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Abstract: The complex nature of the interlacement of economic actors is quite evident at the level1

of the Stock market, where any company may actually interact with the other companies buying2

and selling their shares. In this respect, the companies populating a Stock market, along with their3

connections, can be effectively modeled through a directed network, where the nodes represent the4

companies, and the links indicate the ownership. This paper deals with this theme and discusses the5

concentration of a market. A cross-shareholding matrix is considered, along with two key factors:6

the node out-degree distribution which represents the diversification of investments in terms of the7

number of involved companies, and the node in-degree distribution which reports the integration8

of a company due to the sales of its own shares to other companies. While diversification is9

widely explored in the literature, integration is most present in literature on contagions. This paper10

captures such quantities of interest in the two frameworks and studies the stochastic dependence11

of diversification and integration through a copula approach. We adopt entropies as measures12

for assessing the concentration in the market. The main question is to assess the dependence13

structure leading to a better description of the data or to market polarization (minimal entropy)14

or market fairness (maximal entropy). In so doing, we derive information on the way in which the15

in- and out-degrees should be connected in order to shape the market. The question is of interest to16

regulators bodies, as witnessed by specific alert threshold published on the US mergers guidelines17

for limiting the possibility of acquisitions and the prevalence of a single company on the market.18

Indeed, all countries and the EU have also rules or guidelines in order to limit concentrations, in19

a country or across borders, respectively. The calibration of copulas and model parameters on the20

basis of real data serves as an illustrative application of the theoretical proposal.21

Keywords: entropy; cross-shareholdings; concentration; copulas22

1. Introduction23

The recent crises have evidenced the fragility of the financial system due to the growing24

interdependencies among many different organizations.25

In the context of network modeling applied to management organizations of industrial26

structures, usually nodes represent companies, while the links show the ownership, gathered in the27

cross-shareholding matrix. However, many studies in literature mostly focused on the shape of the28
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distribution of the node out-degree kout, because such results are linked to specific results on the29

resilience of the network [10,17,21,29,40]. kout represents the number of the companies whose stocks30

are included in the portfolio of the considered company, i.e. it is the amount of different counterparts.31

Therefore, kout can be used for representing the diversification, according to its conceptualization in32

the reference literature (see e.g. [1]). The higher the diversification, the less sensitive the node is to its33

inner fluctuations.34

Surprisingly, not many studies were done on the node in-degree kin distributions, where kin is35

the amount of (other) companies who bought some ownership of a specific company. The in-degree36

well represents the way in which each organization becomes more dependent on its counterparts,37

so it can be used to represent the integration of the company in the system (also for the concept of38

integration, refer to [1]).39

Notice that the construction of kout and that of kin do not involve the entity of the connections40

among companies, but only the number of existing connections. Thus, such quantities serve for41

modeling the presence of interactions; this provides information on how a company is integrated in42

the system and how diversified is its portfolio.43

An initial increase of integration may allow financial fluctuations of the value of a company44

to propagate and very high integration allows eventual cascades to spread on so many units that45

its effects are minimal [12]. Literature contributions inquired furtherly on on the trade-off among46

integration and differentiation so to detect the most dangerous combination for the propagation of a47

global crisis [12]. In this respect, it is also worth mentioning other ways for interconnections among48

companies, like the interlock of directorates [2,9,34] or personal relationships [19], or other contractual49

relationship (for a survey, see [45]).50

However, it is important to stress once again that kout is much more studied than kin in the51

empirical literature (see the review below).52

Studies on different real world networks have shown different reactions to patterns of attack53

among highly versus low concentrated networks. In short, highly concentrated networks are resilient54

to random shocks, but most sensitive to attacks to the core and to hubs. On the opposite, low55

concentrated networks are sensitive to random attacks [30,31].56

In this paper, we elaborate on the market concentration, represented through the entropies of57

the distributions of diversification and integration. In a connected network, under the hypothesis of58

independence among kin and kout, the entropy is minimal when the kin is concentrated on one value59

only; the same happens for kout. For instance, this happens on lattices or regular grids. Apart from60

being quite unlikely as cross-shareholding configuration, empirical evidences in literature assess the61

power law for the probability of kout. Moreover, there is evidence also on a power law or exponential62

behavior for the probability distribution of kin, as it is going to be detailed in the next section. Such63

distributions are discrete and on a limited range of integer numbers. In principle, these shapes of the64

marginal distributions of the in- and out-degrees should prevent the achievement of the minimum65

of the entropy, of course unless the joint structure is not the independent, but an ad-hoc one. It66

could also happen that – although keeping the power law/exponential form – the measures are so67

concentrated on their center of mass that the entropy is quite close to its minimum. In this case,68

most of the network units should have just one incoming and one outgoing link; that is, again, a69

very unlikely configuration for a cross-shareholding network. On the opposite, the maximum level70

of concentration increases when there is a flat uniform distribution. In this case – in order to make71

an example – again under the hypothesis of independence – the units with the minimum kin should72

have the maximal kout; and vice versa (see the Appendix 1 for further insights). This situation is73

much closer to the kind of networks modeling the presence of mixed categories of companies. In74

fact, usually financial companies land money in exchange of shares; but sell their shares to a minimal75

number of other companies, maximum one or two [33]. On the opposite, manufactures sell their76

shares, but rarely make financial investments buying shares of other companies - unless strategically77

relevant to their specific business [33].78
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In front of such different landscapes, some main research question addressed in the present paper is79

exactly on these topics: is the hypothesis of independence holding on a case study? Is the network80

topology of the case study limited to the distribution of kin and kout sufficient, in itself, to prevent a81

rise of concentration? Would there be maxima/minima of the entropy if - keeping the marginals -82

the joint structure would be different? To which extent may the parameters describing the marginals83

change before eventually reaching maximum or minimum of concentration?84

In order to achieve the tasks, we adopt a copula approach for assessing the concentration of the85

market through the stochastic dependence between in- and out-degree. In this respect, copulas are86

of great usefulness (see [22,28]). Indeed, the classical Sklar’s Theorem [39] explains that a copula87

function is able to represent the connection between the joint probability distribution of a random88

vector and the marginals of its components. Specifically, a multivariate copula computed over the89

marginals is equivalent to the joint distribution. Sklar’s Theorem can also be read under a different90

perspective: starting from a joint distribution of a random vector and the marginals of its components,91

one can implement a best fit procedure to identify the copula describing the connection among them.92

Thus, as already stated above, concentration is here captured through the joint analysis of93

diversification and integration at an aggregate level. Specifically, it is given by the Shannon entropy94

of the joint distribution of in- and out-degree. This leads to gain insights on the market structure95

and on other relevant aspects, like the reaction of the system to external shocks. Indeed, a polarized96

market (minimum value of the entropy) can be associated to the presence of a company with a central97

role, while a large entropy suggests a fair distribution of the business network in terms of companies98

ownerships.99

It is worth remarking that a proper consideration of the weights of the network would make100

entropy equivalent to the Herfindahl-Hirschman (HH) measure of concentration, that became quite101

popular in financial studies after its appearance in the official documents of the US mergers guidelines102

for fixing alert threshold [43].103

The present study offers to the regulatory bodies the possibility to monitor the possible rise of104

concentration already looking to the network topology only105

For what concerns the dependence structure of diversification and integration, we proceed under106

two different perspectives. By one side, we consider the independence copula and the Frechet107

bounds [15], which are specific fundamental nonparametric copulas, and assume that they describe108

the dependence between the two degrees random variables. On the other hand, we calibrate the109

parameters of three families of copulas – Gumbel, Clayton and Frank, see [7,14,20], respectively –110

which belong to the classical family of Archimedean copulas [26].111

In so doing, we focus on the informative content of the stochastic dependence between in- and112

out-degree random variables. In fact, the different copulas capture different stochastic dependence113

among the involved random variables. In particular, Frechet bounds have an intuitive interpretation114

in the bivariate case: they represent the maximum absolute values of joint correlations. The upper115

bound stands for the highest positive correlations, while the lower one is for negative correlations.116

The Gumbel copula captures tail dependence, with a special attention towards the dependence on117

the right tail. Differently, The Clayton copula [7] describes the dependence on the left tail of the118

distribution. Frank copula [14] does not exhibit tail dependence and allows both positive and negative119

dependence.120

The methodology used for the calibration procedure is based on two different optimization121

problems, i.e. a maximum- and minimum-entropy for the joint distribution. In the former case,122

we are in the corner situation of an economic system with companies having the same values of123

diversification and integration; the latter case is associated to the maximum level of polarization,124

with only one company holding the total amount of connections, so that the maximum level of125

diversification and integration.126
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In the same light, entropy is also computed in the case of nonparametric copulas for the obtained127

multivariate joint distribution. The paradigmatic cases of independence – product copula – and128

maximum/minimum level of positive dependence – the Frechet bounds – serve as benchmarks.129

The analysis has been also expanded for including a generic economic system. Indeed, many130

empirical papers evidenced that the distribution of the out-degree of many economic-financial131

systems is of a power law type [3]. Thus, the analysis has been replicated by substituting the132

out-degree index with a power law function. The parameter of the power law has been included133

in the set of parameters to be calibrated. The empirical evidences on both the existence of power law134

and of the exponential distribution for the in-degree will be examined as well.135

The generalization of the results of this paper to other kind of networks, like networks with136

missing links is challenging and useful. We have in mind contributions on not fully observable137

networks that can be effectively adopted (see e.g. [6,16,37]); this topic might be some matter for138

future work.139

The rest of the paper is organized as follows: the next sections describe the selection of the140

probability distribution of the marginals according to the existing literature and empirical data.141

Section 3 presents the employed dataset. Section 4 outlines the investigation procedure along with142

the considered copulas. Section 5 contains the obtained empirical results on the case study and on143

the generalizations and discusses them. Last section concludes. Some important ancillary results and144

materials are relegated in two devoted Appendices.145

2. Distribution of the in- and out-degrees: empirical evidences in literature and a case study146

This section serves to fix the hypotheses on the shapes of the marginal distribution that are147

meaningful for the problem under examination.148

In literature - most in the Econophysics realm - there was much emphasis in the detection of the
Pareto distribution in Economics [13]. Such a distribution is characterized by a power law decay in
the tails:

p(k) ∼ k−γ (1)

that corresponds to the cumulative distribution

P(k) ∼ k1−γ (2)

Therefore, if k follows a power law with the exponent −γ, then the cumulative distribution149

function P(k) follows the power law with exponent −γ + 1.150

2.1. The out-degree kout151

The presence of the power law in the distribution of the out-degree is widely assessed in existing152

literature.153

For example, Aoyama et al. [1,42] add evidences to the power law of the out-degree analyzing154

the shareholding network of Japanese companies listed in the Japanese stock market by using only155

major shareholder data, and focusing on companies concerned with automobile manufacture. The156

results reported (see Fig. 4.28 and Table 4.5 in [42]) show the analysis of the cumulative distribution157

of outgoing degrees in 1985, 1990, 1995, 2000, 2002, and 2003. The size of the dataset ranges from158

2078 to 3770 companies, and all annual cumulative distributions can be well fitted by a power-law159

distribution with exponents in the range (1.67, 1.86), that leads to γ ∈ (2.67, 2.86)160

Souma et al. [41] examine the Japanese shareholding network existing at the end of March 2002.161

The network is constructed from 2303 listed companies and 53 non listed financial institutions. The162

distribution of outgoing degrees is well explained by the power law function with an exponential tail.163

The best fit of the cumulative is a power law with exponent 1.7, that corresponds to γ = 2.7.164

In [18] the direction of links reversal to the one used in [2,11,33] is used for dealing with165

diversification and integration, so their results for kin actually have to be compared with kout of the166
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other papers. The authors report also the power law exponents of some shareholding networks:167

the Italian stock market (Milano Italia Borsa; MIB), the New York Stock Exchange (NYSE), and the168

National Association of Security Dealers Automated Quotations (NASDAQ). They find that all of169

them follow a power law distribution: γMIB = 2.97 in 2002, γNYSE = 2.37 in 2000 γNASDAQ = 2.22 in170

2000.171

The scale free structure has been estimated also on the shareholding of 223 companies quoted in172

MIB (Milan Stock Exchange) in the time span 1/1/2004, 12/31/2004 [11]. Companies are the network173

nodes; arcs are drawn from the shareholders to the owned companies. The power law function with174

exponent 1.39, that leads to γ = 2.39 nicely fits the distribution.175

In [33] the shareholding network of MIB companies are still built as in [11], but on data sampled176

in 2008. A best fit estimate of 2.15 and a Maximum Likelihood Estimate of γ = 2.7, are in line with177

the above mentioned results.178

In [4] the cross-shareholding of 300 index companies from 2007 to 2013 are studied. The179

companies are listed in the Shanghai and Shenzhen stock market. Data are provided by the Securities180

Times (STCN) and the Wind Database. The sample of firms covers about sixty percent of the market181

value of the Shanghai and Shenzhen stock market. They find the following values of γ: γ = 2.311182

(2007), γ = 2.465 (2008), γ = 2.558 (2009), γ = 2.625 (2010), γ = 2.721 (2011), γ = 2.722 (2012),183

γ = 2.724 (2013).184

In [23] the worldwide network of listed energy companies sampled in 2013 is built. The data185

source is the ORISE publicly listed companies worldwide (https://osiris.bvdinfo.com), on December186

31, 2013. There are 2334 listed energy companies and 8302 shareholders in the database (after187

removing duplicate items). In this so large database, the power law exponent estimated for the188

cumulative distribution of the out-degree is γ = 2.428.189

In [27] the cross-shareholding networks of the companies listed in Chinese stock market between190

2002 and 2009 are studied. They analyze the mutual investment at company-level, province-level and191

region-level. However, they go beyond the mere topology of the network, because they consider the192

weight of cross-ownerships into the out-degree. Although they measure a quantity different from the193

kout that we use in this paper, it is worth remarking that they measure the power law in the range194

(1.813− 2.229)1
195

The topological properties and evolution of the cross-shareholding networks of listed companies196

Shanghai stock exchange and the Shenzhen stock exchange in China from 2007 to 2011 are analyzed197

in [24]. They find that both the in-degree and the out-degree follow a power law distribution in the198

range (2.01, 2.43). In detail: 2.43 (2007), 2.39 (2008), 2.33 (2009), 2.32 (2010), 2.33 (2011).199

Vitali et al. [44] worked on the Orbis 2007 marketing database, that comprises about 37 million200

economic actors, both physical persons and firms located in 194 countries, and roughly 13 million201

directed and weighted ownership links (equity relations). On such data, the power-law exponent of202

the probability density function of the out-degree is γ = 2.15.203

We may conclude that above empirical analyses allow to conclude that the power law behavior204

of kout is quite widespread, and allows us to assume a power law as hypothesis for kout.205

2.2. The in-degree kin206

The amount of empirical analyses of kin is much lower than the ones on kout. Some authors207

explicitly declare that they are not interested in examining kin, because the range of this variable is208

more limited than kout. A very few studies are available. In [11] the in-degree distribution shows a209

power law, with exponent 0.62. On [33] data, the exponential distribution was detected as the best210

fitting one, although the power law is quite close. Therefore, we are going to examine both the power211

law and the exponential as probabilities suitable for describing kin.212

1 2.229 (2002), 2.152 (2003), 2.057 (2004, 1.958 (2005), 1.899 (2006), 1.788 (2007), 1.793 (2008), 1.813 (2009)
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3. Data213

The data is the set of holdings among listed firms in the Milan Stock Market. It is214

the same as in [33]. The data set has been sampled on May 10th, 2008, from which we215

build the network of shareholders and subsidiaries of companies traded on the MTA segment216

www.borsaitaliana.it/azioni/mercati/mta/.../mta − mercato − telematico − azionario.en.htm of the217

Italian Stock Market. The information available on several databases were cross-checked: the Bureau218

Van Dijk databases and CONSOB for the active and passive ownership sample; Bankscope for219

banking and financial companies; ISIS for insurance companies; AIDA for all the remaining sectors;220

Datastream Thomson Financial Database. The few companies that had incomplete data on either221

active or passive holdings were excluded from the present analysis. Even if very limited holdings222

(below 2%) have been considered, the mediate possessions held via mutual funds were excluded as223

well, because they do not represent a direct interest of a company into another.224

The total size of the sample amounts to 247 companies, that represent the nodes of the network,225

that is the 94% of the total number of listed companies and 95.22% in terms of capitalization.226

This dataset is slightly different from the one examined in Garlaschelli et al. (2005) because some227

companies traded in the market changed; moreover, there is a different level of accuracy in the details228

of ownership data, and their Kin corresponds to our Kout. Our notation for kout is following [5].229

Most companies do not actually buy shares of other companies, they can be considered small230

companies. The giant component is made by 101 nodes, which are connected to each other [33].231

In the present analysis, we consider only the values of the in-degree and of the out-degree that are232

different from 0, so that we exclude isolated nodes. The latter constitute the set of companies that do233

not buy shares of (and which shares are not owned by) other companies traded in the same market.234

4. Investigation procedure235

This section is devoted to the introduction of the analytical instruments used and to the236

description of the implemented analysis.237

4.1. The adopted copulas238

We firstly present the definition of bivariate copula, which is crucial for the study.239

Definition 1. A bivariate copula is a function C : [0, 1]2 → [0, 1] such that240

• C(u, v) = 0 if u× v = 0;241

• C(u, 1) = u and C(1, v) = v, for each u, v ∈ [0, 1];242

• Given the 2-dimensional rectangle [a1, b1]× [a2, b2] ⊆ [0, 1]2, then

2

∑
i1=1

2

∑
i2=1

(−1)i1+i2 C(ui1 , vi2) ≥ 0,

where uj = aj and vj = bj.243

The concept of bivariate copula plays a key role in describing the stochastic dependence between244

two random quantities. Such a statement is formalized in the Sklar (1959)’s Theorem, reported below:245

Theorem 1. Let P be the joint distribution function of a bivariate random variable (X, Y). Define the margins
as PX and PY. Then there exists a bivariate copula C such that, for each (x, y) ∈ R2,

P(x, y) = C(PX(x), PY(y)). (3)
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If the margins PX , PY are continuous, then the copula C is unique. Conversely, if C is a bivariate copula and246

PX , PY are distribution functions, then the function P defined in (3) is a bidimensional distribution function247

with margins PX , PY.248

Theorem 1 explains that the relationship between the joint and the marginal distributions of a249

couple of random variables can be formalized by employing copulas.250

Different copulas describe different types of stochastic dependence. The analysis here251

implemented refers to six copulas — or classes of copulas — which are widely used in the252

applications.253

Specifically:254

• Product copula
CI(u, v) = uv. (4)

This is the case in which the random variables X and Y are independent.255

• Lower Frechet bound
CLF(u, v) = max{u + v− 1, 0} (5)

This copula represents the case of perfect negative correlation between X and Y.256

• Upper Frechet bound
CUF(u, v) = min{u, v} (6)

This copula, in an opposite way with respect to the previous one, captures perfect positive257

correlation between X and Y.258

• Gumbel Archimedean copula

CG(u, v) = exp[−((− ln(u))θ + (− ln(v))θ)1/θ ], θ ∈ [1,+∞) (7)

In this case, one has an asymmetric tail dependence, with more mass on the right tail. Such a259

dependence is influenced by the value of the parameter θ.260

• Clayton Archimedean copula

CC(u, v) =
[
max{u−θ + v−θ − 1, 0}

]−1/θ
, θ ∈ [−1, 0) ∪ (0,+∞) (8)

Analogously to the previous case, here one has an asymmetric tail dependence . However,261

Clayton copula is associated to a predominance of the left tail.262

• Frank Archimedean copula

CF(u, v) = −1
θ

ln
[

1 +
(exp(−θu)− 1)(exp(−θv)− 1)

exp(−θ)− 1

]
, θ 6= 0 (9)

This copula is not associated to tail dependence, and is able to capture either positive or negative263

dependence on the basis of the value of θ.264

Product copula and the Frechet bounds are associated to nonparametric functions, since they265

do not depend on any parameter. Differently, the presence of a scalar θ in the definition of Gumbel,266

Clayton and Frank copula says that such copulas are of parametric type.267

4.2. Outline of the analysis and numerical results268

The availability of the case study allows to have a full description of the marginals and of the269

joint distribution of the in- and out-degrees. However, the general case is also included for the sake270

of universality of the analysis.271

The investigation procedure is split in three cases. In all the steps, the above-mentioned copulas272

are taken as reference instruments, in order to describe stochastic dependence between the in- and273

the out-degree and achieve different objectives.274
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In the case 1, a description the empirical data coming out from the available sample is provided.275

Starting from the empirical (marginal) distributions of in-degree and out-degree, we derive the joint276

distribution of such quantities by applying Sklar (1959)’s Theorem through the copulas introduced277

above. The Euclidean distance between the non-parametric copula-based distributions are computed,278

and also the calibration of the parameters of the Archimedean copulas are obtained by a Euclidean279

distance minimization.280

Case 2 still focuses on the case study. Substantially, this step can be viewed as a replication of281

the previous one with the remarkable difference that the Euclidean distance has been replaced by the282

Shannon entropy. The meaning of this second step of the analysis can be easily synthesized. Indeed,283

we here look at the conditions on the stochastic dependence between in- and out-degrees leading to284

market polarization (minimal entropy) or market fairness (maximal entropy). In so doing, we derive285

information on the way in which the degrees should be connected in order to shape the market. Two286

separate cases are treated: first, computation of the entropy for the cases of non-parametric copulas;287

second, the calibration of the parameters of the considered Archimedean copulas under a maximum-288

and minimum-entropy approach.289

In the case 3, we provide a generalization and, in accord to the existing literature, we consider290

marginal densities depending on parameters. In details, we consider power-law and exponential291

for the out-degree, while we take the in-degree without parametrization, according to its empirical292

distribution. Also in this case, two cases are treated: first, the non-parametric copulas are imposed293

and the parameters of the power laws and exponential are calibrated under a maximum- and294

minimum-entropy approach; second, the parametric copulas of Gumbel, Frank and Clayton types295

are considered and their parameters, along with that of the out-degree distribution, are calibrated in296

a max/min entropy approach.297

The probability of configuration P(kin = i, kout = j) is calculated through the copula as P(kin =298

i, kout = j) = C(u(i), v(j))− C(u(i− 1), v(j))− C(u(i), v(j− 1)) + C(u(i− 1), v(j− 1)).299

Moreover, the calibration methods might naturally be based on other concepts of distance (see300

e.g. [25,32]). In this respect, it is also worth mentioning the results and methodologies proposed301

in Schellcase (2012), where the author provides an estimation of copula density through penalized302

splines of different types [36]. However, as already pointed out above, Euclidean distance and303

entropy have different meanings and are particularly suitable for capturing the focuses of our304

investigation purposes.305

5. Results and discussion306

The obtained findings of the analysis are here described and discussed.307

5.1. Case 1: distance from the empirical joint distribution308

Figure 1 shows the empirical marginal distribution of kin and kout for the empirical case we deal309

with, while Figure 2 shows the joint probability. The range for kin is [1, · · · , 10], and the range for310

kout is [1, · · · , 19]. The limits of 10 for i and 19 for j are due to the specific sample. The value 0 is311

not considered in the present analysis. In fact, the detection of the Pareto distribution would mainly312

concern the tails. Thus, we notice that there are too many 0’s for appreciating such a distribution in313

the full histogram.314

The power law best fit over the density gives p(kout) ∼ k−γ
out with γ = 2.159(1.984, 2.339),315

RMSE=0.0094. The Jarque-Bera test validates the hypothesis of Gaussianity of residuals. The316

power law best fit on the empirical probability distribution leads to P(kout) ∼ k1−γ where γ =317

1.7925(1.6596, 1.9254), RMSE=0.0088. The MLE γ gives γ = 2.72766(2.72763, 2.72768). For the case318

of in-degree, the Jarque-Bera test rejects the hypothesis of Gaussianity of residuals. Therefore, there319

is still residual information in the residuals whence the hypothesis of power law decay cannot be320

fully validated. However, the empirical distribution is quite close to the power law. For the in-degree321

kin the best fit is the exponential General model Exp1: f (x) = a ∗ exp(b ∗ x) Coefficients (with 95%322
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confidence bounds): a = 1.6 (1.424, 1.777) b = -0.9727 (-1.061, -0.8845) Goodness of fit: SSE: 0.001137323

R-square: 0.9966 Adjusted R-square: 0.9963 RMSE: 0.01124.324

The parametric copula — Gumbel, Frank and Clayton — that best fits to the empirical data is now325

detected. For the non parametric copulas we calculate the distance d(CI , P) of the joint distribution326

calculated by using the copula C(u, v) from the empirical joint distribution P. Such a distance will be327

used as a benchmark value.328

The results are:329

• Product copula (independence): d(CI , P) = 4.06e− 014330

• Lower Frechet bound d(CLF, P) = 0.9354331

• Upper Frechet bound d(CUF, P) = 3.9484332

Therefore, the joint empirical distribution is closer to the hypothesis of independence (product333

copula) than to the others.334
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Figure 1. Upper figures: histograms (empirical densities, left: p(kout = x), right: p(kin = x)). Lower
figures: distributions (left: P(kout < x), right: P(kin < x)). The left part corresponds to Fig. 4 of [33].
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Figure 2. Case study. Joint empirical distribution.
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On the copulas that depend on a parameter a best fit procedure has been implemented. Figure335

3 plots the dependence of the distance on θ considering the three cases for the joint distribution: the336

Gumbel, Frank and Clayton copulas:337

• Gumbel Archimedean copula. The best fit holds for θ = 1, with practically 0 as value for the338

distance. This is coherent with the case of the product copula, because, in fact, when θ = 1,339

then the Gumbel copula reduces to the product copula. Small differences on the distance are340

due to the numerical rounding of the algorithm. This outcome confirms what obtained for the341

independence case.342

• Frank Archimedean copula. The distance from the empirical data is decreasing as θ approaches343

0, but 0 does not belong to the definition set. Therefore, the calibrated parameter tends to zero.344

We do not have an optimal value of θ. From this, we infer that this copula is not suitable for the345

fit.346

• Clayton Archimedean copula. For the negative values of θ, there is a minimum for θ = −1, that347

belongs to the definition set and corresponds to the case of the lower Frechet bound. The value348

of the distance for θ = −1 is 0.93.349

Thus, the empirical in- and out-degrees exhibit a structure of stochastic independence, with a350

very small value of the distance between the empirical distribution and the one obtained in the351

product copula case. This is also confirmed in the Gumbel copula case. However, when forced to352

describe a type of dependence described through a Clayton copula, data are less distant from an353

absolute negative correlation (lower Frechet bound). This outcome is in agreement with the fact that354

the distance of the data from the lower Frechet bound is lower than the one from the upper Frechet355

bound.356

Under an economic point of view, independence means that there is not a regular behavior of357

companies in the respect of integration and diversification. More precisely, it is not possible to infer358

diversification properties of the market by looking at the integration, and vice versa.359
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Figure 3. Distance d(C, P) from the empirical distribution, when the joint distribution is calculated
through the Gumbel (upper figure, d(CG, P)), Frank (middle figures, d(CF, P)) or Clayton distribution
(lower figures, d(CC, P)).
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5.2. Case 2: entropy360

In this section, we start working on the entropy. We refer to the Shannon entropy [38]

H(C(u, v, θ)) = −∑
u,v

C(u, v, θ) ln C(u, v, θ) (10)

The entropy calculated on the empirical joint distribution is 1.52. On the joint distribution calculated361

through the copulas not depending on parameters, the values of the entropy are:362

• Product: H = 1.52, the same value as for the empirical joint distribution. In fact, this copula363

well describes the joint distribution.364

• Lower Frechet: H = 0.96.365

• Upper Frechet: H = 1.45.366

For the parametric copulas, we perform a comprehensive analysis on the minimum/maximum367

as a function of θ. Figure 4 shows the dependence of the entropy on θ in the cases of joint distribution368

calculated through copulas. We get the following results:369

• Gumbel Archimedean copula. The numerical minimization procedure gives the best fit for370

θ = 1, with a value of the entropy equal to 1.5154 . This is in line with the best fit of the product371

copula. From Figure 4 it is possible to note that there is an asymptotic behavior for θ going to372

infinity. The maximum is attained for θ = 2.1312 with a value of the entropy equal to 1.8693.373

• Frank Archimedean copula. There is no minimum because 0 does not belong to the definition374

set of the functions. The maximum is attained for θ = 9.4205 with a value of the entropy equal375

to 1.9060.376

• Clayton Archimedean copula. There is no minimum internal to the definition set. From Fig.377

4 it is clearly visible that the function is decreasing for θ < 0, so θ = −1, that is the lower378

bound of the parameter variation interval, is a point of minimum. Regarding the maximum, the379

numerical maximization of the entropy gives the point of maximum in θ = 6.3899, with a value380

of the entropy equal to 1.8982.381

Results can be commented as follows. Independence is confirmed to describe the stochastic382

dependence between the degrees. More than this, we can also say that data are associated to a high383

value of the entropy. This outcome says that the market described by the considered companies has384

a "broadly fair" distribution in terms of integration and diversification. Such a "fairness" is more385

evident in the cases of Frank and Clayton copulas, whose calibrated parameters suggest that left386

tail dependence (Clayton) and positive correlation (Frank) are more likely associated to a uniform387

distribution of the in- and out-degrees. We point out that the left tail dependence is related to the388

presence of a strong correlation when the levels of diversification and integration are low.389

The detection of a maximum shows that there are possible configurations for the joint390

distribution that lead to a network where the in-degree (distribution) is decoupled from the391

out-degree (distribution). Situation like this may happen when companies are artificially created, so392

that a wide set of combinations is possible: nodes with low (high) in-degree and high (low) out-degree393

or nodes with similar values of in-degree and out-degree. For instance, in the MIB30 ([33], Figure 1)394

the company IFI PRIV was created for controlling IFIL, that has the main role to provide financial395

services to the main companies of the Agnelli family: FIAT and JUVENTUS, so IFIL has only one396

outgoing link, and no incoming links - the ultimate owners being the persons member of the family.397

In [33], while Figure 2 in the quoted paper shows a list of companies for which the only link is due398

to the need of using a financial institution - that, in turn, gets ownership of the financed company.399

A circumstance that leads to quite different values for kin and kout for a single node is given by the400

role of banks and insurance companies: since they provide money to other companies, they get in401

exchange the ownership, whence having many outgoing links. On the other side, they use insurance402
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companies transferring them their own part of their risk. In [33], Figure 1, on the left, the cases of403

MPS bank and UNIPOL insurance company clearly evidence this kind of situation.404
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Figure 4. Plot of the dependence of the entropy function on the parameter theta for the Gumbel,
Frank and Clayton, calculated on the marginals of the case study. Clearly, no minimum internal to the
definition sets. There is a maximum for the Gumbel copula in θ = 2.13. There is a maximum for the
Frank copula in θ = 9.41. There is a maximum for the Clayton copula in θ = 6.39.
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5.3. Case 3: marginals depending on parameters405

The previous section has shown the case study. In literature, most often the kout follows a power406

law, with exponents in a range (2, 3). The few studies on kin have shown most either a power law407

or an exponential. In this section, we aim at extending the previous results to a more general case in408

which the exponent of the power law may change. This corresponds to study the effect of a change409

of exponents on the results of the maximization and minimization of the entropy. It is worth recalling410

that the exponent of the power law has an implication on the presence of fair values. The higher the411

exponent, the faster is the decrease, meaning that there are many low values of the degrees and a412

very few with high ones. For instance, in [11] the MIB30 network of cross-shareholding was showing413

a power law. In fact, the companies considered in the quoted paper were more keen to diversify their414

investment. The crisis in 2008 canceled this kind of investment, as shown by the increase of the value415

of the power law exponent on the MIB30 in 2008 [33].416

Although the power law remains the best fitting, the shape of the distribution is slowly moving417

to a sharply decreasing function, becoming closer to an exponential distribution. The same behavior418

of a distribution has been shown in [8] in the context of wealth.419

For each of the above listed copulas, we here look for the minimal and maximal entropy using420

the following marginal distributions:421

1. step 1: power law for kout, and raw data for kin.422

2. step 2: raw data for kout, and power law for kin.423

3. step 3: raw data for kout, and exponential law for kin.424

4. step 4: power law for kout, and power law for kin.425

5. step 5: power law for kout, and exponential law for kin.426

The last two cases correspond to the most general case, independent from the case study. For each of427

them, all the copulas listed in the methodological section are tested.428

To be concise and informative, we present here only step 1. The interested reader can find the429

other cases in Appendix B.430

5.3.1. Step 1: power law for kout, and raw data for kin431

In this case we consider the cumulative distribution P(kout < x) = ax−k+1. We are not432

considering the more general functional form ax−k+1 + b because the density in this kind of problems433

is vanishing as k increases, so b would be 0. The parameter a is automatically fixed by the434

normalization condition P(kout < ∞) = 1.435

We already pointed out that the parameters regulate the mass distribution over the range. Low436

values of k lead to a more flat distribution; high values of k increase the skewness to the left, and so437

the cumulative distribution function is quickly growing at the beginning of the range; the inflectional438

point is moving to the left. The increase of the skewness leads to an alignment to the distribution439

of kin, so increasing the peakness and the concentration of the distribution, hence the minimization440

of the entropy. Here below, we report results for both parametric and non parametric copulas. The441

Figures referring to non-parametric copulas report k on the x-axis for the non parametric copulas.442

The parametric copulas depend on k and θ, but the 3D visualization is less clear than the 2D one.443

Therefore, the visualization for the parametric copulas is more clear drawing the entropy as function444

of θ (on the x-axis) for different meaningful values of k (corresponding to different curves).445

• Non parametric copulas: Fig. 5 shows the behavior of the entropy as a function of k. The446

upper Frechet bound and the product copula are quite overlapped: the entropy increases as k447

increases. Practically, in the marginal of kout the entropy is minimal as the mass is pushed to the448

highest mass concentration of kin, that is at the left bound of the domain, although it should not449

become more sharp than the empirical distribution of kin. This is coherent with the Theorem450

in the Appendix, as well as with the very well known fact that the entropy is minimal as the451

dispersion diminishes and the mass is concentrated. The lower Frechet copula has the opposite452
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behavior. There is no minimum and no maximum internal to the range for k. All the three show453

a maximum: for k = 0.46 and H = 2.12 (Product), k = 2.2 and H = 0.97 (Lower Frechet), k = 1454

and H = 2.09 (Upper Frechet). The only maximum in the most interesting range of k ∈ (2, 3) is455

the Upper Frechet one. In the Frechet one there is also another local maximum in k = 0.81 and456

H = 0.52 and two local minima in k = 0.71 and H = 0.50 and in k = 0.91 and H = 0.48. The457

other local fluctuations in the Upper Frechet do not lead to other local maxima or minima. All458

the entropies are decreasing for k increasing.459
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Figure 5. The figure shows the dependence of the entropy on k for each of the three non parametric
copulas.
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• Fig. 6 shows the entropy function when the exponent of the power law for kout is allowed460

to change. Therefore, the marginal distribution is allowd to change, still remaining a power461

law. The other marginal is given by the case study for kin. The marginal distributions are462

combined through the Gumbel copula. The minimum that was detected on the raw data for463

θ = 1 disappears, and an asymptotic behavior remains: the entropy is decreasing for θ → ∞, i.e.464

in the case of convergence towards the Frechet upper bound. Therefore, the minimum entropy465

is obtained either when the copula is the product or when the considered quantities are perfectly466

positively correlated.467

Once more, we may remark that the entropy decreases as the concentration of the distribution468

increases, possibly reaching a Dirac’s delta function. Since the marginal on kin is fixed, the469

minimum is obtained when the mass through the other marginal is concentrated on the highest470

peak of kin, that is at the left border. This effect is obtained by increasing the steepness of the471

marginal of kout. The higher k, the more the mass is concentrated on the left border. This effect is472

emphasized by the application of the copula. Since both marginals are left-skewed, the product473

gives the minimum, for quite a range of values of k. However, the entropy is decreasing as474

θ → ∞, reaching values lower than the minimum, when present. Therefore any concentration475

limit can be overrun, providing that the slope of the power law is large. We already noted that476

most systems show a power law with an exponent between 2 and 3. This prevents the rise of477

concentration.478

The analysis of the maximum is quite different. As k increases, the maximum is pushed to the479

left side of the range of θ, tending to 1 for high values of k, i.e. in the case of independence.480
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Figure 6. The figure shows three cases for the entropy (y-axis) as a function of θ (x-axis). The marginals
are: the power law for kout and from the case study for kin. They are combined through a Gumbel
copula. In all cases, the function is decreasing as θ → ∞. The maximum is well evidenced, like in our
case study. As k increases, the maximum moves to the left border.
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• Frank copula. Also for the Frank copula there are different configurations as the parameters of481

the power law changes. Figure 7 outlines the situation for θ < 0 (left hand side) and for θ > 0482

(right hand side).483

The Frank copula when θ < 0 gives a result similar to the left part of the second row of the484

figure 4: there is no minimum. Moreover, the value of the entropy is increasing as θ increases.485

However, for each fixed θ, the values of the entropy decreases as k increases. If θ > 0 the486

maximum moves to the right as k increases. There is no minimum, since 0 does not belong to487

the definition set.488
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Figure 7. The figure shows three cases for the entropy (y-axis) as a function of θ (x-axis). The marginals
are: the power law for kout and the empirical distribution of case study for kin. They are combined
through a Frank copula. When θ > 0, the maximum moves to higher values of θ as k increases. Since
0 does not belong to the definition set, there is no minimum. Left side of the figure: in all cases the
function is increasing for θ → 0+ and decreasing for θ → −∞.
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• Clayton copula. Figure 8 shows the situation depending on the parameters of the power law.489

For θ > 0, the subplots show that the maximum moves to the right hand side as k increases.490

There is no minimum, since 0 does not belong to the definition set, there is no minimum. For491

θ < 0, there is a minimum for θ = −1, for any value of k.492
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Figure 8. The figure shows three cases for the entropy (y-axis) as a function of θ (x-axis). The marginals
are: the power law for kout and from the case study for kin. They are combined through a Clayton
copula with parameter θ < 0. The left figures shows the case θ < 0. There is a minimum for θ = −1,
for any value of k. The right figures show the case θ > 0. The maximum moves to the right hand side
as k increases. For any k, the function is decreasing for θ → −∞.
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6. Conclusions493

This paper provides a detailed analysis of the concentration of a market, which is captured494

by a joint analysis of diversification and integration. Such concepts are strongly linked with the495

network described by the cross-shareholding matrix and the related entropy measure. In particular,496

the out-degree value of a company formalizes its diversification while the in-degree value is related497

to its integration in a network of shareholders. The analysis of such degrees may be relevant for498

regulatory bodies, that need to fix thresholds and eventually capture early signals for preventing499

concentration. Literature studies have shown that the most frequently detected probabilities for500

description of diversification and integration were the power law and the exponential law. The501

parameters of the distribution regulate their shape. However, it is the coupling between in- and502

out-degrees which is the most relevant to the concentration evolution.503

The dependence between the components of the matrix — the in- and out-degrees — is here504

captured through appropriately selected copulas. Among them, the most prominent examples of505

nonparametric copulas — product and Frechet bounds — are also included. The maximum of506

concentration can be achieved by minimizing the entropy. When one marginal distribution is fixed,507

the results show that the minimal entropy is achieved when the other marginal distributions gather508

at the center of mass of the reference marginal distribution. On the opposite, the possibility to reach509

the maximum disorder of the system strictly is affected by the dependence structure between the in-510

and out-degree; such an aspect is captured through suitable copulas.511

Therefore, the present paper adds new perspectives to some specific aspects of the existing512

literature. First, portfolio owners are not considered as external to the market, but they are part of513

the market. This implies the introduction of the concepts of integration and diversification; such514

an approach creates a bridge between the literature on companies performances and the one on515

companies interactions, where the embedding of a company in a network is a key factor. Second,516

we base our analysis on data available both in literature and on the case study for exploring517

the configurations that lead to max/min entropy when both integration and diversification are518

considered. Concentration is here intended as the maximal correlation among diversification and519

integration. It differs from the well known assortativity on networks due to the way of measurement:520

the assortativity is the correlation among diversification and integration measured from raw data [29].521

Differently, concentration is calculated through the entropy and under the hypotheses of different522

correlation structures, expressed through copulas.523
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A. Maximum of a product and minimum of the Shannon entropy610

Theorem A1 (a) Given two vectors with non negative components p = (p1, p2, · · · , pn), q =611

(q1, q2, · · · , qn), then the minimum of the scalar product under the permutation of the components612

of one of the vectors is achieved for q? = (q?1 , q?2 , · · · , q?n) i.e.: minπ∈Πn ∑n
k=1 pkqπk = ∑n

k=1 pkq?k , with613

reverted ranked components, i.e. pi ≥ pj and q?i ≤ q?j , for each i < j.614

(b) Given two vectors with non negative components p = (p1, p2, · · · , pn), q = (q1, q2, · · · , qn), then615

the maximum of the scalar product under the permutation of the components of one of the vectors is616

obtained for q? = (q?1 , q?2 , · · · , q?n) i.e.: maxπ∈Πn ∑n
k=1 pkqπk = ∑n

k=1 pkq?k , with components ranked in617

the same order, i.e. pi ≤ pj and q?i ≥ q?j , for each i < j.618

Proof. We report only the proof of (a), since the proof of (b) is analogous.619

(a)It holds ∑n
k=1 pkqπk = ∑n

k=1,k 6=i,j pkqπk + piqi + pjqj ≤ ∑n
k=1,k 6=i,j pkqπk + piqj + piqj. In fact, piqi +620

pjqj ≤ piqj + pjqi is equivalent to writing pi(qi − qj) − pj(qi − qj) ≤ 0, that happens when (pi −621

pj)(qi − qj) ≤ 0, that is verified if, anytime pi ≥ pj, then qi ≤ qj.622

Remark A2 Results of Theorem A1 hold under the same hypothesis and for monotonic623

transformations of p or q. In particular, this is true in case of logarithmic transformation. Now,624

entropy can be seen as the inner product of two vectors: one containing the probability, and the other625

its logarithm. Thus, the ranking of the two vectors is always the same, and Theorem A1 guarantees626

that entropy is maximal when the distributions are as flat as possible, and minimal when the mass627

is concentrated as most as possible on some units - attaining the true maximum for the Dirac’s Delta628

function.629

B. Steps 2-5 of case 3630

Appendix .0.1 Step 2: power law for kin, and raw data for kout631

• Non parametric copulas. The situation is quite similar to Figure 5. The product copula and the632

Upper Frechet are quite close each to the other. The same comments as for Figure 5 hold. The633

functions are decreasing as k increases. There are local maxima: in k = 0.5 H = 1.99 (Product),634

in k = 2 H = 0.93 (Lower Frechet), in k = 1.3 H = 1.86 (Upper Frechet). We remark that there635

are many more small fluctuations, that lead to local minima for the Upper Frechet - although636

the values of the entropy there is much higher than the value on the tail. In the lower Frechet637

we remark that the local minima have a different location: for k = 1 H = 0.59 and or k = 0.5638

H = 0.31. There is also a local maximum in k = 0.9 H = 0.62639
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Figure 9. The figure shows three cases for the entropy (y-axis) as a function of θ (x-axis). The marginals
are: the power law for kin and from the case study for kout. The situation is quite similar to the one in
Figure 5, but there are many more local fluctuations in the Upper Frechet copula.
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• Gumbel Archimedean copula. Figure 10 shows the case. The same comments as for Figure 6640

hold.641
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Figure 10. Plot of the dependence of the entropy function H on the parameter θ. The same comments
as for Figure 6 hold.
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• Frank Archimedean copula. Figure 11 shows the case. The same comments as for kin from the642

empirical data and kout power law hold (Figure 7.).643
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Figure 11. Plot of the dependence of the entropy function H on the power law exponent k. The same
comments as for Figure 7 hold.
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• Clayton Archimedean copula. Figure 12 shows the case. The same comments as for kin from the644

empirical data and kout power law hold (Figure 8).645
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Figure 12. Plot of the dependence of the entropy function H on the power law exponent k. The same
comments as for Figure 8 hold.
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Appendix .0.2 Step 3: exponential law for kin, raw data for kout646

• Non parametric copulas. The situation is quite similar to Figure 5. The product copula and the647

Upper Frechet are quite close to each other. The same comments as for Figures 5 and 9 hold. The648

functions are decreasing as k increases. Figure 13 shows the results. There are local maxima:649

in k = 0.11 H = 2 (Product), in k = 1.06 H = 0.98 (lower Frechet), in k = 0.46 H = 1.85 (upper650

Frechet). We remark that there are many more small fluctuations, that lead to local minima for651

the upper Frechet - although the values of the entropy there is much higher than the value on652

the tail. Compared to Fig. 9, the local minimum in the upper Frechet at k = 1.06, H = 1.31653

is much deeper, and could be considered a true local minimum. In the lower Frechet case, we654

remark that the local minima have a different location: for k = 0.41 H = 0.63 and or k = 0.16655

H = 0.33.656

There is also a local maximum in k = 0.31 H = 0.66657
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Figure 13. The figure shows three cases for the entropy (y-axis) as a function of θ (x-axis). The
marginals are: the power law for kin and from the case study for kout. The situation is quite similar to
the one in Figure 9, but the local fluctuations in the upper Frechet copula are deeper.
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• Gumbel Archimedean copula. Figure 14 shows the case. The same comments as for Figures 6658

and 10 hold.659
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Figure 14. Plot of the dependence of the entropy function H on the parameter θ. The same comments
as for Figure 10 hold.
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• Frank Archimedean copula. Figure 15 shows the case. The same comments as for Figures 7 and660

11 hold.661
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Figure 15. Plot of the dependence of the entropy function H on the parameter θ. The same comments
as for Figures 7 and 11 hold.
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• Clayton Archimedean copula. Figure 16 shows the case. The same comments as for Figures 7662

and 12 hold.663
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Figure 16. Plot of the dependence of the entropy function H on the parameter θ. The same comments
as for Figures 7 and 12 hold.
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Appendix .0.3 Steps 4 and 5: either power law or exponential law for kin, and power law for kout664

On the parametric copulas, in view of the numerical results already obtained, of the Theorem A1,665

and due to Remark A2 in the Appendix, in cases of either power law or exponential law for kin, while666

kout remains described by a power law, we conclude that the entropy diminishes as the parameters667

for the power law(s) or the exponential go to infinity. There will be local maxima that will go either668

to the left or to the right border of the range of θ as the power law/exponential parameters increase.669

c© 2017 by the authors. Submitted to Entropy for possible open access publication670

under the terms and conditions of the Creative Commons Attribution (CC BY) license671

(http://creativecommons.org/licenses/by/4.0/).672
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