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Abstract 

The three-dimensional flow separation over the Rood wing-body junction is an exemplar 

application of separation affecting many important flows in turbomachinery and 

aerodynamics. Conventional Reynolds Averaged Navier Stokes (RANS) methods struggle to 

reproduce the complexity of this flow. 

In this paper, an unconventional use is made of a hybrid Reynolds Averaged Navier Stokes 

(RANS) model to tackle this challenge. The hybridization technique combines the Menter 

𝑘𝑘 − 𝜔𝜔 − 𝑆𝑆𝑆𝑆𝑆𝑆 model with the one equation sub-grid-scale (SGS) model by Yoshizawa 

through a blending function, based on the wall-normal distance. The hybrid RANS 

turbulence closure captured most of the flow features reported in past experiments with 

reasonable accuracy. The model captured also the small secondary vortex at the corner 

ahead of the wing nose and at the trailing edge. This feature is scarcely documented in the 

literature. 

The study highlights the importance of the spatial resolution near the wing leading edge, 

where this localised secondary recirculation was observed by the hybrid RANS model. It also 

provides evidence on the applicability of the hybrid Menter and Yoshizawa turbulence 

closure to the wing-body junction flows in aircraft and turbomachines, where the flows are 

characterised by a substantially time-invariant three-dimensional separation. 

Keywords: Three-dimensional CFD; hybrid RANS models; Rood wing; horseshoe vortex; flow 

separation; wing-body junction. 

1. Introduction 

The three-dimensional flow separation that generates a horseshoe vortex is a common 
occurrence in many practical aerodynamic and hydrodynamic flows. This sort of flows can occur 
when the turbulent boundary layer approaches an obstacle mounted to a surface. This process is 
encountered in several engineering applications, such as the wing-body junction in aeroplanes, at 
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the blade root in turbomachines, in the convective cooling of electronic components on circuit 
boards, in rudder-and-keel ship junctions, and in river–bridge flows. The undesirable 
characteristics associated with the vortical flow, such as the loss in aerodynamic performance, 
river bed erosion, reduced surface heat transfer, surface hot spots in heat sinks, and vibration and 
noise generation, attracted the attention of the aerodynamic community towards this problem. 
Therefore, the horseshoe vortex at these junctions has been intensively studied both numerically 
and experimentally by Devenport and Simpson [1], Fleming et al. [2], Ölçmen and Simpson [3, 4], 
Parneix et al. [5], Apsley and Leschziner [6], Jones and Clarke [7], Paciorri et al. [8], Paik et al. [9], 
Fu et al. [10], Gand et al. [11, 12], Bryan and Klaus [13], and Ryu et al. [14]. 

These numerical studies highlighted the challenge of reproducing the horseshoe vortex 
geometry and its associated near-surface flow features, including the separation and 
reattachment lines, the vortex core trajectory, and the vortex cross-section growth by 
entrainment, using conventional Reynolds Averaged Navier-Stokes (RANS) simulations, such as the 
𝑘𝑘 − 𝜀𝜀 and the 𝑘𝑘 − 𝜔𝜔 RANS models. Wall-resolved Large Eddy Simulations (LES) can provide greater 
spatial and temporal resolution than RANS, to resolve the horseshoe vortex flow field. However, 
the computational effort required for resolving the boundary layers over the horizontal and 
vertical walls that confine the horseshoe vortex is typically higher in LES than in RANS. As the 
dominant horseshoe flow structure is mostly steady, this type of flow would lend itself to a steady 
flow modelling approach in which an appropriate turbulence closure is provided at a lower 
computational effort than by wall-resolved LES. 

This work advances the state-of-art by addressing this challenge using a hybrid RANS 
model, in which the approach used is somewhat unconventional. The Yoshizawa [15] one-
equation model is combined with the 𝑘𝑘 − 𝜔𝜔 SST model by Menter [16] to account for the effects 
of the flow unsteadiness on the time-mean flow away from the walls, while the large-scale vortical 
structures that form the horseshoe vortex are spatially resolved. The results indicate that this 
unconventional application of this hybrid turbulence closure gives predictions with a level of detail 
similar to the ones obtained using full Reynolds stress models or second order moment closures. 
The simpler algorithm of the Yoshizawa [15] model compared to a full Reynolds stress RANS 
closure makes this computation more affordable, while attempting to improve on the predictive 
accuracy of RANS. This makes this unconventional application of the hybrid model of interest to 
the computational fluid dynamic community engaged in industrial design, where affordable 
predictions of the time-mean flow are sought around complex geometries. 

The fundamental character of horseshoe vortices has been studied on suitably simplified 
geometries using wings, cubes, and cylinders fastened to the wall surface. A detailed review of the 
experimental work carried out on these junctions is given by Simpson [17]. The review describes 
how the interaction between the pressure gradients around the obstacle and the approach 
turbulent boundary layer generates a three-dimensional separation with horseshoe vortices. This 
vortical structure is stretched and warped around the appendage, forming an opened necklace 
shape, as shown schematically in Figure 1. This flow is characterized by subtle features, such as a 
smaller corner vortex tightly packed around the wing leading edge, which was identified by Fu et 
al. [10] and confirmed by El-Dosoky [18] and by Lee et al. [19]. The Laser Doppler Velocimetry 
measurements by Devenport and Simpson [1] showed that the flow around the wing leading edge 
undergoes non-periodic low frequency velocity fluctuations, leading to a bimodal statistical 
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distribution in Laser Doppler Anemometry measurements. The frequency associated with this 
unsteadiness is much lower than the frequency of the coherent structures (in the outer layer of 
the approaching boundary layer) so that its effect on the turbulence structure is small, as 
suggested by Parneix et al. [5]. The resulting bimodality of the velocity probability density function 
around the leading edge is likely to affect turbulent quantities. This is because the velocity 
standard deviation relates to the turbulence intensity, which is higher in a bimodal velocity 
distribution than in a Gaussian velocity distribution of equal integral area. While this cannot be 
captured by a conventional two-equation RANS model, its effect on the mean flow parameters is 
small [5]. 

 

Figure 1. Sketch of the horseshoe vortex around the wing-body junction [2]. 

Several simulations by authors, including Parneix et al. [5], Apsley and Leschziner [6], Jones 
and Clarke [7], Paciorri et al. [8], Paik et al. [9], Fu et al. [10], Gand et al. [11], Bryan and Klaus [13], 
and Ryu et al. [14], studied a 3:2 semi-elliptical nose joined with a NACA0020 tail at the maximum 
thickness, known as Rood wing, mounted normally on a flat plate with zero angle of attack. 
Parneix et al. [5] modelled the velocity components and the turbulent kinetic energy upstream of 
the Rood wing at many locations near the separation line of the horseshoe vortex in the necklace 
region. They used the V2F turbulence model which extends the standard 𝑘𝑘 − 𝜀𝜀 model by 
incorporating both near-wall turbulence anisotropy and non-local pressure-strain effects, while 
retaining the linear eddy viscosity assumption. From the comparison with the experimental 
results, they showed that the V2F simulation is able to predict the separation location as well as 
the intensity of the back-flow at the wing upstream symmetry plane more accurately than the 
standard 𝑘𝑘 − 𝜀𝜀 model. 

A collaborative university-industry study of a wing-body junction flow is summarized by 
Apsley and Leschziner [6]. Apsley and Leschziner [6] report numerical simulations obtained using 
twelve turbulence closure models. They classified these models into three classes as follows: five 
linear (or isotropic) eddy-viscosity models (different types of 𝑘𝑘 − 𝜀𝜀, 𝑘𝑘 − 𝜔𝜔, and 𝑘𝑘 − 𝑔𝑔 models), 
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three non-linear (or anisotropic) eddy-viscosity models (all based on the 𝑘𝑘 − 𝜀𝜀 transport 
equations), and four differential stress (second-moment closure) models. Apsley and Lechziner [6] 
compared the output from the different turbulence models with experimental measurements, 
emphasising the structure of the horseshoe vortex and its effects on the forward flow. This study 
showed that Reynolds stress models offered the most favourable predictive advantages over the 
other models tested, especially in terms of the far-field structure of the horseshoe vortex, 
although no model achieved close agreement with the experimental measurements in respect of 
both mean flow and turbulence quantities. 

Another study made by Jones and Clark [7], simulated this flow using the renormalizable 
𝑘𝑘 − 𝜀𝜀 model, the Reynolds stress model, the V2F model, the Spalart-Allmaras model, and the 𝑘𝑘 −
𝜔𝜔 model, running the commercial computational fluid dynamic package ANSYS Fluent. They 
judged the performance of the turbulence models by comparing the mean velocity components 
upstream of the wing-body junction as well as the pressure distribution along the wing surface at 
selected locations. They concluded that, while none of the models tested were able to simulate 
accurately the correct behaviour of the mean kinetic energy as a function of position, all the 
turbulence models displayed similarly acceptable levels of accuracy, except the renormalizable 
𝑘𝑘 − 𝜀𝜀 model. Jones and Clark [7] further confirmed the finding of Parneix et al. [5] that the V2F 
model gives the closest agreement with the experimental measurements among the five RANS 
models tested. 

Paciorri et al. [8] numerically simulated the wing-body junction using structured and 
unstructured RANS codes with the one-equation Spalart-Allmaras and the two-equation 𝑘𝑘 − 𝜀𝜀 
eddy viscosity models. This study carefully assesses the mesh dependence of the predictions by 
evaluating the grid convergence index and documents the validation of the implemented 
turbulence models. 

Paik et al. [9] followed the Detached-Eddy-Simulation (DES) approach, using the Spalart-
Allmaras turbulence model for the RANS turbulence closure, to study the bimodality of the 
velocity probability density function around the horseshoe vortex in a wing-body junction. They 
stated that there is a discrepancy between simulation and measurements in predicting the 
coordinates of the horseshoe vortex core. They ascribed this discrepancy to the use of the Spalart-
Allmaras turbulence model and of the steady inflow conditions. In spite of the poorly predicted 
vortex core location, the results show the DES approach as a powerful simulation tool for 
modelling this highly complex turbulent flow. 

Fu et al. [10] modelled by DES a wing body junction flow with the more complex RANS 
closure of the 𝑘𝑘 − 𝜔𝜔 and the 𝑘𝑘 − 𝜔𝜔 − 𝑆𝑆𝑆𝑆𝑆𝑆 models. They controlled the turbulence scale of the 
Strelets DES method by using Menter’s function (F2) to delay the switching from RANS to LES. They 
showed that the results from this method deliver the primary horseshoe vortex structure and 
agree well with the measurements. 

A significant element in the predictive ability of the DES is the switching between RANS 
and LES, for which zonal and non-zonal techniques are available. The zonal technique works by 
predefining the regions where RANS and LES turbulence closures apply, which is not a convenient 
approach for modelling unknown flows. The other technique avoids having to predefine regions by 
automatically choosing the turbulence closure, based on local mesh and flow properties. 
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The current study uses this latter technique to switch between the Menter [16] and the 
Yoshizawa [15] turbulence closures. The switch ensures that a RANS Menter [16] layer is always 
present near a wall and delivers a gradual transition between the Menter [16] and the Yoshizawa 
[15] turbulence closures by using an appropriate blending function. The presence of a RANS layer 
over solid walls helps with the proper modelling of attached boundary layers in the current 
simulation, since, like in a DES, excessive near-wall grid refinement can activate the Yoshizawa [15] 
model and, like in a DES, it may cause grid-induced flow separation. By distancing the region 
where the Yoshizawa [15] model is active from the wall, a spurious separation line on the wall is 
less likely to occur, provided a suitable mesh refinement strategy is used. 

Near solid walls, the flow is modelled using the Menter [16] 𝑘𝑘 − 𝜔𝜔 − 𝑆𝑆𝑆𝑆𝑆𝑆, which is a 
widely used turbulence model. The 𝑘𝑘 − 𝜔𝜔 − 𝑆𝑆𝑆𝑆𝑆𝑆 turbulence closure combines the standard 𝑘𝑘 − 𝜔𝜔 
model of Wilcox with the Jones-Launder 𝑘𝑘 − 𝜀𝜀 model to benefit from the finite value of 𝜔𝜔 near the 
walls and to avoid the strong dependency of the predictions on the values of 𝑘𝑘 and 𝜔𝜔 prescribed 
at the outer boundaries of the computational domain [16]. The model shows a good ability to 
reproduce the transport of the dominant shear stress in adverse pressure gradient boundary-
layers [16]. In this study, the Menter [16] 𝑘𝑘 − 𝜔𝜔 − 𝑆𝑆𝑆𝑆𝑆𝑆 model is coupled with the one equation 
Sub-Grid-Scale (SGS) model by Yoshizawa [15] that provides the turbulence closure away from the 
solid boundaries. The details of the numerical approach are stated in the next section. 

2. Hybrid RANS turbulence model 

2.1.  The Menter SST model 

The shear stress transport (SST) model, developed by Menter [16], combines the best 
qualities of 𝑘𝑘 − 𝜔𝜔 and 𝑘𝑘 − 𝜀𝜀 models. Menter [16] showed that the SST model exhibits an improved 
agreement with experiments compared to other classic two-equation RANS turbulence models for 
a variety of test cases. The SST model gives more accurate predictions in regions of separation in 
complex flow with a strong adverse pressure gradient [16]. The transport equations for 𝑘𝑘 and 𝜔𝜔 
are: 

𝐷𝐷𝐷𝐷𝑘𝑘𝑀𝑀
𝐷𝐷𝐷𝐷

= 𝜏𝜏𝑖𝑖𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

− 𝛽𝛽∗𝜌𝜌𝜌𝜌𝑘𝑘𝑀𝑀 + 𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

��𝜇𝜇 + 𝜎𝜎𝑘𝑘𝜇𝜇𝑡𝑡,𝑀𝑀�
𝜕𝜕𝑘𝑘𝑀𝑀
𝜕𝜕𝑥𝑥𝑗𝑗 

�                      (1) 

𝐷𝐷𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

= 𝛾𝛾𝛾𝛾
𝜇𝜇𝑡𝑡,𝑀𝑀

𝜏𝜏𝑖𝑖𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

− 𝛽𝛽𝛽𝛽𝜔𝜔2 + 𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

��𝜇𝜇 + 𝜎𝜎𝜔𝜔𝜇𝜇𝑡𝑡,𝑀𝑀�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗 

�+ 2𝜌𝜌[1 − 𝐹𝐹1]𝜎𝜎𝜔𝜔2
1
𝜔𝜔
𝜕𝜕𝑘𝑘𝑀𝑀
𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗���������������

cross-diffusion

                        

                                                                                                                        (2) 

where 𝜏𝜏𝑖𝑖𝑖𝑖  is the turbulent shear stress and is modelled by: 

𝜏𝜏𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑡𝑡 �
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

− 2
3
𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

𝛿𝛿𝑖𝑖𝑖𝑖� −
2
3
𝜌𝜌𝑘𝑘𝑀𝑀𝛿𝛿𝑖𝑖𝑗𝑗                                            (3) 

The coupling function 𝐹𝐹1 is given by: 
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𝐹𝐹1 = tanh(𝑎𝑎𝑎𝑎𝑎𝑎14), 𝑎𝑎𝑎𝑎𝑎𝑎1 = min �max � �𝑘𝑘𝑀𝑀
0.09𝜔𝜔𝜔𝜔

; 500𝜇𝜇
𝜌𝜌𝜌𝜌𝑦𝑦2

� ; 4𝜌𝜌𝜎𝜎𝜔𝜔2𝑘𝑘𝑀𝑀
𝐶𝐶𝐶𝐶𝑘𝑘𝑘𝑘𝑦𝑦2

�        (4) 

𝐶𝐶𝐶𝐶𝑘𝑘𝑘𝑘 = �2𝜌𝜌𝜎𝜎𝜔𝜔2
1
𝜔𝜔
𝜕𝜕𝑘𝑘𝑀𝑀
𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

; 10−20�                                                            (5) 

where 𝑦𝑦 is the distance to the nearest wall and 𝐶𝐶𝐶𝐶𝑘𝑘𝑘𝑘 represents the positive part of the cross-
diffusion term in Equation 2. The constants of the model are obtained by blending the constants in 
the 𝑘𝑘 − 𝜔𝜔 and 𝑘𝑘 − 𝜀𝜀 models using the coupling function F1 as follows: 

�

𝜎𝜎𝑘𝑘
𝜎𝜎𝜔𝜔
𝛽𝛽
𝛾𝛾
� = 𝐹𝐹1 �

𝜎𝜎𝑘𝑘1
𝜎𝜎𝜔𝜔1
𝛽𝛽1
𝛾𝛾1

�+ (1 − 𝐹𝐹1) �

𝜎𝜎𝑘𝑘2
𝜎𝜎𝜔𝜔2
𝛽𝛽2
𝛾𝛾2

�                                                           (6) 

The 𝑘𝑘 − 𝜔𝜔 constants are 𝜎𝜎𝑘𝑘1 = 0.85, 𝜎𝜎𝜔𝜔1 = 0.5, 𝛽𝛽1 = 0.075, 𝛽𝛽∗ = 0.09, 𝛾𝛾1 = 𝛽𝛽1
𝛽𝛽∗
− 𝜎𝜎𝜔𝜔1𝜅𝜅2

�𝛽𝛽∗
, and 𝜅𝜅 =

0.41 while the 𝑘𝑘 − 𝜀𝜀 constants are 𝜎𝜎𝑘𝑘2 = 1.0, 𝜎𝜎𝜔𝜔2 = 0.856, 𝛽𝛽2 = 0.0828, 𝛽𝛽∗ = 0.09, 𝛾𝛾2 = 𝛽𝛽2
𝛽𝛽∗
−

𝜎𝜎𝜔𝜔2𝜅𝜅2

�𝛽𝛽∗
, and 𝜅𝜅 = 0.41. 

By enforcing the assumption by Bradshaw [20] that the turbulent shear stress in the 
boundary layer is equal to 𝜌𝜌𝛼𝛼1𝑘𝑘𝑀𝑀, Menter’s SST turbulent eddy viscosity can be obtained from 

𝜇𝜇𝑡𝑡,𝑀𝑀 = 𝜌𝜌𝛼𝛼1𝑘𝑘𝑀𝑀
𝑚𝑚𝑚𝑚𝑚𝑚�𝛼𝛼1𝜔𝜔;�𝑆𝑆𝑖𝑖𝑖𝑖�𝐹𝐹2�

, where 𝛼𝛼1 = 0.31, 𝑆𝑆𝑖𝑖𝑖𝑖 is the strain rate tensor 𝑆𝑆𝑖𝑖𝑖𝑖 = 1
2
�𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖
�, and its 

magnitude �𝑆𝑆𝑖𝑖𝑖𝑖� = �2𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖. 

𝐹𝐹2 = tanh(𝑎𝑎𝑎𝑎𝑎𝑎24), 𝑎𝑎𝑎𝑎𝑎𝑎2 = max �2 �𝑘𝑘𝑀𝑀
0.09𝜔𝜔𝜔𝜔

; 400𝜇𝜇
𝜌𝜌𝜌𝜌𝑦𝑦2

�.                                (7) 

Menter [16] suggested using a limiter 𝑃𝑃𝑘𝑘 for the turbulent production term to prevent the 
unrealistic build-up of eddy viscosity in the stagnation regions. The limiter bounds the production 

term to 20 times the destruction term and replaces 𝜏𝜏𝑖𝑖𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

 in the 𝑘𝑘 transport equation. 

𝑃𝑃𝑘𝑘 = min �𝜏𝜏𝑖𝑖𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

; 20𝛽𝛽∗𝜌𝜌𝜌𝜌𝑘𝑘𝑀𝑀�                                                                 (8) 

Menter [16] tested this limiter carefully and reported that this limiter does not change the 
predicted flow field of well-developed turbulent flows because the maximum level for the ratio of 
production term to destruction term reaches only up to two inside a shear layer. 

2.2.  The Yoshizawa one equation turbulence closure model 

The classic approach to obtaining a large eddy simulation uses the filtered Navier-Stokes 
equations closed by a one-equation Sub-Grid-Scale (SGS) kinetic energy model. Many applications 
of SGS models are documented in the literature, including Liu et al. [21], Dahlström and Davidson 
[22], Davidson and Peng [23], and Orkomi, et al. [24]. Dahlström and Davidson [22] used the one 
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equation SGS model by Yoshizawa [15]. In this model, the SGS transport equation for the kinetic 
energy 𝑘𝑘𝑌𝑌 is given by 

𝐷𝐷𝐷𝐷𝑘𝑘𝑌𝑌
𝐷𝐷𝐷𝐷

= 𝜏𝜏𝑖𝑖𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

− 𝐶𝐶𝑑𝑑
𝜌𝜌𝑘𝑘𝑌𝑌

2
3

∆
+ 𝜕𝜕

𝜕𝜕𝑥𝑥𝑗𝑗
��𝜇𝜇 + 𝜎𝜎𝑘𝑘𝜇𝜇𝑡𝑡,𝑌𝑌�

𝜕𝜕𝑘𝑘𝑌𝑌
𝜕𝜕𝑥𝑥𝑗𝑗 

�                                 (9) 

where 𝜏𝜏𝑖𝑖𝑖𝑖  is the SGS stress tensor, ∆ is the filter width and is set to the cubic root of the volume of 
the cell 𝑖𝑖 �∆= �𝑉𝑉𝑖𝑖

3 �, 𝜇𝜇𝑡𝑡,𝑌𝑌 = 𝜌𝜌𝐶𝐶𝑠𝑠∆�𝑘𝑘𝑌𝑌, and 𝜎𝜎𝑘𝑘 = 1.0. As in Dahlström and Davidson [22], this filter 
width definition is linked to the computational mesh, which is designed to suit specific 
applications, thereby providing a good local control on the filter width. Dahlström and Davidson 
[22] explore the performance of different filter width definitions in a channel flow simulation, 
showing that ∆= �𝑉𝑉𝑖𝑖

3  performs better than Δ = min (𝑉𝑉𝑖𝑖). 

The Yoshizawa [15] constants 𝐶𝐶𝑑𝑑 and 𝐶𝐶𝑠𝑠 are problem-dependent and can be evaluated 
from the corresponding Smagorinsky constant for the wing body junction flow. In the equilibrium 
conditions, where the production and dissipation rates are in balance, the SGS model recovers the 
Smagorinsky subgrid eddy viscosity model, so that 

𝜇𝜇𝑡𝑡,𝑌𝑌 = 𝜌𝜌�𝐶𝐶𝑠𝑠
𝐶𝐶𝑑𝑑
𝐶𝐶𝑠𝑠∆2�𝑆𝑆𝑖𝑖𝑖𝑖� = 𝜌𝜌𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

2 ∆2�𝑆𝑆𝑖𝑖𝑖𝑖� .                                                 (10) 

The Smagorinsky constant is related to the Yoshizawa [15] constants by 𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �𝐶𝐶𝑠𝑠
3

𝐶𝐶𝑑𝑑
�
0.25

 

and its value is flow-dependent and it ranges from 0.065 to 0.2. 

For the flow around bluff bodies and for a complex flow with separation, 𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is taken as 
0.1 by Rodi [25] and by Jaffŕezic et al. [26]. In this study, 𝐶𝐶𝑠𝑠 is calculated using 𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 0.1 
and 𝐶𝐶𝑑𝑑 = 1.0. 

2.3. The hybrid RANS model 

The present hybrid RANS model combines the Menter [16] turbulent kinetic energy 
equation with the Yoshizawa [15] turbulent kinetic energy equation using a weighting function Γ. 
The resulting transport equation for the turbulent kinetic energy 𝑘𝑘𝑇𝑇 is 

𝐷𝐷𝐷𝐷𝑘𝑘𝑇𝑇
𝐷𝐷𝐷𝐷

= 𝜏𝜏𝑖𝑖𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

− �Γ𝜌𝜌𝛽𝛽∗𝑘𝑘𝑇𝑇𝜔𝜔 + (1 − Γ)𝐶𝐶𝑑𝑑
𝜌𝜌𝑘𝑘𝑇𝑇

3
2

∆
�+ 𝜕𝜕

𝜕𝜕𝑥𝑥𝑗𝑗
�(𝜇𝜇 + 𝜎𝜎𝑘𝑘𝜇𝜇𝑡𝑡)

𝜕𝜕𝑘𝑘𝑇𝑇
𝜕𝜕𝑥𝑥𝑗𝑗 

�               (11) 

The hybrid eddy viscosity is given by 

𝜇𝜇𝑡𝑡 = Γ𝜇𝜇𝑡𝑡,𝑀𝑀 + (1 − Γ)𝜇𝜇𝑡𝑡,𝑌𝑌 (12) 

The blending function Γ is defined as Γ = tanh(𝜉𝜉4), where 𝜉𝜉 = max �𝐿𝐿𝑇𝑇
𝑦𝑦

; 500𝜈𝜈𝛽𝛽
∗𝐿𝐿𝑇𝑇

�𝑘𝑘𝑇𝑇𝑦𝑦2
� and 𝐿𝐿𝑇𝑇 = �𝑘𝑘𝑇𝑇

𝛽𝛽∗𝜔𝜔
 . 

The hybrid technique solves the resulting turbulent kinetic energy equation in 
combination with the transport equation for 𝜔𝜔. Close to the wall, 𝑦𝑦 → 0 and the blending function 
approaches unity (Γ → 1.0), as it can be shown by applying de l’Hopital’s theorem to the blending 
function equation in the lim

𝑦𝑦→0
Γ. The Yoshizawa [15] component of the hybrid turbulence closure 
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model becomes less important as 𝑦𝑦 → 0, 𝑘𝑘𝑇𝑇 represents 𝑘𝑘𝑀𝑀, and the RANS solution with the 
Menter [16] turbulence closure is recovered. Conversely, away from the wall, the blending 
function approaches zero (Γ → 0.0), 𝑘𝑘𝑇𝑇 represents 𝑘𝑘𝑌𝑌, and the Yoshizawa [15] solution becomes 
dominant. This behaviour is exemplified in Figure 2, which is derived from the wing-body junction 
simulations presented in the next section. Figure 2 shows the iso-chromatic levels of the blending 
function Γ in the symmetry plane upstream of the wing body junction leading edge, which is 
labelled as plane A in Figure 4. Figure 2 shows the Menter [16] closure dominant region near the 
flat plate and the wing appendage by red and the Yoshizawa [15] closure dominant region by blue. 
The location of the interface between the 𝑘𝑘 − 𝜔𝜔 SST model and the one-equation 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠 model is 
shown as the layer enclosed between the dashed and the dash-dot lines, which denote 
respectively Γ ≈  0.8 and Γ ≈  0.2. The dashed line denotes the near-wall interface boundary, 
which is where the 𝑘𝑘 − 𝜔𝜔 SST model starts to blend with the 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠 model but the 𝑘𝑘 − 𝜔𝜔 SST model 
is still driving the value of the specific kinetic energy. The dash-dot line denotes the outer interface 
boundary, which is where the 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠 model starts to blend with the 𝑘𝑘 − 𝜔𝜔 SST model but the 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠 
model is still driving the value of the specific kinetic energy. 

 

Figure 2. Colour levels of the blending function Γ at the symmetry plane A and interface layer 
between the Menter [16] 𝑘𝑘 − 𝜔𝜔 SST and the Yoshizawa [15] 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠 models. 

2.4. RANS model implementation 

The RANS model described in sections 2.1-2.3 has been implemented in the in-house 
computational fluid dynamics (CFD) software Cosmic. This scheme is an extension of the two-
dimensional compressible finite-volume scheme by Bennett [27] to three-dimensions. The flow 
domain is discretized in space using a three-dimensional structured computational mesh, which 
defines the unit cell finite volume for the application of the conservative laws. Flux Difference 
Splitting (FDS) is applied on the unit cell control boundaries. The inviscid fluxes are estimated using 
the second-order implementation of Roe’s approximate Riemann solver [28], while viscous fluxes 
are estimated by the Gauss divergence theorem using a second-order central stencil. Variables at 
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the unit cell interfaces are reconstructed using the Monotone Upwind Scheme for Conservation 
Laws (MUSCL) by Van Leer [29], which enables up to a third-order accurate spatial reconstruction 
in regions of smooth flow. To produce a Total Variation Diminishing (TVD) numerical method, the 
MinMod flux limiter by Roe is applied to calculate the cell interface fluxes. The entropy violation 
inherent in the Roe scheme is corrected using the formulation by Kermani and Plett [30]. This 
formulation was made to prevent the occurrence of expansion shocks in the vicinity of a sonic 
expansion and provides an entropy fix for the Roe scheme. The flow states are updated using a 
second-order accurate explicit Runge-Kutta time integration, using the low-storage (compact) 
formulation of Hu et al. [31]. In the current application, the Runge-Kutta integration is used to 
update the flow state to numerical convergence and it is not intended to reproduce the evolution 
of the flow through time. The update at each iteration is constrained to a Courant number of 0.25, 
to satisfy the Courant Friedrichs-Lewy (CFL) condition and to preserve the numerical stability of 
the computations. The computations were run on an eight cores computer cluster managed by the 
Mathematical Modelling Centre, at the University of Leicester. 

2.5.  Test-case geometry and boundary conditions 

The model consists of a flat plate upon which the Rood wing is fixed, as shown in Figure 1. 
The wing maximum thickness (T), the chord-to-thickness ratio (C/T), and the Reynolds number 
based on the wing thickness are 0.0717 m, 4.254, and 115000 respectively. An (X, Y, Z) wind axes 
type Cartesian reference system is used in Figure 1, with the origin located at the wing root 
leading edge. 

A computational domain is defined around the wing, as shown in figure 3. The Rood wing is 
rendered by the hatched vertical wall in figure 3, located where indicated by the black arrow. The 
dimension of the Rood wing is deliberately small compared to the computational domain, so as to 
prevent numerical blockage by the placement of the computational boundaries in this simulation 
far from the wing. This test case is symmetric along the X-axis, so the computational covers only 
half of the physical domain. The computational domain floor at Z = 0 lies on the flat plate. The 
computational domain ceiling is set at constant Z = 3 T. The computational domain extends from X 
= - 18.24 T to X = 10 T and from Y = 0 to Y = 18.24 T. 

 

Figure 3. Geometry of the computational domain. 
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Figure 3 shows the boundary conditions used around the perimeter of the computational domain. 
A subsonic Inflow boundary condition is imposed between Z = 0 and Z = 3 T over the quarter-
cylinder surface between (X = - 18.24 T, Y = 0) and (X= 0, Y = 18.24 T), using the experimental data 
from the European Research Community on Flow, Turbulence and Combustion (ERCOFTAC, [32]) 
database. An Outflow boundary condition is applied at X/T = 10 and at Y/T = 18.24, where a zero 
streamwise pressure gradient is imposed. At Y/T = 0, the symmetry boundary condition is applied. 
As in Apsley and Leschziner [6], a symmetric boundary condition is set at Z/T = 3. For all walls, the 
no-slip adiabatic (Wall) boundary condition is used. The mesh, boundary conditions, and the initial 
solution file are written in the CGNS format [33], using a bespoke in-house CFD pre-processor 
written by the authors in Fortran 90. 

2.6. Computational mesh 

The computational domain is discretised into an assembly of finite-volumes by generating 
a C-type grid around the wing, as shown in Figure 4 (a). This is then extruded along the wingspan 
to obtain the three-dimensional computational mesh shown in Figure 4 (b). Numerical mesh 
stretching is used near physical walls in the flow domain to capture the near-wall flow features. 
Two incrementally refined, structured multi-block meshes were produced by the bespoke Fortran 
90 program. These are referred to as the baseline mesh and the refined mesh. On the baseline 
mesh, the height of the centre of the first cell closet to the wall is kept within the viscous sublayer 
(y+ < 1.5), where y+ is the cell centre height normalized by the friction velocity and by the air 
kinematic viscosity. The number of cells in the X, Y, and Z directions on the baseline mesh are 112, 
50, and 50, respectively. 

 

  

Figure 4. Structured computational mesh: (a) plan view (b) diametric view. For clarity, one every 
two mesh points in X, Y and Z directions is plotted. 

The refined mesh is obtained by increasing the spatial discretization by a factor of 1.5 along the 
three curvilinear directions. In the refined mesh, the wall-normal distance of the centre of the first 
cell closest to the wall is less than 0.00047 T and is designed to give a y+ < 0.5. The number of cells 

(a) 

 

(b) 
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in the X, Y, and Z directions on the refined mesh are 168, 76, and 76 respectively. This mesh 
contains approximately one million cells. 

2.7. Mesh sensitivity analysis 

The sensitivity of the predictions to the level of spatial discretization is considered by 
comparing the predictions obtained with the baseline mesh to the ones obtained with the refined 
mesh, on the flat plate, at Z = 0, and on the symmetry plane A shown in Figure 4. The inflow free-
stream velocity is used to normalise the predicted velocity components. 

 

Figure 4. The upstream symmetry plane A at X/T = 0, the maximum wing thickness plane B at X/T = 
0.18, and the just downstream the trailing edge plane C at X/C=1.05. 

Figure 5 shows contours of the static pressure coefficient on the Z = 0 plane predicted with the 
baseline mesh (bottom) and with the refined mesh (top). The pressure distribution about the Y = 0 
plane is substantially symmetric, which indicates that the predicted pressure field is substantially 
unchanged by the increased spatial resolution of the refined mesh. 

 

Figure 5. Contours of static pressure coefficient Cp for the baseline and refined meshes. 
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Figure 6 shows the normalised streamwise and flow-normal velocity components on plane A of 
Figure 4, predicted with the baseline mesh (dashed lines) and with the refined mesh (solid lines). 
There is overall a good overlap among the profiles, with small differences among the two 
predictions observable near the wing nose. Specifically, at X/T = -0.05, the refined mesh predicts a 
lower streamwise velocity minimum than the baseline mesh. Still, both minima are located at 
approximately Z/T = 0.004. The refined mesh more clearly displays the U/Uo minimum decreasing 
monotonically its Z/T location with increasing X/T than the baseline mesh, over the range -0.3 < 
X/T < -0.05. The U/Uo profile from the baseline mesh at X/T = -0.25 displays a small waviness 
about the corresponding profile from the refined mesh, approximately at Z/T = 0.04. This feature 
is likely to be a numerical artefact from the spatial interpolation used in the post-processing of the 
results. The differences notwithstanding, Figures 5 and 6 indicate that there is good overall 
agreement among the predictions. The authors have elected to use the refined mesh as a 
prudential approach for obtaining the results presented in the remainder of this paper. 

  
Figure 6. Streamwise and flow-normal velocity profiles for the baseline mesh (----) and the refined 
mesh (—) at the symmetry plane A defined in Figure 4. 

3. Results and discussion 

3.1.  Symmetry plane upstream of the wing leading edge 

One of the most important aspects in this flow simulation is to predict the horseshoe 
vortex around the wing-body junction sketched in Figure 1. To this end, the simulation needs to 
locate correctly the vortex core in the upstream symmetry plane, corresponding to plane A in 
Figure 4. In general, RANS simulations with either linear or nonlinear eddy viscosity models are not 
able to capture the location and the shape of this vortex as well as the increase of the turbulent 
kinetic energy in the vicinity of the junction [9]. Figures 7 (a) and (c) shows the predicted in-plane 
streamlines and velocity vectors on the symmetry plane next to the corresponding experimental 
results, shown in Figures 7 (b) and (d). Both simulation and experiment display a horseshoe vortex 
core close to the floor. The vortex has an elliptical shape with a clockwise direction of rotation. 

The measurements of Devenport and Simpson [1] in Figures 7 (b) and (d) show that the 
locations of the separation point upstream of the wing nose and the vortex core are at X/T = -0.35 
and at X/T = -0.2 respectively. In Figure 7 (a), the location of the separation point and the centre of 
the vortex are captured slightly upstream than in experiment, Figure 7 (b), by approximately 5% 
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and 8% respectively. This earlier separation is ascribable to the use of the 𝑘𝑘 − 𝜔𝜔 − 𝑆𝑆𝑆𝑆𝑆𝑆 model as 
the RANS component in the hybrid RANS/LES simulation. It is known that the 𝑘𝑘 − 𝜔𝜔 − 𝑆𝑆𝑆𝑆𝑆𝑆 model 
is more sensitive to the adverse pressure gradient in boundary-layer flows [16]. A discrepancy in 
the prediction of the separation point is also found in previous DES results by Paik et al. [9] and by 
Fu et al. [10] and in predictions from different turbulence closure models by Parneix et al. [5], by 
Apsley and Leschziner [6], and by Jones and Clarke [7]. The 5% discrepancy in the current 
prediction indicates that DES is arguably an affordable technique that gives engineering accurate 
results in a rather complex flow. 

The streamlines of Figure 7 (a) show a kink located upstream the separation point. The 
streamline through this wall-attached layer is bent into a hook shape, indicating an up-well in the 
predicted velocity field. The same feature is visible in Figure 7 (b) starting from X/T = -0.48 and 
terminating just downstream of the separation point at X/T = -0.33. Paik et al. [9] stated that this 
kink is formed due to the vorticity tail that originates from the vortex core and that stretches 
upstream, parallel to the flat plate. 

   

 

Figure 7. In-plane velocity vectors on the upstream symmetry plane (Plane A) showing the 

horseshoe vortex core. 
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In addition to the primary vortex, the simulation showed another secondary vortex close 
to the junction between the wing leading edge and the flat plate. This feature is shown in the 
figure inset between Figure 7 (a) and Figure 7 (b). Although the secondary vortex is not clearly 
captured by Devenport and Simpson [1] through their oil flow visualizations, they commented that 
there is a small region of secondary separation in the corner between the wall and the wing [1]. 
This secondary separation qualitatively similar to the one predicted at the Rood wing leading edge 
by three different turbulence models in Fu et al. [10] and in the numerical simulations by Lee et al. 
[19]. As such, the current hybrid RANS method provides supportive evidence on the location of 
this secondary recirculation, which is otherwise difficult to detail by experiment, highlighting the 
useful complementarity between numerical and experimental investigations in complex three-
dimensional flows. 

Figure 8 shows the CFD contour lines of the velocity components (U/Uo, W/Uo) compared 
to the corresponding experimental contours. 

        

   

Figure 8. Streamwise and flow-normal velocity distributions in the symmetry plane A. 
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Figure 8 shows a good quantitative and qualitative agreement between simulation and 
experiment. The most noticeable difference between the computed contour lines and the 
experimental measurements of the streamwise velocity lies between the separation point and the 
core of the horseshoe vortex near the wall, where indicated by the dashed line in Figure 8 (b). This 
difference may be attributed to the calculation of the turbulent eddy viscosity using a sensitive 
blending function along the separating boundary layer upstream the horseshoe vortex. 
Specifically, as the flow separates from the flat plate at X/T = -0.35, the upwell develops under an 
adverse pressure gradient that promotes the production of turbulent kinetic energy in the DES 
model. 

The turbulent kinetic energy contours at the symmetry plane A of Figure 4 are shown in 
Figure 9. The computed turbulent kinetic energy contours are compared against the 
corresponding experimental data. These results confirm that hybrid RANS can better capture an 
increase in kinetic energy near a corner, like near the wing junction, compared to RANS, which is 
unable to capture such feature [9]. 

While the hybrid RANS model has improved the agreement with the measurements, there 
are still noticeable differences. The mean velocity in the hybrid RANS is modelled by the 𝑘𝑘 − 𝜔𝜔 −
𝑆𝑆𝑆𝑆𝑆𝑆 RANS technique. This model is unable to reproduce the local turbulence anisotropy, leading 
to an underestimate in the predicted turbulent kinetic energy. Also, streamline curvature 
generates additional strain rates that significantly affect the turbulent stress production. 

 

Figure 9. Turbulent kinetic energy distribution in the upstream symmetry plane A, ∆𝑘𝑘 = 0.003 𝑈𝑈02. 

 

3.2.  The wing root flow 

The computed contours of the time averaged pressure coefficient Cp on the bottom wall 
(Z/T = 0.0) at the wing junction are plotted and compared with the experimental values in Figure 
10. Figure 10 shows that the predicted static pressure distribution is in good agreement with the 
measured data. The pressure rise on approach to the leading edge stagnation point at (X/T, Y/T) = 
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(0, 0) is reproduced well by the CFD and the same level contours are pretty close to one another 
on the Y/T = 0 symmetry plane. The location and magnitude of the pressure minimum on the wing 
surface are also close. This shows that the simulation gives a good agreement of the mainly two-
dimensional pressure field generated by the wing, aside from secondary flow effects. In general, 
the pressure along the wing is weakly dependent on the turbulence model, as reported by Apsley 
and Leschziner [6], and is not greatly affected by the horseshoe vortex, as pointed out by Paciorri 
et al. [8]. 

 

Figure 10. Static pressure coefficient distributions about the wing at Z/T = 0. 

The pressure coefficient distribution along the wing surface is tested at two other locations above 
the flat plate, at Z/T = 0.133 and at Z/T = 1.726. The plots of the pressure coefficient at these two 
locations are shown in Figure 11. 

 

Figure 11. Static pressure coefficient distribution at (a) Z/T = 0.133, (b) Z/T = 1.726. 

At Z/T = 0.133, the numerical results are in a good quantitative and qualitative agreement with the 
experimental data while at Z/T = 1.726, the numerical model under-estimates the Cp minimum. 
This difference at high Z/T may be partly attributed to the difference between the top boundary 

      (b) 

(—) CFD 

    

      (a) 

(—) CFD 
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condition used in experiment and in the simulation. While there is a gap between the top of the 
wing and the tunnel ceiling wall in the experiment, the simulation used a slip wall as a side fence 
at the wing tip. This slip wall is modelled as a symmetry boundary as described in section 2.5. The 
level of agreement between predicted and measured pressure coefficients on these axial planes is 
broadly similar to that reported in previous RANS simulations [7, 19]. There is no appreciable 
improvement in agreement by using the hybrid RANS method for predicting the Cp distributions 
on these planes. Still, the current predictions are obtained using a numerical mesh of one million 
cells compared to 4.7 million cells in Lee et al. [19] and five million cells in Jones and Clarke [7], 
indicating a potential reduction in computational cost from using the hybrid RANS model. 

Figure 12 shows the predicted streamlines over the flat plate at the wing root compared 
with the oil flow visualization performed by Ölçmen and Simpson [3]. The flow over the flat plate, 
which is the body of the wing-body junction geometry, features a three-dimensional separation. 
Figure 12 shows the stagnation saddle point at the plane of symmetry and the separation line that 
emanates from this point and warps around the wing. The separation line around the wing 
represents the path of the horseshoe vortex. A good agreement is noticed between the simulation 
results and the experimental flow visualization. 

 
Figure 12. Predicted streamlines against the oil flow visualization by Ölçmen and Simpson [3]. 

Figure 13 shows the predicted surface streamlines both on the flat plate and on the wing 
surface from roughly a three-quarters view angle. This figure also includes the surface streamlines 
on the symmetry plane A as defined in Figure 4. The streamlines over the wing surface indicate 
that, away from the wing root, the flow remains attached from the leading edge to about 85% 
chord. Downstream of 80% chord, the flow separates from the wing surface, forming the near 
vertical separation line at about 85% chord, as shown in Figure 13. Close to the wing root, the flow 
becomes more three-dimensional and this separation streamline spirals into a vortex. This vortex 
drives a small recirculation on the flat plate between 90% chord and the trailing edge. The oil flow 
visualization of Figure 12 shows a single grey line departing form the wing surface at 80% chord. 
This line is evidence of the predicted trailing edge corner recirculation, which is a feature 
previously identified by Parneix et al. [5]. By combining surface streamlines on the flat plate and 
on the wing surface, the present study has added to the state of art by showing the wing surface 
vortex that drives the secondary recirculation near the trailing edge observed in experiment. 
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Figure 13. The circulation and trailing edge vortex. 

Figure 14 shows the contour plot of the velocity components at the maximum wing 
thickness compared to the experimental data. The computed streamwise velocity component 
(U/Uo) matches reasonably well with the experimental data even near the wall and along the wing 
span. Away from the wing surface, the streamwise velocity is weakly affected by the potential 
pressure field of the wing and asymptotes to the velocity distribution of two-dimensional 
boundary layers. Specifically, the U velocity is very low close to the flat plate, at Z/T = 0, and 
increases monotonically in the positive Z/T direction. 

Approaching the wing surface, which is located at Y/T = 0.5, the U velocity increases due to 
the wing thickness effect that induces a maximum velocity close to the location of maximum wing 
thickness. This shows as the location of minimum surface pressure in Figure 10. The streamwise 
velocity close to the wing surface is highest away from the flat plate, where it is less affected by 
the skin friction along this surface. A close inspection of Figure 14 (a) shows densely packed U 
contours close to the wing surface, at Y/T = 0.5. These are due to the growing boundary layer on 
the wing surface. This boundary layer grows under a favourable pressure gradient from the wing 
leading edge to plane (B), leading to a thin boundary layer. This effect is not captured by Figure 14 
(b), probably due to the limitation in the experiment in measuring the flow velocity close to the 
wall. This is a common occurrence in LDV data that is affected by surface reflection of the low laser 
beams on the solid walls. 

The contours of the spanwise velocity component V in Figure 14 (c) are in reasonable 
agreement with the experimental contours in Figure 14 (d), except for a small difference to the 
side of the wing surface. The V contours show a horizontally elongated region of relatively high 
spanwise velocity above the flat plate at Z/T = 0.025. This area of increased spanwise velocity is 
induced by the horseshoe vortex above the flat plate. Specifically, the anti-clockwise circulation 
induced by the horseshoe vortex drives the spanwise motion of fluid below the vortex core along 
the flat plate and away from the wing. The proximity of the flat plate increases the magnitude of 
the spanwise velocity induced by the vortex that adds to the spanwise velocity induced by the 
wing thickness effect. The near-wall peak is due to a mechanism similar to that of a wing in ground 
effect, in which the packing of the streamlines due to the non-permeable wall is equivalent to 
having an image vortex below the wall, driving the spanwise flow. 
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Figure 14. Contours of normalized velocity components at the wing maximum thickness, plane B 
viewed from downstream. 
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The CFD predictions of Figure 14 (c) show that the area of relatively high V is detached 
from the flat plate surface and that the near-surface spanwise velocity rapidly decreases to zero at 
the surface, thus satisfying the non-slip boundary condition at the wall of V = 0. This near-wall 
decay is not shown in experiment where it was not possible to measure the velocity in close 
proximity to the wall. Therefore the current CFD predictions are a good complement to the 
measurements, displaying understandable flow physics in a region where measurements are 
difficult to obtain and contributing towards obtaining a full picture of the wing-body junction flow. 

Figures 14 (e) and 14 (f) show the predicted and the experimental flow-normal velocity on 
plane (B). The flow-normal velocity shows a similar trend to that of the spanwise velocity, in that 
an area of greater flow-normal velocity magnitude is shown close to the wing surface. The extent 
of this area is smaller compared to that of Figures 14 (c) and 14 (d). The reason for the lower flow-
normal velocity magnitude close to the wing as compared to the spanwise velocity maximum 
above the flat plate is that the horseshoe vortex core is farther away from the wing than from the 
flat plate on plane (B). The agreement between the experiment and computation on plane B in 
flow-normal velocity is coarser than the one for the other two velocity components, which 
probably results from the flow-normal velocity being the smallest of the three components, hence 
suffering from a proportionally greater uncertainty in the measurements [8]. 

3.3.  Downstream of the trailing edge 

The development of the vortical flow downstream of the trailing edge and in the wake is 
as important as the flow at the symmetry plane. Figure 15 shows contour plots of the predicted 
normalized velocity components just downstream of the trailing edge (X/C = 1.05) compared to 
the experimental data. The location of this plane is sketched in Figure 4 as plane C. Figure 15 
shows that the simulation gives a fair agreement with the experimental data. 

The simulation captured the growth of the thin shear layer separating from the wing 
trailing edge. This is shown by the streamwise velocity contours packed on the left of Figure 15(a), 
along the Y/T = 0 axis. Above the flat plate wall, which in Figure 15 coincides with the Z/T = 0 axis, 
the streamwise velocity contours are spread further apart to each other than normal to the Y/T = 0 
axis, marking the presence of a thicker boundary layer on the flat plate as compared to the 
separating shear layer at the wing trailing edge. The presence of the horseshoe vortex is shown by 
the S shaping of the streamwise velocity contour levels U/Uo = 0.7 and U/Uo = 0.8. The anti-
clockwise horseshoe vortex generates an upwash-downwash pair that convects high-speed free-
stream flow into the boundary layer on the downwash side and rises lower speed flow away from 
the wall on the upwash side. This displaces the streamlines at Y/T < 0.7 towards the Z/T = 0 floor 
and rises the streamlines at Y/T > 0.8 away from the Z/T = 0 floor in Figures 14 (a) and 14 (b). 

The effect of the anti-clockwise vortex is also visible in the flow-normal velocity contours 
and in the spanwise velocity contours of Figures 15 (c, d) and 15 (e, f), respectively. The near-
horizontal contours of Figure 14 (c) above Z/T = 0 are replaced by a near-wall local maximum at 
Y/T ≈ 0.6 in Figures 15 (c) and 15(d), with the contour lines bending towards the wall at Y/T > 0.6. 
This pattern can be explained by the anti-clockwise horseshoe vortex centred right above the local 
maximum at Y/T ≈ 0.6 sweeping fluid across the flat plate in the Y direction. 
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Figure 15. Contours of normalized velocity components at the wing trailing edge, plane C viewed 
from downstream. 
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The near-wall local Y velocity maximum is obtained as the horseshoe vortex induced flow 
is forced through the narrowest space between the flat plate and the vortex core. The upwash and 
downwash near the wall form two regions of opposite signed wall-normal velocity, either side of 
Y/T ≈ 0.5, as shown in Figures 15 (e) and 15 (f). Local regions of low and high wall-normal velocity 
centred at Z/T ≈ 0.3 identify respectively the downwash peak and upwash peak from the 
horseshoe vortex on plane C. The quantitative comparison of the velocity cross-flow components 
is difficult because they have small values and, consequently, the uncertainties associated to their 
measured values become significant [8]. 

Figure 16 shows the velocity vector field further downstream from the trailing edge, at X/T 
= 6.38. Since there is no comparative experimental data in the ERCOFTAC [32] database at this 
location, the simulation results are compared with the numerical predictions by Apsley and 
Leschziner [6] obtained by using the Reynolds stress model of Jakirlić and Hanjalić [34]. Figure 16 
shows that the hybrid RANS/LES method predicts the vortical flow with approximately the same 
core centre position and a stronger intensity of the transverse vortex motion with respect to the 
predictions of Apsley and Leschziner [6]. 

 

Figure 16. Cross-flow velocity vector maps detailing the horseshoe vortex at X/T = 6.38, viewed 
from downstream. (a) Current DES model and (b) Apsley and Leschziner [6]. 

 

Figure 17. The horseshoe vortex development downstream of the trailing edge. 
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An overall view for the vortical flow downstream the wing is shown in Figure 17. This 
figure shows the development of the horseshoe vortex and the lifting up of its core in the wake 
region. 

4. Conclusion 

In the present study, a numerical simulation of the turbulent flow past the wing-body 
junction has been performed using a hybrid RANS turbulence closure approach. Comparisons 
between the computed flow field and corresponding experimental data from the ERCOFTAC [32] 
database are presented. The results show that the hybrid RANS/LES turbulence closure is able to 
capture salient characteristics of this complex flow with reasonable accuracy. The simulation 
captured the upwind vortex, the 3-D stagnation saddle point, and the separation line at the 
symmetry plane, the trailing edge recirculating flow as well as the development of the horseshoe 
vortex downstream of the trailing edge. 

The main finding in this simulation is the ability of the hybrid RANS turbulence closure to 
capture small vortices which, to some degree, are not captured clearly by the flow visualization 
techniques and have received to date limited coverage by other simulation methods. The hybrid 
RANS turbulence closure is able to capture the small secondary vortex in the front of the 
appendage junction with the flat plate and the trailing edge vortex. 

The numerical predictions in this work have clarified interesting aspects of the secondary 
flow physics in a Rood wing-body junction and have helped to achieve a better understanding and 
interpretation of the flow physics with respect to the available experimental data. This work has 
also shown how a hybrid RANS turbulence closure can be used in a non-conventional way to 
predict complex three-dimensional flow with important steady vortex structures. The lower 
computational cost of the hybrid approach compared to a full Reynolds stress model makes this 
technique attractive for industrial design computational fluid dynamics, provided supportive 
validation elements are available alongside the CFD predictions to keep this unconventional use of 
the LES turbulence closure in check against real flow data. 

This study has also exposed some limitations of the hybrid RANS turbulence closure. 
Specifically, the location of the vortex core after the wing trailing edge is predicted slightly 
upstream of the experimental value and the minimum Cp at Z/T = 1.726 is under-predicted by the 
model. Future work can explore whether this difference can be reduced by using an adjustable 
blending function to better control the extent of the region where the 𝑘𝑘 − 𝜔𝜔 − 𝑆𝑆𝑆𝑆𝑆𝑆 model is 
active. The other factor which can be altered is the equivalent Smagorinsky constant used to 
calculate both the eddy viscosity model constant and the destruction rate model constant in the 
transport equation of the turbulent kinetic energy. Still, the results show that the hybrid RANS 
turbulence closure is a powerful tool for the simulation of complex three-dimensional flows. 
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