41	p < .05	.16	p > .05		-	-	-	-
.203	.59	p < .001	.29	p < .05	.00 .52	.07	.09	.07	.01
.166	.51	p < .05	.19	p > .05		-	-	-	-
.133	.53	p < .05	.19	p > .05		-	-	-	-
.132	.24	p > .05	.08	p > .5		-	-	-	-
.159	.52	p < .05	.28	p < .05	.12 .15	.42	.09	.09	.22
0.103	0.46	p < .05	.12	p > .05		-	-	-	-
	<i>r</i> .158 .244 .141 .133 .133 .203 .166 .133 .132 .159	r R² .158 .45 .244 .63 .141 .61 .133 .59 .133 .41 .203 .59 .166 .51 .133 .53 .132 .24 .159 .52	\bar{r} R^2 p .158 .45 $p < .05$.244 .63 $p < .001$.141 .61 $p < .001$.133 .59 $p < .001$.133 .41 $p < .05$.203 .59 $p < .001$.166 .51 $p < .05$.133 .53 $p < .05$.132 .24 $p > .05$.159 .52 $p < .05$	\bar{r} R^2 p R^2 .158 .45 $p < .05$.19 .244 .63 $p < .001$.34 .141 .61 $p < .001$.29 .133 .59 $p < .001$.31 .133 .41 $p < .05$.16 .203 .59 $p < .001$.29 .166 .51 $p < .05$.19 .133 .53 $p < .05$.19 .132 .24 $p > .05$.08 .159 .52 $p < .05$.28	\bar{r} R^2 p R^2 p .158 .45 $p < .05$.19 $p > .5$.244 .63 $p < .001$.34 $p < .005$.141 .61 $p < .001$.29 $p < .05$.133 .59 $p < .001$.31 $p < .05$.133 .41 $p < .05$.16 $p > .05$.203 .59 $p < .001$.29 $p < .05$.166 .51 $p < .05$.19 $p > .05$.133 .53 $p < .05$.19 $p > .05$.132 .24 $p > .05$.08 $p > .5$.159 .52 $p < .05$.28 $p < .05$	\bar{r} R^2 p R^2 p P1 P2 .158 .45 p < .05	\bar{r} R^2 p R^2 p P1 P2 P3 .158 .45 p < .05	\bar{r} R^2 p P1 P2 P3 P4 .158 .45 p < .05	\bar{r} R^2 p P1 P2 P3 P4 P5 .158 .45 p < .05

FEV, Forced Expiratory Volume; FVC, Forced Vital Capacity; BD, Bronchodilator; AX, Area of Reactance; LCI, Lung Clearance Index; GINA, Global Initiative for Asthma;

Single feature CT linear statistical analysis overview. \vec{r} = Pearson's correlation coefficient; R^2 = prediction strength as variance explained; p = p-value from F statistic (test likelihood of significant linear relationship); P1 - P6 = principal components selected by Kaiser rule (above mean variance explained in PCA), in order of variance explained. Corr. (correlation) column illustrates average correlation as crude measure of relation. LR columns (3, 4, 5 and 6) represent linear regression outcome using 14 feature subset and PCA principal components as predictor variables, and non-CT (first column) attributes as target variables. Final columns (7... 12) are absolute values of coefficients in linear regression model for PCA, used with table E7 to infer connection between target variables and CT features. Coefficients for 14 feature linear regression are listed in table E6.

Table E6. Linear regression co-efficient table for linearity reduced CT subset regressions.

LR Coefficients	(absolute value) by Correlation I	Matrix (see Figure E6) I	D
-----------------	-----------------	--------------------	--------------------------	---

		3	4	7	8	9	12	15	16	17	18	19	20	21
	FEV ₁ %	.97	.49	.14	.07	.04	.22	.28	.02	.48	.07	.06	.63	.23
	FEV ₁ /FVC(%)	1.4	.64	.29	.28	.02	.31	.23	.13	.35	.13	.49	.55	.02
	Pre-BD FEV ₁	1.5	.80	.38	.10	.17	.02	.14	.45	.60	.21	.41	.45	.11
Variable	Post-BD FEV ₁	1.4	.72	.35	.05	.11	.04	.15	.48	.61	.22	.46	.32	.18
t Va	%BD+/-	.80	.57	.29	.23	.29	.05	.13	.07	.21	.18	.06	.59	.22
Target	R5-R20	.80	.83	.41	.04	.44	.09	.26	.02	.21	.03	.59	.03	.28
LR 1	AX	1.0	.89	.43	.16	.42	.15	.16	.09	.19	.08	.71	.12	.27
	LCI	1.1	1.1	.05	.05	.21	.15	.15	.14	.05	.06	.11	.36	.51
	S_{acin}	.98	.95	.49	.07	.12	.23	.03	.13	.33	.01	.64	.20	.53
	GINA	1.2	.41	.41	.21	.10	.37	.42	.19	.27	.28	.11	.49	.28
												-		

LR, Linear Regression; FEV, Forced Expiratory Volume; FVC, Forced Vital Capacity; BD, Bronchodilator; AX, Area of Reactance; LCI, Lung Clearance Index; GINA, Global Initiative for Asthma.

Absolute value of linear regression coefficients over all 14 features selected for raw value linear regression. Refer to table E7 for linking ID numbers (heading row) to CT features. Each predictor feature (column) has highest occurring value in bold. Relational strength between individual predictor and target variables may be assessed through cross-referencing cell co-ordinates with relative co-efficient magnitude for a given feature.

Table E7. Principal component loading scores for components used in linear regression.

	Attribute ID	PC1	PC2	PC3	PC4	PC5	PC6	
<u> </u>	$\overline{\Delta HU}_1$	+.31	11	+.17	03	17	+.15	
ΔНΩ	std(ΔHU) ₂	+.31	+.10	+.13	+.19	+.08	+.11	
	ellMajL ₃	+.33	+.09	01	+.06	+.12	+.06	_
	ellMinL ₄	+.17	+.33	24	01	+.17	+.04	
Ţ	ellArea 5	+.27	+.23	12	+.05	+.16	+.03	
ELL	ellAngle 6	25	+.09	30	12	+.15	07	
	RLmeanDiff 7	+.17	21	+.12	21	+.34	15	
ນ	RLstdDiff ₈	05	19	+.04	24	+.63	04	
пс	RLsizeRat 9	+.12	25	00	19	+.34	+.00	
-	%PRM ^{Norm} ₁₀	+.27	02	29	24	15	+.10	
	%PRM ^{fSAD} 11	32	+.05	+.08	+.17	+.15	16	
PRM	%PRM ^{Emph} 12	19	+.01	+.42	+.23	+.11	07	
PR	%PRM ^{Uncl} 13	+.18	10	+.44	+.13	03	+.18	
	vCnt ₁₄	29	+.05	+.17	28	08	+.17	
	vCntX 15	06	+.35	+.14	22	01	+.27	
vCNT	vCntY 16	07	+.22	+.11	40	+.08	+.56	
AC A	vCntZ ₁₇	25	12	+.19	25	15	+.06	
	$std(\Delta HU)^{AP}_{18}$	14	+.16	+.04	+.41	+.34	+.32	
	$\overline{\Delta H U}^{AP}_{19}$	+.13	36	+.14	+.14	03	+.26	
	$std(\Delta HU)^{IS}_{20}$	+.19	+.03	+.30	35	09	37	
\blacktriangleleft	$\overline{\Delta H U}^{IS}_{21}$	+.07	+.38	+.23	00	+.06	27	
SAA	$\overline{\Delta H U^{IS*}}_{22}$	+.09	+.38	+.23	07	+.04	24	
	•			, /				

PC, Principal Component; PRM, Parametric Response Map; ELL, Ellipse measurements; HU, Hounsfield Unit; ILC, Inter Lung Comparison; vCNT, voxel count; SAA, Stratified Axial Analysis.

Signed loading scores in PCA over all 22 CT features, as they load onto the first 6 principal components submitted to linear regression in linear statistical analyses. Magnitudes may be considered indicative of feature (row) relational strength to principal component (column) formation, which in turn may be associatively connected to predicted variables (see table E5 far right column).

Bell et al 33

Table E8. Linear discriminant analysis based classification percentage accuracy with selectedfeature sets.

593

	S _{acin} (% accuracy)	R5-R20 (% accuracy)
Clinical characteristics	63	77
Post BD spirometry	73	69
CT biomarkers	79	83
Clinical + Spirometry	75	77
Clinical + CT	81	87
Spirometry + CT	79	85
Clinical + Spirometry + CT	85	85

LEGEND: Data expressed as percentage of subjects correctly classified by best possible linear

discriminant from linear discriminant analysis. Feature sets use attributes representing clinical (age,

smoking history [pack years] and weight [kg]), spirometry (FEV₁% and FEV₁/FVC(%)) and CT (ellMinL, ellArea, std(Δ HU), RLsizeRat, vCntX, vCntZ, $\overline{\Delta}\overline{H}\overline{U}^{AP}$, std(Δ HU)^{IS} and $\overline{\Delta}\overline{H}\overline{U}^{IS}$ [features differentiating S_{acin}

594

595 596

597598599

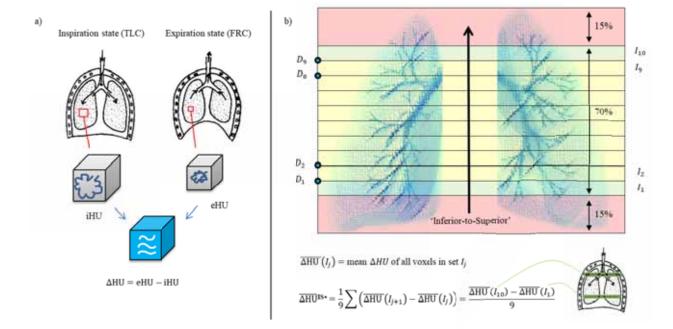
600

or R5-R20]) data.

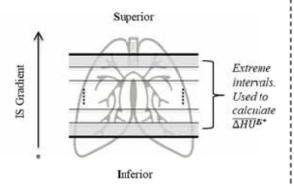
Table E9. Linear discriminant analysis coefficients on combined feature sets.

603			
nus	~	Λ	つ
	n	u	•

	Sacin	R5-R20
Clinical characteristics		
Age (completed years)	-0.014	+0.010
Weight (kg)	+0.028▼	+0.014
Smoking (pack years)	-0.0060	-0.016
Post BD spirometry		
FEV ₁ %	+0.017	+0.022
FEV ₁ /FVC(%)	+0.014	+0.013
CT biomarkers		
std(ΔHU)	-0.021	+0.0056
ellMinL	+0.012	+0.044▼
ellArea	-0.032▲	-0.080▲
RLsizeRat	-0.00040	+0.014
vCntX	-0.00073	-0.015
vCntZ	-0.022	+0.0047
$\overline{\Delta H U}^{\mathbf{AP}}$	+0.0069	-0.00054
$std(\Delta HU)^{IS}$	-0.011	+0.028
$\overline{\Delta H U}^{IS}$	-0.0020	-0.022


LEGEND: Coefficients of linear discriminant analysis (LDA) applied across all selected features. S_{acin} or R5-R20 below mean groups are projected in positive direction. Above mean groups are projected in negative direction. Thus more positive coefficients may be associated with less ventilation heterogeneity (VH), and more negative coefficients with more VH. Extremes of greatest magnitude are emphasised in **bold**. Superscript \triangle indicates most associated with **high VH** (relatively most negative coefficient), and \blacktriangledown with **low VH** (relatively most positive coefficient).

Bell et al 35


612613	Figure legends
614	Figure E1. ΔHU derivation and inferior-superior SAA technical illustration. A, rationale behind assumption that
615	simple change in HU (from inspiration to expiration), approximately change in local volume, is associated with
616	ventilation / gas release. B, exemplar demonstration of SAA applied to the inferior-superior axis, and precise
617618	definition of $\overline{\Delta HU}^{IS*}$, notably being a scaled (1/9) difference in average HU between polar voxel intervals.
619	Figure E2. Decile based ΔHU gradient measures and combinatorial voxel features. A, inferior-to-superior (anterior-
620	to-posterior) stratification of lungs, with 15% (10%) of range trimmed at ends; $\overline{\Delta HU}^{IS*}$ calculated as difference of
621	extreme (shaded) strata. B, combinatorial features, based on coordinate axis ranges and voxel counts between
622	segmented left and right lungs (lung asymmetry); subject illustrated chosen for clear case of visual asymmetry.
623	
624	$ \textbf{Figure E3.} \ \text{Box plot illustration of ellipse area and } \% PRM^{fSAD} \ \text{association with VH markers } S_{acin} \ \text{and } R5\text{-}R20; $
625	groups formed about median value of VH markers. Apparent lack of group separation relative to splitting on median
626	FEV1/FVC% (figure 1).
627	
628	Figure E4. Anterior-to-posterior VH marker focused polar analysis. SAA deciles plotted as mean and standard
629	deviation (bar lengths) of HU changes, highlighting significant regions related to both S_{acin} and R5-R20.
630	
631	Figure E5. Comparison of ΔHU in PRM ^x voxel populations, in $\overline{\Delta HU}^{IS*}$ low and high tertile, and illustration of
632	relationship between ΔHU and PRM^x on exemplar JDH. A, $\overline{\Delta HU}^{IS*}$ low tertile boxplots of ΔHU by $PRMx$ class. B,
633	$\overline{\Delta HU}^{IS*}$ high tertile boxplots of ΔHU by PRM ^x class. Variance appears reduced in B relative to A (common
634	observation: disease brings pressure to biological system, leading to reduced variance). C, illustration of ΔHU
635	projection overlaid onto an exemplar JDH (same case as panel A in Figure 1). Essentially it is a projection (x,y) in
636	2D onto x-y in 1D. Line of no change (x=y) plotted in green, and relayed over boxplot figures in A and B. Reader
637	should be able to appreciate reason for ordering of boxplots in A and B, e.g. PRM^{Uncl} has highest ΔHU , as this
638	quadrant of the JDH lies furthest in the positive ΔHU direction (similar reasoning can be used for PRM ^{fSAD}).
639	

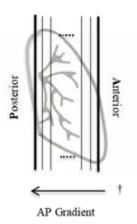
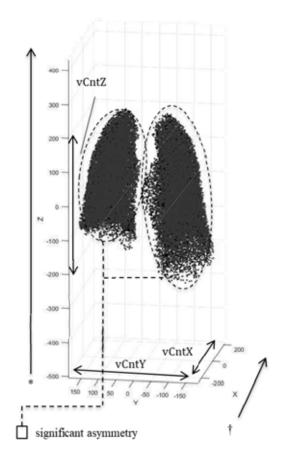
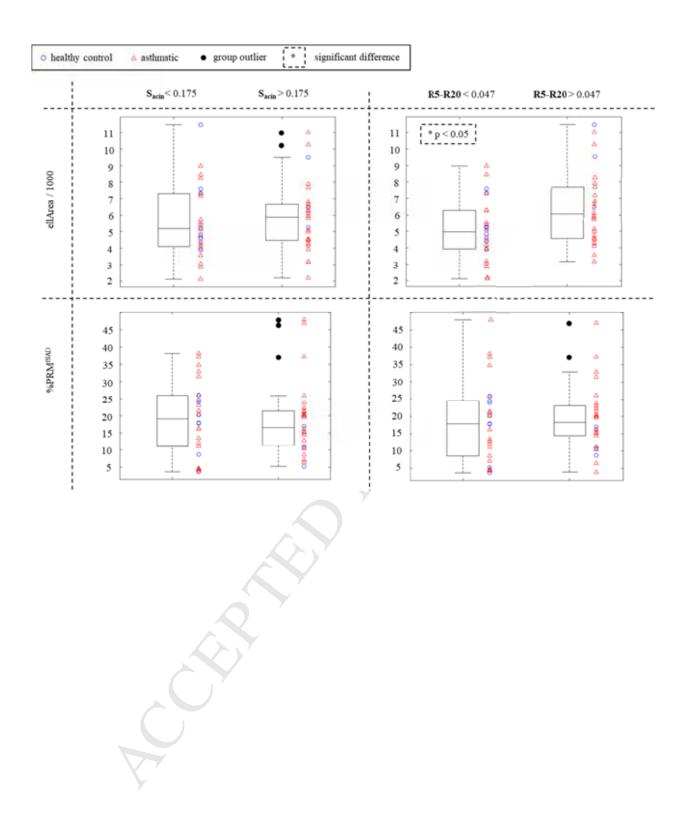
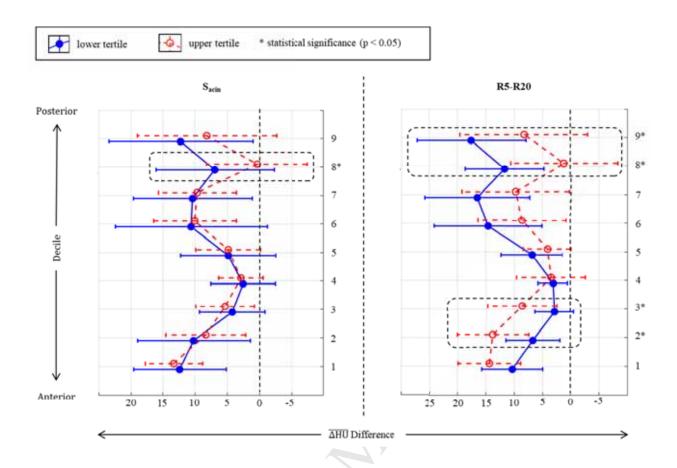
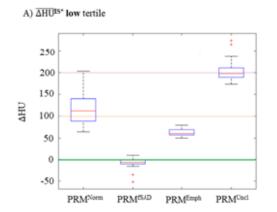

Bell et al 36

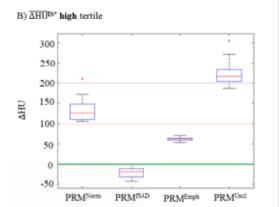
Figure E6. Complete original data matrix correlation visualization and reduction technique. A, illustration of
 absolute correlation matrix, annotated with feature set nomenclature, and indicating features selected for raw value
 linear regression. B, pairwise-correlation visualization and collinearity reduction.

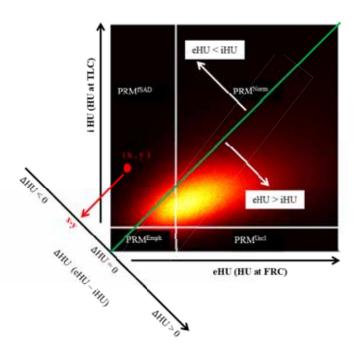


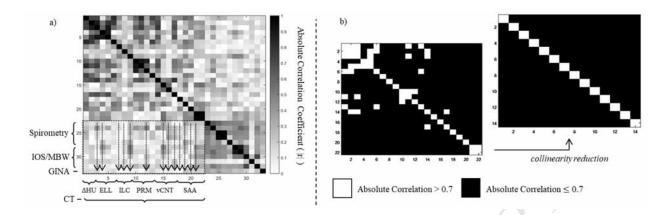

a) Regional PRM, measuring gradients of ΔHU.






b) Combinatorial features, including inter-lung asymmetry.





C) Relating PRM features with ΔHU function (via JDH visualisation)

