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Introduction

• Accurate inflation forecasts are essential to macroeconomic policy 
formulation

• This paper begins by analysing exactly why this is the case

• It then goes on to suggest a new approach to forecast combination 
which we believe will generally improve forecast accuracy, especially 
in a situation where structural breaks are endemic.

• An illustration is provided for the US and the EU



Theoretical Background

• There are at least three reasons why inflation forecast errors lead to 
inefficient policy formulation.

• 1. The Lucas Supply Curve

• 𝑦𝑦 𝑡𝑡 − 𝑦𝑦(𝑡𝑡)
∗ = 𝛼𝛼

1−𝛼𝛼
(𝜋𝜋(𝑡𝑡) − 𝐸𝐸𝑡𝑡−1𝜋𝜋(𝑡𝑡) )

• Inflation forecast errors thus lead to inefficient variation in GDP



Theoretic Background

• 2. Fiscal Implications of forecast errors
• This concerns asset pricing for assets with a fixed nominal rate of 

return (Canzoneri and Dellas(1998))
• We derive the following relationship
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• Where the last term is the risk premium on nominal assets when 
inflation is not perfectly forecasted.



Theoretical Background

• The risk premium depends on the sign of the covariance between 
inflation and consumption. This can produce either a positive or 
negative risk premium on nominal assets.

• 3.Central Bank inflation targeting
• If the central bank has an inflation target then if its forecasts of 

inflation are inaccurate this will inevitably lead to sub optimal policy.



Analytical Motivation

• Two Strands of Literature brought together

• 1 Forcast combination

• 2 Forecasting in the presence of structural breaks



Analytical motivation (Forecast Combination)

• Two forecasters a and b and a combination c

• Combined error

• Variance will be 
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Analytical motivation (Forecast Combination)

• Optimal weights derived by OLS

• But often in practise equal weights perform just as well.

• This is a linear combination however and we argue that a non-linear 
combination must perform at least as well as this and should 
generally perform better.
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Analytical motivation (Structural Breaks)

• An important recent research theme has been the use of rolling 
windows in forecasting to overcome the presence of structural 
breaks. 

• Clements and Hendry (1996, 1998), Hendry (2000), Pesaran and 
Timmerman (2002), Goyal and Welch (2003), Pessaran, Pettenuzzzo
and Timmerman (2006), Koop and Potter (2007), Castle Clements and 
Hendry (2013) and Rossie (2013a, b).



Analytical Motivation (together)

• We are bringing these two branches of the literature together

• We look at forecast combinations but allow explicitly for structural 
breaks by employing non-linear combination techniques



Analytical motivation

• Our suggestion a non-linear combination

• But how to implement this, 

• One way, the Swamy and Mehta theorem, TVC estimation
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Kalman filter state space model

• Measurement equation

• State equations 1

• State equations 2
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Analytical Motivation
• Second approach
• An explicit non-linear estimation technique, Neural Nets

• A simple Neural net

• Where X is a vector of individual forecasts
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So the basic idea

• We believe a non-linear forecast combination must in general be 
superior.

• If the neural net captures the non-linearity without any structural 
breaks then this is probably the best technique.

• If structural breaks are hard to capture for the net then the Kalman 
filter model should do better.



Intuition
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What does OLS do
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Recursive OLS
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Smoothed Kalman Filter
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Kalman Filter Predicted (past information)
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Strategy

• 1. first do recursive estimation of the combination weights to asses 
how much of a problem breaks are

• Then do recursive OLS combination, equal weight combination and 
full sample OLS.

• Then compare with TVC weights (filtered) and recursive neural net 
combinations



Application

• We use data from ECB’s quarterly report, Survey of Professional 
Forecasters and for the US, the Federal Reserve Bank of Philadelphia, 
Survey of Professional Forecasters. For inflation forecasts, one quarter 
ahead for US and four quarter ahead for EU.

• Lots of missing data etc. 6 forecasters for the EU, 4 for the US



EU example Recursive OLS weights
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EU Cusum squared test
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1 2 3 4 5 6 Equal 
weights

OLS 
weights

RLS
weights

RMSE 1.029 0.942 1.008 1.019 0.943 0.951 0.982 0.839 1.305
MAE 0.850 0.740 0.827 0.845 0.762 0.767 0.787 0.616 1.089
MAPE 240.1 177.4 258.2 288.2 240.1 216.5 240.7 135.5 153.4

Table 1 EU, individual forecaster and standard combinations

TVC1 TVC2 Neural Net

RMSE 0.488 0.574 1.275
MAE 0.357 0.460 0.958
MAPE 79.1 119.1 157.6

Table 2 EU, Nonlinear combinations



US recursive OLS
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US CUSUM of Squares test
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1 2 3 4 Equal
weights

OLS
weights

RLS
Weights

RMSE 1.291 1.045 1.285 1.588 1.143 0.931 1.110
MAE 0.983 0.837 0.987 1.307 0.947 0.689 0.909
MAP
E

271.0 163.7 239.8 261.9 136.6 124.1 170.1

Table 3: United States: Forecasts based on simple averages and OLS weights

TVC 1 TVC2 Neural net
RMSE 0.897 0.997 0.832
MAE 0.620 0.703 0.546
MAPE 60.0 50.0 61.88

Table 4: United States: nonlinear results



Economic Value of the improvement

• We attempt to quantify the value to the economy of this degree of 
forecast improvement by putting this within the context of a simple, 
calibrated economic model.

• We find that the gains in forecasting accuracy for the EU would be 
worth something of the order of 0.7 percent of total consumption



Conclusion

• Inflation forecast errors represent a significant cost to the economy.

• We have suggested a way of extending standard forecast combination 
technology so as to allow for structural breaks using a Kalman filter 
TVC model and a neural net.

• The evidence from our two examples suggests that considerable gains 
for the new combinations. When there is substantial structural breaks 
the TVC performs best. In the other case the neural net performs 
best.
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