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ABSTRACT 55 

BACKGROUND: Asthma is a disease characterised by ventilation heterogeneity (VH). A 56 

number of studies have demonstrated that VH markers derived using impulse oscillometry (IOS) 57 

or multiple breath washout (MBW) are associated with key asthma patient related outcome 58 

measures and airways hyper responsiveness. However the topographical mechanisms of VH in 59 

the lung remain poorly understood. 60 

61 

OBJECTIVES: We hypothesised that specific regionalisation of topographical small airway 62 

disease would best account for IOS and MBW measured indices in patients. 63 

64 

METHODS: We evaluated paired expiratory/inspiratory computed tomography in a cohort of 65 

asthmatic (n=41) and healthy volunteers (n=11) to understand the determinants of clinical VH 66 

indices commonly reported using IOS and MBW. Parametric response mapping (PRM) was 67 

utilised to calculate functional small airways disease marker PRMfSAD and Hounsfield unit (HU) 68 

based density change from total lung capacity to functional residual capacity ( ); gradients of 69 

, in gravitationally perpendicular (parallel), inferior-superior (anterior-posterior) axes, were 70 

quantified.  71 

72 

RESULTS:  gradient in the inferior-superior axis provided the highest level of 73 

discrimination of both Sacin and R5-20.  Patients with a high inferior-superior  gradient 74 

demonstrated evidence of reduced specific ventilation in the lower lobes of the lungs and high 75 

levels of PRMfSAD. A computational small airway tree model confirmed that constriction of 76 

gravitationally dependant lower zone small airway branches would promote the largest increases 77 
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in R5-R20. Ventilation gradients correlated with asthma control and quality of life but not with 78 

exacerbation frequency. 79 

80 

CONCLUSIONS: Lower lobe predominant small airways disease is a major driver of clinically 81 

measured VH in adult asthma.82 

83 

WORD COUNT: 248  84 
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CLINICAL IMPLICATION 85 

Asthmatics with abnormal small airways ventilation heterogeneity measurements demonstrated 86 

small airways disease and reduced ventilation in the inferior regions of the lung, which may 87 

impact the effectiveness of inhaled therapies. 88 

89 

CAPSULE SUMMARY 90 

This study analyses spatially localised ventilation heterogeneity in adult asthma using CT 91 

imaging and modelling, and presents evidence of inferior to superior ventilation gradient reversal 92 

in the disease pathogenesis. 93 

94 

KEY WORDS 95 

Asthma, Computed tomography, Parametric Response Mapping, Imaging, Visualisation, Small 96 

airway physiology, Biomarker, 97 

98 

ABBREVIATIONS99 

LCI: Lung Clearance Index 100 

FRC: Functional Residual Capacity 101 

TLC: Total Lung Capacity 102 

HU: Hounsfield Unit 103 

eHU: HU at expiration state (FRC) 104 

iHU: HU at inspiration state (TLC) 105 

HU: eHU – iHU (regional density change between FRC and TLC) 106 

MBW: Multiple Breath Washout 107 
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IOS: Impulse Oscillometry 108 

SAA: Stratified Axial Analysis 109 

VH: Ventilation Heterogeneity 110 

Sacin: Acinar VH, measured using phase three slope analysis of multiple breath washout data 111 

SF6: Sulphur hexafluoride 112 

R5-R20: Resistance at 5 Hz minus resistance at 20Hz measured, measured using impulse 113 

oscillometry 114 

LDA: Linear Discriminant Function Analysis 115 

PCA: Principal Components Analysis 116 

PRM: Parametric Response Mapping 117 

fSAD: Functional Small Airways Disease 118 

GINA: Global Initiative for Asthma 119 

DICOM: Digital Imaging and Communications in Medicine120 
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INTRODUCTION 121 

Asthma is characterised by spatial heterogeneity in disease and consequent heterogeneity in 122 

airways function and lung ventilation [1, 2]. Ventilation heterogeneity (VH) may be captured 123 

using imaging approaches that can quantify and regionalise lung ventilation, such as hyper 124 

polarised 3-Helium/129-Xenon magnetic resonance imaging (MRI), Oxygen enhanced MR and 125 

single photon emission computed tomography (SPECT-CT) [3-7]. Additionally VH can be 126 

measured clinically in patients using physiological tidal breathing techniques that measure 127 

heterogeneities in lung ventilation (captured using multiple breath washout (MBW) [8, 9]) and 128 

mechanical behaviour (captured using impulse oscillometry (IOS) [10]). International guidelines 129 

for quality control and assurance of tidal breathing markers of VH derived from IOS and MBW 130 

have been proposed [12, 13], supporting their potential role as tools to study early airways 131 

disease. 132 

133 

We have previously identified that two specific markers of VH, R5-R20 and Sacin, derived from 134 

IOS and MBW respectively, are associated with impaired asthma control, quality of life and 135 

exacerbations [9, 11]. These observations have been replicated by other groups in parallel studies 136 

of adult asthma [14, 15].  Additionally we have previously demonstrated, using computational 137 

small airway models and diffusion MRI, that IOS derived R5-R20 and MBW derived Sacin 138 

values, are anatomically grounded measures of small and acinar airway anatomical disease 139 

respectively, in adult asthmatics [9]. 140 

141 

Heterogeneity of ventilation within the lungs is likely to be influenced by both gravitational 142 

effects and airway branching, as well as other factors that affect regional lung compliance 143 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
9 

Bell et al 

(reviewed in [16]). However little is known about the spatial lung determinants of clinical 144 

measurements of VH derived using MBW and IOS. This is important as imaging tools are costly, 145 

difficult to implement in clinical trials and standardise across centres; physiological tools, if 146 

appropriately validated, could serve as simple surrogates of disease heterogeneity captured by 147 

sensitive imaging techniques. 148 

149 

Computed tomography (CT) of the lungs has been exploited widely to study lung structure and 150 

function relationships in asthma [17, 18]. More recently image registration applied to inspiratory 151 

and expiratory CT imaging has been utilised to derive indices of functional small airways disease 152 

[19-22]. One specific and widely deployed approach is parametric response mapping (PRM) [20-153 

22]. The PRM approach offers the potential to characterise spatial deformation of a voxel 154 

between different acquired CT lung volumes, e.g. functional residual capacity (FRC) and total 155 

lung capacity (TLC), over the entire lung, and hence the potential to identify spatial mechanisms 156 

of commonly measured MBW and IOS VH markers. 157 

158 

The purpose of this study was to use a range of global and regional airway density change (from 159 

functional residual capacity to total lung capacity) imaging biomarkers to understand how spatial 160 

variations in VH may contribute to widely reported clinical measurements of VH and small 161 

airways disease, captured by IOS and MBW in adult asthma.  162 

163 

Specifically we hypothesised that abnormal regional variations in HU would be a major 164 

contributor to abnormal IOS and MBW physiological indices of VH in the small airways and 165 

sought to test this hypothesis using a functional CT imaging and computational simulation study.166 
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METHODS 167 

168 

(i) SUBJECTS 169 

The total population for this study consisted of 52 subjects, 41 adult asthmatic and 11 healthy 170 

controls. Asthmatic subjects were recruited from Glenfield Hospital in Leicester, UK.  171 

Asthma was defined by a clinician diagnosis with one or more of the following objective 172 

criterion (i) bronchodilator reversibility of FEV1 to 400 mcg inhaled salbutamol of  12 % and 173 

200 mls (17 of 41 asthmatics), (ii) Methacholine PC20  16 mg /ml (11 of 41 asthmatics) or (iii) 174 

peak flow variation of  20% over a 2 week period (13/41).   175 

176 

Asthma severity was classified according to the current Global Initiative for Asthma (GINA) 177 

treatment steps [23].  Severe asthmatics within the cohort had similar lung function (post 178 

bronchodilator FEV1/FVC) to previously reported severe asthma cohorts in Leicester, UK [24], 179 

but higher average post bronchodilator FEV1% predicted values. 180 

Aged matched healthy volunteers were recruited via local advertising and staff with normal 181 

airway physiology and no features of respiratory disease. All subjects with asthma had been free 182 

from exacerbations for at least 6 weeks prior to study entry.  183 

184 

All subjects (asthmatic and healthy volunteers) were non-current smokers, however due to the 185 

known association of smoking and small airways disease, pack year smoking exposure was not 186 

an exclusion criterion. Only 3/41 patients with asthma had a smoking history of more than 15 187 

pack years.   188 

189 
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190 

(ii) ETHICAL APPROVAL                                                                                                                 191 

The study protocol was approved by the National Research Ethics Committee – East Midlands 192 

Leicester (approval number 08/H0406/189), and all subjects gave their written informed consent.  193 

194 

(iii) VISITS 195 

Clinical and physiological assessment was performed in the following sequence and over 1-2 196 

study visits, no more than 1 week apart. Asthma control was characterised using the modified 6 197 

item Juniper Asthma Control Questionnaire (ACQ-6) [25] and Asthma quality of life using the 198 

standard 32 question Juniper Asthma Quality of Life Questionnaire (AQLQ) [26]. Exacerbations 199 

were defined according to ATS/ERS consensus criteria [27]; a moderate-severe exacerbation is 200 

defined as one or more of the following: (i) worsening of asthma that requires use of systemic 201 

steroids or an increase in systemic steroids (for patients already receiving maintenance oral 202 

steroids) for 3 or more days, or (ii) an admission to hospital or an emergency department 203 

requiring systemic steroids. 204 

(iv) LUNG FUNCTION MEASUREMENTS205 

All lung function tests were performed following the administration of 400 mcg of inhaled 206 

salbutamol. Spirometry was performed according to ATS/ERS standards [28]. 207 

208 

Impulse oscillometry (IOS) was performed in triplicate as previously reported and in accordance 209 

with international guidelines [12, 13]. Multiple breath washout (MBW) was performed according 210 
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to current guidelines [13] by using the sulphur hexafluoride (SF6) wash-in method as previously 211 

described [11]. SF6 was chosen as the inert tracer gas because of its heavy molar mass and based 212 

on previous simulation data from Dutrieue et al [29] suggesting that phase III slope sensitivity to 213 

SF6 is maximal at the level of the alveolar duct. Lung clearance indices, Scond, and Sacin, were 214 

calculated by using custom software written with TestPoint (Measurement Computing Corp, 215 

Norton, Mass) as previously described [9, 11]. Body Plethysmography was performed with a 216 

constant volume plethysmograph, according to the ATS/ERS recommendation [30]. A minimum 217 

of three acceptable tests were performed and the test ended when the repeatability criteria was 218 

achieved (FRC within 10% between highest and lowest value). Carbon monoxide uptake in the 219 

lung was determined using the single-breath method, according to standard guidelines [31]. 220 

Alveolar volume (VA) and the carbon monoxide transfer coefficient (KCO) were calculated, 221 

222 

(vi) CT IMAGING AND IMAGE ANALYSIS 223 

Volumetric whole-lung scans were obtained following the administration of 400 mcg of inhaled 224 

Salbutamol  at FRC and TLC in patients lying supine. CT images were quantified using a panel 225 

imaging biomarkers (TABLE E1, online supplement).  226 

227 

PRM was performed automatically using Imbio’s Lung Density Analysis (LDA™) software 228 

application (Imbio, LLC, Minneapolis, MN) for all CT data, with registrations performed from 229 

TLC to FRC, on segmented voxel sets excluding the major airways (up to 3-4 generations from 230 

the trachea). Details on the PRM analysis have been previously reported [19-22]. Relative lung 231 

volumes of normal parenchyma (PRMNorm), fSAD (PRMfSAD), emphysema (PRMEmph) and 232 

unclassified PRMUncl were calculated by normalising the sum of all like-classed voxels by the 233 
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total lung volume. Additionally features of the PRM joint density histogram (ellipse area, minor 234 

axis, major axis and angle to horizontal) were derived in MATLAB 2015a (MATLAB Release 235 

2015a, The MathWorks, Inc., Natick, Massachusetts, United States) [FIGURE 1A]. 236 

237 

A novel algorithm for evaluating regional density change gradients in a given direction, termed 238 

stratified axial analysis (SAA), was developed  from per voxel TLC to FRC density change 239 

( HU, see FIGURES E1-E2A). This allowed us to investigate how ventilation, approximated 240 

by HU, varied with respect to axes of interest; particularly the anterior-posterior (approximately 241 

parallel to gravity) and inferior-superior (approximately perpendicular to gravity). See FIGURE 242 

2C and 2D. Straight line fitting by ordinary least squares criterion was applied to produce 243 

std( HU)AP, AP, std( HU)IS and IS as the gradients of fitted lines to SAA derived 244 

intervals [FIGURE E1], where superscript AP (IS) refers to axis used, anterior-to-posterior 245 

(inferior-to-superior); std refers to standard deviation, and  refers to arithmetic mean of . 246 

IS* was calculated as the mean of  values across every decile, equivalent to scaled (1/9) 247 

difference of extreme interval averages, in the inferior-superior direction. N.B. Additional 248 

markers classifying lung size asymmetry were also derived using custom scripts in MATLAB 249 

[FIGURE E2B]. 250 

251 

(vii) COMPUTATIONAL SIMULATIONS OF REGIONALISED BRONCHOCONSTRICTION 252 

A detailed outline of the computational models is provided in the online supplement (see section 253 

M3.0 in methods). Briefly, a computational model of airway impedance was designed, based on 254 

previous models in the literature to provide simulations of IOS derived R5-R20. In short, a 1D 255 

wave equation was used to estimate the impedance of each branch [32], with total impedance 256 
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being calculated through summation of parallel and series contributions [33]. Each terminal 257 

bronchiole was subtended by a constant-phase viscoelastic model parameterised using data from 258 

the literature [34]. The models were adjusted for potential confounding upper airway shunting 259 

[35-36]. 260 

261 

Simulations of total lung resistance over the frequency range (1-25Hz) were performed on the 262 

healthy conducting airway tree created through a combination of CT segmentation (to an average 263 

generation of 6), and algorithmic generation (to an average generation of 16) as previously 264 

reported [37]. For each simulation, constrictions were applied to either the lowest or highest 25% 265 

of small airways (  2mm in diameter), relative to the supine or orthostatic position, to simulate 266 

the effects of gravitationally dependant airways. The constriction rates (the percentage an airway 267 

radius was reduced by, denoted c) were drawn uniformly from the range (0-70%), and applied 268 

homogeneously, using the same c for all airways, or heterogeneously, drawing each constriction 269 

from the normal distribution with mean c, and standard deviation 0.2c. For each simulation the 270 

output R5-R20 was calculated. 271 

272 

STATISTICAL ANALYSIS 273 

Statistical analyses were performed in MATLAB 2015a. Kolmogorov-Smirnov tests were 274 

applied to check likelihood of a normal distribution. Binary group comparisons were performed 275 

using two-sample t-test (parametric data) and Mann-Whitney U-test (non-parametric data); for 276 

multiple group comparisons one-way ANOVA test was utilised (parametric data) and Kruskal-277 

Wallis test (non-parametric data). Multiple-comparison procedures were performed with Tukey’s 278 

honest significant difference criterion. Subgroups were determined by GINA treatment steps, and 279 
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according to mean Sacin and R5-R20. 16 subjects (roughly one third of total population) at each 280 

end of R5-R20 and Sacin distributions were utilised in tertile polar analysis, at SAA inferior-281 

superior deciles, where statistical significance was determined using two-sided Wilcoxon Rank-282 

Sum test. 283 

284 

Average Pearson’s correlation co-efficient ( ) is reported for simple linear correlations.                      285 

CT biomarkers sets were defined using Kaiser-Rule determined principal components analysis 286 

(PCA) and utilised for linear regression analyses to evaluate correlation with clinical traits and 287 

physiology. Linear discriminant analysis (LDA) was applied to determine class separation of VH 288 

markers Sacin and R5-R20 using combinations of CT imaging features, clinical features and 289 

spirometry. Negative binomial regression was used to evaluate the relationship between 290 

exacerbations and imaging biomarkers and Pearson correlations for association between asthma 291 

control/quality of life and imaging ventilation gradient biomarkers. 292 

 A p-value of p < 0.05 was utilised to define statistically significant results in all tests.293 

  294 
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RESULTS 295 

Clinical characteristics of the population are outlined in TABLE 1. Asthmatic patients were 296 

matched for age and sex to healthy volunteers. The asthmatics population had significantly 297 

greater eosinophilic airway inflammation and physiological evidence of airways dysfunction and 298 

VH when compared to healthy volunteers. There were no significant differences in VH markers 299 

R5-R20 and Sacin across GINA treatment intensity groups. Of the 3/41 asthmatic patients with a 300 

smoking history of more than 15 pack years, all had a PRM emphysema (PRMEmph) score that 301 

was less than the mean + 1.96 SD [5% PRMEmph] in a healthy aged matched population of 98 302 

subjects [38] and preserved KCO % predicted values [TABLE 1].The three patients all had 303 

evidence of asthma objectively (one had 78% FEV1 reversibility, one had a PC20 methacholine of 304 

2 mg/ml, one had 49% FEV1 reversibility). Furthermore of these three patients only 2 patients 305 

demonstrated a post BD FEV1/FVC < lower limit of normal (LLN ) (63% predicted in both 306 

patient respectively with a post BD FEV1% of 72% and 57% respectively).307 

308 

Imaging biomarkers of global lung VH are not associated with small airway VH markers 309 

R5-R20 and Sacin. 310 

TABLE E1 in the online supplement outlines the formal definition of all of the CT scan derived 311 

imaging biomarkers. TABLE E2 in the online supplement presents comparisons of the global 312 

and regional imaging biomarkers comparing asthmatic and healthy cases =across the spectrum of 313 

GINA treatment intensity.  314 

315 

Asthmatic cases demonstrated significantly smaller PRM ellipse major diameters and smaller 316 

ellipse angles and had narrower distributions (standard deviations) of voxel HU change from 317 
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FRC-TLC (p<0.05) when compared to controls – indicative of less overall VH.  318 

319 

Asthmatics did not differ from controls with respect to standard PRM markers (PRMNorm, 320 

PRMfSAD and PRMEmph) [TABLE E2].  In contrast patients who demonstrated FEV1/FVC (%) 321 

less than the median population value  (primarily asthmatics) had higher levels of PRMfSAD and 322 

smaller PRM global ellipse areas (suggestive of less global heterogeneity) when compared to 323 

patients with FEV1/FVC( %)  than the median value (p<0.05). [FIGURE 1 B-C]. These 324 

observations were not replicated with the small airway indices of VH R5-R20 and Sacin325 

[FIGURE E3] and indicate that global PRM indices in the lung track with spirometry defined 326 

airflow obstruction in contrast to small airway physiological indices. 327 

328 

Imaging biomarkers of regional VH are major determinants of small airway VH markers 329 

R5-R20 and Sacin. 330 

To evaluate the relationship between regional imaging measures and small airways physiology, 331 

the population was split into Low/High sub groups (Low  mean, High > mean) according to 332 

absolute Sacin and R5-R20 values. TABLES 2 and E3 (clinical features) and TABLE E4 333 

(imaging markers) summarise clinical and imaging features according to this stratification. 334 

Healthy cases predominated in the Sacin Low (9/11) and R5-R20 Low (8/11) groups, and 335 

asthmatic cases in the high groups. 336 

337 

Regional analysis identified that the gradient markers evaluating inferior-superior axis FRC-TLC 338 

deformation ( IS and IS*) slopes were the only markers that differed significantly in 339 

patients in the upper tertile of Sacin and R5-R20 when compared to the lower tertile (p<0.05) 340 
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[TABLE 2]. Specifically for both Sacin and R5-R20 High cases, the ventilation gradient was 341 

reversed in the inferior-superior axis ( IS and IS*), such that ventilation was significantly 342 

reduced at the base of the lung.  This is further exemplified in FIGURE 3, which presents 343 

ventilation gradient maps from the base to the apex of the lung comparing cases within the upper 344 

and lower tertiles of R5-R20 and Sacin respectively, and two exemplar subjects with and without 345 

ventilation gradient reversal. A similar but markedly less pronounced gradient change could be 346 

seen in the posterior regions of the lower lobes (anterior-posterior axis ( AP))  when 347 

comparing patients with high and low clinical levels of VH (R5-R20, Sacin),  demonstrating 348 

reduced posterior ventilation in the lower lobes [FIGURE E4].  349 

350 

Further examination [FIGURE 4] of the distribution of HU and regional PRMfSAD, in cases 351 

with a high and low IS*
, identified that patients with high IS* (ventilation gradient 352 

reversal) appeared to have focused regionalisation of lung disease (particularly but not 353 

exclusively in the lower lobes). In contrast patients with a low IS* had more homogeneous 354 

distributions of both HU and PRMFSAD. 355 

356 

15/16 IS* high cases had abnormal regional ventilation in contrast to 5/16 IS*low cases. 357 

Regionalisation of disease in all of these cases was in the lower lobes, generally focussed at the 358 

lung bases (see arrows). A chi squared analysis of the proportions of cases with abnormal 359 

regionalisation in each group demonstrated a p-value of p<0.0001. HU and PRM classifications 360 

correlated imperfectly [FIGURE 4], however lower HU voxels were consistently associated 361 

with PRMfSAD [FIGURE E5].362 

363 
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Imaging gradient biomarkers and clinical disease 364 

365 

We examined the relationship between the imaging gradient biomarkers and clinical disease 366 

expression [TABLE 2]. We found that anterior posterior gradient imaging biomarker std 367 

( HU)AP correlated significantly with both ACQ-6 (r = 0.33, p=0.039) and AQLQ (r=-0.34, 368 

p=0.02). We also found a significant association for the inferior-superior gradient imaging 369 

biomarker ( IS*) and asthma quality of life (r=-0.39, p<0.01) but not asthma control. None of 370 

the gradient biomarkers were associated with exacerbation frequency. 371 

372 

Discrimination of Sacin and R5-R20 with imaging markers of density change ( HU) 373 

gradients and lung size asymmetry374 

FIGURE 5 and TABLE E8 presents the results of linear discriminant analysis (LDA) which 375 

sought to identify the relative contribution of spatial CT derived VH biomarkers, potential  376 

clinical contributors/confounders and spirometry to physiological VH indices Sacin and R5-R20. 377 

LDA demonstrated that the CT markers of HU in the inferior-superior and anterior-posterior 378 

axes as well as right to left lung size asymmetry provided the greatest overall discriminatory 379 

value of small airway physiological indices, confirming that these metrics contained most of the 380 

information content of the clinical small airway physiological indices.  381 

382 

Computational modelling validation of CT imaging PRM gradients383 

Computational modelling of regional bronchoconstriction in small airway patient specific 384 

conducting airway models [FIGURE 6] identified that increasing constriction of the small 385 

airways (  2mm diameter), that would be most influenced by gravity in the supine posture (lower 386 
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lobe and posterior), promoted profound elevations in R5-R20 that were not seen with orthostatic 387 

simulations (i.e. constriction of small airways that would be most influenced by gravity in the 388 

orthostatic posture). Furthermore, similar regional constriction in the upper lobes did not 389 

promote the same difference on R5-R20 when considering orthostatic and supine postures. The 390 

computational models therefore provided further insight into the associations between lower lobe 391 

regional focus of disease and R5-R20 response seen in the clinical imaging study [FIGURES 3-392 

4].  393 
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DISCUSSION394 

We have performed the first quantitative functional CT imaging study to understand the spatial 395 

determinant of small airway VH markers R5-R20 and Sacin in adult asthmatics and healthy 396 

volunteers. Furthermore we have coupled CT imaging with computational simulation of small 397 

airway physiology to understand the impact of disease regional pattern upon abnormal 398 

physiological indices of VH. 399 

400 

Using a panel of imaging biomarkers [TABLE E1], derived from inspiratory and expiratory CT 401 

scans, we have identified that gradients in HU from the base to apex of the lung are a key 402 

determinant of both physiological measurements. Notably there is a reversal of the normal 403 

ventilation gradient in this axis, such that HU is reduced at the base of the lung in patients with 404 

asthma and indeed occasionally in healthy volunteers with abnormal Sacin and R5-R20 values. In 405 

addition we have identified that other mechanisms including anterior-posterior HU gradient 406 

decrease and other nonspecific regionalisation of HU may underpin abnormal R5-R20 and Sacin407 

indices in adult asthma. We found broadly similar but not identical results with the widely 408 

reported markers of small airways disease PRMfSAD. Computational small airway tree models 409 

were then used to confirm the impact of gravitationally dependant lower lobe disease regional 410 

focus on IOS marker R5-R20, and matched our observation closely.  411 

412 

Previous studies have examined the difference in VH, between asthmatic and healthy subjects, 413 

using hyperpolarized 3HE MRI [3], and another linked hyperpolarized 3He MRI with 414 

computational models to examine airway constriction in asthma [39].We are also aware of one 415 

study in bronchiectasis that attempted to correlate global burden of CT disease with 416 
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physiological indices of VH [40]. This study used correlations and regressions to identify 417 

associations between MBW lung clearance index [LCI] (a global marker of VH) and a CT 418 

scoring of the extent of bronchiectasis 419 

420 

Our study uses quantitative functional CT derived indices and specifically sheds insight into the 421 

topographical origins of abnormal R5-R20 (IOS derived) and Sacin (MBW) derived VH markers. 422 

Furthermore our observations, coupled with computer simulations [FIGURES 3-4, 6] suggest 423 

that regionalisation rather than global disease burden may be key determinants of Sacin and R5-424 

R20 in asthma. 425 

426 

Our results are clinically important for a number of reasons. Reduced basal ventilation in asthma 427 

may be associated with reduced effective deposition of inhaled drugs, which may be a factor in 428 

poor asthma control reported in patients on ICS/LABA combination therapies in European and 429 

other populations [41]; this hypothesis would require testing with future studies. Additionally our 430 

findings are important as they are the first to use spatial and functional information derived from 431 

quantitative PRM based CT imaging to shed insight into empirical lung physiological 432 

measurements R5-R20 and Sacin that are widely reported as small airway dysfunction detection 433 

tools.  434 

435 

Interestingly we found few differences in the PRM whole lung averages for functional small 436 

airways disease, emphysema and healthy (normally deforming lung voxels) in patients with and 437 

without high levels of clinical VH derived from MBW and IOS. In contrast average whole lung 438 

PRM values were associated with airflow obstruction measured using spirometry. The latter 439 
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observations highlight both the importance of using the full information content of spatial 440 

imaging when trying to understand the topographical basis of VH indices, and the fact that 441 

expiratory flow limitation in asthma is a maker of total burden of lung unit damage rather than 442 

the heterogeneity of damage. 443 

444 

A likely factor of the observed ventilation gradients in the lung is the ‘slinky’ effect, which 445 

describes the compression of a slinky coil parallel to the gravitational field under normal 446 

gravitational conditions, isogravity and hypergravity [42]. As the dependant regions of the lung 447 

are compressed by the weight of the lung above them, they have lower end expiratory volume 448 

and the surrounding pleural pressure is more positive (in comparison to the apex), consequently a 449 

given respiratory effort and change in pleural pressure will lead to a larger increase in volume.  450 

451 

Other factors responsible for ventilation and perfusion gradients are likely to include lung elastic 452 

recoil, nonlinear pressure-volume relationships, the influence of large vessels, and airways 453 

closure within dependant airways. These effects have been reported in imaging studies using 454 

both protocol MRI approaches [43] and more recently a CT imaging lung deformation study in 455 

severe asthma [19]. 456 

457 

The finding of a reverse HU gradient at the base of the lung in patients with abnormal Sacin and 458 

R5-R20 values, and asthma, may occur as consequence of a number of factors in asthmatic 459 

patients. Specifically basal airways may close at FRC in asthma, particularly when supine, and 460 

this may reduce the specific ventilation to the lung base; one study observed results to this effect 461 

in airway constriction due to methacholine challenge [44]. Additionally the average BMI in our 462 
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cohort was 30 kg/m2, fat distribution in the abdomen and near the base of the lung may alter 463 

diaphragmatic and basal airway mechanics and promote airways closure. Additionally it is 464 

possible that there is preferential remodelling of the airways in the lung base in asthmatics. 465 

However this would need to be confirmed by pathological studies. Similar effects including the 466 

impact of gravity may promote the smaller anterior-posterior gradient decrease seen in patients 467 

with clinical VH. It is important to note that the linear discriminant analysis identified that 468 

ventilation gradients were the best discriminant of R5-R20 independent of potential confounders 469 

such as BMI, smoking and age. 470 

471 

The current findings in this report add to our previous observations which have identified that 472 

both the degree and heterogeneity of small airway obstruction promote abnormal R5-R20 values 473 

[45], and that Sacin may be driven by asymmetries in the lung at length scales that equate to the 474 

level of the alveolar duct [9]. Specifically here we show that ventilation gradients in the lung are 475 

a major discriminant factor associated with both abnormal IOS derived R5-R20 and MBW 476 

derived Sacin values. 477 

478 

There are a number of limitations to our findings that warrant further evaluation. Firstly our 479 

study included asthmatics with a smoking pack year history of more than 15 pack years. 480 

Although these patients had no demonstrable imaging or physiological evidence of emphysema it 481 

is possible that smoking exposure rather than asthma per se was the driver of disease gradients in 482 

these patients. As a consequence larger studies are required to evaluate the gradient biomarkers 483 

reported here, across the spectrum of asthma severity and treatment intensity, and in both 484 

smoking and non-smoking asthma populations. The same limitation of sample size warrants 485 
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further evaluation of the imaging biomarkers in severe asthma populations, and considering the 486 

association of the biomarkers with patient related outcome measures in asthma. Such studies are 487 

underway and will report in due course [46]. Our imaging gradient biomarkers (derived via 488 

image registration of inspiratory and expiratory CT scans) are likely to be sensitive to both 489 

reconstruction kernel and lung volumes as reported previously [47]. However all of our CT scans 490 

were acquired at a single centre with the same reconstruction kernel and all patients were 491 

coached to expire to FRC for expiratory CT imaging prior to scanning. Nonetheless it is possible 492 

that expiratory imaging near residual volume would accentuate the imaging findings observed 493 

here and future studies are required to assess the impact of expiratory volume upon the imaging 494 

biomarkers reported here. 495 

496 

In conclusion, we have shown for the first time, using functional and computational approaches 497 

derived from CT imaging, that small airway VH, captured by IOS R5-R20 and MBW Sacin, is 498 

associated with CT density gradient reversal at the lung base, which is likely to be a direct 499 

consequence of reduced specific ventilation and small airways disease. The implications of these 500 

findings upon clinical disease expression, inhaled drug deposition and potential use in targeted 501 

inhaled drug delivery systems should now be considered in larger imaging cohorts and 502 

interventional studies.                       503 
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TABLES683 
Table 1. Clinical characteristics of asthmatic and healthy subjects. 684 

 Asthma 
 Healthy 

volunteers 
(n=11) 

All 
(n=41) 

GINA 1 
(n=8) 

GINA 2/3 
(n=20) 

GINA 4/5 
(n=13) 

Clinical      

Age (years) 54.1 (± 14.4) 53.7 (± 12.6) 53.0 (± 9.2) 56.5 (± 12.8) 49.7 (± 13.7) 

Sex 
[male/female] 

[6/5] [18/23] [3/5] [10/10] [5/8] 

BMI (Kg.m2) 28.8 (± 4.5) 27.1 (± 4.9) 25.2 (± 4.4)0 26.3 (± 4.6) 29.4 (± 5.3) 

Atopic [Yes/No] [3/8]1,2 [30/11] [6/2]H [16/4]H [8/5] 

Smoking (pack 
years) 

4.2 (± 7.8) 7.3 (± 17.0) 3.0 (± 4.9) 5.0 (± 8.1) 13.4 (± 27.9) 

No. of 
exacerbations. 
(past 12 months) 

- 1.4 (± 2.1) 0.5 (± 0.8) 1.1 (± 2.3) 2.2 (± 2.1) 

ACQ-6 - 1.27 (± 1.04) 0.94 (± 0.85) 1.22 (± 0.85) 1.56 (± 1.35) 

AQLQ - 5.37 (± 1.11) 5.94 (± 0.90) 5.28 (± 1.21) 5.15 (± 1.00) 

Asthma Duration 
(years) 

- 17.6 (± 16.7) 13.3 (± 9.5) 18.9 (± 18.3) 18.2 (± 18.2) 

Beclamethasone 
Diproprionate 
Equivalent. ICS 
Dose 
(micrograms/24 
hours) 

- 820 (± 698) 
100. (± 

282)2,3
650 (± 371)1,3

1523 (± 

656)1,2

Physiology      
Post-BD 
FEV1(L) 3.7 (± 1.0)A,1,2 2.7 (± 0.80)H 2.5 (± 0.68)H 2.8 (± 0.85)H 2.7 (± 0.81) 

Post-BD 
FEV1%                  116 (± 19)A 97.2 (± 20)H 99.5 (± 20.8) 97.7 (± 15.5) 95.1 (± 26.3) 

Post-BD 
FEV1/FVC (%) 80 (± 3.2) 74  (± 11) 76 (± 11) 76 (± 7.6) 72 (± 15) 

Bronchodilator 
Response (% 
FEV1) 

3.62 (± 3.38)A
12.88              
(± 16.33)H

8.79 (± 8.19) 11.31              
(± 13.52) 

17.80               
(± 22.77) 

RV/TLC (%) 32.10 
(±7.71)A

38.83              
(± 8.68)H

38.36             
(± 8.41) 

40.43 (± 9.65) 36.48              
(± 7.13) 
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KCO % pred 96.15              
(± 12.69)A

104.65            
(± 15.78)H

101.13           
(± 14.68) 

108.30             
(± 15.53) 

100.92            
(± 16.77) 

Multiple Breath 
Washout      

LCI 7.32 (± 1.01) 7.80 (± 1.28) 7.51 (± 1.93) 7.75 (± 1.01) 8.05 (± 1.24) 

Sacin
0.131 (± 
0.052)A

0.207 (± 
0.116)H

0.193 (± 
0.185) 

0.203 (± 
0.097) 

0.220 (± 
0.097) 

Scond
0.037 (± 
0.034) 

0.035 (± 
0.024) 

0.034 (± 
0.026) 

0.039 (± 
0.026) 

0.028 (± 
0.018) 

Impulse 
Oscillometry      

R5-R20 
(Kpa.s.L-1) 

0.033 (± 
0.029) 

0.061 (± 
0.058) 

0.055 (± 
0.035) 

0.053 (± 
0.042) 

0.077 (± 
0.085) 

AX (Kpa/L) 0.291 (± 
0.219)A

0.639 (± 
0.752)H

0.555 (± 
0.423) 

0.457 (± 
0.298) 

0.971 (± 
1.209) 

Induced 
Sputum      

Eosinophils (%) 0.46 (± 
0.30)A,2

10.14 (± 
28.17)H

# 12.94 (± 
35.70)H

6.17 (± 6.76) 

Neutrophils (%) 46.32 (± 
15.68) 

59.73 (± 
24.47) 

37.13 (± 
15.55) 

61.72 (± 
27.02) 

63.96 (± 
19.12) 

685 
LEGEND: M, male; F, female; BMI, body mass index; FEV, forced expiratory volume; FVC, forced vital 686 
capacity; BD, bronchodilator; LCI, lung clearance index; AX, area of reactance. Data expressed as mean 687 
(± standard deviation). Attribute normality was tested using one-sample Kolmogorov-Smirnov test over 688 
all subjects. Binary group comparisons (‘healthy’ vs ‘all asthmatics’) were performed using two sample t-689 
tests for parametric variables, and Mann-Whitney U-tests for non-parametric variables.  Non-intersecting 690 
group comparisons were performed using one-way ANOVA for parametric variables, and Kruskal-Wallis 691 
test for non-parametric variables. Multiple-comparison procedures were performed with Turkey’s honest 692 
significant difference criterion. Groups with significant separation (p < 0.05) indicated by subscripts A 693 
(all asthma), H (healthy control), 1, 2, 3 (GINA 1, 2/3 and 4/5 respectively) and * (all other groups). 694 

695 
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Table 2. Computed tomography imaging biomarkers and ventilation heterogeneity based 696 
stratification. 697 

Sacin R5-R20 

Low 
(n=29) 

High 
(n=23) 

Low 
(n=32) 

High 
(n=20) 

Clinical    

Asthma/Healthy  [20/9] [21/2] [24/8] [17/3] 

Parametric 
Response 
Mapping  

   

%PRMNorm  0.74 (± 0.11) 0.71 (± 0.14) 0.72 (± 0.14) 0.73 (± 0.09) 

%PRMfSAD  0.19 (± 0.10) 0.19 (± 0.12) 0.19 (± 0.12) 0.18 (± 0.08) 

%PRMEmph  0.024 (± 0.018) 0.038 (± 0.037) 0.032 (± 0.033) 0.028 (± 0.021) 

%PRMUncl  0.046 (± 0.036) 0.063 (± 0.030) 0.053 (± 0.038) 0.055 (± 0.028) 

Parametric 
Response Map 
Ellipse 
Properties  

   

ellMajL   126.2 (± 30.0) 130.2 (± 28.9) 122.0 (± 28.3) 137.5 (± 29.0) 

ellMinL †  55.1 (± 9.4) 56.5 (± 11.8) 52.1 (± 9.1) 61.4 (± 10.0) 

ellArea †  5590 (± 2067) 5922 (± 2251) 5092 (± 1763) 6769 (± 2312) 

ellAngle  0.21 (± 0.13) 0.16 (± 0.09) 0.19 (± 0.11) 0.20 (± 0.11) 

Ventilation 
gradient ( HU)    

std( HU)AP 0.070 (± 0.078) 0.059 (± 0.057) 0.055 (± 0.068) 0.080 (± 0.070) 
AP † 0.473 (± 0.207) 0.450 (± 0.234) 0.512 (± 0.226) 0.386 (± 0.183) 

std( HU)IS * -0.077 (± 0.043) -0.046 (±0.035) -0.064 (± 0.040) -0.062 (± 0.047) 
IS *,† -0.043 (± 0.112) 0.021 (± 0.099) -0.051 (± 0.100) 0.044 (± 0.102) 
IS* *,†  -2.033 (± 4.372) 0.489 (± 3.936) -2.282 (± 4.018) 1.267 (± 3.987) 

698 
LEGEND: PRM, Parametric Response Map; SAA, Stratified Axial Analysis; Data expressed as mean 699 
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(standard deviation). Attribute normality was tested using one-sample Kolmogorov-Smirnov test over all 700 
subjects.  Binary group (i.e. Sacin low vs. Sacin high, and R5-R20 low vs. R5-R20 high) comparisons were 701 
performed using two sample t-tests for parametric variables, and Mann-Whitney U-tests for non-702 
parametric variables. Groups with significant separation (p < 0.05) of Sacin (R5-R20) indicated by * (†).703 
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FIGURE LEGENDS 704 

FIGURE 1. Global parametric response (PRM) mapping and spirometry. A: PRM features based 705 

on TLC and FRC HU joint density histogram (JDH). PRM voxel classification (left) defined by 706 

lines of expiration HU = -856 and inspiration HU = -950 utilised for defining PRMfSAD and PRM 707 

ellipse geometry. B, JDH visualisation of FEV1/FVC (%) extreme cases, demonstrating compact 708 

and left shifted ellipses in patients with airflow obstruction. C, box plot illustrating that patients 709 

with spirometric airflow obstruction have smaller PRM ellipse areas and significantly more 710 

functional small airways disease on CT imaging %PRMfSAD; groups formed about median 711 

FEV1/FVC(%). 712 

713 

FIGURE 2. Overview of the slinky effect in the lungs in the standing and supine postures 714 

demonstrating the distribution of lung density as a consequence of gravity (A, B). It can 715 

therefore be seen that in the supine posture the inferior-superior lung density profile will be 716 

largely independent of gravity (C: transverse cross section of expiratory HU voxels) with 717 

expected largest volume of ventilation in the lower lobes due to the lower lobe having the largest 718 

proportionate lung volume, in contrast the anterior-posterior lung density profile will be 719 

predominantly influenced by gravity (D: coronal cross section of expiratory HU voxels) such 720 

that posterior ventilation will be proportionately lower than anterior ventilation.                                      721 

The gradients of HU in these two axes were used to understand the determinants of clinical 722 

ventilation heterogeneity measurements derived from IOS and MBW. 723 

724 

FIGURE 3. Inferior-superior HU gradient analysis in patients with a high/low Sacin and R5-725 

R20. A, decile-wise comparison of HU mean differences, in the inferior-to-superior direction, 726 
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of groups formed from the lower and upper tertiles of Sacin and R5-R20 distributions, specifically 727 

the lowest and highest 16 subjects with respect to these two markers.  The inferior regions show 728 

significant differences when comparing lower and upper tertiles for both Sacin and R5-R20. B, 729 

joint density histogram of voxel mean HU and PRMfSAD percentage when projected onto 730 

coronal plane in subject showing typical (healthy) ventilation (surrogated by HU) pattern and 731 

homogenous PRMfSAD. C, as in B in a subject with abnormal ventilation pattern and basally 732 

focused PRMfSAD. Colour bars labelled with min and max of occurring mean values. D, the 733 

concept of the inferior-superior gradient reversal phenotype is summarised in a simple visual 734 

schematic. 735 

  736 

FIGURE 4. Coronal section heat maps of HU and PRMfSAD in IS* low (no gradient 737 

reversal) and high (basal gradient reversal) tertiles of total population (n=52). The images 738 

labelled with an ID number assigned with respect to decreasing IS* values. e.g. 1 = greatest 739 

IS* (highest level of inferior/lower zone gradient reversal), 32 = smallest IS* (lowest level 740 

of basal gradient reversal). H indicates non-asthmatic, G indicates asthmatic, with GINA level. It 741 

can be seen that patients with high IS* values more often than not have inferior gradient 742 

reversal but also exhibit HU and PRMfSAD heterogeneity. In contrast patients with a low IS*743 

appear to have more homogeneous distributions of HU and PRMfSAD or upper lobe 744 

regionalisation of low HU, as would be expected in the supine posture. Colour bar ranges 745 

determined per subject based on feature ( HU or PRMfSAD) mean and variance as indicated. 746 

Arrows highlight specific disease regionalisation in IS* abnormal subjects. Asterisks indicate 747 

subjects selected for chi squared test of proportions, having abnormal regionalisation of 748 

ventilation. 749 
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750 

FIGURE 5. Histograms of linear discriminant analysis (LDA) applied to the total population 751 

(n=52), illustrating best linear separation of clinical ventilation heterogeneity (VH), R5-R20 and 752 

Sacin. Limited additional discrimination is added when considering potential clinical confounders 753 

of VH (e.g. age, height and weight) and spirometry appears to be less sensitive at discriminating 754 

patients with normal and abnormal clinical VH than CT imaging. 755 

756 

FIGURE 6: Comparison of R5-R20 under varying regional small airway constrictions applied to 757 

healthy lung structure. The response of R5-R20 can be seen for homogeneous (A, C) and 758 

heterogeneous (B, D) constriction of the small airways. In each case constrictions were applied 759 

to the lowest or highest 25% of airways, relative to the orthostatic or supine position. It can be 760 

seen that lower zone constriction and regionalisation produces far greater elevations in R5-R20 761 

than upper lobe constriction and regionalisation, in keeping with the observations in FIGURES 3 762 

and 4. 763 
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METHODS 28 

M1.0 Lung Function Measurements 29 

All physiological tests were performed in the seated position by individuals with appropriate 30 

training and accreditation. Physiological tests were performed 15 mins after administration of a 31 

short-acting bronchodilator (salbutamol 400 g). This was administered via a metered dose 32 

inhaler and spacer, with each 100 microgram actuation being inhaled in a separate inhalation to 33 

TLC, followed by a 5- to 10-s breath-hold. 34 

35 

Impulse oscillometry (IOS) was performed in triplicate according to standard guidelinesE1. A 36 

volume calibration was performed daily using a 3-L syringe, and the accuracy of resistance 37 

measurements was confirmed daily using a standard 0.2 kPaL-1s resistance mesh. Participants 38 

wore a nose clip and supported their cheeks, while an impulse waveform was delivered to their 39 

respiratory system via a loudspeaker connected to a mouthpiece, during 60 seconds of tidal 40 

breathing. Resistance at 5 Hz (R5), resistance at 20 Hz (R20), R5-R20, reactance at 5 Hz (X5) 41 

and AX were derived from pressure and flow measurements recorded throughout the 60-second 42 

period. 43 

44 

Multiple breath inert gas washout (MBW) was performed in triplicate according to current 45 

guidelinesE2, using the method described by Horsley et al.E3. Volume calibration of the 46 

pneumotachograph was performed daily using a 1-L syringe. Participants wore a nose clip and 47 

breathed an air mixture containing 0.2% SF6, while respiratory flows and exhaled breath SF648 

concentrations were monitored by an Innocor photoacoustic gas analyser (Innovision A/S, 49 

Odense, Denmark). Participants maintained a steady respiratory rate of approximately 12 breaths 50 
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per minute, and a constant tidal volume of 1L, using a real-time visual display of inspired 51 

volume as a guide. Once inhaled and exhaled SF6 concentrations had equalized, participants 52 

were switched to breathing room air during an expiration and asked to continue breathing at the 53 

same respiratory rate and tidal volume. The test was terminated once the end-tidal concentration 54 

of SF6 in exhaled breath reached less than 1/40th of the original concentration (0.005%) for three 55 

consecutive breaths. The parameters Scond and Sacin
E4 were calculated using custom software 56 

written with TestPoint (Measurement Computing Corporation, Norton, MA, USA). 57 

58 

M2.0 CT Imaging and Image Analysis 59 

Volumetric whole-lung scans were obtained with a Siemens Sensation 16 scanner with the 60 

following low-dose protocol: 16  0.75mm collimation, 1.5-mm pitch, 120 kVp, 40 mA, 0.5-61 

second rotation time, and scanning field of view of 500 mm, with dose modulation off. Scans 62 

were obtained at full inspiration and at functional residual capacity. Images were reconstructed 63 

with a slice thickness of 0.75mm at a 0.5mm interval by using B35f kernel.  64 

65 

Registration of the inspiratory (at total lung capacity, TLC) and expiratory (at functional residual 66 

capacity, FRC) dicom (Digital Imaging and Communications in Medicine) series was performed 67 

at the University of Michigan (USA), using Imbio’s Lung Density Analysis (LDA™) software 68 

application (Imbio, LLC, Minneapolis, MN). The software automatically segments lung volumes 69 

(excluding the major airways, up to approximately 3-4 generations from the trachea), taking 70 

series with least volume as expiration set, and calculates a warping function T to approximate 71 

regional deformation between expiration and inspiration states. Registration is then performed 72 

inspiration-to-expiration (I2E), that is, a voxel v in the expiration image is linked to a set of 73 
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voxels in the inspiration image based on T(v). This provides an assignment of both expiratory 74 

Hounsfield unit (HU), i.e. HU of v, and inspiratory HU, i.e. mean HU of set captured by T(v), to 75 

a single point in space, specified by Cartesian coordinates (x,y,z). N.B. axes of coordinate system 76 

are determined by the CT scanner. 77 

78 

CT data was provided to the University of Leicester (UK) in the form of  matrices, where 79 

is the number of voxels, and the 5 columns cover Cartesian coordinates (3 attributes, x, y and z) 80 

and HU value at expiration and inspiration (2 attributes, expiration HU and inspiration HU). All 81 

matrices were pre-processed to remove any voxels above -500 HU OR below -1000HU, in either 82 

inspiration OR expiration HU value. To discuss feature extraction, we use the following 83 

notation: 84 

85 

• , denotes a ‘lung set’ , of  voxels . 86 

• , maps a voxel to its inspiration HU value. 87 

• , maps a voxel to its expiration HU value. 88 

• , maps a voxel  to its Cartesian coordinates . 89 

• HU HU . 90 

91 

All extracted CT features are listed in Table E1. 92 

93 

M2.1 JDH Features 94 

PRM registered inspiration expiration CT features reported by Galbán et alE9 were derived from 95 

consideration of the inspiration and expiration paired voxel HU distributions. The typical 96 
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Gaussian distribution can be well visualized in a joint density histogram; summarizing voxel 97 

concentrations in the eHU iHU plane (see Figure 1 A). In this study, PRM voxel classification, 98 

class , was determined by the following algorithm: 99 

100 

IF [iHU(v)  -950] AND [eHU(v)  -856] THEN [class(v) = PRMNorm] 101 

IF [iHU(v)  -950] AND [eHU(v) < -856] THEN [class(v) = PRMfSAD] 102 

IF [iHU(v) < -950] AND [eHU(v) < -856] THEN [class(v) = PRMEmph] 103 

IF [iHU(v) < -950] AND [eHU(v)  -856] THEN [class(v) = PRMUncl] 104 

105 

Taking eHU as the horizontal axis, and iHU the vertical, then PRMNorm, PRMfSAD, PRMEmph and 106 

PRMUncl classification relates to the 1st, 2nd, 3rd and 4th quadrants of axes centered at (-856,-950) 107 

(see Figure 1 A left), and subscripts abbreviate “normal”, “functional small airways disease”, 108 

“emphysema” and “unclassified” respectively. In this study, the features %PRMs were defined to 109 

be the percentage of all voxels classified as PRMs, . E.g. 110 

given a set { } of n voxels, %PRMfSAD = #{  PRMfSAD}/n. N.B. 111 

percentage has been represented in decimal form for these features. 112 

113 

JDH visualization typically demonstrates an approximate 2-dimensional Gaussian distribution, in 114 

which one may perceive an ellipse. The geometrical properties of this ellipse may thus form a 115 

means of describing the eHU iHU distribution. In this study, the properties chosen to 116 

approximate were minor axis length (ellMinL), major axis length (ellMajL), area (ellArea = 117 

ellMinL  ellMajL) and acute angle between the ellipse and the horizontal (allAngle). 118 

119 
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To obtain these properties, the ellipse is first isolated by setting all cells in the JDH, with a voxel 120 

count of below 0.25 [maximum cell voxel count], to zero. The co-variance matrix of the 121 

resulting voxel count distribution thus provides a description more localized to the ellipse 122 

perceived. Eigenvectors of this matrix provide representations of the major and minor axes, and 123 

so the area. To calculate ellAngle, the longer Eigenvector is identified (directed along major 124 

axis), then if necessary it is negated to obtain vector directed at positive quadrant. Then ellAngle 125 

is calculated from using the dot product theorem with the vector (1, 0), i.e. calculating the 126 

typically acute angle between the major axis and the horizontal.  127 

128 

M2.2 Voxel Count (vCnt) Features 129 

A number of simple features may be defined using voxel amount and ranges. 130 

• vCnt , the number of voxels, a measure of total ‘lung tissue’ volume. 131 

• vCntX  range . vCntY  range . vCntZ  range . Ranges of 132 

x, y and z coordinates provide some measure of anterior-posterior, lateral and inferior-133 

superior lung dimensions respectively. 134 

135 

M2.3 Global HU Features 136 

HU as defined may be proportional to ventilation in a voxel, and has been previously studied as 137 

an immediate quantifier of ventilation behaviorE10, E11, E12. Mathematical relation between defined 138 

PRM voxels classifications and HU function is elucidated in Figure E5 C. If a voxel at 139 

inspiration contains air, and at expiration has released this air, then the density, reported by HU 140 

(associated radiation absorption) should increase, i.e. HU . It has been seen that this is true 141 

for most voxels in all subjects, and 0 on average (arithmetic mean). Associations 142 
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between IS* and weight also lend credence to this assumptionE9, with positive correlation 143 

over all subjects of r = 0.51 (2 s.f.) and p < 0.001. It should be noted however that perfusion and 144 

imaging artifacts are likely to affect HU and add noise to the ventilation signal. 145 

146 

In statistics, measures of central tendency and spread are two key characteristics that are of 147 

immediate interest in any distribution, and so naturally we define: 148 

149 

• .    . 150 

• std( ) .   std( ) ( ) . 151 

152 

That is the mean and standard deviation (std) of change in HU, intended as a measure of average 153 

ventilation and variation in ventilation. 154 

155 

M2.4 Inter-lung Comparison Features 156 

Let the voxels belonging to the left lung be the voxel set , and likewise for the right lung, 157 

, such that , . In this study we applied 2-means clustering 158 

with centroids initiated at , to approximate  from given data. 159 

160 

Using the ascribed ‘ ’ functions, we naturally define: 161 

162 

• RLmeanDiff , RLmeanDiff . 163 

• RLstdDiff , RLstdDiff . 164 
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165 

That is, measuring the difference in average ventilation, and difference in variation of 166 

ventilation, between the two lung voxel sets. 167 

168 

An additional feature is provided through considering the difference in lung sizes, RLsizeRat, 169 

read as ‘right-left size ratio’. RLsizeRat , 170 

RLsizeRat . As defined it constitutes a metric (satisfying 171 

associated axioms), and is meant to measure extent to which lungs differ in size. A value of 0 can 172 

be achieved only if the lungs are equal in size (biologically abnormal), else the value tends to 1 173 

as the difference in lung sizes increases. This feature was found to be associated with R5-R20 174 

(see Table E4), indicating a possible role in pulmonary disease.175 

176 

M2.5 Stratified Axial Analysis 177 

Stratified axial analysis (SAA) was developed to provide a basic tool for quantifying ventilation 178 

behavior, approximated by , as the lung is traversed along a cardinal (x, y or z) axis (see 179 

Figure E1 and Figure E2). It works by stratifying the voxels into groups using one of the co-180 

ordinate distributions (x, y or z), then computing a functional average (e.g. ) for each 181 

stratified voxel group individually, and finally presenting a summary of the gradient for this 182 

distribution (i.e. on average, how the function changes across the defined strata). 183 

184 

To describe the process in practice, with some operational intricacies, consider  the entire set of 185 

voxels for a pair of lungs. Then to stratify in the z axis (see Figure E1 B), we used the range 186 

 . A portion of the strata at the poles is eliminated, to reduce noise at the 187 
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ends of the distribution of interest. 15% of , of the extremes, are trimmed, retaining the middle 188 

70%  for the remaining steps. This trimming helps deal with low voxel count at the extremities, 189 

difference in lung heights, and beam hardening effects in the CT image, common to the conical 190 

base and apex of the lungs. The remaining voxels are then split into 10 intervals, of roughly 7% 191 

each, with (9) intermediary points termed ‘deciles’. One may consider 10 values determined by 192 

the function  on each interval, providing a smoothed indicator of the average ‘ventilation’ at 193 

each level. Then we take the differences at the deciles, with direction chosen to be ‘inferior-to-194 

superior’ (by ordering in subtraction).  195 

196 

To describe how  varies across the intervals, we initially used fitting of a 1 degree 197 

polynomial, i.e. straight line, using ordinary least squares (OLS) criterion. The gradient of the 198 

resultant line provides a natural measure of change, so we define 4 SAA based attributes as 199 

follows: 200 

201 

• AP, gradient measuring  change, in the anterior-posterior direction. 202 

• std( HU)AP, gradient measuring std( ) change, in the anterior-posterior direction. 203 

• IS, gradient measuring  change, in the inferior-superior direction. 204 

• std( HU)IS, gradient measuring std( ) change, in the inferior-superior direction. 205 

206 

Lateral  gradient across the lungs was not investigated. As it became clear that inferior-207 

superior ventilation gradient was strongly linked to VH, another method of measuring gradient 208 

was applied to this axis, focusing on . Termed IS*, this focuses on simply taking the 209 

mean of the decile changes (see Figure E1 B), as follows: 210 
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211 

• IS* =  212 

213 

Where  is the ith interval, travelling from inferior to superior as i ranges from 1 to 10. This 214 

happens to be equivalent to a scaled difference between the extreme intervals. This measurement 215 

was found to have marginally higher correlational strength, and so possibly a cleaner signal 216 

(smoothing measurement to extreme post-trimmed intervals), relative to IS. 217 

218 

M3.0 Computational Simulations of Regionalised Bronchoconstriction 219 

Computational calculations of lung impedance were performed through simulation of an 220 

electrical-circuit analogous model on patient-specific virtual conducting zone lung structures. 221 

Virtual structures were created in a prior studyE14 through processing of inspiratory-expiratory 222 

CT scan images. From each scan, centrelines of the central airways (typically up to generation 6)  223 

were extracted, and lobar boundaries identified. An algorithmic airway generation processE11 was 224 

used to grow the remainder of the conducting zone (to an average generation of 16) within the 225 

defined lobar boundaries. 226 

227 

Total lung impedance was calculated by assuming each branch had an associated impedance due 228 

to oscillatory flow, with each terminal bronchiole being subtended by a viscoelastic acinar unit. 229 

The impedance of each individual branch was based off derivations by BenadeE12, and 230 

ThurstonE13, with impedance of a branch j, experiencing flow at a frequency f, given by  231 
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where  is air density,  and r are the branch length and radius respectively, and 232 

. The exponential contribution is defined as 233 

where rv is the boundary layer thickness, μ is the air viscosity, and J0 and J1 are the zeroth and 234 

first Bessel functions. The viscoelastic acinar units were described by a homogeneous, constant-235 

phase model of the form 236 

Where G and H are coefficients for tissue damping and elastance respectively (taken as 0.12, and 237 

0.57 kPa.s.L-1 E14), N is the number of terminal bronchioles, and 238 

Total impedance of the lung was calculated by adding series and parallel contributions from each 239 

acinar region and airway over the entire airway tree. Following the work of Bhatawedakar et 240 

al.E15 this value was then added in series to chest wall, tracheal and glottal resistances and (all 241 

taken as 0.049kPa.s.L-1) and chest wall elastances (taken as 1.04kPa.s.L-1), and in parallel to a 242 

non-specific shunt impedance. 243 

244 
M4.0 Statistical Analysis 245 

MATLAB R2015a (MATLAB Release 2015a, The MathWorks, Inc., Natick, Massachusetts, 246 

United States) was used to perform all statistics and data processing. Results were obtained as 247 

output from customized scripts, making use of built-in statistical functions and workflows, for 248 

which there is extensive description on the MathWorks website. In all tests with a defined p-249 

value, significance is determined by p < 0.05. 250 
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251 

M4.1 Group Comparisons 252 

Binary group comparisons were performed using built-in function ‘kstest’ (Kolmogorov-253 

Smirnov), followed by ‘ttest2’ (two-sample t-test) if attribute determined parametric, and 254 

‘ranksum’ (equivalent to Mann-Whitney U-test) otherwise. Multiple group comparison (for 3 or 255 

more groups) was computed using built-in function ‘kstest’ (Kolmogorov-Smirnov), followed by 256 

‘anova1’ (one-way ANOVA) if attribute was determined parametric, and ‘kruskalwallis’ 257 

(Kruskal-Wallis) otherwise. The ‘stats’ variable from multiple group comparison testing was 258 

passed to the ‘multcompare’ function, with default Tukey’s honest significant difference 259 

criterion. Output from ‘multcompare’ was used to define significance in tables. All multiple 260 

group comparisons were performed on groups with empty intersections (no overlapping). To 261 

compare ratios of a boolean variable across groups, a 3rd party script ‘prop_test.m’1 was utilized 262 

to implement a simple two-sample Chi-square test of proportions. 263 

264 

To perform tertile polar analysis, it required, by design, formation of groups with an unnatural 265 

distribution (extreme tertiles of a given ‘natural’ distribution). In this instance, comparisons were 266 

performed pairwise on the two groups, across all intervals or deciles, using the ‘ranksum’ 267 

(Wilcoxon Rank-Sum test) function. 268 

269 

M4.2 Correlation Analysis270 

Pearson correlation coefficient was calculated using the ‘corrcoef’ and ‘corr’ functions. A script 271 

was written to analyze absolute correlation strength above a given threshold, over all pairs of a 272 

                                                 
1 https://uk.mathworks.com/matlabcentral/fileexchange/45966-compare-two-proportions--chi-square-
?focused=3813016&tab=function  
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given set of attributes. In cases of missing data, correlation calculation was restricted to subjects 273 

for which data was present. Results for attribute pairs above the threshold were presented in 274 

terms of scatter plot with graphed line of best fit, and table listing signed correlation coefficient, 275 

p-value, and indexes for attributes. 276 

277 

M4.3 Boxplots278 

Box plots and annotations of healthy and asthmatic subjects were created using custom script 279 

including ‘boxplot’ function. In all cases boxplots present differentiation of median split groups 280 

for feature included with approximate median value on the horizontal axis. E.g. see Figure 1 C. 281 

Outliers with respect to split groups are highlighted with black spots (see Figure E3). 282 

283 

M4.4 Tertile Polar Analysis 284 

Given a suspected signal in noisy data, it can help to focus on attribute extremes. We chose the 285 

highest and lowest 16 values from an attribute distribution to compare following this ideology, 286 

being approximately distribution tertile poles, since , chosen to isolate polar 287 

behavior whilst preserving  numbers for statistical significance. This analysis was applied to 288 

relevant attributes to generate groups for comparison in IS* and AP interval-wise and 289 

decile-wise (used in figures) analysis (see Figure 3 A and Figure E4). 290 

291 

M4.5 Feature and Feature Set Relational Strength Analysis 292 

In order to determine if two variables, or more generally two sets of variables, are ‘related’, a 293 

well understood and standard approach is to look at linear correlation and discriminatory 294 

properties. This approach is limited in the sense that not all relationships may be linear, though 295 
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many important relationships between variables in nature are. We utilized correlation and 296 

regression modelling to study how CT data, represented by a set of 22 features, relates to various 297 

single non-CT attributes, and linear discriminant analysis (LDA) to test relational strength of 298 

feature sets to VH discrimination. 299 

300 

M4.6 Average Correlation 301 

Given a data matrix  of m attributes over n subjects, it was desired to see how some 302 

submatrix , formed from a selection of columns from  in some order, compares to single 303 

attributes from . Specifically, 22 CT attributes (all that were defined in this study) formed 304 

the submatrix , and attributes from spirometry, IOS, MBW and GINA were chosen as target 305 

variables. Then average correlation is defined: , where ,  is a 306 

target variable and ‘corr’ is the Pearson correlation coefficient over all 52 subjects. This provides 307 

one of the simplest though apparently prognostic measures of linear relation. Simple rationale is 308 

that if there exists a large number of highly correlating (absolute value) CT variables with a 309 

variable y, then y is strongly related (linearly) to ‘CT data’ (as represented by the given feature 310 

set). Results presented in first column of Table E5.311 

312 

M4.7 Multicollinearity Limited Subset Linear Regression 313 

Linear regression was utilized to test likelihood (F-statistic) and strength (  variance 314 

explained) of linear relation between predictor variables and some outcome variable. In this 315 

study we used CT based predictor variables to predict an outcome variable from the 316 

aforementioned non-CT attributes. However, the problem of multicollinearity, that is the 317 
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existence of strong absolute correlation between input variables begetting ill posed prediction 318 

model, should to be handled to reduce likelihood of spurious results.319 

320 

One method supposed to limit multicollinearity impact, whilst preserving original (un-altered) 321 

data values for predictor variables, is to select a ‘representative’ subset of features, eliminating 322 

the occurrence of absolute pairwise correlation above some threshold. An ad hoc approach to 323 

feature selection was utilized, whereby data analyst experience and consistency lead decision 324 

produced a 14 feature subset (from 22 features) in which no absolute pairwise correlation 325 

exceeded 0.7 (see Figure E2 B). Specifically: ellMajL summarized itself,  and std( ); 326 

ellMinL summarized itself and ellArea; RLmeanDiff, RLstdDiff and RLsizeRat lacked intra-327 

CT correlation (thus were all included); PRMEmph summarized PRMs attributes; vCntX, vCntY328 

and vCntZ all appeared to lack intra-CT correlation, whilst vCnt strongly correlated with vCntZ; 329 

All OLS based SAA features, AP, std( HU)AP, IS and std( HU)IS, lacked intra-CT 330 

correlation, and IS was chosen to summarize IS* for consistency. Reader may refer to 331 

Figure E2 A and B for supporting rationale in these decisions. Results presented in Table E5, 332 

second column. 333 

334 

M4.8 PCA Kaiser Rule Linear Regression 335 

Though given rationality, and the arguably preferable aspect of using original data values, the 336 

described multicollinearity limited subset method can be highly sensitive to chosen 337 

‘representatives’, and loss of information from eliminating attributes. PCA provides another 338 

approach to eliminating multicollinearity within data, since by design it produces orthogonal 339 
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representative coordinates, principal components, and have correlation strength 0 between any 340 

pair of components. 341 

342 

In this study we utilized PCA to provide a low dimensional approximation, by principal 343 

components, to . Applying the ‘Kaiser rule’, we selected the first 6 components, as these had 344 

variance explained greater than the average variance explained across all components. These 6 345 

components were then used as predictor variables in linear regression predicting the outcome 346 

variables described. Results presented in Table E5, third column. One may consider the PCA 347 

Kaiser rule (PCA-KR) approach as being a relatively less biased representation of linear strength. 348 

Both approaches are presented for consideration. 349 

350 

M4.9 Linear Discriminant Analysis 351 

In order to assess ‘linear relational strength’ between sets of features, representing a more 352 

general object (e.g. ‘CT data’, ‘spirometry’), we utilized LDA to determine the best linear 353 

discriminator between two sets of points, according to Fisher’s criteria of maximal inter-class 354 

mean separation with minimal intra-class variance. LDA was implemented using custom 355 

MATLAB script, written to show histogram of projected value distribution (see Figure 5), and 356 

determine classification accuracy from best (least error) one dimensional point of discrimination 357 

(see Table E8). Coefficients of LDA across all selected features are reported (see Table E9). 358 

359 

M4.10 Joint Density Histogram (JDH) Visualisation 360 

JDH visualization was generated using the ‘surf’ function with re-specified tick locations and 361 

labels, applied to a 2-dimensional array with dimensions determined by the floor of the range of 362 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Bell et al 18

the associated distribution (i.e. bin number for binning point counts with respect to a variable set 363 

equal to rounded range of that variable). Colormap ‘hot’ was applied (see Figure 1 A) to create 364 

black and white compatible presentation. Eigenvectors and Eigenvalues of the 2D array were 365 

utilized to determine ellipse axes fitting dual Gaussian distribution (see Figure 1 A right), 366 

plotted with vectors directed from mean point using square root of associated Eigenvalue to 367 

determine length. 368 

369 

M4.11 Mass Normalised Min-Max Projections 370 

A simple method to perceive information based on high volume point cloud distribution in 3D is 371 

‘min-max projection’, that is to project the distribution to some 2D plane, binning 2D cells to 372 

count point frequency and visualize using a heatmap; i.e. essentially applying the JDH algorithm 373 

just described to some 2D projection of a 3-dimensional distribution. To visualize functional 374 

averages in space, replace ‘point frequency’ with , where  varies over all points in a cell. 375 

Then mass bias is cancelled by dividing by number of points in the cell. In this study, such mass 376 

normalized min-max projection was applied in the coronal plane to visualize PRMfSAD377 

concentration and  in high volume voxel clouds (see Figure 3 B and Figure 4). 378 

379 

RESULTS 380 

R1 GINA Group Comparisons (Imaging biomarkers of global lung VH are not associated with 381 

small airway VH markers R5-R20 and Sacin) 382 

Binary and non-intersecting multiple group comparisons were performed over all attributes, 383 

using algorithms described in group comparisons, with subjects grouped according to GINA 384 

score, with pairs GINA 2 GINA 3 and GINA 4 GINA 5 pooled due to qualitative treatment 385 
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similarity. Specifically, the groups were non-asthmatic (n=11), GINA 1 (n=8), GINA 2 or GINA 386 

3 (n=20), and GINA 4 or GINA 5 (n=13). The results of this analysis are displayed in Table 1387 

and Table E2; subscripts are used to denote significant differences between groups. 388 

389 

Table 1 reports results across all non-CT features, formatted as mean (± standard deviation) or 390 

[n1/n2/…] for discrete variables where appropriate. Features are grouped into classes termed 391 

‘clinical’, ‘spirometry’, ‘MBW’ (multiple breath washout), ‘IOS’ (impulse oscillometry) and 392 

‘Sputum’. The same formatting and classification is applied in Table E3.  393 

394 

Table E2 reports results across all CT features, formatted as mean (± standard deviation). 395 

Features are grouped into classes termed ‘PRM’ (parametric response map), ‘ELL’ (ellipse), 396 

‘ HU’ (change in Hounsfield units, between expiration and inspiration), ‘ILC’ (inter-lung 397 

comparison), ‘vCNT’ (voxel count) and ‘SAA’ (stratified axial analysis).  398 

399 

R2 Feature and Feature Set Relational Strength Analysis (Imaging biomarkers of regional VH 400 

are major determinants of small airway ventilation VH R5-R20 and Sacin) 401 

The results of all relational strength analyses are presented in Table E5, Table E6, Table E7, 402 

Table E8, Figure 5 and Figure E6. Linear statistical analyses were applied to the complete data 403 

matrix represented (pairwise absolute correlation strength) in Figure E6; these were absolute 404 

Pearson’s correlation coefficients, multicollinearity reduction through subset selection and PCA, 405 

selection of first 6 principal components based on Kaiser rule, and observation of JDH extremes 406 

for attribute FEV1/FVC(%) which had the strongest (linear association) of all features studied. 407 

408 
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Table E5 presents a high level summary of outcomes for linear analyses (non-LDA). ‘Corr.’ 409 

column presents average absolute Pearson’s correlation between all CT attributes and listed 410 

target attributes (rows). LR (subset) presents  and F-statistic p-values from linear regression, 411 

using the described 14 feature subset as predictor variables. LR (PCA) presents the same with 412 

principal components 1 through 6 as predictor variables. PCA-LR Coef. (abs. value) presents the 413 

loading scores of the principal components in cases were the F-statistic indicted statistically 414 

significant (p < 0.05) likelihood of a linear relationship, which should be used with Table E7 for 415 

complete interpretation; that is linking principal component loading score magnitude with linear 416 

regression co-efficient magnitude to associate CT input features to target non-CT features. 417 

418 

Table E6 presents the coefficients derived in the application of linear regression to the 14 feature 419 

subset of CT attributes. Since the coefficient magnitude is dependent on ordering of predictor 420 

variables, the values for each input are assessed to determine the largest for a given input 421 

variable, and this may then be related to an outcome variable. To give an example, predictor 422 

variable with ID 9 (column), which is RLsizeRat (see Table E7 subscripts), has .44 as its highest 423 

magnitude, which belongs to (observe row) outcome variable R5-R20. In fact the outcome 424 

variable AX is associated with magnitude .42, significantly higher than all other magnitudes, 425 

suggesting association between RLsizeRat and IOS (over other outcome variables). This result 426 

may be linked to the observed significance of feature RLsizeRat in Table E4; that is it appears as 427 

one of the CT variables which discriminates R5-R20 extremes. 428 

429 

Table E7 serves a similar purpose to Table E6, though it is dedicated the PCA approach used in 430 

linear regression. The loading scores of all 22 CT attributes studied (rows) are presented for all 6 431 
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principal components used in the linear regression. Combining this with the final column of 432 

Table E5, it is possible to study relational strength between outcome and predictor variables. To 433 

give an example, R5-R20 has P2 as its highest loading principal component, and observing this 434 

column in Table E7 it is clear that CT feature IS* (practically equivalent to IS) has the 435 

greatest absolute loading value, suggesting association between IS* and R5-R20. This 436 

association, in addition to vCntX (anterior-posterior segmented lung length) and ellMinL, may 437 

also be observed in Table E4. 438 

439 

R3 LDA and VH Group Comparisons (Discrimination of Sacin and R5-R20 with imaging 440 

markers of density change ( HU) gradients and lung size asymmetry) 441 

442 

LDA results are presented in Figure 5, Table E8 and Table E9. Clinical features chosen were 443 

age, smoking history [pack years] and weight [kg]. Spirometry features chosen were FEV1% and 444 

FEV1/FVC(%). CT features chosen were ellMinL, ellArea, std( ), RLsizeRat, vCntX, vCntZ, 445 

AP, std( HU)IS and IS (all features demonstrating VH discrimination in multiple 446 

comparison tests). Representative feature sets were chosen following advice from domain expert 447 

(clinician). 448 

449 

VH marker mean split groups, R5-R20 low (n=32), R5-R20 high (n=20), Sacin low (n=29) and 450 

Sacin high (n=23), were subjected to standard 1D statistical comparisons. The results are 451 

presented in Table 2 (most prominent for paper), Table E3 and Table E4 (extended form of 452 

Table 2). Table E3 presents results across all non-CT attributes. Table E4 presents results 453 

across all 22 studied CT features. Features ellMinL, ellArea, std( ), RLsizeRat, vCntX, 454 
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vCntZ, AP, IS and IS* discriminate R5-R20 extremes. Features std( HU)IS, IS455 

and IS* discriminate Sacin extremes. 456 

457 

IS* and IS were the only features discriminating both markers of VH, and IS* was 458 

found to provide marginally stronger correlations against non-CT features; thus we decided to 459 

conduct deeper investigations of IS* interaction with VH. 460 

461 

Correlational, polar and min-max projection analyses were all utilized to study how IS*462 

relates to non-CT features, to better understand the regionally localized contributions (in inferior-463 

superior strata) to the discrimination of R5-R20 and Sacin, and explore possible reasons for the 464 

association of inferior-superior ventilation gradient reversal and VH extreme discrimination. The 465 

results of this investigative effort are presented in Figure 3, Figure 4 and Figure E5. 466 

467 

Mass normalized min-max projections, in coronal plane, of PRMfSAD and  in the highest and 468 

lowest IS* scoring 16 subjects, were observed; the visual results are illustrated in Figure 4. 469 

A number of subjects with high IS* appear to have a heterogeneous, and basally focused, 470 

distribution of disease markers, with apically preferential ventilation distribution, relative to the 471 

more homogeneous distributions observed in subjects with low IS*. A phenotypical 472 

suggestion arising from this observation is summarized in Figure 4 D.473 
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Table E1. Reference list describing extracted CT attributes investigated in this study. 516 
CT Feature Description 

Average HU over all segmented voxels. 

std( ) Standard deviation of HU over all segmented voxels. 

ellMajL Length of major axis, of ellipse perceived in JDH. 

ellMinL Length of minor axis, of ellipse perceived in JDH. 

ellArea Area of ellipse perceived in JDH. 

ellAngle Angle (radians) between major axis and horizontal, of ellipse perceived in JDH. 

RLmeanDiff Absolute difference of average HU between the two lungs. 

RLstdDiff Absolute difference of standard deviation in HU between the two lungs. 

RLsizeRat Ratio of lung voxel counts (two lungs), with larger count in the denominator. 

%PRMNorm  Percentage of voxels classified as PRMNorm. 

%PRMfSAD  Percentage of voxels classified as PRMfSAD. 

%PRMEmph  Percentage of voxels classified as PRMEmph. 

%PRMUncl  Percentage of voxels classified as PRMUncl. 

vCnt Total voxel count (segmented voxel set). 

vCntX Maximum difference in voxel x-coordinates (anterior-posterior measure). 

vCntY Maximum difference in voxel y-coordinates (lateral measure). 

vCntZ Maximum difference in voxel z-coordinates (inferior-superior measure). 

std( HU)AP Gradient of HU standard deviation variability in anterior-posterior direction.  

AP Gradient of HU mean variability in anterior-posterior direction. 

std( HU)IS Gradient of HU standard deviation variability in inferior-superior direction.  

IS Gradient of HU mean variability in inferior-superior direction.

IS* Difference of HU mean in extreme deciles, in inferior-superior direction. 

517 
HU, Hounsfield Unit; SAA, Stratified Axial Analysis; fSAD, functional small airways disease; 518 

519 
Basic descriptions of all 22 CT features considered in this study. Intended reading of names is as follows:  = 520 
average HU, std( ) =  standard deviation, ellMajL = ellipse major length, ellMinL = ellipse minor length, 521 
ellArea = ellipse area, ellAngle = ellipse angle, RLmeanDiff = right-left mean difference, RLstdDiff = right-left 522 
standard deviation difference, RLsizeRat = right-left size ratio, %PRMNorm = percent PRM normal, %PRMfSAD = 523 
percent PRM fSAD, %PRMEmph = percent PRM emphysema, %PRMUncl = percent PRM unclassified, vCnt = voxel 524 
count, vCntX = voxel count in x-direction (likewise for vCntY, vCntZ), std( HU)AP = 1st degree polynomial fitting 525 
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to standard deviation in x direction (an SAA based measure, likewise for std( HU)IS), AP = as std( HU)AP with 526 
averages (likewise for IS), IS*  = extreme difference in inferior-superior direction.  527 
  528 
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Table E2. CT data across all groups, with treatment rationalized GINA stratification applied to asthma cohort.529 

Asthma 

Control 
(n=11) 

All 
(n=41)

GINA 1 
(n=8) 

GINA 2/3 
(n=20) 

GINA 4/5 
(n=13) 

PRM      
%PRMNorm 0.74 (± 0.08) 0.72 (± 0.13) 0.69 (± 0.20) 0.72 (± 0.12) 0.75 (± 0.10) 
%PRMfSAD 0.16 (± 0.08) 0.20 (± 0.11) 0.23 (± 0.17) 0.20 (± 0.09) 0.17 (± 0.10) 
%PRMEmph 0.028 (± 0.018) 0.031 (± 0.031) 0.039 (± 0.040) 0.033 (± 0.034) 0.023 (± 0.019) 
%PRMUncl 0.072 (± 0.029)A 0.049 (± 0.034)H 0.041 (± 0.035) 0.045 (± 0.032) 0.058 (± 0.037) 
ELL      
ellMajL 144.4 (± 30.0)A 123.5 (± 27.8)H 118.1 (± 33.2) 122.6 (± 28.8) 128.4 (± 24.0) 
ellMinL 55.3 (± 10.0) 55.8 (± 10.6) 53.4 (± 10.9) 56.1 (± 12.2) 56.8 (± 8.1) 
ellArea 6411 (± 2375) 5556 (± 2060) 5131 (± 2282) 5597 (± 2381) 5755 (± 1401) 
ellAngle 0.13 (± 0.07)A 0.21 (± 0.18)H 0.25 (± 0.16) 0.21 (± 0.09) 0.18 (± 0.12) 

HU      
125.98 (± 39.18) 98.16 (± 42.85) 94.70 (± 63.85) 92.12 (± 27.06) 109.60 (± 48.71) 

std( 112.58 (± 12.01)A 102.83 (± 13.30)H 97.77 (± 17.29) 102.11 (± 13.60) 107.04 (± 9.21) 
ILC      
RLmeanDiff 11.33 (± 8.64) 10.42 (± 9.91) 10.05 (± 8.49) 9.46 (± 8.15) 12.13 (± 13.25) 
RlstdDiff 4.74 (± 5.24) 4.70 (± 3.53) 4.89 (± 3.70) 4.98 (± 4.00) 4.15 (± 2.79) 
RlsizeRat 0.198 (± 0.074) 0.170 (± 0.091) 0.177 (± 0.043) 0.159 (± 0.077) 0.183 (± 0.129) 
vCNT      
vCnt† 8.23 (± 2.07) 8.76 (± 2.93) 8.81 (± 3.31) 8.66 (± 2.93) 8.87 (± 2.91) 
vCntX 240.6 (± 23.3) 234.5 (± 31.5) 232.9 (± 13.9) 235.8 (± 35.8) 233.6 (± 33.9) 
vCntY 343.5 (± 22.0) 335.3 (± 25.9) 327.3 (± 20.5) 327.7 (± 24.6)3 351.8 (± 24.4)2

vCntZ 436.0 (± 41.7) 439.9 (± 50.2) 449.3 (± 70.0) 442.3 (± 46.7) 430.5 (± 43.9) 
SAA      
std( HU)AP 0.078 (± 0.070) 0.061 (± 0.069) 0.038 (± 0.066) 0.070 (± 0.070) 0.063 (± 0.071) 

AP 0.580 (± 0.182)A 0.432 (± 0.217)H 0.470 (± 0.223) 0.397 (± 0.211) 0.462 (± 0.232) 
std( HU)IS -0.071 (± 0.046) -0.061 (± 0.041) -0.073 (± 0.043) -0.062 (± 0.044) -0.053 (± 0.037) 

IS -0.023 (± 0.159) -0.013 (± 0.095) -0.084 (± 0.083) 0.003 (± 0.098) 0.008 (± 0.083) 
IS* -1.460 (± 6.312) -0.772 (± 3.725) -2.835 (± 3.085) -0.488 (± 4.199) 0.061 (± 3.008) 

530 
PRM, Parametric Response Map; ELL, ELLipse measurements; HU, Hounsfield Unit; ILC, Inter Lung Comparison; 531 
vCNT, voxel count;  SAA, Stratified Axial Analysis.532 
Data expressed as mean (± standard deviation). Attribute normality was tested using one-sample Kolmogorov-533 
Smirnov test over all subjects. Binary group comparisons (‘control’ vs ‘all) were performed using two sample t-test 534 
for parametric variables, and Mann-Whitney U-test for non-parametric variables. Non-intersecting multiple group 535 
comparisons were performed using one-way ANOVA for parametric variables, and Kruskal-Wallis test for non-536 
parametric variables. Multiple-comparison procedures were performed with Turkey’s honest significant difference 537 
criterion. Groups with significant separation (p < 0.05) indicated by subscripts A (all asthma), H (healthy control), 1, 538 
2, 3 (GINA 1, 2/3 and 4/5 respectively) and * (all other groups).  539 
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Table E3. Non-CT features with ventilation heterogeneity based stratification. 540 

Sacin R5-R20 

Low 
(n=29) 

High 
(n=23) 

Low 
(n=32) 

High 
(n=20) 

Clinical    
GINA [H/1/2/3/4/5]  [9/5/0/8/5/2] [2/3/3/9/5/1] [8/6/1/10/6/1] [3/2/2/7/4/2] 
Age 50.7 (± 12.9) 57.6 (± 11.9) 52.0 (± 12.3) 56.6 (± 13.5) 
Sex [M/F] [12/17] [12/11] [13/19] [11/9] 
Weight (kg) † 79.0 (± 20.0) 76.8 (± 13.1) 72.9 (± 15.4) 86.3 (± 17.0) 
Height (cm)   168.5 (± 11.2) 166.3 (± 9.7) 166.6 (± 11.2) 169.0 (± 9.6) 
BMI†  27.6 (± 5.3) 27.3 (± 4.4) 26.2 (± 4.2) 29.5 (± 5.2) 
Atopy [Yes/No]  [16/13] [17/6] [22/12] [11/9] 
Pack Years†  6.25 (± 18.45) 7.15 (± 10.98) 2.85 (± 5.76) 12.71 (± 22.91) 
No. of Ex. (past yr)  1.1 (± 1.7) 1.0 (± 2.2) 1.0 (± 1.8) 1.2 (± 2.2) 
Asthma Duration  15.4 (± 15.8) 19.7 (± 17.7) 18.9 (± 15.8) 15.8 (± 18.2) 
Equiv. CS Dose  875.0 (± 779.3) 766.7 (± 625.6) 812.5 (± 726.1) 829.4 (± 678.0) 
Spirometry    
FEV1% *,†  108.2 (± 17.2) 92.6 (± 22.6) 107.5 (± 19.9) 91.4 (± 19.6) 
FEV1/FVC(%)*  79.3 (± 5.2) 71.1 (± 12.6) 77.1 (± 6.8) 73.3 (± 13.6) 
Pre-BD FEV1(L)*, †  3.03 (± 0.90) 2.23 (± 0.78) 2.92 (± 0.94) 2.28 (± 0.79) 
Post-BD FEV1(L)*, †  3.19 (± 0.91) 2.56 (± 0.79) 3.10 (± 0.93) 2.60 (± 0.80) 
%BD+/-*  5.99 (± 9.2) 17.13 (± 18.48) 7.36 (± 9.93) 16.60 (± 19.75) 
MBW    
LCI*,† 7.17 (± 0.91) 8.37 (± 1.28) 7.40 (± 1.04) 8.17 (± 1.39) 
Sacin*  0.118 (± 0.039) 0.282 (± 0.102) 0.176 (± 0.097) 0.214 (± 0.126) 
Scond  0.032 (± 0.026) 0.040 (± 0.025) 0.038 (± 0.026) 0.030 (± 0.026) 
IOS      
R5-R20†  0.043 (± 0.045) 0.070 (± 0.062) 0.025 (± 0.021) 0.103 (± 0.057) 
AX† 0.414 (± 0.372) 0.757 (± 0.923) 0.278 (± 0.169) 1.025 (± 0.929) 
Sputum    
Eos 0.294 (± 1.443) 0.788 (± 1.896) 0.385 (± 1.525) 0.714 (± 1.867) 
Neut 56.10 (± 25.73) 59.22 (± 21.55) 58.50 (± 23.60) 56.23 (± 24.34) 

541 
M, male; F, female; BMI, body mass index; FEV, forced expiratory volume; FVC, forced vital capacity; BD, 542 
bronchodilator; LCI, lung clearance index; AX, area of reactance; Eos, eosinophil count; Neut, neutrophil count. 543 

544 
Data expressed as mean (± standard deviation). Attribute normality was tested using one-sample Kolmogorov-545 
Smirnov test over all subjects.  Binary group (i.e. Sacin low vs. Sacin high, and R5-R20 low vs. R5-R20 high) 546 
comparisons were performed using two sample t-test for parametric variables, and Mann-Whitney U-test for non-547 
parametric variables. Groups with significant separation (p < 0.05) of Sacin (R5-R20) indicated by * (†).548 
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Table E4. Computed tomography imaging biomarkers and ventilation heterogeneity based stratification (full).549 

Sacin R5-R20 

Low 
(n=29) 

High 
(n=23) 

Low 
(n=32) 

High 
(n=20) 

PRM    
%PRMNorm  0.74 (± 0.11) 0.71 (± 0.14) 0.72 (± 0.14) 0.73 (± 0.09) 
%PRMfSAD  0.19 (± 0.10) 0.19 (± 0.12) 0.19 (± 0.12) 0.18 (± 0.08) 
%PRMEmph  0.024 (± 0.018) 0.038 (± 0.037) 0.032 (± 0.033) 0.028 (± 0.021) 
%PRMUncl  0.046 (± 0.036) 0.063 (± 0.030) 0.053 (± 0.038) 0.055 (± 0.028) 
ELL    
ellMajL   126.2 (± 30.0) 130.2 (± 28.9) 122.0 (± 28.3) 137.5 (± 29.0) 
ellMinL †  55.1 (± 9.4) 56.5 (± 11.8) 52.1 (± 9.1) 61.4 (± 10.0) 
ellArea †  5590 (± 2067) 5922 (± 2251) 5092 (± 1763) 6769 (± 2312) 
ellAngle  0.21 (± 0.13) 0.16 (± 0.09) 0.19 (± 0.11) 0.20 (± 0.11) 

HU    
100.42 (± 48.02) 108.62 (± 36.97) 103.69 (± 45.02) 104.62 (± 41.46) 

std(  † 102.37 (± 14.32) 108.07 (± 12.01) 101.74 (± 12.55) 109.93 (± 13.81) 
ILC    
RLmeanDiff  8.48 (± 9.37) 13.30 (± 9.36) 11.05 (± 10.38) 9.91 (± 8.36) 
RLstdDiff  4.15 (± 3.94) 5.40 (± 3.81) 5.53 (± 4.33) 3.39 (± 2.68) 
RLsizeRat †  0.184 (± 0.088) 0.166 (± 0.088) 0.201 (± 0.087) 0.135 (± 0.073) 
vCnt     
vCnt ¥  8.67 (± 2.99) 8.62 (± 2.51) 8.97 (± 2.80) 8.12 (± 2.68) 
vCntX †  231.9 (± 25.3) 240.7 (± 34.7) 225.9 (± 27.1) 251.7 (± 27.6) 
vCntY  336.9 (± 27.5) 337.2 (± 22.4) 335.8 (± 25.3) 338.9 (± 25.4) 
vCntZ †  438.4 (± 45.7) 439.9 (± 52.1) 451.3 (± 48.4) 419.5 (± 41.9) 
SAA     
std( HU)AP 0.070 (± 0.078) 0.059 (± 0.057) 0.055 (± 0.068) 0.080 (± 0.070) 

AP † 0.473 (± 0.207) 0.450 (± 0.234) 0.512 (± 0.226) 0.386 (± 0.183) 
std( HU)IS   -0.077 (± 0.043) -0.046 (± 0.035) -0.064 (± 0.040) -0.062 (± 0.047) 

IS *,† -0.043 (± 0.112) 0.021 (± 0.099) -0.051 (± 0.100) 0.044 (± 0.102) 
IS* *,† -2.033 (± 4.372) 0.489 (± 3.936) -2.282 (± 4.018) 1.267 (± 3.987) 

¥ values expressed have multiplier 106. 550 
551 

PRM, Parametric Response Map; ELL, Ellipse measurements; HU, Hounsfield Unit; ILC, Inter Lung Comparison; 552 
vCNT, voxel count;  SAA, Stratified Axial Analysis.553 

554 
Data expressed as mean (± standard deviation). Attribute normality was tested using one-sample Kolmogorov-555 
Smirnov test over all subjects.  Binary group (i.e. Sacin low vs. Sacin high, and R5-R20 low vs. R5-R20 high) 556 
comparisons were performed using two sample t-test for parametric variables, and Mann-Whitney U-test for non-557 
parametric variables. Groups with significant separation (p < 0.05) of Sacin (R5-R20) indicated by * (†).558 
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Table E5. Summary of linear statistical analyses: average correlation and linear regression (raw value & PCA). 559 

 Corr. LR (subset)   LR (PCA)   PCA-LR Coef. (abs. value) 

Attribute ID p p   P1 P2 P3 P4 P5 P6 

FEV1% 23 .158 .45 p < .05   .19 p > .5   - - - - - -

FEV1/FVC(%) 24 .244 .63 p < .001   .34 p < .005   .37 .19 .40 .09 .08 .00 

Pre-BD FEV1 25 .141 .61 p < .001   .29 p < .05   .12 .16 .10 .21 .08 .44 

Post-BD FEV1 26 .133 .59 p < .001   .31 p < .05   .09 .10 .10 .30 .15 .42 

%BD+/- 27 .133 .41 p < .05   .16 p > .05   - - - - - - 

R5-R20 28 .203 .59 p < .001   .29 p < .05   .00 .52 .07 .09 .07 .01

AX 29 .166 .51 p < .05   .19 p > .05   - - - - - - 

LCI 30 .133 .53 p < .05   .19 p > .05   - - - - - - 

Scond 31 .132 .24 p > .05   .08 p > .5   - - - - - - 

Sacin 32 .159 .52 p < .05   .28 p < .05   .12 .15 .42 .09 .09 .22 

GINA 33 0.103 0.46 p < .05   .12 p > .05   - - - - - - 

560 
FEV, Forced Expiratory Volume; FVC, Forced Vital Capacity; BD, Bronchodilator; AX, Area of Reactance; LCI, 561 
Lung Clearance Index; GINA, Global Initiative for Asthma; 562 

563 
Single feature CT linear statistical analysis overview.  = Pearson’s correlation coefficient;  = prediction strength 564 
as variance explained; p = p-value from F statistic (test likelihood of significant linear relationship); P1 – P6 = 565 
principal components selected by Kaiser rule (above mean variance explained in PCA), in order of variance 566 
explained. Corr. (correlation) column illustrates average correlation as crude measure of relation. LR columns (3, 4, 567 
5 and 6) represent linear regression outcome using 14 feature subset and PCA principal components as predictor 568 
variables, and non-CT (first column) attributes as target variables. Final columns (7… 12) are absolute values of 569 
coefficients in linear regression model for PCA, used with table E7 to infer connection between target variables and 570 
CT features. Coefficients for 14 feature linear regression are listed in table E6.  571 
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Table E6. Linear regression co-efficient table for linearity reduced CT subset regressions. 572 
                            LR Coefficients (absolute value) by Correlation Matrix (see Figure E6) ID

 3 4 7 8 9 12 15 16 17 18 19 20 21 

L
R

 T
ar

ge
t V

ar
ia

bl
e

FEV1% .97 .49 .14 .07 .04 .22 .28 .02 .48 .07 .06 .63 .23 

FEV1/FVC(%) 1.4 .64 .29 .28 .02 .31 .23 .13 .35 .13 .49 .55 .02 

Pre-BD FEV1 1.5 .80 .38 .10 .17 .02 .14 .45 .60 .21 .41 .45 .11 

Post-BD 
FEV1

1.4 .72 .35 .05 .11 .04 .15 .48 .61 .22 .46 .32 .18 

%BD+/- .80 .57 .29 .23 .29 .05 .13 .07 .21 .18 .06 .59 .22 

R5-R20 .80 .83 .41 .04 .44 .09 .26 .02 .21 .03 .59 .03 .28 

AX 1.0 .89 .43 .16 .42 .15 .16 .09 .19 .08 .71 .12 .27 

LCI 1.1 1.1 .05 .05 .21 .15 .15 .14 .05 .06 .11 .36 .51 

Sacin .98 .95 .49 .07 .12 .23 .03 .13 .33 .01 .64 .20 .53 

GINA 1.2 .41 .41 .21 .10 .37 .42 .19 .27 .28 .11 .49 .28 
573 

LR, Linear Regression; FEV, Forced Expiratory Volume; FVC, Forced Vital Capacity; BD, Bronchodilator; AX, 574 
Area of Reactance; LCI, Lung Clearance Index; GINA, Global Initiative for Asthma. 575 

576 
Absolute value of linear regression coefficients over all 14 features selected for raw value linear regression. Refer to 577 
table E7 for linking ID numbers (heading row) to CT features. Each predictor feature (column) has highest occurring 578 
value in bold. Relational strength between individual predictor and target variables may be assessed through cross-579 
referencing cell co-ordinates with relative co-efficient magnitude for a given feature.  580 
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Table E7. Principal component loading scores for components used in linear regression.  581 
Attribute ID PC1 PC2 PC3 PC4 PC5 PC6 

1 +.31 -.11 +.17 -.03 -.17 +.15 
std( ) 2 +.31 +.10 +.13 +.19 +.08 +.11 

E
L

L
 

ellMajL 3 +.33 +.09 -.01 +.06 +.12 +.06 
ellMinL 4 +.17 +.33 -.24 -.01 +.17 +.04 
ellArea 5 +.27 +.23 -.12 +.05 +.16 +.03 
ellAngle 6 -.25 +.09 -.30 -.12 +.15 -.07 

IL
C

 

RLmeanDiff 7 +.17 -.21 +.12 -.21 +.34 -.15 
RLstdDiff 8 -.05 -.19 +.04 -.24 +.63 -.04 
RLsizeRat 9 +.12 -.25 -.00 -.19 +.34 +.00 

PR
M

 

%PRMNorm
 10 +.27 -.02 -.29 -.24 -.15 +.10 

%PRMfSAD
 11 -.32 +.05 +.08 +.17 +.15 -.16 

%PRMEmph
 12 -.19 +.01 +.42 +.23 +.11 -.07 

%PRMUncl
 13 +.18 -.10 +.44 +.13 -.03 +.18 

vC
N

T
 

vCnt 14 -.29 +.05 +.17 -.28 -.08 +.17 
vCntX 15 -.06 +.35 +.14 -.22 -.01 +.27 
vCntY 16 -.07 +.22 +.11 -.40 +.08 +.56 
vCntZ 17 -.25 -.12 +.19 -.25 -.15 +.06 

SA
A

 

std( HU)AP
18 -.14 +.16 +.04 +.41 +.34 +.32 

AP
19 +.13 -.36 +.14 +.14 -.03 +.26 

std( HU)IS
20 +.19 +.03 +.30 -.35 -.09 -.37

IS
21 +.07 +.38 +.23 -.00 +.06 -.27 

IS*
  22 +.09 +.38 +.23 -.07 +.04 -.24 

582 
PC, Principal Component; PRM, Parametric Response Map; ELL, Ellipse measurements; HU, Hounsfield Unit; 583 
ILC, Inter Lung Comparison; vCNT, voxel count;  SAA, Stratified Axial Analysis. 584 

585 
Signed loading scores in PCA over all 22 CT features, as they load onto the first 6 principal components submitted 586 
to linear regression in linear statistical analyses. Magnitudes may be considered indicative of feature (row) relational 587 
strength to principal component (column) formation, which in turn may be associatively connected to predicted 588 
variables (see table E5 far right column). 589 
  590 
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Table E8. Linear discriminant analysis based classification percentage accuracy with selected 591 

feature sets. 592 

593 
Sacin
(% accuracy)

R5-R20                   
(% accuracy)

Clinical characteristics 63  77  

Post BD spirometry 73  69  

CT biomarkers 79  83  

Clinical + Spirometry 75  77  

Clinical + CT 81  87  

Spirometry + CT 79  85  

Clinical + Spirometry + CT 85  85  
594 
595 

LEGEND: Data expressed as percentage of subjects correctly classified by best possible linear 596 
discriminant from linear discriminant analysis. Feature sets use attributes representing clinical (age, 597 
smoking history [pack years] and weight [kg]), spirometry (FEV1% and FEV1/FVC(%)) and CT (ellMinL, 598 
ellArea, std( ), RLsizeRat, vCntX, vCntZ, AP, std( HU)IS and IS [features differentiating Sacin599 
or R5-R20]) data. 600 
  601 
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Table E9. Linear discriminant analysis coefficients on combined feature sets. 602 

603 
 Sacin R5-R20 

Clinical characteristics   

Age (completed years) -0.014 +0.010 

Weight (kg) +0.028 +0.014 

Smoking (pack years) -0.0060 -0.016 

Post BD spirometry   

FEV1% +0.017 +0.022 

FEV1/FVC(%) +0.014 +0.013 

CT biomarkers   

std( HU)  -0.021 +0.0056 

ellMinL +0.012 +0.044

ellArea -0.032  -0.080

RLsizeRat -0.00040 +0.014 

vCntX -0.00073 -0.015 

vCntZ -0.022 +0.0047 
AP +0.0069 -0.00054 

std( HU)IS -0.011 +0.028 
IS -0.0020 -0.022 

604 
605 

LEGEND: Coefficients of linear discriminant analysis (LDA) applied across all selected features. Sacin or 606 
R5-R20 below mean groups are projected in positive direction. Above mean groups are projected in 607 
negative direction. Thus more positive coefficients may be associated with less ventilation heterogeneity 608 
(VH), and more negative coefficients with more VH. Extremes of greatest magnitude are emphasised in 609 

bold. Superscript  indicates most associated with high VH (relatively most negative 610 

coefficient), and  with low VH (relatively most positive coefficient).611 
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Figure legends612 
613 

Figure E1.  derivation and inferior-superior SAA technical illustration. A, rationale behind assumption that 614 

simple change in HU (from inspiration to expiration), approximately change in local volume, is associated with 615 

ventilation / gas release. B, exemplar demonstration of SAA applied to the inferior-superior axis, and precise 616 

definition of IS*, notably being a scaled (1/9) difference in average HU between polar voxel intervals. 617 

618 

Figure E2. Decile based HU gradient measures and combinatorial voxel features. A, inferior-to-superior (anterior-619 

to-posterior) stratification of lungs, with 15% (10%) of range trimmed at ends; IS*  calculated as difference of 620 

extreme (shaded) strata. B, combinatorial features, based on coordinate axis ranges and voxel counts between 621 

segmented left and right lungs (lung asymmetry); subject illustrated chosen for clear case of visual asymmetry. 622 

623 

Figure E3. Box plot illustration of ellipse area and %PRMfSAD association with VH markers Sacin and R5-R20; 624 

groups formed about median value of VH markers. Apparent lack of group separation relative to splitting on median 625 

FEV1/FVC% (figure 1).626 

627 

Figure E4. Anterior-to-posterior VH marker focused polar analysis. SAA deciles plotted as mean and standard 628 

deviation (bar lengths) of HU changes, highlighting significant regions related to both Sacin and R5-R20. 629 

630 

Figure E5. Comparison of  in PRMx voxel populations, in IS*  low and high tertile, and illustration of 631 

relationship between  and PRMx on exemplar JDH. A, IS*  low tertile boxplots of  by PRMx class. B, 632 
IS*  high tertile boxplots of  by PRMx class. Variance appears reduced in B relative to A (common 633 

observation: disease brings pressure to biological system, leading to reduced variance). C, illustration of 634 

projection overlaid onto an exemplar JDH (same case as panel A in Figure 1). Essentially it is a projection (x,y) in 635 

2D onto x-y in 1D. Line of no change (x=y) plotted in green, and relayed over boxplot figures in A and B. Reader 636 

should be able to appreciate reason for ordering of boxplots in A and B, e.g. PRMUncl has highest , as this 637 

quadrant of the JDH lies furthest in the positive  direction (similar reasoning can be used for PRMfSAD). 638 

639 
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Figure E6. Complete original data matrix correlation visualization and reduction technique. A, illustration of 640 

absolute correlation matrix, annotated with feature set nomenclature, and indicating features selected for raw value 641 

linear regression. B, pairwise-correlation visualization and collinearity reduction. 642 
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