
Asymptotically Optimal Encodings of Range Data Structures

for Selection and Top-k Queries ∗

Roberto Grossi† John Iacono‡ Gonzalo Navarro§ Rajeev Raman¶

S. Rao Satti‖

Abstract

Given an array A[1, n] of elements with a total order, we consider the problem of building a
data structure that solves two queries: (a) selection queries receive a range [i, j] and an integer
k and return the position of the kth largest element in A[i, j]; (b) top-k queries receive [i, j] and
k and return the positions of the k largest elements in A[i, j]. These problems can be solved in
optimal time, O(1 + lg k/ lg lg n) and O(k), respectively, using linear-space data structures.

We provide the first study of the encoding data structures for the above problems, where A
cannot be accessed at query time. Several applications are interested in the relative order of the
entries of A, and their positions, rather their actual values, and thus we do not need to keep A
at query time. In those cases, encodings save storage space: we first show that any encoding
answering such queries requires n lg k − O(n + k lg k) bits of space; then, we design encodings
using O(n lg k) bits, that is, asymptotically optimal up to constant factors, while preserving
optimal query time.

1 Introduction

A frequent problem in data and log mining applications is to find highest or lowest values in a
range of a stream: the coldest days in a time period, peaks in the stock market, most popular
terms in Twitter, most frequent queries in Google, and so on. As a less obvious scenario, consider
autocompletion search in databases [22, 24]. As the user types in a query, the system presents the
k most highly scoring (i.e., the most popular) completions of the text entered so far, chosen from
a lexicon of phrases. Viewing the lexicon as a sorted sequence of strings with scores stored in an
array A, the system maintains the range [i, j] of the phrases prefixed by text typed in so far, and
chooses the strings with the k highest scores in A[i, j]. Similarly, in Web search engines, A could
contain the sequence of PageRank values of the pages in an inverted list sorted by URL. Then we

∗Early partial versions of this article appeared in Proc. ESA 2013 and Proc. FSTTCS 2014. Grossi partially
funded by MIUR PRIN 2012C4E3KT national research project; Navarro funded in part by Millennium Nucleus
Information and Coordination in Networks ICM/FIC P10-024F; Satti partly supported by Basic Science Research
Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science
and Technology (Grant number 2012-0008241).
†Department of Informatics, University of Pisa, Italy
‡Department of Computer Science and Engineering, Polytechnic Institute of New York University, USA
§Department of Computer Science, University of Chile, Chile
¶Department of Computer Science, University of Leicester, UK
‖School of Computer Science and Engineering, Seoul National University, Korea

1

could efficiently retrieve the k most highly ranked pages that contain a query term, restricted to
a range of page identifiers (which can model a domain of any granularity). The problem is, again,
to find the k highest values in a range A[i, j]. Directly finding the kth highest value may also be
of interest. For example, in interfaces that show the first k results and then, upon user request,
the next k, it is useful to obtain the (k + 1)th to 2kth results without having to obtain the first k
results again.

The research work presented in this paper is motivated by the observation that, in these exam-
ples, the actual contents of A are not interesting by themselves (e.g., the scores are not reported).
All we need is to find the positions in A where the highest values occur in a range. Hence storage
of the contents of A could be avoided if we had a way to find those highest values without accessing
A at query time.

We now formalize the problem of interest. Consider an array A[1, n] of integers, reals, or in
general any totally sorted universe. We are interested in the following two queries on A:

1. Selection queries: sel(i, j, k) returns the position of the kth largest value in range A[i, j], for
any given 1 ≤ i ≤ j ≤ n and 1 ≤ k ≤ j − i+ 1.

2. Top-k queries: top(i, j, k) returns the positions of the k largest values in A[i, j], in sorted
order of value, for any given 1 ≤ i ≤ j ≤ n and 1 ≤ k ≤ j − i+ 1.

Since these queries are sensitive only to the relative order between elements of A, and not to
the actual values, we can replace the values in A by their rank (i.e., their position after sorting A in
increasing order, breaking ties arbitrarily), and all the sel(·) and top(·) queries will return correct
answers. Thus, in the sequel, we will consider that A is already a permutation of [n] without loss
of generality.

While optimal-time solutions exist for implementing those two queries, in this article we are
interested in a kind of data structures called an encoding. An encoding is a data structure that,
after preprocessing A, can answer queries on A without accessing A itself. Encodings are interesting
when they use less space than that necessary to represent A (let us call it |A|). Otherwise, any
data structure allowed to use O(|A|) space could be modified to contain a copy of A inside, and
then trivially become an encoding. Thus, interesting encodings cannot, by definition, recover all
the values of A, but they can still answer the predefined queries for which they have been designed.

In our case, since A stores a permutation of [n] and thus its storage requires |A| ≥ lg2 n! =
Θ(n lg n) bits, we will be interested in encodings that use o(n lg n) bits. Such encodings are useful
when the values in A are intrinsically uninteresting and only the indices where the sel(·) or top(·)
values occur are sufficient, which is the case for the applications mentioned before.

Contributions. Since encodings do not access the data in A, a first question is what is the
minimum size an encoding must have in order to answer the desired queries, irrespectively of the
query time. In Section 3 we prove with a simple argument that any encoding solving either sel(·)
or top(·) queries requires n lg k−O(n+ k lg k) bits of space, even if we restrict the query ranges to
one-sided queries, of the form A[1, j].

This shows that there are inherent limitations in space saving: we cannot hope to have an
interesting encoding that works for any value of k, because values where lg k = Θ(lg n) would
require encodings of Θ(n lg n) bits, which are not interesting according to our definition. Still the
challenge is to find encodings for some given maximum k value, κ, which handle queries for any
1 ≤ k ≤ κ. Thus we can aim at encodings of size O(n lg κ) = o(n lg n) when lg κ = o(lg n).

2

The core of our research work aims at an encoding that, in O(n lg κ) bits of space, solves queries
sel(i, j, k) in time O(1+lg k/ lg lg n), for any 1 ≤ k ≤ κ. The space is optimal up to constant factors,
whereas the time is optimal for any structure using O(n polylog n) space [23]. Then we show how
the structure for sel(·) can also be used to solve top(i, j, k) queries in optimal time, O(k). As a
special case, we also show that sel(·) queries can break the time lower bound for sel(1, j, κ) queries,
that is, if they are one-sided and work only for k = κ fixed at construction time. All our time
results hold on a RAM machine with words of w = Θ(lg n) bits.

Related work. The sel(·) and top(·) query problems are a natural extension of the well-known
range maximum query (RMQ) problem, which corresponds to both sel(·) and top(·) with k = 1:
namely, query rmq(i, j) looks for the position of the largest value in A[i, j]. The problem of encoding
RMQs is well studied [12,14,32]. Fischer and Heun [14] gave an encoding of A that uses 2n+o(n) bits
and answers RMQs in O(1) time; their space bound is asymptotically optimal to within lower-order
terms. The case k = 2 was studied more recently by Davoodi et al. [11], obtaining 3.272n + o(n)
bits of space and O(1) time.

We are not aware of any previous work on sel(·) or top(·) encoding for general k. After the
conference versions of this article appeared [20, 28], Gawrychowski and Nicholson [18] found the
exact main term in the lower bound for these encodings, n lg k + n(k + 1) lg(1 + 1/k), which is
between n lg k + n/ ln 2 and n lg k + k+1

k n/ ln 2. This bound refines ours in the lower-order term,
O(n). They also build an encoding using optimal space up to lower-order terms. This encoding
supports the queries, but not efficiently (i.e., it needs Ω(n) time), thus it is closer to a storage
method than to a data structure with optimal query time. Their most recent version [17] contains
an encoding using 1.5n lg κ−Θ(n) bits, which solves queries top(i, j, κ) and sel(i, j, κ), for κ fixed
at construction, in time O(κ6 lg2 nω(1)). This time is now sublinear, but still far from optimal.

The non-encoding version of the sel(·) query problem has recently been studied intensively
[7,9,15,16,23], always using linear space (i.e., O(n lg n) bits). Gagie et al. [15,16] solved the problem
in O(lg n) time for any k, using a wavelet tree representation of A. Brodal and Jørgensen [8] reduced
the time to O(lg n/ lg lgn), with a structure similar to a multi-ary wavelet tree. Jørgensen and
Larsen [23] obtained a query time of O(lg k/ lg lgn+ lg lg n), finally improved to O(1 + lg k/ lg lg n)
by Chan and Wilkinson [9].1 These last two solutions build on an idea called shallow cuttings [25],
which allows one to decompose the general problem into O(n/k) carefully chosen problems of size
O(k), and then using Brodal and Jørgensen’s structure [8] on those subproblems. We will also use
shallow cuttings in our solutions.

Jørgensen and Larsen [23] introduced the κ-capped range selection problem, where a parameter κ
is provided at preprocessing time, and the data structure only supports selection for ranks 1 ≤ k ≤ κ
(as explained, interesting encodings can only solve this κ-capped version of the problem). They
showed that even the one-sided κ-capped range selection problem requires query time Ω(lg k/ lg lg n)
for structures using O(n polylog n) words; therefore the result of Chan and Wilkinson is the best
possible for that space. This also shows that our faster results for one-sided queries are possible
only because the structures only solve queries with k = κ.

It is worth noting that the data structures presented in this article are not merely a succinct
implementation of the shallow cutting idea employed by Chan and Wilkinson [9] to obtain their

1Chan and Wilkinson claim a bound of O(1+lgw k) for the “trans-dichotomous” model with word size w = Ω(lgn).
This is, however, based on an incorrect application of a result of Grossi et al. [21]; the proof presented in their paper [9]
only yields a time bound of O(1 + lg k/ lg lgn) (B. T. Wilkinson, personal communication).

3

optimal time. As their solution requires access to the array A at query time, we must address the
simultaneous problems of reducing the space to asymptotically optimal, preserving optimal query
time, and avoiding to access A during a query.

In the non-encoding model, the top(·) query problem could be solved with our optimal-time sel(·)
solution at hand (see, e.g., Muthukrishnan [27]). We first obtain the kth value, v, and then use
an RMQ data structure on A: We compute p = rmq(i, j), report it, and then continue recursively
on the intervals A[i, p − 1] and A[p + 1, j], stopping as soon as we obtain values smaller than v.
This takes the optimal O(k) time. Note, however, that this idea cannot be directly used in the
encoding model because the value v is not available and thus cannot be exploited as mentioned
above. It also does not deliver the results in sorted order. Brodal et al. [6] gave linear-space data
structures to retrieve the top-k results in order in time O(k), even in online form where each new
result is delivered in O(1) time, without knowing k in advance. However, these data structures are
not encodings as they require the explicit values of A.

Problem of independent interest. We single out a problem that could have other applications,
and that arises as a subproblem in our encoding (see Section 5.1). Consider an array Y [1, t] of t
elements under a total order. Given a construction-time parameter `, the purpose is to design an
encoding to solve the following queries having any 1 ≤ j ≤ n and 1 ≤ d ≤ ` as input (recall that
we cannot access Y at query time).

1. Next-larger queries: next-larger(j, d) returns the position of the dth left-to-right value in
Y [j + 1, t] that is strictly larger than Y [j].

2. Previous-larger queries: prev-larger(j, d) returns the position of the dth right-to-left value in
Y [1, j − 1] that is strictly larger than Y [j].

The above queries return a special value 0 when the wanted position does not exist. In Sec-
tion 5.1 we describe an encoding that answers queries in time O(d), using O(` t) bits of space.2

This is mostly interesting for low values of `, generalizing the existing structures that solve the
case ` = 1 [13]. Previous-smaller and next-smaller queries are obvious variants that can be solved
similarly. In a conference version [20, Sec. 3.1] we showed how this encoding can be used to solve
top(i, j, k) queries for any 1 ≤ k ≤ κ, using O(κn) bits and O(k2) time, but this is subsumed in
space and time by our better top(·) solutions in this article.

Paper organization. The paper is organized as follows. In Section 2 we give an overview of the
known succinct data strucures that we employ for our encodings. We present the lower bound on
the space required by any encondings for our problem in Section 3. After that, we describe our
general approach and relate it to the existing solutions based on shallow cuttings in Section 4, and
give its succinct implementation in Section 5: in these sections, we pose a number of algorithmic
challenges that are solved in Sections 6–8. Finally, we describe an encoding for the special case of
one-sided queries in Section 9 and draw our conclusions in Section 10.

2Each query to our encoding can actually report all the d (left-to-right or right-to-left, respectively) values in time
O(d). The reason is that to answer, say, next-larger(j, d), we need to also answer incrementally next-larger(j, 1), . . . ,
next-larger(j, d− 1), taking overall O(d) time.

4

2 Preliminaries

Our results make use of a number of popular succinct data structures, which we list below for the
sake of completeness.

2.1 Bit-vectors

A bit-vector B[1, n] is an array of n bits. We will be interested in solving two queries on it:
rankb(B, i) tells the number of occurrences of bit b in B[1, i], and selectb(B, j) gives the position of
the jth occurrence of bit b in B. We will use the following result:

Lemma 1 ([10]) A bit-vector B[1, n] can be stored in n+ o(n) bits (that is, o(n) bits on top of B
itself) so that queries rank and select are answered in O(1) time.

When the number m of 1s in B[1, n] is small, the following result will be of interest as well:

Lemma 2 ([31]) A bit-vector B[1, n] with m 1s can be stored in m lg(n/m) + O(m) + o(n) bits,
so that queries rank and select are answered in O(1) time.

Note that from this compressed representation we can still retrieve any B[i] = rank1(B, i) −
rank1(B, i − 1) in constant time. If we aim at answering rank1(B, i) only when B[i] = 1, we can
use less space, but now this is insufficient to recover the contents of B. The structure is called a
monotone minimum perfect hash function (mmphf), as the rank values can be regarded as mapping
elements in a universe [1, n] to the domain [1,m] while respecting the order:

Lemma 3 ([2]) Given a bit-vector B[1, n] with m 1s we can answer queries rank1(B, i), whenever
B[i] = 1, in O(1) time, using O(m lg lg(n/m)) bits, and without accessing B.

2.2 Sequences

A sequence S[1, n] over alphabet [1, σ] requires n lg σ bits if represented in plain form. Within almost
the same space, we can answer not only the basic query access(S, i) = S[i], but also the queries
rankc(S, i) and selectc(S, j) for any c ∈ [1, σ], which are the natural extensions of the operations on
bit-vectors:

Lemma 4 ([4, Thm. 6]) A sequence S[1, n] over alphabet [1, σ] can be stored in n lg σ+ o(n lg σ)
bits, so that rankc queries are solved in time O(1 + lg lgw σ), selectc queries are solved in time O(1),
and access queries are answered in any time complexity of the form ω(1).

When the frequencies nc of the symbols c ∈ [1, σ] are skewed, it is possible to use space close
to the zeroth-order entropy of S, nH0(S) =

∑
1≤c≤σ nc lg(n/nc) ≤ n lg σ bits, and still answer the

queries. For this article, the most useful result of this kind is the following:

Lemma 5 ([4, Thm. 7]) A sequence S[1, n] over alphabet [1, σ] can be stored in nH0(S) + o(n)
bits, so that rankc, selectc, and access queries are all solved in time O(1 + lgw σ).

To obtain constant-time access and select simultaneously when lg σ = ω(w), we can resort to
an earlier version of Lemma 4, which uses slightly more space:

5

Lemma 6 ([19]) A sequence S[1, n] over alphabet [1, σ] can be stored in (1 + ε)n lg σ + o(n lg σ)
bits, for any constant ε > 0, so that rankc queries are solved in time O(lg lg σ), selectc queries are
solved in time O(1), and access queries are answered in constant time O(1/ε).

Finally, the following result gives a structure to support a restricted form of rankc queries in
constant time, by resorting to mmphfs.

Lemma 7 ([3, Sec. 3]) Given a sequence S[1, n] over alphabet [1, σ] we can answer queries rankc(S, i),
where S[i] = c, in O(1) time, using O(n lgH0(S)) = O(n lg lg σ) bits, and without accessing S.

2.3 Parentheses and trees

A sequence P [1, 2n] of parentheses ’(’ (opening) and ’)’ (closing) is balanced if, read left to right,
there are never more closing than opening parentheses, and in total there is the same number of
both. There is an opening parenthesis P [j] matching each closing parenthesis P [i] (this is the
maximum j < i such that P [j, i] is also balanced). Such j is found with operation findopen(P, i),
which will be used in this article. Concretely, we use the following result:

Lemma 8 ([26]) A balanced sequence of parentheses P [1, 2n] can be stored in 2n+ o(n) bits (that
is, o(n) bits on top of P itself) so that queries findopen(·) are answered in O(1) time.

It is also useful to interpret P as a bit-vector and add constant-time rank and select support,
using o(n) further bits (Lemma 1). The operations will be called rank), rank(, select), and select(.

A parenthesis sequence P [1, 2n] can be used to represent a general ordinal tree of n nodes, so
that a large number of tree operations are supported in constant time. The next lemma lists those
that will be used in this article:

Lemma 9 ([29]) An ordinal tree of n nodes can be represented in 2n + o(n) bits, so that the
following operations are supported in constant time, among others: compute the parent of a node v,
compute the ith child of a node v, find the mth left-to-right leaf, compute the preorder of a node v
and the node with preorder r, compute the depth of a node v, determine if a node v is an ancestor
of another node u, compute the ancestor at any distance d of a node v, compute the subtree size of
a node v, and find the internal node with inorder s (leaves not counted).

We will use this lemma to represent binary trees where internal nodes always have two children.
Then the left child of a node is the first and the right child is the second. Moreover, the inorder of
an internal node is uniquely defined.

2.4 Predecessor queries

Given an increasing array P [1, κ] of values in [1,m], a predecessor query finds, given x, the maximum
i with P [i] ≤ x. One can represent P as κ 1s on a bitvector B[1,m], so that the predecessor of
x is select1(rank1(B, x)). Using Lemma 2 to represent B, the space is O(κ lg(m/κ)) + o(m) bits
and the time is constant. It is not possible, however, to have constant time without the o(m)-bits
term [30]. In our article we will make heavy use of a structure called the succinct SB-tree:

Lemma 10 ([21, Lem. 3.3]) If we have independent constant-time access to P [1, κ], we can solve
predecessor queries on P in time O(1 + lg κ/ lg lgm) using O(κ lg lgm) bits, plus a precomputed
table of size o(m) that depends only on m.

6

1 2 4 6 5 7 8 93

1 2 4 6 5 7 8 93

1 2 4 6 5 7 8 93

1 2 4 6 5 7 8 93

1 2 4 6 5 7 8 93

1 2 4 6 5 7 8 93

Figure 1: Illustration of our example of how the successive queries sel(1, j, 3) (in bold rectangles)
spot the successive values of the permutations πi (grayed cells). The six snapshots of the queries
are shown in columwinse order.

Note that the o(m) bits are still present, but they do not depend on P , thus we will have many
succinct SB-trees and a single o(m)-bits table for all. Though better times, like O(lg lg κ), can be
obtained with structures that use O(κ lgm) bits [30], our results are not affected by the slower time
of succinct SB-trees, whereas their lower space usage turns out to be fundamental.

3 Lower bounds

In this section we show that, given A[1, n] and k, any encoding answering queries sel(1, j, k) or
top(1, j, k) needs at least (essentially) n lg k bits. Note that these queries are weaker as they
consider the first j positions of A rather than a range of its positions. The technique is to encode
about n/k arbitrary permutations of [k] in A, in a way that they can be retrieved with either of
those queries. Thus the encodings cannot use less space that what is necessary to encode those
arbitrary permutations, that is, rougly n/k × lg2 k! = Ω(n lg k) bits.

Assume for simplicity that n = `k, for some integer `. Consider an array A of length n, initialized
to A[j] = j, for 1 ≤ j ≤ n, and then re-order its elements as follows: take ` − 1 permutations πi
on [k], 0 ≤ i < ` − 1, and permute the elements in the subarray A[ik + 1, (i + 1)k] according to
permutation πi, where A[ik + j] = ik + πi(j) for 0 ≤ i < `− 1 and 1 ≤ j ≤ k. Note that the last k
elements of A are not reordered, as they do not encode any πi. Also, for 0 ≤ i1 < i2 < ` − 1, the
elements in the subarray for i = i1 are all smaller than the elements in the subarray for i = i2.

We now show how to reconstruct the ` − 1 permutations by performing sel(1, j, k) queries on
the array A. The main idea is easy to grasp with an example.

Example. Assume we have permutations π0 = (3 1 2) and π1 = (1 3 2) where k = 3. Figure 1
illustrates the process. Our array is A[1, 9] = 〈3, 1, 2, 4, 6, 5, 7, 8, 9〉, where π0 is encoded in A[1, 3]
and π1 in A[4, 6] (with values shifted by ik = 3). Then, sel(1, 3, 3) = 2 tells us that the minimum
among the first 3 elements in π0 (i.e. the 3rd largest element) is at π0(2), so π0(2) = 1. Next,
sel(1, 4, 3) = 3 tells us that the second minimum (2nd largest element) in π0 is at π0(3), so π0(3) = 2,
and thus π0(1) = 3. This is because A[1, 4] contains A[4], which must be larger than all A[1, 3],
and thus the 3rd largest element in A[1, 4] must be the 2nd largest element in A[1, 3]. With
sel(1, 6, 3) = 4 we discover that the 3rd element in π1 is at π1(1), so π1(1) = 1, and so on. �

Now we formalize the process described in the example.

Lemma 11 The position of the kth largest value in the prefix A[1, ik + j − 1] is the position of
value (i− 1)k + j, for any 1 ≤ i < ` and 1 ≤ j ≤ k.

Proof. Since the values of A were initially increasing and then we locally permuted the blocks of
length k, it holds that, for each 1 ≤ i < `, A[x] < A[y] for any x ≤ ik and y > ik. Then the values

7

in A[ik+ 1, ik+ j− 1] are the largest of A[1, ik+ j− 1], and the values in A[(i− 1)k+ 1, ik] are the
largest of A[1, ik]. Thus, the kth largest value in A[1, ik + j − 1] is the (k − j + 1)th largest value
in A[1, ik]. This value is also the (k − j + 1)th largest value in A[(i − 1)k + 1, ik], or which is the
same, the jth smallest value in A[(i− 1)k + 1, ik]. Thus, by the definition of A[(i− 1)k + 1, ik], it
is the value (i− 1)k + j. �

Therefore, sel(1, ik + j − 1, k), the position of the kth value in the prefix A[1, ik + j − 1], is
equal to (i− 1)k+π−1i−1(j), which is the position of value (i− 1)k+ j. Then, any πi−1 can be easily
computed with the k − 1 queries sel(1, ik + j − 1, k) for 1 ≤ j ≤ k − 1.

Since representing ` − 1 arbitrary permutations on [k] requires lg((k!)`−1) = (` − 1) lg k! =
(n/k − 1)(k lg k −O(k)) = (n− k) lg k −O(n− k) = n lg k −O(n+ k lg k) bits, any encoding able
to answer all queries sel(1, j, k) on A needs also this number of bits.

The proof applies to top(1, j, k) as well, since we can reconstruct the value sel(1, ik + j − 1, k)
from top(·) queries: sel(1, ik+j−1, k) is the only element that disappears from the answer set when
we move from top(1, ik + j − 1, k) to top(1, ik + j, k). As we move, the element A[ik + j] enters in
the answer and the element that was the smallest (i.e., the kth), which belongs to A[(i−1)k+1, ik],
leaves the answer set.

Theorem 1 Any encoding of an array A[1, n] answering sel(·) or top(·) queries, even if restricted
to ranges A[1, j] and for a fixed k value, requires at least n lg k −O(n+ k lg k) bits of space.

4 General approach

We describe Jørgensen and Larsen’s “shallow cuttings” idea [23], and the way Chan and Wilkinson
[9] take advantage of it. In general terms, our encoding for sel(·) queries will implement their
solution in an encoding scenario. This poses, however, a number of challenges that will be dealt
with in the subsequent sections; the plan is described at the end of this section. Table 1 gives the
notation used throughout the article.

4.1 Shallow cuttings

Let A[1, n] be a permutation on [n]. Consider each entry A[i] as a point (x, y) = (i, A[i]), and set
a parameter κ. A horizontal line sweeps the grid space [1, n] × [1, n] from y = n (top) to y = 1
(bottom). The points hit are included in a single root cell, which spans a three-sided area called
a slab, of the form [1, n] × [y, n], which includes all the points of the cell. Once we reach a point
(x∗, y∗) that makes the root cell contain 2κ points, we close the cell and leave its slab with its
definitive area [1, n]× [y∗, n].

Let xsplit be the κth smallest x-coordinate in the above root cell. This is called the split point.
The sweeping process is repeated recursively on each of the two grid spaces [1, xsplit] × [1, n] and
[xsplit + 1, n]× [1, n]. This will create two children cells as follows. They will contain the topmost
points whose x-coordinates are ≤ xsplit and > xsplit, respectively. Their slabs will grow downwards
as we continue with the sweeping process, independently for each cell. When those cells, in turn,
reach size 2κ, we close them, find their split points, and continue the recursion on the resulting
grid spaces. The recursive process terminates on a final cell when less than 2κ points are left in
the current grid space.

8

Variable Meaning

A Array where we perform sel(·) or top(·) queries.
n Number of elements in A.
k Argument of a particular sel(·) or top(·) query.
κ Maximum k value allowed from construction.
TC The binary tree of cells induced by shallow cutting.
t Number of internal nodes in TC , it has t+ 1 leaves, and 2t+ 1 nodes in total.
xi The t final split points induced by shallow cutting.
yi The value of A associated with split point xi by shallow cutting.
Av Array of the O(κ) y-coordinates of the points (i.e., values of A) in the extent of

node v, mapped to [1, O(κ)] respecting relative order.
Ai Array similar to Av associated with the special extent of split point xi.
Ev Array of the O(κ) positions where the elements of Av appear in A.
Pv Central range of Ev that refers only to the points in the slab of v.

v−, v+ Nodes preceding and following v when its extent is defined.
z Number of levels of marked nodes in the solution to access Pv.
t` Used to define the level ` of a marked node, t2` ≤ |v| < t2`−1.
M Bit-vector that indicates which nodes of TC are marked, in preorder.
L Sequence giving the levels of the marked nodes (1s in M).
ov Bit-vector of 2κ bits storing which points of v are original.
rv Array of κ entries storing the ranks of each original point of v at the node v′ that

leaves the path of unmarked nodes where v belongs and inherits the point.
bv Bit-vector that concatenates the distances, in unary, from each original point of v

to the node v′ described in the previous line.
o, r, b Arrays created by concatenating ov, rv, and bv in preorder for the unmarked nodes.
π The path of unmarked/unsampled nodes where v belongs. All nodes have the same level `.
u Parent of the topmost node in the path π.
u′ The only node of level ` leaving π (at the bottom; the others have level > `).
cv Sequence of colors assigned to unmarked node v to represent inherited points.
cπ Concatenation of sequences cv along the path π of unmarked nodes.

c′π, c
g
π Actual representation of sequence cπ, as a string and a bitvector per color.

B, R Bit-vectors used to find cπ for any node v ∈ π.
pv Position in Pv of the first point inherited in Pu′ .
hv Bit-vector that indicates which of the points in Pu′ are inherited from Pv.
oπ The ov values, now stored contiguously along path π.

Table 1: Notation.

9

A binary tree TC is created to reflect the cell refinement process (see Figure 2). The root cell
is associated with the root node of TC , the first two children cells to the left ([1, xsplit]) and right
([xsplit + 1, n]) children of the root, and so on. The leaves of TC are associated with the final cells,
which have not been split and contain κ to 2κ− 1 points (unless n < κ, in which case only a root
cell exists).

At any moment of the sweeping process, we have a sequence of points x1 < x2 < . . . that
have been chosen as split points; new points are inserted anywhere in the sequence as further cells
are split. These points delimit the x-coordinate slab ranges of which are the leaves of TC at the
current moment of the sweep. When the next split occurs, say within the slab covering interval
[xi + 1, xi+1], we obtain two new cells, whose slabs cover the x-coordinate intervals [xi + 1, xsplit]
and [xsplit + 1, xi+1]. We associate the keys [xi + 1, xsplit] and [xsplit + 1, xi+1] and the extents
[xi−1 + 1, xi+1] and [xi + 1, xi+2], respectively, with the two new cells (assume further split points
0 and n in the extremes).

When the sweep finishes, TC has t internal nodes and t + 1 leaves, and there are t + 2 split
points 0 = x0 < x1 < x2 < . . . < xt < xt+1 = n (writing 0 and n explicitly), which delimit the
slabs of the final leaves of TC . In the following, we will use xi to refer to these final split points. In
addition to the extents associated with cells, we associate the special extents [xi−1 + 1, xi+1] with
the split points xi, for 1 ≤ i ≤ t. The root of TC has key and extent [1, n]. Note that, since leaves
contain successive positions of A, it holds κ ≤ xi+1 − xi < 2κ for all i (if n ≥ κ).

Example. Figure 2 gives an example (values yi will be defined soon). Note that the child slabs
inherit half of the points of their parent slab. �

This construction has a number of key properties [23]:

1. It creates O(t) = O(n/κ) cells, each containing κ to 2κ points (if n ≥ κ).

2. If c is the cell of the highest (closest to the root) node v ∈ TC whose key is contained in a
query range A[i, j], then [i, j] is contained in the extent of c.

3. The top-κ values in A[i, j] belong to the union of the 3 cells comprising the extent of c (these
contain at most 6κ points).

4.2 Optimal-time select queries

Using the properties of shallow cuttings, Chan and Wilkinson [9] reduce the O(lg n/ lg lgn) time of
Brodal and Jørgensen [8] as follows. At each node v ∈ TC , they store the structure of Brodal and
Jørgensen for the array Av[1, O(κ)] of the y-coordinates of the points in the extent of v. Actually,
they store in Av the local permutation in [O(κ)] induced by the relative ordering in A, thus Av
requires O(κ lg κ) bits in each v and O(n lg κ) bits in total. The structure for range selection
also uses O(κ lg κ) bits and answers queries in time O(1 + lg κ/ lg lg n).3 They also store an array
Ev[1, O(κ)], so that Ev[i] is the position in A[1, n] of the value stored in Av[i]. For the special
extents associated with split points xi, they also store structures Ai analogous to the structures
Av.

4 The structures Ai add up to O(n lg κ) bits, since they are built on sub-arrays of length up to
4κ whose contents are mapped to the range [1, O(κ)].

3One could expect time O(1+lg κ/ lg lg κ), but the denominator may stay at lg lgn by the use of global precomputed
tables of total size o(n).

4Arrays Ei are not necessary because the special extents refer to contiguous ranges in A.

10

x1

y1

y2

y3

y4

v1

v2

v3

v4

x x x x x0 2 3 4 5

T
C

Figure 2: An example of the shallow cutting process with κ = 3. On the left, the points are swept
top to bottom. First, the root cell is closed when x0 is found (the root slab is shown with a black
solid line). The splitting point is x2. Then its two children (slabs in black dashed lines) are formed.
A third slab in black dotted lines is the right child of the right child of the root. The grayed lines
show the slabs of the child cells. We show the split points xi and their associated y∗ values, yi. On
the right, the induced binary tree TC is shown, with leaves in gray. The keys of the internal nodes
are the horzontal intervals shown in bold lines, and their identifiers are vi, where i is their inorder
number.

Property 3 of shallow cuttings implies that the kth largest element of A[i, j], for any k ≤ κ,
is also the kth largest value in Av[l, r], where v is the node that corresponds to interval A[i, j] by
property 2 and Ev[l− 1] < i ≤ j < Ev[r+ 1] are the elements in the extent of node v enclosing [i, j]
most tightly. Thus query sel(i, j, k) on A is mapped to query p = sel(l, r, k) on Av. Once the local
answer is found in Av[o], the global answer is Ev[o].

Summing up, the main ingredients are based on the funtionalities of tree TC , and arrays Ev,
Av and Ai. Chan and Wilkinson [9] manage to store them in O(n(lg κ + lg lg n + (lg n)/κ)) bits,
which gives O(n lg n) bits when added over a set of suitable κ values (their structure works for
every 1 ≤ k ≤ n, so several κ-capped structures are built). Also, their solution requires to access
A and thus does not immediately translate into our setting.

4.3 Encodings for optimal-time select queries

Our general plan is to derive an encoding from the strategy of Chan and Wilkinson, which retains
the optimal time for sel(·) but reduces the space to O(n lg κ) and does not access A. This requires
addressing several challenges.

1. In Section 5 we design a succinct representation of TC that is able to find the node v given the
interval A[i, j], so that from v we gain access to the data associated with node v in constant
time. This structure uses O((n/κ) lg κ)+o(n) bits. Associated with each node v we will store

11

Chan and Wilkinson’s structures Av for range selection (whose space is O(κ lg κ) bits and thus
can be afforded), and a data structure that simulates array Ev (as its direct representation
cannot be afforded). We will also store the structures Ai associated with the split points xi.

2. In Section 6 we provide constant-time access to any Ev using O(n lg κ) bits. Together with
the previous result, this already yields an O(lg κ) time algorithm for sel(·) queries, as we can
first find the node v in constant time, then do a binary search for l and r in Ev, then run
the range selection query on Av[l, r] in time O(1 + lg κ/ lg lgn), and finally return Ev[o] in
O(1) time. Our representation of Ev uses a hierarchical marking of nodes plus a color-based
encoding of the inheritance of points along cells in paths of unmarked nodes in TC .

3. In Section 7 we address the bottleneck of the previous solution: we replace the binary search
by fast predecessor queries on Ev, so as to obtain O(1+lg κ/ lg lg n) time. This is obtained by
storing succinct SB-trees [21] on some sampled nodes (which include at least all the marked
nodes), and searches on the inheritance information along paths of unsampled nodes, using
global precomputed tables.

4. In Section 8 we wrap up the results in order to prove Theorem 2. Then we show how to
answer top-k queries by using an existing linear-space technique [6] on a reduced universe.
This proves Theorem 3.

Theorem 2 Given an array A[1, n] and a value κ, there is an encoding of A that uses O(n lg κ)
bits and supports the query sel(i, j, k) in time O(1 + lg k/ lg lgn) for any k ≤ κ.

Theorem 3 Given an array A[1, n] and a value κ, there is an encoding of A that uses O(n lg κ)
bits and supports the query top(i, j, k) in time O(k), for any k ≤ κ.

5 Shallow cuttings in succinct space

In this section we show how to represent the shallow cutting structure using O((n/κ) lg κ) + o(n)
bits so that, given the query interval [i, j], we obtain the corresponding node v ∈ TC according to
property 2 of shallow cuttings, and then give access to the structures associated with node v. We
will also need to find, given v, the two “neighbor” nodes v− and v+ that define the extent of v, and
map between nodes and their keys in both directions.

Finding the maximal range of split points. Our first structure is a bit-vector S[0, n] that
marks the split points xi, that is, S[xi] = 1 for all 0 ≤ i ≤ t+1 and S[j] = 0 elsewhere. Since S has
only t+ 2 bits set out of n, we can represent it in compressed form (Lemma 2) so that it requires
t lg(n/t) +O(t) + o(n) = O((n/κ) lg κ) + o(n) bits of space and supports operations rankb(S, i) and
selectb(S, j) in constant time.

With this representation of S we find in constant time the range [m,M] of split points contained
in A[i, j]. More precisely, we find the largest range [m,M] such that i ≤ xm < . . . < xM ≤ j, in
constant time with m = rank1(S, i − 1) + 1 and M = rank1(S, j). Note that the range [m,M] can
contain zero split points in some cases. We have the following result:

Lemma 12 Given the range [i, j], we can find in O(1) time the maximal range [m,M] of split
points (if any) contained in [i, j] with a structure that uses O((n/κ) lg κ) + o(n) bits of space.

12

If the range [m,M] contains zero or one split points (i.e., m ≥M), then [i, j] does not contain
a complete cell:5 either [i, j] is fully contained in the range of the mth left-to-right leaf of TC (and
contains no split points) or [i, j] starts in the range of the mth leaf and ends in that of the (m+1)th
leaf of TC (and contains one split point). In both situations, the range [i, j] is contained in the
special extent of the mth split point of TC , [xm−1 + 1, xm+1], recalling that xm is found using the
bit-vector S. In this simple case, we compute the offset o = select1(S,m − 1), perform the query
sel(i− o, j− o, k) on the structure Am associated with split point xm, and remap the answer to the
global position by just adding o.

In the sequel we consider the more complex case of two or more split points, that is, m < M .

Finding the key of the node v for a range A[i, j]. If m < M , the following procedure finds
the desired key [23]. Find, within xm, . . . , xM , the split point xr with maximum associated yr-
coordinate (this is the y∗ coordinate given to the slab of the cell that was closed when xr was
chosen as a split point). Find the split point xs with the second maximum. If s < r (i.e., xs is to
the left of xr), then the key of the desired node v is [xs + 1, xr], otherwise it is [xr + 1, xs].

To find the first and second maxima, let the array Y [1, t] = y1, . . . , yt contain the y∗ values
associated with the split points x1, . . . , xt. We do not represent Y itself, but rather store a range
top-2 encoding of it [11]. This structure requires O(t) = O(n/κ) bits and returns the positions of
the first and second maxima in Y [m,M], xr and xs, in O(1) time.6 We have the following result:

Lemma 13 Given split points xm < xM , we can find in O(1) time the maximal key of a node
v ∈ TC that is contained in [xm + 1, xM], with a structure that uses O(n/κ) bits of space.

Example. See Figure 2 again, and consider a range A[i, j] that contains x1 to x4. Then r = 2 and
s = 3, and the key is [x2 + 1, x3], because y2 = max{y1, y2, y3, y4} and y3 is the second maximum.
Instead, if A[i, j] contains x3 to x4, then r = 3 and s = 4 because y3 > y4. �

Finding the extent of v. Assume w.l.o.g. that r < s and thus the desired key is [xr + 1, xs];
the case [xs + 1, xr] is symmetric. To compute the extent of this key we need to find the split
points that, at the moment when the key [xr + 1, xs] was created during the sweep, preceded xr
and followed xs. Let us call these split points xr′ and xs′ , respectively. Here we use the encoding
for prev-larger and next-larger queries described at the end of Section 1.

At the time we created the split point xs, the split points that existed were precisely those with
y∗ value larger than that associated with xs. Thus, since xr < xs, the split point that followed
xs is xs′ , with s′ = next-larger(s, 1), the leftmost value in Y [s + 1, t + 1] that is larger than Y [s]
(assume Y [t+ 1] = n+ 1 so this is always defined). Similarly, since all the values in Y [r+ 1, s− 1]
are smaller than Y [s], and Y [r] > Y [s], the split point that preceded xr when xs was created was
xr′ , with r′ = prev-larger(s, 2), the second rightmost value in Y [0, s − 1] that is larger than Y [s]
(assume Y [0] = n+ 1 so this is always defined).7 In Section 5.1 we show how to support prev-larger
and next-larger queries in constant time using O(t) = O(n/κ) bits of space. Then the extent is
[xr′ + 1, xs′].

5In some border cases it can, but these are still correctly handled as indicated here.
6Note that it is not a matter of obtaining r = rmq(m,M) and then choosing s from s1 = rmq(m, r − 1) and

s2 = rmq(r + 1,M), since we have no way to compare Y [s1] with Y [s2] if we do not store Y .
7Note that prev-larger(s, 2) is not necessarily prev-larger(prev-larger(s, 1), 1) = prev-larger(r, 1) as there might be an

element x to the left of Y [r] such that Y [r] > x > Y [s].

13

Lemma 14 Given the key of a node v ∈ TC , and knowing which of its extremes has a lower y
value, we can obtain the extent of v in O(1) time with a structure that uses O(n/κ) bits of space.

Example. In Figure 2, for the key [x2 + 1, x3], we find the extent [x0 + 1, x5], whereas for the key
[x3 + 1, x4], the extent is [x2 + 1, x5]. In both cases, the extent contains the range A[i, j]. �

Finding the node with a given key. We have obtained the key of v, but not yet v. Similarly, we
have obtained its extent, but not its corresponding neighboring nodes v− and v+. The structure Av
contains the data corresponding to the extent of v, but we will also need to refer to its neighboring
nodes in order to decode the results obtained in Av.

To reference the nodes, we will represent the topology of TC , which has 2t+ 1 nodes, with the
succinct tree representation of Lemma 9. It uses 4t + 2 = O(n/κ) bits of space and supports all
the operations we need, in constant time.

If the key of node v is [xr + 1, xs] and its extent is [xr′ + 1, xs′], then the neighbor nodes of
v will be those with keys [xr′ + 1, xr] and [xs + 1, xs′]. In general, we will need to find the nodes
corresponding to arbitrary keys.

Given a key [xr + 1, xs], where Y [r] > Y [s], we can compute the corresponding node v ∈ TC as
follows. Since this key was created with the split point xs, the corresponding node of TC is the left
child of the s-th node of TC in inorder [23]. This node with inorder s is computed in constant time
in our representation (Lemma 9), and then we can also compute its left child in constant time. If,
instead, the key is [xs + 1, xr] (still with Y [r] > Y [s]), then v is the right child of the sth node in
inorder.

Example. Again in Figure 2, the key [x2 + 1, x3] holds y2 > y3, thus we take the internal node of
TC with inorder 3 (that is, v3), and the desired node is its left child (that is, the third left-to-right
leaf). Consider instead the key [x3, x5]. Since y3 < y5 = n + 1, we take the internal node with
inorder 3 (v3 again) and the answer is its right child, that is, v4. �

If the key is given but we do not know which is smaller between Y [r] and Y [s], we find the rth inorder
node ur, the sth inorder node us, and compare their depths in TC ; the deeper one corresponds to
the smallest value.8 This is also useful to compute the extent of the resulting node, since the
procedure we have given needs to know which of the two endpoints has a lower y∗ value.

Lemma 15 Given the key of a node v ∈ TC , we can find the node v itself, its extent, and its
neighbor nodes v− and v+, in O(1) time with a structure that uses O(n/κ) bits of space.

Finding the key of a given node. Conversely, let v be a node and assume we want to find its
key [xr + 1, xs]. If v is the root, its key is [x0 + 1, xn]. Otherwise, we compute the parent node
u of v in TC , the inorder rank i(u) of u, and the subtree size of v, |v| (which is always odd since
TC is binary). Then, if v is the left child of u, we have r = i(u) − (|v| + 1)/2 and s = i(u). If
v is a right child, then r = i(u) and s = i(u) + (|v| + 1)/2. Recall that we can obtain the value
xi = select1(S, i) of the ith split point, for any i. The following lemma considers the space of the
succinct representation of TC and the bitvector S.

8This only works if [xr + 1, xs] is a key; it cannot be used for the top-2 problem we had mentioned.

14

Lemma 16 Given a node v ∈ TC , we can find its corresponding key in O(1) time with a structure
that uses O((n/κ) lg κ) + o(n) bits of space.

Example. Consider the node v3 in Figure 2. Its parent is v2. Since v3 is a right child, the inorder
of v2 is 2, and |v3| = 5, we have r = 2 and s = 2+(5+1)/2 = 5. That is, the key of v3 is [x2+1, x5].
Now consider the third left-to-right leaf. Its parent is v3 (with inorder 3), the leaf is a left child and
its subtree size is 1. So we compute r = 3− (1 + 1)/2 = 2 and s = 3, thus the key is [x2 + 1, x3]. �

Associating structures with nodes. Once we have identified a node v, the succinct represen-
tation of TC yields its preorder rank p(v) in constant time (Lemma 9). This is used to associate
any desired data structure (such as Av, for example) with the p(v)th entry of an array.

5.1 Computing next-larger and prev-larger queries

We now show how to compute values next-larger(j, d) and prev-larger(j, d) for any 1 ≤ j ≤ t and
1 ≤ d ≤ `, for some parameter ` given at construction time (see Section 1 for the definition of these
queries). Our data structure will answer those queries in O(d) time, using O(`t) bits of space. For
our needs, constant ` = 2 is sufficient, so the time is O(1) and the space is O(n/κ) bits.

We will describe the structure to support prev-larger queries for an array Y [1, t]; the one for
next-larger is analogous. We define, for each element Y [j], ` pointers, D1[j] . . . D`[j], to the `
rightmost elements larger than Y [j] that are in Y [1, j − 1].

Definition 1 Given an array Y [1, t], we define arrays of pointers D0[1, t] to D`[1, t] as follows:
D0[j] = j, and Dd[j] = max ({i < Dd−1[j] : Y [i] > Y [j]} ∪ {0}), for d > 0.

We now prove a result that is essential for the space-efficient representation of all Dd arrays, so
that we can compute any prev-larger(j, d) = Dd[j] in time O(d). The following lemma shows that
if we draw, for a given d, all the arcs starting at Dd−1[j] and ending at Dd[j] for all j, then no arcs
“cross”.

Lemma 17 Let j1, j2 ∈ [1, n] and 0 < d ≤ `, and let us call i1 = Dd−1[j1] and i2 = Dd−1[j2].
Then, if i1 < i2 and Dd[j2] < i1, it holds Dd[j1] ≥ Dd[j2].

Proof. It must hold Y [i1] < Y [i2], since otherwise Dd[j2] ≥ i1 by Definition 1 (as it would hold
Y [j2] < Y [i2] ≤ Y [i1] and 0 < i1 < i2), contradicting the hypothesis.

Now let us call r1 = Dd[j1] and r2 = Dd[j2] < i1. Then we have (1) Y [r2] > Y [j2], because
r2 = Dd[j2]; (2) Y [j2] ≥ Y [i1], because otherwise it would be r2 = Dd[j2] ≥ i1, as implied by
Definition 1 (since i1 < i2 = Dd−1[j2] and Y [i1] > Y [j2], and r2 ≥ i1 contradicts the hypothesis);
and (3) Y [i1] > Y [j1], because i1 = Dd−1[j1]. Therefore, Y [j1] < Y [r2], and then r1 = Dd[j1] ≥ r2,
as implied by Definition 1 since r2 = Dd[j2] < i1 = Dd−1[j1]. �

Example. Figure 3 illustrates the lemma. The solid arcs cannot cross in the x coordinate. �

This property enables a space-efficient implementation of the pointers. We set bit-vector T0 = 1(10)t

to represent D0[j] = j. We represent each “level” d > 0 of pointers separately, as a set of arcs

15

i
1

r
1

j
1

j
2

r
2

i
2

Figure 3: Illustration of Lemma 17, where r1 = Dd[j1] and r2 = Dd[j2]. The heights of the elements
represent their y value (higher is larger). The dashed arrows represent Dd−1 and the solid arrows
the step between Dd−1 and Dd.

leading from Dd−1[j] to Dd[j]. For a level d > 0 and for any 0 ≤ i ≤ t, let pd[i] = |{j, Dd[j] = i}|
be the number of pointers of level d that point to position i. We then store a bit-vector

Td[1, 2t+ 1] = 10pd[0] 10pd[1] 10pd[2] . . . 10pd[t],

where we mark the number of times each position is the target of pointers from level d. Each 1
corresponds to a new position and each 0 to the target of an arc. Note that the sources of those
arcs correspond to the 0s in bit-vector Td−1, that is, to arcs that go from Dd−2[j] to Dd−1[j]. Arcs
that enter the same position i are sorted according to their source position, so that we associate the
leftmost 0s of 0pd[i] with the arcs with the rightmost sources. Conversely, we associate the rightmost
0s of 0pd−1[i] with the arcs with the leftmost targets. This rule ensures that those arcs entering,
or leaving from, the same position do not cross in Td (as implied by Lemma 17). The matching
between sources and targets is represented with a balanced sequence of parentheses (Lemma 8)

Bd[1, 2t] = (pd−1[0])pd−1[0](pd[0]−pd−1[0])pd−1[1](pd[1])pd−1[2](pd[2] . . .)pd−1[t].

This sequence matches arc targets (opening parentheses) and sources (their corresponding clos-
ing parentheses). For example, take T1 = 101001001011011001011, T2 = 100010010010110110111,
and B2 = ()(())(())(()()())() in Figure 4 (right column, on the center). Each 0 in T2 represents a
target corresponding to a parenthesis ‘(’ in B2, and it matches the 0 in T1 that is the corresponding
source represented by the companion ‘)’ in B2: reading B2 from left to right, the first 0 in T2 is
matched with the first 0 in T1; the next two 0s in T2 are matched with the next two 0s in T1 by
their nested pairs of parentheses, and so on. Here the enclosing pair of parentheses in (()()()) from
B2 matches the sixth 0 in T2 with the ninth 0 in T1 (see the corresponding arc (7, 2) in Figure 4
and observe that there are 7 + 1 preceding 1s in T1 and 2 + 1 preceding 1s in T2).

In general we write pd[i] parentheses ‘(’ before the pd−1[i+ 1] parentheses ‘)’, so the targets in
position i of Td can match all the corresponding sources that are to the right of position i in Td−1.
Since the first pd−1[0] sources in Td−1 are special as they have targets at position 0 in Td (i.e. they
induce the only self-loops), we start preceding these sources with pd−1[0] targets from the pd[0] ones
in Td, and the remaining pd[0]− pd−1[0] targets are written after these sources in Bd.

The tracking from d = 0 to d = ` will proceed by computing values zd, so that the value of
interest corresponds to the zdth 0 in Td. The following formula computes zd from zd−1:

zd = findopen(Bd, select)(Bd, zd−1)).

16

Y : 10 8 3 1 6 2 9 5 4 7
D0 : 1 2 3 4 5 6 7 8 9 10
D1 : 0 1 2 3 2 5 1 7 8 7
D2 : 0 0 1 2 1 3 0 5 7 2
D3 : 0 0 0 1 0 2 0 2 5 1

T0 : 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

T1 : 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 1

T2 : 1 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 1

T3 : 1 0 0 0 0 0 1 0 0 1 0 0 1 1 1 0 1 1 1 1 1

B1 : () (() (() ()) ()) (() ())

B2 : () (()) (()) (() () ()) ()

B3 : ((())) (()) (()) (()) ()

T0 = 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

T1 = 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 1

arcs 1. = 0 1 2 3 4 5 6 7 8 9 10

B1 = () (() (() ()) ()) (() ())

T1 = 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 1

T2 = 1 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 1

arcs 2. = 0 1 2 3 4 5 6 7 8 9 10

B2 = () (()) (()) (() () ()) ()

T2 = 1 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 1

T3 = 1 0 0 0 0 0 1 0 0 1 0 0 1 1 1 0 1 1 1 1 1

arcs 3. = 0 1 2 3 4 5 6 7 8 9 10

B3 = ((())) (()) (()) (()) ()

Figure 4: On the left, an example array Y , the data Dd we store on it, and our representation, Td
and Bd, of Dd. On the right, a graphical scheme of how the representation works.

We use the formula as follows. Starting with z0 = j, we use the formula up to ` times in order to
find, consecutively, z1, z2, . . . , z`. At any point we have that Dd[j] = rank1(Td, select0(Td, zd))− 1 =
select0(Td, zd) − zd − 1. This gives the desired answer prev-larger(j, d) = Dd[j]. Note that we only
store T` if we need to compute just D`[j].

Example. Figure 4 exemplifies the data structures on an array of t = 10 elements and for ` = 3.
On the left we show Y , the arrays D0 to D3, and their representation as the bit-vector Td and the
parenthesis sequences Bd. On the right we show how the data structures work. For each d, we first
draw the arcs that go from Dd−1[j] to Dd[j] (note that, for d > 1, their sources may be far away
from position j). If we want to compute Dd[j], we start with the arc that leaves from j at “arcs
1”, and this gives us D1[j]. Then we go to “arcs 2” and find the arc that leaves from D1[j], which
gives us D2[j]. This way we compute any Dd[j] in time O(d). Note that, when several arcs lead to
the same position, we are careful to pick the correct one in the next level. If the arrow arrives at
position i left to right, it corresponds in the next level to the ith arrow that leaves, right to left.
This is taken care of by the parentheses. �

By adding select support to Td, and select and findopen support to Bd (Lemmas 1 and 8), we
have that the overall space is 4`t+ o(`t) bits.

Theorem 4 Given an array Y [1, t] and a parameter `, we can build a structure that uses 4`t+o(`t)

17

bits and answers any query prev-larger(j, d) on Y in time O(d), for any 1 ≤ i ≤ t and 1 ≤ d ≤ `,
without accessing Y . If we only want to compute prev-larger(j, `), the structure uses 2(`+1)t+o(`t)
bits of space. An analogous structure solves queries next-larger(j, d).

6 Constant-time access to Ev

In this section we describe a data structure that gives constant-time access to the values Ev[1, O(κ)]
in any node v. We recall the general picture for the sake of presentation. We begin with the input
array A[1, n], and create the tree TC of 2t + 1 nodes for the shallow cuttings on the set of points
{(i, A[i])|1 ≤ i ≤ n}: note that each point is a pair given by a position i (the x-coordinate) and
its value A[i] (the y-coordinate), and there is a one-to-one mapping between points and positions.
Without introducing ambiguity, we thus refer to the points represented in TC for the properties
but we actually store just their positions (not their values).

Specifically, consider a node v ∈ TC : Ev is the set of positions such that Ev[i] is the position
in A of the value stored in Av[i], where array Av stores the values belonging to the extent of v
(essentially, letting j = Ev[i], it is A[j] = Av[i], however the values in Av are mapped to the interval
[1,O(κ)] respecting the order between values.) For any node v ∈ TC , we want to encode Ev so that
each Ev[i] can be retrieved in constant time. To this end, recall that v− and v+ are the nodes that
precede and follow v in its extent: they can be accessed as shown in Lemma 15. Introducing the
notation Px to indicate the subset of O(κ) positions from Ev whose corresponding points occur in
the slab of node x ∈ {v−, v, v+}, we have that Ev = Pv− : Pv : Pv+ . Hence, we will focus only on
Pv without loss of generality, as we can easily simulate the concatenation Ev = Pv− : Pv : Pv+ .
Concretely, in this section we prove the following result.

Theorem 5 Given the structures for constant-time navigation in TC (Lemma 9) and for handling
shallow cuttings in TC (Lemmas 13 to 16), for any node v ∈ TC , any position Pv[i] can be retrieved
in O(1) time, with structures that use O(n lg κ) bits of space.

The main idea is that most nodes in TC cover a small span in A, and thus the x-coordinates
of their points can be specified with a small offset. Nodes will be classified by subtree size, so that
fewer bits are used for the Pv arrays of lower nodes. Some nodes of each class of subtree sizes will
be marked and all their points will be stored explicitly using this technique. For the unmarked
nodes, we observe that the points in their cells are inherited by their descendants, so we will find
a way to describe the (marked) descendant where each point is to be retrieved.

6.1 Marking nodes

We define an exponentially decreasing sequence of sizes as follows: t0 = t and t`+1 = dlg t`e, until
reaching a step z such that tz = 1. Node v will be of level ` if t2` ≤ |v| < t2`−1 (recall that |v| is the
number of nodes in the subtree of v). For any ` ≥ 1, we mark a node v ∈ TC if it is of level ` and:

C1. it is a leaf or both its children are of level > `; or

C2. both its children are of level `; or

C3. it is the root or its parent is of level < `.

Note that in fact there are no nodes of level ` = 0. More generally, we have the following limit.

18

Lemma 18 The number of marked nodes of level ` is O(t/t2`).

Proof. The key property is that the descendants of v are of the same level of v or more. So nodes
marked by C1 above cannot descend from each other, thus each such marked node has at least t2`
descendants not shared with another. As TC has 2t+1 nodes, there cannot be more than (2t+1)/t2`
nodes marked by this condition. By the same key property, nodes marked by C2 form a binary
tree whose leaves are those marked by C1, thus there are at most other (2t + 1)/t2` nodes marked
by C2. For C3, note that all unmarked nodes of level ` are in disjoint paths (otherwise the parent
of two nodes of level ` would be marked by C2), and the path terminates in a node already marked
by C1 or C2 (contrarily, a node of level ` marked by C3 must be a child of a node of level < `, and
thus cannot descend from nodes of level `, by the key property). Therefore, C3 marks the highest
node of each such isolated path leading to a node marked by C1 or C2, and thus the number of
nodes marked this way is limited by those marked by C1 or C2. �

6.2 Handling marked nodes

Marked nodes, across all the levels, are few enough to admit an essentially naive storage of their
array Pv. If a marked node v represents a slab with left boundary xl + 1, we store all its Pv[o]
values as the integers Pv[o]−xl. As shown in Lemmas 13 and 15, we know both v and xl, and thus
we obtain Pv[o] in constant time. Since a node of level ` contains less than t2`−1 descendants (about
half of which are leaves), its slab spans less than (t2`−1 + 1)/2 consecutive split points xi, and thus
less than κ(t2`−1 + 1) positions in A. Thus, each such integer Pv[o] − xl can be represented using
lg(κ(t2`−1 + 1)) = O(t` + lg κ) bits.

We need a few further structures to give constant-time access to structures Pv, since their size
depend on the level of the node. Our succinct representation of TC gives the preorder rank p(v) of
node v in constant time (Lemma 9). We store a bit-vector M [1, 2t+ 1] where M [p(v)] = 1 iff node
v is marked. Further, we store a string L[1, O(t)] where we write down the level of each marked
node, that is, L[rank1(M,p(v))] = ` iff v is marked and of level `. Since every ` ≤ lg∗ t, the alphabet
of L is [0, lg∗ t]. Then we can represent L using |L|H0(L) +o(t) bits so that operations access, rank,
and select on L take O(1 + lgw lg∗ t) = O(1) time (Lemma 5).

With M and L we can create separate storage areas per level for the explicit arrays Pv of marked
nodes, each of which uses the same space, κ lg(κ(t2`−1 + 1)) bits, for nodes of the same level `. If a
node v is marked (i.e., M [p(v)] = 1) and is of level ` = L[rank1(M,p(v))], then we store its array
Pv as the rth one in a separate sequence for level `, where r = rank`(L, rank1(M,p(v))).

Lemma 19 Constant-time access to any entry in Pv for any marked node v can be provided within
O(n lg κ) total bits of space.

Proof. We have explained how to store the arrays classified by level so as to provide constant-time
access to any Pv. Let us now consider the space.

The arrays Pv themselves use O(κ(t` + lg κ)) bits each. The second term, O(κ lg κ) bits per
marked node, adds up to O(n lg κ) bits overall. Since, by Lemma 18, there are O(t/t2`) marked
nodes of level `, the first term, O(κ t`), adds up to O((t/t2`) · (κ t`)) = O(n/t`) bits over all the
marked nodes of level `. Adding over all the levels ` we have O(n)

∑z
`=0 1/t`. Since tz = 1 and

t`−1 > 2t`−1, it holds that tz−s > 2s for s ≥ 4, and thus
∑z

`=0 1/t` ≤ O(1) +
∑

s≥4 1/2s = O(1),
therefore the terms O(κ t`) add up to O(n) bits.

19

Bit-vector M uses 2t + 1 = O(n/κ) bits, whereas the storage of L uses |L|H0(L) + o(t)
bits. Letting n` be the number of occurrences of ` in L, we have |L|H0(L) =

∑
` n` lg(|L|/n`).

Since n` lg(|L|/n`) is increasing9 with n` and n` = O(t/t2`) by Lemma 18, we have |L|H0(L) ≤
O(t)

∑
` lg(t2`)/t

2
` = O(t)

∑
` lg(t`)/t

2
` ≤ O(t)

∑
` 1/t` = O(t) (we showed in the previous paragraph

that the sum is O(1)). �

6.3 Handling unmarked nodes

The problem of supporting constant-time access to Pv is solved for marked nodes, but TC may have
Θ(t) unmarked nodes. To deal with unmarked nodes, we first observe that an unmarked node v at
level ` has exactly one level ` child and one child x at level > ` (otherwise v would be marked by C1
or C2). Furthermore, x is marked by C3. Finally, the marked parent of an unmarked level ` node
must be the root or at level ` itself. Thus, as already observed in the proof of Lemma 18, level-`
unmarked nodes form disjoint paths in TC , and all the nodes adjacent to such paths are marked.

Now consider the points in slabs corresponding to unmarked nodes. When a cell is closed and
split into two, the leftmost (rightmost) κ points in its slab become part of its left (right) child cell.
Thus, each child cell starts out with κ inherited points, which are in common with its parent slab,
and (at most) κ further original points will be added to it before it is itself closed (becoming a
child slab) and split.

For each point of node v, in x-coordinate order, we use a bit to specify if the point is inherited
(0) or original (1). Let ov[1, 2κ] be this bit-vector, which will be stored for all the unmarked nodes
v ∈ TC , at a total cost of O(n) bits. We now describe how to recover the position (contained in
Pv) of an original and an inherited point, with different mechanisms.

6.3.1 Retrieving the positions of original points

Let π be a path of unmarked nodes of level `, and let v be an unmarked node in π. Each original
point p of v must become an inherited point of some marked descendant v′ that is adjacent to π
(recall that v′ represents all the positions of its points explicitly). Thus the coordinate of each such
original point p can be specified by recording which marked descendant v′ contains it, and the rank
of p among the points of v′.

The ranks are stored in an array rv[1, κ], with one entry per original point in v. The distances
require a more sophisticated mechanism. Suppose that the jth original point in v is in v’s marked
descendant v′ at distance dj along π. Note that the point is inherited by the dj intermediate
descendants of v as well. Then we write the bit-vector bv = 1d1−101d2−10 . . . 1dκ−10.

The vectors ov, rv and bv are concatenated in the same preorder as the nodes. While vectors
ov and rv are of fixed size, vectors bv are not. So we can concatenate all the bit-vectors ov[1, 2κ]
and vectors rv[1, κ] in preorder into a global bit-vector o[1, O(κt)] = o[1, O(n)] and a global array
r[1, O(κt)] = r[1, O(n)]. Then, if v is unmarked (i.e., M [p(v)] = 0), ov[i] is at o[2κ(m−1)+i], where
m = rank0(M,p(v)), and moreover rank1(ov, i) = rank1(o, 2κ(m−1)+i)−rank1(o, 2κ(m−1)). Given
any original point ov[i] = 1, it is the jth original point for j = rank1(ov, i), and thus its corresponding
entry is rv[j], which is found at r[rank1(o, i)]. Finally, we concatenate all the bit-vectors bv for the
unmarked nodes v in preorder creating a bit-vector b. If ov[i] = 1 and j = rank1(ov, i), then we

9At least for n` ≤ |L|/e. When n` is larger we can simply bound n` lg(|L|/n`) = O(n`), thus we can remove all
those large n` terms from the sum and add an extra term O(t) to absorb them all.

20

recover dj = select0(bv, j)−select0(bv, j−1). On the concatenated bit-vectors, for the original point
o[i] we compute j = rank1(o, i) and then dj = select0(b, j)− select0(b, j − 1).

Thus, to obtain the position Pv[i] of an original point (i.e., with ov[i] = 1) in an unmarked node
v, we obtain the distance dj to the marked descendant v′ where Pv[i] is stored. Since v′ is marked,
the answer obtained in constant time (Lemma 19) from Pv′ [r[rank1(o, i)]] (to which we add the
starting position of the slab of v′).

The remaining problem is then to find the marked node v′ leaving π at distance dj from v. The
strategy is to find the node u′ that is “at the end” of π. More precisely, u′ is a child of the lowest
node of π and is the only node leaving π that is of the same level ` of v (thus u′ is marked). Since
we can compute node depths and ancestors at any distance in constant time on TC (Lemma 9), we
can compute the ancestor a of u′ that is at depth depth(v) + dj − 1, and find v′ as the child of a
that is not in π, that is, is not an ancestor of u′.

There is a slight ambiguity to describe v′ using dj : both u′ and its sibling leave π, and they are
at the same distance to their ancestors. To distinguish them, we encode dj + 1 instead of dj in bv
to denote the node u′, whereas its sibling is denoted with dj as usual. Therefore, when we compute
a and it holds a = u′, we know that v′ = u′.

We still need to find u′. The key property is that u′ is the highest marked node of level `
in the subtree of v. We calculate the subtree size of v in constant time (Lemma 9) and hence
its level `.10 If the nodes are arranged in preorder, u′ is the first node appearing after p(v),
p(u′) > p(v), which is marked (M [p(u′)] = 1) and whose level is L[rank1(M,p(u′))] = `. This
corresponds to the first occurrence of ` in L after position rank1(M,p(v)), and is found in constant
time with p = select`(L, rank`(L, rank1(M,p(v))) + 1). Then p(u′) is select1(M,p). Finally, the tree
representation gives us u′ from its preorder rank p(u′) in constant time as well (Lemma 9).

Lemma 20 Constant-time access to the position Pv[i] of any original point in the unmarked nodes
v can be provided within O(n lg κ) bits of space.

Proof. We have already explained how constant-time access is provided. Let us analyze the space.
The arrays o and r require O(n) and O(n lg κ) bits, respectively. To bound the space of array b we
claim that, summed across all the nodes v in the path π, the arrays bv add up to 2|π|κ bits: each
bv has κ 0-bits, and each 1-bit in bv represents the same point when it is inherited in a descendant
of v along π. Since π contains in total |π|κ inherited points, the 1s in all the bit-vectors bv of π
also add up to |π|κ. Thus, |b| =

∑
v∈TC |bv| = O(tκ) = O(n) bits. Arrays M and L were already

considered in Lemma 19. �

6.3.2 Retrieving the positions of inherited points

We cannot use bit-vectors analogous to bv for the inherited points in v, as we cannot bound their
size (because the same points are inherited over and over along π). For each inherited point p in
v, we instead specify which ancestor of v on π has p as an original point, and then retrieve the
position of the point as that of an original point in the ancestor using Lemma 20. If the ancestor
is outside π, we specify the marked parent u of the topmost unmarked node in π, and retrieve the

10To find the level in constant time from the subtree size, we can check directly for the case ` = 0, and store the
other answers in a small table of lg2 t cells.

21

position from Pu using Lemma 19 (as u is marked). In the rest of this subsection, we assume that
the ancestor is inside π.

To specify the ancestors, we code the points using 4κ colors. Of these colors, 2κ are said
to be original colors and 2κ are said to be inherited colors. For each original color g there is a
corresponding inherited color g′. All the points in u are given arbitrary distinct original colors.
Then we traverse the nodes v in π top to bottom. If point p in v is inherited (from its parent v′),
we look at the color of p in v′. If p has an original color g in v′, we give p color g′ in v. Otherwise,
if p is also inherited in v′, having color g′, it will also have color g′ in v. On the other hand, if point
p is original in v, we give it one of the currently unused original colors: any color g such that g is
not already an original color in v and g′ is not among the κ inherited colors of v can be used as
the original color for p. Note that no colors g and g′ can be present simultaneously in any v′, thus
writing g′ in v unambiguously determines which color is inherited from v′. The colors of node v
are represented in a string cv[1, 2κ], adding up to O(n lg κ) bits.

This scheme gives sufficient information to track the inheritance of points across π: conceptually
when a new, original, point p appears in v, it is given an original color g. Then the point is inherited
along the descendants of v as long as color g′ exists below v. Thus, to find the appropriate ancestor
of v that contains, as an original point, a given inherited point p of color g′, we concatenate all the
color strings cv on π into a string cπ, top to bottom, and ask for the nearest preceding occurrence
of color g. Inside cπ, the subarray cv starts at position 2κ(depth(v)− depth(u)) + 1. Thus, we seek
to find the rightmost cπ[j] = g preceding some cπ[i] = g′. With j, we have that v′ is the ancestor of
v at depth depth(u)+dj/(2κ)e−1, and the position of the desired (original) point is Pv′ [j mod 2κ].

The sequence of colors cπ will be associated with the last node u′ of π, and all of them will be
concatenated in preorder of those nodes u′. A bit-vector B[1, O(t)] will mark the starting position of
each sequence cπ in the concatenation (by chunks of 2κ entries), and another bit-vector R[1, 2t+ 1]
contains all 0s except R[p(u′)] = 1 for all the nodes u′ of all the paths π. Thus we have access to
any individual sequence cπ: for any v ∈ π terminated in u′ (Section 6.3.1 explains how to compute
u′), cπ starts at position 1 + 2κ(select1(B, rank1(R, p(u

′)))− 1) of the concatenated sequence.
To find j, we will not represent cπ directly, but rather c′π, where both the original colors g

and the inherited colors g′ are written as g. To distinguish them, we store 2κ bit-vectors cgπ, so
that cgπ[rankg(c

′
π, i)] = 1 iff cπ[i] = g (and 0 iff cπ[i] = g′). We use a representation for c′π that

requires O(|π|κ lg κ) bits and gives constant select time (Lemma 4). We also add the structure of
Lemma 7 to c′π. This adds O(|π|κ lg lg κ) bits and allows us to compute r = rankg(c

′
π, i) in constant

time, given that c′π[i] = g. Then we find the latest 1 in cgπ[1, r], o = select1(c
g
π, rank1(c

g
π, r)). This

corresponds to the last occurrence of g preceding cπ[i] = g′. The position is mapped back from
cgπ[o] to cπ with j = selectg(c

′
π, o).

Lemma 21 Constant-time access to the position Pv[i] of any inherited point in the unmarked nodes
v can be provided within O(n lg κ) bits of space.

Proof. We have already explained how to obtain the position in constant time. The space is dom-
inated by the sequences cv, represented as cπ and these in turn as c′π and cgπ, which add up to
O(n lg κ) bits. Bit-vectors B and R use just O(n/κ) further bits. �

Lemmas 19, 20, and 21 prove Theorem 5.

22

v3

v4

T
C

v1

u1

u’ w 1

c = colors

original points appear explicitly

point appear explicitly in its v’

positions where each originalr =

b =

o = which points are original (1s)

distances to nodes v’ where

1,2,3,4,5,6c =

110001o = b = 0010
1,2,4’,5’,6’,3c =2,3,5r =

o = 110100
1,2,2r =

b = 10100
c = 1,2,5’,4,6’,3’

u

o = 10010

Figure 5: Illustration of the structures for constant-time access to Pv on TC , assuming that nodes
v3, v4, and u′ are all of the same level. Marked nodes are filled with gray.

Example. In the tree TC in Figure 2, nodes v2 and v3 are of level 1 and the rest are of level 2,
and all turn out to be marked. To show a more interesting example, Figure 5 assumes that the
grid has more points towards the bottom, so that the leaves that descended from v3 and v4 are
now internal nodes (and have new labels u1, u

′, and w1, whose reason will be clear later), so that
nodes v3, v4, and u′ are all of the same level `, whereas u1 and w1 are of level ` + 1. Then the
path is π = 〈v3, v4〉, node u (which was v2 in Figure 2) is the upper limit of π, and node u′ acts as
its lower limit. For example, ov3 = 110001 because the first, second, and sixth points in the slab
of v3, read left to right, are original, whereas the others are inherited from u. Also, bv3 = 0010,
indicating d1 = 1, d2 = 1, and d3 = 2, because the first and second original points are inherited by
u1, which is the node at distance 1 that leaves π. Instead, the third original point of v3 is inherited
by w1, which is the node at distance 2 from v3 that leaves π (u′ is also at distance 2; to avoid
ambiguities we assume it is at distance 3, as explained soon). The positions where those original
points are represented in the marked nodes that leave the path are rv3 = 2, 3, 5, since the first and
second are the second and third points in u1, and the third original point of v3 is the fifth point in
w1. Finally, cv3 = 1, 2, 4′, 5′, 6′, 3 because (as shown in ov3), the third, fourth, and fifth points in v3
are inherited, and they correspond to the original points marked 4, 5, and 6, in the parent u. The
three new original colors of v3 receive arbitrary free colors 1, 2, and 3. In v4, three points (with
colors 5′, 6′, and 3′) are inherited, corresponding to those with colors 5′ and 6′ in v3 (which are in
turn inherited from 5 and 6 in u), and to the one with color 3 in v3, which is original in that node.
The other three colors in v4 are original and receive free original colors 1, 2, and 4. We also show
the array ow1 , since later in the article marked nodes will also store these bit-vectors. �

7 Predecessor queries on Ev

Having constant-time access to Ev enables searching for the desired limits where the queries are
to be run. Recall that our queries involve a range A[i, j] and, for a suitable node v ∈ TC , this
translates into finding the largest l and the smallest r such that Ev[l − 1] < i ≤ j < Ev[r + 1]
(see Section 4.2). This is a form of predecessor query on Ev that we can perform by a binary
search. However the resulting O(lg κ) search time is larger than the promised time complexity. In
this section we obtain faster predecessor searches that replace the binary search. Once again, we
will focus on providing predecessor searches on Pv, the positions of the points in the slab of v.
Predecessors on Ev = Pv− : Pv : Pv+ are then obtained by finding the neighbor nodes v− and v+,

23

as shown in Lemma 15, and then determining with a couple of comparisons whether to run the
query on Pv−, Pv, or Pv+. Concretely, in this section we prove the following theorem:

Theorem 6 Given the structures for constant-time navigation in TC (Lemma 9), for handling
shallow cuttings in TC (Lemmas 13 to 16), and for constant-time access to all arrays Pv in TC
(Theorem 5), predecessor queries on the array Pv of any node v ∈ TC can be carried out in time
O(1 + lg κ/ lg lgn) using O(n lg κ) bits of space.

A classical predecessor structure [30] on Pv[1, 2κ] uses O(κ lg n) bits, as the universe is [1, n],
the set of positions in A. These spaces would add up to O(n lg n) bits (note that this structure is
needed in all the O(t) nodes of TC , not only the marked ones). Instead, since we have independent
constant-time access to Pv, we use succinct SB-trees (Lemma 10).

On a node v of level `, the universe of positions is of size O(κ |v|) = O(κ t2`−1), thus the succinct
SB-tree would use O(κ lg lg(κ t2`−1)) = O(κ lg t` + κ lg lg κ) bits. While the second term adds up to
O(n lg lg κ), the first term is still too large: just considering the nodes with ` = 1, it adds up to
O(n lg lg n) bits if we store this structure on every node of TC .

To reduce space, we will store this structure only on sampled nodes, and will handle the unsam-
pled ones with other techniques. We will sample all the nodes marked in Section 6, and in addition
we will will further sample every (t`/ lg2 t`)th node in the paths π of unmarked nodes of level `. To
associate information with sampled nodes of each level, we use the analogous of bitvector M and
sequence L of Section 6.2.

Lemma 22 Predecessor queries on the array Pv of any sampled node v can be carried out in time
O(1 + lg κ/ lg lgn) using O(n lg lg κ) bits of space.

Proof. According to Lemma 10, the predecessor time with the succinct SB-tree stored at the node is
O(1+lg κ/ lg lg(κ t2`−1)). This can be improved to O(1+lg κ/ lg lgn) by using the same precomputed
table over a universe of size n for all the nodes; this table requires o(n) further bits.

Let us consider space. The number of sampled nodes of level ` is O(t lg2 t`/t`), which added
over all the levels is

∑
` t lg2 t`/t` ≤ t (O(1) +

∑
s≥4 s

2/2s) = O(t) (as in the proof of Lemma 19).
Therefore, the term O(κ lg lg κ) in the bit space of succinct SB-trees adds up to O(n lg lg κ). The
other component of the space, O(κ lg t`) bits, adds up to O(n lg3 t`/t`) bits for level `. Adding up
over all the levels ` we have O(n)

∑
` lg3 t`/t` ≤ O(n)(O(1) +

∑
s≥4 s

3/2s) = O(n) bits. Finally, the
analogous of bit-vector M uses O(t) bits and the analogous of L uses O(n` lg(|L|/n`)) bits (recall
the proof of Lemma 19). Since now n` = O(t lg2 t`/t`), this space is O(t)

∑
` lg3 t`/t` = O(t). �

The paths of unsampled nodes of level ` have length O(t`/ lg2 t`). To provide predecessor
searches on unsampled nodes, let us consider one such path π and let v be a node in π. The nodes
leaving the path are of level > `, except the node u′ leaving π at the bottom, which is of level `.
Therefore, we can divide the range of split points covered by π into three areas:

1. The area covered by the subtrees that leave π to the left.

2. The area covered by the subtrees that leave π to the right.

3. The area covered by u′.

24

Each of those areas is contiguous, (1) preceding (3) preceding (2). Since there are O(t`) subtrees
of type (1) and each has nodes of level at least ` + 1, the total area covered by those subtrees is
of size O(t` · κ t2`) = O(κ t3`). The case of (2) is analogous. Area (3), instead, can be significantly
larger since u′ can be of level `. Our solutions will use these areas in different ways depending on
whether κ = Ω(lg lg n) or κ = O(lg lg n). We describe each case separately.

7.1 Handling large κ values

When κ = Ω(lg lg n), we can afford to store, for each (unsampled) node v ∈ π, a succinct SB-
tree for the values of Pv falling in area (1) and another for the values in area (2), both using
O(κ lg lg(κ t3`)) = O(κ lg lg(κ t`)) bits. Given a predecessor request on v, we first find the node u′

below π as in Section 6.3.1, and determine in constant time whether the query falls in the area
(1), (2), or (3) (by obtaining the limits [xl + 1, xr] of u′, Lemma 16). If the query falls in areas (1)
or (2) we use the corresponding succinct SB-tree of v, otherwise we use the succinct SB-tree of u′

(which is sampled and hence stores a regular succinct SB-tree).
While the succinct SB-trees for areas (1) and (2) are built for v and store the positions of the

points of Pv, this is not the case of the regular succinct SB-tree of u′, since not all the points in
u′ are points in v. In this case, given the predecessor Pu′ [q] of a position p, we must still find
the predecessor of Pu′ [q] in Pv. The points inherited in Pu′ form a central band in Pv, starting
at position pv. Thus we store, for each node v, a bit-vector hv[1, 2κ] indicating which of the
points in its corresponding node u′ are inherited from v, as well as pv. Then the final answer is
pv + select1(hv, rank1(hv, q))− 1, which is computed in constant time. These arrays add O(n) bits
of space.

Example. Figure 6 (left) shows a schematic example of this arrangement. A path π = 〈v1, v2, v3, v4〉
of level ` is limited by u and u′. Nodes u1 and u2, of level > `, leave π from the left and w1 and
w2, also of level > `, leave from the right. Node u′ is of level ` and is sampled, so it has its own
SB-tree. The other nodes leaving π cover a smaller area, so we can afford two SB-trees for each
v, storing the positions of the split points of Pv inside the ui nodes and inside the wj nodes. For
example, if we build the SB-trees for v2, we include in the left succinct SB-tree the positions Pv2
of the points that are inherited in 〈u2〉, and in the the right succinct SB-tree the positions Pv2 of
the points that are inherited in 〈w1, w2〉 (u1 cannot have points of Pv2 because it does not descend
from v2). �

Lemma 23 If κ = Ω(lg lg n), then predecessor queries in the array Pv of any unsampled node v
can be carried out in time O(1 + lg κ/ lg lgn) using O(n lg κ) bits of space.

Proof. The time is dominated by the succinct SB-trees, which was explained in Lemma 22. The
space of the two additional succinct SB-trees for a node of level ` is O(κ lg lg(κ t`)) bits. This adds
up to O(n(lg lg κ+ lg lg lg n)) bits, the second term being dominated by the (unsampled) nodes of
level ` = 1. Since lg κ = Ω(lg lg lg n), the space is bounded by O(n lg κ) bits. �

7.2 Handling small κ values

When κ = O(lg lg n) we will not store succinct SB-trees for areas (1) and (2) for each unsampled
node as before, but will use a different mechanism. Let π be a path of unsampled nodes of level

25

v1

v2

v
3

u1

u’

w2

w1

u2

SB−tree

p
re
d
ec
es
so
rp

red
ecesso

r

v1

v2

v
3

u1

u2

> l

SB−tree

l

u’

S
B
−
tr
ee

w2

w1

u

> l

< l

l

l

l
> l

> l

> l

l

u

> l

< l

l

l

l
> l

> l

S
B
−
tree

v
4

v
4

Figure 6: Illustration of the scheme to compute predecessors on paths of unsampled nodes. On the
left, the structure for v2 when κ = Ω(lg lg n). The black dots indicate the points inherited from v2.
On the right, the structure for the whole path when κ = O(lg lg n). The black dots indicate the
first/last points of the subtree areas.

`. Let u1, u2, . . . be the nodes that leave π from the left, reading their areas in left-to-right order
(i.e., top-down in π) until reaching u′, and w1, w2, . . . be the nodes that leave π from the right, also
reading them in left-to-right order (i.e., bottom-up in π) from u′. Then the area of A covered by π
can be partitioned into the |π|+ 1 consecutive areas covered by u1, u2, . . . , u

′, w1, w2, All those
nodes are sampled and thus store their own succinct SB-trees.

We will use a single predecessor structure, associated with π (not with any particular node
v ∈ π), to determine in which of those |π|+ 1 areas the query p belongs (if the query is done for a
node v ∈ π, then the node containing that area will descend from v).

Let `i be the level of node ui. Then the area covered by ui is of length O(κ t2`i−1). Thus we can

encode those lengths with, say, γ-codes [5], within 2
∑

i lg(κ t2`i−1) = O(|π| lg κ +
∑

i t`i) bits. To
facilitate decoding this description, we will insert areas of length zero every time π goes left (when
encoding the areas ui) or every time π goes right (when encoding the areas wj). This does not
change the asymptotic length of the description.

From a space accounting point of view, this space can be afforded because we can charge
O(lg κ + t`i) bits to the storage of ui. As ui’s level is larger than `, it is a marked node (see
Section 6). Thus there are O(t/t2`i) such nodes overall, each of which will be charged O(t`i) bits
only once, from the path π it leaves, for a total of O(t/t`i) bits, and this adds up to O(t) bits overall
(see the proof of Lemma 19). As for the term O(lg κ), it adds up to O(t lg κ) bits overall.

On the other hand, note that, since `i > `, it holds that O(|π| lg κ +
∑

i t`i) = O(|π| lg κ +
|π| lg t`). Since |π| = O(t`/ lg2 t`), t` = O(lg n) even for ` = 1, and κ = O(lg lg n), the length
is O(lg n/ lg lg n) = o(lg n) bits, and thus the whole description of the ui area lengths fits in
O(1) computer words.11 Moreover, there are 2O(lgn/ lg lgn) possible descriptions of area lengths
for u1, u2, . . ., and O(|π|κ t2`i−1) = o(lg3 n) possible queries. Thus we can build a global table of

11This is why we need the lg2 t` term dividing t` in the definition of our sampling.

26

2O(lgn/ lg lgn)×o(lg3 n)×lg n = o(n) bits storing the answer to every possible query on every possible
path. Thus the queries take constant time. We proceed analogously with the areas of w1, w2,

Now, a predecessor query for the areas u1, u2, . . . , u
′, w1, w2, . . . can be answered as follows: As

in Section 7.1, we first determine whether the answer is in u′ with a constant number of comparisons,
and if so, we obtain the answer with the succinct SB-tree of u′. Otherwise, the answer is in the
areas to the left (called ui) or to the right (called wj) nodes of u′. In either case, we use the
precomputed tables to determine in constant time the index i (left) or j (right) of the area where
the predecessor lies. If the answer is on the left area, we compute v′ = ui from the index i as in
Section 6.3.1: we find the ancestor a of u′ at depth depth(u) + i, and then v′ is the child of a that
is not in π (i.e., is not an ancestor of u′). If the answer is on the right area, we compute v′ = wj
similarly, but now a is the ancestor of u′ at depth depth(u′)− j. Note that this works because we
have inserted the empty areas in the γ-encoded descriptions.

Example. Figure 6 (right) illustrates the structure for small κ values. Now the predecessor struc-
tures associated with π (i.e., the γ-encoded descriptions) store only one extreme split point from
each node leaving π. We must insert two empty areas between u1 and u2, so the index of u2 in
the γ-encoded description is actually 4, and it is indeed the child not in π of the ancestor of u′ at
depth depth(u) + 4. Similarly, we insert an empty area before w1 and one after w2. Then the in-
dex of w1, for example, is 2, and it is the child not in π of the ancestor of u′ at depth depth(u′)−2. �

Now we use the succinct SB-tree of v′ (which is sampled) to find the position of the predecessor
of p in its Pv′ array, Pv′ [q]. The final challenge is to map that position in v′ to the corresponding
position in v. Note that Pv contains only some of the positions of Pv′ in the area covered by v′

(where p lies), so we seek the predecessor of Pv′ [q] in Pv. To compute this efficiently, we will reuse
the point inheritance information encoded in the bit-arrays ov of Section 6. With the sequence of
|π| consecutive arrays ov, and knowing whether each node in π is a left or a right child, we have
sufficient information to track any position Pv′ [q] upwards and determine its predecessor in Pv.

Let q′ = rank0(ov′ , q) be the number of inherited points having positions in Pv′ [1, q], and v′′ be
the parent of v′. If v′ is the left child of v′′, then the first half of the points of v′′ are inherited by
v′, and therefore the position Pv′ [q], or its predecessor, in v′′ is Pv′′ [q

′] (note that q′ can be zero).
If, instead, v′ is the right child of v′′, then the position is Pv′′ [κ + q′] since v′ inherits the second
half of the points. Now we repeat the process from v′′ until reaching v, where we obtain the final
predecessor position in Pv.

Example. Consider Figure 5 and let v3 have no SB-tree of its own. Assume that a predecessor
search in v3 is found to fall inside the node w1. Since w1 is marked (and thus sampled), it has
its own SB-tree, which is searched to find the predecessor, Pw1 [2] (this is the 17th left-to-right
point in Figure 2). Since ow1 [2] = 0, the point is inherited. It is the first inherited point because
rank0(ow1 , 2) = 1. Since w1 is a right child and κ = 3, the point is the fourth (3 + 1) in v4. The
point is original in v4, since ov4 [4] = 1. The number of inherited points in v4 preceding this original
point is rank0(ov4 , 4) = 1, so the first inherited point is the predecessor in v3, the parent of v4. Since
v4 is a right child, the predecessor is the fourth left-to-right point (3 + 1) in the slab of v3. �

To use the bit-vectors ov in this way, we cannot use the same array o[1, O(n)] where they were
stored in preorder in Section 6.3.1. Rather, we must store another copy of bit-vectors ov in the

27

path-wise form used to store the sequences cv in Section 6.3.2, so that all the bit-vectors ov for
unsampled nodes v ∈ π are stored contiguously in a sequence oπ. In addition, we need the bit-
vectors ov′ for sampled nodes v′. Sampled nodes can be handled as belonging to an empty path
where the sampled node acts as u′, and we also store ou′ in oπ. The space for this new copy of the
ov bit-vectors is O(n) bits. We similarly store the information on left/right directions along each
path π, contiguously and adding up to O(t) bits.

Now the bit-vectors ov and the path directions along π are stored contiguously and add up
to length 2|π|κ and |π|, respectively. Thus, once again, we can prepare a global table that takes
every possible concatenation of bit-vectors oπ, a bit-vector ov′ , the |π| left/right directions along the
path π, the depths of v and v′ in π, and the value q, and it returns the corresponding predecessor
in Pv in constant time. The table uses 2(|π|+1)(2κ+1)|π|2κ · lg n bits. Since κ = O(lg lg n), this is
2O(lgn/ lg lgn)o(lg3 n) = o(n) bits.

Lemma 24 If κ = O(lg lg n), then predecessor queries in the Pv array of any unsampled node v
can be carried out in time O(1 + lg κ/ lg lgn) using O((n/κ) lg κ) + o(n) bits of space.

Proof. The time is again dominated by the succinct SB-tree of u′, which was explained in Lemma 22.
The space is that of the γ-encoded descriptions and global tables. �

Lemmas 22, 24, and 23 complete the proof of Theorem 6.

8 Wrapping up

From the previous elements, we can now assemble a structure that, given a value κ, uses O(n lg κ)
bits and answers a query sel(i, j, k) for any 1 ≤ k ≤ κ in time O(1 + lg κ/ lg lg n):

1. As described in Section 5 (Lemma 12), we find the maximal interval [m,M] such that i ≤
xm ≤ xM ≤ j.

2. If the interval contains zero or one split point, then A[i, j] can be directly solved with the
range selection structure [8] associated with the special extent [xm−1 + 1, xm+1] of the split
point xm, which covers at most 4κ consecutive entries of A.

3. Otherwise, we find the highest node v ∈ TC containing [xm + 1, xM], as well as the other two
neighbor nodes that span the extent of v, namely, v− to the left and v+ to the right, all in
constant time, as described in Section 5 (Lemmas 13, 14, and 15).

4. Using the structures of Section 7 (Theorem 6), we find the predecessor l− 1 of i− 1, and the
predecessor r of j, within the positions of Ev = Pv− : Pv : Pv+ , in time O(1 + lg κ/ lg lgn).
These structures need access to entries in Pv− , Pv, and Pv+ , which is provided in constant
time in Section 6 (Theorem 5).

5. We use the range selection structure [8,9] associated with the extent of node v (which has at
most 6κ entries) to run the query o = sel(l, r, k). The time is O(1 + lg κ/ lg lgn).

6. We use the structures of Section 6 (Theorem 5) to compute the final answer Ev[o] in constant
time, which is again provided via direct access to arrays Pv− , Pv, or Pv+ .

28

In order to reduce the time from O(1 + lg κ/ lg lg n) to O(1 + lg k/ lg lg n), we build our data
structures for values κs = 22

s
, for s = 0, 1, . . . , τ , where τ is such that 22

τ−1
< κ ≤ 22

τ
. The space

for those structures is O(n)
∑τ

s=0 lg κs = O(n)
∑τ

s=0 2s < O(n) 2τ+1 < O(n) 4 lg κ = O(n lg κ). A
query sel(i, j, k) is run on the structure for κs such that κs−1 < k ≤ κs, that is, 2s−1 < lg k ≤ 2s,12

and thus its query time is O(1+lg κs/ lg lgn) = O(1+2s/ lg lg n) = O(1+lg k/ lg lgn). This proves
Theorem 2.

8.1 Answering the query top(i, j, k)

To answer a query top(i, j, k) we can proceed as for query sel(i, j, k), until the point where we find
the kth largest element in Av[l, r], let it be Av[o]. Now we find all the elements Av[m] in Av[l, r]
where Av[m] ≥ Av[o]. With an rmq structure over Av we can do this using Muthukrishnan’s
algorithm [27]: find the maximum in Av[l, r], let it be Av[m1], then continue recursively with
Av[l,m1−1] and Av[m1 +1, r] stopping the recursion when the maximum, found at Av[m], satisfies
Av[m] < Av[o]. Recall that Av is a permutation on O(κ) symbols and thus we can afford storing it
directly (actually, it is generally part of the selection structures we use [8]). Finally, when we have
the positions m1, . . . ,mk of the top-k elements, we return Ev[m1], . . . , Ev[mk]. The overall time is
O(lg k/ lg lg n+ k) = O(k).

Note that this process delivers the top-k elements in arbitrary order. On the other hand, the
set is obtained in online form: after O(1 + lg k/ lg lg n) time, each new result is delivered in O(1)
time. To obtain the result in sorted order and in online form, we build the structure of Brodal et
al. [6] on the sets Av, which amounts to O(n lg κ) further bits. With this structure, we retrieve the
k highest values of Av[l, r] in time O(k) and in online form, analogously as what is done with the
structure of Brodal and Jørgensen [8] for the query sel(·). This proves Theorem 3.

9 One-sided queries

We finish by showing that, at least in some restricted cases that might be of interest, the time lower
bound for sel(·) queries can be circumvented. We will design an encoding that is built for a fixed
κ value and answers queries sel(1, j, κ) and top(1, j, κ). We start with the following result for sel(·)
queries, and then use the same encoding to solve top(·) queries.

Theorem 7 Given an array A[1, n] and a value κ, there are encodings of A and κ that (1) use
n lg κ + o(n lg κ) + n bits and support sel(1, j, κ) queries in any ω(1) time, or (2) use (1 + ε)n lg κ
bits and support sel(1, j, κ) queries in O(1/ε) time, for any constant 0 < ε < 1.

To build this encoding, we scan the array from left to right, and keep track of the top-κ values
in the prefix seen so far. At any position j > κ, if A[j] is inserted into the top-κ list, then we have
to remove the κth largest value in the prefix A[1, j− 1]. The idea to solve these queries is to record
the position of that leaving κth largest value, so that to solve sel(1, j, κ) we find the next j′ > j
where the top-κ list changes, and then find the value leaving the list when A[j′] enters it. This one
was the κth largest value in A[1, j].

We wish, however, to store this information using only O(n lg κ) bits. The key idea is to store
colors in [1, κ] associated with the positions A[j′] where the top-κ list changes. Each element that

12The search for the right s can be done in constant time by checking the cases s = τ and s = τ − 1, and then

consulting a small precomputed table of 22τ−2

= O(
√
κ) entries.

29

X 1 2 3 1 - 3 2 - 3 1 1 - 2 - - 2 2 3

P 1 1 1 1 0 1 1 0 1 1 1 0 1 0 0 1 1 1

A 12 18 17 20 14 19 22 11 25 21 28 16 23 13 15 24 29 27

Figure 7: Encoding of an array A as P and X, to support sel(·) and top(·) queries, for κ = 3.

enters the list takes the color of the element leaving it. Then, for every prefix A[1, j], the rightmost
positions of the κ different colors in [1, j] form the top-κ list for A[1, j]. In particular, if A[j′] is
of color c, then the rightmost occurrence of c in A[1, j′ − 1] is the position of the κth element in
A[1, j′ − 1], that is, sel(1, j′ − 1, κ) (and also sel(1, j, κ), since no changes occur in A[j + 1, j′ − 1]).

We store a bit-vector P [1, n], where P [j] = 1 iff a new element is inserted into the top-κ list at
position j (or equivalently, the κth largest value of A[1, j − 1] is deleted at position j). The first κ
bits of P are 1. We encode P in n+ o(n) bits supporting constant-time rank and select (Lemma 1).

Let n′ be the number of 1s in P . Our string of colors, X[1, n′], holds X[j] = j for 1 ≤ j ≤ κ,
and X[j] = X[rank1(P, sel(1, select1(P, j) − 1), κ)] for κ < j ≤ n′. Basically, if A[j] becomes part
of the top-κ list in A[1, j], and this displaces the previous top-κ element A[i] of A[1, j − 1], then
we assign X[j] = X[i]. The rest of the formula accounts for the fact that X is defined only on the
cells of A where the top-κ list changes, that is, where P [j] = 1.

Example. Figure 7 shows an example for an array A[1, 18] and κ = 3. The top-κ list changes
n′ = 13 times, so we store X[1, 13]. The dashes in X are for illustration purposes and are not
actually stored; its actual values are associated with the 1s in P . �

We encode X in (1+o(1))n′ lg κ bits, so that select on X is supported in O(1) time and access to any
X[j] takes any ω(1) time (Lemma 4). On top of this we add the structure of Lemma 7, which uses
O(n′ lg lg κ) = o(n′ lg κ) bits13 and supports in constant time the restricted queries rankX[j](X, j).

Therefore, we compute i = rank1(P, j) + 1, and c = X[i] is the color associated with A[j′].
Then it holds that sel(1, j, κ) = select1(P, selectc(X, rankc(X, i) − 1)). Thus, this operation can
be supported in any ω(1) time, dominated by the time to access X[i]. By using a slightly larger
representation for X (Lemma 6), (1 + ε)n′ lg κ bits, we obtain time O(1/ε) for any constant ε > 0.
Theorem 7 follows.

9.1 Solving top-κ queries

We now use the same encoding to support top(1, j, κ) queries.

Theorem 8 Given an array A[1, n] and a value κ, there is an encoding of A and κ that uses
n lg κ+o(n lg κ)+n bits and supports top(1, j, κ) queries in O(κ) time, giving the results in unsorted
order. The result can be sorted by value in O(κ lg lg κ) time. The encoding is the same as in
Theorem 7.

13This is o(n′ lg κ) only if κ is not constant, but if κ = O(1) we can directly use the general rank operation of
Lemma 4, which in this case takes constant time.

30

For supporting top(·) queries we need to find, given a position X[i], the rightmost occurrence
preceding i of every color in [1, κ]. This can be done in O(κ) time using the representation of
Lemma 4 for X: The string is cut into chunks of size κ. Each chunk stores an inverted list of its
contents, that is, for each color it stores an increasing list of the positions where it appears in the
chunk. Constant-time access is given to any position of any list. Further, one bit-vector Bc per
color c is stored, Bc = 01n

c
101n

c
2 . . . 01n

c
κ , where c appears ncj times in the jth chunk. Bit-vectors Bc

are provided with constant-time rank and select (Lemma 1) and add up to O(n′) bits.
In the chunk l = di/κe where position i belongs, we traverse all the lists of all the colors, so

as to record the last occurrence of each color preceding position i. This takes time O(κ) because
there are κ positions in the chunk, thus the total length of the lists is also κ. Some colors may not
occur in the chunk before position i, however. For each such color c, we find its last position in the
last chunk before the current one: the starting point of the chunk l in Bc is s = select0(Bc, l), the
number of 1s up to s is o = s− l, and the chunk where the oth 1 appears is select1(Bc, o)− o. Once
we find the chunk for c in constant time, we return the last position of the list of c in the chunk,
which as said can be accessed in constant time as well.

By the definition of X, it is clear that the rightmost occurrences, up to position i = rank1(P, j),
of the distinct colors, form precisely the answer to top(1, j, κ). Thus we find all those positions p
in time O(κ) and remap them to the original array with select1(P, p).

Note that the top-κ positions do not come sorted by value. By the same properties of X, if
the first occurrence of c after X[i] precedes the first occurrence of c′ after X[i], then the value
associated with c in our answer is smaller than that associated with c′, as it is replaced earlier.
Thus we find the first occurrence, after i, of each color c in [1, κ]. The number rc of times c appears
up to position i is select0(Bc, l)− l plus the number of its occurrences up to i inside chunk l, which
we have already counted. Then the position of its next occurrence in X is pc = selectc(X, rc + 1),
which is computed in constant time in our representation of X (Lemma 4). Once we have the
positions pc, which are integers in [1, n′], we can sort them in time O(κ lg lg κ) [1].

Actually, the space (1 + o(1))n′ lg κ given in Lemma 4 is obtained using the chunks structure
only when κ = ω(1). When κ = O(1) ones uses instead Lemma 5, where operations access, rankc,
and selectc on X take constant time. In this case we simply obtain the last position of c before X[i]
with selectc(X, rankc(X, i− 1)), and the position following X[i] with selectc(X, rankc(X, i) + 1), all
in constant time per color. Theorem 8 follows.

10 Conclusions

We have studied for the first time the problem of encoding data structures for array range queries
sel(·) and top(·), which return the kth largest element or all the top-k elements, respectively, of any
interval A[i, j]. An encoding data structure cannot access the array A. We have shown that at least
n lg k−O(n+ k lg k) bits are necessary for any such encoding. Further, we have given O(n lg κ)-bit
encodings that answer both queries, for any 1 ≤ k ≤ κ, in optimal times O(1 + lg k/ lg lgn) and
O(k), respectively.

A recent followup work [18] refines our lower bound to (n lg k+(k+1)n lg(1+1/k))(1−o(1)) bits
for k = o(n), and proves it is tight up to lower-order terms by building an encoding of n lg κ+O(n)
bits for queries with a fixed κ value. The encoding does not, however, support efficient queries;
it requires Ω(n) time. In the most recent version [17], they give a slightly larger encoding using
1.5n lg κ−Θ(n) bits, which solves queries top(i, j, κ) and sel(i, j, κ) in time O(κ6 lg2 nω(1)). While

31

still far from optimal, the time is polynomial in κ lg n and raises the question of what the space/time
tradeoffs are when we consider the constant accompanying the O(n lg κ) space complexity of the
encodings. Our encoding obtains optimal times, but the constant is large: 44n lg κ + O(n lg lg κ)
bits plus 32 times the space used by the extra structures [6, 8].

Acknowledgements. We thank Yakov Nekrich, who pointed us the results of Brodal et al. [6], and
the anonymous referees for their suggestions.

References

[1] A. Andersson, T. Hagerup, S. Nilsson, and R. Raman. Sorting in linear time? Journal of
Computer and System Sciences, 57(1):74–93, 1998.

[2] D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna. Monotone minimal perfect hashing: searching
a sorted table with O(1) accesses. In Proc. 20th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 785–794, 2009.

[3] D. Belazzougui and G. Navarro. Alphabet-independent compressed text indexing. ACM Trans-
actions on Algorithms (TALG), 10(4):article 23, 2014.

[4] D. Belazzougui and G. Navarro. Optimal lower and upper bounds for representing sequences.
ACM Transactions on Algorithms, 11(4):article 31, 2015.

[5] T. Bell, J. Cleary, and I. Witten. Text compression. Prentice Hall, 1990.

[6] G. S. Brodal, R. Fagerberg, M. Greve, and A. Lopez-Ortiz. Online sorted range reporting. In
Proc. 20th International Symposium on Algorithms and Computation (ISAAC), LNCS 5878,
pages 173–182, 2009.

[7] G. S. Brodal, B. Gfeller, A. G. Jørgensen, and P. Sanders. Towards optimal range medians.
Theoretical Computer Science, 412(24):2588–2601, 2011.

[8] G. S. Brodal and A. G. Jørgensen. Data structures for range median queries. In Proc. 20th
International Symposium on Algorithms and Computation (ISAAC), LNCS 5878, pages 822–
831, 2009.

[9] T. Chan and B. T. Wilkinson. Adaptive and approximate orthogonal range counting. In Proc.
24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 241–251, 2013.

[10] D. Clark. Compact Pat Trees. PhD thesis, University of Waterloo, Canada, 1996.

[11] P. Davoodi, G. Navarro, R. Raman, and S. Srinivasa Rao. Encoding range minima and range
top-2 queries. Philosophical Transactions of the Royal Society A, 372(20130131), 2014.

[12] J. Fischer. Optimal succinctness for range minimum queries. In Proc. 9th Latin American
Symposium on Theoretical Informatics (LATIN), pages 158–169, 2010.

[13] J. Fischer. Combined data structure for previous- and next-smaller-values. Theoretical Com-
puter Science, 412(22):2451–2456, 2011.

32

[14] J. Fischer and V. Heun. Space-efficient preprocessing schemes for range minimum queries on
static arrays. SIAM Journal of Computing, 40(2):465–492, 2011.

[15] T. Gagie, G. Navarro, and S. J. Puglisi. New algorithms on wavelet trees and applications to
information retrieval. Theoretical Computer Science, 426-427:25–41, 2012.

[16] T. Gagie, S. J. Puglisi, and A. Turpin. Range quantile queries: another virtue of wavelet
trees. In Proc. 16th International Symposium on String Processing and Information Retrieval
(SPIRE), LNCS 5721, pages 1–6, 2009.

[17] P. Gawrychowski and P. K. Nicholson. Optimal encodings for range min-max and top-k. CoRR,
1411.6581v2, 2015. http://arxiv.org/abs/1411.6581v2.

[18] P. Gawrychowski and P. K. Nicholson. Optimal encodings for range top-k, selection, and min-
max. In Proc. 42nd International Colloquium on Automata, Languages, and Programming
(ICALP), Part I, LNCS 9134, pages 593–604, 2015.

[19] A. Golynski, I. Munro, and S. Rao. Rank/select operations on large alphabets: a tool for
text indexing. In Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 368–373, 2006.

[20] R. Grossi, J. Iacono, G. Navarro, R. Raman, and S. Srinivasa Rao. Encodings for range
selection and top-k queries. In Proc. 21st Annual European Symposium on Algorithms (ESA),
LNCS 8125, pages 553–564, 2013.

[21] R. Grossi, A. Orlandi, R. Raman, and S. S. Rao. More haste, less waste: Lowering the redun-
dancy in fully indexable dictionaries. In Proc. 26th International Symposium on Theoretical
Aspects of Computer Science (STACS), LIPIcs 3, pages 517–528, 2009.

[22] P. Hsu and G. Ottaviano. Space-efficient data structures for top-k completion. In World Wide
Web Conference (WWW 2013), pages 583–594, 2013.

[23] A. G. Jørgensen and K. G. Larsen. Range selection and median: Tight cell probe lower bounds
and adaptive data structures. In Proc. 22nd Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 805–813, 2011.

[24] G. Li, S. Ji, C. Li, and J. Feng. Efficient type-ahead search on relational data: a tastier
approach. In U. Çetintemel, S. B. Zdonik, D. Kossmann, and N. Tatbul, editors, SIGMOD
Conference, pages 695–706. ACM, 2009.

[25] Jiŕı Matousek. Cutting hyperplane arrangements. Discrete and Computational Geometry,
6:385–406, 1991.

[26] J. I. Munro and V. Raman. Succinct representation of balanced parentheses and static trees.
SIAM Journal on Computing, 31(3):762–776, 2001.

[27] S. Muthukrishnan. Efficient algorithms for document retrieval problems. In Proc. 13th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 657–666, 2002.

33

[28] G. Navarro, R. Raman, and S. Srinivasa Rao. Asymptotically optimal encodings for range
selection. In Proc. 34th Annual Conference on Foundations of Software Technology and The-
oretical Computer Science (FSTTCS), pages 291–302, 2014.

[29] G. Navarro and K. Sadakane. Fully-functional static and dynamic succinct trees. ACM Trans-
actions on Algorithms, 10(3):article 16, 2014.

[30] M. Pătraşcu and M. Thorup. Time-space trade-offs for predecessor search. In Proc. 38th
Annual ACM Symposium on Theory of Computing (STOC), pages 232–240, 2006.

[31] R. Raman, V. Raman, and S. Srinivasa Rao. Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Transactions on Algorithms,
2(4):article 43, 2007.

[32] K. Sadakane. Succinct representations of lcp information and improvements in the compressed
suffix arrays. In Proc. 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 225–232, 2002.

34

