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ABSTRACT
Background: software effort estimation (SEE) usually suffers from
data scarcity problem due to the expensive or long process of data
collection. As a result, companies usually have limited data projects
for effort estimation, causing unsatisfactory prediction performance.
Few studies have investigated strategies to generate additional SEE
data to aid such learning. Aim: to propose a synthetic data gen-
erator to address the data scarcity problem of SEE. The proposed
approach should be general to be used with any state-of-the-art SEE
method. Ideally, it should be simple and hardly have negative effect
on SEE performance. Method: our synthetic generator enlarges
the SEE data set size by slightly displacing some randomly chosen
training examples. It can be used with any SEE method as a data
preprocessor. Its effectiveness is justified with 6 state-of-the-art
SEE models across 14 SEE data sets. We also compare our data
generator against the only existing approach in the SEE literature.
Results: our synthetic projects can significantly improve the per-
formance of some SEE methods especially when the training data is
insufficient. When they cannot significantly improve the prediction
performance, they are not detrimental either. Besides, our synthetic
data generator is significantly superior or perform similarly to its
competitor in the SEE literature. Conclusion: our data generator
plays a non-harmful if not significantly beneficial effect on the
SEE methods investigated in this paper. Therefore, it is helpful in
addressing the data scarcity problem of SEE.

CCS CONCEPTS
• Computing methodologies → Supervised learning by re-
gression; Bayesian network models; Ensemble methods; • Software
and its engineering→ Software creation and management;

KEYWORDS
Software effort estimation, data scarcity, synthetic data, data aug-
mentation, data generation
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1 INTRODUCTION
Software effort estimation (SEE) is the process of predicting the
effort (e.g. in person-month or person-hour) required to develop
a software system. It often takes place in the very early stage of
software development, and is an important task in software project
management. Over and under estimation can cause either waste of
resources or result in compromising the product quality [13, 71].

One of the core challenges of SEE is the high cost associated
with data collection [13, 60]. The collection of software projects
is very costly and may require considerable amount of time and
workload [37, 38, 43]. Consequently, companies usually have small
numbers of completed projects to estimate the effort of new projects.
It would be hard to make accurate estimates with inadequate SEE
data because the information contained in such small data probably
cannot support training of SEE models [24, 37, 66]. Existing work
has frequently attempted to tackle this issue by creating advanced
predictors that are more suitable for this problem [40, 43, 49].

Rather than introducing sophisticated SEE models or collecting
as many completed projects as possible, we can augment SEE data
set by generating synthetic projects based on the existing data. How-
ever, little work has been done to investigate such strategies. This
paper proposes an automated data augmentation approach that can
be used as a preprocessor for any SEE method. Our data generator
produces additional synthetic projects by slight displacing some
randomly chosen completed projects, with each synthetic data as-
sociated with one existing project. Though the synthetic projects
are not ‘real’, they can enrich the representativeness of the area
they are generated and potentially enhance the effort prediction.

Our data generator provides a second and much cheaper way to
tackle SEE data scarcity problem compared to proposing sophisti-
cated models or strategies of real data collection. To evaluate its
effectiveness, we investigated the following research questions:
RQ1 Given an SEE predictor, can our synthetic data generator help

improving prediction performance over the baseline that
does not use synthetic data? When? Could it be detrimental?

RQ2 Given an SEE predictor, if our synthetic projects are helpful
to prediction performance, why are they helpful? If they are
detrimental, why are they detrimental?

https://doi.org/10.1145/3236024.3236052
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RQ3 How well our data generator performs compared against
other existing data generators in the SEE literature?

Experimental studies based on six state-of-the-art SEE models show
supportive results of our data generator. Our synthetic projects
always have positive effect on and are rarely detrimental to the
baseline performance of the investigated SEE models, especially
when the training data is insufficient. Besides, our data generator is
similar or significantly superior to its only competitor in SEE [32].

The main contribution of this paper is to propose and validate a
novel synthetic data generator, and provide the understanding of
when and why the synthetic projects generated by this approach
can help improving the baseline performance of the SEE model.

2 RELATEDWORK
2.1 Data Augmentation for Classification
There are many studies in machine learning (ML) that augment
the data set size for better performance. Imbalance classification
is a typical example, where the difference between the numbers of
data samples in different categories is huge [25]. One problem of
learning from imbalanced data is that the classifiers would often
predict a new sample with the majority label though its label should
equal to the minority [70]. Data over-sampling is a popular and
effective approach to tackle the imbalance classification problem,
where synthetic data is generated in the minority class to form a
more balanced data set for performance improvement [10, 19].

Software defect prediction (SDP) is a typical counterpart of im-
balance classification in the context of software engineering (SE),
since the defect modules are much less likely to happen than the
non-defect ones. Data imbalance usually undermines the perfor-
mance of SDP methods, where the defect predictors often rarely
predict the faulty modules [54, 70]. To tackle the imbalance problem
of SDP, a fewmethods that augment the data set size of the minority
class (i.e. the faulty class) have been proposed [33, 54, 69, 70].

For instance, [33, 54, 69] employed several data augmentation
methods in ML, such as random over-sampling that reproduces the
data of minority class randomly and SMOTE (Synthetic Minority
Over-sampling Technique) [10] that produces new samples based
on k-nearest neighbours, to enlarge the data set size of the minority
class. Their experimental results showed promising or better effect
of the augmented data in performance improvement. Another ge-
netic algorithm-based data augmentation method was proposed in
[17], which outperformed the predictor without the augment data
and the predictor with other augmentation methods.

2.2 Data Augmentation in SEE Literature
The augmentation methods designed for classification cannot be
directly used for SEE since by nature there is no minority/majority
class in regression. Section 2.1 is discussed for being among the
most related to our work. Despite many studies on synthetic over-
sampling for classification, there have been few for regression (e.g.
SMOTER [9, 64, 65] and its adaptation for SEE [32]). This may be
due to the difficulty in defining minority and majority values for
regression. Some studies generate only synthetic inputs [23, 59].
However, they are either only applicable to images [59] or require
large training sets, which are unavailable for SEE [23].

To our best knowledge, there has been only one work in the SEE
community that tackles the data scarcity problem by generating

synthetic data [32]. Their proposed approach extended SMOTE
from classification to regression by attributing class imbalance
from the most predictive numerical feature, which is usually a size-
related feature such as functional size. After casting the entire data
samples into three classes (small, medium, and large according
to, e.g., functional size), conventional SMOTE [10] was used to
generate synthetic projects to small and medium classes to balance
the data distribution. The entire data set size was thus increased.
Then, these synthetic projects together with the real SEE data were
passed to k-nearest neighbours (k-NN) for the purpose of getting
better performance. Their experiments showed promising results
based on Desharnais data set from SEACRAFT [48] repository.

Despite that the data generator of [32] was designed for k-NN, it
can be easily extended for other SEE models as a data preprocessor.
We will compare the effect of this data generator with ours in term
of improving the performance of the baseline SEE models in Sec. 5.3.

3 OUR SYNTHETIC DATA GENERATOR
Different from the synthetic data generator in the literature [32],
where a synthetic project was generated by a combination of two
existing projects, our approach produces a synthetic project by
displacing one existing project that is randomly selected.

Consider a training set ofN software projectsD = {(xn ,yn )}Nn=1,
where an input vector xn ∈ Rd includes software features such as
software development type, team expertise and functional size, and
yn is the actual effort for developing this software. Our synthetic
data generator will produce ⌈γN ⌉ synthetic projects to enlarge the
training set size and tackle the SEE data scarcity problem, where γ
is the synthetic rate and ⌈·⌉ denotes the upward rounding operator
(e.g. ⌈1.4⌉ = 2). The synthetic rate γ should not be too large in order
to retain the synthetic projects in good quality. In this paper, γ is
chosen from {0.25, 0.5, 0.75, 1} as shown in table 3.

Overall, based on randomly selected training examples from
the data set D, the proposed data generator will produce ⌈γN ⌉
synthetic projects one-by-one, each of which consists of two steps:
synthetic feature generation and synthetic effort generation.

3.1 Synthetic Feature Generation
SEE features can be categorized into three classes according to
the types of feature values: (1) categorical features with discrete
nominal values such as enhancement, re-development and new de-
velopment for software development type, (2) ordinal features with
discrete ordinal values such as very low, low, normal and high for
team expertise, and (3) numerical features with continuous values
such as functional size and line of codes.

Given a randomly chosen training example x ∈ D, a synthetic
project x(syn) is generated feature-by-feature by displacing each
training feature individually. The generation approach varies de-
pending on the types of feature values as follows.

3.1.1 Categorical Feature. For a categorical feature xc ∈ x with
k values {vc1, · · · ,vck }, our proposed approach will generate its
synthetic counterpart x (syn)c by uniformly sampling a new categor-
ical value from the set {vc1, · · · ,vck }\{vc,xc }, where vc,xc denotes
the categorical feature value of the chosen training project.

We assign a model parameter 0 ≤ τ < 1 to the synthetic
categorical feature generation, such that with probability 1 − τ
the synthetic feature retains the training value vc,xc , and with
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probability τ the synthetic feature randomly takes a value from
{vc1, · · · ,vck }\{vc,xc } having the same probability for each value
to be taken. The process can be formulated as

x
(syn)
c =

{
vc,xc if τ < η ≤ 1
∼ U ({vc1, · · · ,vck }\{vc,xc }) if 0 ≤ η ≤ τ

(1)

where η is a random variable uniformly taken from [0,1], and
U ({· · · }) denotes a discrete uniform distribution function. To retain
a moderate shift on the synthetic feature, we adopt small changing
probability τ as listed in table 3.

Taking the categorical feature development type with values of
enhancement, re-development, and new development as an example,
if the training example is re-developed, the synthetic feature will
stay the same with probability 1 − τ , or be uniformly chosen from
{enhancement, new development} with probability τ .

3.1.2 Ordinal Feature. For an ordinal feature xo ∈ x with k
values {vo1, · · · ,vok } where voi ≤ voj for 1 ≤ i ≤ j ≤ k , our
approach will generate its synthetic counterpart x (syn)o according
to binomial distribution.

Binomial distribution B (n,p) is frequently used to model the
number of successes in a sequence of n independent experiments,
each of which succeeds with probabilityp or fails with (1−p) [8, 68].
For random variable ξ ∼ B (n,p), its expectation equals to E[ξ ] = np.
Binomial distribution is suitable to model ordinal features because it
is a discrete distribution and can manifest the ordered relationship
between feature values. Figure 1(a) illustrates the histogram of a
binomial distribution B (n = 10,p = 1/5).

We use an example to demonstrate our procedures in deciding
the parameters of binomial distribution B (n,p) of a training project.
Given an ordinal feature team expertise with values of 1=very low,
2=low, 3=normal and 4=high, if the team expertise of the training
example is 3=normal, the synthetic feature should have the highest
chance for taking 3=normal, the second highest and the same chance
for 4=high and 2=low, and the lowest chance for 1=very low. To
guarantee the expectation to be 3=normal, the binomial parameters
should satisfy n · p = 3. To guarantee the same chance of taking
2=low and 4=high, p should be 1/2. Combining the two equations,
the binomial distribution should be B (n = 6,p = 1/2). Figure 1(b)
shows a solution of the binomial distribution for team expertise. It
is noteworthy that to retain feature value 3=normal situating at the
distribution centre, three dummy values are added.

A synthetic ordinal feature is sampled from B (n = 6,p = 1/2). If
we get a dummy value, resume the sampling process until acquiring
a valid feature value. The process can be formulated as

x
(syn)
o ∼ B (n = 2 · vo,xo ,p = 1/2), (2)

where vo,xo is the ordinal feature value of the training example.

3.1.3 Numerical Feature. For a numerical feature xf ∈ x with
continuous values xf ∈ R1, our proposed approach will generate

its synthetic counterpart x (syn)f by adding a zero-mean Gaussian
variable ϵ ∈ N (0,σ 2) to its baseline value xf as

x
(syn)
f = xf + ϵf , ϵf ∼ N (0,σ 2). (3)

Usually the numerical features are size-related. Here, we normalize
each numerical feature to have zero-mean and unit-variance, and
assign Gaussian σ 2 with small values {0.1, 0.2, 0.3} as shown in
table 3 to restrict the impact of Gaussian displacement.

(a) Binomial B(n=10, p=1/5). (b) Synthetic team expertise.

Figure 1: Binomial distribution and its ordinal feature modelling

Overall, all numeric/ordinal features change with large probabil-
ity based on Gaussian/binomial distribution, and each categorical
feature has some chance to change based on the probability τ .

3.2 Synthetic Effort Generation
Denote y as the actual effort of training example x, the aim of
synthetic effort generation is to assign a proper value y (syn) to the
synthetic feature x(syn) .

Similar to the numerical feature generation, our approach assigns
the synthetic effort by adding a zero-mean Gaussian variable ϵ ∼
N (0,σ ′2) to its baseline effort value as

y (syn) = y + siдn(ϵf ) · |ϵ |, ϵ ∼ N (0,σ ′2), (4)

where siдn(ϵf ) is the positive/negative sign of the injected Gaussian
variable of the numerical feature in Eq. (3). When there are more
than one numerical features, ϵf is their summation.

By doing so, (y (syn) − y) and (x (syn)f − xf ) can have the same
increasing/decreasing direction, catering the well-known fact that
numerical size-related features are positively correlated with effort
values [11, 44]. In this work, we confine σ ′ = σ for simplicity.
Exploration of a separate parameter σ ′ can be conducted in future.

3.3 Further Discussions and Summary
There are several research lines that may further enhance the

effectiveness of our proposed synthetic generator as:
• Our ordinal/categorical feature modelling may not fit reality

perfectly. For instance, a newly developed software project would be
more likely to be enhanced rather than re-developed; employees with
normal expertise would be more likely to evolve to high rather than
low expertise. Thus, it is interesting to study whether other non-
symmetric distributive modellings of ordinal/categorical features
would improve performance further. This would depend on expert
knowledge of the data distribution.
• Our approach assumes that synthetic efforts are only affected

by the change in numerical features. Assigning synthetic effort
from the changes of ordinal/categorical features is very challeng-
ing, as it requires expert knowledge or data analyses with large
training sets. This is potentially a harder problem than SEE itself.
Since our strategy has achieved good results, we did not investigate
effects of changes in categorical/ordinal features on synthetic effort.
Nevertheless, it is an interesting research direction.

In summary, our data augmentation approach generates syn-
thetic projects individually, each of which is based on slight dis-
placement of a training example that is chosen randomly. Thus, the
produced synthetic projects can only impact the local areas they
are generated. Besides, our synthetic data generator is data-driven
and does not depend on any effort estimator. Thus, it can be used
as a preprocessor with any SEE model.
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4 EXPERIMENTAL DESIGN
4.1 Data Sets
The experiments are based on 14 data sets from the Software Engi-
neering Artifacts Can Really Assist Future Tasks (SEACRAFT) [48]
(former PROMISE [47]) and the International Software Benchmark-
ing Standards Group (ISBSG) Release 10 [26]. To investigate the
effect of the training set size, the data sets are grouped into small,
medium, and large according to the ratio of the number of data
over the number of features. Table 1 contains the basic description
of the investigated data sets.

Maxwell [16] contains 62 projects from one of the biggest com-
mercial banks in Finland, covering the years from 1985 to 1993 and
both in-house and outsourced development. We removed the input
features start year (syear) and duration (= syear-1985+1). Syear was
removed because it was found to have no significant effect on the
dependent effort according to one-way ANOVA [56]. Duration was
removed since it was unknown in reality during effort prediction
process. After the removal of 2 features, 23 input features were left.

Cocomo81 andNasa93were collected in the COCOMO [7] data
format, which has 17 features consisting of 15 cost drivers, lines of
codes and development type. We used the COCOMO numeric values
for the cost drivers. Cocomo81 has 63 projects. Nasa93 contains 93
projects developed between 1970’s and 1980’.

Albrecht contains 24 projects developed in IBM using the third
generation languages in the 1970s [1]. Eighteen out of 24 projects
were written in COBOL, four were written in PL1, and two were
writen in DMS languages. Seven input features were used. The
dependent effort is recorded in 1,000 hours.

Kemerer contains 16 projects donated by Dr. Jacky W. Keung
in 2010. We use 6 input features and remove the feature project ID
since it is irrelevant to the effort prediction.

Desharnais contains 81 projects with nine features from a Cana-
dian software company. Four projects contained missing values, so
they were excluded from our investigation. The 8 input features in
use are TeamExp, ManagerExp, Transactons, Entities, PointsNonAd-
just, Adjustment, PointsAjust, and Language. The depended feature
effort is recorded in 1,000 hours.

Kitchenham contains 145 projects undertaken between 1994
and 1998 by a single software development company [15, 35]. We
removed the input features project ID, actual start date, actual du-
ration, estimate completion data, first estimate and first estimate
method. Project ID was removed because it was irrelevant with SEE
prediction. Actual start date was removed following the same pre-
processing as [35]. Completion date together with start date would
give the duration of the project, and duration was removed because
it was considered as a dependent variable of SEE process. The other
features were removed because they were themselves estimations
of completion date or effort, or represent the method used for such
estimations. This feature preprocessing led to 3 remaining features:
adjusted function points, project type and client code.

ISBSG release 10 [26] contains a large body of software projects
(5,052 projects), covering many different companies, several coun-
tries, organisation types, application types, etc. We preprocessed
ISBSG repository with the same procedures as [49]. We maintained
621 projects by only keeping projects with relatively high quality.

Table 1: SEE data sets that are cast into 3 groups representing small,
medium and large data set sizes according to the ratio of the number
of data over the number of features. Three sets of holdout values are
assigned to three groups of data sets respectively.

Size Data set #Fea #Data #Fea/#Data Small Medium Large

Small

Maxwell 23 62 2.70

0.3 0.7 LOO
Cocomo81 17 63 3.71
Nasa93 17 93 5.47
Albrecht 7 24 3.43
Kemerer 6 16 2.67

Medium

Desharnais 8 77 9.63

0.1 0.3 0.7
Org2 3 32 10.67
Org5 3 21 7.00
Org6 1 22 22.00
Org7 1 20 20.00

Large

Kitchenham 3 145 48.33

0.04 0.08 0.7Org1 3 76 25.33
Org3 3 162 54.00
Org4 3 122 40.67

They were grouped into several data sets according to the organ-
isation type, and only the groups with at least 20 projects were
maintained following ISBSG’s data size guidelines. The resulting
organisation types are shown in Table 2.

The ISBSG suggests that the most important criteria for esti-
mation purpose are functional size, development type (new devel-
opment, enhancement or re-development), primary programming
language (3GL, 4GL or ApG) and development platform (mainframe,
midrange or PC). As development platform is missing in more than
40% of the projects for two organisation types, the remaining three
criteria were used as input features.

Note that all projects of Org6 had the same development type
and programming language, so functional size was used as a single
feature. In Org7, all projects had the same development type and
programming language with only one exception. Removing the
exception, we had 20 projects with a single input feature.

Data preprocessing. For each data set in table 1, we apply the
logarithm to the numerical features making them less skewed and
more Gaussian distributed. Exponential distributions of numeric
features are often observed in defect and effort prediction data sets,
which are usually composed of many small values combined with a
few much larger values [46, 62]. Logarithm preprocessor has shown
to be non-harmful to or even sometimes improve the performance
of the defect prediction [46, 62]. Our preliminary experiments on
SEE have also shown either similar or better performance when
using the logarithm scales of the numeric features compared to
using their original values.

Using the logarithm preprocessor, all numeric features are re-
placed with their natural logarithm values. This procedure also
minimizes the effects of the occasional very large feature values.
Furthermore, each feature was normalized to be zero-mean and
unit-variance to avoid scalability problem.

For the dependent outputs, we converted the numerical efforts
into their logarithm scales to make the effort distribution more
Gaussian. This procedure can also alleviate the prediction problem
when treating test sample with very large effort.
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Table 2: ISBSG data sets grouped according to organization type
and only the groups with at least 20 projects were maintained fol-
lowing ISBSG’s data size guideline.

ID Organisation Type #Data
1 financial, property & business services 76
2 banking 32
3 communications 162
4 government 122
5 manufacturing, transport & storage 21
6 ordering 22
7 billing 20

4.2 Performance Evaluation
There are several performance metrics for SEE evaluation [13, 50].
Popular examples areMeanAbsolute Error (MAE),MeanMagnitude
of the Relative Error (MMRE), Percentage of estimations within N%
of actual values (Pred(N )), Logarithmic Standard Deviation (LSD)
[21], and Standardised Accuracy (SA) [57]. Different performance
metrics emphasize different factors and can behave differently in
effort model evaluation [50]. For instance, MMRE was shown to
be biased towards prediction systems that underestimate effort
[21, 36, 52, 57]. Underestimation (over-optimism) is the direction
of the error that practitioners are more unwilling to see [28, 30], so
we did not use MMRE in our investigation.

The performance metric used in this paper is MAE defined as∑N
i=1 |yi − ŷi |/N , where yi /ŷi is the actual/estimated effort, and N

is the number of testing data. MAE was recommended by Shep-
perd and MacDonell for SEE studies for being symmetric and not
bias towards under or overestimation [57]. As the effort is in the
logarithm scale, this metric becomes less affected by project size.

We apply holdout evaluation to control the training set size
deliberately and evaluate the effects of synthetic data when training
set size is small, medium, and large respectively. We randomly split
the data set into training and testing subsets. Each SEE model is
trained from the training set and its performance is evaluated from
the testing set. This process is repeated 30 times and the average
MAE is reported.

4.3 Baseline SEE Predictors Investigated
We investigate 6 SEE models: linear regression (LR), automatically
transformed linear model (ATLM), k-nearest neighbour (k-NN), rel-
evance vector machine (RVM), regression tree (RT) and support
vector regression (SVR), since they are among the state-of-the-art
SEE predictors [13, 39, 42, 49, 61, 71]. Each of them is used as a
baseline model to investigate whether or not the generated syn-
thetic data can improve its prediction performance. These models
are implemented in MATLAB and specified if otherwise.

LR and ATLM [72] are chosen because they have been shown to
be good baselines after appropriate data transformations [34, 72].
R.matlab package [6] was used to configure the R implementation
of ATLM into the MATLAB framework.

K-NN is chosen for being among the simplest prediction model
and due to its intuitive interpretation that mimics the human in-
stinctive decision-making [39, 44, 58, 60]. Some empirical studies
have showed that k-NN is comparable and sometimes superior to
other SEE models [3, 29, 39, 44, 58]. To predict the effort of a testing
project, the distances of this data to all training examples are com-
puted in Euclidean metric. Based on them, k nearest neighbours to

Table 3: Parameter values of the SEE models investigated.
ID Method Parameters
1 LR No tuning parameter
2 ATLM No tuning parameter
3 k-NN k (#neighbour) = {1,2,3,5}
4 RVM s (width) = 0.1 : 0.5 : 10 (#=20)

5 RTs
L (max tree depth) = {-1, 2, 6}
M (min #node per leaf) = {1, 2, 4}
E (stopping error) = {0.0001, 0.01, 0.5}

6 SVR
kernel = ‘linear’
C (regularization) = {0.01, 0.1, 1, 10 }
ϵ (slack variables) = {0.1, 0.3, 0.5, 1}

7 syn.our
γ (synRate) = {0.25,0.5,0.75,1}
τ (categorical) = {0,0.2,0.4}
σ 2 (GaussVar) = {0.1,0.2,0.3}

8 syn.cmp k (neighbours in SMOTE) = {1,2,3,5}

the testing project are determined, and their median is returned as
the estimated effort of this testing project [41].

RVM is chosen because it has been shown to be very competitive
compared to other state-of-the-art SEE models and can be used
to provide uncertain effort prediction [20, 61, 63]. In RVM, each
training data is associated with one basis function, measuring the
distance of this training project to the testing project. There are
several choices for the basis function. We employ non-normalized
Gaussian kernel ϕ j (x) = exp{−(x − µj )2/(2s2)} as our basis func-
tion for its locality property [49], where the µ j is the j-th training
sample and the width s controls their spatial scale.

RT is chosen for being among the most frequently used SEE
models which has presented potential advantage for SEE [49, 71].
RT is a rule-based, hierarchical model where software data features
are used to split projects into to small groups and this process is
recursively repeated to form a regression tree [49].

SVR is designed for small data problems [18], which seems suit-
able to effort estimation. However, SVR has not been popularly
used in SEE community partially because of the contradictory con-
clusions drawn from previous studies [2, 12, 53, 55]. Some claimed
its superior performance in SEE [12, 53, 55], while others claimed
inferior performance of SVR compared with other SEE models [2].
There are several choices for SVR kernel. We use linear kernel that
has been shown to be a better choice [53].

Parameter settings. The parameter values of the SEE models
investigated in this paper are listed in Table 3. For RT, the maximum
tree depth of -1 means unlimited tree depth. For SVR, we investigate
the conventional settings for regularization parameter C and slack
variable ϵ [12, 51]. For the model that has more than one parameters,
we investigate its all parameter combinations. Our discussion is
based on the performance of the best parameter settings, with
which the SEE predictors can achieve their best performance.

5 RESULT AND DISCUSSION
This section aims to evaluate our synthetic data generator by com-
paring the performance of the SEE models with and without using
the generated synthetic projects. For simplicity, the performance
of the SEE model that does not use synthetic data is represented by
bsl.SEEr, and the performance of the SEE model that uses the syn-
thetic data generated by our approach is represented by syn.SEEr,
where SEEr is one of the SEEmodels discussed in Sec. 4.3. For amore
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thorough assessment, Sec. 5.3 compares our synthetic generator
against its competitor in the SEE literature [32]. The performance
of SEE models that uses the synthetic projects generated by this
generator is represented by syn.cmp.SEEr.

5.1 Effect of Synthetic Data on Performance
This subsection aims to answer RQ1. To this aim, we investigate
the effect of the synthetic data by comparing the performance of
syn.SEEr against bsl.SEEr across 14 data sets with small, medium and
large training set sizes respectively. Table 4 lists the performance
comparisons in all settings. We can see that the synthetic data
generated by our approach can usually improve the performance.

To investigate whether the improvement is significant, the effect
size between syn.SEEr and bsl.SEEr across 30 runs of each data set
is checked. Effect size is a simple way of quantifying the size of
the difference between two methods with multiple runs [57, 67].
The Vargha and Delaney’s A12 is a non-parametric effect size that
makes no assumptions about the underlying distribution [4, 67],
which is interpreted in terms of Vargha and Delaney’s categories:
small (≥0.56), medium (≥0.64) and large (≥ 0.71) [67]. In table 4,
large/medium/small effect size is highlighted in orange bold/yellow
bold/bold indicating the performance improvement of using the
synthetic projects generated by our approach.

We perform Wilcoxon signed rank tests with Holm-Bonferroni
correction at the significance level 0.05 to judge whether perfor-
mance difference between bsl.SEEr and syn.SEEr is statistically sig-
nificant across all data sets. Wilcoxon signed-rank tests are typically
used to compare the performance of two models across multiple
data sets [14, 73]. The null hypothesis (H0) states that the two mod-
els are equivalent. The alternative hypothesis (H1) states that they
differ significantly.

Wilcoxon signed rank tests also provide the average ranks of
bsl.SEEr vs syn.SEEr across 14 data sets calculated asRj = 1

N
∑
i r

(i )
j ,

where r (i )j is the rank of the jth method on the ith data set, j ∈
{bsl.SEEr, syn.SEEr}, i ∈ {1, · · · ,N }, and N = 14 is the number
of data sets. The average rank (aveRank) provides a reasonable
comparison between bsl.SEEr vs syn.SEEr given rejection of the
null hypothesis [14].

5.1.1 LR and ATLM. Since ATLM is a variant of LR using the
automatic data transformation mechanism, we discuss the effect of
our synthetic projects on them together.

For small training set size, we can see from table 4(a) that
the synthetic projects generated by our approach can drastically
improve the performance of LR/ATLM with large effect size in five
out of seven SEACRAFT data sets. The synthetic data never hurts
the performance of LR/ATLM in any SEE data set investigated.
Wilcoxon signed rank tests with Holm-Bonferroni correction at the
significance level 0.05 across all SEE data sets detect significantly
better performance of syn.LR/syn.ATLM over bsl.LR/bsl.ATLM.

It is noteworthy that the performance of LR/ATLM is unstable
in some data sets. For example, ATLM performs extremely bad in
Org1with very largeMAE (meanMAE of 30 runs) 668.348±3648.420.
Further investigation found that ATLM performed extremely bad
on one of the 30 runs with MAE 19,985.448. Removing this outlier,
the mean MAE across the remaining 29 runs reduced to 0.968±0.355
for syn.ATLM vs 2.241±4.303 for bsl.ATLM, with A12 = 0.6373.

The unstable performance of LR/ATLMmay be due to the scarcity
of training samples. When the few training samples are close to
each other, being more likely to happen given inadequate train-
ing data, LR/ATLM may suffer from ill-conditional problem when
doing matrix inversion in the training process. Another possible
reason for ATLM is the incorrect statistic estimate on its automatic
transformation mechanism caused by insufficient training samples.

For medium training set size, we can see from tables 4(a)
vs 4(b) that bsl.LR/bsl.ATLM can achieve superior and more stable
performance using medium compared to small training set sizes,
indicating that augmenting the training data from an insufficient
number can improve the performance of LR/ATLM. Similar obser-
vation can also seen for syn.LR/syn.ATLM.

We can also see that our synthetic projects can improve the
performance of LR/ATLM especially for SEACRAFT data sets: the
effect sizeA12 is large in 3 data sets.Wilcoxon signed rank tests with
Holm-Bonferroni correction at the significance level 0.05 across all
data sets detect significant better performance of syn.LR/syn.ATLM
over bsl.LR/bsl.ATLM, showing an overall superiority when the
training set size is medium.

For large training set size, the superiority of syn.LR/syn.ATLM
over bsl.LR/bsl.ATLM becomes smaller than for medium/small train-
ing set sizes. For instance, effect sizeA12 is medium or small in only
two SEACRAFT data sets. Wilcoxon signed rank tests with Holm-
Bonferroni correction at the significance level 0.05 across all data
sets detect significantly better performance of syn.LR/syn.ATLM
over bsl.LR/bsl.ATLM with p-value 0.016255/0.00067.

Summary. Our synthetic data can always improve the baseline
performance of LR and ATLM, and the improvement magnitude
is usually significant having large or medium effect size especially
when the training data is insufficient. When the training set size is
large, our synthetic projects can hardly have detrimental effect and
sometimes significantly improve the baseline performance.

5.1.2 RVM and RT. Table 4 shows that our synthetic data can
usually improve the baseline performance of RVM and RT.

For RVM, our synthetic data can always improve their baseline
performance. Their effect sizes are sometimes large or medium,
showing substantial performance improvement on RVM. Wilcoxon
signed rank tests with Holm-Bonferroni correction at the signifi-
cance level 0.05 across all data sets detect significant overall superi-
ority of using our synthetic data for all the training set sizes.

For RT, our synthetic data can always improve their baseline
performance. When they are helpful with RT, the effect size is often
large or medium especially when the training set size is not large.
Wilcoxon signed rank tests with Holm-Bonferroni correction at
the significance level 0.05 across all data sets detect significant
overall superiority of using our synthetic data for medium and
large training set sizes.

Summary. Our synthetic data can enhance the performance of
RVM and RT, and the improvement is often significant especially
when the training set size is not large.

5.1.3 K-NN and SVR. We can see from table 4 that our synthetic
projects can usually improve the performance of k-NN and SVR,
but the improvement is not very large.

For k-NN, our synthetic data can usually improve the baseline
performance. Wilcoxon signed rank tests with Holm-Bonferroni
correction at the significance level 0.05 across all data sets detect
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Table 4: Performance comparisons between each pair of syn.SEEr vs bsl.SEEr across 14 data sets in terms of MAE for small, medium and
large training set sizes respectively. The different training set sizes refer to different holdout values of table 1. The reported values are the
mean of 30 runs followed by their standard deviations (STDs). The comparison is highlighted in orange (dark grey) and bold font for large, in
yellow (light grey) and bold font for medium, and in bold font for small effect size values. The last two rows of each sub table list the results of
Wilcoxon tests with Bonferroni correction. The overall comparison between bsl.SEEr vs syn.SEEr can be seen from aveRank (average ranks).
The first value 1 (or 0) in Wilcoxon row means there is (or not) significant difference detected, and its corresponding p-value comes the next.
Significant difference is highlighted in orange (dark grey) on this row.

(a) Small training set size.

Data syn.LR bsl.LR syn.ATLM bsl.ATLM syn.k -NN bsl.k -NN syn.RVM bsl.RVM syn.RT bsl.RT syn.SVR bsl.SVR
Maxwell 0.645±0.095 1.314±0.549 0.649±0.101 14.470±32.537 0.724±0.090 0.731±0.085 0.584±0.064 0.643±0.090 0.667±0.100 0.693±0.111 0.570±0.087 0.598±0.075
Cocomo81 0.654±0.135 8.596±13.643 0.668±0.140 17.543±39.428 1.266±0.142 1.297±0.142 0.684±0.115 0.779±0.143 1.100±0.176 1.172±0.135 0.640±0.118 0.703±0.152
Nasa93 0.534±0.082 0.942±0.877 0.540±0.081 0.927±0.836 0.990±0.111 0.984±0.107 0.532±0.113 0.534±0.121 0.728±0.078 0.796±0.083 0.519±0.079 0.544±0.148

Kitchenham 0.653±0.149 0.765±0.243 0.657±0.180 0.757±0.253 0.744±0.168 0.748±0.156 0.696±0.153 0.831±0.225 0.802±0.170 0.832±0.107 0.621±0.119 0.676±0.138
Albrecht 0.823±0.261 3.499±4.208 0.817±0.267 48.975±235.167 0.724±0.113 0.717±0.121 0.673±0.171 0.766±0.303 0.806±0.182 0.920±0.130 0.580±0.128 0.574±0.110
Kemerer 1.058±0.573 1.712±2.152 1.121±1.059 5.703±17.881 0.643±0.142 0.685±0.143 0.665±0.151 0.615±0.170 0.799±0.155 0.818±0.150 0.526±0.147 0.575±0.157
Deshar 0.695±0.193 2.163±4.230 0.699±0.188 3.235±4.758 0.622±0.088 0.618±0.084 0.583±0.095 0.626±0.160 0.639±0.094 0.692±0.068 0.526±0.051 0.526±0.067
Org1 1.324±1.361 2.133±2.337 1.004±0.400 668.348±3648.420 0.895±0.203 0.907±0.134 0.922±0.228 0.988±0.234 1.027±0.297 1.000±0.256 0.853±0.209 0.874±0.160
Org2 1.092±1.634 1.343±2.222 0.785±0.325 0.975±0.846 0.659±0.208 0.671±0.185 0.645±0.179 0.637±0.129 0.762±0.209 0.747±0.189 0.633±0.182 0.645±0.201
Org3 0.684±0.146 0.744±0.229 0.682±0.148 0.745±0.231 0.767±0.132 0.782±0.114 0.753±0.192 0.855±0.188 0.835±0.142 0.971±0.101 0.647±0.124 0.701±0.189
Org4 0.902±0.258 2.341±3.983 0.916±0.342 5.298±20.085 0.860±0.156 0.863±0.135 0.836±0.096 0.846±0.109 0.897±0.136 0.892±0.116 0.800±0.099 0.840±0.131
Org5 2.177±2.983 3.837±4.172 1.231±1.287 2.413±3.398 0.971±0.232 1.009±0.239 1.042±0.270 1.287±1.366 1.060±0.195 1.036±0.172 0.771±0.188 0.938±0.265
Org6 1.003±0.508 2.680±3.728 1.111±0.576 2.123±2.408 0.959±0.255 0.961±0.273 0.999±0.320 1.089±0.260 1.159±0.244 1.165±0.248 0.860±0.236 0.888±0.262
Org7 1.156±0.651 1.868±2.498 1.179±0.674 1.890±2.494 0.917±0.168 0.909±0.150 0.953±0.235 0.946±0.155 0.959±0.167 0.946±0.137 0.923±0.220 0.892±0.148

aveRank 1.00 2.00 1.00 2.00 1.29 1.71 1.21 1.79 1.36 1.64 1.14 1.86
Wilcoxon 1 0.000122 1 0.000122 0 0.056274 1 0.006714 0 0.057983 1 0.005249

(b) Medium training set size.

Data syn.LR bsl.LR syn.ATLM bsl.ATLM syn.k -NN bsl.k -NN syn.RVM bsl.RVM syn.RT bsl.RT syn.SVR bsl.SVR
Maxwell 0.496±0.089 0.656±0.146 0.498±0.089 0.666±0.160 0.662±0.113 0.681±0.111 0.547±0.085 0.589±0.083 0.565±0.072 0.574±0.094 0.495±0.081 0.523±0.081
Cocomo81 0.447±0.108 0.439±0.093 0.471±0.103 0.475±0.098 1.136±0.197 1.211±0.179 0.502±0.135 0.505±0.121 0.848±0.106 0.928±0.153 0.459±0.098 0.452±0.068
Nasa93 0.444±0.075 0.450±0.088 0.444±0.075 0.450±0.088 0.817±0.143 0.842±0.097 0.448±0.100 0.458±0.100 0.621±0.138 0.638±0.120 0.411±0.078 0.433±0.073

Kitchenham 0.552±0.043 0.593±0.170 0.545±0.046 0.586±0.174 0.617±0.049 0.619±0.072 0.571±0.050 0.602±0.090 0.670±0.090 0.688±0.097 0.547±0.059 0.555±0.078
Albrecht 0.536±0.141 0.586±0.167 0.551±0.163 0.628±0.234 0.559±0.191 0.548±0.180 0.544±0.145 0.544±0.147 0.624±0.220 0.779±0.172 0.486±0.134 0.438±0.124
Kemerer 0.596±0.218 1.063±0.827 0.553±0.224 0.927±0.587 0.566±0.191 0.608±0.200 0.517±0.169 0.513±0.219 0.623±0.146 0.707±0.199 0.448±0.156 0.458±0.162
Deshar 0.490±0.068 0.561±0.094 0.489±0.066 0.561±0.094 0.531±0.036 0.531±0.045 0.480±0.053 0.486±0.072 0.550±0.072 0.558±0.078 0.447±0.045 0.451±0.050
Org1 0.759±0.114 0.838±0.234 0.753±0.118 0.842±0.239 0.827±0.117 0.831±0.083 0.809±0.097 0.856±0.133 0.851±0.118 0.903±0.116 0.747±0.091 0.785±0.133
Org2 0.542±0.065 0.559±0.080 0.538±0.064 0.553±0.082 0.595±0.083 0.597±0.086 0.566±0.078 0.561±0.074 0.590±0.074 0.689±0.092 0.531±0.091 0.547±0.078
Org3 0.612±0.098 0.632±0.108 0.614±0.099 0.631±0.109 0.688±0.067 0.690±0.067 0.622±0.068 0.725±0.123 0.718±0.136 0.772±0.078 0.587±0.065 0.594±0.073
Org4 0.706±0.070 0.825±0.221 0.704±0.068 0.815±0.202 0.782±0.084 0.791±0.073 0.726±0.065 0.807±0.093 0.769±0.073 0.851±0.053 0.717±0.072 0.732±0.100
Org5 0.626±0.179 0.682±0.296 0.661±0.215 0.714±0.296 0.783±0.157 0.798±0.181 0.715±0.167 0.756±0.158 0.774±0.162 0.925±0.121 0.577±0.173 0.580±0.179
Org6 0.729±0.134 0.806±0.287 0.751±0.157 0.839±0.298 0.746±0.161 0.783±0.179 0.795±0.269 0.900±0.272 0.808±0.141 0.999±0.145 0.688±0.117 0.721±0.154
Org7 0.798±0.111 0.835±0.278 0.804±0.113 0.841±0.279 0.806±0.160 0.844±0.141 0.814±0.099 0.881±0.376 0.767±0.174 0.884±0.137 0.787±0.086 0.807±0.156

aveRank 1.07 1.93 1.00 2.00 1.07 1.93 1.21 1.79 1.00 2.00 1.14 1.86
Wilcoxon 1 0.000670 1 0.000091 1 0.000670 1 0.016255 1 0.000091 1 0.003763

(c) Large training set size.

Data syn.LR bsl.LR syn.ATLM bsl.ATLM syn.k -NN bsl.k -NN syn.RVM bsl.RVM syn.RT bsl.RT syn.SVR bsl.SVR
Maxwell 0.533±0.292 0.536±0.336 0.534±0.296 0.549±0.337 0.693±0.416 0.719±0.439 0.529±0.426 0.616±0.462 0.448±0.354 0.476±0.400 0.499±0.278 0.486±0.344
Cocomo81 0.478±0.371 0.468±0.403 0.475±0.444 0.513±0.422 1.190±0.830 1.286±0.826 0.411±0.313 0.444±0.374 0.788±0.614 1.047±0.584 0.457±0.419 0.459±0.376
Nasa93 0.394±0.476 0.368±0.460 0.394±0.458 0.368±0.460 0.653±0.720 0.692±0.761 0.409±0.456 0.467±0.471 0.446±0.394 0.426±0.354 0.338±0.454 0.393±0.450

Kitchenham 0.462±0.035 0.461±0.034 0.455±0.037 0.456±0.035 0.509±0.056 0.510±0.050 0.456±0.050 0.454±0.043 0.553±0.054 0.564±0.051 0.457±0.036 0.458±0.034
Albrecht 0.433±0.312 0.447±0.360 0.433±0.312 0.447±0.360 0.407±0.352 0.472±0.459 0.375±0.319 0.379±0.421 0.475±0.355 0.666±0.497 0.344±0.325 0.316±0.330
Kemerer 0.444±0.403 0.447±0.354 0.403±0.371 0.438±0.356 0.494±0.483 0.499±0.517 0.353±0.379 0.351±0.513 0.533±0.507 0.637±0.549 0.352±0.370 0.376±0.395
Deshar 0.437±0.049 0.464±0.059 0.438±0.059 0.465±0.059 0.502±0.082 0.507±0.077 0.425±0.062 0.435±0.063 0.447±0.074 0.457±0.088 0.426±0.050 0.430±0.051
Org1 0.631±0.110 0.635±0.106 0.629±0.106 0.636±0.107 0.762±0.122 0.776±0.136 0.663±0.131 0.672±0.175 0.725±0.122 0.798±0.143 0.617±0.101 0.621±0.110
Org2 0.464±0.087 0.476±0.097 0.460±0.082 0.467±0.096 0.532±0.105 0.532±0.110 0.468±0.095 0.469±0.107 0.514±0.095 0.506±0.093 0.451±0.074 0.459±0.082
Org3 0.528±0.064 0.532±0.060 0.528±0.063 0.532±0.060 0.609±0.078 0.624±0.066 0.534±0.065 0.558±0.083 0.582±0.068 0.582±0.064 0.518±0.066 0.521±0.063
Org4 0.644±0.063 0.652±0.062 0.646±0.064 0.655±0.061 0.709±0.081 0.729±0.072 0.638±0.068 0.655±0.066 0.698±0.077 0.721±0.088 0.645±0.069 0.650±0.066
Org5 0.471±0.138 0.524±0.180 0.482±0.129 0.536±0.176 0.654±0.216 0.663±0.189 0.528±0.226 0.634±0.182 0.592±0.249 0.596±0.229 0.445±0.144 0.464±0.151
Org6 0.619±0.138 0.653±0.154 0.632±0.142 0.661±0.153 0.677±0.136 0.679±0.120 0.570±0.121 0.563±0.112 0.657±0.173 0.670±0.154 0.586±0.121 0.607±0.129
Org7 0.748±0.215 0.755±0.199 0.753±0.219 0.760±0.204 0.743±0.220 0.736±0.243 0.735±0.188 0.741±0.191 0.690±0.186 0.686±0.213 0.707±0.162 0.691±0.152

aveRank 1.21 1.79 1.07 1.93 1.07 1.93 1.21 1.79 1.21 1.79 1.21 1.79
Wilcoxon 1 0.016255 1 0.000670 1 0.000670 1 0.016255 1 0.016255 0 0.172607

significantly better overall performance of using our synthetic data
for medium and large training set sizes. However, the effect size
shows small or insignificant superiority.

For SVR, our synthetic data can usually improve the baseline
performance. Wilcoxon signed rank tests with Holm-Bonferroni
correction at the significance level 0.05 across all SEE data sets
detect significant overall superiority of using our synthetic data
for small and medium training set sizes. However, the effect size
usually shows insignificant superiority.

Superior performance of SVR. We can see from table 4 that
SVR usually outperforms other SEE predictors. Friedman tests at the
significance level 0.05 across all data sets reject the null hypothesis
(H0), which states that all models are equivalent. Nevertheless, our

synthetic data can further improve its performance a little when
there are insufficient training samples.

Factors that impact the prediction performance of SEEr.
The superiority of SVR over SEE models is consistent with some
previous works [12, 53, 53, 55], but contradicts some others [2]. One
of the possible reasons would be the usage of different evaluation ap-
proaches that resulted in different training sizes. The performance
of SEE models can be affected by the training set size. For instance,
RVM performed the second best among all baseline models for
small and large training size sets; but when the training set size was
medium, it ranked the fourth after SVR, LR and ATLM. Some other
factors that may affect the results of SEE model comparisons in-
clude the data sets used in the study, the type of preprocessing, the
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performance metrics, the model parameter tuning, and the amount
of fine tuning of the methods [5, 45, 60].

Summary. Our synthetic data can often improve the prediction
performance of k-NN and SVR, though the improvement is usually
small or insignificant. At least, our synthetic data is not detrimental.

5.1.4 Summary. Our synthetic projects are particularly helpful
for LR and ATLM on small/medium data sizes; moderately helpful
for RVM and RT, and not very helpful for k-NN and SVR. Never-
theless, they are rarely detrimental to the baseline performance.
We have also computed the predictive performance based on MAE
applied to actual efforts (not in the logarithm scale). The supplemen-
tary material will be available in Leandro Minku’s homepage. The
key conclusion that syn.SEEr always performed similarly/better
than bsl.SEEr remained the same. Therefore, results with MAE
applied to actual efforts were omitted due to space constraints.

5.2 Underlying Reasons for the Effect of Our
Synthetic Data on Prediction Performance

This subsection aims to answer RQ2. Given the results summarised
in Sec. 5.1.4, RQ2 can be rephrased as:
RQ2.1 Why do our synthetic projects usually have positive effect

to an SEE model?
RQ2.2 Why do our synthetic projects have different improvement

magnitude for different SEE models?
When the training set size is large, an SEE predictor can usually
achieve relatively good performance, leaving limited improvement
space for using our synthetic projects. Thus, our discussion will
focus on the case with insufficient training examples.

5.2.1 Positive Effect of Synthetic Data. This subsection aims to
answer RQ2.1 in view of the augmentation of data set and the
enhanced ability to cope with data noise.

The mai=n reason would be the augmentation of the SEE data by
encompassing the synthetic projects into the construction of SEE
models, which directly tackles the data scarcity problem of SEE.

Another reason would be the enhanced ability to cope with data
noise that can lead to large variations from the actual values, i.e.,
large noise. Effort values are highly likely to contain noise due
to the participation of humans in SEE data collection [27, 31, 61].
When training examples are insufficient, such noise is more likely to
mislead the construction of SEEmodels, resulting in less correct and
unstable performance. When the training data contains noise and
the amount of noise is smaller than the predictive information, the
synthetic projects can compensate the possibly negative effect and
enhance the prediction robustness. Figure 2 illustrates the positive
effect of our synthetic data on a linear SEE model.

Our approach emphasizes the more typical areas of learning
space, helping to avoid being misled by large noise. Specifically,
the training projects that locate in crowded regions, which are
less likely to contain large variations, are more likely to be chosen
for generating our synthetic projects. In this way, our synthetic
data emphasizes the space with small or no noise, and impacts
the neighbourhood of those training projects by encoding more
representatives. This would enhance the robustness of this local
area when being used to construct an SEEmodel. On the other hand,
our synthetic projects can be rarely generated in sparse regions,
where large variations are more likely to exist. In this way, we
can circumvent the issue of introducing data noise that can lead to
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Figure 2: Illustration that 4 synthetic data can improve the qual-
ity of the parameter estimate of a linear SEE model. The synthetic
project (square) enhances the robustness of its neighbourhood and
alleviates detrimental effect of noisy training examples.

large variations from the actual values. In this sense, the use of our
synthetic data can usually have positive effect to an SEE model by
enlarging the data set and compensating the noisy data.

It is noteworthy that data noise can only be filtered out if ground-
truth noise-free projects are known. However, such ground truth
is not known in reality. Therefore, coping with noise by filtering
would be difficult, and our proposed approach can be a good al-
ternative. Moreover, our synthetic projects may introduce noise
but only in the form of small variations in the projects, since our
synthetic generator emphasizes the space with smaller variation
and generates synthetic data with small change.

5.2.2 Effect of Synthetic Data on Each SEE Model. This subsec-
tion aims to answer RQ2.2 in view of the locality/globality property
of each SEE model.

Locality and globality of SEE models. SEE approaches that
perform estimations based on training examples that are similar
to the testing project are referred as local approaches [22, 49]. The
opposite terminology is referred here as globality, where the effort
estimation is performed based on all training examples regardless of
the similarity to the project to be estimated. Recall that our synthetic
data can only impact their neighbourhood, so the locality/globality
property of an SEE model would be a primary avenue to spread the
effect of the synthetic data from the neighbourhood to other areas
having projects to be estimated.

LR/ATLM is an example of SEE models with thorough globality.
All training examples, regardless of their similarity to the project to
be estimated, are used to estimate the model parameters, which are
then used to predict the effort of the testing project. Therefore, the
effects of our synthetic data in one area will impact the predictions
in the entire space, leading to remarkable effect of our synthetic data
on the prediction performance. In particular, if synthetic examples
are created in an area with several examples where the model can
become quite confident in their predictions, this could improve the
predictions in the areas with less examples, where the model would
originally not be confident about.

K-NN is an example of SEEmodels with thorough locality, where
the prediction of a project is only based on the training examples
in its neighbourhood. Therefore, the effect of our synthetic data in
one area will not impact the predictions in other area, causing little
effect of our synthetic data.

RT possesses a hybrid property of globality and locality. On the
one hand, RT has globality. To construct RT, all training examples
are used to decide the split features and the corresponding thresh-
olds on which the tree branches are formed. On the other hand, RT
has locality. To predict the effort of the testing project, RT needs
to find a branch where the testing project is more similar to the
training examples of this branch. The effort prediction is based on

http://www.cs.le.ac.uk/people/llm11/
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the training subset. Therefore, the effect of our synthetic data in
one area will impact the predictions in other area to some extent.

RVM is another example of SEE models with a hybrid prop-
erty of globality and locality. On the one hand, RVM has globality.
To construct RVM, all training examples are used to estimate the
optimal model parameters. On the other hand, RVM has locality.
The prediction of RVM is a weighted summation, with each weight
being the similarity of the testing project to one training example.
In this sense, only a subset of training data is used to predict the
effort. Therefore, the effect of our synthetic data in one area can
impact the prediction in the other area in some degree.

SVR has a tolerance margin (ϵ in table 3), with which data noise is
tolerant to some extent. When the synthetic project locates within
the tolerance margin, it can be seen as a disturbance of its original
training example and thus has no effect on the decision of the
model parameters. Only when the synthetic projects locates on the
tolerance margin, namely when it is a support vector, it can effect the
decision of the model parameters. In this sense, little improvement
of using our synthetic projects is probably cased by the much less
opportunity for them to be chosen as support vectors.

5.3 Comparison of Synthetic Generators
This subsection aims to answer RQ3. by comparing the performance
of our synthetic generator against its only competitor in SEE [32],
denoted by syn.cmp.SEEr.

5.3.1 Syn.SEEr vs Syn.Cmp.SEEr. Table 5 shows the performance
comparisons of the two synthetic generators. We can see that, re-
gardless of the SEE model, the performance using our synthetic
generator (syn.SEEr) is often better than the performance using the
competing synthetic generator (syn.cmp.SEEr) especially when the
training set size is not large.

The effect size between syn.SEEr and syn.cmp.SEEr across 30
runs of each SEE data set is checked and exhibited on the cells in
the columns of syn.SEEr. We can see that when the training set size
is large, syn.SEEr usually has similar performance to syn.cmp.SEEr.
When the training set size is not large, the superiority of our syn-
thetic generator over its competitor can be considerable depend-
ing on SEE models. The superiority magnitude of syn.SEEr over
syn.cmp.SEEr is often large for LR and ATLM, moderate for RT and
RVM, and small for k-NN and SVR.

Wilcoxon signed rank tests with Holm-Bonferroni correction at
the significance level 0.05 between syn.SEEr and syn.cmp.SEEr show
that when the training set size is not large, our synthetic generator
is always superior to its competitor by having significantly better
prediction performance.

5.3.2 Syn.Cmp.SEEr vs bsl.SEEr. Comparing the performance
of bsl.SEEr in table 4 and syn.cmp.SEEr in table 5, we can see that
syn.cmp.SEEr cannot outperform bsl.SEEr in many cases. Effect
size across the 30 runs of each data set between syn.cmp.SEEr and
bsl.SEEr is always small or insignificant, indicating that the syn-
thetic examples generated by the literature do not have considerable
impact on the prediction performance. Wilcoxon signed rank tests
with Holm-Bonferroni correction at the significance level 0.05 show
that syn.cmp.SEEr is similar to bsl.SEEr in most cases.

However, the competing synthetic generator was claimed to be
effective in improving the performance of its baseline model [32].
Further examines found that the experiments of [32] were based on

Desharnais data set only. The reported superiority of using their
synthetic data was small and no statistical test was conducted. We
suspect that with more data sets into their experiments and using
statistic tests, their conclusions would probably be no significant
difference with or without using their synthetic data.

6 THREATS TO VALIDITY
Internal validity. We did multiple Wilcoxon tests to evaluate the
statistical significance of the results, which may induce type I error.
For instance, to answer RQ1 we performed Wilcoxon post-hoc tests
between syn.SEEr and bsl.SEEr across 14 data sets for 6 SEE models
in 3 training set sizes leading to total 14*6*3=252 comparisons. How-
ever, we do not consider it to be very serious to this study, because
these p-values were usually considerably small indicating very con-
fident difference. Besides, the size of difference was also checked
by effect size alleviating the problem of multiple comparisons.

Another potential threat to validity is the three extra parameters
when using our synthetic generator. We did not investigate a very
large number of possible values for these parameters. Despite that,
our synthetic generator showed its effectiveness in improving per-
formance of LR, ATLM, RVM and RT when the training set size is
not large. Therefore, we do not consider further parameter tuning
as essential for this study. As a future work, we will investigate
the impact of parameter settings and present guidelines to tune the
model parameter.
Construct validity. Our analyses are mainly based on MAE in
the logarithm scale for being not biased towards under or over-
estimation and for alleviating the dominance of very large effort
values. Our preliminary studies showed that using other perfor-
mance metrics such as median absolute error led to similar results
as using MAE. As a future work, other performance measures could
be investigated.
External validity. This study has not explored a full range of SEE
models to be used with our synthetic generator in all SEE data sets.
We may not be able to generalize the obtained findings to other SEE
models or other SEE data sets. Nevertheless, since the chosen SEE
models have been shown to be the state-of-the-art and the data sets
covering a wide range of SEE data, this paper offers good support
in the effectiveness of our synthetic generator in addressing the
data scarcity problem of SEE.

7 CONCLUSIONS
We proposed a novel synthetic data generator to address data
scarcity problem of SEE. Our approach produces a similar synthetic
project by displacing a training example that is chosen randomly.
The generated synthetic projects are then added to the training
data set and used to train SEE models. Experimental results show
positive effect of our approach in improving the baseline perfor-
mance of SEE models and its superiority over the only synthetic
generator of SEE literature [32]. We validate our data generator by
answering the three research questions a follows.

Ans1. Experiments show that our synthetic projects always have
positive effect on and are rarely detrimental to the performance of
all SEE models investigated. They are particularly helpful for small
and medium data set sizes for LR and ATLM, moderately helpful for
RVM and RT, and not very helpful for k-NN and SVR. Nevertheless,
they are hardly detrimental to the baseline performance.



ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Liyan Song, Leandro L. Minku, and Xin Yao

Table 5: Performance comparisons between syn.SEEr and syn.cmp.SEEr across 14 data sets in terms of MAE with small, medium and large
training set sizes. The reported values are the mean of 30 runs followed by their STDs. The effect size across 30 runs of each SEE data set
is used to measure the performance difference between syn.SEEr vs syn.cmp.SEEr and between syn.cmp.SEEr vs bsl.SEEr, which is exhibited
in the cells associated with syn.SEEr and syn.cmp.SEEr respectively. The orange (dark grey) bold/yellow (light grey) bold/bold font indicates
large/medium/small effects size. The last two rows list the results of Wilcoxon tests with Bonferroni correction across all data sets: the rows
associated with syn.SEEr list the Wilcoxon results between syn.SEEr vs syn.cmp.SEEr, and the rows associated with syn.cmp.SEEr list the
Wilcoxon results between syn.cmp.SEEr vs bsl.SEEr. Significant difference of Wilcoxon tests is highlighted in orange (dark grey).

(a) Small training set size.

Data syn.LR syn.Cmp.LR syn.ATLM syn.Cmp.ATLM syn.k -NN syn.Cmp.k -NN syn.RVM syn.Cmp.RVM syn.RT syn.Cmp.RT syn.SVR syn.Cmp.SVR
Maxwell 0.645±0.095 1.336±0.487 0.649±0.101 14.682±32.480 0.724±0.090 0.777±0.071 0.584±0.064 0.603±0.066 0.667±0.100 0.684±0.091 0.570±0.087 0.601±0.070
Cocomo81 0.654±0.135 8.596±13.643 0.668±0.140 12.827±28.833 1.266±0.142 1.294±0.148 0.684±0.115 0.747±0.147 1.100±0.176 1.145±0.141 0.640±0.118 0.703±0.152
Nasa93 0.534±0.082 0.958±0.913 0.540±0.081 0.949±0.863 0.990±0.111 0.987±0.102 0.532±0.113 0.533±0.114 0.728±0.078 0.758±0.059 0.519±0.079 0.559±0.091

Kitchenham 0.653±0.149 0.772±0.259 0.657±0.180 0.767±0.263 0.744±0.168 0.765±0.163 0.696±0.153 0.962±0.360 0.802±0.170 0.869±0.170 0.621±0.119 0.688±0.149
Albrecht 0.823±0.261 3.499±4.208 0.817±0.267 4.835±6.721 0.724±0.113 0.720±0.150 0.673±0.171 0.785±0.242 0.806±0.182 0.940±0.218 0.580±0.128 0.609±0.126
Kemerer 1.058±0.573 1.306±1.506 1.121±1.059 19.447±92.795 0.643±0.142 0.679±0.131 0.665±0.151 0.777±0.348 0.799±0.155 0.875±0.203 0.526±0.147 0.584±0.148
Deshar 0.695±0.193 2.189±4.224 0.699±0.188 2.787±3.025 0.622±0.088 0.630±0.102 0.583±0.095 0.587±0.122 0.639±0.094 0.669±0.088 0.526±0.051 0.523±0.069
Org1 1.324±1.361 2.133±2.337 1.004±0.400 668.348±3648.420 0.895±0.203 0.907±0.134 0.922±0.228 0.989±0.239 1.027±0.297 1.000±0.256 0.853±0.209 0.874±0.160
Org2 1.092±1.634 1.343±2.222 0.785±0.325 0.975±0.846 0.659±0.208 0.671±0.185 0.645±0.179 0.635±0.130 0.762±0.209 0.747±0.189 0.633±0.182 0.645±0.201
Org3 0.684±0.146 0.751±0.234 0.682±0.148 0.750±0.238 0.767±0.132 0.804±0.148 0.753±0.192 0.920±0.326 0.835±0.142 0.974±0.178 0.647±0.124 0.701±0.190
Org4 0.902±0.258 2.346±3.980 0.916±0.342 5.305±20.084 0.860±0.156 0.841±0.110 0.836±0.096 1.061±0.409 0.897±0.136 0.882±0.126 0.800±0.099 0.820±0.111
Org5 2.177±2.983 3.837±4.172 1.231±1.287 2.413±3.398 0.971±0.232 1.009±0.239 1.042±0.270 1.287±1.366 1.060±0.195 1.036±0.172 0.771±0.188 0.938±0.265
Org6 1.003±0.508 2.680±3.728 1.111±0.576 2.123±2.408 0.959±0.255 0.961±0.273 0.999±0.320 1.089±0.260 1.159±0.244 1.165±0.248 0.860±0.236 0.888±0.262
Org7 1.156±0.651 1.868±2.498 1.179±0.674 1.890±2.494 0.917±0.168 0.909±0.150 0.953±0.235 0.946±0.155 0.959±0.167 0.946±0.137 0.923±0.220 0.892±0.148

Wilcoxon 1 0 1 0 0 0 1 0 0 0 1 0
p-value 0.000091 0.250000 0.000091 1.000000 0.024536 0.359375 0.003763 0.322266 0.057983 0.910156 0.003763 0.203125

(b) Medium training set size.

Data syn.LR syn.Cmp.LR syn.ATLM syn.Cmp.ATLM syn.k -NN syn.Cmp.k -NN syn.RVM syn.Cmp.RVM syn.RT syn.Cmp.RT syn.SVR syn.Cmp.SVR
Maxwell 0.496±0.089 0.646±0.151 0.498±0.089 0.659±0.168 0.662±0.113 0.699±0.106 0.547±0.085 0.564±0.074 0.565±0.072 0.582±0.094 0.495±0.081 0.514±0.076
Cocomo81 0.447±0.108 0.449±0.087 0.471±0.103 0.461±0.087 1.136±0.197 1.150±0.149 0.502±0.134 0.507±0.111 0.848±0.106 0.893±0.159 0.459±0.098 0.465±0.059
Nasa93 0.444±0.076 0.487±0.098 0.444±0.076 0.499±0.106 0.817±0.143 0.880±0.172 0.448±0.100 0.516±0.130 0.621±0.138 0.612±0.082 0.411±0.078 0.449±0.087

Kitchenham 0.552±0.043 0.582±0.108 0.545±0.046 0.576±0.111 0.617±0.049 0.621±0.068 0.571±0.050 0.645±0.282 0.670±0.090 0.655±0.055 0.547±0.059 0.552±0.067
Albrecht 0.536±0.140 0.576±0.147 0.551±0.163 0.592±0.169 0.559±0.191 0.530±0.158 0.544±0.146 0.539±0.160 0.624±0.220 0.692±0.164 0.486±0.134 0.464±0.103
Kemerer 0.596±0.218 1.056±0.878 0.553±0.223 0.903±0.642 0.566±0.191 0.607±0.187 0.517±0.169 0.547±0.177 0.623±0.146 0.736±0.194 0.448±0.156 0.458±0.159
Deshar 0.490±0.068 0.573±0.092 0.489±0.066 0.573±0.091 0.531±0.036 0.549±0.043 0.480±0.053 0.506±0.074 0.550±0.073 0.542±0.073 0.447±0.045 0.451±0.050
Org1 0.759±0.114 0.869±0.345 0.753±0.118 0.870±0.348 0.826±0.117 0.858±0.142 0.809±0.097 0.986±0.383 0.851±0.118 0.900±0.116 0.747±0.091 0.786±0.101
Org2 0.542±0.065 0.570±0.076 0.538±0.064 0.565±0.078 0.595±0.083 0.596±0.074 0.566±0.078 0.566±0.069 0.590±0.074 0.594±0.104 0.531±0.091 0.555±0.073
Org3 0.612±0.098 0.643±0.124 0.614±0.099 0.643±0.124 0.688±0.067 0.719±0.113 0.622±0.068 0.740±0.322 0.718±0.136 0.746±0.110 0.587±0.065 0.620±0.109
Org4 0.706±0.070 0.841±0.244 0.704±0.068 0.836±0.244 0.782±0.084 0.786±0.069 0.726±0.065 0.837±0.153 0.769±0.073 0.772±0.067 0.717±0.072 0.746±0.080
Org5 0.626±0.179 0.687±0.305 0.661±0.216 0.743±0.333 0.783±0.157 0.798±0.181 0.715±0.167 0.824±0.318 0.774±0.162 0.981±0.144 0.577±0.173 0.599±0.179
Org6 0.729±0.134 0.771±0.226 0.751±0.157 0.808±0.268 0.746±0.161 0.787±0.185 0.795±0.269 1.047±0.407 0.808±0.141 0.999±0.145 0.688±0.117 0.725±0.128
Org7 0.798±0.110 0.862±0.304 0.804±0.113 0.865±0.304 0.807±0.160 0.844±0.165 0.814±0.099 1.017±0.536 0.767±0.174 0.859±0.141 0.787±0.086 0.795±0.150

Wilcoxon 1 0 1 0 1 0 1 1 1 0 1 0
p-value 0.000091 0.216553 0.000670 0.541626 0.000670 0.463135 0.003763 0.003763 0.016255 0.067627 0.000670 0.041870

(c) Large training set size.

Data syn.LR syn.Cmp.LR syn.ATLM syn.Cmp.ATLM syn.k -NN syn.Cmp.k -NN syn.RVM syn.Cmp.RVM syn.RT syn.Cmp.RT syn.SVR syn.Cmp.SVR
Maxwell 0.533±0.292 0.497±0.353 0.534±0.296 0.519±0.388 0.693±0.417 0.713±0.464 0.529±0.427 0.501±0.380 0.448±0.354 0.510±0.443 0.499±0.278 0.459±0.344
Cocomo81 0.478±0.371 0.449±0.430 0.475±0.444 0.449±0.430 1.190±0.830 1.219±0.830 0.411±0.313 0.446±0.339 0.788±0.614 0.892±0.587 0.457±0.419 0.444±0.437
Nasa93 0.394±0.476 0.385±0.492 0.394±0.458 0.386±0.492 0.653±0.720 0.648±0.760 0.409±0.456 0.596±0.797 0.446±0.394 0.435±0.478 0.338±0.454 0.378±0.443

Kitchenham 0.462±0.035 0.464±0.040 0.455±0.037 0.453±0.036 0.509±0.056 0.512±0.053 0.456±0.050 0.484±0.049 0.553±0.054 0.575±0.058 0.457±0.036 0.462±0.035
Albrecht 0.433±0.312 0.422±0.333 0.433±0.312 0.422±0.333 0.407±0.352 0.429±0.395 0.375±0.319 0.354±0.345 0.475±0.355 0.547±0.419 0.344±0.325 0.363±0.250
Kemerer 0.444±0.403 0.476±0.384 0.403±0.371 0.477±0.402 0.494±0.483 0.490±0.495 0.353±0.379 0.361±0.394 0.533±0.507 0.557±0.516 0.352±0.370 0.364±0.407
Deshar 0.437±0.049 0.470±0.067 0.438±0.059 0.470±0.066 0.502±0.082 0.518±0.080 0.425±0.062 0.434±0.067 0.447±0.074 0.462±0.070 0.426±0.050 0.430±0.051
Org1 0.631±0.110 0.671±0.126 0.629±0.106 0.651±0.117 0.762±0.122 0.746±0.132 0.663±0.131 0.682±0.149 0.725±0.122 0.754±0.103 0.617±0.101 0.666±0.133
Org2 0.464±0.088 0.475±0.102 0.460±0.082 0.467±0.101 0.532±0.105 0.536±0.112 0.468±0.095 0.468±0.118 0.514±0.094 0.507±0.081 0.451±0.074 0.459±0.083
Org3 0.528±0.063 0.528±0.066 0.528±0.063 0.529±0.066 0.609±0.078 0.608±0.069 0.534±0.065 0.572±0.089 0.582±0.068 0.581±0.064 0.518±0.066 0.520±0.065
Org4 0.644±0.063 0.665±0.061 0.646±0.064 0.667±0.061 0.709±0.081 0.728±0.079 0.638±0.068 0.658±0.064 0.698±0.077 0.716±0.070 0.645±0.069 0.666±0.063
Org5 0.471±0.138 0.511±0.154 0.482±0.129 0.529±0.149 0.654±0.216 0.647±0.199 0.528±0.226 0.614±0.184 0.592±0.249 0.617±0.193 0.445±0.144 0.468±0.137
Org6 0.619±0.138 0.656±0.164 0.632±0.142 0.678±0.188 0.677±0.136 0.687±0.131 0.570±0.121 0.679±0.370 0.657±0.173 0.675±0.169 0.586±0.122 0.606±0.126
Org7 0.748±0.215 0.761±0.197 0.753±0.219 0.761±0.198 0.743±0.220 0.710±0.246 0.735±0.188 0.769±0.267 0.690±0.186 0.727±0.233 0.707±0.162 0.690±0.152

Wilcoxon 0 0 0 0 0 0 1 0 1 0 0 0
p-value 0.104004 0.807739 0.172607 0.903198 0.426270 0.024536 0.003763 0.216553 0.016255 0.463135 0.104004 0.951538

Ans2. The positive effect of our synthetic data is mainly due
to the data augmentation and the robustness enhancement in the
areas that the noise of SEE projects may injure the quality of SEE
model training. Different SEE models have different improvement
magnitude that can be usually affected by their locality/globality.

Ans3. Studies show that our synthetic generator is significantly
superior to or has no significant difference from its only competitor
of SEE literature [32]. Besides, the competing generator probably
brings no significant improvement over the baseline SEE models.

Future work includes further investigation of the impact of pa-
rameter settings and tuning guidelines, investigation of more per-
formance metrics, and comparisons against the random strategy

that assigns synthetic effort values with the outputs of randomly
chosen training projects.
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