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ABSTRACT
After the tidal disruption of a star by a massive black hole, disrupted stellar debris can fall
back to the hole at a rate significantly exceeding its Eddington limit. To understand how black
hole mass affects the duration of super-Eddington accretion in tidal disruption events, we
first run a suite of simulations of the disruption of a Solar-like star by a supermassive black
hole of varying mass to directly measure the fallback rate on to the hole, and we compare
these fallback rates to the analytic predictions of the ‘frozen-in’ model. Then, adopting a zero-
Bernoulli accretion flow as an analytic prescription for the accretion flow around the hole, we
investigate how the accretion rate on to the black hole evolves with the more accurate fallback
rates calculated from the simulations. We find that numerically simulated fallback rates yield
accretion rates on to the hole that can, depending on the black hole mass, be nearly an order of
magnitude larger than those predicted by the frozen-in approximation. Our results place new
limits on the maximum black hole mass for which super-Eddington accretion occurs in tidal
disruption events.
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1 IN T RO D U C T I O N

When stars pass within a distance rt � (Mh/M∗)1/3R∗ of a super-
massive black hole (SMBH), where Mh is the hole mass and M∗
and R∗ are, respectively, the mass and radius of the star, they are
disrupted by the tidal field of the SMBH. Upon disruption, half of
the stellar mass is ejected from the system, while the other half
remains bound to the black hole on initially Keplerian orbits (e.g.
Rees 1988; Evans & Kochanek 1989). This bound material falls
back to the SMBH and forms an accretion disc on a time-scale
that is likely comparable to the period of one complete orbit of
the most bound material (Shiokawa et al. 2015; Bonnerot, Rossi
& Lodato 2016b; Hayasaki, Stone & Loeb 2016; Sa̧dowski et al.
2016), also called the fallback time, and generates quasar-like emis-
sion for time-scales of months to years. Throughout the process, the
fallback rate is predicted to follow a t−5/3 decline (Phinney 1989),
though deviations from this canonical power law can arise for a
variety of reasons (e.g. Lodato, King & Pringle 2009; Lodato &
Rossi 2011; Guillochon & Ramirez-Ruiz 2013; Hayasaki, Stone &
Loeb 2013; Coughlin & Nixon 2015; Coughlin et al. 2017). This
sequence of events, from the initial disruption of the star to the
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fallback of tidally disrupted debris and formation of an accretion
disc, is known as a tidal disruption event (TDE).

In some TDEs, the fallback rate can exceed the Eddington lumi-
nosity of the SMBH, making winds (Strubbe & Quataert 2011) and
jets (Giannios & Metzger 2011) a likely by-product. Observational
evidence accumulated over the past three decades has revealed TDE
candidates (see Komossa 2015 for a review), and more recently, jet-
ted TDEs have been discovered that are likely associated with super-
Eddington accretion. For example, Swift J1644+57 (Bloom et al.
2011; Burrows et al. 2011; Levan et al. 2011; Zauderer et al. 2011)
is now interpreted as the first-observed, jetted TDE and reached
peak luminosities in excess of 1047 erg s−1 – above the Eddington
limit for nearly every model of the SMBH powering the event. Since
then, two other candidates for jetted, likely super-Eddington TDEs
have been detected (Cenko et al. 2012; Brown et al. 2015), and
others, such as ASASSN-14LI (Miller et al. 2015; Alexander et al.
2016, 2017), that show wind-like emission have also been found
(though there is also evidence for a faster, jetted outflow at earlier
times in this system; van Velzen et al. 2016; Pasham & van Velzen
2017).

From a theoretical standpoint, accurately simulating a TDE with
realistic parameters (e.g. a Solar-like progenitor and a 106 M�
SMBH) is extremely computationally expensive. A simulation that
captures the TDE from the initial stellar disruption to the formation
and evolution of the accretion disc must resolve not only the stellar
radius (∼1 R�), but also the thousands of stellar radii to which the
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debris stream expands. To additionally model the disc that forms
from the debris, one must, at the very least, account for general rela-
tivistic precession, which is thought to be the dominant mechanism
responsible for dissipating angular momentum and facilitating the
circularization of the debris (Rees 1988), and radiation feedback
when the accretion rate on to the SMBH is super-Eddington.

Simulations investigating the disc formation following a TDE
(e.g. Guillochon, Manukian & Ramirez-Ruiz 2014; Shiokawa et al.
2015; Bonnerot et al. 2016b; Hayasaki et al. 2016) have shown that
the debris disc extends to large radii much greater than the tidal
radius and is geometrically thick when the radiation is trapped.
Consequently, the material cannot cool; this condition is especially
true when the accretion rate on to the SMBH is super-Eddington
(Begelman 1979). Sa̧dowski et al. (2016) additionally found that,
in their simulation of the disc formation following the disruption
of a 0.1 M� star by a 105 M� SMBH, the debris conformed to
a configuration well described by a Bernoulli function, or specific
energy, that was globally equal to approximately zero. In their sim-
ulation, the peak accretion rate on to the SMBH was in excess of
∼104 LEdd.

Coughlin & Begelman (2014), hereafter CB14, proposed that a
zero-Bernoulli accretion (ZEBRA) flow – one for which the specific
energy is globally equal to zero – should describe the disc formed
during the super-Eddington phase of a TDE. In particular, they
argued that the highly super-Eddington accretion and inefficient
cooling cause the debris disc to approach a weakly bound (zero-
Bernoulli), highly inflated state. Upon reaching this zero-Bernoulli
configuration, the remaining accretion energy is freed as material
falls on to the SMBH at the disc centre. This accretion energy is then
anisotropically funnelled into two bipolar jets that escape along the
rotational axis of the flow, thereby safely removing the accretion
energy from the system without destroying the accretion structure in
the process. The disc evolution is then regulated by the mass fallback
rate, the black hole accretion rate, and the total angular momentum
of the flow, and the disc properties (e.g. its angular momentum
and density profiles) conform to simple, analytic functions. This
prescription for the accretion disc structure is actualized in the
numerical simulations of Sa̧dowski et al. (2016) and qualitatively
consistent with observed jetted TDEs such as Swift J1644+57.

In this paper, our goal is to assess the duration and magnitude
of super-Eddington accretion in TDEs as a function of black hole
mass. We first simulate the tidal disruption of a Solar-like star by a
black hole of varying mass and directly measure the fallback rate.
Then, instead of taking the most rigorous, but prohibitively compu-
tationally expensive, approach of numerically simulating the disc
formation and evolution, we use the ZEBRA model of CB14 to
determine the structure of the accretion disc and its accretion rate
as a function of the fallback rate. In this way, we obtain a very
accurate measure of the rate at which the ZEBRA flow is fed, for
which past investigations (e.g. CB14) have only used approximate,
analytic formulas, and our prescription for the disc structure allows
us to follow the long-term evolution of the disc during the super-
Eddington phase. This method allows us to place tight constraints on
the time-scale over which TDEs maintain super-Eddington accre-
tion and the maximum mass capable of powering super-Eddington
TDEs.

In Section 2, we present the simulations of the disruption of
the star and the fallback rates obtained therefrom. In Section 3,
we outline the ZEBRA model for the accretion flow during the
super-Eddington accretion phase of the TDE, and we present the
time-dependent evolution of the disc and luminosity. We discuss the

implications and interpretation of our findings in Section 4, and we
summarize and conclude in Section 5.

2 SI MULATI ONS

We used the smoothed particle hydrodynamics (SPH) code PHANTOM

(Price et al. 2017) to simulate the tidal disruption of a Solar-like star
(i.e. stars with a Solar mass and radius) by an SMBH of variable
mass. The star is modelled as a polytrope (e.g. Hansen, Kawaler
& Trimble 2004) with polytropic index γ = 5/3, which provides
a reasonable approximation for the density profile of the Sun and
less massive stars. The polytropic profile is achieved by placing 107

particles on a close-packed sphere that is subsequently stretched to
approximate the density distribution; numerically induced perturba-
tions are then smoothed by relaxing the star for ten sound crossing
times in isolation.

The relaxed polytrope is then placed at 5 rt from the hole on a
parabolic orbit with β ≡ rt/rp = 1, where rt = R∗(Mh/M∗)1/3 is the
tidal radius and rp is the pericentre distance of the stellar centre
of mass from the SMBH. The SMBH is modelled as a Newtonian
point mass with an ‘accretion radius’, such that any particle entering
within that radius is removed from the simulation. We include the
effects of self-gravity through the usage of a bisective tree algorithm
alongside an opening angle criterion (Gafton & Rosswog 2011). The
gas is assumed to evolve adiabatically with adiabatic index γ = 5/3,
which provides a good approximation for the early evolution of the
disrupted stellar debris (Coughlin et al. 2016), though the effects
of magnetic fields and radiative recombinations can invalidate the
isentropic assumption at late times (Kasen & Ramirez-Ruiz 2010;
Bonnerot et al. 2016a; Guillochon & McCourt 2017).

During the initial disruption, the accretion radius of the SMBH is
set well within the tidal radius. Since we are interested in the rate of
return of bound material, the fallback rate Ṁfb, to the SMBH, we set
the accretion radius to 3 rt once the disrupted debris stream is well
beyond the tidal radius but before the most bound segment of the
stream has returned to pericentre. Particles that return to the SMBH
are then ‘accreted’ and removed from the simulation upon passing
through that radius, and the total number of particles accreted per
unit time defines the fallback rate. We therefore do not simulate
the initial formation of the disc, which would (at the very least)
necessitate a much greater particle number, an inclusion of post-
Newtonian terms, and an incorporation of radiation hydrodynamics
to accurately capture the physics of recompression shocks, relativis-
tic precession, and super-Eddington feedback. However, if the disc
is formed promptly through the combination of these effects, then
the fallback rate we measure from the simulation is equivalent to
the rate at which material is incorporated into the accretion flow.
We will assume here that this scenario is actualized, though the sit-
uation could be more complicated if, for example, nodal precession
delays stream–stream intersections (Guillochon & Ramirez-Ruiz
2015) or the stream is adversely influenced by the presence of a
nascent ambient medium (Bonnerot et al. 2016b).

We simulated the disruption of a Solar-like star by an SMBH
of mass 105, 5 × 105, 106, 5 × 106, and 107 M� and mea-
sured the resulting fallback rates. Fig. 1 shows the numerically
determined fallback rates normalized by the Eddington luminosity
Ledd = 4πGMhc/κ of the hole, where the radiative efficiency ε we
set to 0.1 and κ = 0.34 cm2 g−1 is the Thomson opacity, for a range
of black hole masses. The fallback rate as a function of time for
each black hole mass approaches a power law at later times.
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3018 S. Wu, E. R. Coughlin and C. Nixon

Figure 1. The fallback luminosity Lfb resulting from the SPH simulations for the black holes listed in the legend, calculated assuming a radiative efficiency
of ε = 0.1 (i.e. Lfb = ε × Ṁfbc

2, where Ṁfb is the fallback rate). In each case, we normalized the fallback luminosity to the Eddington limit of the hole
LEdd = 4πGMhc/κ , where κ = 0.34 cm2 g−1 is the Thomson opacity assuming standard abundances. Right-hand Panel: Logarithmic derivative of the numerical
fallback rate as a function of time, or the instantaneous power-law slope of the fallback rate, in units of the fallback time for each black hole mass. The
logarithmic derivative shows the power law index of Ṁfb for each black hole mass, which in the figure approaches but remains above the theoretical value of
t−5/3 at late times for each black hole mass.

The right-hand panel of Fig. 1 gives the logarithmic derivative of
the log of the fallback rate, which traces the instantaneous power-
law index of the fallback curves in the left-hand panel of the same
figure. Here time is measured in units of the fallback time of the
appropriate black hole, and hence the theoretically-predicted de-
pendence of this result on the black hole mass (∝ M

1/2
h ) has been

scaled out. The fall below and rise above the asymptotic −5/3 limit
is in agreement with the simulations of Guillochon & Ramirez-Ruiz
(2013), and the fact that this oscillatory behavior is almost com-
pletely independent of the black hole mass points to its physical
origin as related to the internal properties of the gas. In particular, it
is likely self-gravity, which draws material from the radial extrem-
ities of the stream and induces density perturbations on top of the
analytically-predicted profile, that acts on the sound crossing time
(which is much less than the fallback time for the SMBHs consid-
ered here) to generate these features. This notion is supported by
the fact that streams with softer equations of state, which are less
prone to the effects of self-gravity (Coughlin et al. 2016b), exhibit
less deviation in their fallback rates (Coughlin et al. 2016a).

Fig. 2 depicts the fallback luminosity Lfb = εṀfbc
2, where we

have assumed a radiative efficiency of ε = 0.1, for both analytic
and numerical prescriptions for the fallback rate Ṁfb. The analytic
fallback rate shown in this figure is derived from the ‘frozen-in’,
or impulse approximation (Lodato et al. 2009; see also CB14, who
write the explicit expression for the fallback rate for polytropes in
their equation 34). In this approximation, we assume the entire star
remains in hydrostatic equilibrium and moves with its centre of mass
– which follows a parabolic orbit – until reaching the tidal radius. At
this point, the tidal force of the SMBH overwhelms the self-gravity
and pressure of the star, and fluid parcels thereafter follow ballistic
orbits in the gravitational field. Therefore, this approximation treats
the tidal force as acting impulsively at the tidal radius, and the
Keplerian energies of the gas parcels comprising the star are frozen
in at that time.

Authors (e.g. Lodato et al. 2009; Coughlin & Nixon 2015) have
shown that this analytic prescription is in good agreement with sim-
ulations; nevertheless, it is evident from Fig. 2 that our numerical,
more accurate approach yields a higher peak fallback rate (by nearly

Figure 2. The fallback luminosity Lfb for 106 M�, again assuming a ra-
diative efficiency of ε = 0.1 and normalized to the Eddington limit of the
hole. The numerical Lfb resulting from the ZEBRA model with ṁfb(t) from
the SPH simulations is shown in solid green, while the analytic Lfb is shown
dashed.

an order of magnitude) and an earlier return time of the most bound
debris. Since the fallback of stellar debris feeds the accretion disc,
we expect the higher fallback rate to correspond to a higher accre-
tion rate on to the SMBH.
In the next section, we use these fallback rates with the
analytic ZEBRA model of CB14 to investigate the accretion rate
on to the SMBH and the time-dependent structure of the accretion
disc.

3 AC C R E T I O N

3.1 Accretion disc structure

From Fig. 1, we see that the early stages of a TDE by SMBHs with
mass � 107 M� are super-Eddington. During this phase, if shocks
are efficient at circularizing the debris, the extreme luminosity of
the black hole increases the material’s specific energy to the point
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where its Bernoulli parameter nears zero, resulting in a very weakly
bound disc.

Once the gas reaches the zero-Bernoulli condition, the mo-
mentum equations permit self-similar solutions showing that the
marginally bound disc forms a quasi-spherical envelope that is
closed except at the poles, and CB14 coined this a zero-Bernoulli
accretion, or ZEBRA, flow. The closed nature of the disc leaves no
surface from which the energy released during the super-Eddington
accretion may be exhausted (e.g. through winds). As a result, CB14
postulated that the accretion energy in the disc would be directed to
the poles, launching jets to exhaust the energy.

While it is possible to construct very general solutions for the
density, angular momentum, and pressure profiles of a ZEBRA
envelope (see appendix A of CB14), it is likely that these quantities
vary approximately self-similarly from an inner radius r0, which
is near the inner most stable circular orbit of the gas, out to the
trapping radius (Begelman 1979) (outside of which photon diffusion
becomes efficient and the gas can cool and transition to a thin disc).
In the self-similar limit, the density (ρ), pressure (p), and square of
the specific angular momentum (	2) of a ZEBRA envelope, which
result from the radial and polar momentum equations alongside the
zero-Bernoulli criterion, are

ρ(r, θ ) = ρ0

(
r

r0

)−q

(sin2 θ )α (1)

p(r, θ ) = β
GMh

r
ρ (2)

	2(r, θ ) = aGMhr sin2 θ, (3)

where the constants α, β, and a satisfy

α = 1 − q(γ − 1)

γ − 1
, β = γ − 1

1 + γ − q(γ − 1)
, a = 2αβ, (4)

where γ is the adiabatic index of the gas. Since super-Eddington
accretion flows are dominated by radiation pressure, we will hence-
forth adopt γ = 4/3. Note that the β appearing in equations (2) and
(4) is not the standard β used in the TDE literature.

We see from equations (1)–(4) that a ZEBRA flow is character-
ized entirely by the number q, with larger (smaller) values corre-
sponding to more (less) spherically symmetric flow. Note from the
expression for α that q= 3 gives α = 0 when γ = 4/3, which is
the correct solution for spherically symmetric, radiation-dominated
flow about a point mass. In their ADIOS models of accretion and
outflow, Blandford & Begelman (1999, 2004) related this parameter
to the vigorousness of mass loss due to disc winds (which are ulti-
mately driven by radiation pressure and magnetic fields), and it can
therefore vary from system to system. However, in a TDE, the total
angular momentum and mass contained in the disc are well con-
strained by the properties of the disrupted star and the SMBH, and
this suffices to uniquely determine q. Indeed, as shown in CB14, q
is related to the envelope mass M, the envelope angular momentum
L, and the black hole mass Mh via the implicit equation

�(α + 1)5/6�(α + 2)5/6

β1/6a1/2�(α + 3/2)5/3

(7/2 − q)5/6

3 − q

=
( yκ

4πc

)1/6 M
√

GMh

L5/6
, (5)

where � is the generalized factorial and y is a number of order unity
(note that y does not significantly impact the solution for q, as it
only enters into the above equation to the 1/6 power).

On physical grounds, q must satisfy q> 0.5 to ensure that energy
generation in the disc decreases outwards. Similarly, q must be
less than its spherically symmetric value (q= 3 for a radiation–
pressure dominated gas) to maintain a finite density at the poles.
The permissible range of q is therefore bounded by 0.5 < q < 3.

From equation (5), we find that the parameter q varies monotoni-
cally with the ratio of the mass of the disc to its angular momentum,
ranging from 0.5 (small ratio of mass to angular momentum) to
its spherically symmetric value of 3 (large ratio of mass to angular
momentum); see fig. 1 in CB14. In a TDE, we therefore expect q
to decrease over time as accretion on to the black hole depletes the
mass contained in the envelope and angular momentum is trans-
ported outwards. Equations (1)–(5) thus hold approximately at an
instant in time,1 and we can use the fallback rates numerically ob-
tained in Section 2 to determine the time-dependent evolution of
the disc properties.

3.2 Accretion rates and time-dependent evolution

The time-dependent evolution of the disc is governed by the global
conservation of mass and angular momentum. The former is encap-
sulated by the differential equation Ṁ = Ṁfb − Ṁacc, where Ṁfb is
the fallback rate that feeds the disc and Ṁacc is the accretion rate on
to the black hole. Ṁfb is determined numerically in Section 2, and
Ṁacc can be found from the ZEBRA model and the assumption that
the gas extends approximately to the innermost stable circular orbit
(see equations 26 and 27 of CB14). Since the angular momentum of
the material must be lost as it falls on to the SMBH, conservation of
angular momentum implies that L = Lfb, where Lfb is the angular
momentum of the returning debris and is related to Ṁfb and the an-
gular momentum of the star at the time of disruption (see equation
37 of CB14).2 These differential equations, coupled to the algebraic
equation relating q, M, and L (equation 5), then permit a solution
for q(t) (and other time-dependent properties of the disc).

To solve the differential algebraic equations numerically, the
initial value of q must be specified. While this initial value is in
principle determined from the efficiency of circularization and the
configuration of the debris at the return time of the most bound
debris, CB14 showed that solutions with different initial q quickly
converge to a unique solution after displaying transient behaviour
at very early times. As a result, the initial value of q can be chosen
arbitrarily within the permissible range 0.5 < q < 3, subject to
the caveat that the initial, erratic behaviour of the solutions is not
adequately captured by our model.

Numerical integration gives q(t), as depicted for different black
hole masses in the right-hand panel of Fig. 3. This is compared to
the solution for q(t) calculated using the frozen-in approximation,
which gives an analytic prescription for the properties of the accre-
tion disc as described in Section 2. The left-hand panel of Fig. 3
shows how the behaviour of q differs due to integration of the dif-
ferential equation with the fallback rate acquired numerically as
opposed to the frozen-in approximation for Ṁfb. For an interval on
the order of 1 year after the return time of the most bound debris,

1It should be noted that the self-similar solutions for the ZEBRA envelope
ignore the explicit time dependence of the disc quantities in the momentum
equations. However, these corrections should be small – of the order of the
ratio of the ZEBRA sound crossing time to the fallback time of the debris.
2This assumption ignores the angular momentum lost through the ISCO,
which should be small compared to the angular momentum added by the
infalling debris.
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3020 S. Wu, E. R. Coughlin and C. Nixon

Figure 3. Left-hand panel: The parameter q(t) (defined in equation 1) that determines how quickly the density falls off in spherical radius r, for the black hole
masses indicated in the legend. The results of using the numerically acquired fallback rate are plotted in solid lines, whereas the solution from the frozen-in
approximation is shown dashed. Right-hand panel: Numerical results for q(t) for the indicated black hole masses.

Figure 4. As in Fig. 3, the parameter q(t) for a black hole with mass
106 M�. Numerical results are plotted in solid green and analytic results
are shown dashed.

q(t) is higher from the simulation method than the analytic results,
but after this period the results of using the simulated Ṁfb decrease
more rapidly from the peak and fall below the analytic prediction.
Fig. 4 exemplifies this for 106 M�, showing that the peak for the
numerical results reaches q = 1.4, whereas the results for q(t) from
the frozen-in approximation only attain a peak of q = 1.1.

Given the solution for q(t), we compute the accretion rate on
to the black hole, Ṁacc using equation (26) of CB14. The accre-
tion luminosity Lacc follows as Lacc = εṀaccc

2, with ε = 0.1. The
right-hand panel of Fig. 5 shows the accretion luminosity derived
from the simulated fallback rate for different black hole masses,
each normalized by its Eddington luminosity LEdd = 4πGMhc/κ .
Here κ = 0.34 cm2 g−1 is the Thomson opacity assuming standard
abundances. The simulated fallback rate leads to a higher accretion
luminosity at earlier times, which then drops off more steeply and
falls below the predictions of the frozen-in approximation within
several months, as depicted in the left-hand panel of Fig. 5.

Furthermore, the rate at which material accretes on to the black
hole is not exactly equal to rate at which debris falls on to the
disc. Fig. 8 shows that the accretion luminosity follows a slightly
steeper power law than the fallback luminosity, where both are
calculated from simulation results for the fallback rate Ṁfb. This
behaviour is comparable to that shown in CB14, in which the frozen-

in approximation yields a fallback rate proportional to t−5/3 and an
accretion rate that follows a slightly steeper power law (see equation
34 of CB14). The fallback rate also attains higher maximum values
than the accretion rate, as in Fig. 8.

We also determine the radius of the photosphere using the nu-
merical values for Ṁfb and Ṁacc. From CB14, the radius R is given
by

R =
(

yκβ
√

a(3 − q)

4πc
M

√
GMh

)2/5

, (6)

where M is the total mass contained in the disc. We find M by
numerically integrating the differential equation Ṁ = Ṁfb − Ṁacc.

Since the photospheric radius coincides with the trapping radius
(Begelman 1978), which is where photon diffusion becomes effi-
cient, the effective temperature at the photosphere is

T =
(

LEdd

4πσSBR2

)1/4

, (7)

where σSB = 5.67 × 10−5 [cgs] is the Stefan-Boltzmann constant.
The resulting photospheric radii and effective temperatures as func-
tions of time are depicted in Fig. 6.

From Fig. 5, we see that the accretion luminosity remains super-
Eddington for finite periods that differ for each black hole mass.
The time at which the transient is no longer super-Eddington is
plotted in red for each black hole mass in Fig. 7. The relation is not
a simple power law, as the times for which Lacc is super-Eddington
drops steeply for Mh ≥ 5 × 106M� compared to the lowest three
black hole masses.

4 D ISCUSSION

The value of q constrains the density and pressure profiles of the
ZEBRA envelope, with larger q implying a more spherical envelope.
Our results from the numerically simulated fallback rates therefore
indicate that the accretion disc ‘puffs up’ more at early times than the
analytic, frozen-in model predicts (see Fig. 4). This finding implies
that if the jet remains in pressure balance with the ZEBRA envelope
(equivalently, if the ZEBRA is the source of the collimation for the
outflow), the jet containing the released accretion energy is more
highly collimated at early times.

By plotting the maximum value of q achieved for each black hole
mass as in Fig. 9, we find that higher mass black holes attain lower
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Super-Eddington accretion 3021

Figure 5. Left-hand panel: The accretion luminosity Lacc resulting applying the ZEBRA model with Ṁfb(t) from the SPH simulations (solid lines) and from
the frozen-in approximation (dashed) for the black holes listed in the legend, assuming a radiative efficiency of ε = 0.1 (i.e. Lacc = ε × Ṁaccc

2). In each case,
we normalized the accretion luminosity to the Eddington limit of the hole. Right-hand panel: Accretion luminosity Lacc calculated using Ṁfb(t) from the SPH
simulations normalized by the Eddington luminosity for the SMBH masses listed in the legend.

Figure 6. Left Panel: The photospheric radius of the ZEBRA as a function of time, calculated using the numerical fallback rate for the black hole masses
listed in the legend. Right Panel: Effective temperature of the photosphere as a function of time, also calculated using the numerical fallback rate for the black
hole masses listed in the legend.

maximum values of q than a power law would predict. Qualitatively,
since q is inversely proportional to angular momentum L5/6 and L
is proportional to the mass of the black hole M

2/3
h , q is ultimately

inversely proportional to M
5/9
h . Thus, higher mass black holes attain

lower values of q. However, the dependence of L on the fallback
rate, which itself depends on the black hole mass, prevents a simple
power-law relationship between q and Mh.

Our results offer an upper limit on the maximum black hole mass
for which super-Eddington accretion occurs in TDEs, corresponding
to 107 M� (assuming a Solar-like star that is accurately described
by a γ = 5/3 polytrope). Importantly, this upper mass limit is derived
from the numerically obtained fallback rates, while the equivalent
limit obtained from the frozen-in approximation would be signif-
icantly lower (∼few × 106 M�). We find that super-Eddington
accretion occurs on the order of 1 year for a black hole of mass
5 × 106 M�, and for approximately 1 month for a 107 M� SMBH.

The frozen-in approximation predicts that the fallback rate scales
as (see equation 34 of CB14)

Ṁfb = M∗
tr

f (τ ), (8)

where

tr =
(

R∗
2

)3/2 2πMh

M∗
√

GMh
(9)

is the return time of the most bound debris and f is a numerically
obtained function of τ – time normalized by tr – and the density
profile of the stellar progenitor. Since equation (8) only depends on
the black hole mass through tr, we expect

Lfb

LEdd
∝ Ṁfb

Mh
∼ M

−3/2
h . (10)

Thus, the frozen-in approximation predicts that the maximum fall-
back rate normalized by the Eddington luminosity follows a M

−3/2
h

power-law relationship.
Fig. 10 depicts the maximum accretion luminosity normalized

by the appropriate Eddington luminosity for each black hole. The
numerical fallback results in a power-law relationship between the
accretion luminosity (normalized by the appropriate Eddington lu-
minosity) and black hole mass:

Lacc

LEdd
= 20.4M−1.46

h,6 , (11)
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Figure 7. Time at which the accretion luminosity of the ZEBRA disk is
no longer super-Eddington, shown as a function of Mh/M�. Points in red
denote the values for the black hole masses simulated in this paper, while
the blue line is not a best fit but merely for clarity of visualization.

Figure 8. The accretion luminosity Lacc resulting from the ZEBRA model
withṀfb(t) from the SPH simulations (dashed) versus the fallback lumi-
nosity Lfb = ε × Ṁfbc

2 (solid) for the black holes listed in the legend. In
each case we assumed a radiative efficiency of ε = 0.1 and normalized the
luminosity to the Eddington limit of the black hole.

where Mh, 6 is the SMBH mass in units of 106 M�. The frozen-
in approximation also leads to a power law for the accretion
luminosity:

Lacc

LEdd
= 6.3M−1.46

h,6 . (12)

Comparing these two expressions, we see that the maximum nu-
merical accretion luminosity scales three times greater than the
maximum analytic accretion luminosity.

It has been shown that self-gravity, which the impulse approx-
imation neglects, can be important for modifying the structure of
the tidally-disrupted debris stream and the fallback rate (Coughlin
& Nixon 2015; Coughlin et al. 2016). Because the fallback time
scales with the square root of the SMBH mass (equation 9), one
might suspect that deviations from the expected Lfb/LEdd ∼ M

−3/2
h

scaling would be more pronounced for larger black hole masses
(as self-gravity has more time to act in these cases), leading ul-
timately to a power law index that differs from −3/2. However,
this is not the case: the power-law index remains the same for
both the numerically-obtained and the analytic fallback rates, and
is very nearly equal to −3/2. This finding suggests that self-gravity

is most important for modifying the fallback rate at early times
when the density of the stream is highest. We also propose that
these early deformations induced by self-gravity, which cause the
tidally-disrupted debris stream to generate “shoulders” in its density
profile (see figs 6 and 7 of Coughlin et al. 2016), are responsible for
the factor of ∼3 discrepancy between the analytical and numerical
peak accretion rates.

In the context of observed tidal disruption events, the ZEBRA
model of CB14 was tailored to explain jetted, super-Eddington
TDEs. In the model, the luminosity produced within the accre-
tion disk is necessarily exhausted anisotropically from the ZEBRA
through bipolar jets owing to the supercritical nature of the ac-
cretion. In agreement with this condition, the three TDEs so far
observed that display jetted activity – Swift J1644+57 (e.g., Bloom
et al. 2011), Swift 20158+05 (Cenko et al. 2012), and Swift J1112
(Brown et al. 2015, 2017) – were likely accreting at a super-
Eddington rate. In particular, J1644 and J1112 were associated
with black holes of respective mass Mh � 3 × 106M� (Levan et
al. 2016) and Mh � 5 × 106M� (Brown et al. 2015), and though
there are uncertainties related to the beaming factors of the jets
(the isotropic luminosities were well above the Eddington limit for
these SMBHs), the luminosities of those systems were likely super-
Eddington by factors of at least 10–100. The mass of the SMBH
powering J2058 could only be constrained to Mh � 8 × 106, but the
isotropic luminosity of the system (LX � 3 × 1047erg s−1) was still
in excess of the Eddington limit of even the largest conceivable black
hole mass. The approximate, ∝ t−5/3 decline of the lightcurves of
each of the jetted TDEs also fits well with the expectations of the
ZEBRA model. We therefore conclude that, overall, the ZEBRA
model describes qualitatively well the observed X-ray lightcurves
of the known jetted TDEs.

One of the other predictions of the ZEBRA model is that the time
at which the accretion rate falls below Eddington, after which the
jetted activity should cease, is a decreasing function of SMBH mass
(cf. Fig. 7). Using the above-quoted masses for J1644 (106M�),
J2058 (8 × 106M�), and J1112 (5 × 106M�), the ZEBRA model
predicts a shorter lifetime of a few months to three-quarters of a
year for J1112 and J2058, and a longer lifetime of ∼ 1 − 2 years
for Swift J1644. These jetted-activity lifetimes are consistent with
observations of Swift J1112, which exhibited a sharp decline in
the X-ray luminosity after ∼ 40 days; Swift J2058, whose X-ray
luminosity was observed for timescales on the order of months; and
Swift J1644, whose luminosity declined precipitously after ∼ 1.4
years.

Finally, optical/UV observations of Swift J2058 during the jet-
ted phase established a roughly constant effective temperature of
T � 6 × 104K (Cenko et al. 2012; J1644 displayed no optical/UV
emission, presumably from dust extinction, and J1112 was only
found archivally). From our Fig. 6, the ZEBRA model predicts
that a roughly constant temperature should be established during a
super-Eddington TDE, and a value of 6 × 104K corresponds to a
black hole of mass ∼ 5 × 106M�. This value is consistent with the
constraints on the black hole mass for Swift J2058 (Cenko et al.
2012).

Interestingly, observed optical and UV TDEs that lack hard X-
ray and radio (and are therefore probably not jetted) also exhibit
approximately constant effective temperatures around ∼ f ew ×
104K (e.g., Gezari et al. 2012; Strubbe & Murray 2015; Hung
et al. 2017). In contrast, thin disk models of TDEs estimate an
effective temperature of T � 105K (Cannizzo, Lee & Goodman
1990) – an order of magnitude in excess of those observed. While
these optical and UV TDEs are not jetted, the agreement between
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Figure 9 Maximum q as a function of black hole mass for 5 equally-spaced
discrete values between 105 and 107M�. Line shown is not a best fit but
merely for clarity of visualization.

Figure 10 Power law fits for maximum accretion luminosity (dotted) as
a function of black hole mass for numerical (blue) and analytic (yellow)
results. The maximum fallback luminosity (solid) from the numerical (blue)
and analytic (yellow) prescriptions for the fallback rate are also shown with
their power law fits. All are normalized by the Eddington luminosity with
an assumed radiative efficiency of ε = 0.1.

our predictions and the observations of the temperature evolution,
while not conclusive, could imply that these optical/UV TDEs are
also well-parameterized by a zero-Bernoulli condition.

5 SU M M A RY A N D C O N C L U S I O N S

Tidal disruption events, which occur when a star is destroyed by
the tidal field of an SMBH, can exhibit super-Eddington accretion
as tidally disrupted debris falls back to the hole. During this super-
Eddington phase, the debris disc formed from the TDE cannot
cool efficiently, and the disc likely becomes highly inflated and
weakly bound; outflows, either in the form of jets or winds, are
also likely generated. Coughlin & Begelman (2014) (CB14 in this
paper) used these notions to construct a self-similar, analytic model
of the accretion disc structure formed from a TDE, denoting the
structure a ZEBRA flow. Under this paradigm, accretion on to the
SMBH is approximately super-Eddington, and the excess accretion
energy that would otherwise unbind the disc is exhausted from the

system through bipolar jets launched along the rotational axis of the
system.

Our goal in this paper was to estimate the duration and magnitude
of super-Eddington accretion in TDEs, and specifically to under-
stand how the mass of the disrupting SMBH affects these estimates.
To this end, we first ran a suite of numerical simulations of the
tidal disruption of a Solar-like star, modelled as a γ = 5/3 poly-
trope, by a black hole with a mass in the range 105–107 M�. From
these simulations, we directly calculated the fallback rate – the rate
at which tidally disrupted debris returns to pericentre following a
TDE – as a function of black hole mass (Section 2). We then used
the ZEBRA model of CB14 in conjunction with our numerically
obtained fallback rates, which ‘feed’ the ZEBRA, to analyse the
time-dependent structure of the accretion disc formed during the
TDE and the accretion rate on to the SMBH (Section 3).

In particular, our fallback rates were calculated from numerical
simulations of TDEs, which include the effects of self-gravity and
pressure on the long-term evolution of the debris stream. This di-
rect calculation is more accurate than the impulse, or ‘frozen-in,’
approximation used by CB14, which models the orbits of tidally
disrupted gas parcels as Keplerian following disruption. Compar-
ing the two approaches, we found that the numerically obtained,
more realistic fallback rate predicts a peak accretion luminosity
larger by nearly an order of magnitude than that of the impulse
approximation. We also found that the ZEBRA envelope is charac-
terized by a steeper radial density gradient and a more spherical gas
distribution when the fallback rate is prescribed by the numerical
simulations.

The ZEBRA envelope becomes less spherical and achieves
smaller peak accretion luminosities as the SMBH mass increases.
Furthermore, our numerical fallback rates demonstrate that for
SMBHs with mass in excess of 107 M�, the accretion luminos-
ity is always sub-Eddington and therefore invalidates the ZEBRA
prescription. In contrast, the fallback rate derived from the impulse
approximation places this limiting SMBH mass at ∼5 × 106 M�.
The realistic fallback rates thus raise the upper limit on the maxi-
mum mass for super-Eddington accretion in tidal disruption events
to values above prior extrema derived from the impulse approxima-
tion.

In this paper, the tidal disruption event was simulated up to ob-
taining the fallback rate, and we did not go on to numerically inves-
tigate the accretion disc formation. As a result, conclusions related
to the properties of the accretion disc face limitations. In particular,
the ZEBRA model assumes that the debris stream circularizes ef-
ficiently. Should the debris stream instead miss itself, for example
due to Lens–Thirring precession, the fallback and accretion rates
could differ appreciably (Guillochon & Ramirez-Ruiz 2015).

Our models assumed that the star was Solar-like and possessed a
γ = 5/3 polytropic density distribution. In reality, there is a range of
stellar masses and properties intrinsic to each galaxy, and polytropes
– while a good first estimate – are probably insufficient for capturing
the intricacies of the density profiles of most stars. Therefore, a more
detailed study characterizing the dependence of super-Eddington
accretion on stellar properties is required, and our results here should
be considered as a small subset of those data points. We leave such
a detailed study to a future investigation.
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