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Abstract 

 

Over the past decade, there has been an ever growing interest in genome-wide 

association studies (GWAS). The role of GWAS is to discover associations between 

genetic variants; commonly Single Nucleotide Polymorphisms (SNPs) and complex 

diseases. Due to the ever increasing number of SNPs in GWAS, the commonly used 

association analyses tend to be univariate models rather than multivariate models. 

These methods are therefore unable to account for the correlation between SNPs; 

known as Linkage Disequilibrium (LD). 

Penalised regression methods have been suggested as an alternative method in GWAS, 

specifically the Least Absolute Shrinkage and Selection Operator (LASSO). This method 

has the ability to both shrink regression coefficients and perform variable selection. In 

this thesis, the use of the LASSO in both single and multi-cohort GWAS is examined. In 

the context of the single cohort, the LASSO is applied to the GRAPHIC study in an 

attempt to discover novel associations with Low-density Lipoprotein. This thesis will 

also address some of the problems with the LASSO such the tuning parameter 

selection method that should be used for SNP selection and the need for pruning to 

reduce the dimensionality of the data in order to fit LASSO models. The literature 

suggests that a pruning or pre-screening method is required to fit LASSO models in 

GWAS due to the high computational burden of fitting such a model, yet there is little 

work to address how the dataset should be pruned. A SNP pruning package in R called 

prune is developed and is utilised in a simulation study to determine which pruning 

method should be used. The role of the LASSO in multi-cohort studies is also 

considered specifically in integrative analyses. A new penalised regression method, the 

Integrative LASSO, is proposed and developed which uses a combination of LASSO, 

ridge regression and fused LASSO penalties and tested against some of the current 

methods in the literature in a simulation study.  
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1 Introduction             

1.1 Background and aim 

 

Since the completion of the human genome project (1,2) there has been an ever increasing 

interest in genome-wide association studies (GWAS). The role of genome-wide association 

studies is to identify associations between genetic variants, known as Single Nucleotide 

Polymorphisms (SNPs), and a complex disease (phenotype) such as Type 2 diabetes (T2D), 

cardiovascular disease (CVD) or different forms of cancer using a sample from the 

population. This is done by performing an association test between phenotype and all 

genotyped SNPs. An association between a SNP and a disease could be due to a number of 

reasons which include:  

a. The SNP is truly associated with the phenotype and plays an important role in the 

cause or prevention of the disease (a true positive). 

 

b. The SNP is associated with the phenotype as it highly correlated (known as Linkage 

Disequilibrium (LD)) with a second SNP, and this second SNP is truly associated with 

the disease. 

 

c. The correlation between the SNP and phenotype is by chance and there is no real 

association (a false positive).  

 

In a perfect world, only the truly causal variables (a) would be identified, although selecting 

the SNP in high Linkage Disequilibrium with the associated SNP (b) may also be acceptable. 

In reality, it is difficult to distinguish between (a) and (b) and both are deemed to be true 

associations. By identifying the truly associated genetic variants or regions (loci), scientists 
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could be able to develop new therapies, improve diagnosis and better disease prevention 

(3).  

Since the first published GWAS in 2005 (4), the number of GWA studies has grown almost 

exponentially. As of December 2017, the NHGRI-EBI Catalogue of published genome-wide 

association studies has recorded 3,211 published studies (5). In this time, the number of 

SNPs in a GWAS has increased with millions of SNPs being tested for associations but also an 

increase in sample size. This leads to some difficulty in selecting the truly causal SNPs. The 

increase in sample size increases the power of a study. The power is defined as the 

probability of selecting an associated SNP based on a sample that has a true association in 

the population (i.e. a true positive). The increase in the number of SNPs available for 

association testing will naturally provide a better coverage of the genome and potentially 

allows a greater number of truly associated SNPs to be tested. The typing of millions of SNPs 

leads to difficultly in multivariate modelling (6) which has led to simplifying analyses and 

estimating each variable in a univariate model rather than a multivariate model.  

 

The occurrence of multiple testing in GWAS may also lead to a number of false positives 

being selected (c). Traditional variable selection methods such as Bonferroni correction and 

false discovery rate (FDR) (7,8) are commonly utilised in GWAS in order to control the type 1 

error rate (i.e. control the number of false positives selected). These methods are however 

unable to account for LD between SNPs (b). 

 

Penalised regression methods have been suggested as an alternative, specifically for model 

selection in scenarios when the number of variables (P) is greater than the sample size (N) 

which tends to be the case in GWAS. These methods apply a penalty to regression estimates 

in order to shrink the estimates. In particular, the Least Absolute Shrinkage and Selection 

Operator (LASSO) first proposed by Tibshirani for high-dimensional data (9) has received 

much attention, particularly in genetics. This is due to the LASSO’s ability to perform variable 

selection by penalizing effect estimates to 0 and thus removing the variable from the model. 
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The LASSO model is on a multivariate level and therefore jointly models all variables and 

uses computationally fast algorithms.  

 

There are three main aims for this thesis: 

 

1. The first aim of this thesis is to use the LASSO to find genetic associations with Low-

density Lipoprotein (LDL-c) in the Genetic Regulation of Arterial Pressure of Humans 

in the Community (GRAPHIC) Study (10). The results of this analysis can be compared 

with analyses performed using Bonferroni correction, FDR and the current literature. 

 

2. As suggested by the literature (11-16), there is a great computational burden placed 

on this analysis. Therefore the second aim of this thesis is to determine the best 

methods to reduce the dimensionality of the dataset such that the impact on variable 

selection is minimised.  

 

 

3. In recent years, the focus has shifted from GWAS on single datasets to consortia 

combining multiple datasets; however there has been little research into this area in 

the context of the LASSO, specifically in GWAS. With this in mind, the third aim of this 

thesis is to compare the current penalised regression methods for integrative analysis 

by a simulation study. I also aim to present and test an alternative approach for 

integrative analysis. 

 

1.2  Outline of the thesis 

 

I begin with a statistical overview of the LASSO in Chapter 2; this will include statistical 

backgrounds of other generalisations of the LASSO such as ridge regression (17) and the 



4 
 

elastic net (18). In this chapter, I will also review the literature on algorithms used to fit the 

LASSO, tuning parameter selection methods and the application of penalised regression 

methods in GWAS. In Chapter 3, I show my own implementation of the LASSO using the 

coordinate descent algorithm (CDA) which was reviewed in Chapter 2. Additionally, I run a 

simulation study to determine which tuning parameter selection methods show the best 

performance for variable selection in a GWAS setting. Both the algorithm and a number of 

the tuning parameter selection methods are used later in this thesis. 

One of the aims of this thesis is to apply the LASSO on a real dataset; the GRAPHIC study 

with Low-density Lipoprotein (LDL-c) as the phenotype of interest. This will be performed in 

Chapter 4. The chapter will include a literature review of previous studies that have 

performed GWAS on LDL to identify previously known associations. Both the Bonferroni 

correction method and FDR will also be used as comparisons.  

 

Due to the computational intensity of the LASSO on the GWAS dataset, in Chapter 4, I aim to 

explore the use of SNP pruning by Linkage Disequilibrium to reduce the dimensionality of the 

dataset in order to fit a LASSO model. In Chapter 5, I describe the biological background to 

LD and how LD is estimated from both haplotypes and genotypes. I then compare a number 

of packages that estimate LD from genotypes. 

 

In Chapter 6, I introduce my own R package called prune, which prune datasets in a variety 

of ways including by LD, by P-value and by LD clumping. The Prune package gives the user a 

great number of options which most pruning packages do not. I will also compare my Prune 

package and the LD pruning method used in PLINK (19,20). 

 

In Chapter 7, I will use the Prune package and the pruning methods available in a simulation 

study investigating the effects of pruning on variable selection using the LASSO. The aim of 

the simulation study is to determine which pruning method and tuning parameter selection 

method performs best for variable selection. 
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I then return to the GRAPHIC study in Chapter 8 and apply the best combination of pruning 

method and tuning parameter selection method based on the simulation study in Chapter 7. 

 

In Chapter 9, I turn my attention to the use of the LASSO in integrative analysis. I begin by 

reviewing the current literature that apply penalised regression methods in an integrative 

analysis setting. I will then run a simulation study comparing some of these methods in a 

GWAS setting to determine which method performs the best in terms of variable selection. 

I will then offer my own alternative method, the Integrative LASSO (IL) in Chapter 10. I will 

explain the reasoning behind the method and provide an algorithm to fit IL models. I will 

illustrate an example of the IL and finally compare the IL in a simulation study against 

competing methods from Chapter 9. 

Finally, in Chapter 11, I conclude by reviewing my findings and discussing future work. 
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2 Background to the LASSO 

2.1  Introduction 

 

In this chapter, I begin by introducing the statistical background to the LASSO as well as 

other generalisations of the LASSO and then discuss the merits and faults of each method.  

 

Most regression functions use simple algorithms to optimise the function as they are mostly 

smooth and convex. The LASSO function however is non-smooth, due to the penalty, which 

creates some challenges. I therefore explore a number algorithms used to fit the LASSO and 

other penalised regression models (section 2.4). I begin by reviewing the most popular 

algorithms used to fit LASSO models. From the current methods, I select the most effective 

algorithm to write in R as a foundation for future work and show algebraically how the 

solution to a number of penalised regression functions is derived using the selected 

algorithm. 

 

Selection of this tuning parameter is important as it is solely responsible for which variables 

are selected and which are removed from the model. In section 2.5, I review a number of 

current tuning parameter selection methods. I also discuss the methodology used when 

there are dual penalties. 

 

2.2  The LASSO 

 

Penalised regression methods attempt to minimise a function consisting of a loss function 

(such as ordinary least squares, logit etc.) and at least one penalty term with a tuning 

parameter (λ). The LASSO, as defined by Tibshirani (9), minimses the following function: 
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 �̂�𝐿𝐴𝑆𝑆𝑂(𝜆) = min𝛽(𝐿(𝑦, 𝑥; 𝜇, 𝛽) + 𝜆 ∑ |𝛽𝑗|
𝑃
𝑗=1 )  (2.1) 

 

Where 𝑁 is the number of subjects, 𝑃 is the number of predictor variables (SNPs in GWAS 

studies), 𝑦 is a vector of 𝑁 outcome variables (known as a phenotype), 𝑥 is a standardised 𝑁 

x 𝑃 matrix of predictor variables, 𝛽 is a vector of effect estimates and 𝜆 is the tuning 

parameter. As with all datasets, standardisation is required in order to scale the dataset 

correctly. The intercept is denoted by 𝜇. 𝐿(𝑦, 𝑥; 𝜇, 𝛽) represents any loss function. For this 

thesis, an Ordinary Least Squares link function is used which would minimise (2.2). 

 �̂�𝐿𝐴𝑆𝑆𝑂(𝜆) = min
𝛽
(
1

2𝑁
 ∑(𝑦𝑖 −  𝜇 − ∑𝑥𝑖𝑗𝛽𝑗

𝑃

𝑗=1

)

2

+ 𝜆 ∑|𝛽𝑗|

𝑃

𝑗=1

𝑁

𝑖=1

) (2.2) 

 

For some t ≥ 0, equation (2.2) can be alternatively written as:  

 �̂�𝐿𝐴𝑆𝑆𝑂(𝜆) = min
𝛽
(
1

2𝑁
 ∑(𝑦𝑖 −  𝜇 − ∑𝑥𝑖𝑗𝛽𝑗

𝑃

𝑗=1

)

2
𝑁

𝑖=1

)  𝑠. 𝑡.∑|𝛽𝑗|

𝑃

𝑗=1

< 𝑡 (2.3) 

 

The LASSO performs variable selection by shrinking β estimates towards 0. The amount of 

shrinkage is controlled by the tuning parameter λ. If the tuning parameter is large enough for 

some variables, its 𝛽𝑗 will be forced to 0, removing this variable from the model.  

An example of this shrinkage is shown graphically in Figure 2.1 where 10 independent 

continuous variables are simulated each with a sample size of 100. Each variable was 

simulated from a normal distribution with mean 0 and standard deviation (S.D.) 1. The 

outcome variable was simulated such that: 

 

𝑦𝑖 = 0.1𝑋1 + 0.2𝑋2 + 0.3𝑋3 + 0.4𝑋4 + 0.5𝑋5 + 0.6𝑋6 + 0.7𝑋7 + 0.8𝑋8 + 0.9𝑋9 + 휀𝑖 
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Where the error term 휀𝑖~𝑁(0,1). Each line on the plot represents the β coefficient for any 

penalty (λ). The coefficient path plot shows that as the penalty, increases on the x-axis, the β 

coefficients shrink towards 0 and when they reach exactly 0 the variable is removed from the 

model. The LASSO is able to both select variables and estimate β coefficients at the same 

time; however the β estimates will be biased for some λ > 0.  

 

 

Figure 2.1 Coefficient path plot showing the shrinkage of ten variables as the tuning 

parameter increases. Each line represents a variable and the path shows the β coefficient on 

the y-axis as the penalty (on a 𝑙𝑜𝑔(𝜆) scale) increases on the bottom x-axis. The top x-axis 

shows the number of variables remaining in the model at each 𝑙𝑜𝑔(𝜆) penalty value. 

 

There are two main reasons why the inclusion of the penalty is particularly desirable 

compared to a least squares model. The first is prediction accuracy and the second is model 

interpretation (9). In a high-dimensional dataset, a regression analysis produces estimates 

that have high variance and low bias. By penalising estimates, the variance is reduced and 

the bias will increase which increases the prediction accuracy (9,21,22). For variable 

selection the model interpretability is of greater importance. The aim is to select a smaller 
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subset of variables that is best able to explain the variance in the outcome variable. By 

reducing the number of variables in the model, it becomes more interpretable. Variable 

selection methods such as stepwise regression tend to lead to unstable models which the 

LASSO does not (9,23). 

 

There are two main criticisms of the LASSO that were outlined by Zou and Hastie (18). The 

first is when 𝑃 >  𝑁, then the LASSO is only able to select at most N variables for a model. 

This is less of a concern in GWAS as the number of truly associated SNPs is small compared 

to the ever increasing sample size of a GWA study. The second criticism of the LASSO is the 

inability to handle correlated data with Zou and Hastie stating that in a group of highly 

correlated variables, the LASSO tends to select one variable without regard for which 

variable is selected (18). This would be a concern in GWA studies, as SNPs in close proximity 

to each other tend to be highly correlated. The correlation between SNPs is known as 

Linkage Disequilibrium (LD) and is discussed in greater detail in Chapter 5. This is 

contradictory to the literature which suggests that the LASSO is able to handle the LD 

between SNPs (24-26).  

 

2.3 Generalisations of the LASSO 

 

2.3.1  Ridge regression and the elastic net 

 

Another popular penalised regression method is ridge regression (RR) first proposed by Hoerl 

and Kennard in 1970 (17). Ridge regression was designed to account for correlation between 

variables in regression and minimises the following function: 

 �̂�𝑅𝑅(𝜆) = min
𝛽
( 
1

2𝑁
 ∑(𝑦𝑖 −  𝜇 − ∑𝑥𝑖𝑗𝛽𝑗

𝑃

𝑗=1

)

2
𝑁

𝑖=1

+ 𝜆 ∑𝛽𝑗
2

𝑃

𝑗=1

) (2.4) 
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The penalty for RR is slightly different to the LASSO, while the LASSO penalty penalises the 

sum of the absolute value of the β estimates, ridge regression penalises the sum of the 

squared β estimates. The right-hand plot in Figure 2.2 shows the coefficient path plot for 

ridge regression. Like the LASSO, RR penalises towards 0. Unlike the LASSO however RR is 

unable to force variables to exactly 0 and therefore all variables remain in the model. This is 

shown by the top x-axis in the coefficient path plot, which displays the number of variables 

remaining in the model for a certain λ, which remains at 10. This means that RR is unable to 

perform variable selection. When comparing the coefficient path plots of the LASSO and RR 

in Figure 2.2, it can be seen that the LASSO tends to shrink smaller β coefficients more 

heavily, whereas RR penalises the larger coefficients more heavily. The RR penalty tends to 

shrink correlated variables towards each other creating a “grouping effect”(27). 

The difference in penalties is shown in Figure 2.3 for two variables which are plotted on the x 

and y-axis. The point at �̂� represents the OLS estimates for the two variables. The ellipses 

show the contours of the residual sum of squares (RSS) as the function moves away from the 

minimum (�̂�). The solid regions centred around (0, 0) are the LASSO and RR penalty 

constraints respectively. The size of this constraint is determined by the size of the tuning 

parameter λ. The penalised regression coefficient estimates for each method is at the point 

where the contour touches the penalty. For the LASSO, there is a greater chance that the 

contour would meet the penalty at a corner due to its diamond shape, and at any of these 

points the coefficient estimate for one of the two variables would be 0. Which coefficient is 

estimated as 0 would depend in which corner meets the contour. This is less likely to be the 

case for RR due to the circular shape of the penalty constraint.  
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Figure 2.2 Coefficient path plot showing the shrinkage of ten variables as the tuning parameter increases for the LASSO (left), elastic net 
with α = 0.9 (centre) and ridge regression (right). Each line represents a variable and the path shows the β coefficient on the y-axis as the 
penalty (on a 𝑙𝑜𝑔(𝜆) scale) increases on the bottom x-axis. The top x-axis shows the number of variables remaining in the model at each 
𝑙𝑜𝑔(𝜆) penalty value. 
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Figure 2.3 Two-dimensional contour plots of the LASSO and ridge regression. Taken 
from Tibshirani (9). 

 

 

Zou and Hastie proposed the elastic net (EN) (18) which combines both the LASSO and 

RR penalties (2.5). This allows the elastic net to both handle correlations and perform 

variable selection. 

 

 
 

�̂�𝐸𝑁(𝜆) = min
𝛽
(
1

2𝑁
 ∑(𝑦𝑖 −  𝜇 − ∑𝑥𝑖𝑗𝛽𝑗

𝑃

𝑗=1

)

2
𝑁

𝑖=1

 + (𝛼 − 1)𝜆∑|𝛽𝑗|

𝑃

𝑗=1

+ 𝛼𝜆 ∑𝛽𝑗
2

𝑃

𝑗=1

) 

(2.5) 

 

 

An 𝛼 term is introduced alongside the tuning parameter 𝜆 which allows the choice of 

varying the relative strength of each penalty. 𝛼 can take any value between 0 and 1. 

An 𝛼 = 0 gives a LASSO model for 𝜆, and 𝛼 = 1 produces a RR model and any 𝛼 
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between 0 and 1 will result in a model using both penalties. The elastic net allows both 

variable selection and the ability to handle correlated data. Zou and Hastie showed 

that in both a simulation study and example dataset, the EN outperforms the LASSO in 

terms of model prediction. This was mainly due to the RR’s penalty being able to group 

correlated variables together and penalise these groups together (Figure 2.4). However 

this also meant that EN would select more variables in the final model compared to the 

LASSO which was also shown by Waldmann et al. in a simulation on GWAS data (27). 

 

The increase in the number of variables selected may be detrimental in GWAS as there 

are a large number of correlated SNPs in a dataset. Selecting one highly associated SNP 

could lead to a number of correlated SNPs also being selected. In reality, it is likely that 

only one in a group of correlated SNPs may be truly associated. As the EN uses both 

LASSO and RR penalties, it’s unsurprising that the shape of the penalty is somewhere 

between these two penalties (Figure 2.5) and its shape will be influenced by 𝛼. 

 

Figure 2.4 The difference in coefficient path plots between the LASSO and elastic net in 
correlated data. Taken from Zou and Hastie (18). 



14 
 

 

 

Figure 2.5 Two-dimensional contour plots of the LASSO, elastic net and ridge 
regression. Taken from Zou and Hastie (18)  

 

2.3.2  Bridge regression 

The LASSO and RR are two special cases of a family of penalised regression functions 

known as Bridge regression (28) which minimises the following general function: 

 

 �̂�𝐵𝑟𝑖𝑑𝑔𝑒(𝜆) = min
𝛽
(
1

2𝑁
 ∑(𝑦𝑖 −  𝜇 − ∑𝑥𝑖𝑗𝛽𝑗

𝑃

𝑗=1

)

2

+ 𝜆 ∑|𝛽𝑗|
𝛾

𝑃

𝑗=1

𝑁

𝑖=1

) (2.6) 

 

Any 𝛾 > 0 defines the type of penalty used. At 𝛾 = 1, LASSO function is produced (2.2) 

and 𝛾 = 2 produces a RR function (2.4). Variable selection can be performed for any 

bridge penalty 0 < 𝛾 ≤ 1. Figure 2.6 shows the contour plots for varying bridge 

regression penalties. For 𝛾 ≤ 1, the contours are highly likely to intersect the penalty 

at a corner, which would penalise some variables to 0. For 𝛾 > 2, the circular penalty 
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from the ridge regression tends towards square shape, which is also unable to perform 

variable selection. 

 

Figure 2.6 Two-dimensional contour plots for varying Bridge regression penalties. 
Taken from Fu (28) 

 

2.3.3  The group LASSO 

 

Yuan and Lin (29) first proposed the group LASSO as a method to group desired 

variables together within a single dataset, shown in (2.7), where 𝑔 denotes the pre-

defined groups of variables. The penalty on each group is weighted by the square-root 

of the number of variables in that group (𝜌𝑔), therefore for any group consisting of a 

single variable would be penalised in the same way as the LASSO. Groups tend to 

consist of variables that are correlated with each other, although this may not have 

been the intended design (30).  
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�̂�𝑔𝑟𝑝𝐿𝐴𝑆𝑆𝑂(𝜆) = min
𝛽
(
1

2𝑁
 ∑(𝑦𝑖 − ∑𝑥𝑖𝑔𝛽𝑔

𝐺

𝑔=1

)

2
𝑁

𝑖=1

+ 𝜆 ∑√𝜌𝑔‖𝛽𝑔‖2

𝐺

𝑔=1

) 

(2.7) 

 where,  
 𝑔 = {1,…𝐺} is a set of predefined groups from the 𝑗 variables  

 ‖𝛽𝑔‖2
= √ ∑ 𝛽𝑗

2

𝑃

𝑗 ∊𝐺,𝑗=1

   

 𝜌𝑔 = the number of variables in group 𝑔  

 

 

The group LASSO is unable to perform variable selection within groups; therefore 

either all variables in a group are selected or are removed from the model using the 

group LASSO. Friedman et al. proposed the sparse group LASSO which contains two 

penalties and allows variables to be penalised within and across groups (31) (2.8). The 

function is similar to that of the group LASSO (2.7); however there is no weight on 

group penalty and a LASSO penalty on each individual variable is included, which 

penalises variables independent of its grouping. As the group LASSO and sparse group 

LASSO use the same penalties as RR and EN respectively, it’s unsurprising that the 

penalty takes a similar shape on a contour plot (Figure 2.7). 

 

 

�̂�𝑠𝑔𝑟𝑝𝐿𝐴𝑆𝑆𝑂(𝜆) = min
𝛽
(
1

2𝑁
 ∑(𝑦𝑖 − ∑𝑥𝑖𝑔𝛽𝑔

𝐺

𝑔=1

)

2

+ 𝜆1  ∑‖𝛽𝑔‖2

𝐺

𝑔=1

𝑁

𝑖=1

+ 𝜆2∑|𝛽𝑗|

𝑃

𝑗=1

) 

(2.8) 
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Figure 2.7 Two-dimensional contour plots of the LASSO, sparse group LASSO and group 
LASSO. Taken from Friedman et al. (31) 

 

2.3.4  The fused LASSO 

 

The fused LASSO first proposed by Tibshirani et al. (32), is mainly designed for data 

that can be ordered in some fashion, and the ordering leads to some potential 

correlation, for example, SNPs in the genome are ordered along a chromosome with 

the correlation being LD between SNPs, especially those that are close to each other. 

The fused LASSO minimises the following function: 

 

 

�̂�𝑓𝑢𝑠𝑒𝑑(𝜆) = min
𝛽
(
1

2𝑁
 ∑(𝑦𝑖 −  𝜇 − ∑𝑥𝑖𝑗𝛽𝑗

𝑃

𝑗=1

)

2

+ 𝜆1∑|𝛽𝑗|

𝑃

𝑗=1

𝑁

𝑖=1

+ 𝜆2∑|𝛽𝑗 − 𝛽𝑗−1|

𝑃

𝑗=2

) 

(2.9) 
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There are two penalties incorporated for the fused LASSO, the first is the LASSO 

penalty on each individual variable which shrinks estimates towards 0. The second is a 

LASSO penalty on the difference in β estimates between adjacent variables in the 

ordered dataset. This penalty shrinks adjacent β estimates towards each other. Figure 

2.8 which showed a simulated example of the fusion penalty taken from Tibshirani et 

al. (32). In each plot the black lines represent the true simulated β and the red scatter 

points represent the estimated β for each predictor in four scenarios; OLS (a), the 

LASSO (b), OLS with a fusion penalty but no LASSO penalty (c) and the fused LASSO (d). 

By penalising adjacent variables towards each other, the fusion methods were able to 

estimate the true β better than the LASSO and OLS. The fused LASSO also selects more 

variables than the LASSO in this case, due to the fusion penalty penalising adjacent 

variables into the model. This is also shown in the contour plot (Figure 2.9) where the 

shape of the penalty is further restricted to a small section of the LASSO penalty where 

𝛽1and 𝛽2 take similar values. 
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Figure 2.8 Illustration of the fusion penalty (c) and fused LASSO (d) on a simulated 
dataset compared to OLS (a) and the LASSO (b). Taken from Tibshirani et al. (32). 
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Figure 2.9 Two-dimensional contour plot of the fused LASSO for two adjacent 
variables. Taken from Tibshirani et al. (32) 

 

2.3.5  The LASSO in meta-analysis 

 

Meta-analysis is a popular method of pooling data from several studies together (33). 

This is performed by pooling summary statistics from different studies to obtain a 

single pooled estimate, as the raw data is either not used or unavailable. By pooling a 

number of studies together there is an increase in the power of the study.  

 

Meta-analyses often take one of two forms of model, fixed-effects and random-

effects. A fixed effect model is fitted under the assumption that there is one constant 

genetic effect across all studies. A fixed-effect model using LASSO regression would 

involve combining all studies into one large study and then fit a LASSO model. A 

random effects model assumes that each study has its own genetic effect due to 

variation between studies, known as heterogeneity (34). These variations between 

studies can be due to various factors such as genotypic variation between study 

populations, phenotypic variations between populations due to differences in lifestyle 
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of differences in study design, recruitment, phenotypic or genotypic measurements. 

Although set in a psychology setting, Curran and Hussong detail an extensive list of 

possible sources of heterogeneity, many of which can be applicable in a genetics 

setting (35). 

 

Meta-analyses pool together estimates, typically either effect estimates or P-values. 

The effect estimates typically tend to be effect estimates (β) or Odds Ratios (OR). 

Pooling estimates from LASSO analyses is difficult as the penalty will bias the β or OR 

estimates. Each dataset when analysed separately will have a different strength 

penalty applied to it. Even if the same penalty is applied to all datasets, this would not 

mean the relative strength of the penalty is the same across all datasets, as the 

strength of the penalty is relative to the size of the β’s or ORs. In both cases the bias in 

the estimates across all datasets would not be consistent. So far there has been no 

attempt in meta-analysing studies using penalised regression methods from summary 

statistics or P-values although there have been suggested methods to calculate P-

values using the LASSO (36).  

 

He et al. have however proposed the Sparse meta-analysis (37). This method calculates 

regression estimates and applies a multivariate inverse-variance estimator as proposed 

by Lin and Zeng (38) with a penalty applied on the square-root of the absolute sum of 

βs across studies. The make-up of this penalty allows for heterogeneity between 

studies. 

 

Another method of pooling datasets is integrative analysis. This requires the raw 

individual level data (ILD) for each study to pool together for analysis. This differs from 

meta-analysis which analyses each dataset individually then pools summary statistics 

together. The use of the LASSO in integrative analyses is discussed in greater detail in 

Chapter 9. 
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2.3.6  Other generalisations of the LASSO 

There are a number of other generalisations of the LASSO; some of these are listed by 

Tibshirani (39). The list includes methods such as the adaptive LASSO (40) which uses a 

weighted penalty (𝜔𝑗) on each variable: 

 

 

�̂�𝑎𝑑𝑝𝐿𝐴𝑆𝑆𝑂(𝜆) = min
𝛽
(
1

2𝑁
 ∑(𝑦𝑖 −  𝜇 − ∑𝑥𝑖𝑗𝛽𝑗

𝑃

𝑗=1

)

2
𝑁

𝑖=1

+ 𝜆 ∑𝜔𝑗|𝛽𝑗|

𝑃

𝑗=1

) 

(2.10) 

 Where , 𝜔𝑗 = 
1

|�̂�𝑗|
𝜐 and 𝜐 > 0  

 

 

The weight for each variable tends to be based on some initial β estimates (�̂�𝑗) such as 

OLS or the LASSO. A study by Zou suggests that variable selection methods could be 

inconsistent (40), for example due to overfitting and including a number of false 

positives. The adaptive LASSO was designed to overcome this problem. The weights 

will adjust each β coefficient differently, penalising the variables with a smaller �̂�𝑗 

more heavily. 

 

There have also been a number of Bayesian approaches to penalised regression 

including the LASSO (41), elastic net (42), group LASSO (43) and fused LASSO (44). 

These methods are summarised by Liu et al.(45) 
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2.4 Algorithms that fit LASSO models  

 

2.4.1  A review of algorithms that fit LASSO models 

 

The algorithms used to optimize non-smooth convex functions can be subcategorised 

into three main types; path following (homotopy) methods, first-order methods and 

alternating direction method of multipliers (ADMM) of which the first order methods 

seem the most popular (46). 

 

2.4.1.1 First order methods 

 

Tibshirani initially suggested a finite-step (2P) convergence algorithm (9) using 

elements of Lawson and Hansen’s work on linear least squares problems subject to 

inequalities (47). It stated that convergence of the model could require up to O(2P) 

iterations, where P denotes the number of predictor variables. While the author 

estimates that most models converge between 0.5𝑃 and 0.75𝑃. However in a GWAS 

setting where 𝑃 is large, the computational time to fit models would make the LASSO 

impractical using this finite step convergence algorithm. 

 

Fu later suggested a “shooting algorithm for the LASSO” that was essentially a 

coordinate descent method (CD), in a study focused on comparing bridge regression 

with Least Squares regression, the LASSO and ridge regression (28). This was the first 

study to both suggest and apply a coordinate descent algorithm (CDA) as a method to 

optimise a form of penalised regression.  

 

Fu compares the “shooting method” to the finite-steps algorithm and concluded that 

the “shooting method” is simpler to implement and a faster algorithm. It was 

estimated that it requires approximately 𝑃 log 𝑃 iterations to converge, which is faster 
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than the finite-steps algorithm. The author does state that this is an estimated result 

and that a theoretical result had not been obtained.  

The coordinate descent algorithm is an optimisation algorithm to ‘search’ for a 

minimum of a multivariate function. It is an iterative algorithm which optimises along 

only one direction (or coordinate) of the multivariate space whilst keeping the 

remaining variables fixed, rather than attempting to minimise all variables 

simultaneously. This makes the algorithm simple to implement and computationally 

faster. CD can be used to fit models for different penalties assuming the loss function is 

convex, differentiable and the penalty term is both convex and separable (48). 

Therefore CD is flexible enough to fit a range of other penalised regression models. 

 

Work by Shevade and Keerthi (49) and Daubachies et al.(50) suggested and implement 

CD algorithms in similar work. Thereafter a large quantity of work was done by 

Friedman, Hastie and Tibshirani in optimising LASSO models using CD (51-53). 

Coordinate descent was also implemented by the same authors into the popular R 

package glmnet (53). The algorithm is flexible enough to fit a range of alternative 

penalised regression models such as elastic net and the grouped LASSO (54). 

Least Angle Regression (LARS) is another popular first-order algorithm (55). It is based 

on the idea of attempting to apply a forward stepwise selection process quickly and 

efficiently, similar to the Homotopy algorithm. LARS however produces approximate 

solutions and Homotopy gives exact solutions (56,57). The algorithm starts off with a 

set of λ, an outcome variable 𝑦 and a set of predictors 𝑥1, … 𝑥𝑃. Like any forward 

stepwise procedure, the variable 𝑥𝑗1 that is the most correlated with 𝑦 is selected first 

and enters the model. A step is taken in the direction along 𝑥𝑗1 towards 𝑦 until 

another 𝑥𝑗2 variable is as correlated as 𝑥𝑗1. This first step moves the estimates along 

the “least angle direction” on a plane. At this point 𝑥𝑗2 enters the model and a second 

step is taken, this time along the equiangular bisector between 𝑥𝑗1 and 𝑥𝑗2. This is until 

a third parameter 𝑥𝑗3 is as correlated as both 𝑥𝑗1 and 𝑥𝑗2, at which point the next step 

is taken along the equiangular bisector between 𝑥𝑗1,𝑥𝑗2 and 𝑥𝑗3. This is repeated until 

the last step, which is of the least correlated parameter 𝑥𝑗𝑝. A graphical representation 
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for two predictors is shown in Figure 2.10. The algorithm requires a maximum of 

𝑂(𝑃3 + 𝑁𝑃2) computations to calculate the entire sequence of steps for any λ. 

Hesterberg et al. discussed the computational issues of the LARS algorithm suggesting 

that issues with numerical accuracies may arise in highly correlated data (58), which 

would be the case in GWA studies. Future studies also showed that the LARS algorithm 

was computationally slower than CD for a large range of 𝑁 and 𝑃 (53).  

 

Figure 2.10 The LARS algorithm in the case of 2 predictors taken from Hesterberg et 

al.(58) 

 

2.4.1.2 Homotopy 

 

Osbourne et al. suggested a Homotopy algorithm to fit LASSO models as well as CD 

(59). The algorithm starts with an empty set of coefficients and a sufficiently large λ. 

The process slowly decreases λ until a ‘break point’ is reached. At this point the 

solution has changed and coefficients are included in the model by iteratively adding 

and deleting non-zero coefficients until convergence is met (56,57,60). Due to the 

algorithm starting with a large λ, it is known as a ‘greedy algorithm’ and is similar to a 

forward stepwise procedure as, at each ‘break point’, the next most correlated 
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parameter is added. Yang et al. compared the average run time and accuracy between 

five algorithms: Homotopy, primal-dual interior point method (PDIPA), truncated 

Newton interior-point method (TNIPM/L1LS), Iterative Shrinkage-Thresholding 

algorithm (ISTA/SpaRSA), Fast Iterative Shrinkage Algorithm (FISTA) and Dual 

Augmented Lagrange Multiplier (DALM) (57,60). Simulations showed that Homotopy 

had a slower average run time to convergence than most algorithms and increased 

linearly as the number of variables increased. Although the results on a real-life 

dataset (N = 249, P = 20) showed that Homotopy was the most accurate of the 

algorithms for facial recognition, it was also the fastest algorithm on this dataset when 

there is little noise (denoted by corruption %) and when 𝑃 is small. In a GWAS scenario 

where P is large, the algorithm will be computationally slower than the other 

algorithms and may fail to converge when 𝑃 >  𝑁 (61). Taking into account speed and 

accuracy the authors concluded that there was no clear winner between these 

methods; PDIPA was the most accurate for noise-free data, while SpaRSA, FISTA and 

DALM were the most efficient in noisy data.  

 

2.4.1.3 Alternating Direction Method of Multipliers 

The same authors conducted a similar study comparing the same algorithms but 

included accelerated version of parallel coordinate descent, where the user specifies 

the order of each coordinate update, Primal Augmented Lagrange Multiplier (PALM), 

approximate message passing (AMP) and Templates for Convex Cones Solvers (TFOCS) 

algorithms. They concluded that the ALM algorithms performed the best for facial 

recognition (60). Yang et al. discussed the differences between PALM and DALM 

algorithms noting that the efficiency can be different in real-world applications and 

running time would depend on the size of the dataset. For GWAS, the most 

computational intensive step for PALM (𝑂(𝑛2)), would be faster than the most 

computational intensive step for DALM (𝑂(𝑝2 + 𝑛𝑝)). The study showed that in this 

case the ADMM methods (DALM and PALM) were amongst the fastest in terms of 

computational time to reach an accurate estimate.  
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The PALM algorithm (also known as ADMM) eliminates the LASSO inequality constraint 

(2.3) by minimising the augmented Lagranian function (2.11). The solution to Equation 

(2.11) gives an approximate solution to the LASSO for some 𝜆. Each iteration minimises 

𝛽 and 𝑒 separately (2.12) (60). The disadvantage of this method is that the Langranian 

multiplier 𝜉 is chosen and can be inefficient with a poor choice (62) and while the 

algorithm is guaranteed to converge, it produces approximate solutions rather than 

exact ones (57). The ability to remove the inequality constraint makes the ADMM 

algorithm flexible to fit other penalised regression models like the fused LASSO (46,63). 

 

 
ℒ𝜉(𝛽, 𝑒, 𝜃) =  ∑|𝛽| +  𝜆∑|𝑒| + 

𝜉

2
∑(𝑦 −  𝛽𝑥 − 𝑒)2  

+  𝜃𝑇(𝑦 −  𝛽𝑥 − 𝑒) 
 

(2.11) 

 

 {

𝑒𝑘+1 = min
𝑒
ℒ𝜉(𝛽𝑘, 𝑒, 𝜃𝑘)

𝛽𝑘+1 = min
𝑥
ℒ𝜉(𝛽, 𝑒𝑘+1, 𝜃𝑘)

                 𝜃𝑘+1 = 𝜃𝑘 +  𝜉 (𝑦 − 𝛽𝑘+1𝑥 − 𝑒𝑘+1)

 (2.12) 

 

 

2.4.1.4 Packages that fit the penalised regression models in R 

 

 

Table 2.1 lists a number of R packages that implement penalised regression models. 

The descent algorithms, specifically coordinate descent, is clearly the most popular 

algorithm used for R packages, especially for the LASSO and group LASSO. Only 

genlasso (64) applies an ALM algorithm. Both glmpath (65) and lasso2 (66) use 

homotopy path algorithms. Other packages such as elasticnet (67), lol (68), pensim 

(69), relaxnet (70) and relaxo (71) are not listed as do not specify which algorithms are 

used. 
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Table 2.1 List of packages that apply penalised regression models in R 

Package Algorithm Models options 
Additional 

Information 

genlasso (64) DALM 
LASSO, fused 
LASSO, trend 

filtering 
 

gglasso (72) 
Blockwise-

Majorization-
descent 

Group LASSO  

glasso (73) Coordinate descent Graphical LASSO  

glmmLasso (74) Gradient descent 
LASSO for 

Generalised linear 
mixed models 

 

glmnet (53) 
Cyclic coordinate 

descent 

LASSO, ridge 
regression and 

elastic net 

For GLM and Cox 
proportional 

hazard models 
glmpath (65) Homotopy LASSO  

grplasso (75) 
Blockwise 

coordinate descent 
Group LASSO  

grppenalty (76) Coordinate descent 
Group LASSO and 

group ridge 
regression 

 

grpreg (77) Coordinate descent Group LASSO 
Includes a number 
of different group 

penalties 

HDPenReg (78) 
Least Angle 
Regression 

LASSO, fused 
LASSO and fusion 

 

LARS (55) 
Least Angle 
Regression 

LASSO, LARS, 
Forward stagewise, 

stepwise 
 

lasso2 (66) Homotopy LASSO  

LassoBacktracking 
(79) 

Coordinate descent LASSO 
Package attempts 
to identify variable 

interactions 

lassoshooting (80) 
Cyclic coordinate 

descent 
LASSO  

penalized (81) Gradient ascent 
LASSO, ridge and 

fused LASSO 

For GLM and Cox 
proportional 

hazard models 
QICD (82) Coordinate descent LASSO For Penalised 
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 Quantile regression 

rqPen (83) 
Coordinate descent 

 

LASSO, SCAD and 
MCP functions and 
group penalties for 

each function 

For Penalised 
Quantile regression 

SGL (84) Gradient descent Group LASSO  

stepPlr (85) 

Iterative 
reweighted ridge 

regressions (IRRR), 
a first-order 

algorithm, similar 
to Newton Raphson 

methods 

Logistic ridge 
regression 

Package attempts 
to identify variable 

interactions 

  

2.4.1.5 Conclusion 

 

There are four popular algorithms for non-smooth convex functions: Coordinate 

descent, Homotopy, ALM and LARS. Of the four, CD seems the most flexible and 

easiest to implement as an algorithm. Yang et al. showed that the ALM algorithms 

were computationally faster than CD (60), however this was in a scenario where 𝑁 > 𝑃 

and 𝑃 was small. The ALM algorithms may not be computationally faster when 𝑃 is 

large as the algorithm iteratively optimises both 𝛽 and the dummy variable 𝑒 (2.12), 

where CD only requires the optimisation of 𝛽. ALM also requires the selection of the 

Lagrange Multiplier 𝜉, which can be inefficient with a poor choice (62). Homotopy 

suffers in terms of computational speed when 𝑝 is large as does LARS when compared 

to CD (53). CD seems to be the most popular of the algorithms with published R 

packages and is also flexible enough to fit a number of penalty functions (Table 2.1) 
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2.4.2  Algebra of coordinate descent algorithm 

2.4.2.1 The LASSO 

 

The LASSO minimises the function shown in (2.2) for an Ordinary Least Squares 

problem. To estimate some 𝛽𝑘 for some 𝑘 = {1,… , 𝑃}, the first step is to calculate the 

derivative of �̂�(𝜆) with respect to 𝛽𝑘 (2.13). 

 

 
𝛿�̂�(𝜆)

𝛿𝛽𝑘
=  

1

2𝑁
.−2 ∑(𝑦𝑖 −  𝜇 − ∑𝑥𝑖𝑗𝛽𝑗

𝑃

𝑗=1

)

𝑁

𝑖=1

𝑥𝑖𝑘 + 𝜆 𝑠𝑖𝑔𝑛(𝛽𝑘) (2.13) 

  

 

Manipulation of equation (2.13) leads to equation (2.14) by separating 𝑥𝑖𝑘𝛽𝑘 

from 𝑥𝑖𝑗≠𝑘𝛽𝑗≠𝑘, which are fixed estimates for all 𝑗 ≠ 𝑘. Only 𝛽𝑘 is being estimated for 

the kth iteration. 

  

 

𝛿�̂�(𝜆)

𝛿𝛽𝑘
= −

1

𝑁
 ∑(𝑦𝑖 −  𝜇 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑃

𝑖=1,𝑗≠𝑘

− 𝑥𝑖𝑘𝛽𝑘 )

𝑁

𝑖=1

𝑥𝑖𝑘 

 
+𝜆 𝑠𝑖𝑔𝑛(𝛽𝑘) 

(2.14) 

 

 
                  =  −

1

𝑁
 ∑(𝑦𝑖 −  𝜇 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑃

𝑗=1,𝑗≠𝑘

 )

𝑁

𝑖=1

𝑥𝑖𝑘 − ∑𝑥𝑖𝑘
2 𝛽𝑘

𝑁

𝑖=1

 

 
+𝜆 𝑠𝑖𝑔𝑛(𝛽𝑘) 

(2.15) 

 

To calculate the solution to this equation, we set (2.15) to equal 0 and solve for 

𝛽𝑘 (2.16). 
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−
1

𝑁
 ∑(𝑦𝑖 −  𝜇 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑃

𝑗=1,𝑗≠𝑘

 )

𝑁

𝑖=1

𝑥𝑖𝑘 − ∑𝑥𝑖𝑘
2 𝛽𝑘

𝑁

𝑖=1

+ 𝜆 𝑠𝑖𝑔𝑛(𝛽𝑘) = 0 

 

∴ −
1

𝑁
 ∑(𝑦𝑖 −  𝜇 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑃

𝑗=1,𝑗≠𝑘

 )

𝑁

𝑖=1

𝑥𝑖𝑘 + 𝜆 𝑠𝑖𝑔𝑛(𝛽𝑘) =  ∑𝑥𝑖𝑘
2 𝛽𝑘

𝑁

𝑖=1

 

 

 ∴  𝛽�̂� = 

−
1
𝑁 ∑ (𝑦𝑖 −  𝜇 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑃
𝑗=1,𝑗≠𝑘  )

𝑁

𝑖=1
𝑥𝑖𝑘 + 𝜆 𝑠𝑖𝑔𝑛(𝛽𝑘)

∑ 𝑥𝑖𝑘
2𝑁

𝑖=1

 (2.16) 

 

To further simplify equation (2.16), the denominator ∑ 𝑥𝑖𝑘
2𝑛

𝑖=1
= 𝑁 − 1 for any 

standardised 𝑥𝑖𝑘. The derivative of the penalty function yields directional derivatives 

dependant on the sign of 𝛽𝑘. For any 𝛽𝑘 a right (positive) and left (negative) derivative 

are calculated using the following steps: 

 

 

𝐿𝑒𝑡 
1

𝑁
 ∑ (𝑦𝑖 −  𝜇 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1,𝑗≠𝑘

 )
𝑁

𝑖=1
𝑥𝑖𝑘 =  𝑆(𝑦, 𝜇, 𝑥, 𝛽) 

 

𝐿𝑒𝑡 ∑𝑥𝑖𝑘
2

𝑁

𝑖=1

=  𝑆𝑥𝑥 

 

𝑖𝑓 𝛽𝑘 > 0 {
𝑟𝑑 =

−𝑆(𝑦, 𝜇, 𝑥, 𝛽) +  𝜆 

𝑆𝑥𝑥

𝑙𝑑 =  
−𝑆(𝑦, 𝜇, 𝑥, 𝛽) +  𝜆

𝑆𝑥𝑥

 

 
 

𝑖𝑓 𝛽𝑘 < 0 {
𝑟𝑑 =

−𝑆(𝑦, 𝜇, 𝑥, 𝛽) −  𝜆 

𝑆𝑥𝑥

𝑙𝑑 =  
−𝑆(𝑦, 𝜇, 𝑥, 𝛽) −  𝜆

𝑆𝑥𝑥

 

 

𝑖𝑓 𝛽𝑘 = 0 {
𝑟𝑑 =

−𝑆(𝑦, 𝜇, 𝑥, 𝛽) +  𝜆 

𝑆𝑥𝑥

𝑙𝑑 =  
−𝑆(𝑦, 𝜇, 𝑥, 𝛽) −  𝜆

𝑆𝑥𝑥

 

 

(2.17) 
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In order to update  𝛽𝑘 for any iteration, if 𝑙𝑑. 𝑟𝑑 >  0 then: 

 

 𝛽�̂� =  𝛽𝑘 − 𝑟𝑑 (2.18) 

 

Solutions for other generalised linear models such as logistic and poisson regression 

can be derived in the same manner. 

 

2.4.2.2 Bridge penalties 

 

Coordinate descent algorithms have been extended to other penalised regression 

methods. Fu (28) provided an outline to calculate solutions for bridge estimators 

including ridge regression. The algebra to derive the solution for ridge regression is 

similar to that shown in section 2.4.2.1. The entire function is differentiable in this case 

and therefore does not require the soft thresholding operator shown in (2.18). The 

solution is shown in equation (2.19). The solution to the elastic net solution can be 

used to derive both LASSO and ridge regression by tuning 𝛼 (2.20). The solution for the 

elastic net is the basis of the glmnet package in R and similar solutions have been 

described in the Friedman et al. paper (53). 

 

  𝛽�̂� = 

−
1
𝑁 ∑ (𝑦𝑖 −  𝜇 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑃
𝑗=1,𝑗≠𝑘  )

𝑁

𝑖=1
𝑥𝑖𝑘

∑ 𝑥𝑖𝑘
2𝑁

𝑖=1
+ 2𝜆

 (2.19) 

 

 𝛽�̂� = 

−
1
𝑁 ∑ (𝑦𝑖 −  𝜇 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑃
𝑗=1,𝑗≠𝑘  )

𝑁

𝑖=1
𝑥𝑖𝑘 + 𝜆𝛼 𝑠𝑖𝑔𝑛(𝛽𝑘)

∑ 𝑥𝑖𝑘
2𝑁

𝑖=1
+ 2𝜆(1 −  𝛼)

 (2.20) 
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2.4.2.3 The group LASSO 

 

Initially when first introducing the group LASSO, Yuan and Lin suggested applying Least 

Angle Regression algorithm (55) (LARS) to fit grouped LASSO (29) models. Tseng and 

Yun first suggested using a block coordinate descent algorithm to fit LASSO models (54) 

where a block is defined as a row of β estimates. Noah et al. provided a solution for 

the group LASSO using block coordinate descent (2.21). Most R packages that fit 

grouped LASSO models use CD (72,75-77,84) (Table 2.1). 

 

𝛽�̂� = 
1

‖𝑥𝑘‖2
2  

(

 
 
1 − 

𝜆

‖𝑥𝑘 (𝑦𝑖 − ∑ 𝑥𝑖𝑗𝛽𝑗
𝑗≠𝑘

)‖
)

 
 

+ 𝑥𝑘 (𝑦𝑖 − ∑𝑥𝑖𝑗𝛽𝑗
𝑗≠𝑘

) 

(2.21) 

 

2.4.2.4 The fused LASSO 

 

Friedman et al.(51) attempted to apply the coordinate descent algorithm to fit fused 

LASSO models. They found that the algorithm “got stuck” at local minimum rather than 

the global minimum for 2 of the 100 parameters. The reason for this is because the 

penalty is not separable from the loss function. The authors go onto outline an 

alternative algorithm called the fused-LASSO signal approximator (FLSA) however, as 

mentioned in the paper; this algorithm is an approximation and does not guarantee a 

precise solution. The ALM algorithm has been shown to work for the fused LASSO 

(63,86). 
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2.5 Selection of the Tuning parameter for variable 

selection 

 

In the previous section, I discussed algorithms to fit LASSO models and computed a 

path of solutions for varying λ estimates using the coordinate descent algorithm. At 

this stage a user is still required to select an optimal tuning parameter estimate. This 

selection is vital as it will determine which variables are deemed important and which 

are not. The aim in this section is to review and test existing methods for selecting 

single tuning parameters. 

LASSO models are fitted with at least one of two goals: variable selection or model 

prediction. The aim of variable selection is to identify a subset of the variables that is 

associated with the outcome variable. The aim for model prediction is to identify a 

subset of the variables that can be used to accurately predict the outcome variable for 

another dataset (87). Selected subsets for variable selection tend to be smaller than 

subsets for model prediction as the type I error rate is controlled (88). Therefore 

choosing the tuning parameter selection method that is designed with the appropriate 

aim is important. For GWAS, there is a large emphasis on variable selection rather than 

model prediction (88). There are two main groups of tuning parameter selection 

methods for the LASSO; Cross-validation (CV) based methods and Information criteria 

(IC). Cross-validation methods are usually designed for model prediction where 

Information criteria are more suited for variable selection.  
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2.5.1  Tuning parameter selection methods for single penalties 

2.5.1.1 Cross-validation based methods 

 

K-fold Cross-validation (CV) is a commonly used method for selecting tuning 

parameters (89,90). It is the default method in a number of popular R packages for 

LASSO such as glmnet (53), lars (55) and glmpath (65). First applied by Tibshirani (9), 

CV is a subsampling method for model prediction. Table 2.2 describes the basic 

algorithm for selection of the tuning parameter using Cross-validation. Figure 2.11 and 

Figure 2.12 show Steps 3-6 and the selection of λ in Step 9 respectively. The number of 

folds (K) is user selected; this determines the number of subdivisions used for Step 1 in 

the Cross-validation process (Table 2.2). A small number of folds produce a small and 

underpowered training set leading to biased estimates. As the number of folds 

increase, estimates increase in covariance due to overlap between training sets. A 

large number of folds, such as leave-one-out CV (𝐾 = 𝑁), will produce a high variance 

(91-93). The selection of the number of folds is hence a bias-variance trade off, it is 

suggested that 10 folds gives a balance between bias and variance (90,91) and is the 

default option in both glmnet (53) and lars (55) package. 
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Table 2.2 Selection of tuning parameter by Cross-validation 

Let 𝜆𝑖 = A sequence of tuning parameter estimates 

Let K = A user-specified number of folds 

1. Randomly subdivide the dataset of 𝑁 subjects into K equal folds 

2. Begin at 𝜆1 

3. Remove the kth fold from the dataset 

4. Fit the LASSO on the remainder of the dataset (training set) and use the model 

to predict the kth fold (test set) 

5. Calculate the Mean Squared Error (MSE) 

6. Repeat Steps 3 - 5 for each K folds 

7. Calculate the average Mean Squared Error (𝑀𝑆𝐸𝜆𝑖) across all K folds 

8. Repeat Steps 3 -7 for all 𝜆𝑖 

9. Select the optimal 𝜆 =  𝑎𝑟𝑔𝑚𝑖𝑛 𝜆 ∊{𝜆𝑖}(𝑀𝑆𝐸𝜆𝑖) 

 

 

Figure 2.11 Procedure of 3-fold CV taken from Refaeilzadeh et al. (91). See Steps 3-6 in 

Table 2.2. The dataset is separated into 3 folds. One of these folds is set as the test set 

and removed from the dataset. The remaining two folds is the training set and are 

used to fit a LASSO model. Results from this model are then used to predict the test set 

and calculate the Mean-Squared Error (MSE). This is repeated where each fold is 

removed so that a mean MSE across all K-folds can be calculated in Step 7. 



37 
 

 

Figure 2.12 Selection of the tuning parameter from Cross-validation. Mean Squared 

Error is plotted against − log(𝜆) (bottom x-axis). The top x-axis counts the number of 

variables in the model at the corresponding − log(𝜆). The right dashed vertical line 

denotes the selected λ for Cross-validation. The left dashed vertical line denoted the 

selected λ for 1 SE Cross-validation. The simulation of the dataset for this example is 

described in section 2.5.4.1 with the seed = 3. 

 

Although K-fold CV is commonly used, it tends to include a number of false positives 

for variable selection (87,91,94-96) and does not give consistent estimates (90) (Figure 

2.13). One suggested method to reduce the false positives is the 1 Standard Error rule 

(92) (1SE CV). This method selects λ with the sparsest model that is no more than 1 

standard error away from the optimal λ selected by CV. The 1 SE rule chooses the 

simplest model whose accuracy is comparable with the best model from CV (97) and is 

an option available in the glmnet package. Figure 2.12 shows the difference in selected 

λ estimates between CV and 1SE CV, the left-hand vertical line denotes the – 𝑙𝑜𝑔(𝜆) 

estimate selected using 1SE CV compared to the right-hand vertical line which is 

produced using CV. 
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The inconsistent estimates are due to how subjects are randomised into folds leading 

to sample variation and therefore variation in λ estimates. Repeated CV has been 

suggested to produce a more stable λ estimate (97). The process repeats CV and each 

time recording the λ estimate which produces a distribution of λ estimates (Figure 

2.13). The mean or median from this distribution can be selected as the optimal λ 

estimate. Due to the number of repeats of CV this method is more computationally 

expensive as the number of repeats increase. Other advantages and disadvantages for 

CV and repeated CV are described by Refaeilzadeh et al.(91).  

 

Figure 2.13 Distribution of λ estimates obtained using 10-fold Cross-validation from 

glmnet on one dataset repeated 100 times. The simulation of the dataset for this 

example is described later in section 3.2.2.1 with the seed = 3. The distribution of the 

estimates shows how inconsistent CV estimates can be and hence impact the final 

model. In this example the number of variables selected could vary between 0 and 5. 

 

Generalised Cross-validation (GCV) is a method first suggested to tune parameters in 

ridge regression and also applied by Tibshirani (9). For any �̂� estimates obtained by 

fitting a LASSO model of any 𝜆 >  0, GCV is calculated using Equation (2.22). 𝐷𝐹𝜆 
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denotes degrees of freedom for the model at 𝜆. The optimal 𝜆 is selected as the 

minimum GCV estimate across a range of λ estimates. 

 

2.5.1.2  Stability selection 

 

Stability selection is a P-value based approach to model selection suggested by 

Meinhausen and Bühlmann (98) that also intends to address the lack of consistent 

estimates from CV. Table 2.3 describes the stability selection method. By selecting 

variables with the highest probability of selection from subsamples, stability selection 

will produce a stable final model. There are three considerable disadvantages to 

stability selection, specifically with applications to genetic data. The first is due to the 

use of subsampling, LASSO models are fitted on half a dataset and therefore the 

results will be underpowered. Rare genetic variants may not be selected if the 

subsample does not contain any variation in alleles and hence lowering the SNP’s P-

value for selection. The second is discussed by Alexander and Lange (99). In a region of 

SNPs with high LD, the LASSO tends to select one SNP out of the group. Within an 

associated genomic region with high LD the selected SNP may be different between 

subsamples. This will lower P-values for all SNP’s in the region and lead to no SNPs 

meeting the probability threshold. The third disadvantage is addressed by the authors. 

This is the computational intensity of the method which suggests that if 𝑃 >  𝑁 

stability selection is approximately 3 times more computationally expensive and if 

𝑃 <  𝑁 this could increase to 5.5.  

 

 

 

 

 𝐺𝐶𝑉𝜆 = 
(𝑦 − 𝑥�̂�𝜆)

2

𝑁 (1 −
𝐷𝐹𝜆
𝑁 )

2 (2.22) 
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Table 2.3 Selection of tuning parameter by stability selection 

 Let 𝑁 = number of subject in the dataset 

 Let 𝑃 = the number of variables in the dataset 

 Let 𝑖 denote the 𝑖th variable 

 Let 𝑃𝑟𝑖 = The probability that the 𝑖th variable is selected 

 Select 𝑡 = The number of repetitions 

 Select 𝛱 = The probability threshold for selection 

1. Without replacement, draw a random subsample from the dataset of size 
𝑁

2
  

2. Fit a LASSO model using K-fold Cross-validation 

3. Record 𝑆𝑒𝑙𝑖 =  {
        0 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ℎ𝑎𝑠 𝑛𝑜𝑡 𝑏𝑒𝑒𝑛 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

1 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ℎ𝑎𝑠 𝑏𝑒𝑒𝑛 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
 

4. Repeat Steps 1-3 𝑡 times 

5. Calculate the probability that each variable is selected 𝑃𝑟𝑖 = 
∑ 𝑆𝑒𝑙𝑖𝑡

𝑡
 

6. Select variables for the final model such that: 𝑃𝑟𝑖 >  𝛱 

 

2.5.1.3 Information Criterion 

 

Information criterions (IC) have traditionally been used for model selection in 

regression analyses by minimising the log likelihood function of the model plus a 

penalty. This penalty is based on the number of variables remaining in the model; 

therefore a model which contains a greater number of variables will be penalised more 

heavily. Recently studies have used Information criterion to select a tuning parameter 

(96,100,101). The advantage of IC methods over CV methods is that they take less 

computational time to run (102). Bayes Information Criterion (BIC) (103) is the most 

popular Information criterion as it is designed for variable selection and has been used 

by a number of studies for tuning parameter selection (90,100,102). The method 

calculates the residual sum of squares of the model and adds a penalty of the degrees 
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of freedom (DF) of the model multiplied by the log of the total number of observations 

(2.23) (104).  

 

 𝐵𝐼𝐶𝜆 = 𝑁 log(
∑ (𝑦𝑖 − 𝛽𝑗𝑥𝑖𝑗)

2𝑁
𝑖=1

𝑁
) + 𝐷𝐹𝜆  log 𝑁 (2.23) 

 

Akaike’s information criterion (AIC) has also been proposed for tuning parameter 

selection (104). Unlike BIC, the AIC is largely used for model prediction rather than 

variable selection (102). It is unsurprising therefore that the proposed formula for AIC 

has a relaxed penalty on the degrees of freedom compared to the BIC. The difference 

is that the log𝑁 term is replaced with 2 which for a large 𝑁 will be a smaller penalty 

(2.24).  

 

Wang et al. showed that the log transformation of the GCV (2.22) approximates the 

AIC for any given λ (100). Both AIC and BIC methods follow a similar process as 

described with CV (Table 2.2). A sequence of tuning parameter estimates 𝜆𝑖 is selected 

and for each 𝜆𝑖 the AIC or BIC is calculated. The optimal 𝜆 is one that produces the 

minimum AIC or BIC value (Figure 2.14). The IC methods are less computationally 

intensive than CV as they do not require any repetitions for each 𝜆𝑖. 

 𝐴𝐼𝐶𝜆 = 𝑁 log (
∑ (𝑦𝑖 − 𝛽𝑗𝑥𝑖𝑗)

2𝑁
𝑖=1

𝑁
)+ 2𝐷𝐹𝜆   (2.24) 
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Figure 2.14 Selection of the tuning parameter using BIC. BIC values (y-axis) are plotted 

against the tuning parameter λ (x-axis). The selected tuning parameter is the one with 

the minimum BIC value. The simulation of the dataset for this example is described in 

section 3.2.2.1 with the seed = 3. 

 

2.5.1.4  Permutation method 

 

 Sabourin et al. proposed the permutation method for tuning parameter selection (87) 

based on suggestions from Ayers and Cordell (88). This method (described in Table 2.4) 

is intended for variable selection in high-dimensional data but unlike the previously 

discussed Cross-validation based methods; does not use subsampling. The method 

uses an assumption that individual samples are exchangeable. This assumption is used 

to randomly exchange (permute) the outcome variable (alternatively predictor 

variables can also be exchanged), across subjects. This would break up any existing 

associations in the dataset therefore it would be expected that no variables would be 

selected from this permuted dataset. Therefore the LASSO is applied and the smallest 

λ to produce a null model is chosen. This process repeated a number of times with 

different random permutation each time to produce a distribution of λ estimates in 
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which the median is selected (Ayers and Cordell suggest using the maximum estimate 

(88)). From this distribution, the median λ is then the selected tuning parameter for 

the original dataset that has not been permutated. The number of permutations 

required to control the variability in �̂�𝑡 estimates varies between authors. An increase 

in permutations will increase the computational time taken for the analysis but also 

increase the accuracy of the �̂�𝑡 estimate. Ayers and Cordell suggest using over 25 

permutations where Sabourin et al. suggest 100 but also admit that in some cases a 

lower value such as 20 can be sufficient. 

 

Table 2.4 Selection of tuning parameter by the Permutation method 

 Let 𝑁 = number of subject in the dataset 

 Let 𝑃 = the number of variables in the dataset 

 Let 𝑡 = the tth permutation 

 Select 𝑇 = The number of permutations 

 Let 𝑦 = a vector of outcome variable values, where 𝑦 = {𝑦1, … , 𝑦𝑁} 

 Let 𝑥 = an N x P dataset of predictor variables 

1. Create a vector 𝑦𝑡 of length N. Randomly allocate (permute) any cell 

from 𝑦 to 𝑦𝑡 without replacement. 

2. Fit a LASSO model of 𝑋 against 𝑦𝑡 

3. Calculate and record �̂�𝑡 which is the smallest λ that produces a null 

model 

4. Repeat steps 1-3 𝑇 times 

5. Calculate �̂�𝑝𝑒𝑟𝑚 = 𝑚𝑒𝑑𝑖𝑎𝑛 (�̂�1, … , �̂�𝑇)  

6. Fit a LASSO model of 𝑥 against 𝑦 with tuning parameter �̂�𝑝𝑒𝑟𝑚 

 

Both Ayers and Cordell (105) and Arbet et al. (106) suggest variations of the 

permutation method where after permutation, the estimated �̂�𝑡 is the smallest λ that 
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produces a model contains a pre-specified number of variables > 0. However, the 

definition by Sabourin et al. makes more sense. If the outcome variable is permuted 

correctly, all associations between the variables and the outcome would be broken 

and therefore a null model would be expected and not a model containing some 

number of variables. 

 Yi et al. proposed a permutation based method to control the false discovery rate (15) 

(see section 4.6) and found the method to work well for a small number of causal SNP 

but the method became more conservative as the number of causal SNPs increased, 

they concluded that this was due to the permutation of the phenotype also permuting 

the random error in the data. This leads an over estimation in the random error in the 

data resulting in a loss of power. It is not known if this is the case for all permutation 

based methods or just the method proposed by Yi et al. Studies by Sabourin et al. (87), 

Ayers and Cordell (105), and Arbet et al. (106) do not mention such a problem 

occurring. 

 

2.5.1.5 Comparisons of methods in the literature 

 

Tibshirani (9) describes selecting the tuning parameter λ by 5-fold CV, GCV and a 

method based on Stein’s unbiased estimate of risk, details of this method can be found 

here (107). Both CV methods produced a smaller median MSE estimate than Stein’s 

method across 4 simulated examples than Stein’s method. Results on the mean 

number of 0 coefficients is also provided although it is not clear whether these are true 

or false negatives in all examples. Hirose et al. (101) simulated the same scenarios 

(over 200 datasets instead of 50) as Tibshirani and included Information Criterion such 

as a bias corrected AIC, BIC, CV, GCV and Mallows Cp statistic for comparison. Results 

showed that GCV had the highest true and false positive rates across all four examples, 

suggesting that this method included more variables in the final model compared to 

the other methods (see Table 3 (101)). The probability of selecting the true model was 

the smallest for GVC and the largest for 10-fold CV across all methods. BIC and Cross-

validation generally out-performed the other methods especially in terms of 
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minimising the FPR. The BIC also consistently produced a lower MSE estimate than CV 

suggesting that the tuning parameter estimate selected by BIC produces a better 

model fit. The authors also note that the Cp statistic and AIC can yield the same result 

which is shown in a simulation by Kirkland et al.(102). This simulation showed that the 

kappa coefficient method returned the correct model more often than the comparison 

methods. The authors however, noted that this method does not give consistent 

variable selections for the LASSO even though only 8 variables were simulated. On 

average the kappa coefficient tended to select the sparsest model and therefore 

underestimated the true model. The 1SE CV methods (5-fold and 10-fold) performed 

similarly to the kappa method in this simulation followed by the BIC method. The BIC 

method was found to have the highest rate of selecting a model that included the 

correct model but may also include some false positives.  

 

The permutation method was compared with 1SE Cross-validation, BIC, the covariance 

test by Lockhart et al. (36) and the Scaled Sparse Linear Regression (Scalreg) method 

(108). Details of both these methods are described in the Sabourin et al. paper (87). 16 

scenarios were simulated and repeated 100 times each with variables such as the 

dimensionality of the data (low N = 200, high N = 1,000), Signal to Noise Ratio (low SNR 

= 0.5, high SNR = 2) and number of causal variables (1, 5, 10 and 20) varied in each 

scenario. This was repeated for both Gaussian regression and logistic regression; 

however Scalreg results were omitted for logistic regression as the method was 

designed for Gaussian regression only. Performance was measured by the average 

power for true positives and the average false discovery rate (FDR) for false positives. 

Results showed that 1SE CV, BIC and the Permutation method producing similar results 

in most scenarios. The covariance test performed well when the number of causal 

variables was small but suffered when this number increased as the method tended to 

select the smallest model. For Gaussian models the Scalreg method was comparable in 

low-dimensional datasets but tended to have a higher FDR that the competing 

methods. The authors also compared the computational time taken for each method. 

In most low-dimensional scenarios, the permutation method was computationally the 
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fastest followed by the BIC, however in high-dimensional scenarios BIC was the fastest 

followed by the permutation method.  

 

Waldmann et al. used CV and 1SE CV methods in a genetic setting to compare variable 

selection between the LASSO and EN (27). Their simulations showed that CV selected a 

large number of false positives whilst the 1SE method did not select many SNPs but did 

not select any false positives. The authors concluded that both methods do not 

perform well for variable selection and an alternative criterion to MSE should be used.  

 

2.5.2  Tuning Parameter selection for dual penalties 

 

Some penalised regression methods, such as the elastic net (18) and the grouped 

LASSO by Zhou et al. (109), apply two penalty terms rather than one. There is little 

literature that looks into methods to optimise dual penalties, however there are two 

simple suggested methods for selecting the optimal penalty across two penalties, both 

are briefly discussed by Zhou et al. (109).  

The first suggested method is to fix some ratio between the two penalty estimates. 

This is the option used for the elastic net for glmnet where the “alpha” option controls 

the strength of the LASSO and ridge regression penalties respectively (2.5). This 

method would give the user the control on how they would like to penalise any given 

dataset but it may not give the optimal penalty for variable selection. Given the 

popularity of glmnet to fit penalised regression models this method has been the most 

commonly used method for selecting tuning parameters for the elastic net. 

The second is to perform a “grid” type search for the optimal combinations of tuning 

parameters, this is performed by calculating the estimate statistic such as MSE or BIC 

for every combination of tuning parameter penalties and selecting the minimum of 

these estimates as the optimal penalty. This method will be more computationally 

intensive than the first suggested method as it may calculate every combination of the 

two tuning parameters. 
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The two suggested methods described above are simple and easy to implement on 

most tuning parameter selection methods such as CV, BIC, AIC and GCV as the tuning 

parameter estimates are derived from some statistic estimate where the optimal 

penalty is the minimum. Both stability selection and the permutation method would 

work by fixing the ratio between two penalties, however this would not work for a grid 

search method. Both methods do not use a statistic that can be used to compare 

models with different penalties but instead a threshold is used. The permutation 

method uses a λ estimate that produces a null model. Some combination of the two 

small λ estimates will not produce a null model; therefore a ratio of λ would be 

required rather than a grid for this method. Both methods ultimately pose a problem 

in terms of selection of the best model from a number of different “best models”. One 

potential way to overcome this using a grid search would be to calculate model fit by 

either MSE or BIC for each of the “best models” and select the one with the minimum 

value. 

 

2.6 Genetic association 

 

Deoxyribonucleic acid (DNA) forms the human genome, and it is composed from four 

different types of molecules called nucleotides: adenine (A), cytosine (C), guanine (G) 

and thymine (T). Nucleotides are joined by covalent bonds to form base pairs. There 

are approximately 3.3 billion base pairs in the human genome which are contained in 

23 pairs of chromosomes. A large portion of the genome is identical for all humans in a 

population, for example every person in a population has an AA pair of nucleotides. 

There is however a number of locations in the genome where there is variation in the 

pair of nucleotides in a population, for example some individuals in a population may 

have an AA; others may have AG and some GG. This genetic variation in the population 

is known as a Single Nucleotide Polymorphism (SNP) and occurs through genetic 

mutation in an individual and spread into the population through mating. The specific 

variant forms of the SNP (i.e. A and G) are known as alleles and the pair of alleles 

collectively is known as a genotype (i.e. AA, AG or GG).  
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For association testing, genotype data is used and each genotype is coded by a 0, 1 or 

2 depending on the pair of alleles and the relative frequency of these alleles in the 

population. The minor allele frequency (MAF) is the frequency of the least common 

allele in a population and therefore the genotype coding tends to be by the number of 

minor alleles for every SNP in an individual. For example, a SNP with A and G alleles 

where A is the minor allele would be coded by the following: GG = 0, AG = 1, AA = 2.  

A genetic association test will test the phenotype of interest against the number of 

minor alleles assuming an additive model (110,111). For a quantitative trait such as 

LDL, an ordinary least squares (OLS) model is used (2.25) and for a binary trait, such as 

cancer, a logistic regression model is used (2.26). 

 

 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝐶 +  휀  (2.25) 
 

 𝑙𝑜𝑔𝑖𝑡(𝑦) = 𝛽0 + 𝛽1𝑥 + 𝛽2𝐶 (2.26) 
 

 

y is a vector of phenotype values and 𝛽0 is the intercept term for the linear model. 𝛽1 

and 𝛽2 denote a vector of effect estimates for the matrix of genotypes x (coded as 

0,1,2) and matrix of covariates C respectively. The matrix of covariates contains non-

genetic risk factors that the model can adjust for such as age and sex. For the 

quantitative trait, 휀 is the error term that contains the residual variance of the 

phenotype that is not explained by the model, where 휀 ~ 𝑁(0, 𝜎2). In a GWAS the 

matrix of genotypes (x) can contain millions of SNPs; the null hypothesis for each SNP 

is that there is no effect on the trait as the number of minor alleles present in an 

individual in the population increases (𝛽1 = 0). 
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2.7  The LASSO in genetic epidemiology 

 

There have been a number of studies that have applied penalised regression methods 

to genetic SNP data, both in simulated and real datasets. In this section, I review some 

of these studies and discuss their results and conclusions. As this thesis focuses on 

frequentist approaches to variable selection, Bayesian approaches (112-118) and 

studies that focus on model prediction (119-126) will not be discussed. 

 

Studies by Yi et al. (15) and Sung et al. (127) compared penalised regression methods 

against single marker regression methods. The comparisons made by the Yi et al. study 

(15) include the LASSO, adaptive LASSO, fusion-type penalties, the elastic net, 

Bonferroni correction and false discovery date (FDR) methods on simulated single 

chromosome and multiple chromosome datasets. Both the Bonferroni correction and 

FDR methods are described in greater detail in Chapter 4. Variable selection was 

assessed in terms of true and false positive rates (TPR and FPR). The authors found 

that there was very little difference between the penalised regression methods tested 

although the elastic net with 𝛼 = 0.5 performed slightly better of the four methods. 

The penalised regression methods were more powerful than the single marker 

methods tested. Waldmann et al. compared the LASSO and against the elastic net in 

both simulated scenarios and in real data from cattle (128). In each case, the results 

showed that the switch from the LASSO penalty (2.2) to an elastic net penalty (2.5) 

increased the number of SNPs selected in the model and an increased in the number of 

false positives selected. Based on the simulated data which simulated 25 causal SNPs 

in a dataset of 50,000 SNPs and varying levels of LD (high, mixed and low), the elastic 

net with a large ridge penalty relative to LASSO penalty (α = 0.9) showed the best 

performance for variable selection (see Table 1 (128)). The authors also state the 

Bonferroni correction method showed similar performance to the elastic net. The 

LASSO was able to restrict the number of false positives selected but this also limited 

the number of true positives selected. The number of causal SNPs selected greatly 
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increased when the simulated LD between SNPs was low. The main conclusion of this 

paper however, was that both the tuning parameter selection methods (CV and 1SE 

CV) used performed poorly for variable selection and other methods should be utilised. 

 

Sung et al. compared the application of the LASSO against a single marker analyses 

(SMA) in a simulated dataset consisting of 6,857 subjects and 4,589 SNPs along a 

chromosome (127). Only one SNP was simulated as the causal SNP with another 12 

polygenic SNPs with “smaller effects that influenced the simulated LDL phenotype” 

(129). The results compared the rankings of selection for both methods. The ranking 

for the SMA was based on the univariate P-value rank; with the SNP with the smallest 

P-value has a rank of 1 and regarded as the highest rank, whereas the LASSO is the 

rank at which the SNP enters the model. The difference in ranks showed the difference 

between the two methods in accounting for LD. The SMA selected the causal SNP as 

the top rank in most of the 200 replications, but this also produced a high rank in 10 

other associated SNPs that were correlated with the causal SNP. The LASSO selected 

the causal SNP as the top rank in 114 out of the 200 replications. When the causal SNP 

was not selected as the top rank, one of three SNPs correlated with the causal SNP was 

selected as the top rank and the remaining correlated SNPs produced low ranks. This is 

consistent with observations made by Zou and Hastie (18) which is that in a group of 

highly correlated variables, the LASSO tends to select only one variable and does not 

select any others. This ability is somewhat of an advantage compared to SMAs in 

GWAS, in a group of highly correlated SNPs only one SNP is likely to be the causal SNP 

and the remaining SNPs are correlated with the causal SNP. An SMA is likely to select a 

number of variants from an associated region when only one SNP is causal where the 

LASSO tends to select one SNP from the region.  

 

One of the advantages of penalised regression methods over SMAs is the ability to 

jointly model the variables. By jointly analysing SNPs, penalised regression methods 

are able to consider the correlation of each marker with the phenotype, conditional on 

all other relevant markers. This can increase the power to detect weak associations 
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compared to single marker methods due to the smaller residual variance and the fact 

that the conditional correlation of a marker with the phenotype is often higher than 

the marginal correlation (130). However in the Sung et al. study, both methods were 

unable to select any of the 12 SNPs with the smaller effects, suggesting both methods 

have a similar power to select SNPs in this analysis (127). 

If allowing correlated variables into the model is particularly desirable both group 

penalties and fusion penalties could be used. The fused LASSO (2.9) is designed to 

penalise adjacent variables only, however LD between SNPs may occur over a greater 

number of adjacent SNPs. Bao and Wang propose an interesting fusion penalty (131) 

which considers a window of multiple adjacent SNPs that allows fusion across multiple 

SNPs rather than a pair of adjacent SNPs. Liu et al. proposed an extension of the 

grouped LASSO which penalised grouped but included a fusion penalty to smooth 

estimates between groups as correlation still may exist between adjacent groups 

(132). 

 

The grouped LASSO (2.7) and sparse group LASSO (2.8) have been proposed for 

analysis of rare variants (133-135). Rare SNPs often lack power to be selected, 

therefore by grouping correlated rare SNPs or genes together the power to detect 

these rare variants increases. As penalised regression methods are designed for high-

dimensional data, it is natural that some interaction models have been proposed for 

genetic data for both gene-environment interactions (113,118,124,136,137) and gene-

gene interactions (138-141). 

 

A number of studies have commented on the inability to fit a large number of SNPs in a 

LASSO model due to a large computational burden (11-16). Table 2.5 lists the studies 

that have applied either the LASSO or a generalisation of the LASSO in a GWAS setting 

on human cohorts. In all of the studies with 119,000 SNPs or more, some form of 

pruning (or pre-screening) method was utilised to reduce the number of SNPs for 

analysis. SNP Pruning is a quality control procedure that removes a number of SNPs 

from the dataset. In most previous studies the dataset is pruned by mostly P-value. 
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Carlsen et al. used a form of forward step-wise model as a pre-screening method (16). 

Ahmed et al. used LD pruning to remove the highly correlated SNPs from the dataset 

(142). Other statistics such as FDR (143,144) and test score statistics (137,145) have 

also been used; both are similar to pruning by P-value. Pruning SNPs by P-value is 

logical as only the most significantly associated SNPs will remain for analysis. However 

little is known how pruning by P-value or any other pruning methods affect penalised 

regression models and therefore one of the aims for this thesis is to investigate the 

effects of SNP pruning on penalised regression models. This is discussed in greater 

detail in Chapter 6. Selection of the tuning parameter tends to be either by Cross-

validation or selecting a pre-specified number of variables (Table 2.5). Of all the 

penalised regression methods, the LASSO seems to be the most popular used for 

variable selection in GWAS. 
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Table 2.5 Summary of studies that have applied the LASSO or generalisations of the LASSO in genome-wide association studies 

Study Phenotype 

Study 
population/ 

GWAS 
dataset 

Sample 
size 

Penalised 
regression 

model 

Number 
of SNPs 

in dataset 

Pruning 
method used 

Number 
of SNPs 

after 
pruning 

Tuning 
parameter 
selection 
method 

Notes 

Ahmed 
(142) 

High-density 
Lipoprotein 

(HDL) 
Finnish 

Not 
specified 

LASSO 329,091  

LD pruning 
with r2 > 0.8. 

Previously 
identified 

associations 
from this 

dataset were 
also kept in the 

dataset 

254,748 

10-fold 
Cross-

validation 
and 

stability 
selection 

 

Assimes 
(138) 

Coronary 
artery 

disease 
(CAD) 

Taiwanese 

8,556 
(5,423 

controls, 
3,133 
cases) 

Logistic 
LASSO 
model 

9,087 None 9,087 
Not 

specified 
 

Cho (11) Adult height Korean 8,842 Elastic net 327,872 
Selection top 
1,000 SNPs by 

P-value 
1,000 

10-fold 
Cross-

validation 
 

Denis 
(139) 

Placental 
Abruption 

Peruvian 

524 (280 
cases, 
244 

controls) 

Logistic 
LASSO 
model 

118,782 None 118,782 
20-fold 
Cross-

validation 
 

Frost (136) 
Bladder 
cancer 

US 
1,475 
(610 

Logistic 
Elastic net 

1,488 None 1,488 
Cross-

validation 
Elastic net was 

used to 
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cases, 
865 

controls) 

perform 
variable 

selection, later 
logistic 

regression was 
used to 

determine 
gene – 

environment 
interactions 

Frost (137) 
Alzheimer’s 

disease 
US 

572 (412 
cases, 
160 

controls) 

Logistic 
elastic net 

398,230 

Select top 
20,000 SNPs 

based on score 
statistic of 
marginal 

association 
with 

phenotype 

20,000 
Cross-

validation 

Elastic net was 
used to 
perform 
variable 

selection, later 
logistic 

regression was 
used to 

determine 
gene – 

environment 
interactions 

Hoffman 
(13) 

Crohn’s 
disease, 

rheumatoid 
arthritis and 

Type 1 
diabetes 

Wellcome 
Trust Case 

Control 
Consortium 

 

Not 
specified 

LASSO and 
adaptive 

LASSO 

Not 
specified 

p > 0.01 
Not 

specified 

Select 

1.5√𝑛 
variables 

Other 
penalised 

methods such 
as MCP and 

NEG also used 
on the dataset 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiekdXm44DYAhWRF-wKHR4TCHYQFggpMAA&url=https%3A%2F%2Fwww.wtccc.org.uk%2F&usg=AOvVaw33OAlSkArdJf_tvzRdB9bi
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiekdXm44DYAhWRF-wKHR4TCHYQFggpMAA&url=https%3A%2F%2Fwww.wtccc.org.uk%2F&usg=AOvVaw33OAlSkArdJf_tvzRdB9bi
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiekdXm44DYAhWRF-wKHR4TCHYQFggpMAA&url=https%3A%2F%2Fwww.wtccc.org.uk%2F&usg=AOvVaw33OAlSkArdJf_tvzRdB9bi
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiekdXm44DYAhWRF-wKHR4TCHYQFggpMAA&url=https%3A%2F%2Fwww.wtccc.org.uk%2F&usg=AOvVaw33OAlSkArdJf_tvzRdB9bi
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Hong (146) Adult height Korean 8,842 

LASSO, 
elastic net, 
adaptive 

LASSO and 
ridge 

regression 

327,872 

Selection top 
1,000 SNPs by 

P-value and 

|𝛽𝑗| 

1,000 
10-fold 
Cross-

validation 

Study 
compared 

each 
combination 
of penalised 
regression 

methods and 
pruning 
methods 

Jiang(147) 
Bipolar 

disorder 

Wellcome 
Trust Case 

Control 
Consortium 

 

Not 
specified 

LASSO and 
prior 

LASSO 

Not 
specified 

p > 0.001 or 
SNP belongs to 

a previously 
identified gene 

and p > 0.21 

916 
1SE rule 3-
fold Cross-
validation 

 

Kohannim 
(148) 

Temporal 
lobe volume 

North 
America 

729 LASSO 18,284 None 18,284 
Leave-one 
out Cross-
validation 

 

Shi (144) 

Systolic 
blood 

pressure 
(SBP) 

US 15,792 LASSO 
~2.5 

million 
FDR > 0.2 15 Mallows Cp  

Wu (145) 
Coeliac 
disease 

British 2,220 LASSO 310,637 Score statistic  Unknown 

Pre-
selected 

model size 
by authors 

 

Yang (141) 
Rheumatoid 

arthritis 

Wellcome 
Trust Case 

Control 

Not 
specified 

Adaptive 
group 
LASSO 

Not 
specified 

Analyses 
conducted on 

individual 

Not 
specified 

5-fold 
Cross-

validation 

Two group 
penalties were 
incorporated, 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiekdXm44DYAhWRF-wKHR4TCHYQFggpMAA&url=https%3A%2F%2Fwww.wtccc.org.uk%2F&usg=AOvVaw33OAlSkArdJf_tvzRdB9bi
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiekdXm44DYAhWRF-wKHR4TCHYQFggpMAA&url=https%3A%2F%2Fwww.wtccc.org.uk%2F&usg=AOvVaw33OAlSkArdJf_tvzRdB9bi
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiekdXm44DYAhWRF-wKHR4TCHYQFggpMAA&url=https%3A%2F%2Fwww.wtccc.org.uk%2F&usg=AOvVaw33OAlSkArdJf_tvzRdB9bi
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiekdXm44DYAhWRF-wKHR4TCHYQFggpMAA&url=https%3A%2F%2Fwww.wtccc.org.uk%2F&usg=AOvVaw33OAlSkArdJf_tvzRdB9bi
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiekdXm44DYAhWRF-wKHR4TCHYQFggpMAA&url=https%3A%2F%2Fwww.wtccc.org.uk%2F&usg=AOvVaw33OAlSkArdJf_tvzRdB9bi
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiekdXm44DYAhWRF-wKHR4TCHYQFggpMAA&url=https%3A%2F%2Fwww.wtccc.org.uk%2F&usg=AOvVaw33OAlSkArdJf_tvzRdB9bi
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiekdXm44DYAhWRF-wKHR4TCHYQFggpMAA&url=https%3A%2F%2Fwww.wtccc.org.uk%2F&usg=AOvVaw33OAlSkArdJf_tvzRdB9bi
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Consortium 
 

chromosomes one on 
individual 

SNPs the other 
on 

interactions 
between SNPs 

Yao (149) 

Forced 
expiratory 

volume in 1 
second 
(FEV1)/ 

forced vital 
capacity 

(FVC) 

Hurrerite 604 LASSO 246,010 p > 0.001 312 
10-fold 
Cross-

validation 
 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiekdXm44DYAhWRF-wKHR4TCHYQFggpMAA&url=https%3A%2F%2Fwww.wtccc.org.uk%2F&usg=AOvVaw33OAlSkArdJf_tvzRdB9bi
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2.8  Summary 

 

In this chapter, I have presented a background to the LASSO and some other 

generalisations such as ridge regression (RR), elastic net (EN), grouping penalties such 

as the group LASSO and sparse group LASSO and the fused LASSO. I also reviewed 

algorithms that fit LASSO models and these generalisations as well as tuning parameter 

selection methods. In Chapter 3, I implement the coordinate descent algorithm (CDA) 

for the LASSO and run a simulation study comparing a number of tuning parameter 

selection methods in terms of variable selection for the LASSO. Both implementations 

will be used in future work in this thesis. I also reviewed a number of studies that have 

applied these penalised regression approaches in a GWAS setting. The literature 

suggests that the LASSO is not able to select variables that univariate analyses also do 

not (13), however the advantage of the LASSO is that it is able to select an associated 

variable and remove variables that are correlated with the selected variable (127). 
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3 Implementation of the LASSO 

3.1  Introduction 

 

In Chapter 2, I provided a background to the LASSO and its generalisations which 

included a review on algorithms and tuning parameter selection methods that can be 

used to implement the LASSO on a dataset and perform variable selection. In this 

chapter, I follow up these reviews by illustrating implementations of the coordinate 

descent algorithm and a number of tuning parameter selection methods in a 

simulation study. The aim of these implementations is so that they can be used in 

future work in this thesis.   

In section 2.4.1, I select the most effective algorithm to write in R as a foundation for 

future work. After selecting this algorithm, I then derived the basic solution for the 

LASSO and a number of other generaliseations of the LASSO in section 2.4.2. In this 

chapter, I follow on this work by deriving a pseudo code for an R program to fit LASSO 

models. I run this program on a test dataset and compare the results with an existing R 

package. This program will also be used in some proceeding chapters. 

I also follow up the review conducted on tuning parameter selection methods (section 

2.5.1) by testing a number of these methods via a simulation study. The aim of the 

simulation is to determine the relative performance of these methods in terms of 

variable selection. The methods that show good performance will be used for tuning 

parameter selection in further analyses. 
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3.2  Fitting the LASSO by coordinate descent 

 

3.2.1  My coordinate descent algorithm for the LASSO 

 

 Table 3.1 presents my coordinate descent algorithm to fit the LASSO. This algorithm is 

designed for a standard coordinate descent in which parameters are estimated one at 

a time starting at the first variable in the dataset and ending with the last. Three loops 

are incorporated in this algorithm, the outer one loops over a vector of 𝜆’s (see step 9), 

however only one value of λ can be used. The middle loop is for a specified number of 

iterations and the third loop is for across SNPs. This final loop minimises the function 

each variable whilst keeping the remaining variables constant. Therefore in one 

iteration loop all variable estimates will be updated.  

 

Convergence of a model for a specified λ is determined at the end of an iteration loop 

(Step 15). The criteria used to determine if convergence is reached, is by calculating 

the sum of the absolute difference between the new beta estimates from the current 

iteration loop (�̂�) and the beta estimates from the previous iteration loop (Oldbeta). If 

this sum is less than a specified threshold then convergence is reached. This threshold 

value should be small in order to produce accurate β estimates but not too small as 

this would increase the computational time. A threshold between 0.0001 and 

0.000001 would seem reasonable. If a vector of λs is given, the vector should be 

increasing order, to make the algorithm more efficient. Once a model has converged at 

𝜆𝑘 then the initial estimates used for 𝜆𝑘+1 are the final 𝛽 ̂estimates for 𝜆𝑘. Applying 

these “warm starts” makes the algorithm simpler and faster than restarting the initial 

estimates at 0 (53). The code for my LASSO function in R is in Appendix A. 
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Table 3.1 My Coordinate descent algorithm to fit the LASSO 

 

 Let N = The number of subjects in the dataset 

 

 Let i = the ith subject, where i={1, …, N} 

 

 Let P = the number of SNPS in the dataset 

 

 Let j = the jth SNP, where j={1, …, P} 

 

 x = The N x P standardised SNP matrix 

 

 y = A continuous Phenotype with mean μ and standard deviation 𝜎2 

 

 Let k = the kth value of Lambda 

1. Generate a vector of increasing penalty thresholds with length K (K ≥ 1). 

Call it Lambda. 

2. Specify the maximum number of iterations that are to be used. Call it 

iterations 

3. Specify convergence threshold >0. Call it THRESH 

4. Calculate the intercept which is the mean of Y. Call it mu 

5. Calculate sxx, where 𝑠𝑥𝑥 =  ∑ 𝑥𝑗
2𝑃

𝑗=0 = 𝑁 − 1 

6. Generate a vector of initial estimates of length P. Call it Betahat (�̂�) 

7. Generate the same vector of initial estiamtes of length P. Call it Oldbeta 

8. Start at k = 1 

9. Start at iter = 1 

10. For each cell in Oldbeta, replace the Oldbeta values with those in Betahat 

11. Start at j = 1 

12. Calculate 𝑟 =  ∑ (𝑦𝑖 −𝑚𝑢)𝑥𝑗
𝑁
𝑖=1  

13. Calculate the left (ld) and right derivatives (rd) 
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a. If 𝛽�̂� = 0 {
𝑙𝑑 =  −𝑟 + 𝑁𝜆𝑘
𝑟𝑑 =  −𝑟 − 𝑁𝜆𝑘

 

 

b. If 𝛽�̂� > 0 {
𝑟𝑑 =  −𝑟 + 𝑁𝜆𝑘
𝑙𝑑 =  −𝑟 + 𝑁𝜆𝑘

 

 

 

c. If 𝛽�̂� < 0 {
𝑟𝑑 =  −𝑟 − 𝑁𝜆𝑘
𝑙𝑑 =  −𝑟 − 𝑁𝜆𝑘

 

14. Let New.beta denote the updated Beta estimate. In order to calculate this: 

 

a. If 𝑟𝑑 𝑥 𝑙𝑑 ≤ 0 then 𝛽�̂� = 0 

 

b.  If 𝑟𝑑 𝑥 𝑙𝑑 > 0 then 

 

i. Calculate 𝑁𝑒𝑤. 𝑏𝑒𝑡𝑎𝑗  = 𝛽𝑗 − 
𝑟𝑑

𝑠𝑥𝑥
 

ii. Update 𝑚𝑢 =  𝑚𝑢 + (𝑁𝑒𝑤. 𝑏𝑒𝑡𝑎𝑗 − 𝛽�̂�)𝑥𝑗  

iii. Replace 𝛽�̂� = 𝑁𝑒𝑤. 𝑏𝑒𝑡𝑎𝑗 

15. Decide if the convergence criterion has been met. 

 

a. If ∑ |𝛽�̂� − 𝑂𝑙𝑑𝑏𝑒𝑡𝑎𝑗|
𝑁𝑆𝑁𝑃
𝑗=1 < 𝑇ℎ𝑟𝑒𝑠ℎ then convergence criterion has been 

met. Go to Step 16 

 

b. If ∑ |𝛽�̂� − 𝑂𝑙𝑑𝑏𝑒𝑡𝑎𝑗|
𝑁𝑆𝑁𝑃
𝑗=1 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ then convergence criterion has been 

met.  

 

i. If iter = iterations. Stop. Model has not converged 

ii. If j = P, set j=1 and set iter = iter+1. Go to step 10. 

 

iii. If j < P & iter < iterations, set j= j+1. Go to step 12. 

16. Output 𝐿𝑎𝑚𝑏𝑑𝑎𝑘 and the vector �̂�. 

17. Either move to the next value of Lambda or stop. 

a. If 𝐿𝑎𝑚𝑏𝑑𝑎𝑘 < 𝐾, set k=k+1 and go to step 9. 
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b. If 𝐿𝑎𝑚𝑏𝑑𝑎𝑘 = 𝐾. Stop. Estimates for all specified values of Lambda have 

been obtained. 

 

3.2.2  Comparison of my coordinate descent algorithm against glmnet 

 

3.2.2.1  Simulation of data 

 

A dataset of 500 subjects and 100 independent SNPs was simulated. Minor allele 

frequencies (MAF) for SNPs were randomly generated from a uniform distribution and 

varied between 0.01 and 0.5. The minor allele frequencies for SNP 25 and SNP 75 were 

set to 0.02 and 0.2 respectively as these were simulated as the causal SNPs. Simulated 

β’s were calculated using the percentage variance explained and the MAF of the causal 

SNP (3.1). 

 𝛽 = √
𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑

2 𝑥 𝑀𝐴𝐹 (1 − 𝑀𝐴𝐹)
 (3.1) 

 

 A continuous phenotype was simulated with both causal SNPs explained 1% of the 

total variance each (𝛽25 =  0.5051 and 𝛽75 =  0.1768) (3.2).  

 

 𝑦𝑖 = 𝛽25𝑥𝑖,75 + 𝛽75𝑥𝑖,75 + 𝑒𝑖 (3.2) 
 where,  
 𝑒𝑖 ~ 𝑁(0, 0.98)  
 

The smallest value of λ required for a null model was λ = 0.1346. Therefore λ was 

selected over a range starting at 0 and increasing in intervals of 0.005 until 0.135. The 

maximum number of iterations was set to 10,000. The convergence threshold was set 

at 0.000001 (see step 15). For this simulation a seed was set as seed = 1.  
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For both glmnet and my algorithm, data on the number of SNPs in the model, the 

number of causal SNPs in the model, estimated β values, BIC and the residual sum of 

squares (RSS) was collected. The computational time taken was also calculated over 

1,000 repetitions of the algorithm. This was performed using the system.time() 

command in R. 

 

3.2.2.2 Results 

 

The results for both my algorithm and glmnet are shown in Table 3.2. My LASSO 

algorithm was able to converge for all values of lambda (with a threshold of 0.000001). 

The results show similar results across the information collected. The number of SNPs 

in the final model was the same with both programs with the exception of 𝜆 =

 0.03 where there was a difference of one SNP. The difference in the SNP estimates 

was negligible, as glmnet estimated 𝛽 = 0.0000218, my algorithm estimated 𝛽 = 0. 

Although there was this one difference in the number of SNPs it was not a causal SNP. 

There was no difference between the number of causal SNPs remaining in the final 

model, in both cases the same SNP (SNP 25, MAF = 0.02) was removed from the model 

at λ = 0.045 and SNP 75 (MAF = 0.2) was removed at λ = 0.115. The results did show 

however that predicted estimates between the two programs were different in all 

non-zero estimates across all SNPs and tuning parameter values, the difference was 

small in all cases ranging between 5 and 7 decimal places. The largest difference in β 

estimates between the two programs is 0.00013 (λ = 0.13), at this point only one SNP 

is remaining in the model. The size of the difference in β estimates between the 

algorithms (my algorithm subtracted from the glmnet) is small when calculating the 

residual sum of squares (RSS) of each model. The largest difference in RSS was 0.00007 

(λ = 0.045). At every λ, the results showed that although there was a small difference 

in RSS estimates, the β estimates from my algorithm provided a smaller RSS estimate 

which would suggest that my algorithm produced more optimal estimates than 

glmnet. 

 



64 
 

 

The system.time() command in R was used to compare the time taken to 

compare the computational time taken for both programs, was repeated 1,000 times 

to give a fairer time estimation. The glmnet took 179.25 seconds (2 minutes and 59.25 

seconds) to run 1,000 times. My algorithm took considerably longer at 859.52 seconds 

(14 minutes and 59.52 seconds) for the same process (Table 3.3). Tests across a 

number of convergence thresholds were run also. Naturally as the convergence 

threshold became smaller, the time taken to run increased. To compare the accuracy 

of estimates, the estimates for each threshold were compared to the estimates from 

glmnet by calculating the sum of the absolute difference of all SNPs across all λ values. 

Table 3.3 showed that the smaller the threshold the closer estimates became to those 

produced by glmnet. Given the little difference between estimates from a threshold of 

0.0001 and 0.0000001 compared to the large difference in running time, it would be 

beneficial to use a threshold of 0.0001 in future analyses for similar size datasets. 
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Table 3.2 Results showing the comparison of my code against glmnet 

λ 
No. of SNPs 

selected - my 
algorithm 

No. of 
SNPs 

selected - 
glmnet 

Causal SNPs 
selected - my 

algorithm 

Causal SNPs 
selected - 

glmnet 

RSS - my 
algorithm 

RSS - 
glmnet 

Difference 
in RSS 

Largest β 
difference 

0.00 100 100 2 2 490.8791 490.879 3.07E-12 0.000083 
0.005 91 91 2 2 490.8973 490.897 2.85E-06 0.000045 
0.01 77 77 2 2 490.9091 490.909 1.14E-05 0.000028 

0.015 68 68 2 2 490.9162 490.916 2.04E-05 0.000033 
0.02 65 65 2 2 490.9194 490.920 3.49E-05 0.000077 

0.025 54 54 2 2 490.9195 490.920 4.32E-05 0.000069 
0.03 45 46 2 2 490.9183 490.919 4.59E-05 0.000059 

0.035 43 43 2 2 490.9159 490.916 5.78E-05 0.000067 

0.04 40 40 2 2 490.9121 490.912 6.83E-05 0.000074 
0.045 32 32 1 1 490.9076 490.908 7.40E-05 0.000080 
0.05 24 24 1 1 490.903 490.903 6.61E-05 0.000083 

0.055 18 18 1 1 490.8993 490.899 5.52E-05 0.000078 
0.06 12 12 1 1 490.8963 490.896 4.74E-05 0.000083 

0.065 11 11 1 1 490.8937 490.894 5.25E-05 0.000092 
0.07 10 10 1 1 490.8909 490.891 5.33E-05 0.000092 

0.075 7 7 1 1 490.8882 490.888 4.23E-05 0.000094 
0.08 5 5 1 1 490.8865 490.887 3.18E-05 0.000085 

0.085 2 2 1 1 490.8857 490.886 1.47E-05 0.000086 
0.09 2 2 1 1 490.8852 490.885 1.65E-05 0.000091 

0.095 2 2 1 1 490.8846 490.885 1.83E-05 0.000097 
0.1 2 2 1 1 490.8838 490.884 2.03E-05 0.000102 

0.105 2 2 1 1 490.883 490.883 2.24E-05 0.000107 
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0.11 2 2 1 1 490.8821 490.882 2.46E-05 0.000112 
0.115 1 1 0 0 490.8813 490.881 1.33E-05 0.000115 
0.12 1 1 0 0 490.8808 490.881 1.44E-05 0.000120 

0.125 1 1 0 0 490.8803 490.880 1.57E-05 0.000125 
0.13 1 1 0 0 490.8797 490.878 1.69E-05 0.000130 

0.135 0 0 0 0 490.8791 490.879 0 0 
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Table 3.3 Comparison of timings between glmnet and varying thresholds of my 

algorithm over 1,000 loops 

Program Threshold 
Time 

taken (s) 

Sum of the absolute 
difference of all SNPs 

at every λ against 
glmnet 

glmnet NA 179.25 NA 

My 
algorithm 

0.01 325.65 0.03934339 
0.001 464.65 0.02353101 

0.0001 586.14 0.02342260 
0.00001 720.63 0.02340717 

0.000001 859.52 0.02340617 

0.0000001 969.17 0.02340579 
0.00000001 1078.09 0.02340576 

 

 

3.2.3  Conclusion  

 

There are a number of different algorithms that can be implemented to fit non-smooth 

convex functions such as the LASSO. In chapter 2, I reviewed the three main categories 

of algorithms: first order algorithms, path finding algorithms and ADMM algorithms. 

Taking into consideration computational speed, accuracy, and flexibility I concluded 

that coordinate descent was the best algorithm to implement into my own R code as a 

basis for future work. A simulation showed that my algorithm written in R gave a 

slightly more optimal solution but computational time was considerably longer than 

glmnet. 
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3.3 Simulation Study on LASSO tuning parameter 

selection methods for variable selection 

 

In this section, I conduct a simulation study to compare a number of tuning parameter 

selection methods in order to determine which methods perform well for variable 

selection and which can be used in further analyses. The methods selected for 

comparison were repeated 10-fold CV, repeated 10-fold 1SE CV, BIC methods and the 

permutation method. Most of these methods are designed for variable selection with 

the exception of Cross-validation which is designed for model prediction. Cross-

validation was included as it remains the most popular method for tuning parameter 

selection (Table 2.5). Stability selection was not considered due to the reasons stated 

in section 2.5.1.2. Other methods such as AIC & GCV were also not considered as 

results in previous simulation studies showed poor performance (101). 

 

3.3.1 Methods 

 

Datasets were simulated as described in the previous section (see 3.2.2.1) however a 

number of different scenarios were simulated. Each scenario was simulated 1,000 

times. The baseline scenario is described in section 3.2.2.1. Eight other scenarios were 

simulated, each one varied either the number of subjects (N = 1,000 and 2,000), 

number of independent SNPs (NSNP = 250 and 500), number of causal variants (N 

Causal = 5 and 10) or the percentage variance explained by each causal variant (%Var = 

2% and 5%).  

 

 For the scenario where the numbers of causal variants = 5 they were set at positions 

1, 25, 50, 75 and 100 with MAFs set to 0.25, 0.02, 0.1, 0.2 and 0.4 respectively. 

Similarly for the scenario where the numbers of causal variants = 10 they were set at 

positions 1, 15, 25, 35, 50, 65, 75, 80, 95 and 100 with MAF set to 0.25, 0.05, 0.02, 
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0.15, 0.1, 0.3, 0.2, 0.35, 0.5 and 0.4. The simulation was run using R and seed = 1 was 

used. 

Tuning parameter selection methods were applied to each simulated dataset for each 

scenario. Model fitting and Cross-validation was applied to simulated datasets using 

glmnet (53). Glmnet was also used to calculate the minimum λ for a null model for the 

permutation method. For both CV methods and the permutation method, each 

method was repeated 25 times and both the mean and median λ estimate was used. 

The BIC was calculated at intervals of 0.001 along λ. Performance was determined by 

true and false positive rates (TPR and FPR) as well as the proportion of times the true 

model was selected by the method, specifically where the number of dimensions are 

higher. 

 

3.3.2  Results 

3.3.2.1 Cross-validation 

 

Table 3.4 shows the results for repeated Cross-validation. Cross-validation is the only 

method designed for model prediction rather than variable selection; therefore it is 

unsurprising that on average, this method includes the highest number of SNPs in the 

selected model compared to the other methods leading to a high proportion of 

selected SNPs that are false positive.  As the number of dimensions increased the 

number of FP SNPs selected increased, suggesting that CV will select a high number of 

variables that are false positives in GWAS. The mean FPR decreased as the number of 

SNPs increased in this simulation. Interestingly the FPR also increases as both the 

number of causal SNPs and the percentage variance explained by the causal SNP 

increases, even if the numbers of dimensions have not changed. The TPR increases in 

both scenarios. Selecting the mean tuning parameter over the 25 repetitions 

outperforms selecting the median, as the mean produces a higher TPR along with a 

lower FPR.  
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Table 3.4 Mean and standard deviation of simulation results for the repeated 10-fold 

Cross-validation method averaged over 1,000 datasets 

Cross-validation - Median 

N NSNP 
No. of 
causal 
SNPs 

% 
VAR 

True 
positive 

rate 

False 
positive 

rate 

Mean 
No. 

SNPs 

Mean 
No. of 
true 
SNPs 

Mean 
No. of 
false 
SNPS 

500 100 2 1 
0.47 ± 
0.41 

0.05 ± 
0.06 

5.44 ± 
6.57 

0.95 ± 
0.81 

4.49 ± 
6.09 

1,000 100 2 1 
0.82 ± 
0.32 

0.06 ± 
0.07 

7.94 ± 
6.79 

1.63 ± 
0.63 

6.30 ± 
6.51 

2,000 100 2 1 
0.99 ± 
0.07 

0.08 ± 
0.07 

9.52 ± 
6.67 

1.98 ± 
0.14 

7.54 ± 
6.65 

500 250 2 1 
0.38 ± 
0.39 

0.02 ± 
0.03 

6.49 ± 
8.88 

0.76 ± 
0.79 

5.72 ± 
8.42 

500 500 2 1 
0.28 ± 
0.35 

0.01 ± 
0.02 

6.81 ± 
10.75 

0.57 ± 
0.71 

6.24 ± 
10.37 

500 100 5 1 
0.63 ± 
0.31 

0.08 ± 
0.08 

11.30 ± 
8.78 

3.16 ± 
1.53 

8.14 ± 
7.76 

500 100 10 1 
0.82 ± 
0.17 

0.16 ± 
0.09 

23.37 ± 
9.59 

8.17 ± 
1.73 

15.20 ± 
8.47 

500 100 2 2 
0.85 ± 
0.29 

0.07 ± 
0.07 

8.21 ± 
6.80 

1.69 ± 
0.57 

6.52 ± 
6.57 

500 100 2 5 
1.00 ± 
0.02 

0.08 ± 
0.07 

9.74 ± 
6.48 

2.00 ± 
0.03 

7.74 ± 
6.48 

Cross-validation - Mean 

500 100 2 1 
0.51 ± 
0.38 

0.04 ± 
0.05 

5.25 ± 
5.61 

1.02 ± 
0.77 

4.23 ± 
5.21 

1,000 100 2 1 
0.83 ± 
0.29 

0.06 ± 
0.06 

7.66 ± 
6.13 

1.67 ± 
0.58 

5.99 ± 
5.89 

2,000 100 2 1 
0.99 ± 
0.07 

0.08 ± 
0.06 

9.45 ± 
6.26 

1.98 ± 
0.13 

7.47 ± 
6.24 

500 250 2 1 
0.40 ± 
0.38 

0.02 ± 
0.03 

6.16 ± 
7.64 

0.80 ± 
0.77 

5.36 ± 
7.25 

500 500 2 1 
0.31 ± 
0.35 

0.01 ± 
0.02 

6.37 ± 
8.95 

0.61 ± 
0.70 

5.75 ± 
8.61 

500 100 5 1 
0.64 ± 
0.29 

0.08 ± 
0.07 

10.89 ± 
8.05 

3.18 ± 
1.43 

7.71 ± 
7.11 

500 100 10 1 
0.81 ± 
0.17 

0.15 ± 
0.08 

22.98 ± 
9.16 

8.14 ± 
1.71 

14.84 ± 
8.05 

500 100 2 2 
0.86 ± 
0.26 

0.06 ± 
0.06 

7.91 ± 
6.17 

1.72 ± 
0.51 

6.19 ± 
5.96 

500 100 2 5 
1.00 ± 
0.02 

0.08 ± 
0.06 

9.60 ± 
6.06 

2.00 ± 
0.03 

7.60 ± 
6.05 
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3.3.2.2  1 Standard Error Cross-validation 

 

Table 3.5 shows the results for repeated 1SE Cross-validation. This method shows 

highly conservative results by selecting on average the least number of SNPs in most 

simulated scenarios but also produced the lowest FPR in all but one scenario. With the 

exception of 2 scenarios, the mean number of SNPs selected was less than one, 

meaning that there were a large proportion of null models selected. The implication of 

the results suggests that the 1SE CV method is likely to underestimate any true model. 

The mean estimate out-performed the median especially when the number of 

dimensions increased. In these scenarios the TPR was higher with the mean estimate, 

while there was little difference in the FPR. Both CV methods showed similar trends 

across scenarios with the exception of the mean number of FP SNPS as N increases. 

Then overall mean for repeated CV increased the mean (4.49 to 7.54) the mean for 

repeated 1SE CV decreased (0.14 to 0.00). Both the results for CV and 1SE CV were 

similar to the simulation conducted by Waldmann et al. where CV selected too many 

false positives and 1SE CV selected too few variables (27). 
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Table 3.5 Mean and standard deviation of simulation results for the repeated 10-fold 

1Standard-Error Cross-validation method averaged over 1,000 datasets 

1 Standard Error Cross-validation - Median 

N NSNP 
No. of 
causal 
SNPs 

% 
VAR 

True 
positive 

rate 

False 
positive 

rate 

Mean 
No. 

SNPs 

Mean 
No. of 
true 
SNPs 

Mean No. 
of false 
SNPS 

500 100 2 1 
0.09 ± 
0.19 

0.00 ± 
0.00 

0.32 ± 
0.47 

0.18 ± 
0.38 

0.14 ± 
0.35 

1,000 100 2 1 
0.13 ± 
0.22 

0.00 ± 
0.00 

0.31 ± 
0.47 

0.27 ± 
0.45 

0.04 ± 
0.21 

2,000 100 2 1 
0.15 ± 
0.24 

0.00 ± 
0.00 

0.31 ± 
0.48 

0.31 ± 
0.48 

0.00 ± 
0.04 

500 250 2 1 
0.07 ± 
0.17 

0.00 ± 
0.00 

0.29 ± 
0.46 

0.13 ± 
0.34 

0.16 ± 
0.37 

500 500 2 1 
0.06 ± 
0.16 

0.00 ± 
0.00 

0.31 ± 
0.50 

0.11 ± 
0.32 

0.20 ± 
0.41 

500 100 5 1 
0.07 ± 
0.13 

0.00 ± 
0.00 

0.44 ± 
0.80 

0.36 ± 
0.64 

0.08 ± 
0.34 

500 100 10 1 
0.20 ± 
0.25 

0.01 ± 
0.01 

2.44 ± 
3.44 

2.03 ± 
2.49 

0.46 ± 
1.30 

500 100 2 2 
0.19 ± 
0.26 

0.00 ± 
0.00 

0.42 ± 
0.54 

0.38 ± 
0.53 

0.04 ± 
0.19 

500 100 2 5 
0.80 ± 
0.32 

0.00 ± 
0.00 

1.63 ± 
0.72 

1.59 ± 
0.64 

0.04 ± 
0.27 

1 Standard Error Cross-validation - Mean 

500 100 2 1 
0.11 ± 
0.21 

0.00 ± 
0.00 

0.36 ± 
0.49 

0.22 ± 
0.42 

0.14 ± 
0.35 

1,000 100 2 1 
0.17 ± 
0.24 

0.00 ± 
0.00 

0.38 ± 
0.50 

0.34 ± 
0.48 

0.05 ± 
0.21 

2,000 100 2 1 
0.29 ± 
0.28 

0.00 ± 
0.00 

0.59 ± 
0.57 

0.59 ± 
0.57 

0.00 ± 
0.04 

500 250 2 1 
0.08 ± 
0.18 

0.00 ± 
0.00 

0.33 ± 
0.50 

0.16 ± 
0.37 

0.17 ± 
0.40 

500 500 2 1 
0.07 ± 
0.17 

0.00 ± 
0.00 

0.36 ± 
0.56 

0.13 ± 
0.35 

0.22 ± 
0.47 

500 100 5 1 
0.10 ± 
0.14 

0.00 ± 
0.00 

0.60 ± 
0.80 

0.50 ± 
0.68 

0.10 ± 
0.35 

500 100 10 1 
0.22 ± 
0.22 

0.00 ± 
0.01 

2.62 ± 
2.97 

2.23 ± 
2.20 

0.40 ± 
1.10 

500 100 2 2 
0.26 ± 
0.28 

0.00 ± 
0.00 

0.58 ± 
0.57 

0.53 ± 
0.55 

0.05 ± 
0.24 

500 100 2 5 
0.83 ± 
0.25 

0.00 ± 
0.00 

1.70 ± 
0.57 

1.66 ± 
0.50 

0.03 ± 
0.23 
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3.3.2.3  Bayes Information Criterion 

 

The result for the BIC is shown in Table 3.6. Results show that the BIC is another 

conservative method as the mean number of variables selected on average was less 

than one in most scenarios. The BIC outperforms both CV methods as the number of 

FPs selected was much lower compared to repeated CV. However with the exception 

of one scenario (N Causal = 10), the BIC was not as conservative as the 1SE CV method. 

The BIC maintained a very low FPR but a higher TPR. This method performs especially 

well when the number of dimensions increase compared to the CV methods.  

 

Table 3.6 Mean and standard deviation of simulation results for the BIC averaged over 

1,000 datasets 

BIC 

N NSNP 
N 

Causal 
% 

Var 

True 
positive 

rate 

False 
positive 

rate 

Mean 
No. of 
SNPs 

Mean 
No. of 
true 
SNPs 

Mean 
No. of 
false 
SNPS 

500 100 2 1 
0.14 ± 
0.25 

0.00 ± 
0.00 

0.48 ± 
0.69 

0.28 ± 
0.51 

0.20 ± 
0.45 

1,000 100 2 1 
0.40 ± 
0.39 

0.00 ± 
0.00 

0.94 ± 
0.96 

0.80 ± 
0.77 

0.14 ± 
0.43 

2,000 100 2 1 
0.83 ± 
0.32 

0.00 ± 
0.01 

1.95 ± 
0.97 

1.67 ± 
0.64 

0.28 ± 
0.60 

500 250 2 1 
0.11 ± 
0.22 

0.00 ± 
0.00 

0.46 ± 
0.66 

0.22 ± 
0.45 

0.24 ± 
0.48 

500 500 2 1 
0.10 ± 
0.21 

0.00 ± 
0.00 

0.44 ± 
0.65 

0.19 ± 
0.43 

0.25 ± 
0.49 

500 100 5 1 
0.14 ± 
0.19 

0.00 ± 
0.00 

0.82 ± 
1.17 

0.70 ± 
0.95 

0.12 ± 
0.42 

500 100 10 1 
0.14 ± 
0.18 

0.00 ± 
0.01 

1.54 ± 
2.18 

1.40 ± 
1.84 

0.14 ± 
0.53 

500 100 2 2 
0.45 ± 
0.40 

0.00 ± 
0.01 

1.12 ± 
1.11 

0.90 ± 
0.80 

0.21 ± 
0.57 

500 100 2 5 
0.97 ± 
0.13 

0.01 ± 
0.01 

2.49 ± 
0.95 

1.95 ± 
0.26 

0.54 ± 
0.88 
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3.3.2.4  Permutation method 

 

The results for the permutation method are shown in Table 3.7. There is little 

difference between selecting the mean or median from the distribution of λ estimates. 

Selecting the mean tends to select a larger λ estimate and hence selects a smaller 

number of SNPs. Sabourin et al.(87) do not explain why the median is used over the 

mean although the results show that there is little difference to choose between the 

two. While the mean will reduce the FPR, most scenarios only select between 1 and 2 

SNPs for the final model and therefore selecting the median will at least on average 

maximise the number of TP SNPS. 

 

This method performed well, as it selected more SNPs on average than both the 1SE 

CV and BIC methods including a higher number of true SNPs while maintaining a low 

FPR. The FPR is well controlled in this method as shown by the consistency in mean 

number of false SNP estimates. Across all scenarios the mean estimate only varies 

between 0.7 and 0.47 for the median and between 0.41 and 0.59.   
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Table 3.7 Mean and standard deviation of simulation results for the permutation 

method averaged over 1,000 datasets 

Permutation method - Median 

N NSNP 
N 

Causal 
% 

VAR 

True 
positive 

rate 

False 
positive 

rate 

Mean 
No. 

SNPs 

Mean 
No. of 
true 
SNPs 

Mean 
No. of 
false 
SNPS 

500 100 2 1 
0.32 ± 
0.33 

0.01 ± 
0.01 

1.29 ± 
1.07 

0.64 ± 
0.66 

0.65 ± 
0.83 

1,000 100 2 1 
0.68 ± 
0.34 

0.01 ± 
0.01 

1.97 ± 
1.09 

1.36 ± 
0.68 

0.61 ± 
0.83 

2,000 100 2 1 
0.96 ± 
0.14 

0.01 ± 
0.01 

2.58 ± 
0.87 

1.92 ± 
0.28 

0.66 ± 
0.81 

500 250 2 1 
0.23 ± 
0.30 

0.00 ± 
0.00 

1.16 ± 
1.04 

0.46 ± 
0.60 

0.70 ± 
0.87 

500 500 2 1 
0.16 ± 
0.26 

0.00 ± 
0.00 

0.98 ± 
0.98 

0.31 ± 
0.52 

0.67 ± 
0.84 

500 100 5 1 
0.34 ± 
0.21 

0.01 ± 
0.01 

2.28 ± 
1.31 

1.69 ± 
1.05 

0.59 ± 
0.78 

500 100 10 1 
0.35 ± 
0.15 

0.01 ± 
0.01 

4.08 ± 
1.65 

3.55 ± 
1.48 

0.54 ± 
0.76 

500 100 2 2 
0.70 ± 
0.32 

0.01 ± 
0.01 

2.01 ± 
1.05 

1.39 ± 
0.64 

0.61 ± 
0.83 

500 100 2 5 
0.99 ± 
0.06 

0.00 ± 
0.01 

2.45 ± 
0.74 

1.99 ± 
0.12 

0.47 ± 
0.73 

Permutation method - Mean 

500 100 2 1 
0.31 ± 
0.33 

0.01 ± 
0.01 

1.86 ± 
1.02 

0.62 ± 
0.65 

0.56 ± 
0.77 

1,000 100 2 1 
0.66 ± 
0.34 

0.01 ± 
0.01 

1.86 ± 
1.04 

1.32 ± 
0.68 

0.54 ± 
0.77 

2,000 100 2 1 
0.96 ± 
0.14 

0.01 ± 
0.01 

2.48 ± 
0.81 

1.91 ± 
0.29 

0.56 ± 
0.74 

500 250 2 1 
0.21 ± 
0.29 

0.00 ± 
0.00 

1.02 ± 
0.96 

0.43 ± 
0.59 

0.59 ± 
0.78 

500 500 2 1 
0.15 ± 
0.25 

0.00 ± 
0.00 

0.86 ± 
0.92 

0.29 ± 
0.50 

0.57 ± 
0.79 

500 100 5 1 
0.32 ± 
0.21 

0.01 ± 
0.01 

2.13 ± 
1.29 

1.61 ± 
1.06 

0.53 ± 
0.74 

500 100 10 1 
0.34 ± 
0.15 

0.00 ± 
0.01 

3.88 ± 
1.60 

3.42 ± 
1.46 

0.46 ± 
0.70 

500 100 2 2 
0.68 ± 
0.32 

0.01 ± 
0.01 

1.89 ± 
0.99 

1.36 ± 
0.64 

0.53 ± 
0.77 

500 100 2 5 
0.99 ± 
0.06 

0.00 ± 
0.01 

2.40 ± 
0.69 

1.99 ± 
0.12 

0.41 ± 
0.69 
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3.3.2.5  Comparison of simulation results 

 

Results showed that repeated CV did not perform well for variable selection. A number 

of previous studies have also shown that CV includes a high number of false positives 

(87,91,94-96). Similar results are shown in this simulation (Table 3.8 and Table 3.9). 

Repeated CV tended to select a greater number of variables in its final model than the 

other methods with 7 or more SNPs selected over 30% of the time even though only 2 

causal variables were simulated. Whilst repeated CV produced the highest TPRs and 

FPRs in all simulated scenarios, the 1SE CV method produced the lowest rates in most 

scenarios as well as the most null models of any method (Table 3.8 and Table 3.9).  

 

Table 3.8 Table listing the number of times each tuning parameter selection method 

selected a number of SNPs in its final model in the first scenario with N = 500, NSNP = 

100, 2 causal variants each explaining 1% of the variation. 

Number 
of SNPs 
in final 
model 

CV - 
Median 

CV - 
Mean 

1SE CV 
- 

Median 

1SE 
CV - 

Mean 
BIC 

Permutation 
- Median 

Permutation 
- Mean 

0 216 73 683 646 604 249 276 

1 185 250 317 350 332 383 396 

2 74 114 0 4 47 232 221 

3 74 96 0 0 14 107 90 

4 41 59 0 0 1 24 12 

5 52 61 0 0 2 3 3 

6 43 37 0 0 0 2 2 

≥7 315 310 0 0 0 0 0 
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Table 3.9 Table listing the number of times each tuning parameter selection method 

selected a number of SNPs in its final model in the fifth scenario with N = 500, NSNP = 

500, 2 causal variants each explaining 1% of the variation 

Number 
of SNPs 
in final 
model 

CV - 
Median 

CV - 
Mean 

1SE CV 
- 

Median 

1SE 
CV - 

Mean 
BIC 

Permutation 
- Median 

Permutation 
- Mean 

0 305 125 699 664 620 373 419 
1 181 267 299 327 332 368 366 
2 50 95 0 3 36 185 162 
3 46 86 0 3 10 58 42 
4 44 47 1 1 1 12 9 

5 38 46 1 1 0 4 2 
6 34 41 0 1 1 0 0 

≥7 302 293 0 0 0 0 0 

 

 

The BIC method was also conservative in terms of variable selection producing a high 

number of null models, although this was not as high as the 1SE CV method. The 

greatest difference in results between these two methods is seen when the number of 

variables increase. When NSNP = 2,000, TPR = 0.835 for the BIC compared to 0.295 for 

the 1SE CV mean method. Although the FPR increases slightly for the BIC compared to 

a decrease for the 1SE CV mean method the gain in TPs outweighs the small change in 

FPs. As NSNP increases the TPR for BIC is higher than 1SE CV mean method (0.096 vs 

0.0665) and both methods have similar FPRs (0.0005 vs 0.0004) suggesting that the BIC 

would perform better than 1SE CV in a high-dimensional setting. BIC and 1SE CV 

produced the lowest standard error for the mean estimates which suggest these 

methods are more consistent however this is due to the methods underestimating the 

true model where there is a small number of causal SNPs and hence a high proportion 

of null models. When the number of causal SNPs increased (NCAUSAL = 10), the 

permutation method produces the smallest standard error for the mean estimate. 
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Out of the variable selection based methods, the permutation method produced the 

highest TPR whilst maintaining a low FPR. Although the permutation method has a 

higher FPR than the other variable selection methods, the mean number of false SNPs 

selected is consistently around 0.5 across all scenarios simulated and hence the false 

positive rate is still small. Table 3.10 shows the percentage of the 1,000 simulations 

that correctly selected the true simulated model. No true model was selected when N 

Causal = 10. In the majority of the other scenarios, the permutation method 

outperforms the other methods and selects a higher proportion of true models than 

the competing methods. The BIC performs well, where the 1SE CV method very rarely 

selects the true model. Repeated CV performs on a similar level to BIC in some 

scenarios however the difference is due to repeated CV including a number of false 

positives which the BIC does not. BIC does not select as many true positives. For each 

final model, the Mean Squared Error was calculated and results are shown in Table 

3.11. Results show that there was little difference in MSE estimates across the 

methods although the results tend to suggest that the sparsest model produces on 

average a lower MSE estimate. 
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Table 3.10 The percentage of times each tuning parameter selection method selected the exact true model over 1,000 simulations. 

N NSNP 
N 

Causal 
% 

Var 
CV - 

Median 
CV - 

Mean 

1SE CV 
- 

Median 

1SE 
CV - 

Mean 
BIC 

Permutation 
method - 
Median 

Permutation 
method - 

Mean 

500 100 2 1 1.70 1.90 0.00 0.30 1.60 5.00 5.40 

1,000 100 2 1 5.00 4.20 0.30 0.50 15.60 24.80 25.70 

2,000 100 2 1 6.00 4.70 0.70 4.00 55.80 46.50 51.40 

500 250 2 1 1.00 1.30 0.00 0.00 1.00 3.20 3.10 

500 500 2 1 0.20 0.20 0.00 0.00 0.90 1.50 1.50 

500 100 5 1 0.10 0.00 0.00 0.00 0.10 0.20 0.20 

500 100 10 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

500 100 2 2 5.20 5.20 2.10 2.70 17.50 27.50 27.60 

500 100 2 5 5.40 5.30 64.80 64.90 60.50 63.90 66.70 
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Table 3.11 The average Mean Squared Error from the final model for each tuning parameter selection method over 1,000 simulations 

N NSNP 
N 

Causal 
% 

Var 
CV - 

Median 
CV - 

Mean 
1SE CV - 
Median 

1SE CV - 
Mean 

BIC 
Permutation 

method - 
Median 

Permutation 
method - 

Mean 

500 100 2 1 
494.57 ± 

31.41 
494.57 ± 

31.41 
493.59 ± 

31.07 
493.59 ± 

31.07 
494.75 ± 

31.92 
494.57 ± 

31.41 
494.57 ± 

31.41 

1,000 100 2 1 
989.57 ± 

44.13 
989.57 ± 

44.13 
987.44 ± 

43.37 
987.44 ± 

43.37 
988.72 ± 

41.76 
989.57 ± 

44.13 
989.57 ± 

44.13 

2,000 100 2 1 
1977.78 
± 61.77 

1977.78 
± 61.77 

1975.32 
± 63.85 

1975.32 
± 63.85 

1978.79 
± 63.38 

1977.77 ± 
61.77 

1977.77 ± 
61.77 

500 250 2 1 
493.30 ± 

31.05 
493.30 ± 

31.05 
494.18 ± 

30.88 
494.18 ± 

30.88 
493.39 ± 

31.01 
493.29 ± 

31.04 
493.29 ± 

31.04 

500 500 2 1 
494.58 ± 

30.58 
494.58 ± 

30.58 
494.38 ± 

31.38 
494.38 ± 

31.38 
494.25 ± 

31.88 
494.57 ± 

30.58 
494.57 ± 

30.58 

500 100 5 1 
533.25 ± 

34.14 
533.25 ± 

34.14 
531.67 ± 

33.67 
531.67 ± 

33.67 
533.17 ± 

35.10 
533.23 ± 

34.14 
533.23 ± 

34.14 

500 100 10 1 
749.20 ± 

44.96 
749.20 ± 

44.96 
747.66 ± 

44.48 
747.66 ± 

44.48 
749.31 ± 

46.21 
749.17 ± 

44.96 
749.17 ± 

44.96 

500 100 2 2 
489.37 ± 

31.17 
489.37 ± 

31.17 
488.40 ± 

30.80 
488.40 ± 

30.80 
489.42 ± 

31.65 
489.36 ± 

31.17 
489.36 ± 

31.17 

500 100 2 5 
476.03 ± 

30.88 
476.03 ± 

30.88 
475.27 ± 

30.67 
475.27 ± 

30.67 
475.83 ± 

31.35 
476.02 ± 

30.88 
476.02 ± 

30.88 
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3.3.3  Conclusion 

 

The permutation method showed superior performance in this simulation study 

compared to the repeated CV, repeated 1SE CV and the BIC. The BIC also performed 

well although the method did not select many variables and tended to select a high 

proportion number of null models (Table 3.8 and Table 3.9). Cross-validation and 1SE 

Cross-validation produced extreme results, CV over selected the number of variables in 

the final model where the 1SE method under selected. A number of methods were not 

run in this simulation due to poor performance in previous studies. 

 

3.3.4  Discussion 

 

In this section, I ran a simulation study comparing various tuning parameter selection 

methods. From the methods used in the simulation, the permutation method 

outperformed the other methods in terms of variable selection for this small-scale 

simulation. Although this method also worked well when the dimensions of the 

dataset increased, this selection method is relatively untested and it’s not known how 

well this method will work in a high-dimensional setting such as GWAS. While other 

tuning parameter selection methods can be easily implemented when there is more 

than one penalty such as the elastic net by using a grid method, the permutation 

method cannot be implemented in such a way. Therefore determining the optimal 

combination penalties using the permutation method may be difficult. The BIC also 

performed well but tended to select fewer variables than the permutation method. 

Cross-validation is a method used for model prediction rather than model selection; it 

is unsurprising that it tends to over select variables. The 1SE Cross-validation method 

on the other hand, was highly conservative and rarely selected any variables. 
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3.4  Summary 

 

In this chapter, I have provided illustrations of the LASSO that can be used in future 

work. I write a program in R that can fit the LASSO and produce accurate estimates 

compared to the popular glmnet package (53). In section 3.3, I conduct a simulation 

study comparing a number of tuning parameter selection methods. Results showed 

that although Cross-validation is a popular choice for tuning parameter selection 

(Table 2.5), it does not perform well for variable selection. Either the BIC or 

permutation method should be used instead. 
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4 Application of the LASSO on the GRAPHIC 

study 

4.1 Introduction 

 

In this chapter, I apply the LASSO in a GWAS setting using the Genetic Regulation of 

Arterial Pressure of Humans in the Community (GRAPHIC) study dataset (10). GRAPHIC 

is a family based study, however for this analysis only unrelated subjects were used. 

The aim is to apply the LASSO to identify SNPs associated with Low-density Lipoprotein 

cholesterol (LDL-c). Commonly used techniques such as Bonferroni correction and false 

discovery rate (150) were used as a baseline comparison in identifying associations in 

the GRAPHIC study.  

 

I begin by conducting a literature search of studies that have conducted a GWAS on 

LDL in order to identify previously known genetic associations with LDL-c. I then 

introduce the GRAPHIC study and describe the quality control criteria used on the 

dataset. The LASSO, Bonferroni correction and false discovery rate methods are then 

applied to the GRAPHIC study in order to compare selected associations between the 

methods and the known associations found in the literature search. 
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4.2 Genetics of LDL-c 

 

4.2.1 Low-density Lipoprotein 

 

Coronary Artery Disease (CAD) is the one of the leading causes of mortality worldwide 

(151). One of the main risk factors associated with CAD is the cholesterol level, 

particularly levels of Low-density Lipoprotein (LDL) and High-density Lipoprotein (152-

154). Other risk factors include cigarette smoking, hypertension, a family history of 

Coronary Heart Disease (CHD) and age (155). The function of LDL is to carry cholesterol 

molecules from the liver to cells such as the muscles (156). Too much LDL however, 

can lead to a build-up of cholesterol in the arterial wall which ultimately leads to 

Atherosclerosis if left untreated (157) hence why LDL is known as “bad 

cholesterol”(158). High-density Lipoprotein is in a sense a role reversal of LDL as it 

carries cholesterol away from muscles and back to the liver in an attempt to prevent 

any build-up of cholesterol and therefore is known as the “good cholesterol” (158). 

Therefore reduced levels of HDL also contribute to an increased risk of CAD. 

LDL measurements are usually obtained using blood tests. The National Heart, Lung 

and Blood Institute in the United States of America published guidelines on classifying 

levels of LDL to a risk level which are widely used and accepted (Table 4.1). Naturally 

some variation in an individual’s LDL level will be explained lifestyle choices such as 

diet and exercise, however it is estimated that between 40-50% of the variation is 

genetically inherited (159,160). 

Table 4.1 ATP III Classification of LDL levels (155) 

LDL Cholesterol (mg/dL) 

<100 Optimal 
100-129 Near optimal/Above optimal 
130-159 Borderline high 
160-189 High 

≥ 190 Very high 
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4.2.2 Literature search 

 

A literature search was conducted to identify previously known SNPs and genetic 

regions associated with LDL. If the results produced from the GRAPHIC study analysis 

replicated results seen in previous GWAS studies they would be generally more 

accepted, particularly if the association has been replicated in a number of previous 

studies. The keywords of “GWAS AND LDL” were used in PubMed for this search. 

Unabbreviated versions of these terms such as “Genome-Wide Association Studies” 

and “Low-Density Lipoprotein” were also searched in the case that any studies were 

missed by using abbreviated terms. 

 

Table 4.2 describes the inclusion and exclusion criteria used for the literature search. 

LDL-c was the only included phenotype of interest and hence any analyses that 

included oxidised LDL, high-density lipoprotein (HDL) or triglycerides (TG) as the 

phenotype were excluded. Included studies were restricted to genome-wide 

association studies only rather than studies that analyse certain regions or selected 

SNPs only. All of these excluded studies selected SNPs or regions for analysis based on 

previously reported associations and therefore by excluding these studies, any new 

loci that have not been reported elsewhere have not been excluded. Studies that used 

either traditional GWAS methods such as ordinary least squares or meta-analysis 

methods to determine association were included. Included studies were restricted to 

human adults above 18 years of age only as this is similar to the GRAPHIC cohort. 

Another reason for including an age restriction is that levels of LDL is correlated with 

age (Figure 4.1) therefore the effect of confounding due to age is reduced. Further to 

this for any studies that met the inclusion criteria, associated SNPs on chromosome 23 

were excluded from the search. It would be expected that the power to detect 

association on this chromosome would be lower. Studies were not excluded by 

ancestry as potential associations may be found in either SNPs or regions across 

different ancestries.   
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Figure 4.1 Scatter plot showing the relationship between LDL cholesterol and age, 

obtained from the GRAPHIC study cohort. 

 

For studies that met the inclusion criteria the following data was collected; the name 

of the first author, publication date, the statistical techniques used, sample size of the 

study, ancestry of the cohort, the number of SNPs used in the GWAS study, the SNPs 

found to be associated with LDL as well as the gene, chromosome, base position and 

the P-value of the associated SNP (Table 4.3). The dbSNP database (161) was used in 

PubMed to cross-reference base positions of associated SNPs and the GRCh37.p10 

assembly as a reference was used for these positions; this is the assembly reference 

that is used on the GRAPHIC dataset. Identifying associated SNPs in the literature 

search, would also indicate particular regions of interest in the genome which include 

a number of associations. An associated region was defined to have two or more 

associated SNPs that are either in the same gene or at most within 50kb of each other.  
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Table 4.2 Literature search inclusion/exclusion criteria 

Literature search inclusion/exclusion criteria 

Included any GWAS studies with LDL-C as one of its outcomes. 
Included any GWAS or meta-Analysis methods with LDL-C as one of its 

outcomes. 
Excluded any analyses with oxidised LDL as its outcome. 

Included human studies only. 
Included any studies that reported results by SNPs 

Excluded any studies that reported results as either genes or loci only 
Excluded any studies that only analysed previously known SNPs or regions 

Excluded any associated SNPs on Chromosome X 
Included studies conducted on adults only ( ≥18 years old) 

 

Table 4.3 Data collected for included literature search studies 

Data collected for included Literature search studies 

Author 
Publication date 

Statistical methods used 
Sample size 

Ancestry / Population studied 
Number of SNPs in dataset 

Whether imputation was used or not 
SNPs associated with LDL 

Gene of the associated SNP 
Chromosome of the associated SNP 
Base position of the associated SNP 

P-value of the associated SNP 

 

 

4.2.2.1 Results 

 

A total 206 search results in PubMed were obtained. Table 4.4 shows the reasoning for 

exclusion of studies and the number of studies excluded in each case. 115 studies were 

excluded by title and abstract and a further 9 excluded after reading the full text as 

these studies had no relevance. 33 studies were excluded as they based the 

association testing on using previously identified SNPs or loci and a further 10 studies 

for reporting results by region or gene only. 11 studies were excluded as they were not 
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GWAS studies (4 clinical trials based on statin therapy, 3 heritability analyses, 2 

simulation studies and one literature review). A final 5 studies were excluded as they 

either did not include LDL-c as an outcome or had a study sample consisting of 

children. After applying the exclusion criteria a total of 23 studies remained (162-184) 

and the data collected is shown in Table B.0.1 (Appendix). 

 

Table 4.4 Literature search results and reasoning for exclusion 

Reason for Exclusion Number of studies 

Search results 206 

No relevance 124 
Study uses previously known SNPs, regions or genes 33 

Not a GWAS study 10 
Reports results by region or gene rather than 

individual SNPs 
10 

Study sample were based on children 2 
Did not have LDL a phenotype 3 

No associations found 1 

Studies Included  23 

 

 

A total of 126 SNPs were found to have an association with LDL from the 23 studies. 

Each study used different methods and association levels (Table B.0.1). Associations 

from 28 of these SNPs were replicated in more than one study and are listed in Table 

4.5. 17 of the 28 replicated SNPs were located on either chromosome 1 or 19 of genes 

such as SORT1/CELSR2, APOB, TOMM40 /APOE. rs6511720 on the LDLR gene (19p11.2) 

was replicated the most frequently (8 studies) followed by rs4420638 (19q13.2) which 

was replicated in 6 separate studies.  

 

Studies were generally consistent in identifying associated SNPs across similar regions. 

Of the 126 SNPs identified in the literature search, 96 SNPs (76.19%) were found to be 

within a region of another identified SNP, 30 were not. Table 4.6 lists the SNPs 

identified by the literature search by gene. The commonly identified regions were the 
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PCSK9 (1p32.3), SORT1 (1p13.3), APOB (2p24-p23), ABCG (2p21), HMGCR5/HMGCR8 

(2p21), LDLR (19p11.2) and APOE (19q13.2). 

 

To date the largest GWAS study conducted with LDL as the phenotype was conducted 

by Teslovich et al. (180). The study combined a total of 95,454 subjects (63,274 women 

and 38,514 men) across 46 participating studies and approximately 2.6 million SNPs 

were meta-analysed across the four cholesterol based phenotypes (LDL-c, HDL-c, total 

cholesterol (TC) and triglycerides). Whether a SNP was significantly associated was 

determined by using a P -value (P<0.0005) obtained from a fixed-effect meta-analysis. 

The study identified 37 SNPs associated (Appendix B) and while 9 of these SNPs were 

replicated in other studies, there were a large number of SNPs identified in this study 

were not previously identified by either SNP or region. From the 30 SNPs that were not 

found to be within a region with any of the identified SNPs, 17 (56.66%) were 

identified by the Teslovich study (180). The other 22 studies seemed fairly consistent in 

terms of identifying similar regions.  
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Table 4.5 Identified associated SNPs that have been replicated in multiple studies.  

SNPs Gene Chromosome Base position 
Number of 
replications 

Studies 

rs11206510 PCSK9 1 55,496,039 3 Kathiresan , Waterworth, Willer (167,182,185) 

rs11591147 PCSK9 1 55,505,647 5 
Chasman, Kathiresan, Musunuru, Talmund, Wu 

(166,171,179,184,186) 
rs10889353 DOCK7 1 63,118,196 2 Aulchenko, Lettre (163,169) 

rs12740374 CELSR2/ SORT1 1 109,817,590 5 
Kathiresan, Lettre, Musunuru, Talmund, Wu 

(167,169,179,184) 
rs660240 CELSR2/ SORT1 1 109,817,838 2 Middelberg, Waterworth (170,182) 

rs629301 CELSR2/ SORT1 1 109,818,306 2 Talmund, Teslovich (179,180) 

rs646776 CELSR2/ SORT1 1 109,818,530 5 
Aulchenko, Chasman, Kathiresan, Sabatti, 

Saleheen (163,164,166,174,175) 
rs599839 CELSR2/ SORT1 1 109,822,166 3 Kim, Roslin, Sandhu, Willer (168,173,176,183) 

rs693 APOB 2 21,232,195 5 
Asselbergs, Aulchenko, Kathiresan, Sabatti, 

Talmund (162,163,166,174,179) 
rs934197 APOB 2 21,267,461 2 Musunuru, Talmund (171,179) 
rs515135 APOB 2 21,286,057 2 Kathiresan, Waterworth (166,182) 

rs562338 APOB 2 21,288,321 5 
Lettre, Musunuru, Sandhu, Talmund, Willer 

(169,171,176,179,183) 
rs4299376 ABCG5/ABCG8 2 44,072,576 2 Talmund, Teslovich (179,180) 

rs4953023 ABCG5/ABCG8 2 44,074,000 2 Asselbergs, Musunuru (162,171) 
rs12654264 HMGCR 5 74,648,603 2 Kathiresan, Kim (166,168) 

rs12916 HMGCR 5 74,656,539 4 
Musunuru, Talmund, Teslovich, Waterworth 

(171,179,180,182) 
rs12670798 DNAH11 7 21,607,352 2 Aulchenko, Teslovich (163,180) 
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rs174546 FADS1 11 61,569,830 2 Sabatti, Teslovich (174,180) 
rs2000999 HPR 16 72,108,093 2 Musunuru, Teslovich (171,180) 

rs6511720 LDLR 19 11,202,306 8 
Chasman, Kathiresan (x2), Lettre, Musunuru, 

Teslovich, Trompet, Willer 
(164,166,169,171,180,181,183,187) 

rs2228671 LDLR 19 11,210,912 2 Aulchenko, Talmund (163,179) 

rs10401969 CILP2 19 19,407,718 3 Kathiresan, Teslovich, Waterworth (166,180,182) 
rs16996148 CILP2 19 19,658,472 2 Kathiresan, Willer (183,187) 

rs157580 TOMM40 19 45,395,266 2 Aulchenko, Sabatti (163,174) 
rs2075650 TOMM40 19 45,395,619 2 Middelberg, Talmund (170,179) 

rs7412 APOE 19 45,412,079 4 
Chasman, Rasmussen-Torvik, Smith, Wu 

(172,178,184,186) 
rs12721046 APOE 19 45,421,254 2 Musunuru, Talmund (171,179) 

rs4420638 APOE 19 45,422,946 6 
Kathiresan (x2), Sandhu, Teslovich, Waterworth, 

Willer (166,176,180,182,183,187)  
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Table 4.6 Genes associated with LDL from the literature search. Numbers in brackets 
denote the number replicated associations 

Gene Chr. 
Number of 

identified SNPs 
within gene 

Identified SNPs within genes 

PCSK9 1 5 
rs11206510 (3), rs2479409, rs11591147 (4), 

rs11806638, rs499883 

DOCK7 1 3 rs10889335, rs2131925, rs10889353 (2) 

SORT1/ 
CELSR2 

1 8 
rs4970834, rs7528419, rs12740374 (5), rs660240 

(2), rs629301 (2), rs646776(5), rs602633, 
rs599839 (4) 

APOB 2 11 
rs4971516, rs693 (5), rs10199768, rs1367117, 

rs934197 (2), rs934197, rs7575840, rs515135 (2), 
rs562338 (5), rs506585, rs503662 

ABCG5, 
ABCG8 

2 5 
rs6756629, rs4299376 (2), rs6544713, rs4953023 

(2), rs76866386 

HMGCR 5 6 
rs12654264 (2), rs3846662, rs3846663, rs12916 

(4), rs3804231, rs258494 

HAVCR1 5 3 rs6882076, rs9715911, rs1501908 

LPA 6 3 rs1564348, rs3798220, rs10455872 

DNAH11 7 1 rs12670798 (2) 

NPC1L1 7 2 rs2072183, rs17725246 

PPP1R3B 8 2 rs9987289, rs2126259 

TRIB1 8 5 
rs6982636, rs2954021, rs2954029, rs4870941, 

rs6987702 

ABO 9 3 rs2519093, rs651007, rs635634 

FADS 11 3 rs174541, rs174546 (2), rs174570 

APOA 11 4 rs12272004, rs1558861, rs964184, rs2072560 

HNF1A 12 2 rs2650000, rs1169288 

CETP 16 2 rs3764261, rs17231506 

HPR 16 2 rs72626182, rs2000999 (2) 

LDLR 19 10 
rs1529729, rs73015011, rs11668477, rs17248720, 
rs6511720 (8), rs8110695, rs2228671 (2), rs5930, 

rs2738446, rs2738459 

CILP2 19 2 rs10401969 (3), rs16996148 (2) 

APOE 19 15 

rs1531517, rs4803750, rs10402271, rs519113, 
rs6859, rs283813, rs157580(2), rs2075650 (2), 

rs1160985, rs769450, rs7412 (4), rs445925, 
rs389261, rs12721046 (2), rs4420638 (6) 

TOP1 20 2 rs1883511, rs6029526 
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4.3 The GRAPHIC study 

 

Genetic Regulation of Arterial Pressure of Humans in the Community (GRAPHIC) Study: 

The GRAPHIC Study comprises 2,037 individuals from 520 nuclear families recruited 

from the general population in Leicestershire, UK between 2003-2005 for the purpose 

of investigating the genetic determinants of blood pressure and related cardiovascular 

traits in the general population. Recruitment of families was performed by invitation of 

women aged between 40 and 69 registered with a general practitioner in 

Leicestershire, UK. Families were included if both parents were aged 40-60 years and 

two offspring ≥18 years wished to participate. A detailed medical history was obtained 

from study subjects by standardized questionnaires and a clinical examination was 

performed by research nurses following standard procedures. Measurements obtained 

included height, weight, waist-hip ratio, a 12-lead ECG, lipid levels including total 

cholesterol, HDL and LDL and also both clinic and ambulatory blood pressure. 

 

The subjects from the GRAPHIC study cohort were genotyped on 3 arrays, 50k 

Cardiochip on all samples, Exomechip that contains a large number of rare variants on 

both generations and HumanOmniExpress-12v1 array for the GWAS dataset which was 

genotyped on parental subjects only. For this analysis the GWAS dataset consisting of 

1,017 parental subjects was used. Further information about recruitment and 

genotyping can be found here (10). 
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4.4 Quality Control and Exclusion Criteria  

 

The GRAPHIC GWAS dataset consists of 1,017 parental subjects (508 males and 509 

females) and 730,525 SNPs. These are mostly common SNPs however there are also 

some rare variants in the dataset. Any subjects with a missing phenotype (N = 35) were 

removed. A quality control and exclusion criterion was applied to the remaining 982 

subjects. The criterion used is described in Table 4.10 below. Any individuals with a low 

call rate, any SNPs with a low call rate, SNPs with a small minor allele frequency (MAF), 

SNPs with a highly significant Hardy-Weinberg Equilibrium P-value or individuals with 

sex inconsistencies in the data were excluded. PLINK (version 1.07) (19,20) was used to 

apply the quality control procedure. 

 

4.4.1 Low SNP call rate in individuals 

 

A low call rate of SNPs in an individual indicates a poor DNA sample which may lead to 

inconsistent readings for that individual (188). Therefore it makes sense to exclude 

subjects with low call rates. Given that the initial sample size after removing subjects 

with a missing phenotype is 982 an excessive number people should not be excluded 

from the analysis as a reduced sample size would reduce the power to detect 

associations in the analysis. This is especially the case in rare SNPs as a rare variant 

with a low initial call rate will produce a low number of minor alleles within the 

population. This has a knock-on effect on association testing for that SNP as not only is 

the DNA sample unreliable, but also easier to produce false positive or false negative 

results by chance. Turner et.al (188) discusses the application and implications of 

quality control procedures in GWAS. A 98-99% call rate was suggested; similarly a 

study by Weale (189) suggests a 97-98% call rate.  

 

Table 4.7 below shows the numbers of people that would be excluded for varying call 

rate cut-off points. A high cut-off point would lead to the exclusion of a high 
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proportion of subjects in the dataset but also reduce the power of the study. One 

particular subject was found to have a call rate = 86.93%, in comparison all the other 

subjects had call rates ≥ 94%. Any subjects with a call rate < 95% were excluded to 

compromise with power. Most previous GWA studies on LDL used a sample size of 

thousands of subjects and therefore have a greater power to detect associations with 

small effect sizes and can afford to exclude more subjects. The studies from the 

literature search with a similar sample size to this study generally found a low number 

of associations (172,173,177). A call rate of < 95% excludes 3 individuals and leaves 

979 subjects for analysis. The mean genotyping rate across the remaining subjects was 

99.32% 

 

Table 4.7 Numbers of subjects that would be excluded for varying call rates 

Individual call rate cut-off Numbers of 
subjects 
excluded 

% of people 
excluded 

100% 982 100 
99.50% 347 35.34 

99% 180 18.33 
98.50% 123 12.53 

98% 81 8.25 
97.50% 52 5.30 

97% 40 4.07 
96% 15 1.53 
95% 3 0.31 
94% 1 0.10 
93% 1 0.10 
92% 1 0.10 
91% 1 0.10 
90% 1 0.10 

 

4.4.2 Low genotype call rate 

 

SNPs with a low genotype call rate were excluded as these SNPs would indicate poor 

marker quality. An alternative approach would be to impute missing values however 

this can lead to error in the estimation of genotypes and could produce either false 
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associations or truly causal associations not being selected. It is therefore beneficial to 

initially exclude SNPs with a high missing call rate. Table 4.8 shows the numbers of 

SNPs that would be excluded for varying genotype call rates. There is a high SNP call 

rate across a large proportion of the GRAPHIC study. A large proportion the SNPs with 

lower call rates were on chromosome 23 (19% of all SNPs with a call rate < 90%). A cut-

off of 97% was selected as this removed a large proportion of poor quality SNPs whilst 

not removing too many needlessly as the remaining missing genotypes would be 

imputed for analysis. In total 39,302 SNPs (5.38%) were excluded due to a low 

genotyping call rate. 

 

Table 4.8 Numbers of SNPs that would be excluded for varying call rates 

SNP call rate cut-off 
Number of 

SNPs excluded 
% of SNPs 
excluded 

100% 324,372 44.40 
99.50% 121,238 16.60 

99% 82,357 11.27 
98.50% 64,435 8.82 

98% 53,162 7.28 
97.50% 45,333 6.21 

97% 39,302 5.38 

96.50% 34,667 4.75 
96% 30,965 4.24 

95.50% 27,795 3.80 
95% 25,615 3.51 
94% 21,205 2.90 
93% 17,796 2.44 
92% 15,144 2.07 
91% 10,037 1.37 
90% 11,525 1.58 
85% 6,249 0.86 
80% 3,909 0.54 
75% 2,837 0.39 

70% 2,302 0.32 
60% 1,918 0.26 

50% 1,799 0.25 
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4.4.3 Minor allele frequency 

 

SNPs with a low minor allele frequency (MAF) were also excluded. Rare variants will 

lack power to detect causality (188); this will especially be the case in this analysis as 

the sample size only consisted of 979 subjects compared to most previous GWA 

studies with LDL that use many thousands of subjects. Consider a scenario of a rare 

SNP with MAF of 1%, in a dataset of 1,000 people with 100% genotype call rate for this 

SNP. It would be expected that on average 10 subjects will have at least one minor 

allele and only one person to have both two minor alleles for that SNP. It is difficult to 

detect any true association unless there is a large effect size from the SNP on the 

phenotype. Conversely another issue is that with a large number of rare variants in the 

dataset there may be a large number of false positive associations by chance. For 

example, it would be easy to imagine a coincidental scenario where these ten subjects 

that have the minor allele of a rare SNP have a higher than average LDL than the rest 

of the population by chance and therefore potentially leading to a false association. 

This would particularly be the case for rarer SNPs as there is not enough data to 

otherwise reject any association.  

 

Figure 4.2 and Figure 4.3 shows histograms of the MAFs of SNPs from the GRAPHIC 

study. There was a large number of monomorphic SNPs (N = 44,335), 40,042 of which 

have been set to a MAF of 0 due to missing allele readings. The remaining 4,293 SNPs 

were found to be homozygous across all subjects in the cohort. Any SNPs with a MAF < 

2% were removed (N = 91,224). This cut-off was selected as it would exclude the rarest 

variants and therefore removing some of the issues with rare variants previously 

discussed whilst simultaneously attempting not to exclude too many SNPs needlessly. 

Due to the way commands are run in PLINK, the 91,224 SNPs excluded by MAF may 

have some SNPs that have also been excluded due to a low genotype call rate and 

therefore these exclusions are not on top of those excluded for call rate. 
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Figure 4.2 Histogram of minor allele frequencies of all SNPs 

 

Figure 4.3 Histogram of minor allele frequencies of SNPs with MAF < 0.05 
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4.4.4 Hardy-Weinberg Equilibrium 

 

Finally SNPs were excluded due to deviances from Hardy-Weinberg Equilibrium (HWE), 

which is based on comparing observed and expected frequency rates using chi-squared 

tests (190). A departure from HWE (i.e. a small P-value) suggests error in genotype 

calling. Figure 4.4 shows a histogram of the HWE P-values of all SNPs. There is a high 

number of SNPs (N = 154,087) with a P-value equal to 1. However the 40,042 SNPs that 

have previously identified as having missing allele (and hence will be excluded) all have 

a HWE P-value of 1 because observed and expected frequencies cannot be calculated 

and are included in Figure 4.4. The aim is to exclude SNPs with a small P-value; 

however as the HWE test is based on P-values the number of false positives for any 

given P-value cut-off point should be considered. Table 4.9 shows the number of SNPs 

excluded for the specified P-value cut-offs compared to the expected number of false 

positives assuming P-values follow a uniform distribution. A HWE threshold of P < 

0.0001 was selected which excludes 3,089 SNPs. This threshold was chosen as it 

removed the most significant SNPs in disequilibrium (Figure 4.5) while minimising the 

number of false positives. Increasing the threshold to P < 0.001 would exclude a 

further 1,438 SNP however the number of false positives would increase by around 

657 SNPs. If the threshold was to decrease to P < 0.00001 only include 662 SNPs for 

the analysis for only 66 less false positive SNPs. 
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Table 4.9 Numbers of SNPs for exclusion for varying HWE P-values 

HWE P-value Number of 
SNP's 

excluded 

Expected number 
of false positives 

0.1 65,955 73052.50 
0.09 60,396 65747.25 
0.08 54,509 58442.00 
0.07 48,469 51136.75 
0.06 42,501 43831.50 
0.05 36,176 36526.25 
0.04 30,321 29221.00 
0.03 24,086 21915.75 

0.025 20,932 18263.13 

0.02 17,865 14610.50 
0.015 14,638 10957.88 
0.01 11,366 7305.25 

0.001 4,527 730.53 
0.0001 3,089 73.05 

0.00001 2,427 7.31 
0.000001 2,057 0.73 

0.0000001 1,793 0.07 
0.00000001 1,598 0.007 

 

 

Figure 4.4 Histogram of Hardy-Weinberg Equilibrium P-values 
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Figure 4.5 Histogram of Hardy-Weinberg Equilibrium P-values (P < 0.01) 

 

4.4.5 Other exclusion criteria 

 

In total 38 subjects and 117,584 SNPs were excluded from quality control. Following 

this some exclusion criteria were applied to the remaining 612,941 SNPs. Any SNPs 

with a missing base position or chromosome were removed as the region the SNP was 

located could not be identified (N = 1,230) and excluded all remaining SNPs on the X 

chromosome (N = 19,937). There were two reasons for excluding the X chromosome, 

the first was the significantly reduced power on this chromosome. The second was due 

to the low genotype call rate found in SNPs on this chromosome. 

 

 This left 979 individuals and 591,774 SNPs remaining for analysis (Table 4.10) and the 

characteristics of these individuals is described in Table 4.11. Of all the subjects 

included in the analysis, 489 were males and 490 were females with an overall mean 

age of 52.87 years (S.D. = 4.411) and the mean LDL cholesterol across all subjects was 

125.85 mg/dL (S.D. = 25.06). 
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Table 4.10 Quality Control and Exclusion Criteria 

Criteria Criterion used 
Numbers 
excluded 

Across humans 

Low call rate in individuals < 95% 3 People 

Missing LDL values - 35 People 

Sex inconsistencies - 0 People 

Across SNPs 

Low call rate in SNPs < 97% 38,129 SNPs 

Minor allele frequency (MAF) <2% 91,224 SNPs 

Hardy-Weinberg Equilibrium 
(HWE) 

P < 0.0001 3,089 SNPs 

Missing Chromosome/Base 
position 

- 1,230 SNPs 

SNPs on X Chromosome - 19,937 SNPs 

A total of 979 subjects and 591,774 SNPs remain after quality control 
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Table 4.11 Summary statistics of GRAPHIC study GWAS dataset after quality control 

  Male Female P-value 

Mean S.D 95% C.I. Mean S.D 95% C.I. 

Age (years) 53.86 4.24 53.48 54.23 51.89 4.36 51.50 52.28 < 0.001 
BMI (kg/m2) 27.81 0.17 27.47 28.15 27.09 0.21 26.68 27.49 0.008 

Waist Girth (cm) 97.85 10.96 96.87 98.82 85.49 11.23 84.49 86.49 < 0.001 
Hip Girth (cm) 105.04 7.35 104.39 105.70 105.05 10.19 104.14 105.95 0.994 

Total Cholesterol (mg/dL) 219.88 39.72 216.35 223.41 227.21 39.31 223.72 230.70 0.004 
Triglycerides (mg/dL) 185.45 96.78 176.85 194.05 141.48 75.46 134.78 148.18 < 0.001 

LDL Cholesterol (mg/dL) 125.71 27.21 123.30 128.13 125.98 28.91 123.42 128.55 0.881 
HDL Cholesterol (mg/dL) 50.11 11.83 49.05 51.16 62.64 14.58 61.35 63.93 < 0.001 
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Figure 4.6 shows a Quantile-Quantile plot of the calculated P-values against the 

expected P-values under a uniform distribution, using linear regression assuming an 

additive genetic model. Each scatter point represents a SNP. The red diagonal line 

shows the expected line the scatter plot would follow under the assumption that there 

are no associated SNPs. Any points far above this line suggest that the SNP may be 

associated with LDL. The plot show that there are a number of SNPs that may be 

associated with LDL, however both the Q-Q plot and Bonferroni correction method do 

not take into account of the LD between SNPs and therefore a number of these 

possible associated SNPs may be associated due to correlation with another highly 

associated SNP. 

 

Figure 4.6 Quantile-Quantile plot for P-values from the GRAPHIC study. Each SNP’s 

univariate −𝑙𝑜𝑔10 P-value on the y-axis is plotted against the expected −𝑙𝑜𝑔10 P-value 

under a uniform distribution on the x-axis. The diagonal line in red denotes the 

expected values the plotted SNPs would take assuming that there are no significant 

associations with the phenotype. 
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4.5 Bonferroni Correction 

 

Bonferroni correction is a simple and commonly used statistical technique to account 

for multiple testing in GWAS. It controls the Type I Error rate when conducting a large 

number of tests. It assumes that all tests are independent of one another; an 

assumption that is not valid in this analysis due to Linkage Disequilibrium (LD) between 

SNPs. Significance testing is based on the use of P-values. Assuming that all statistical 

tests were null using a significance level of 𝛼0 = 0.05, approximately 5% of all tests to 

be found to be statistically ‘significant’ by chance and therefore produce a false 

positive result. This would not be an issue with a low number of tests as it would lead a 

small number of false positives. However using a significance level of 0.05 on a dataset 

consisting of with 591,774 SNPs, would lead to approximately 29,589 statistically 

significant associations, assuming no SNPs were truly associated. In reality it would be 

expected that only a handful of SNPs to have a true association with LDL as shown in 

Table 4.5. The Bonferroni correction is a naïve method for correcting the significance 

level by dividing the original significance level (𝛼0) by the number of tests to obtain an 

adjusted significance level (𝛼𝑎).  

 

4.5.1 Methods 

 

Using a significance level of 𝛼0 = 0.05 , an adjusted genome-wide significance level of 

8.449x10-8 was obtained. This significance level is similar but slightly less strict to the 

suggested genome-wide significance level of 5x10-8 (191). 

 

 𝛼𝑎  =  
𝛼𝑜

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑠
=  

0.05

591,774
=  8.449 𝑥10−8  (4.1) 
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By scaling the significance level, the number significant SNPs that are false positives is 

reduced however it is likely to exclude a number of true positives at the same time 

which is one of the main criticisms of the Bonferroni correction method (192-194). 

After quality control an association test between the remaining SNPs and LDL was 

conducted by calculating univariate P-values. From the list of P-values obtained, any 

SNPs with a univariate P-value of less than 8.449x10-8 (4.1) were considered to be 

statistically significant and therefore associated with LDL. 

 

4.5.2 Results 

 

Figure 4.7 shows the Manhattan plot for the included SNPs after quality control. The x-

axis plots each SNP in order of the chromosome and base position against the 

univariate –log10 P-value on the y-axis. The horizontal red line indicates the Bonferroni 

corrected significance level of 8.499x10-8. As seen in the literature search (Table B.0.1), 

a number of the most statistically significant SNPs were found on chromosome 1 

(Figure 4.8) and 19 (Figure 4.9). 
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Figure 4.7 Manhattan plot of SNPs in the GRAPHIC study. Each SNP is plotted in order 

of chromosome and base position along the x-axis against the univariate −𝑙𝑜𝑔10 P-

value on the y-axis. The horizontal line in red denotes the Bonferroni corrected P-value 

threshold of 8.499x10-8 

 

Figure 4.8 Manhattan pot of Chromosome 1. Each SNP on this chromosome is plotted 

in order of base position along the x-axis against the univariate −𝑙𝑜𝑔10 P-value on the 
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y-axis. The horizontal line in red denotes the Bonferroni corrected P-value threshold of 

8.499x10-8 

 

Figure 4.9 Manhattan plot of Chromosome 19. Each SNP on this chromosome is 

plotted in order of base position along the x-axis against the univariate −𝑙𝑜𝑔10 P-value 

on the y-axis. The horizontal line in red denotes the Bonferroni corrected P-value 

threshold of 8.499x10-8 

 

Only rs7412 on the APOE gene on chromosome 19 (BP = 45,412,079), was found to 

have a statistically significant association with LDL-c (p = 1.70x10-12) after applying the 

Bonferroni adjusted significance level. The effect estimate showed that LDL levels for 

individuals with the minor T allele for rs7412 decreased on average by 16.28 mg/dL 

(S.E. = 2.28) per allele compared to those who did not (Figure 4.10). This association 

between rs7412 and LDL was previously identified in the literature and has been 

replicated in four other studies (172,178,184,186). These previous studies showed the 

minor T allele of rs7412 also decreased the level of LDL in individuals. The effect size 

varied between -0.505 and -69.74 mg/dL. 
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Figure 4.10 Scatter plot showing the effect of rs7412 on LDL cholesterol. 

 

4.6 False discovery rate 

 

One of the long standing criticisms of the Bonferroni correction method in GWAS is 

that it is a conservative method and may exclude a number of true positives (192-194). 

This could very well be the case in the previous analysis as only one SNP was selected 

whilst both the Manhattan plot (Figure 4.7) and Q-Q plot (Figure 4.6) showed that 

there may be other associations that could be selected. The false discovery rate (FDR) 

is another technique in GWAS that is based on Q-values which is a measure of the false 

discovery rate (7,8). 

 

Table 4.12 shows a generalised scenario of testing m null hypotheses, where R tests 

are were found to be statistically significant. The false discovery rate estimates the 

expected proportion of false positives (4.2) (150). 
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Table 4.12 Number of errors committed when testing m null hypotheses. Taken from 
Benjamini et al.(150) 

  Declared non-
significant 

Declared 
significant 

Total 

True null hypothesis U V m0 

Non-true null hypothesis T S m - m0 

Total m-R R m 

 

 

 𝐹𝑎𝑙𝑠𝑒 𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦 𝑅𝑎𝑡𝑒 = 𝐸 [
𝑉

𝑉 + 𝑆
] = 𝐸 [

𝑉

𝑅
] (4.2) 

 

 

A P-value is a measure of the minimum false positive rate whereas a Q-value is a 

measure of the minimum false discovery rate. This leads to differing interpretations in 

the statistics. Suppose a false positive rate of 5% was used, this is the same as setting a 

P-value significance level of 0.05 for each test. 5% of all null tests would therefore be 

statistically significant by chance. If a false discovery rate significance level of 5% was 

used, then 5% of all tests that are already statistically significant are false positive. A 

study by Storey describes a quick and efficient way of calculating Q-values based on 

obtained P-values (7). Given a list of P-values that can be obtained from a regression 

method analysis on single SNPs, the proportion of tests that are truly null (𝜋0) can be 

estimated for any tuning parameter κ (4.3). 

 

 𝜋0(𝜅) =  
𝑚0

𝑚
= 
# {𝑝𝑖  >  𝜅; 𝑖 = 1,… , 𝑚}

𝑚 (1 − 𝜅) 
 (4.3) 

 

 

 

            



 

111 
 

Using this 𝜋0estimate for a chosen tuning parameter κ, the FDR can be estimated for 

any threshold t (4.4). 

 

 𝐹𝐷�̂�(𝑡) =  
𝜋0̂ . 𝑚 . 𝑡

# { 𝑝𝑖  ≤ 𝑡 }
 (4.4) 

 

And thus a Q-value can be obtained (4.5). 

 

 �̂�(𝑝𝑖) = min
𝑡 ≥ 𝑝𝑖

𝐹𝐷�̂�(𝑡) (4.5) 

 

Studies have shown that the FDR is a more powerful testing method compared to the 

Bonferroni correction method (150). The only decision that is required for this analysis 

is to select a FDR significance level much like selecting a significance level threshold. 

Like the Bonferroni method the FDR method assumes independence in all tests which 

cannot be assumed due to LD between SNPs.  

 

4.6.1 Methods 

 

For this analysis the same univariate P-values that were used in the Bonferroni 

correction were used to obtain a set of Q-values. The qvalue package in R was used for 

the FDR analysis (195). To estimate the proportion of tests that are truly null (𝜋0), the 

“specify lambda” option in the package was selected and the range of 𝜋0 was allowed 

to vary between 0 and 0.99 increasing by 0.01 and the “smoother” option was also 

used. A Q-value threshold of 0.05 was selected. Any SNPs with q ≤ 0.05 was deemed to 

be associated with LDL.  
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4.6.2 Results 

 

FDR analysis included all SNPs after quality control using a q ≤ 0.05 as an FDR 

significance threshold. The proportion of null hypotheses (π0) was estimated to be 

0.9972. Table 4.13 shows the number of SNPs selected for varying Q-value thresholds 

and their respective P-value thresholds. While the distribution of P-values is fairly 

uniform across the range of values (Figure 4.11), it is clear that this is not the case with 

the Q-values as the distribution is heavily skewed towards p = 1. Of the 591,774 SNPs 

in the dataset, only 136 were found to have Q-value less than 0.9. The difference in 

distribution of P-values and Q-values is because Q-values estimate the false discovery 

rate rather than false positive rate.  

 

Table 4.13 Comparison of numbers of SNPs selected for varying P-value and Q-value 
thresholds 

Q-value P-value 
Number 
of SNPs 

0.01 1.70E-12 1 
0.05 1.58E-07 2 
0.2 9.66E-07 3 

0.3 8.37E-06 19 
0.35 1.41E-05 26 
0.4 1.95E-05 30 
0.5 2.82E-05 34 
0.6 4.74E-05 48 
0.7 7.03E-05 60 
0.8 9.74E-05 72 
0.9 0.0002035 136 

0.95 0.0002961 186 
1 1.00E+00 591,774 
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Figure 4.11 Histogram showing the distribution of univariate P-values for each SNP in 

the GRAPHIC study against LDL 

 

Table 4.14 shows the top 25 SNPs by Q-value. The majority of these SNPs were on 

chromosome 1 (N = 6) or 19 (N = 9). These 25 SNPs are also the top 25 SNPs by P-

value. Of the strongest associated regions identified from these SNPs (Table 4.15) in 

this study only the CELSR2 and APOE genes were previously identified in the literature 

search (Table 4.6). The strongest associated region was around the APOE gene on 

chromosome 19; including the top 3 SNPs by P-value. The FDR method found 2 of 

these SNPs rs7412 and rs4420638 to be associated with LDL (q < 0.05). Figure 4.12 and 

Figure 4.13 show regional plots around the APOE gene where these two SNPs are 

located. The figures show that while these two SNPs are in the same region to each 

other, there is little LD between the SNPs (r2 = 0.025). The effect estimates (Table 4.14) 

shows that these two leads SNPs have opposite effects estimates of LDL levels on 
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subjects as the minor allele of rs7412 decreases the mean LDL levels where minor 

allele of rs4420638 increases the mean LDL level by 8.09 mg/dL (S.E. = 1.52).  

 

Table 4.14 Top 20 selected SNPs by Q-value 

CHR SNP Base 
position 

Beta S.E. MAF (%) P-value Q-value 

19 rs7412 45,412,079 -16.28 2.28 8.60 1.70E-12 1.00E-06 
19 rs4420638 45,422,946 8.09 1.52 21.0 1.58E-07 0.0466 
19 rs2075650 45,395,619 8.45 1.71 15.7 9.66E-07 0.1901 
1 rs2745291 11,607,932 -7.17 1.51 21.8 2.35E-06 0.2208 
1 rs12026701 16,123,199 5.86 1.25 44.5 3.29E-06 0.2208 

1 rs12569079 16,124,438 5.93 1.25 44.5 2.46E-06 0.2208 
2 rs1728149 10,617,598 6.56 1.40 28.0 3.20E-06 0.2208 

18 rs17223656 23,100,817 -6.24 1.31 38.9 2.15E-06 0.2208 
19 rs445925 45,415,640 -9.37 2.00 11.4 3.37E-06 0.2208 
19 rs10402182 37,160,529 6.29 1.36 30.1 4.53E-06 0.2229 
19 rs17272386 37,180,297 6.29 1.36 30.1 4.53E-06 0.2229 
19 rs1525133 37,199,250 6.29 1.36 30.1 4.53E-06 0.2229 
1 rs3120625 109,768,889 -6.13 1.34 33.7 5.41E-06 0.2383 
1 rs7528419 109,817,192 -6.70 1.48 21.8 6.68E-06 0.2383 

18 rs4800637 23,093,219 -5.95 1.32 38.9 6.87E-06 0.2383 
19 rs2967442 37,064,240 6.26 1.37 30.0 5.87E-06 0.2383 
19 rs1035777 37,094,435 6.19 1.37 30.1 6.64E-06 0.2383 

1 rs660240 109,817,838 -6.77 1.50 21.3 7.54E-06 0.2470 
3 rs646929 54,695,763 5.81 1.30 36.4 8.37E-06 0.2601 
3 rs1717608 99,401,638 -5.72 1.30 35.2 1.15E-05 0.3207 
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Table 4.15 Associated SNPs from FDR analysis that are within regions of other associated SNPs 

Gene Chr. SNP Base position Beta S.E. MAF (%) P-value Q-value 

FBLIM1 1 rs12026701 16,123,199 5.855 1.251 44.5 3.29E-06 0.2208 

rs12569079 16,124,438 5.931 1.251 44.5 2.46E-06 0.2208 
CELSR2 1 rs3120625 109,768,889 -6.128 1.34 33.7 5.41E-06 0.2383 

rs7528419 109,817,192 -6.695 1.478 21.8 6.68E-06 0.2383 
rs660240 109,817,838 -6.768 1.503 21.3 7.54E-06 0.2470 
rs646776 109,818,530 -6.444 1.479 22.0 1.46E-05 0.3309 

ZNF521 - SS18 18 rs4800637 23,093,219 -5.964 1.319 38.9 6.87E-06 0.2383 
rs17223656 23,100,817 -6.242 1.309 38.9 2.15E-06 0.2208 

ZNF520 -ZNF567 19 rs2967442 37,064,240 6.225 1.366 30.0 5.87E-06 0.2383 

rs1035777 37,094,435 6.192 1.367 30.1 6.64E-06 0.2383 
rs10402182 37,160,529 6.285 1.363 30.1 4.53E-06 0.2229 
rs17272386 37,180,297 6.285 1.363 30.1 4.53E-06 0.2229 
rs1525133 37,199,250 6.285 1.363 30.1 4.53E-06 0.2229 

APOE / TOMM40 19 rs2075650 45,395,619 8.452 1.714 15.7 9.66E-07 0.1901 

rs7412 45,412,079 -16.28 2.277 8.6 1.70E-12 1.00E-06 

rs445925 45,415,640 -9.366 2.004 11.4 3.37E-06 0.2208 

rs4420638 45,422,946 8.009 1.516 21.0 1.58E-07 0.0466 
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Figure 4.12 Regional plot around the APOE gene and SNPs in Linkage Disequilibrium 

with rs7412. SNPs are plotted in order of base position along the x-axis against the 

univariate −𝑙𝑜𝑔10 P-value on the left-hand y-axis. The blue line shows the 

recombination rate across this region. Colours for each SNP represent the correlation 

(r2) between this SNP and the lead SNP in purple. 
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Figure 4.13 Regional plot around the APOE gene and SNPs in Linkage Disequilibrium 

with rs4420638. SNPs are plotted in order of base position along the x-axis against the 

univariate −𝑙𝑜𝑔10 P-value on the left-hand y-axis. The blue line shows the 

recombination rate across this region. Colours for each SNP represent the correlation 

(r2) between this SNP and the lead SNP in purple. 

 

4.7 The LASSO on the GRAPHIC study 

 

An attempt to apply the LASSO on a full GRAPHIC dataset was made in R (196) using 

the glmnet package (53). The idea was to apply three tuning parameter selection 

methods on the dataset; repeated 10-fold Cross-validation, BIC and the permutation 

method. However two issues arose with this investigation.  

The first was the lack of memory to load the dataset into R. To counter this issue the 

ALICE High Performance Computing Facility at the University of Leicester was used. 

This resource allowed a much greater memory limit to be used so that the data could 

be loaded and analysed. The caveat of using the High Performance Computing Facility 



 

118 
 

is that each analysis must include a time limit and if the analysis goes over this time 

limit the analysis is aborted. Even at the maximum time limit available (200 hours) this 

analysis failed to finish and therefore the results were unobtainable. Instead an 

analysis was performed on a single chromosome from the GRAPHIC study. The analysis 

should not be performed on each chromosome separately and then combined, as the 

estimated λ would be different on each chromosome rather than a fixed λ across all 

datasets which would allow a larger number of variables selected. Fixing the same λ 

across all dataset is another option; however selecting the λ in this scenario would be 

difficult. Yi et al. also concluded that analyses on each chromosome separately would 

be “prudent” (15). 

 

4.8 Application of the LASSO on chromosome 19 of 

the GRAPHIC study 

 

Chromosome 19 was selected for this analysis as there is a number of associations in 

both the literature (Table 4.5) and the most significant SNPs from the GRAPHIC study 

were also on this chromosome (Table 4.14 and Figure 4.1). This chromosome consists 

of 12,376 SNPs and did not cause any problems in terms of computational time taken 

to analyse the data as it is a smaller subset of the overall dataset. The Bonferroni 

correction, FDR and LASSO was applied to this chromosome for comparison. The Q-Q 

plot again showed that there are some associations with LDL on this chromosome 

(Figure 4.14). 
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Figure 4.14 Quantile-Quantile plot for P-values from chromosome 19 of the GRAPHIC 

study. Each SNP’s univariate −𝑙𝑜𝑔10 P-value on the y-axis is plotted against the 

expected −𝑙𝑜𝑔10 P-value under a uniform distribution. The diagonal line in red 

denotes the expected values the plotted SNPs would take assuming that there are no 

significant associations with the phenotype. 

 

4.8.1 Methods 

 

The same procedures for Bonferroni correction method and FDR analyses were used as 

described in sections 4.5.1 and 4.6.1. As the number of SNPs is reduced, the number of 

tests conducted also decreases leading to different results and most likely more SNPs 

being selected. The adjusted Bonferroni threshold changes as does the Q-value for 

each SNP. The Bonferroni adjusted P-value threshold was calculated as p = 4.04x10-6. A 

Q-value threshold of 0.05 was again used. 
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The glmnet package does not allow any missing values in the dataset therefore 

imputation was required for the missing genotype data to fit the LASSO. For each SNP 

with a missing genotype for an individual, median number of minor alleles across the 

population was imputed. This means that each missing genotype was imputed with the 

most common genotype in the population. The FDR and Bonferroni correction 

analyses were performed on the dataset without imputation. In order to check if the 

results in both datasets were comparable, the P-values were plotted before and after 

imputation look for any major changes in P-values after imputation. Figure 4.15 shows 

the scatter plot comparing P-values before and after imputation for all SNPs on 

chromosome 19. The plot shows that is little difference for the majority of SNPs, 

especially for the most statistically significant SNPs (Figure 4.16) and therefore it seems 

reasonable to compare SNPs selected between the LASSO and both the Bonferroni 

correction and FDR methods. There was little difference when comparing Q-values 

before and after imputation (Figure 4.17). 

 

Three tuning parameter selection methods were used; repeated 10-fold Cross-

validation, BIC and the permutation method. Both repeated CV and the permutation 

was repeated 100 times for greater accuracy and the median of these λ estimates 

would be selected as the optimum λ. Repeated CV used a range of 200 λ estimates. 

While the BIC a range of 625 λ estimates with an interval of 0.01 between each 

estimate. 
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Figure 4.15 Scatter plot comparing P-values for each SNP on chromosome 19 before 

and after imputation. Imputation was conducted by replacing missing genotype with 

the median genotype from the population. The red diagonal line represents the line if 

there is no change in P-values. 
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Figure 4.16 Scatter plot comparing P-values for each SNP on chromosome 19 before 

and after imputation for P-values ≤ 0.05 before imputation. Imputation was conducted 

by replacing missing genotype with the median genotype from the population. The red 

diagonal linerepresents the line if there is no change in P-values. 

 

Figure 4.17 Scatter plot comparing Q-values for each SNP on chromosome 19 before 

and after imputation. Imputation was conducted by replacing missing genotype with 

the median genotype from the population. The red diagonal linerepresents the line if 

there is no change in Q-values. 
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4.8.2 Results 

 

4.8.2.1 Bonferroni correction  

 

Table 4.16 shows the SNPs selected by the Bonferroni correction method using the 

adjusted P-value threshold of 4.04x10-6. The four SNPs that selected; rs7412, 

rs4420638, rs2075650 and rs445925 are all located in the same region on APOE gene. 

As shown in Figure 4.12 and Figure 4.13, r27412 and rs4420638 are independent 

signals. However the figures show there is correlation between these two SNPs and 

the two other SNPs selected. There is a high correlation between rs7412 and rs445925 

(r2 = 0.712, Figure 4.12) and also some correlation between rs4420638 and rs2075650 

(r2 = 0.416, Figure 4.13). These correlations with the top two SNPs in Table 4.16 aid the 

latter two SNPs to become more statistically significant associated with LDL.  

 

Table 4.16 SNPs selected by the Bonferroni correction method on chromosome 19 of 

the GRAPHIC study. 

SNP 
Base 

position 
Beta S.E. MAF P-value Q-value 

rs7412 45412079 -16.28 2.28 0.0861 1.70E-12 2.09E-08 
rs4420638 45422946 8.01 1.52 0.2106 1.58E-07 0.000968 
rs2075650 45395619 8.45 1.71 0.1573 9.66E-07 0.003951 
rs445925 45415640 -9.37 2.00 0.1144 3.37E-06 0.007255 

 

4.8.2.2 False discovery rate 

 

The FDR analysis performed on chromosome 19 selected 13 SNPs (Table 4.17). Two 

new regions were identified in this analysis. The first is a region between ZNF520 and 

ZNF567 on chromosome 19, selected six SNPs (rs2967442, rs1035777, rs1525133, 

rs10402182, rs1727386 and rs2967440) across a region of around 135kb (Figure 4.18). 

This region has not been identified by previous studies. There is little difference 
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between the effect size (beta), MAF, P-values and Q-values in all six SNPs (Table 4.17) 

which shows that there is high LD between them. The correlation between rs1525133, 

rs10402182 and rs1727386 was estimated as r2 = 1 and therefore were in perfect 

correlation with each other. Given that there are multiple SNPs identified within these 

regions, it can be seen that neither the Bonferroni correction nor the FDR methods are 

unable to handle correlated SNP data. Generally the top SNP by P-value in a region 

tends to be selected as the associated SNP in any GWAS dataset although it may not 

be the causal SNP; however it becomes more difficult in the region between ZNF529 

and ZNF567 on chromosome 19 as there are 3 SNPS with the same P-value (Table 

4.17).  

Two further SNPs were identified between the DNM2 and CARM1 genes (Figure 4.19). 

This region has also not been identified in previous studies however this region is 

approximately 200kb from the LDLR gene which has shown a number of associations in 

the literature (Table B.0.1). There was little statistical significance on the LDLR gene in 

this study however (Figure 4.19). 

 

Table 4.17 SNPs selected by false discovery rate on chromosome 19 of the GRAPHIC 

study. 

SNP 
Base 

position 
Beta S.E. MAF P-value Q-value 

rs7412 45412079 -16.28 2.28 0.0861 1.70E-12 2.09E-08 
rs4420638 45422946 8.01 1.52 0.2106 1.58E-07 0.000968 
rs2075650 45395619 8.45 1.71 0.1573 9.66E-07 0.003951 
rs445925 45415640 -9.37 2.00 0.1144 3.37E-06 0.007255 

rs10402182 37160529 6.29 1.36 0.3013 4.53E-06 0.007943 
rs1525133 37199250 6.29 1.36 0.3013 4.53E-06 0.007943 

rs17272386 37180297 6.29 1.36 0.3013 4.53E-06 0.007943 
rs2967442 37064240 6.23 1.37 0.3008 5.87E-06 0.008707 

rs1035777 37094435 6.19 1.37 0.3011 6.64E-06 0.00905 
rs17001002 10948031 -6.97 1.59 0.1839 1.25E-05 0.014524 

rs769449 4541,0002 7.76 1.80 0.1386 1.79E-05 0.018291 
rs11881156 10950125 -6.92 1.60 0.1855 1.79E-05 0.018328 
rs2967440 37059215 5.84 1.37 0.3046 2.33E-05 0.021957 
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Figure 4.18 Regional plot of identified region between the ZNF529 - ZNF567 genes. 

SNPs are plotted in order of base position along the x-axis against the univariate 

−𝑙𝑜𝑔10 P-value on the left-hand y-axis. The blue line shows the recombination rate 

across this region. Colours for each SNP represent the correlation (r2) between this SNP 

and the lead SNP in purple. 
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Figure 4.19 Regional plot of identified region between the DNM2 – CARM1 genes. 

SNPs are plotted in order of base position along the x-axis against the univariate 

−𝑙𝑜𝑔10 P-value on the left-hand y-axis. The blue line shows the recombination rate 

across this region. Colours for each SNP represent the correlation (r2) between this SNP 

and the lead SNP in purple. 

 

4.8.2.3 LASSO 

 

The SNPs selected by repeated 10-fold CV on chromosome 19 are shown in (Appendix 

C). The tuning parameter estimates varied between 2.058 (selecting 22 SNPs) and 

2.655 (selecting 85 SNPs) with mean = 2.389 (S.D = 0.12) and median = 2.365 (Figure 

4.20). A total of 44 SNPs were selected on chromosome. This is unsurprising as shown 

in section 3.3.2.1 CV tends to select a large model with a number of false positives 

(87,91,94-96).  

Previous studies have shown the correlations between SNPs may able to 

accommodate for LD between SNPs (24-26) where the Bonferroni correction and FDR 

methods are unable to. There is evidence of this on the GRAPHIC study. For example, 

six SNPs (rs2967442, rs1035777, rs1525133, rs10402182, rs1727386 and rs2967440) 
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were selected using the FDR method (Table 4.17) the region around ZNF529 – ZNF567 

genes (Figure 4.18). Of these six SNPs, three were in perfect LD with each other with 

another three SNPs in high LD (r2 ≥ 0.8). The LASSO selected the three SNPs in perfect 

LD (rs1525133, rs10402182 and rs1727386) but not the remaining three SNPs (r2 < 1). 

Further inspection of the three SNPs in perfect LD showed that there was a big 

difference in β estimates produced by the LASSO at the selected λ. The estimate for 

rs10402182 was β = 2.314, while the estimates for both rs1525133 and rs1727386 

were β < 1x10-14. This shows that the LASSO selects rs10402182 over the other SNPs as 

that the beta estimates for these two SNPs are so small and are close to being 

removed from the model.   

 

 

Figure 4.20 Histogram of lambdas estimates using Cross-validation for each of the 100 

repetitions. The red vertical line represents the median estimate. 
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Both the BIC and permutation methods selected the same model of 4 SNPs. The 100 

tuning parameter estimates for the permutation method varied between 3.119 

(selecting 7 SNPs) and 4.315 (selecting 2 SNPs) with mean = 3.536 (S.D. = 0.26) and 

median = 3.494 (Figure 4.21). The tuning parameter estimate for the BIC was λ = 3.50. 

The SNPs selected were from the four regions selected using the FDR method (Table 

4.17). Only one SNP was selected from each region, again showing that the LASSO is 

able to handle LD by selecting the top association and removing the remaining 

correlated SNPs.  

 

Table 4.18 SNPs selected by the LASSO using both BIC and 100 repeats of the 

permutation method for tuning parameter selection 

SNP 
Base 

position 
Beta S.E. MAF P-value Q-value 

rs7412 45412079 -16.28 2.28 0.0861 1.70E-12 2.09E-08 
rs4420638 45422946 8.01 1.52 0.2106 1.58E-07 0.000968 

rs10402182 37160529 6.29 1.36 0.3013 4.53E-06 0.007943 
rs17001002 10948031 -6.97 1.59 0.1839 1.25E-05 0.014524 
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Figure 4.21 Histogram of lambdas estimates using permutation method for each of the 

100 repetitions. The red vertical line represents the median estimate. 

 

4.9 Discussion 

 

The aim of this chapter was to apply the LASSO to the GWAS dataset from the 

GRAPHIC study in order to select associations with Low-density Lipoprotein (LDL-c). 

However the time taken to fit the model reached time limits using the ALICE High 

Performance Computing Facility at the University of Leicester, and therefore, was 

unable to analyse the full dataset due to the computational intensiveness of the 

process including selection of the tuning parameter. The analysis was not performed 

genome-wide, but instead on a single chromosome leading to a number of potential 

associations not being discovered from the dataset.  
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A way around this issue would be to fit the LASSO on each chromosome individually 

and combine the results; however this method would be crude as each chromosome 

varies in the number of SNPs and significant associations, therefore fitting the LASSO 

individually on each chromosome separately produces 22 analyses that are on 

different scales to one another and hence it is unlikely to produce the same results as a 

genome-wide analysis. This was shown when comparing the Bonferroni correction and 

FDR methods between the genome-wide and chromosome 19 analyses. The 

Bonferroni correction method selected one SNP on the whole dataset and selected 

four for the single chromosome analysis. Likewise the FDR method selected two SNPs 

on the whole dataset and selected thirteen from the single chromosome analysis. It is 

not known if this increase in the number of selected will occur when comparing with 

the genome-wide dataset, however if it is the case, this would lead to a large number 

of variables selected. A high number of associations is unlikely from this dataset as 

shown literature search where studies with a similar sample size to GRAPHIC generally 

found a low number of associations (172,173,177). 

 

An alternative approach which has been used in previous studies for high-dimensional 

data (Table 2.5) would be to reduce the number of SNPs across the whole genome to 

fit the LASSO in one analysis. This process is known as Pruning and is a logical step 

given the number of SNPs that are not associated with LDL in the dataset that could be 

removed without much potential impact on the results. It is also unknown however 

how pruning would affect LASSO models. 

 

The analysis was performed on the GWAS dataset which consisted of only parental 

subjects. A number of previous studies that have performed GWAS on single datasets 

using regression have adjusted for other factors such as age, Body Mass Index (BMI) 

and sex (162,164,173,174,177-179,181). There was no association with sex in the 

GRAPHIC study (p = 0.8845), there were significant associations with BMI (p = 2.13x10-

7) and age (p <2x10-16) and could have been adjusted for. For the LASSO, this would 

require the adjusted variables to be in the regression equation but not included in the 
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penalty (4.6). Another simpler approach would be to fit a linear model between the 

phenotype and the variables that will be adjusted for. The residuals can then be 

predicted from its model and can be used as the phenotype for the LASSO. These 

residuals would make up the remaining unexplained variance of the phenotype. 

 

 

�̂�(𝜆) =
1

2𝑁
 ∑(𝑦𝑖 − 𝜇 −∑𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

− 𝑎𝑔𝑒𝑖𝜐 − 𝐵𝑀𝐼𝑖𝜙 )

2
𝑛

𝑖=1

+ 𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

 

(4.6) 

 where,  
 𝜐 = the effect estimate of age on the phenotype 𝑦  
 𝜙 = the effect estimate of BMI on the phenotype 𝑦  
 

Imputation of the dataset was required and was performed by replacing any missing 

genotypes with the median genotype for that SNP from the dataset. Although this is a 

crude method, Figure 4.15 and Figure 4.16 both show that there was little difference in 

P-values before and after imputation, especially for the most statistically significant 

SNPs. This small difference is mostly due to the quality control procedure where SNPs 

with a genotype call rate < 97% were removed and therefore the effect of imputation 

on missing data would be minimal on the results. 

 

Both the Bonferroni and FDR methods selected previously associated SNPs identified in 

the literature search (Table 4.5), however for the single chromosome analysis both 

methods selected a greater number of SNPs including some in LD with other selected 

SNPs. In contrast the LASSO was able to handle the correlation between SNPs and 

selected mostly independent associations. This was even the case with SNPs in perfect 

correlation however on close inspection the LASSO selected the first SNP by base 

position and penalised any other SNP in perfect LD with this SNP. The reasoning for 

this may be due to the algorithm used to fit the LASSO. The glmnet package uses the 

coordinate descent algorithm (see section 2.4.2) which updates β estimate a SNP at a 

time, starting from the first SNP in the dataset, therefore for any pair of SNPs with r2 = 
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1, the first SNP by base position will estimate a true β for a given λ but the second will 

not as the model will have been adjusted for the first SNP. One of the criticisms of the 

LASSO is that it selects one in a group of highly correlated SNPs and removes the 

remaining SNPs from the model (18); however this is less of a disadvantage in GWAS. 

As long as at least one SNP in the associated region is selected it is not a concern if 

other SNPs in this region are not selected. If other SNPs in the region are of more 

interest, follow-up analyses can be conducted. 

 

The FDR and LASSO analyses identified two novel regions between ZNF529 and ZNF567 

(Figure 4.18) and between DNM2 and CARM1 genes (Figure 4.19). Both these regions 

have not been previously identified in the literature as associated regions with LDL and 

require further study.  

 

4.10 Conclusion 

 

In this chapter, analyses were conducted on both a single chromosome and the whole 

genome from the GRAPHIC study. The results on a single chromosome showed that 

the Bonferroni correction method to be a conservative method, selecting two regions. 

Both the FDR and LASSO selected four regions on chromosome 19; however the LASSO 

was able to handle the LD between SNPs but, the FDR and Bonferroni correction 

methods were not.  

 

Both the FDR and Bonferroni correction methods on the whole genome selected SNPs, 

rs7412 and rs4420638, with previously known associations with the phenotype LDL 

(164,166,172,176,178,180,182,183,187). However the application of the LASSO on the 

whole genome failed due to computational limits and SNP pruning should be 

considered to overcome these problems. Although there were problems with the 

computational time taken, the single chromosome analysis showed that the LASSO 

may work well in a GWAS setting for variable selection if these problems could be 
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overcome. With a greater number of variables the LASSO would be recommended 

over the Bonferroni correction and FDR methods as it is able to remove correlated 

variables and keep the most statistically important variable. 
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5 Linkage Disequlibrium estimation 

5.1 Introduction 

 

Estimation of LD statistics is the first step when pruning SNPs by LD and therefore is 

important for future work examining LD SNP pruning. In this chapter, I begin by 

describing the biological background of LD and how it occurs. I then discuss how LD is 

estimated in haplotype and genotype data and compare a number of packages that 

estimate LD. The comparison of different packages is required as they use different 

algorithms to estimate LD from genotype data which could produce very different 

results. 

 

5.2 Biology of Linkage Disequilibrium 

 

Linkage Disequilibrium is defined as the non-random statistical association of alleles at 

different loci (197,198). It occurs due to the co-inheritance of alleles and erodes over 

generations due to recombination (199). This is illustrated in Figure 5.1. At point (a) 

there are two locus, the first is a polymorphic SNP with respective alleles A and a the 

second is a monomorphic SNP. At this point there are only two allele combinations in 

the population (A, B) and (a, B). At some point a mutation may occur on a 

chromosome at the second locus as shown in green at point (b) resulting in a third 

combination (A, b) being present in the population. Offspring inherit a pair of 

chromosomes from the parents with one chromatid inherited from each parent, 

therefore the alleles on each chromosome become co-inherited. The third 

combination of alleles also leads to a correlation between the b allele and the A allele 

as the presence of the former will always be co-inherited with the latter and therefore 

producing a statistical association between these alleles.  
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Over generations the LD may be broken down by recombination. This is where sections 

of the parental chromatids swap. This is shown at point (c) in Figure 5.1, where 

recombination occurs between the two loci, (A, b) in green and (a, B) in blue resulting 

in the fourth and final combination to be produced (point (d)). There are a number of 

factors that can affect LD in a population which are discussed in greater detail by 

Slatking which includes natural selection, genetic drift, population subdivisions and 

inbreeding (198).  

 

 

Figure 5.1 The erosion of linkage disequilibrium by recombination taken from Ardle et 

al.(199). 
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5.3 Linkage Disequilibrium measures and estimation 

 

There are two measures commonly used to calculate linkage disequilibrium, r-squared 

(r2) and D-prime (D’). Both measures are standardised measures for the difference 

between expected and observed haplotype frequencies. D and r can be interpreted as 

the covariance and the correlation between loci and across gametes (200). The r-

squared statistic is particularly popular as it is related to the statistical power to detect 

disease associations (201). Both measures are calculated by comparing observed and 

expected haplotype frequencies. A haplotype is defined as a group of alleles inherited 

together from a single parent, as LD calculations are based on a pair of SNPs a 

haplotype is considered for a pair of SNPs rather than a group. The calculation is made 

based on the deviation statistic (D) between the expected and actual haplotype 

frequencies is then standardised to produce these measures.  

 

Let 𝑆𝑁𝑃 𝐴 and 𝑆𝑁𝑃 𝐵 be a pair of SNPS with respective alleles 𝐴1, 𝐴2, 𝐵1 and 𝐵2. 

Haplotype (𝑧11, 𝑧12, 𝑧21 and 𝑧22) and allele frequencies (𝑝1, 𝑝2, 𝑞1 and 𝑞2) can be 

calculated from the data (Table 5.1 and Table 5.2) 

 

Table 5.1 Definition of haplotype frequencies for two SNPs with two alleles 

Haplotype Frequency 

𝑨𝟏𝑩𝟏 𝑧11 

𝑨𝟏𝑩𝟐 𝑧12 
𝑨𝟐𝑩𝟏 𝑧21 
𝑨𝟐𝑩𝟐 𝑧22 

Where, 

∑∑𝑧𝑖𝑗

2

𝑖=1

2

𝑗=1

= 1 
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Table 5.2 Definition of allele frequencies based on haplotype frequencies. 

Allele Frequency 

𝑨𝟏 𝑝1 =  𝑧11 + 𝑧12 

𝑨𝟐 𝑝2 =  𝑧21 + 𝑧22 
𝑩𝟏 𝑞1 =  𝑧11 + 𝑧21 
𝑩𝟐 𝑞2 =  𝑧12 + 𝑧22 

 

With these allele and haplotype frequencies the deviation statistic (𝐷) can be 

obtained, by calculating the difference between the expected and actual frequencies. 

The expected haplotype frequencies can be calculated by multiplying the two 

respective allele frequencies together (5.1).  

 

The expected haplotype frequency assumes the SNPs are in Linkage equilibrium, hence 

there is no statistical correlation between the combinations of alleles to form 

haplotypes. The deviation statistic can then be calculated by finding the difference 

between the haplotype frequency and expected haplotype frequency (Table 5.3) or 

alternatively the statistic can directly be calculated from haplotype frequencies (5.3).  

 

Table 5.3 Relationship between haplotype frequencies, allele frequencies and the 

deviation statistic 

Allele  A1 A2 Total 

B1 𝑧11 = 𝑝1𝑞1 +𝐷  𝑧21 = 𝑝2𝑞1 − 𝐷  𝑞1 

B2 𝑧12 = 𝑝1𝑞2 − 𝐷 𝑧22 = 𝑝2𝑞2 +𝐷 𝑞2 

Total 𝑝1 𝑝2 1 

 

 

 

 

 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 ℎ𝑎𝑝𝑙𝑜𝑡𝑦𝑝𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝐸(𝐴𝑖𝐵𝑗)  = 𝑝𝑖 𝑞𝑗 (5.1) 
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                                             𝐷 =  𝑧11 − 𝑝1𝑞1 

= 𝑧11 − (𝑧11 + 𝑧12)(𝑧11 + 𝑧21) 

             = 𝑧11(1 − 𝑧11 − 𝑧12 − 𝑧21) − (𝑧12𝑧21) 

                               𝐷 =  𝑧11𝑧22 − 𝑧12𝑧21 (5.2) 
 

If the SNPs are in linkage equilibrium, it is expected that there is no difference between 

the expected and actual frequencies (𝐷 =  0). If a pair of SNPs are in LD then D ≠ 0. 

The r-squared statistic can then be calculated by dividing 𝐷 with the multiplication of 

the square root of the four allele frequencies p1, p2, q1 and q2 and squaring (5.3).  

 

 
 

𝑟2 = (
𝐷 

√𝑝1𝑝2𝑞1𝑞2
)

2

 (5.3) 

 

The D-prime statistic also uses the deviance statistic (5.2) and its calculation is 

dependent on the sign of the deviation statistic (5.4). 

 

 𝐷′ = 
𝐷

𝐷𝑚𝑖𝑛
 (5.4) 

 
where  

{
𝐷𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑝1𝑞2, 𝑝2𝑞1)                            𝑖𝑓 𝐷 < 0

𝐷𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑝1𝑞1, 𝑝2𝑞2)                             𝑖𝑓 𝐷 > 0
 

 

 

While both r-squared and D-prime are standardised measures for the difference 

between expected and observed haplotype frequencies (D), they have different 

interpretations. r2 is a measure of the correlation between haplotypes whereas D-

prime measures the largest covariance between a pair of haplotypes. 

 

Variance Inflation factor (VIF) is another method to calculate the correlation between 

SNPs. In a linear regression analysis, SNPs with a high LD will produce an inflated 

variance due to the correlation. The variance of each correlated predictor variable is 
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inflated by a factor shown in (5.5). The 𝑅2 statistic is based on the coefficient of 

determination calculated by linear regression of a SNP onto another SNP and not the 

𝑟2 statistic shown in (5.3). VIF values range between 1 and ∞. A 𝑉𝐼𝐹 = 1 is obtained 

when 𝑅2  =  0 and hence SNPs are in Linkage Equilibrium. 

 

 𝑉𝐼𝐹 =  
1

1 − 𝑅2
 (5.5) 

 

5.4 Linkage Disequilibrium estimation from genotype data 

 

While estimation by haplotypes will produce the true LD measure, in reality estimation 

by genotypes is more commonly used, as it is technically very difficult and expensive to 

measure alleles on a single chromosome and therefore genotype measure are used 

instead. Datasets in genotype form are such that each SNP for an individual is assigned 

a number; 0, 1 or 2 depending on its allelic count of the minor allele. LD estimation 

between SNPs cannot be estimated directly using genotype data as the haplotypes are 

unknown. If the allele count is 0 or 2 the alleles on each chromatid are known. A 0 

count on an individual at a particular SNP would mean the individual has a major allele 

on each chromatid, where a count of 2 means an individual has a minor allele on each 

chromatid. However, with a genotype count of 1 it is unclear which chromatid contains 

the major and minor alleles. Therefore if a pair of SNPs both have a genotype count of 

1, it will be unclear whether the same parental chromatid contains both contain the 

major or minor allele or if each chromatid contains one major and minor allele 

respectively. The estimation of haplotypes from genotypes is known as phasing. 

Phasing is also required for imputation of missing genotype data in GWAS studies 

(202,203). 

 

There have been a number of methods proposed to estimate haplotypes from 

genotype data which include Clark’s algorithm (204), the Expectation-Maximisation 
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(EM) algorithm (205,206) and hidden Markov Models (207) which require iterative 

approaches. Browning and Browning discuss these methods, and the software that 

implement these algorithms in detail (208). Clayton and Leung also proposed a 

numerical approach for LD estimation from genotypes, which is implemented in the R 

package snpStats (209). 

 

5.5 Comparison of R packages that estimate LD between 

SNPs 

 

5.5.1 R functions that calculate Linkage Disequilibrium  

 

Three commonly used packages for genetic analyses in R that can calculate LD 

statistics between multiple SNPs were used; GenABEL (210), genetics (211) and 

snpStats (212). These packages are not specifically designed for LD calculations but all 

include functions that calculate LD for genetic markers. All three packages estimate LD 

by genotypes rather than haplotypes. GenABEL uses an Expectation-Maximisation 

(EM) algorithm as described by Hao and Crawley (206). The genetics package uses 

“maximum likelihood estimation” to estimate LD and snpStats uses a numerical 

approach (209). 

 

All three R packages are able to calculate pairwise LD statistics based on both r-

squared and D-prime statistics for large numbers of SNPs. The GenABEL package has 

two separate functions to calculate these statistics; r2fast for r-squared statistics 

and drpfast for D-prime statistics. These functions return a P x P matrix; where P is 

the number of SNPs defined in the dataset. The matrix contains two separate readings; 

the r-squared or D-prime statistics are stored above the diagonal in the matrix and the 

numbers of SNP genotypes measured for both SNPs that have been used to calculate 

the LD statistic are stored below the diagonal.  
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The genetics package uses an LD function to calculate LD between SNPs. The P x P 

matrix returned stores the LD statistics above the diagonal and the cells below the 

diagonal are set to missing. The function does not include any options and only 

requires the input of a dataset. The dataset can be in the form of allele pairs (i.e. A\T) 

or genotype form (i.e. 0, 1 and 2). For any user-specified dataset the genetics package 

automatically calculates and stores both r-squared and D-prime estimates for any user 

supplied set of genotypes. The user must then extract the desired LD statistic. Users 

can return a number of other statistics from this function that include a correlation 

coefficient, the number of observations or a chi-squared test for linkage disequilibrium 

which tests the hypothesis of a pair of SNPs in linkage equilibrium (D-prime = 0) against 

the pair of SNPs in linkage disequilibrium (D-prime ≠ 0) and a P-value from the chi-

squared test. The chi-squared tests are applied to D-prime statistics and not r-squared 

statistics. All these statistics are automatically calculated by the package regardless of 

if they are required or not. 

 

The snpStats package includes an ld function to calculate LD statistics. There is a 

greater choice in LD measures using snpStats that include log likelihood ratio, odds 

ratio, Yule's Q statistic, covariance, and r as well as the more commonly used measures 

of D-prime and r-squared. The function also includes a “depth” option which is a 

numeric argument that forces the function to only calculate LD statistics across a 

certain number of adjacent SNPs from any SNP. This option essentially creates an LD 

window of adjacent SNPs in the LD matrix, similar to a pruning window implemented in 

PLINK. Both the GenABEL and genetics packages do not include this option, nor do they 

include a wider variety of LD measures to choose from. 

 

5.5.2 Methods to compare the R functions 
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To compare the estimated LD statistics between the three packages and PLINK, the 

first 2,000 SNPs on chromosome 1 from 1,014 parents in the GRAPHIC GWAS dataset 

were taken (see section 4.3). These 2,000 SNPs span over 7.8Mb and give 1,999,000 

pairwise LD estimations for comparison. The quality control procedures applied were 

the same as those in section 4.4 (low call rate in individuals < 95%, low call rate in SNPs 

< 97%, MAF < 2%, HWE < 0.0001).  

 

PLINK version 1.07 (19,20) was used as a baseline comparison for the LD statistics 

calculated in the R packages. PLINK can calculate LD statistics by both haplotypes and 

genotypes; however calculation by haplotypes can only be applied when calculating LD 

between a single pair of SNPs and not multiple pairs of SNPs, therefore an LD matrix 

cannot be produced from the estimation of haplotypes. Calculation from genotype 

data is implemented using an EM algorithm. PLINK does not have an option to 

calculate an LD matrix for D-prime statistics, though this option can be used when 

calculating by haplotypes. Only R and r-squared LD matrices can be calculated from 

genotypes. The PLINK command also includes options to restrict the number of LD 

calculations to a specific window size. The window can be implemented by either a 

number of adjacent SNPs or genetic distance (kb). There is also an option that returns 

an LD matrix that only report LD statistics above a user-supplied threshold, the 

remaining statistics are set to 0. 

 

For each R package an LD matrix was calculated for both r-squared and D-prime 

measures. An LD matrix from PLINK was obtained using the --r2 --matrix command. No 

LD window was implemented for this analysis; LD statistics for all pairwise 

combinations were calculated. The r-squared statistics from each package were 

plotted against the statistics calculated in PLINK to show the variation in estimates 

between packages. PLINK does not calculate LD statistics by D-prime and therefore the 

statistics calculated in each package were plotted against each other as a comparison.  
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To compare the computational time taken to calculate the LD matrix between the 

three packages and PLINK, the same dataset of SNPs on chromosome 1 from 1,014 

parents in the GRAPHIC study was used. The size of the dataset varied between the 

first 2,000 SNPs to the first 20,000 SNPs on chromosome 1. Five datasets were used 

with totals of 2,000, 5,000, 10,000, 15,000 and 20,000 SNPs respectively. This was to 

gauge the effect on computational time as the number of SNPs increases. The quality 

control procedures applied were again the same as the previous chapter (see section 

4.3). LD matrices were calculated using the same commands as the analysis comparing 

LD statistics. The computational time taken was recorded in hours, minutes and 

seconds. 

 

5.5.3 Comparison of Linkage Disequilibrium statistics 

 

Figure 5.2, Figure 5.3 and Figure 5.4 show scatter plots of the estimated LD 

statistics between PLINK and the three packages: GenABEL, genetics and snpStats. 

While the LD values between PLINK and both genetics and snpStats seem fairly 

similar and consistent (Figure 5.3 and Figure 5.4), with the snpStats estimate being 

slightly more accurate than genetics. The algorithm implemented in GenABEL tends 

to overestimate r2 statistics compared to PLINK (Figure 5.2); however the 

overestimation was relatively consistent in all pairwise LD statistics. The r-squared 

statistics between the genetics and snpStats packages were almost identical 

(Figure 5.5). 
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Figure 5.2 Comparison of r2 statistics between PLINK and GenABEL 

 

Figure 5.3 Comparison of r2 statistics between PLINK and genetics 
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Figure 5.4 Comparison of r2 statistics between PLINK and snpStats 

 

Figure 5.5 Comparison of r2 statistics between genetics and snpStats 

 

When comparing the D-prime matrices between the three R packages, there were 

again discrepancies between GenABEL and both the genetics (Figure 5.6) and 

snpStats (Figure 5.7) packages. Unlike the r-squared statistics where there was a 
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slight but consistent overestimation of LD statistics, there was no consistency in D-

prime statistics. There was both under and over estimation of D-prime statistics in 

the GenABEL package compared to genetics and snpStats. There is a high amount 

of variability in the overestimated SNPs with some pairs of SNPs that are estimated 

with D-prime = 0 in GenABEL estimated with D-prime = 1 in genetics and snpStats. 

There is a smaller variability in the underestimated SNPs; the extreme difference in 

D-prime estimates is 0.35 (estimated as D-prime = 0 in both genetics and snpStats 

and D-prime ≈ 0.38 in GenABEL). The GenABEL help file does acknowledge that 

there is a difference between itself and the genetics package in both LD statistics 

but does not explain why there is this difference. D-prime statistics between 

genetics and snpStats were similar as they were for r-squared (Figure 5.8). 

 

Figure 5.6 Comparison of D-prime statistics between genetics and GenABEL 
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Figure 5.7 Comparison of D-prime statistics between snpStats and GenABEL 

 

Figure 5.8 Comparison of D-prime statistics between genetics and snpStats 
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5.5.4 Comparison of time taken to compute Linkage Disequilibrium 

estimates 

 

Table 5.4 shows the time taken to compute different size LD matrices with both r-

squared and D-prime measures. The snpStats package was shown to be consistently 

faster to calculate these matrices for both measures, which is unsurprising considering 

the snpStats package is the only package that does not use the EM algorithm which 

requires a number of iterations to converge to the true LD estimate. The GenABEL 

package was faster than PLINK in calculating r-squared statistics. The genetics package 

took the longest to compute LD statistics with datasets of 10,000 SNPs or more 

reaching the computer time limit before the matrix was calculated. It is unsurprising 

that the genetics package takes so much computational time as the function calculates 

a number of statistics including both r-squared and D-prime statistics. The timings 

between r-squared and D-prime measures for each package were similar.
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Table 5.4 Time taken (hh:mm:ss) to compute different size LD matrices in PLINK, GenABEL, genetics and snpStats packages 

Time taken to calculate an LD matrix in hours, minutes and seconds 

No. of SNPs 2,000 5,000 10,000 15,000 20,000 

LD Measure r2 D’ r2 D’ r2 D’ r2 D’ r2 D’ 

PLINK 00:04:15 - 00:23:36 - 01:30:10 - 03:24:00 - 05:47:46 - 

GenABEL 00:00:33 00:00:32 00:01:55 00:01:55 00:07:31 00:07:32 00:16:47 00:16:50 00:29:48 00:29:54 

genetics 10:08:50 10:24:58 64:48:34 64:31:04 > 200 hrs > 200 hrs > 200 hrs > 200 hrs > 200 hrs > 200 hrs 

snpStats 00:00:14 00:00:14 00:00:51 00:00:52 00:02:39 00:02:46 00:05:24 00:05:25 00:08:59 00:09:06 
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5.5.5 Conclusion 

 

In comparing R packages to calculate an LD matrix, both accuracy of estimates 

compared to PLINK and computational time were considered. Both the snpStats and 

genetics packages showed good accuracy in LD statistics for the r-squared measure 

when compared to PLINK (Figure 5.3 and Figure 5.4) and when compared to each 

other for both statistics (Figure 5.5 and Figure 5.8). However the GenABEL package 

tended to overestimate r-squared statistics (Figure 5.2) and showed large 

inconsistencies in D-prime statistics compared to the other R packages (Figure 5.6 and 

Figure 5.7). snpStats was computationally the quickest of all the packages to calculate 

both types of LD measures while genetics was computationally the longest. The 

function took over 200 hours for a dataset of 10,000 SNPs compared to 7 minutes 30 

second in snpStats. Other advantages of using snpStats include the ability to prune by 

alternative LD measures such as log likelihood ratio, odds ratio, Yule's Q, covariance, 

and R as well as the ability to use the “depth” option that can be used to implement a 

pruning window in adjacent SNPs. 

 

5.6 Summary 

 

This chapter has introduced the biological background and calculation of LD statistics. 

These LD statistics can then be used for pruning SNPs from a dataset which is discussed 

in greater detail in Chapter 5. I tested a number of packages that estimate the LD 

measures D’ and r2 and found that the snpStats package showed superior performance 

in terms of both estimation accuracy and computational time taken. 
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6 SNP pruning 

6.1 Introduction 

 

SNP Pruning is a quality control procedure that removes a number of SNPs from the 

dataset. There are a number of reasons that pruning is used such as removing SNPs in 

LD so that a dataset of independent SNPs remains or saving computational time. In 

section 4.7, I described how due to the lack of computational time and memory I was 

unable to perform a GWAS using the LASSO on the GRAPHIC GWAS dataset. The 

computational intensity of the method requires the number of SNPs to be controlled. 

This is likely to be the case for larger GWAS datasets as well as studies that perform 

meta-analyses or integrative analyses which will combine a number of datasets.  

 

 In this chapter, I review a number of current pruning methods and discuss the 

advantages and disadvantages of each method. I then apply a number of these 

methods in my own R program. The algorithm uses manipulation of the LD matrix to 

prune rather than other algorithms that prune combinations of SNPs in a pairwise 

fashion. I then compare my pruning algorithm to the PLINK pruning program (19,20).  

 

6.2 Linkage Disequilibrium pruning 

 

Datasets are commonly pruned by LD to both reduce the number of dimensions and to 

remove correlations between SNPs. Principle Component Analysis (PCA) is used to 

investigate population structure across different ancestries (213-216). Differences in 

ancestry can lead to confounding by population stratification (217), however clustering 

in regions of high LD can be difficult as the LD can obscure patterns of population 

structure (213,218). LD pruning is therefore used as a quality control step by removing 

regions of high LD in order to perform PCA analyses.  
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LD pruning is also commonly used in genetic risk scores, also known as polygenic risk 

scores (219,220). The reason pruning is utilised here is to avoid any duplicated 

information due to LD in the score however this could lead to causal variants being 

pruned (219). To avoid such a scenario, some studies now prune SNPs based on P-

value, known as LD clumping (221-223). The LD clumping method prunes SNPs based 

on P-value, allowing the top signals in a dataset to remain after pruning.  

 

There are a three main LD statistics that can be used for pruning, D-prime, r2 and R2. 

Calculations of these statistics are described in section 5.3. If the LD statistic is above a 

given threshold, one of the pair of SNPs is pruned. Most commonly used pruning 

programmes implement a pruning window and step size options for pruning 

(19,20,201,224-226). Both options are designed to reduce time for pruning. A window 

of length M and a step size H, will take the next F adjacent SNPs and prune only within 

this window and then move along H SNPs and repeat the process. The pruning 

algorithm will only prune SNPs within this window. The step option then moves the 

window by a number of SNPs and repeats until the end of the dataset is reached.  

 

The implementation of a window allows the user to reduce the computational time. A 

smaller window reduces the number of pairwise LD calculations required to prune the 

entire dataset; however there may also be a risk that the dataset is not pruned 

thoroughly as a small window would not cover a dense region of SNPs in high LD of 

each other. Likewise a large step size would lead to a computationally faster but less 

thorough pruning of a dataset.  

 

The disadvantage of pruning by LD is that SNPs tend to be pruned without any user 

control of which SNPs are kept and which are pruned (219). A particularly desirable 

option that packages do not contain could be to fix certain SNPs, for example, SNPs 

with previously known associations, to prevent them from being pruned. This would 

involve a similar approach to LD-clumping without the use of P-values but instead prior 

knowledge. 
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6.2.1 Tag SNPs 

 

Genotyping millions of SNPs for an association analysis can be time consuming and 

costly. To reduce time and money, individual SNPs known as TagSNPs are used to 

represent dense regions of SNPs in LD and thus every SNP in the region does not 

require genotyping. Methods in selecting these TagSNPs tend to be based on 

accounting the LD structure using a reference population (201,227-229), prediction 

based methods (229) or PCA have also been suggested (230).  

 

6.2.2 Pruning by P-value 

 

As shown in Table 2.5, quite a few studies have used P-value pruning to reduce the 

dimensionality of the dataset before fitting the LASSO. Unlike LD pruning, pruning a 

dataset by P-value would ensure that the associated SNPs would be kept and the SNPs 

with no association would be pruned. This would leave regions of high associations left 

in the dataset rather than a genome-wide dataset. This is similar to studies that select 

regions or genes for association tests.  

 

The method guarantees that the most statistically significant variants remain after 

pruning while reducing the number of SNPs for analysis. Pruning by P-value however 

will leave a dataset that will consist of highly associated regions and not one that 

covers the whole genome. Figure 6.1 shows plotted univariate β estimates against 

their respective P-values for the 591,774 SNPs in the GRAPHIC study (see section 4.4). 

The plot shows that as the β estimate increases, the P-value of the SNP decreases 

therefore by pruning by P-value, only the large effects remain and smaller effects will 

be pruned.  
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Figure 6.1 Volcano plot showing beta coefficients against P-value of each of the 

591,774 SNPs calculated on 979 subjects from the GRAPHIC study with LDL as the 

phenotype. 

 

6.2.3 Pruning by LD clumping  

 

LD clumping combines both P-value pruning and LD pruning and keeps the advantages 

of both methods. SNPS are pruned by LD; however the position of the starting SNP is 

dictated by P-value. The SNP with the smallest P-value is the starting point and SNPs in 

LD with this top SNP are pruned. Unlike the LD pruning algorithm, next SNP included is 

not the next adjacent SNP but the next SNP with the smallest P-value that has not 

been pruned. This continues until the last SNP with the highest P-value is reached. The 

method ensures an independent set of SNPs while fixing the most statistically 

significant SNPs in each region. A handful of studies have used this approach to 

pruning for certain analyses (231,232). 
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6.3 Current SNP pruning software 

6.3.1.1 PLINK  

 

PLINK (20) is the most commonly used SNP pruning program. The program requires 4 

options: a sliding window size, a window step size, a desired LD statistic and its pruning 

threshold. PLINK allows calculation of LD by r2 (5.3) using the –indep option and VIF 

(5.5) using the --indep-pairwise option. Both window and step size are given in 

terms of numbers of adjacent SNPs. The algorithm used by PLINK is described in Table 

6.1. VIF pruning uses the same algorithm but with threshold values > 1. A VIF threshold 

between 1.5 (𝑅2 = 0.33) and 2 (𝑅2 = 0.5) is suggested in PLINK. 

 

Table 6.1 PLINK algorithm for LD pruning 

 Let Window size = M 

 Let step size = H 

 Let LD statistic = 𝑟2 

 Let LD pruning threshold = T 

1. Begin at the first SNP in the first chromosome 

2. Take a window of the next M adjacent SNPs 

3. Calculate LD between each pair of SNPs in the window 

4. For a pair of SNPs in the window with 𝑟2 > 𝑇, prune the SNP with the lowest 

MAF. When pairs of SNPs in LD have the same MAF the first SNP is kept and the 

second is pruned. 

5. Move window along by H SNPs (steps) 

6. Repeat steps 2-6 until the end of the chromosome 

7. Repeat 1-6 for each chromosome 
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The PLINK pruning algorithm is simple but is computationally slow (Table 5.4) and lacks 

a number of useful options. D-prime is not an allowed LD measure option for pruning 

although PLINK can be used to calculate D-prime estimates. For a pair of SNPs in LD, 

one of a pair is pruned; the SNP with a lower MAF from the pair is pruned and 

therefore leading to a pruned datasets of mostly common variants. When pairs of SNPs 

in LD have the same MAF the first SNP is kept and the second is pruned. The choice of 

which SNP is pruned is systematic rather than at random, repeating the pruning 

algorithm with the same commands on the same dataset will prune the same SNPs. 

The program does not allow user selected SNPs to be kept in the dataset. 

 

6.3.1.2 SNPRelate 

 

SNPRelate (225) is an R package primarily designed for principle component analysis 

on SNP data. The package includes a command called snpgdsLDpruning that 

prunes SNPs by LD. The command also performs some quality control such as 

removing monomorphic SNPs, removing SNPs with low MAF and remove SNPs by 

missing rates. The command prunes by D-prime, 𝑟 and 𝑅. The more commonly used 

measures of 𝑟2 and 𝑅2 are not options. The package uses a sliding window like PLINK 

but not a step option which is fixed to 1. There is a default option to implement a 

sliding window by base position rather than adjacent SNPs. The pruning window by 

genetic distance is particularly advantageous as the window can cover dense regions of 

SNPs in high LD which a window in of adjacent SNPs may not. 

 

The pruning of SNPs is at random rather than systematic. The pruning algorithm 

randomly selects starting position on each chromosome for pruning. From this starting 

position SNPs are pruned to the right until the last SNP in the chromosome is reached 

and then to the left until the first SNP in the chromosome is reached. For a pair of SNPs 

in LD, the SNP that is closest to the starting SNP is pruned. Therefore the choice of 

which SNP is pruned is dependent of the starting SNP which is selected at random. 
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6.4 My Prune package 

 

In this section, I describe my algorithm for LD pruning, which I have implemented in as 

an R package called ‘prune’. I also describe my other pruning algorithms such as P-

value pruning, LD pruning while fixing the top SNPs by P-value and LD clumping. My 

algorithm is slightly different to that applied by PLINK. The traditional LD pruning 

method implemented in PLINK selects the first SNP in the genome and removes any 

adjacent SNPs in LD above the threshold. This process then moves onto the next 

available SNP and repeats until the last SNP in the genome is reached. My algorithm 

for LD pruning is novel and requires the manipulation of a P x P LD matrix and attempts 

to prune all SNPs in a single step rather than continuously repeating for each SNP. The 

algorithm also implements a range of options including a random starting position for 

pruning. The algorithm uses the snpStats package to calculate desired LD statistics 

(212).  

 

6.4.1 The Prune package LD pruning algorithm 

 

The choice of which SNPs are pruned from the data in this algorithm is entirely 

dependent on the starting position. If the starting position is the first SNP in the 

dataset then the algorithm prunes along the genome towards the last SNP, similar to 

PLINK. If the starting position is the last SNP in the dataset then the algorithm prunes 

in the opposite direction, towards the first SNP. If the starting position is in neither of 

these then, the algorithm prunes in both directions from the starting position. This 

leads to different manipulations of the LD matrix for the algorithm. If the starting 

position is the first SNP in the dataset, the LD matrix required is a half-matrix with the 

upper diagonal cells containing the LD statistics and both the cells along the diagonal 

and below set to 0 (see step 8a, Table 6.2). To prune from the last SNP in the dataset, 

an LD matrix where the cells below the diagonal contain the LD statistics and the upper 

diagonal and diagonal cells are set to 0 is required (see step 8b, Table 6.2). For a 

central starting position some manipulation of the LD matrix is required in order for 
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the algorithm to prune the correct SNPs (see step 8c, Table 6.2). The basic LD pruning 

algorithm for my Prune package is described below with an illustration of the LD matrix 

manipulation for a random starting position is described in Table 6.2. 

 

Table 6.2 Instructions for the Prune LD pruning algorithm implementing a random 
starting position for pruning 

 Let P = the number of SNPs in the dataset 

 Let THRESHOLD = LD pruning threshold, where 0 ≤ THRESHOLD ≤ 1 – 0.5 in this 

example 

1. Choose either a specified or random starting position. Call it START.SNP. 

2. Create an LD matrix, with a desired window size and LD measure using snpStats. 

3. Reflect this half-matrix to obtain a full P by P LD matrix (snpStats only calculates a 

half-matrix). 

4. Set the diagonal of the matrix to 0. This will prevent SNPs being pruned out due to 

the LD between a SNP and itself = 1. 

5. If the starting position is random, then select a random number between 1 and P 

and set to START.SNP. 

6. If the user has specified the start position, set this to START.SNP. 

7. Set the LD statistics for the START.SNP column to 0 (Figure 6.2 where the random 

starting position is highlighted in green). This will prevent the SNP from being 

pruned from the dataset. 

8. To manipulate the LD matrix for pruning: 

a. If the START.SNP = 1 then SNPs are be to be pruned to the right only. 

Therefore the lower triangle of the matrix is set to 0.  

b. If the START.SNP = P then SNPs are be to be pruned to the left only. 

Therefore the upper triangle of the matrix is set to 0. 

c. If 1 < START.SNP < P then the data will be pruned to the right of START.SNP 

then to the left. The LD matrix is manipulated by: 

i. Take the upper-right quadrant of the matrix with rows between 
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1 and START.SNP - 1 and columns between START.SNP + 1 and P 

and set the LD statistics to 0 (Figure 6.3). 

ii. Take the upper-right quadrant of the matrix with rows between 

1 and START.SNP - 1 and columns between START.SNP + 1 and P 

and set the LD statistics to 0 (Figure 6.3). 

iii. Take the upper triangle of the upper-left quadrant with rows 

between 1 and START.SNP - 1 and columns between 1 and 

START.SNP - 1 and set the LD statistics to 0 (Figure 6.4). Only the 

LD statistics of the lower triangle are required to prune from 

START.SNP towards the first SNP (to the left of START.SNP). 

iv. Take the lower triangle of the lower-right quadrant with rows 

between START.SNP + 1 and P and columns between START.SNP 

+ 1 and P set the LD statistics to 0 (Figure 6.5). The LD values of 

the upper triangle only are required to prune from START.SNP 

towards P (to the right of START.SNP). 

9. Set all cells in the matrix with an LD > THRESHOLD to “NA” (Figure 6.6). This 

marks the SNPs that will be pruned. 

10. Create a vector of 1’s called MARK of length P. Each cell represent a SNP and its 

value will determine if it is pruned or not. 

11. To mark SNPs for pruning: 

a. Start at START.SNP. 

b. If the cell in MARK that denotes this SNP is “NA” move to step e. If the 

cell in MARK = 1 move to step c. 

c. Take the row from the LD matrix that corresponds to this SNP. 

d. If any SNPs in this row are marked as “NA”, replace the cell in the 

corresponding column of MARK with an “NA”. 

e. Move onto the next SNP to the right. 

f. Repeat steps b-e until the last SNP in the dataset is reached. 

g. Move to the SNP directly to the left of START.SNP. 

h. If the cell in the corresponding column in MARK that denotes this SNP is 

“NA” move to step k. If the cell in MARK = 1 move to step i. 
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i. Take the row from the LD matrix that corresponds to this SNP. 

j. If any SNPs are marked as “NA”, replace the cell in the corresponding 

column of MARK with an “NA”. 

k. Move to the next SNP to the left. 

l. Repeat steps h-k until the first SNP in the dataset is reached. This will 

produce a vector of SNPs in MARK with 1’s and NA’s. The SNPs marked 

with an “NA” are marked for pruning. By skipping SNPs in MARK already 

marked with and “NA”, SNPs cannot be pruned due to LD with a SNP 

that has already been marked for pruning (step10b & 10h). 

12. Rowbind MARK with the genotype matrix. 

13. Remove any columns of SNPs from this matrix with an “NA”. This will prune all 

marked SNPs. 

14. Unbind MARK from the genotype matrix. 

15. An LD pruned genotype matrix will remain. 

 

 

 

Figure 6.2 LD matrix of 20 SNPs with the diagonal highlighted in yellow and random 

starting SNP highlighted in green set to 0. 

 

rs1 rs2 rs3 rs4 rs5 rs6 rs7 rs8 rs9 rs10 rs11 rs12 rs13 rs14 rs15 rs16 rs17 rs18 rs19 rs20

rs1 0 0.40 0.00 0.05 0.03 0.00 0.00 0.04 0.03 0 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00

rs2 0.40 0 0.05 0.01 0.00 0.05 0.04 0.01 0.02 0 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00

rs3 0.00 0.05 0 0.03 0.16 0.98 0.65 0.13 0.14 0 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.14 0.02

rs4 0.05 0.01 0.03 0 0.49 0.03 0.05 0.28 0.29 0 0.03 0.00 0.00 0.03 0.02 0.02 0.00 0.00 0.00 0.00

rs5 0.03 0.00 0.16 0.49 0 0.16 0.24 0.66 0.56 0 0.05 0.02 0.02 0.03 0.03 0.03 0.00 0.00 0.05 0.01

rs6 0.00 0.05 0.98 0.03 0.16 0 0.67 0.13 0.14 0 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.14 0.02

rs7 0.00 0.04 0.65 0.05 0.24 0.67 0 0.20 0.14 0 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.10 0.03

rs8 0.04 0.01 0.13 0.28 0.66 0.13 0.20 0 0.90 0 0.08 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.02 0.00

rs9 0.03 0.02 0.14 0.29 0.56 0.14 0.14 0.90 0 0 0.09 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.02 0.00

rs10 0.00 0.02 0.01 0.02 0.05 0.01 0.01 0.09 0.11 0 0.91 0.00 0.00 0.01 0.01 0.01 0.00 0.04 0.01 0.03

rs11 0.00 0.02 0.01 0.03 0.05 0.01 0.01 0.08 0.09 0 0 0.00 0.00 0.01 0.01 0.01 0.00 0.04 0.01 0.03

rs12 0.00 0.00 0.01 0.00 0.02 0.01 0.01 0.00 0.00 0 0.00 0 1.00 0.05 0.05 0.05 0.00 0.06 0.48 0.10

rs13 0.00 0.00 0.01 0.00 0.02 0.01 0.01 0.00 0.00 0 0.00 1.00 0 0.05 0.05 0.05 0.00 0.06 0.48 0.10

rs14 0.01 0.00 0.01 0.03 0.03 0.00 0.00 0.01 0.01 0 0.01 0.05 0.05 0 0.95 0.99 0.05 0.12 0.08 0.02

rs15 0.01 0.00 0.01 0.02 0.03 0.01 0.00 0.01 0.01 0 0.01 0.05 0.05 0.95 0 0.96 0.05 0.11 0.10 0.03

rs16 0.01 0.00 0.00 0.02 0.03 0.00 0.00 0.01 0.01 0 0.01 0.05 0.05 0.99 0.96 0 0.05 0.12 0.08 0.02

rs17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.05 0.05 0.05 0 0.06 0.00 0.08

rs18 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0 0.04 0.06 0.06 0.12 0.11 0.12 0.06 0 0.12 0.33

rs19 0.00 0.01 0.14 0.00 0.05 0.14 0.10 0.02 0.02 0 0.01 0.48 0.48 0.08 0.10 0.08 0.00 0.12 0 0.21

rs20 0.00 0.00 0.02 0.00 0.01 0.02 0.03 0.00 0.00 0 0.03 0.10 0.10 0.02 0.03 0.02 0.08 0.33 0.21 0
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Figure 6.3 Set all cells upper-right quadrant of the matrix between the row and column 

representing the random starting location, highlighted in green, to 0. 

 

Figure 6.4 Set the cells in the upper triangle of the upper-left quadrant with rows and 

columns between the first SNP in the dataset and the random starting location, 

highlighted in green, to 0. 

rs1 rs2 rs3 rs4 rs5 rs6 rs7 rs8 rs9 rs10 rs11 rs12 rs13 rs14 rs15 rs16 rs17 rs18 rs19 rs20

rs1 0 0.40 0.00 0.05 0.03 0.00 0.00 0.04 0.03 0 0 0 0 0 0 0 0 0 0 0

rs2 0.40 0 0.05 0.01 0.00 0.05 0.04 0.01 0.02 0 0 0 0 0 0 0 0 0 0 0

rs3 0.00 0.05 0 0.03 0.16 0.98 0.65 0.13 0.14 0 0 0 0 0 0 0 0 0 0 0

rs4 0.05 0.01 0.03 0.00 0.49 0.03 0.05 0.28 0.29 0 0 0 0 0 0 0 0 0 0 0

rs5 0.03 0.00 0.16 0.49 0 0.16 0.24 0.66 0.56 0 0 0 0 0 0 0 0 0 0 0

rs6 0.00 0.05 0.98 0.03 0.16 0 0.67 0.13 0.14 0 0 0 0 0 0 0 0 0 0 0

rs7 0.00 0.04 0.65 0.05 0.24 0.67 0 0.20 0.14 0 0 0 0 0 0 0 0 0 0 0

rs8 0.04 0.01 0.13 0.28 0.66 0.13 0.20 0 0.90 0 0 0 0 0 0 0 0 0 0 0

rs9 0.03 0.02 0.14 0.29 0.56 0.14 0.14 0.90 0 0 0 0 0 0 0 0 0 0 0 0

rs10 0.00 0.02 0.01 0.02 0.05 0.01 0.01 0.09 0.11 0 0.91 0.00 0.00 0.01 0.01 0.01 0.00 0.04 0.01 0.03

rs11 0.00 0.02 0.01 0.03 0.05 0.01 0.01 0.08 0.09 0 0 0.00 0.00 0.01 0.01 0.01 0.00 0.04 0.01 0.03

rs12 0.00 0.00 0.01 0.00 0.02 0.01 0.01 0.00 0.00 0 0.00 0 1.00 0.05 0.05 0.05 0.00 0.06 0.48 0.10

rs13 0.00 0.00 0.01 0.00 0.02 0.01 0.01 0.00 0.00 0 0.00 1.00 0 0.05 0.05 0.05 0.00 0.06 0.48 0.10

rs14 0.01 0.00 0.01 0.03 0.03 0.00 0.00 0.01 0.01 0 0.01 0.05 0.05 0 0.95 0.99 0.05 0.12 0.08 0.02

rs15 0.01 0.00 0.01 0.02 0.03 0.01 0.00 0.01 0.01 0 0.01 0.05 0.05 0.95 0 0.96 0.05 0.11 0.10 0.03

rs16 0.01 0.00 0.00 0.02 0.03 0.00 0.00 0.01 0.01 0 0.01 0.05 0.05 0.99 0.96 0 0.05 0.12 0.08 0.02

rs17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.05 0.05 0.05 0 0.06 0.00 0.08

rs18 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0 0.04 0.06 0.06 0.12 0.11 0.12 0.06 0 0.12 0.33

rs19 0.00 0.01 0.14 0.00 0.05 0.14 0.10 0.02 0.02 0 0.01 0.48 0.48 0.08 0.10 0.08 0.00 0.12 0 0.21

rs20 0.00 0.00 0.02 0.00 0.01 0.02 0.03 0.00 0.00 0 0.03 0.10 0.10 0.02 0.03 0.02 0.08 0.33 0.21 0

rs1 rs2 rs3 rs4 rs5 rs6 rs7 rs8 rs9 rs10 rs11 rs12 rs13 rs14 rs15 rs16 rs17 rs18 rs19 rs20

rs1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rs2 0.40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rs3 0.00 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rs4 0.05 0.01 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rs5 0.03 0.00 0.16 0.49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rs6 0.00 0.05 0.98 0.03 0.16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rs7 0.00 0.04 0.65 0.05 0.24 0.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rs8 0.04 0.01 0.13 0.28 0.66 0.13 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0

rs9 0.03 0.02 0.14 0.29 0.56 0.14 0.14 0.90 0 0 0 0 0 0 0 0 0 0 0 0

rs10 0.00 0.02 0.01 0.02 0.05 0.01 0.01 0.09 0.11 0 0.91 0.00 0.00 0.01 0.01 0.01 0.00 0.04 0.01 0.03

rs11 0.00 0.02 0.01 0.03 0.05 0.01 0.01 0.08 0.09 0 0 0.00 0.00 0.01 0.01 0.01 0.00 0.04 0.01 0.03

rs12 0.00 0.00 0.01 0.00 0.02 0.01 0.01 0.00 0.00 0 0.00 0 1.00 0.05 0.05 0.05 0.00 0.06 0.48 0.10

rs13 0.00 0.00 0.01 0.00 0.02 0.01 0.01 0.00 0.00 0 0.00 1.00 0 0.05 0.05 0.05 0.00 0.06 0.48 0.10

rs14 0.01 0.00 0.01 0.03 0.03 0.00 0.00 0.01 0.01 0 0.01 0.05 0.05 0 0.95 0.99 0.05 0.12 0.08 0.02

rs15 0.01 0.00 0.01 0.02 0.03 0.01 0.00 0.01 0.01 0 0.01 0.05 0.05 0.95 0 0.96 0.05 0.11 0.10 0.03

rs16 0.01 0.00 0.00 0.02 0.03 0.00 0.00 0.01 0.01 0 0.01 0.05 0.05 0.99 0.96 0 0.05 0.12 0.08 0.02

rs17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.05 0.05 0.05 0 0.06 0.00 0.08

rs18 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0 0.04 0.06 0.06 0.12 0.11 0.12 0.06 0 0.12 0.33

rs19 0.00 0.01 0.14 0.00 0.05 0.14 0.10 0.02 0.02 0 0.01 0.48 0.48 0.08 0.10 0.08 0.00 0.12 0 0.21

rs20 0.00 0.00 0.02 0.00 0.01 0.02 0.03 0.00 0.00 0 0.03 0.10 0.10 0.02 0.03 0.02 0.08 0.33 0.21 0
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Figure 6.5 Set the cells in the lower triangle of the lower-right quadrant with rows and 

columns between the random starting location and the last SNP in the dataset, 

highlighted in green, to 0. 

 

Figure 6.6 Set all cells with an LD estimate above the treshold to “NA” 

 

The matrix in Figure 6.5 is the general matrix form required for pruning from a central 

starting position. From a start position, the column for that SNP (rs10) is set to 0 to 

protect the SNP from being pruned. Certain LD statistics have been set to 0. For any 

rs1 rs2 rs3 rs4 rs5 rs6 rs7 rs8 rs9 rs10 rs11 rs12 rs13 rs14 rs15 rs16 rs17 rs18 rs19 rs20

rs1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rs2 0.40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rs3 0.00 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rs4 0.05 0.01 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rs5 0.03 0.00 0.16 0.49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rs6 0.00 0.05 0.98 0.03 0.16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rs7 0.00 0.04 0.65 0.05 0.24 0.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rs8 0.04 0.01 0.13 0.28 0.66 0.13 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0

rs9 0.03 0.02 0.14 0.29 0.56 0.14 0.14 0.90 0 0 0 0 0 0 0 0 0 0 0 0

rs10 0.00 0.02 0.01 0.02 0.05 0.01 0.01 0.09 0.11 0 0.91 0.00 0.00 0.01 0.01 0.01 0.00 0.04 0.01 0.03

rs11 0.00 0.02 0.01 0.03 0.05 0.01 0.01 0.08 0.09 0 0 0.00 0.00 0.01 0.01 0.01 0.00 0.04 0.01 0.03

rs12 0.00 0.00 0.01 0.00 0.02 0.01 0.01 0.00 0.00 0 0 0 1.00 0.05 0.05 0.05 0.00 0.06 0.48 0.10

rs13 0.00 0.00 0.01 0.00 0.02 0.01 0.01 0.00 0.00 0 0 0 0 0.05 0.05 0.05 0.00 0.06 0.48 0.10

rs14 0.01 0.00 0.01 0.03 0.03 0.00 0.00 0.01 0.01 0 0 0 0 0 0.95 0.99 0.05 0.12 0.08 0.02

rs15 0.01 0.00 0.01 0.02 0.03 0.01 0.00 0.01 0.01 0 0 0 0 0 0 0.96 0.05 0.11 0.10 0.03

rs16 0.01 0.00 0.00 0.02 0.03 0.00 0.00 0.01 0.01 0 0 0 0 0 0 0 0.05 0.12 0.08 0.02

rs17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0 0 0 0 0.06 0.00 0.08

rs18 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0 0 0 0 0 0 0 0 0 0.12 0.33

rs19 0.00 0.01 0.14 0.00 0.05 0.14 0.10 0.02 0.02 0 0 0 0 0 0 0 0 0 0 0.21

rs20 0.00 0.00 0.02 0.00 0.01 0.02 0.03 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0

rs1 rs2 rs3 rs4 rs5 rs6 rs7 rs8 rs9 rs10 rs11 rs12 rs13 rs14 rs15 rs16 rs17 rs18 rs19 rs20

rs1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rs2 0.40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rs3 0.00 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rs4 0.05 0.01 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rs5 0.03 0.00 0.16 0.49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rs6 0.00 0.05 NA 0.03 0.16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rs7 0.00 0.04 NA 0.05 0.24 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rs8 0.04 0.01 0.13 0.28 NA 0.13 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0

rs9 0.03 0.02 0.14 0.29 NA 0.14 0.14 NA 0 0 0 0 0 0 0 0 0 0 0 0

rs10 0.00 0.02 0.01 0.02 0.05 0.01 0.01 0.09 0.11 0 NA 0.00 0.00 0.01 0.01 0.01 0.00 0.04 0.01 0.03

rs11 0.00 0.02 0.01 0.03 0.05 0.01 0.01 0.08 0.09 0 0 0.00 0.00 0.01 0.01 0.01 0.00 0.04 0.01 0.03

rs12 0.00 0.00 0.01 0.00 0.02 0.01 0.01 0.00 0.00 0 0 0 NA 0.05 0.05 0.05 0.00 0.06 0.48 0.10

rs13 0.00 0.00 0.01 0.00 0.02 0.01 0.01 0.00 0.00 0 0 0 0 0.05 0.05 0.05 0.00 0.06 0.48 0.10

rs14 0.01 0.00 0.01 0.03 0.03 0.00 0.00 0.01 0.01 0 0 0 0 0 NA NA 0.05 0.12 0.08 0.02

rs15 0.01 0.00 0.01 0.02 0.03 0.01 0.00 0.01 0.01 0 0 0 0 0 0 NA 0.05 0.11 0.10 0.03

rs16 0.01 0.00 0.00 0.02 0.03 0.00 0.00 0.01 0.01 0 0 0 0 0 0 0 0.05 0.12 0.08 0.02

rs17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0 0 0 0 0.06 0.00 0.08

rs18 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0 0 0 0 0 0 0 0 0 0.12 0.33

rs19 0.00 0.01 0.14 0.00 0.05 0.14 0.10 0.02 0.02 0 0 0 0 0 0 0 0 0 0 0.21

rs20 0.00 0.00 0.02 0.00 0.01 0.02 0.03 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
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starting position, these will be for the cells that are both above the diagonal and above 

the row of START.SNP and the cells that are in the lower diagonal of the matrix 

between START.SNP and P. These are set to 0 to ensure SNPs are not pruned in the 

wrong direction. The matrix still contains the LD statistics for each combination of 

SNPs, meaning all pairs of SNPs can still be pruned including a pair of SNPs that are 

either side of the starting position. 

 

SNPs are marked for pruning if the LD along any particular row of a matrix is above the 

specified threshold, which have all been set to NA (Figure 6.6). For the example above, 

an r-squared threshold of 0.5 was used. The algorithm will then start at rs10 and look 

along the row for any cells set to NA. In this case the cell for rs11 = NA, therefore the 

corresponding cell in MARK is set to NA. The process then moves to the next SNP to 

the right, rs11. This SNP has already been marked for pruning due to LD with rs10 and 

therefore the algorithm skips this SNP and moves onto the next SNP, rs12. This SNP 

has not been marked for pruning therefore the algorithm will look along the row of 

rs12 and mark any SNPs with a missing cell which is rs13. This is repeated until the last 

SNP is reached. The algorithm then moves back to the SNP to the left of the starting 

position, rs9 and repeats but instead of moving one SNP to the right, it now moves one 

SNP to the left until the first SNP is reached. The vector MARK will then contain a list of 

1’s and missing cells denoted by “NA”. The missing cells mark the SNPs that will be 

pruned from the dataset by simply deleting the corresponding row from the genotype 

matrix, leaving a pruned matrix of SNPs. 

 

6.4.2 Available options on LD the pruning algorithm 

 

There are a number of different variations that can be implemented into the LD 

pruning algorithm that give the user a greater number of options for pruning a dataset. 

The options I discuss include a choice of LD measures, types of pruning window, size of 

the pruning window and an option that can fix certain SNPs into the dataset.  
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6.4.2.1 Pruning window 

 

The snpStats package in R is selected to calculate LD matrices for pruning as the 

package showed good accuracy in estimates as well as a fast computational time, see 

section 5.5. One of the major advantages of this package is that it includes a “depth” 

option in the ld command that will calculate LD between a SNP and all other SNPs 

within a user-specified window. Therefore pruning within a window of adjacent SNPs is 

simple to implement into the algorithm. 

 

Another method of implementing a pruning window would be by genetic distance as 

this would take into account the distribution of SNPs along the genome. A dataset 

could easily include a dense region of thousands of SNPs with the majority of SNPs in 

the region in strong LD. By implementing a window of adjacent SNPs there is a risk that 

the window may not cover the whole LD region and there could be strong LD between 

SNPs outside the window. Conversely there will be a number of sparse regions where 

there is a low frequency of SNPs and a high recombination rate leading to a region of 

independent SNPs. No SNPs will be pruned in this region, regardless of the window 

size. By implementing a window by distance the user can take into account the 

distribution of SNPs in the genome and still implement a pruning window, reducing the 

number of pairwise LD calculations. 

 

To prune by genetic distance a user-supplied vector of base positions for each SNP is 

required. The algorithm to create an LD matrix with a window by distance is described 

below (Table 6.3). 
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Table 6.3 Instructions for the Prune algorithm implementing a sliding window by 

genetic distance 

 Let P be the number of SNPs in the dataset. 

 Let Window.size be the window size in base-pairs. 

1. Supply a vector POS of base-pair positions for each SNP. 

2. Create a P by P matrix called DIST with all cells = 1. 

3. Replace each cell (i,j) in DIST with the absolute difference in base-pairs between ith 

SNP and jth SNP in POS. 

4. For all cells in DIST with an absolute difference in distance > Window.size, replace 

the cell with “0”. 

5. Create a P by P LD matrix using snpStats with depth = P. 

6. For any cell in DIST = 0, replace the corresponding cell in the LD matrix with 0. 

7. An LD matrix with a pruning window based on genetic distance will remain ready 

for pruning. 

 

This option can be computationally time consuming for larger datasets as the 

algorithm requires the calculation of the full P x P LD matrix before LD statistics outside 

the distance threshold are set to 0.  

 

6.4.2.2 LD Measures 

 

As discussed in section 5.5.3, snpStats includes a number of LD measure options 

therefore by using this package, the algorithm can also prune from any of these 

measures. The measures that can be implements are: r, r-squared, D-prime, log 

likelihood ratio, odds ratio, Yule's Q and covariance. The Prune package can also prune 

VIF which is calculated using the summary(lm())$r.squared command in R to 

calculate R2 statistics between pairwise combinations of SNPs. 
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6.4.2.3 Fixing SNPs into the dataset 

 

In any dataset of SNPs that requires pruning, each SNP is at risk of being pruned. There 

can be circumstances where the user requires a certain SNP or set of SNPs not to be 

pruned and remain for any analyses that are conducted. For any supplied vector of 

SNPs the algorithm can set the LD matrix column vectors for these SNPs to 0, similar to 

step 7 in the LD pruning algorithm, see section 6.4.1. This can be performed once the 

LD matrix is calculated, between steps 4 and 5 in the algorithm. Each cell in the vector 

supplied should be the relative position of the SNP in the LD matrix. For example, to fix 

the first SNP, the vector would contain a cell with a ‘1’ denoting this SNP; to fix the 

fifth SNP a ‘5’ would be required. 

 

The problem with fixing SNPs in this way is that there still may be LD between SNPs 

that have been fixed into the dataset and other SNPs that have not been pruned. It can 

be argued however, that depending on the make-up the SNPs that require fixing, there 

may be strong LD between SNPs in this vector too. 

 

6.5 Other pruning methods 

 

There are a number of alternative pruning methods that can be implemented by the 

algorithm. In this section, I describe these methods of pruning such as P-value pruning, 

LD pruning while fixing the top SNPs by P-value and LD clumping. All of these 

approaches implement a P-value based approach. The algorithm does not calculate P-

values and must be supplied by the user. This gives the user greater flexibility, for 

example some analyses may that require the P-values to be adjusted for other non-

genetics covariates such as age and sex. It also allows users to use P-values from other 

studies if desired. 
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6.5.1 P-value pruning 

 

The P-value pruning algorithm applies the following instructions: 

Table 6.4 Instructions for the Prune LD P-value pruning algorithm 

 Let P = the number of SNPS in the dataset 

 Let THRESHOLD = P-value pruning threshold, where 0 ≤ THRESHOLD ≤ 1 

1. Replace any P-values > THRESHOLD = “NA”. This will mark SNPs for pruning. 

2. Rowbind the vector of P-values to the genotype matrix. 

3. Remove any columns of SNPs with an “NA”. This will prune all marked SNPs. 

4. Unbind the vector of P-values from the genotype matrix. 

5. A P-value pruned genotype dataset will remain. 

 

 

6.5.2 Top SNP Pruning 

 

Top SNP pruning is a similar approach to the Fix option in the LD pruning algorithm 

(see section 6.4.2.3). The difference in this method is that the SNPs that are fixed are 

the top hits by P-value. The remaining data is pruned by LD, see section 6.4.1. The user 

can supply the number of top hits that are required to be fixed however it is likely that 

LD between the fixed SNPs and some remaining SNPs after pruning, as discussed in 

section 6.4.2.3. As this method prunes by LD, the options included in the LD pruning 

algorithm (section 6.4.2) as well as the choice of the pruning starting position, is 

implemented with this method. 
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6.5.3 LD clumping 

The LD clumping algorithm applies the following instructions: 

Table 6.5 Instructions for the Prune LD clumping pruning algorithm 

 Let P = the number of SNPs in the dataset 

 Let THRESHOLD = LD pruning threshold where 0 ≤ THRESHOLD ≤ 1  

1. Create an LD matrix, with a desired window size and LD measure using snpStats. 

2. Reflect the LD matrix to obtain a full P by P LD matrix. snpStats only calculates a 

half-matrix. 

3. Set the diagonal of the matrix to 0. This will prevent SNPs being pruned out due 

to the LD between a SNP and itself = 1. 

4. Set all cells in the matrix with an LD > THRESHOLD to “NA”. This marks the SNPs 

are above the threshold. 

5. Order the P-values from smallest to largest. 

6. Create a vector of 1’s called MARK of length P. Each cell denotes a SNP. 

7. To mark SNPs for pruning: 

a. Start at the top SNP by P-value. 

b. If the cell in MARK that denotes this SNP is “NA” move to step e. If the cell 

in MARK that denotes this SNP is “1” move to step c. 

c. Take the row from the LD matrix that corresponds to this SNP. 

d. If any SNPs in this row are marked as “NA”, replace the corresponding cell 

of MARK with an “NA”. 

e. Move to the next SNP in the list of ordered SNPs. 

f. Repeat steps b – e until the last SNP in the list of ordered SNPs is reached. 

8. Rowbind MARK with the genotype matrix. 

9. Remove any columns (SNPS) from this matrix with an “NA”. This will prune all 

marked SNPs. 

10. Unbind MARK from the genotype matrix. 

11. An LD pruned genotype matrix by ordered P-value will remain. 
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Like the Top SNP pruning method, the algorithm prunes by LD therefore the options 

discussed in section 6.4.2 are included in this algorithm. The choice of starting position 

cannot be used for this method as the pruning positions and respective order are based 

on the P-values for each SNP. 

 

6.6 The R code 

 

To implement the pruning algorithms described in sections 6.4 and 6.5, I have written 

into an R function called prune. My function calculates an LD matrix using the ld 

function in snpStats(212) with the desired LD measure between SNPs and window size. 

The Prune function then applies one of the described pruning methods as described in 

sections 6.4 and 6.5 and includes the user options previously discussed. The function 

requires the user to specify a genotype matrix (in allele dosage form) with a subject as 

each row and each column as a SNP. The function will produce three outputs: 

 A matrix of pruned SNPs in the same format as the input genotype matrix 

 A list of SNPs that remain in the dataset after pruning and their relative position 

in the input matrix 

 A list of SNPs that are pruned out of the dataset and their relative position in 

the input matrix 

In this section, I describe the Prune function in more detail using the R help file. The 

help file includes a list of all the commands and default options for this function. 
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6.6.1 Prune help file 

Description. 

Prunes a SNP dataset, given a genotype object in matrix class. Can prune by Linkage 

Disequilibrium (LD), P-value, LD pruning while fixing certain SNPs SNPs or LD clumping. 

Usage 

prune(geno,Pruning.Method = c("LD", "Pvalue", "Topsnp", 

"Clumping"), Ld.Measure = c("R.squared","D.prime"), 

Threshold = 0.5, Window.type = c("Position","Distance"), 

Window.size = 100, Start.SNP = 0, Distance = NULL, Top.SNPs 

= NULL, Pvalue, Fix) 

Arguments 

geno Input genotype matrix to be pruned, of dimension nobs x 

nSNPs. Each row is a subject and each column is a SNP in 

genotype form (0, 1, 2). Genotype matrix must be in an object 

of class “matrix” or “double matrix”. 

Pruning.Method The method required for SNP pruning. Default is 

Pruning.Method = c(”LD”). 

Threshold The pruning threshold; a number between 0 and 1 that 

denotes the minimum LD at which a SNP may be pruned for 

LD-based pruning methods i.e. Pruning.Method = 

c("LD","Topsnp", "Clumping"). For 

Pruning.Method = c("Pvalue")Threshold 

denotes the minimum P-value at which a SNP may be pruned. 

If Threshold is below 0, above 1 or missing, then Threshold 

will be set to 0.5 as a default. 

Ld.Measure LD measures for LD-based pruning. If LD.Measure = 

c("R.squared"), r-squared statistics will be calculated for 

pruning. If LD.Measure = c("D.prime"), D-prime 

statistics will be calculated for pruning. Other options available 
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are "LLR", "OR","Q", "Covar", "VIF" and "R". 

Default is LD.Measure = c("R.squared"). 

Window.type Type of LD window required for pruning. Window.type = 

c("Position") will implement a window of adjacent SNPs. 

Window.type = c("Distance")will implement a 

window by genetic distance. 

Window.size The size of the LD window required. 

 For Window.type = c("Position"), 

Window.size will implement a window of adjacent SNPs. 

Pruning occurs in both directions, so the specified window size 

is the number of adjacent SNPs included in the window in one 

direction. The total window size will be double the specified 

window size. Default is 100. 

For Window.type = c("Distance"), Window.size 

will implement a window by genetic distance in base-pairs. 

Default is 200,000. 

 Pruning occurs in both directions, so the specified window size 

includes a number of SNPs in the window in one direction. The 

total window size will be double the specified window size.  

Start.SNP A number to denote initial position to start pruning. Argument 

is required if Pruning.Method = c("LD","Topsnp").  

If Start.SNP = 0 then a starting position will randomly be 

selected. 

If 1≤ Start.SNP ≤ P then this position will the starting 

position for pruning. Where P is the total number of SNPs in 

geno. 

If Start.SNP < 0 or > number of SNPs in the dataset or 

missing then then Start.SNP will be set to a default of 1. 
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Distance A user supplied vector of base-pair positions for each SNP. 

Required if Window.type = c("Distance"). 

Pvalue A user supplied vector of P-values for each SNP. Required if 

Pruning.Method = 

c("Pvalue","Topsnp","Clumping"). 

Top.SNPs A number to denote the number of top SNPs by P-value that 

will be fixed into the dataset and will not be pruned. If 

Top.SNPs is below 0 or above the number of SNPs in the 

dataset or missing then Top.SNPs will be set to a default of 

10. 

Fix A vector of numerical values to denote the SNPs that require 

fixing into the dataset and will not be pruned. Each value in the 

vector will denote the column SNP that requires fixing. If a 

value in Fix < 1, > number of SNPs in the dataset or the 

argument Fix is missing then then Fix will be set to NULL as 

default. 

 

Details 

This command prunes a genotype dataset based on desired pruning method. Four 

methods can be used to prune the dataset using the Pruning.Method argument: “LD” 

for LD pruning, “Pvalue” for P-value pruning, “Topsnp” for LD pruning while ensuring 

the top SNPs by P-value are not pruned and “Clumping” for LD clumping. The LD based 

pruning algorithms gives a choice of LD measures for pruning which are calculated 

using the snpStats package. The “LD” and “Topsnp” pruning algorithms also include an 

option that gives the user a choice of starting position for pruning. 
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Value 

 

Prune returns a list of the following results: 

 

Pruned.data Output genotype matrix that has been pruned, of dimension 

nobs x nSNPs. Each row is a subject and each column is a SNP in 

genotype form (0,1,2). Genotype matrix is returned in an object 

of class “matrix” or “double matrix”. 

SNP.IN A list of SNPs that have not been pruned and the SNP location 

from the input matrix. 

SNP.OUT A list of SNPs that have been pruned and the SNP location from 

the input matrix. 

 

 

6.7 Comparison of the Prune program against PLINK 

 

In this section I compare the Prune package against PLINK. PLINK is only able to prune 

by r2 and VIF measure therefore these LD statistics will be the basis for comparison. 

After quality control procedure applied on the GRAPHIC study described in section 4.4, 

the first 500 SNPs on chromosome 1 (rs3094315 to rs2493278) was used as a dataset. 

Both programs used a sliding window of 100 SNPs and a step size = 1. PLINK prunes 

from the first SNP in the dataset and its selection if SNPs is systematic and therefore 

repeating the pruning process on the same dataset using PLINK produces the same 
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pruned dataset. Prune allows the user to vary the starting location which can influence 

the number of SNPs in the pruned dataset therefore prune was repeated 500 times 

with each SNP chosen as a starting location without replacement. The LD threshold for 

both r2 and R2 varied between 0.1 and 0.9. 

Results are shown in Figure 6.7. The PLINK program prune SNPs more heavily 

compared to my Prune package for both r2 and VIF. As the threshold for r2 increases, 

the number of SNPS remaining after pruning becomes similar between the two 

datasets. This is unsurprising given that most of the variation between the r2 

calculations in PLINK and snpStats occurs when r2 < 0.5 (Figure 5.4). The r-squared 

threshold of 0.1 also showed the largest variation in the number of SNPs pruned across 

the 500 starting points (S.E. = 0.1225, Figure 6.8). For VIF however, the difference in 

number of SNPs pruned between the two programs increases as the R2 threshold 

increases. PLINK does not allow LD matrices to be calculated for R2 or VIF therefore it is 

not possible to conclude how PLINK calculates VIF for pruning.  

 

Figure 6.7 Line graph showing the number of SNPs remaining after pruning. Each line 

represents combinations of either PLINK or my Prune package with r-squared or VIF as 

the LD measure. The dataset is based on the first 500 SNPs on chromosome 1 and 
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1,014 subjects from the GRAPHIC study. Prune package was repeated 500 times such 

that each SNP was the Start SNP for pruning. The number of SNPs plotted for the 

Prune package is the mean number of SNPS remaining after pruning.  

 

Figure 6.8 Histogram showing the number of SNPs remaining after pruning with the 

Prune package using an r-squared pruning threshold = 0.1 was repeated 500 times 

such that each SNP was the Start SNP for pruning. The dataset is based on the first 500 

SNPs on chromosome 1 and 1,014 subjects from the GRAPHIC study. 

 

Table 5.4 shows the difference between PLINK and snpStats in calculating r2 statistics 

with snpStats being able to calculate an LD matrix of any size much faster than PLINK. 

This is naturally reflected in the computational time taken to prune each dataset 

between the two methods. The pruning by VIF is considerably computationally quicker 

in PLINK than Prune (Figure 6.9). However as the threshold increases for PLINK the 

computational time increases, the Prune algorithm remains stable regardless of the 

pruning threshold.  
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Figure 6.9 Line graph showing the time taken to prune a dataset, in seconds, which is 

based on the first 500 SNPs on chromosome 1 and 1,014 subjects from the GRAPHIC 

study. Each line represents combinations of either PLINK or Prune package with r-

squared or VIF as the LD measure. The time taken plotted for the Prune package is the 

mean time spent pruning.  

 

6.8 Conclusion 

 

In this chapter, I have briefly reviewed the methods used for SNP pruning in genetic 

studies, including pruning by a number of LD measure, pruning by P-value and 

methods of pruning that combine LD and P-value pruning. These pruning methods are 

all combined into an R package called Prune. To current knowledge, no pruning 

package apart from Prune allows pruning for more than one method. Prune allows LD 

based pruning using a wider variety the LD pruning measures than any other package 

as well as an option to fix any desirable SNPs that users wish not to prune from the 

dataset. The program also allows an option to prune using a random starting location 

to eliminate any bias in pruning between a pair of SNPs but also produces some 

variation in the number of SNPs pruned (Figure 6.8). 
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Comparisons between Prune and PLINK in section 6.7 showed that PLINK prunes SNPs 

more heavily than Prune although the number of SNPs were similar for r2 there was a 

greater difference for VIF. It is unknown why this difference occurs as the Prune 

algorithm calculated VIF statistics as described in PLINK (19,20). Prune uses the 

snpStats package to calculate most LD statistics apart from VIF, the use of this package 

allows significantly less computational time spent pruning compared to PLINK, the VIF 

method in Prune is computationally slower than PLINK. 
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7 Simulation study on the effects of SNP 

pruning on variable selection using penalised 

regression 

7.1 Introduction 

 

In Chapter 6, I discussed the need for SNP pruning for either removing correlations 

between SNPs or reducing the dimensions of a dataset as was required in application 

of the LASSO on the GRAPHIC study (see section 4.7). Both previous studies (24-26) 

and my analysis on chromosome 19 of the GRAPHIC study (see section 4.8.2) have 

shown the correlations between SNPs may not be a problem using penalised 

regression methods as they are able to accommodate for LD and select a single SNP 

from a highly correlated region. Given the motivation is towards reducing the number 

of dimensions due to the lack of computational memory or time, the question arises 

how varying SNP pruning methods, pruning thresholds and tuning parameter selection 

methods effects variable selection when fitting LASSO models. 

In this chapter, I conduct a simulation study to determine the effects of various SNP 

pruning methods (discussed in section 6.4) on variable selection using the LASSO. The 

pruning thresholds vary for each dataset so that the effects of pruning on the final 

LASSO model can be seen between pruning method, threshold and tuning parameter 

selection method. 
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7.2 Previous literature on the effects of pruning on 

penalised regression 

 

To current knowledge there has been little research done to address how pruning 

effects penalised regression models, specifically for variable selection. Abraham et al. 

assessed the effect of SNP independence on model prediction performance with the 

use of pruning on the Celiac-UK1 dataset (25). Predictive ability was assessed using the 

Area Under the Curve (AUC) measure which takes into account the sensitivity and 

specificity rates with a number of methods compared including the LASSO, elastic net, 

variable selection using logistic regression followed by pruning selected SNPs by LD (r2 

= 0.8), a polygenic risk score as performed in PLINK(19,20) and Genome-Wide Complex 

Trait Analysis (GCTA) as described by Yang et al.(233). The tuning parameter estimate 

was selected by 30 repetitions of 10-fold CV. AUC was compared between a full 

dataset and a dataset pruned using VIF pruning in PLINK (see section 6.3.1.1) with a 

sliding window size = 100, step size = 5 and VIF pruning threshold = 1.5 which pruned 

approximately 74% of the dataset. The results (Figure 7.1) showed that the maximum 

AUC for both LASSO and elastic net dropped from 0.88 to 0.85 however a larger model 

was required to reach the maximum AUC after pruning. 

 

Figure 7.1 LOESS-smoothed AUC estimated in 30 x 10-fold Cross-validation within the 

Celiac-UK1 dataset, either the full dataset or pruned version. For GCTA, the average 

over the Cross-validation replications is shown. Taken from Abraham et al.(25) 
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Hong et al. compared two methods of pruning across four different penalised 

regression methods; the LASSO, ridge regression, elastic net and the adaptive LASSO in 

two separate datasets (146). Both studies used adult height as the phenotype. The two 

pruning methods used were P-value pruning and pruning by the absolute β estimate. 

In both cases the top 1,000 SNPs were used as the pruned dataset. Pruning by |𝛽𝑗| was 

not considered in this simulation nor the Prune package. As Hong et al. discuss, this 

method tends to prune common SNPs, and only keeps rare SNPs in the dataset (See 

Figure 1 (146)). 10-fold CV was used as the tuning parameter selection method. Over 

500 of the 1,000 SNPs were selected for each combination of pruning method and 

penalised regression method. It is not known if this is due to the pruning method, the 

tuning parameter selection method or a combination of both. 

 

7.3 Simulation of data 

 

This simulation study looks at how various methods of pruning a dataset, discussed in 

section 6.4, effects variable selection using the LASSO models compared to not pruning 

the dataset. Sensitivity and specificity were used as measures to determine the 

performance for variable selection in each case. Sensitivity is defined and calculated as 

the true positive rate (TPR) while specificity is calculated as 1 – FPR. Both the sample 

size (N = 250, 500 and 1,000) and the percentage of variance explained (%VAR) by the 

causal SNPs (1%, 2.75% and 5.5% (3.1)) were varied in each scenario (Table 7.4). 

 

SNPs were simulated from a single chromosome of 20,000 SNPs. In order to simulate a 

realistic LD pattern, SNPs were generated using the genotype data from the GRAPHIC 

study (see section 4.3). Only one chromosome was used for this simulation, as each 

chromosome is independent and LD does not occur across chromosomes. Therefore a 

genome-wide analysis would show similar results in each chromosome. 20,000 SNPs 

were selected rather than a large number in order to save time computationally in the 

simulation when calculating an LD matrix for the pruning algorithm (Table 5.4). The 
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number of SNPs on each chromosome in the GRAPHIC study varies between 48,494 

SNPs on chromosome 1 to 8,741 SNPs on chromosome 21 (Table 7.1). The first 20,000 

SNPs on Chromosome 13 (P = 23,049) was selected for this simulation as this was the 

closet to a full chromosome to 20,000 SNPs.  

 

Table 7.1 Number of SNPs in each chromosome from the GRAPHIC study after quality 

control 

Chromosome No. of SNPs Chromosome No. of SNPs 

1 48,494 12 29,614 

2 47,899 13 23,049 
3 39,615 14 19,492 
4 34,217 15 18,258 
5 35,870 16 19,114 
6 40,655 17 16,761 
7 32,235 18 17,962 
8 31,753 19 12,376 
9 28,139 20 15,560 

10 32,500 21 8,741 
11 30,629 22 8,841 

Total = 591,774 

 

As with previous analyses, only parental subjects were used in this simulation and the 

same quality control procedures described in section 4.4 were applied. The 35 subjects 

that were removed for missing phenotypes in the GRAPHIC study analysis were 

included in this simulation as the phenotype was simulated.  

 

7.3.1. Phasing haplotypes 

 

In order to simulate new genotype datasets, haplotype data was required from each of 

the 1,014 subjects from the GRAPHIC study. This was done by estimating from the 

genotype data using fastPHASE version 1.1 (234). Haplotype estimation in fastPHASE is 

based on the Expectation-Maximization algorithm (205,206). fastPHASE is also able to 

impute missing genotype data. The package uses cluster-based modelling to estimate 
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the missing data. Each cluster is defined as a group of closely related haplotypes. It 

assumes that all haplotypes from a dataset originate from a number of clustered 

populations. As subjects recruited for the GRAPHIC study were all of European descent 

and live within a local population, this assumption would be valid. By estimating the 

true underlying number of clusters in the GRAPIC study, the algorithm is able to 

predict the missing haplotypes with a greater certainty. Scheet and Stephens tested 

the error rate in predicting missing genotypes using fastPHASE (234). This was 

performed by masking between 10% - 90% (P = 93,476 – 837,853) for CEPH HapMap 

data across chromosome 22 and applying the fastPHASE package to the dataset to 

predict the missing genotype. The calculated error rate (Table 7.2) was the proportion 

of masked genotypes that were not correctly estimated. While the error rate is small 

(3.3%) when 10% of genotypes are missing, a threshold of 3% missing call rate in SNPs 

is already applied on GRAPHIC study, will further reduce the error in estimating the 

remaining missing genotypes.  

 

Table 7.2 Error rate for estimation of missing genotypes using fastPHASE for CEPH 
HapMap data, Chromosome 22, taken from Scheet & Stephens(234) 

Missing Data (%) fastPHASE Error 

10 0.033 
20 0.037 
30 0.042 
40 0.051 
50 0.064 
60 0.089 
70 0.137 
80 0.227 
90 0.358 

 

To estimate the number of clusters the 20,000 SNPs were divided into 20 blocks of 

1,000 adjacent SNPs. The upper and lower limits of considered number of clusters (Kl) 

varied between 30 and 70 in intervals of 2. In each block of 1,000 SNPs, fastPHASE 

would randomly select at most 100 consecutive SNPs; mask approximately 5% of the 

observed genotypes among all individuals at 1,000 SNPs; impute missing genotypes at 

each value of Kl and tabulate errors. This was repeated 50 times for each block of 
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1,000 SNPs with the best estimated number of clusters as the one to produce the 

lowest error rate. The mean number of clusters with the smallest error rate from the 

20 blocks was 60.8 (median = 62, range = 38 - 70), therefore K = 61 was selected for 

the number of clusters for estimation of missing data and haplotypes.  

 

Scheet and Stephens (234) noted that the EM algorithm tends to find local maximums 

rather than global maximums for phasing, therefore different starting estimates for 

the algorithm will lead to different estimates. To deal with this issue the algorithm was 

repeated 50 times, each with a different starting point. Of these 50 repetitions, the 

repetition that produced the highest likelihood estimate was selected as the estimated 

haplotypes.  

 

7.3.2. Simulation of data 

 

Subjects were simulated by randomly combining a pair of haplotypes with replacement 

from phased subjects to form genotypes. Any simulated SNPs that were monomorphic 

were pruned from the dataset before the phenotype was simulated to avoid these 

SNPs being simulated as causal SNPs. 10 causal SNPs were selected at random in each 

dataset. The causal β’s were simulated using the percentage of variance explained 

(%VAR) (3.1) with the MAF of the causal SNP calculated from the simulated dataset 

rather than from the GRAPHIC study dataset. 

 

A simulation was run to calculate the approximate %VAR required for the simulated β’s 

to have sufficient power. A power level of 90% was used to allow selection of SNPs in 

LD with the causal SNPs to have power for selection also. 50 independent SNPs from 

500 unrelated subjects were simulated. From these 50 SNPs, one causal SNP was 

simulated. The MAF of the causal SNP was varied between 2% and 50% and the effect 

size of the causal SNP was also varied between 0.01 and 1 and increased by 0.01 for 

each MAF. Each combination MAF and effect size was repeated over 1,000 repetitions, 
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in each case, the LASSO was applied and the tuning parameter was selected using 10-

fold Cross-validation. The power calculated by the percentage of times the causal SNP 

was selected over the 1,000 repetitions and is plotted against the β values for varying 

MAFs in Figure 7.2. Table 7.3 shows the β values and calculated %VAR for each MAF 

for 90% power. The %VAR varies between 2.619% and 2.967% with a mean of 2.75%. 

Therefore N = 500 and %VAR = 2.75% was used as a baseline scenario, other scenarios 

considered were at a lower power (i.e. a lower sample size or %VAR) or higher power 

(i.e. a higher sample size or %VAR) as shown in Table 7.4.  

 

Figure 7.2 Power curves for varying MAFs and a sample size of 500 
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Table 7.3 The effect size and percentage variance explained by the causal SNP required 

for 90% power for varying MAFs 

MAF 
(%) 

N = 500 

β Variance 
explained 

(%) 
2 0.87 2.967 
5 0.54 2.770 

10 0.4 2.880 
15 0.33 2.777 
20 0.29 2.691 
25 0.28 2.940 

30 0.25 2.625 
35 0.24 2.621 
40 0.24 2.765 

45 0.23 2.619 
50 0.23 2.645 

 

 

Table 7.4 Simulated scenarios 

Scenario Sample size varies 
Percentage variance explained 

varies 

Low powered 
N = 250, Percentage variance 

explained = 2.75% 
N = 500, Percentage variance 

explained = 1% 

Mid powered N = 500 & Percentage variance explained = 2.75% 

High powered 
N = 1,000, Percentage variance 

explained = 2.75% 
N = 500, Percentage variance 

explained = 5.5% 
  

Figure 7.3 shows the simulated beta estimates for each MAF and level of the %VAR by 

the causal SNP used in the simulation. Each causal SNP was given either a positive or 

negative effect at random. The residual variance of the phenotype followed a normal 

distribution with mean = 0 and S.E. = 1 – (Number of causal SNPS x %VAR). 
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Figure 7.3 Simulated beta estimates against minor allele frequency for differing levels 

of percentage of variance explained 

 

7.3.3. SNP Pruning methods 

 

My Prune package (see section 6.4) was used to prune simulated datasets. Three 

pruning methods were used LD pruning, P-value pruning and LD clumping. For the LD 

pruning and LD clumping methods, r2 was used as the LD measure with thresholds set 

between 0.9 and 0.2 and at intervals of 0.1 between these limits. For P-value pruning 

the threshold was set at p < 0.2 to p < 0.02 and at every 0.02 interval between these 

limits. No sliding window was used for this simulation. A random starting location was 

used to prune each dataset for LD pruning and causal SNPs were allowed to be pruned 

as they could be in any real study. An increase in pruning threshold was defined as a 

decrease in the value of pruning threshold. 
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7.3.4. Fitting the LASSO model 

 

BIC, repeated 10-fold Cross-validation and the permutation method were used as 

tuning parameter selection methods. The glmnet package (53) was again used for 

variable selection for both the permutation method and repeated CV, with 25 

repetitions used for both methods. To provide good accuracy in λ, a range of 200 λ 

values was used for repeated CV. BIC values were taken at every step of 0.001 until the 

smallest λ for a null model is reached, which gave a range approximately 300 λ values. 

Each simulation recorded the sensitivity and specificity rates and was repeated 1,000 

times. A true positive result was defined as any selected SNP that is either the causal 

SNP or a selected SNP with r2 ≥ 0.5 with a causal SNP. A false positive result was 

defined as any selected SNP with r2 < 0.5 with all 10 causal SNPs. 

 

7.4 Results 

 

7.4.1. LD Pruning  

 

Table 7.5 and Table 7.6 show the results for LD pruning using CV as the method for 

tuning parameter selection. As the pruning threshold increased the mean number of 

SNPs selected in each model decreased, as did both the number of selected true 

positives and false positives. The sensitivity rate across all scenarios between not 

pruning the dataset and pruning with r2 = 0.2 was approximately halved. This was 

expected as the number of SNPs after pruning decreased as the threshold increased. 

The increase in pruning threshold leads to more causal SNPs being pruned from the 

dataset leading to a loss of power in selecting the causal SNPs. The number of false 

positives selected also decreased as the pruning threshold increased with the 

exception of the N = 1,000 scenario where the number of false positives selected 

increased. Naturally as both the sample size and %Var increased, the sensitivity rate 

increased due to the increase in power. However as seen in section 3.3.2.1, CV tends 
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to select a number of false positives which also increased as the power to detect 

causal SNPs increased. This may partly be due to the SNPs in low LD (0 < r2 < 0.5) with 

the causal SNP also having an increase in power. However it would not explain such a 

large increase in the number of false positive SNPs selected in this scenario.
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Table 7.5 Mean and standard deviation results for LD pruning using repeated Cross-validation for tuning parameter selection for differing 

sample sizes with the percentage of variance explained = 2.75% 

Pruning 
threshold 

No. of SNPs after 
pruning 

No. of SNPs 
selected 

No. of true 
positive SNPs 

No. of false positive 
SNPS 

Sensitivity Specificity 

N = 250 
None 20000.00 ± 0.00 34.15 ± 33.93 2.95 ± 2.06 30.31 ± 32.01 0.29 ± 0.21 1.00 ± 0.00 

0.9 14992.78 ± 23.33 31.22 ± 31.29 2.91 ± 2.05 27.95 ± 29.70 0.29 ± 0.21 1.00 ± 0.00 
0.8 13271.68 ± 24.81 30.19 ± 30.37 2.86 ± 2.05 27.05 ± 28.85 0.29 ± 0.20 1.00 ± 0.00 
0.7 11619.73 ± 25.63 29.33 ± 30.00 2.68 ± 2.02 26.45 ± 28.54 0.27 ± 0.20 1.00 ± 0.00 
0.6 10055.15 ± 25.55 27.71 ± 29.73 2.53 ± 1.99 25.05 ± 28.25 0.25 ± 0.20 1.00 ± 0.00 
0.5 8589.57 ± 22.20 28.70 ± 30.22 2.45 ± 1.91 26.19 ± 28.92 0.24 ± 0.19 1.00 ± 0.00 

0.4 7214.89 ± 23.30 26.67 ± 30.86 2.15 ± 1.85 24.50 ± 29.59 0.21 ± 0.18 1.00 ± 0.00 
0.3 5894.42 ± 19.67 25.54 ± 31.09 1.86 ± 1.68 23.64 ± 30.07 0.19 ± 0.17 1.00 ± 0.01 
0.2 4586.50 ± 19.64 22.43 ± 27.43 1.52 ± 1.51 20.91 ± 26.49 0.15 ± 0.15 1.00 ± 0.01 

N = 500 
None 20000.00 ± 0.00 78.18 ± 32.15 8.32 ± 1.36 66.78 ± 31.25 0.83 ± 0.14 1.00 ± 0.00 

0.9 15041.80 ± 18.78 73.02 ± 30.46 8.28 ± 1.38 63.09 ± 29.72 0.83 ± 0.14 1.00 ± 0.00 
0.8 13329.33 ± 20.41 72.81 ± 30.43 8.19 ± 1.42 63.24 ± 29.71 0.82 ± 0.14 1.00 ± 0.00 
0.7 11666.30 ± 20.94 71.45 ± 30.52 8.01 ± 1.48 62.37 ± 29.77 0.80 ± 0.15 0.99 ± 0.00 

0.6 10092.29 ± 22.06 70.87 ± 32.48 7.73 ± 1.57 62.44 ± 31.74 0.77 ± 0.16 0.99 ± 0.00 
0.5 8619.05 ± 19.98 68.06 ± 31.39 7.33 ± 1.76 60.39 ± 30.48 0.73 ± 0.18 0.99 ± 0.00 
0.4 7243.81 ± 21.98 65.65 ± 33.06 6.49 ± 1.84 59.00 ± 32.24 0.65 ± 0.18 0.99 ± 0.00 
0.3 5920.86 ± 16.83 61.51 ± 34.23 5.50 ± 1.80 55.97 ± 33.51 0.55 ± 0.18 0.99 ± 0.01 
0.2 4616.83 ± 18.60 57.23 ± 34.98 4.41 ± 1.84 52.82 ± 34.28 0.44 ± 0.18 0.99 ± 0.01 
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N = 1,000 
None 20000.00 ± 0.00 91.83 ± 28.20 9.92 ± 0.33 76.94 ± 27.83 0.99 ± 0.03 1.00 ± 0.00 

0.9 15063.67 ± 15.55 86.79 ± 26.81 9.91 ± 0.34 73.95 ± 26.59 0.99 ± 0.03 1.00 ± 0.00 
0.8 13358.90 ± 16.64 87.21 ± 27.85 9.90 ± 0.35 74.84 ± 27.67 0.99 ± 0.04 0.99 ± 0.00 
0.7 11688.27 ± 16.63 87.78 ± 27.20 9.88 ± 0.39 75.82 ± 27.01 0.99 ± 0.04 0.99 ± 0.00 
0.6 10110.87 ± 20.92 90.33 ± 29.10 9.80 ± 0.47 78.97 ± 28.88 0.98 ± 0.05 0.99 ± 0.00 

0.5 8631.07 ± 15.87 92.89 ± 30.86 9.67 ± 0.62 82.21 ± 30.70 0.97 ± 0.06 0.99 ± 0.00 
0.4 7254.88 ± 20.37 94.39 ± 30.74 8.73 ± 1.09 85.18 ± 30.76 0.87 ± 0.11 0.99 ± 0.00 
0.3 5934.77 ± 15.06 95.03 ± 32.99 7.45 ± 1.33 87.49 ± 33.05 0.74 ± 0.13 0.99 ± 0.01 
0.2 4631.62 ± 17.96 94.97 ± 35.11 5.91 ± 1.51 89.06 ± 35.23 0.59 ± 0.15 0.98 ± 0.01 
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Table 7.6 Mean and standard deviation results for LD pruning using repeated Cross-

validation for tuning parameter selection for differing percentage of variance 

explained with N = 500 

Pruning 
threshold 

No. of SNPs 
selected 

No. of true 
positive 

SNPs 

No. of false 
positive SNPs 

Sensitivity Specificity 

Variance Explained = 1% 
None 19.57 ± 25.72 1.45 ± 1.52 17.83 ± 24.42 0.15 ± 0.15 1.00 ± 0.00 

0.9 18.92 ± 24.47 1.44 ± 1.52 17.36 ± 23.35 0.14 ± 0.15 1.00 ± 0.00 
0.8 18.81 ± 24.81 1.39 ± 1.52 17.32 ± 23.69 0.14 ± 0.15 1.00 ± 0.00 

0.7 18.60 ± 24.60 1.38 ± 1.49 17.14 ± 23.52 0.14 ± 0.15 1.00 ± 0.00 
0.6 18.64 ± 24.74 1.28 ± 1.42 17.32 ± 23.74 0.13 ± 0.14 1.00 ± 0.00 
0.5 16.43 ± 22.72 1.13 ± 1.29 15.29 ± 21.84 0.11 ± 0.13 1.00 ± 0.00 
0.4 16.83 ± 24.23 1.07 ± 1.29 15.76 ± 23.36 0.11 ± 0.13 1.00 ± 0.00 
0.3 15.95 ± 23.73 0.94 ± 1.19 15.00 ± 22.96 0.09 ± 0.12 1.00 ± 0.00 
0.2 14.67 ± 22.58 0.78 ± 1.04 13.89 ± 21.96 0.08 ± 0.10 1.00 ± 0.00 

Variance Explained = 2.75% 
None 78.18 ± 32.15 8.32 ± 1.36 66.78 ± 31.25 0.83 ± 0.14 1.00 ± 0.00 

0.9 73.02 ± 30.46 8.28 ± 1.38 63.09 ± 29.72 0.83 ± 0.14 1.00 ± 0.00 
0.8 72.81 ± 30.43 8.19 ± 1.42 63.24 ± 29.71 0.82 ± 0.14 1.00 ± 0.00 
0.7 71.45 ± 30.52 8.01 ± 1.48 62.37 ± 29.77 0.80 ± 0.15 0.99 ± 0.00 
0.6 70.87 ± 32.48 7.73 ± 1.57 62.44 ± 31.74 0.77 ± 0.16 0.99 ± 0.00 
0.5 68.06 ± 31.39 7.33 ± 1.76 60.39 ± 30.48 0.73 ± 0.18 0.99 ± 0.00 

0.4 65.65 ± 33.06 6.49 ± 1.84 59.00 ± 32.24 0.65 ± 0.18 0.99 ± 0.00 
0.3 61.51 ± 34.23 5.50 ± 1.80 55.97 ± 33.51 0.55 ± 0.18 0.99 ± 0.01 
0.2 57.23 ± 34.98 4.41 ± 1.84 52.82 ± 34.28 0.44 ± 0.18 0.99 ± 0.01 

Variance Explained = 5.5% 
None 96.51 ± 29.61 9.81 ± 0.48 81.70 ± 29.47 0.98 ± 0.05 1.00 ± 0.00 

0.9 90.34 ± 27.99 9.81 ± 0.47 77.84 ± 27.89 0.98 ± 0.05 0.99 ± 0.00 
0.8 89.90 ± 27.95 9.77 ± 0.51 77.87 ± 27.83 0.98 ± 0.05 0.99 ± 0.00 
0.7 90.01 ± 28.24 9.68 ± 0.63 78.48 ± 28.04 0.97 ± 0.06 0.99 ± 0.00 
0.6 90.88 ± 29.75 9.56 ± 0.68 79.99 ± 29.54 0.96 ± 0.07 0.99 ± 0.00 
0.5 89.46 ± 28.54 9.35 ± 0.82 79.36 ± 28.38 0.94 ± 0.08 0.99 ± 0.00 
0.4 89.86 ± 31.17 8.40 ± 1.18 81.11 ± 31.11 0.84 ± 0.12 0.99 ± 0.00 
0.3 88.85 ± 34.62 7.10 ± 1.42 81.68 ± 34.55 0.71 ± 0.14 0.99 ± 0.01 

0.2 84.33 ± 36.74 5.65 ± 1.59 78.68 ± 36.65 0.57 ± 0.16 0.98 ± 0.01 
 

The results for BIC are shown in Table 7.7 and Table 7.8. The BIC tended to select a 

sparser model than CV when pruning by LD. This tuning parameter selection method 

also selected less truly causal SNPs however it also selected a significantly lower 
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number of false positive SNPs in all scenarios. The number of SNPs selected as well as 

the number of true positives selected decreases as the dataset becomes more heavily 

pruned however there was a small increase in these statistics compared to not pruning 

at all. This is illustrated in Figure 7.4 and Figure 7.5. Where no pruning has occurred, is 

the LD pruning threshold = 1 in these Figures. The mean number of SNPs (Figure 7.5) 

and causal SNPs (Figure 7.4) selected increased compared to not pruning between the 

LD thresholds of 0.9 and 0.6 in most scenarios. This suggests that a low LD pruning 

threshold using the BIC as tuning parameter selection method increases the numbers 

of SNPs and true positives selected. The two high powered scenarios (N = 1,000 and 

%Var = 5.5%) showed an increase in the numbers of false positives selected compared 

to a lower powered scenario, however unlike the results shown using repeated CV the 

increase in number of false positives selected was small and some could be explained 

by SNPs in low LD with the causal SNP being selected. 

 

Figure 7.4 Line graph showing the mean number of causal SNPs selected against the 

varying Linkage Disequilibrium pruning thresholds. LD pruning threshold = 1 denotes 

no pruning has occurred.  
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Figure 7.5 Line graph showing the mean number of SNPs selected against varying 

Linkage Disequilibrium pruning thresholds. LD pruning threshold = 1 denotes no 

pruning has occurred.  
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Table 7.7 Mean and standard deviation results for LD pruning using BIC for tuning parameter selection for differing sample sizes with the 

percentage of variance explained = 2.75% 

Pruning 
threshold 

No. of SNPs after pruning 
No. of SNPs 

selected 
No. of true 

positive SNPs 
No. of false 

positive SNPS 
Sensitivity Specificity 

N = 250 
None 20000.00 ± 0.00 8.81 ± 6.73 1.82 ± 1.20 6.63 ± 6.19 0.18 ± 0.12 1.00 ± 0.00 

0.9 14992.78 ± 23.33 9.62 ± 7.05 1.95 ± 1.23 7.52 ± 6.55 0.20 ± 0.12 1.00 ± 0.00 
0.8 13271.68 ± 24.81 9.89 ± 7.25 1.96 ± 1.28 7.81 ± 6.74 0.20 ± 0.13 1.00 ± 0.00 
0.7 11619.73 ± 25.63 9.68 ± 6.63 1.88 ± 1.24 7.71 ± 6.17 0.19 ± 0.12 1.00 ± 0.00 
0.6 10055.15 ± 25.55 10.06 ± 7.27 1.82 ± 1.27 8.20 ± 6.75 0.18 ± 0.13 1.00 ± 0.00 
0.5 8589.57 ± 22.20 9.59 ± 7.21 1.70 ± 1.20 7.87 ± 6.84 0.17 ± 0.12 1.00 ± 0.00 
0.4 7214.89 ± 23.30 9.60 ± 7.18 1.56 ± 1.16 8.04 ± 6.84 0.16 ± 0.12 1.00 ± 0.00 
0.3 5894.42 ± 19.67 9.03 ± 6.92 1.34 ± 1.07 7.69 ± 6.55 0.13 ± 0.11 1.00 ± 0.00 

0.2 4586.50 ± 19.64 9.06 ± 6.62 1.17 ± 1.02 7.88 ± 6.39 0.12 ± 0.10 1.00 ± 0.00 

N = 500 
None 20000.00 ± 0.00 6.77 ± 6.09 3.48 ± 2.18 2.59 ± 4.04 0.35 ± 0.22 1.00 ± 0.00 

0.9 15041.80 ± 18.78 7.89 ± 6.41 3.99 ± 2.19 3.50 ± 4.51 0.40 ± 0.22 1.00 ± 0.00 
0.8 13329.33 ± 20.41 7.64 ± 6.28 3.91 ± 2.16 3.41 ± 4.51 0.39 ± 0.22 1.00 ± 0.00 
0.7 11666.30 ± 20.94 7.63 ± 5.95 3.88 ± 2.09 3.52 ± 4.34 0.39 ± 0.21 1.00 ± 0.00 
0.6 10092.29 ± 22.06 7.39 ± 5.90 3.71 ± 2.07 3.56 ± 4.30 0.37 ± 0.21 1.00 ± 0.00 
0.5 8619.05 ± 19.98 6.74 ± 5.35 3.39 ± 1.93 3.29 ± 3.99 0.34 ± 0.19 1.00 ± 0.00 

0.4 7243.81 ± 21.98 6.53 ± 5.05 3.08 ± 1.86 3.43 ± 3.79 0.31 ± 0.19 1.00 ± 0.00 
0.3 5920.86 ± 16.83 6.03 ± 4.71 2.66 ± 1.62 3.37 ± 3.73 0.27 ± 0.16 1.00 ± 0.00 
0.2 4616.83 ± 18.60 5.75 ± 4.75 2.24 ± 1.49 3.51 ± 3.98 0.22 ± 0.15 1.00 ± 0.00 

N = 1,000 
None 20000.00 ± 0.00 15.94 ± 4.59 9.29 ± 1.26 4.19 ± 3.21 0.93 ± 0.13 1.00 ± 0.00 



 

195 
 

0.9 15063.67 ± 15.55 15.56 ± 4.45 9.33 ± 1.11 4.67 ± 3.44 0.93 ± 0.11 1.00 ± 0.00 
0.8 13358.90 ± 16.64 15.11 ± 4.37 9.25 ± 1.25 4.62 ± 3.35 0.92 ± 0.12 1.00 ± 0.00 
0.7 11688.27 ± 16.63 14.72 ± 4.58 9.05 ± 1.50 4.64 ± 3.42 0.90 ± 0.15 1.00 ± 0.00 
0.6 10110.87 ± 20.92 14.16 ± 4.62 8.74 ± 1.69 4.71 ± 3.38 0.87 ± 0.17 1.00 ± 0.00 
0.5 8631.07 ± 15.87 13.14 ± 4.81 8.19 ± 1.96 4.51 ± 3.40 0.82 ± 0.20 1.00 ± 0.00 
0.4 7254.88 ± 20.37 11.80 ± 5.13 7.03 ± 2.22 4.61 ± 3.64 0.70 ± 0.22 1.00 ± 0.00 

0.3 5934.77 ± 15.06 9.86 ± 5.04 5.68 ± 2.22 4.16 ± 3.61 0.57 ± 0.22 1.00 ± 0.00 
0.2 4631.62 ± 17.96 8.23 ± 4.53 4.52 ± 2.06 3.71 ± 3.24 0.45 ± 0.21 1.00 ± 0.00 
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Table 7.8 Mean and standard deviation results for LD pruning using BIC for tuning 

parameter selection for differing percentage of variance explained with N = 500 

Pruning 
threshold 

No. of SNPs 
selected 

No. of true 
positive 

SNPs 

No. of false 
positive SNPs 

Sensitivity Specificity 

Variance Explained = 1% 
None 4.12 ± 3.79 0.73 ± 0.80 3.28 ± 3.50 0.07 ± 0.08 1.00 ± 0.00 

0.9 5.24 ± 4.09 0.87 ± 0.83 4.33 ± 3.91 0.09 ± 0.08 1.00 ± 0.00 
0.8 5.28 ± 4.11 0.83 ± 0.83 4.41 ± 3.91 0.08 ± 0.08 1.00 ± 0.00 
0.7 5.32 ± 4.19 0.83 ± 0.85 4.47 ± 4.00 0.08 ± 0.08 1.00 ± 0.00 
0.6 5.25 ± 4.13 0.77 ± 0.83 4.47 ± 3.91 0.08 ± 0.08 1.00 ± 0.00 
0.5 5.23 ± 3.96 0.69 ± 0.76 4.53 ± 3.81 0.07 ± 0.08 1.00 ± 0.00 

0.4 5.22 ± 4.10 0.66 ± 0.75 4.55 ± 3.93 0.07 ± 0.07 1.00 ± 0.00 
0.3 5.14 ± 3.95 0.59 ± 0.73 4.54 ± 3.82 0.06 ± 0.07 1.00 ± 0.00 
0.2 4.75 ± 3.42 0.50 ± 0.66 4.25 ± 3.33 0.05 ± 0.07 1.00 ± 0.00 

Variance Explained = 2.75% 
None 6.77 ± 6.09 3.48 ± 2.18 2.59 ± 4.04 0.35 ± 0.22 1.00 ± 0.00 

0.9 7.89 ± 6.41 3.99 ± 2.19 3.50 ± 4.51 0.40 ± 0.22 1.00 ± 0.00 
0.8 7.64 ± 6.28 3.91 ± 2.16 3.41 ± 4.51 0.39 ± 0.22 1.00 ± 0.00 
0.7 7.63 ± 5.95 3.88 ± 2.09 3.52 ± 4.34 0.39 ± 0.21 1.00 ± 0.00 
0.6 7.39 ± 5.90 3.71 ± 2.07 3.56 ± 4.30 0.37 ± 0.21 1.00 ± 0.00 
0.5 6.74 ± 5.35 3.39 ± 1.93 3.29 ± 3.99 0.34 ± 0.19 1.00 ± 0.00 
0.4 6.53 ± 5.05 3.08 ± 1.86 3.43 ± 3.79 0.31 ± 0.19 1.00 ± 0.00 
0.3 6.03 ± 4.71 2.66 ± 1.62 3.37 ± 3.73 0.27 ± 0.16 1.00 ± 0.00 
0.2 5.75 ± 4.75 2.24 ± 1.49 3.51 ± 3.98 0.22 ± 0.15 1.00 ± 0.00 

Variance Explained = 5.5% 
None 18.37 ± 9.45 7.97 ± 2.37 7.88 ± 6.91 0.80 ± 0.24 1.00 ± 0.00 

0.9 20.58 ± 9.81 8.44 ± 1.97 10.63 ± 8.06 0.84 ± 0.20 1.00 ± 0.00 
0.8 20.15 ± 9.79 8.31 ± 2.02 10.64 ± 8.10 0.83 ± 0.20 1.00 ± 0.00 
0.7 19.48 ± 9.74 8.12 ± 2.12 10.45 ± 8.03 0.81 ± 0.21 1.00 ± 0.00 
0.6 17.89 ± 9.33 7.71 ± 2.24 9.58 ± 7.53 0.77 ± 0.22 1.00 ± 0.00 
0.5 16.35 ± 9.12 7.13 ± 2.41 8.92 ± 7.30 0.71 ± 0.24 1.00 ± 0.00 
0.4 14.19 ± 8.55 6.13 ± 2.41 7.94 ± 6.84 0.61 ± 0.24 1.00 ± 0.00 
0.3 12.28 ± 8.03 5.00 ± 2.19 7.26 ± 6.53 0.50 ± 0.22 1.00 ± 0.00 
0.2 10.26 ± 7.16 3.94 ± 2.06 6.32 ± 5.80 0.39 ± 0.21 1.00 ± 0.00 
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Both repeated CV and BIC methods showed variations in the mean number of true and 

false positive SNPs selected as well as the number of SNPs in the final model as the 

pruning threshold changes. The permutation method however showed a stable mean 

and S.D. estimate in each scenario regardless of the LD pruning threshold that was 

used (Table 7.9 and Table 7.10). This suggests that there is little or no effect of pruning 

if the permutation method is used for tuning parameter selection. The permutation 

method however selected sparser models that both repeated CV and BIC methods and 

therefore a lower number of true and false positives were selected. 
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Table 7.9 Mean and standard deviation results for LD pruning using the permutation method for tuning parameter selection for differing 

sample sizes with the percentage of variance explained = 2.75% 

Pruning 
threshold 

No. of SNPs after pruning 
No. of SNPs 

selected 
No. of true 

positive SNPs 
No. of false 

positive SNPS 
Sensitivity Specificity 

N = 250 
None 20000.00 ± 0.00 2.13 ± 1.50 0.87 ± 0.86 1.13 ± 1.16 0.09 ± 0.09 1.00 ± 0.00 

0.9 14992.78 ± 23.33 2.16 ± 1.51 0.90 ± 0.88 1.14 ± 1.17 0.09 ± 0.09 1.00 ± 0.00 
0.8 13271.68 ± 24.81 2.17 ± 1.58 0.91 ± 0.88 1.13 ± 1.23 0.09 ± 0.09 1.00 ± 0.00 
0.7 11619.73 ± 25.63 2.14 ± 1.56 0.89 ± 0.89 1.12 ± 1.17 0.09 ± 0.09 1.00 ± 0.00 
0.6 10055.15 ± 25.55 2.17 ± 1.52 0.89 ± 0.88 1.13 ± 1.18 0.09 ± 0.09 1.00 ± 0.00 
0.5 8589.57 ± 22.20 2.17 ± 1.55 0.88 ± 0.87 1.14 ± 1.19 0.09 ± 0.09 1.00 ± 0.00 

0.4 7214.89 ± 23.30 2.17 ± 1.55 0.90 ± 0.88 1.14 ± 1.19 0.09 ± 0.09 1.00 ± 0.00 
0.3 5894.42 ± 19.67 2.20 ± 1.55 0.90 ± 0.89 1.16 ± 1.20 0.09 ± 0.09 1.00 ± 0.00 
0.2 4586.50 ± 19.64 2.18 ± 1.52 0.89 ± 0.87 1.13 ± 1.17 0.09 ± 0.09 1.00 ± 0.00 

N = 500 
None 20000.00 ± 0.00 5.94 ± 2.31 3.80 ± 1.43 1.37 ± 1.32 0.38 ± 0.14 1.00 ± 0.00 

0.9 15041.80 ± 18.78 5.93 ± 2.37 3.79 ± 1.46 1.35 ± 1.32 0.38 ± 0.15 1.00 ± 0.00 
0.8 13329.33 ± 20.41 5.89 ± 2.29 3.79 ± 1.43 1.32 ± 1.27 0.38 ± 0.14 1.00 ± 0.00 
0.7 11666.30 ± 20.94 5.94 ± 2.34 3.79 ± 1.46 1.36 ± 1.32 0.38 ± 0.15 1.00 ± 0.00 

0.6 10092.29 ± 22.06 5.97 ± 2.34 3.82 ± 1.43 1.36 ± 1.30 0.38 ± 0.14 1.00 ± 0.00 
0.5 8619.05 ± 19.98 5.92 ± 2.37 3.81 ± 1.47 1.35 ± 1.33 0.38 ± 0.15 1.00 ± 0.00 
0.4 7243.81 ± 21.98 5.99 ± 2.37 3.81 ± 1.44 1.37 ± 1.31 0.38 ± 0.14 1.00 ± 0.00 
0.3 5920.86 ± 16.83 5.94 ± 2.34 3.80 ± 1.47 1.34 ± 1.31 0.38 ± 0.15 1.00 ± 0.00 
0.2 4616.83 ± 18.60 5.97 ± 2.35 3.81 ± 1.44 1.37 ± 1.29 0.38 ± 0.14 1.00 ± 0.00 
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N = 1,000 
None 20000.00 ± 0.00 12.25 ± 2.25 8.81 ± 1.06 1.29 ± 1.24 0.88 ± 0.11 1.00 ± 0.00 

0.9 15063.67 ± 15.55 12.30 ± 2.34 8.81 ± 1.06 1.30 ± 1.26 0.88 ± 0.11 1.00 ± 0.00 
0.8 13358.90 ± 16.64 12.28 ± 2.25 8.82 ± 1.05 1.30 ± 1.25 0.88 ± 0.11 1.00 ± 0.00 
0.7 11688.27 ± 16.63 12.21 ± 2.28 8.81 ± 1.06 1.28 ± 1.24 0.88 ± 0.11 1.00 ± 0.00 
0.6 10110.87 ± 20.92 12.25 ± 2.32 8.81 ± 1.06 1.29 ± 1.23 0.88 ± 0.11 1.00 ± 0.00 

0.5 8631.07 ± 15.87 12.21 ± 2.29 8.79 ± 1.06 1.28 ± 1.26 0.88 ± 0.11 1.00 ± 0.00 
0.4 7254.88 ± 20.37 12.24 ± 2.28 8.80 ± 1.07 1.28 ± 1.25 0.88 ± 0.11 1.00 ± 0.00 
0.3 5934.77 ± 15.06 12.27 ± 2.31 8.82 ± 1.04 1.29 ± 1.24 0.88 ± 0.10 1.00 ± 0.00 
0.2 4631.62 ± 17.96 12.26 ± 2.33 8.79 ± 1.07 1.28 ± 1.25 0.88 ± 0.11 1.00 ± 0.00 
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Table 7.10 Mean and standard deviation results for LD pruning using the permutation 

method for tuning parameter selection for differing percentage of variance explained 

with N = 500 

Pruning 
threshold 

No. of SNPs 
selected 

No. of true 
positive 

SNPs 

No. of false 
positive 

SNPs 
Sensitivity Specificity 

Variance Explained = 1% 
None 1.53 ± 1.38 0.43 ± 0.63 1.05 ± 1.15 0.04 ± 0.06 1.00 ± 0.00 

0.9 1.56 ± 1.39 0.44 ± 0.64 1.06 ± 1.16 0.04 ± 0.06 1.00 ± 0.00 
0.8 1.52 ± 1.36 0.42 ± 0.62 1.04 ± 1.14 0.04 ± 0.06 1.00 ± 0.00 
0.7 1.55 ± 1.39 0.43 ± 0.64 1.06 ± 1.15 0.04 ± 0.06 1.00 ± 0.00 
0.6 1.56 ± 1.39 0.44 ± 0.64 1.06 ± 1.17 0.04 ± 0.06 1.00 ± 0.00 

0.5 1.54 ± 1.38 0.42 ± 0.63 1.06 ± 1.13 0.04 ± 0.06 1.00 ± 0.00 
0.4 1.52 ± 1.33 0.43 ± 0.62 1.03 ± 1.12 0.04 ± 0.06 1.00 ± 0.00 
0.3 1.54 ± 1.36 0.44 ± 0.63 1.04 ± 1.13 0.04 ± 0.06 1.00 ± 0.00 
0.2 1.60 ± 1.43 0.45 ± 0.66 1.09 ± 1.16 0.04 ± 0.07 1.00 ± 0.00 

Variance Explained = 2.75% 
None 5.94 ± 2.31 3.80 ± 1.43 1.37 ± 1.32 0.38 ± 0.14 1.00 ± 0.00 

0.9 5.93 ± 2.37 3.79 ± 1.46 1.35 ± 1.32 0.38 ± 0.15 1.00 ± 0.00 
0.8 5.89 ± 2.29 3.79 ± 1.43 1.32 ± 1.27 0.38 ± 0.14 1.00 ± 0.00 
0.7 5.94 ± 2.34 3.79 ± 1.46 1.36 ± 1.32 0.38 ± 0.15 1.00 ± 0.00 
0.6 5.97 ± 2.34 3.82 ± 1.43 1.36 ± 1.30 0.38 ± 0.14 1.00 ± 0.00 
0.5 5.92 ± 2.37 3.81 ± 1.47 1.35 ± 1.33 0.38 ± 0.15 1.00 ± 0.00 
0.4 5.99 ± 2.37 3.81 ± 1.44 1.37 ± 1.31 0.38 ± 0.14 1.00 ± 0.00 

0.3 5.94 ± 2.34 3.80 ± 1.47 1.34 ± 1.31 0.38 ± 0.15 1.00 ± 0.00 
0.2 5.97 ± 2.35 3.81 ± 1.44 1.37 ± 1.29 0.38 ± 0.14 1.00 ± 0.00 

Variance Explained = 5.5% 
None 9.28 ± 2.44 6.66 ± 1.43 1.13 ± 1.23 0.67 ± 0.14 1.00 ± 0.00 

0.9 9.33 ± 2.41 6.69 ± 1.43 1.14 ± 1.21 0.67 ± 0.14 1.00 ± 0.00 
0.8 9.31 ± 2.43 6.68 ± 1.42 1.11 ± 1.20 0.67 ± 0.14 1.00 ± 0.00 
0.7 9.34 ± 2.43 6.69 ± 1.45 1.16 ± 1.21 0.67 ± 0.14 1.00 ± 0.00 
0.6 9.35 ± 2.44 6.70 ± 1.42 1.12 ± 1.20 0.67 ± 0.14 1.00 ± 0.00 
0.5 9.32 ± 2.46 6.68 ± 1.43 1.13 ± 1.23 0.67 ± 0.14 1.00 ± 0.00 
0.4 9.34 ± 2.38 6.69 ± 1.41 1.14 ± 1.22 0.67 ± 0.14 1.00 ± 0.00 
0.3 9.35 ± 2.41 6.70 ± 1.42 1.15 ± 1.24 0.67 ± 0.14 1.00 ± 0.00 
0.2 9.30 ± 2.43 6.68 ± 1.43 1.13 ± 1.20 0.67 ± 0.14 1.00 ± 0.00 
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7.4.2. P-value Pruning  

 

The results for P-value pruning using repeated CV for the tuning parameter selection 

are shown in Table 7.11 and Table 7.12. Like the results for LD pruning, the results 

show that a large number of false positives were selected for P-value pruning. 

However the number of false positives selected was considerably greater for P-value 

pruning compared to LD pruning, leading to a lower specificity rate. The increase in the 

mean number of SNPs selected in a model leads to an increase in the sensitivity rate. 

As CV is predominantly used for model prediction, it is unsurprising that a large 

number of SNPs is selected. Pruning by P-value will produce a dataset of the most 

significant SNPs without regard of LD and therefore would over-select models to a 

greater extent. Pruning by LD would at least remove a number of SNPs in LD with 

causal SNP which P-value pruning would not.  
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Table 7.11 Mean and standard deviation results for P-value pruning using repeated Cross-validation for tuning parameter selection for differing 

sample sizes with the percentage of variance explained = 2.75% 

Pruning 
threshold 

No. of SNPs after 
pruning 

No. of SNPs selected 
No. of true 

positive SNPs 
No. of false positive 

SNPS 
Sensitivity Specificity 

N = 250 
None 20000.00 ± 0.00 34.15 ± 33.93 2.95 ± 2.06 30.31 ± 32.01 0.29 ± 0.21 1.00 ± 0.00 

0.2 4240.82 ± 215.10 56.14 ± 82.12 3.18 ± 2.16 51.93 ± 80.37 0.32 ± 0.22 0.99 ± 0.02 
0.18 3836.78 ± 208.17 67.94 ± 95.92 3.26 ± 2.20 63.56 ± 93.98 0.33 ± 0.22 0.98 ± 0.02 
0.16 3430.12 ± 199.71 94.12 ± 119.39 3.44 ± 2.25 89.41 ± 117.17 0.34 ± 0.23 0.97 ± 0.03 
0.14 3022.39 ± 190.14 152.41 ± 141.17 3.91 ± 2.27 146.59 ± 138.73 0.39 ± 0.23 0.95 ± 0.05 
0.12 2612.69 ± 179.20 234.39 ± 126.73 4.44 ± 2.06 227.40 ± 124.94 0.44 ± 0.21 0.91 ± 0.05 
0.10 2200.74 ± 164.71 298.39 ± 53.58 4.84 ± 1.66 291.02 ± 52.99 0.48 ± 0.17 0.87 ± 0.03 
0.08 1783.59 ± 149.36 299.57 ± 13.83 4.70 ± 1.58 292.50 ± 13.83 0.47 ± 0.16 0.83 ± 0.01 

0.06 1362.86 ± 129.83 277.82 ± 16.47 4.38 ± 1.59 271.38 ± 16.25 0.44 ± 0.16 0.80 ± 0.02 

0.04 934.28 ± 104.45 233.61 ± 18.84 4.48 ± 1.62 227.39 ± 18.69 0.45 ± 0.16 0.75 ± 0.02 
0.02 494.68 ± 70.89 168.62 ± 14.87 4.81 ± 1.61 161.95 ± 14.79 0.48 ± 0.16 0.66 ± 0.03 

N = 500 
None 20000.00 ± 0.00 78.18 ± 32.15 8.32 ± 1.36 66.78 ± 31.25 0.83 ± 0.14 1.00 ± 0.00 

0.2 4465.04 ± 217.16 135.49 ± 149.13 8.29 ± 1.35 123.95 ± 148.96 0.83 ± 0.13 0.97 ± 0.03 
0.18 4055.86 ± 210.67 183.34 ± 184.65 8.18 ± 1.40 171.79 ± 184.67 0.82 ± 0.14 0.96 ± 0.05 
0.16 3644.21 ± 202.70 249.90 ± 202.72 8.07 ± 1.45 238.39 ± 202.95 0.81 ± 0.15 0.93 ± 0.06 

0.14 3229.57 ± 193.26 328.62 ± 187.21 7.88 ± 1.49 317.26 ± 187.60 0.79 ± 0.15 0.90 ± 0.06 
0.12 2809.99 ± 181.02 387.15 ± 135.91 7.72 ± 1.48 375.99 ± 136.19 0.77 ± 0.15 0.87 ± 0.05 
0.10 2385.39 ± 167.49 401.91 ± 79.41 7.67 ± 1.45 390.80 ± 79.71 0.77 ± 0.14 0.83 ± 0.04 
0.08 1954.96 ± 150.16 386.80 ± 31.81 7.76 ± 1.38 375.54 ± 32.14 0.78 ± 0.14 0.81 ± 0.02 
0.06 1516.37 ± 131.59 351.01 ± 18.58 7.96 ± 1.32 339.42 ± 18.92 0.80 ± 0.13 0.77 ± 0.02 
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0.04 1065.22 ± 107.50 299.95 ± 17.66 8.16 ± 1.29 287.88 ± 17.89 0.82 ± 0.13 0.73 ± 0.02 
0.02 592.66 ± 75.57 221.39 ± 16.72 8.45 ± 1.20 208.63 ± 16.64 0.84 ± 0.12 0.64 ± 0.03 

N = 1,000 
None 20000.00 ± 0.00 91.83 ± 28.20 9.92 ± 0.33 76.94 ± 27.83 0.99 ± 0.03 1.00 ± 0.00 

0.2 4835.41 ± 221.45 98.46 ± 42.31 9.92 ± 0.33 83.53 ± 41.89 0.99 ± 0.03 0.98 ± 0.01 
0.18 4420.08 ± 216.65 101.49 ± 50.59 9.92 ± 0.33 86.54 ± 50.20 0.99 ± 0.03 0.98 ± 0.01 

0.16 3999.41 ± 208.94 110.50 ± 71.87 9.92 ± 0.33 95.54 ± 71.54 0.99 ± 0.03 0.98 ± 0.02 
0.14 3571.95 ± 200.65 130.96 ± 106.70 9.93 ± 0.32 115.92 ± 106.29 0.99 ± 0.03 0.97 ± 0.03 
0.12 3137.60 ± 191.64 192.92 ± 167.98 9.91 ± 0.35 177.80 ± 167.63 0.99 ± 0.04 0.94 ± 0.05 
0.10 2694.61 ± 181.44 304.33 ± 192.06 9.88 ± 0.38 288.98 ± 191.63 0.99 ± 0.04 0.89 ± 0.07 
0.08 2242.02 ± 165.49 410.76 ± 129.95 9.85 ± 0.41 395.11 ± 129.77 0.98 ± 0.04 0.82 ± 0.06 
0.06 1774.57 ± 146.65 424.13 ± 43.71 9.84 ± 0.44 408.40 ± 43.54 0.98 ± 0.04 0.77 ± 0.03 
0.04 1282.82 ± 122.97 372.09 ± 21.22 9.84 ± 0.41 356.16 ± 21.08 0.98 ± 0.04 0.72 ± 0.02 
0.02 755.97 ± 88.98 278.73 ± 19.55 9.86 ± 0.39 262.39 ± 19.36 0.99 ± 0.04 0.65 ± 0.03 
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Table 7.12 Mean and standard deviation results for P-value pruning using repeated Cross-validation for tuning parameter selection for differing 
percentage of variance explained with N = 500 

Pruning 
threshold 

No. of SNPs selected 
No. of true 

positive SNPs 
No. of false positive SNPs Sensitivity Specificity 

Variance Explained = 1% 

None 19.57 ± 25.72 1.45 ± 1.52 17.83 ± 24.42 0.15 ± 0.15 1.00 ± 0.00 
0.2 69.68 ± 157.51 1.70 ± 1.70 67.56 ± 156.27 0.17 ± 0.17 0.98 ± 0.04 

0.18 117.51 ± 203.78 1.92 ± 1.78 115.05 ± 202.32 0.19 ± 0.18 0.97 ± 0.05 
0.16 214.21 ± 237.91 2.44 ± 1.89 211.03 ± 236.21 0.24 ± 0.19 0.94 ± 0.07 
0.14 315.20 ± 219.49 2.95 ± 1.89 311.19 ± 217.94 0.29 ± 0.19 0.90 ± 0.07 
0.12 386.41 ± 149.64 3.53 ± 1.71 381.72 ± 148.65 0.35 ± 0.17 0.85 ± 0.06 
0.1 405.27 ± 69.37 3.86 ± 1.55 400.22 ± 68.92 0.39 ± 0.16 0.81 ± 0.03 

0.08 382.49 ± 22.03 3.98 ± 1.57 377.24 ± 21.97 0.40 ± 0.16 0.78 ± 0.02 
0.06 341.84 ± 17.51 4.05 ± 1.56 336.46 ± 17.51 0.41 ± 0.16 0.74 ± 0.02 

0.04 286.67 ± 17.19 4.16 ± 1.52 281.18 ± 17.13 0.42 ± 0.15 0.68 ± 0.03 
0.02 200.89 ± 17.13 4.12 ± 1.46 195.40 ± 16.86 0.41 ± 0.15 0.57 ± 0.04 

Variance Explained = 2.75% 
None 78.18 ± 32.15 8.32 ± 1.36 66.78 ± 31.25 0.83 ± 0.14 1.00 ± 0.00 

0.2 135.49 ± 149.13 8.29 ± 1.35 123.95 ± 148.96 0.83 ± 0.13 0.97 ± 0.03 
0.18 183.34 ± 184.65 8.18 ± 1.40 171.79 ± 184.67 0.82 ± 0.14 0.96 ± 0.05 
0.16 249.90 ± 202.72 8.07 ± 1.45 238.39 ± 202.95 0.81 ± 0.15 0.93 ± 0.06 
0.14 328.62 ± 187.21 7.88 ± 1.49 317.26 ± 187.60 0.79 ± 0.15 0.90 ± 0.06 

0.12 387.15 ± 135.91 7.72 ± 1.48 375.99 ± 136.19 0.77 ± 0.15 0.87 ± 0.05 
0.1 401.91 ± 79.41 7.67 ± 1.45 390.80 ± 79.71 0.77 ± 0.14 0.83 ± 0.04 

0.08 386.80 ± 31.81 7.76 ± 1.38 375.54 ± 32.14 0.78 ± 0.14 0.81 ± 0.02 
0.06 351.01 ± 18.58 7.96 ± 1.32 339.42 ± 18.92 0.80 ± 0.13 0.77 ± 0.02 
0.04 299.95 ± 17.66 8.16 ± 1.29 287.88 ± 17.89 0.82 ± 0.13 0.73 ± 0.02 
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0.02 221.39 ± 16.72 8.45 ± 1.20 208.63 ± 16.64 0.84 ± 0.12 0.64 ± 0.03 
Variance Explained = 5.5% 

None 96.51 ± 29.61 9.81 ± 0.48 81.70 ± 29.47 0.98 ± 0.05 1.00 ± 0.00 
0.2 131.68 ± 99.80 9.80 ± 0.49 116.80 ± 99.78 0.98 ± 0.05 0.97 ± 0.02 

0.18 156.45 ± 127.77 9.78 ± 0.53 141.52 ± 127.82 0.98 ± 0.05 0.97 ± 0.03 
0.16 197.22 ± 153.21 9.72 ± 0.63 182.07 ± 153.27 0.97 ± 0.06 0.95 ± 0.04 

0.14 252.31 ± 164.58 9.62 ± 0.74 237.28 ± 164.79 0.96 ± 0.07 0.93 ± 0.05 
0.12 314.41 ± 150.63 9.47 ± 0.88 299.57 ± 150.95 0.95 ± 0.09 0.90 ± 0.05 
0.1 351.50 ± 112.48 9.38 ± 0.91 336.81 ± 112.93 0.94 ± 0.09 0.87 ± 0.05 

0.08 362.63 ± 62.97 9.36 ± 0.89 348.01 ± 63.40 0.94 ± 0.09 0.83 ± 0.03 
0.06 344.43 ± 26.40 9.42 ± 0.83 329.65 ± 26.84 0.94 ± 0.08 0.80 ± 0.02 
0.04 299.99 ± 18.30 9.47 ± 0.77 284.84 ± 18.58 0.95 ± 0.08 0.75 ± 0.02 
0.02 226.60 ± 16.91 9.60 ± 0.67 211.03 ± 16.91 0.96 ± 0.07 0.68 ± 0.03 
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Table 7.13 and Table 7.14 show results for variable selection by BIC using P-value 

pruning. Although it is difficult to compare results with the LD pruning method, as the 

pruned subset contained a different number and combination of SNPs, the results 

showed a similar pattern to the LD pruning results. The BIC method produced similar 

sized models with higher specificity rate than the repeated CV method. The mean 

number of SNPs selected and sensitivity rate again increased slightly in models that 

were pruned with a low pruning threshold but decreases as the dataset becomes 

heavily pruned. The two high powered scenarios (N = 1,000 and %Var = 5.5%) show the 

selection of true positives to be consistent regardless of the P-value pruning threshold 

whilst the number of false positives decreased, suggesting that this tuning parameter 

method may work well with a large sample size when very heavy pruning is required.  

 

Results for the permutation method (Table 7.15 and Table 7.16) also show the same 

patterns to the LD pruning method. In fact the sensitivity and specificity rates as well 

as the mean numbers of SNPs selected were nearly the same as the LD pruning 

method (Table 7.9 and Table 7.10) and did not vary much with across different pruning 

threshold. 
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Table 7.13 Mean and standard deviation results for P-value pruning using BIC for tuning parameter selection for differing sample sizes with the 

percentage of variance explained = 2.75% 

Pruning 
threshold 

No. of SNPs after pruning No. of SNPs selected 
No. of true 

positive SNPs 
No. of false positive 

SNPS 
Sensitivity Specificity 

N = 250 
None 20000.00 ± 0.00 8.81 ± 6.73 1.82 ± 1.20 6.63 ± 6.19 0.18 ± 0.12 1.00 ± 0.00 

0.2 4240.82 ± 215.10 9.49 ± 7.31 1.88 ± 1.23 7.20 ± 6.70 0.19 ± 0.12 1.00 ± 0.00 
0.18 3836.78 ± 208.17 9.31 ± 7.20 1.88 ± 1.23 7.04 ± 6.61 0.19 ± 0.12 1.00 ± 0.00 
0.16 3430.12 ± 199.71 9.41 ± 7.31 1.89 ± 1.24 7.17 ± 6.70 0.19 ± 0.12 1.00 ± 0.00 
0.14 3022.39 ± 190.14 9.69 ± 7.29 1.91 ± 1.24 7.39 ± 6.75 0.19 ± 0.12 1.00 ± 0.00 
0.12 2612.69 ± 179.20 10.06 ± 7.66 1.95 ± 1.27 7.72 ± 6.99 0.19 ± 0.13 1.00 ± 0.00 
0.10 2200.74 ± 164.71 9.91 ± 7.61 1.93 ± 1.24 7.59 ± 6.98 0.19 ± 0.12 1.00 ± 0.00 
0.08 1783.59 ± 149.36 10.25 ± 7.94 1.97 ± 1.25 7.86 ± 7.31 0.20 ± 0.12 1.00 ± 0.00 

0.06 1362.86 ± 129.83 10.52 ± 8.01 1.98 ± 1.26 8.13 ± 7.38 0.20 ± 0.13 0.99 ± 0.01 

0.04 934.28 ± 104.45 11.72 ± 8.99 2.07 ± 1.28 9.21 ± 8.36 0.21 ± 0.13 0.99 ± 0.01 
0.02 494.68 ± 70.89 12.88 ± 12.03 2.00 ± 1.43 10.46 ± 11.04 0.20 ± 0.14 0.98 ± 0.02 

N = 500 
None 20000.00 ± 0.00 6.77 ± 6.09 3.48 ± 2.18 2.59 ± 4.04 0.35 ± 0.22 1.00 ± 0.00 

0.2 4465.04 ± 217.16 7.33 ± 6.09 3.66 ± 2.10 2.89 ± 4.12 0.37 ± 0.21 1.00 ± 0.00 
0.18 4055.86 ± 210.67 7.26 ± 5.96 3.66 ± 2.11 2.83 ± 3.91 0.37 ± 0.21 1.00 ± 0.00 
0.16 3644.21 ± 202.70 7.31 ± 6.14 3.68 ± 2.06 2.88 ± 4.27 0.37 ± 0.21 1.00 ± 0.00 

0.14 3229.57 ± 193.26 7.37 ± 6.37 3.69 ± 2.12 2.91 ± 4.39 0.37 ± 0.21 1.00 ± 0.00 
0.12 2809.99 ± 181.02 7.06 ± 5.93 3.60 ± 2.07 2.71 ± 4.00 0.36 ± 0.21 1.00 ± 0.00 
0.10 2385.39 ± 167.49 6.79 ± 5.88 3.50 ± 2.10 2.55 ± 3.84 0.35 ± 0.21 1.00 ± 0.00 
0.08 1954.96 ± 150.16 6.23 ± 5.72 3.32 ± 2.09 2.27 ± 3.77 0.33 ± 0.21 1.00 ± 0.00 
0.06 1516.37 ± 131.59 4.97 ± 4.72 2.91 ± 2.03 1.54 ± 2.85 0.29 ± 0.20 1.00 ± 0.00 
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0.04 1065.22 ± 107.50 3.51 ± 3.41 2.38 ± 2.00 0.80 ± 1.45 0.24 ± 0.20 1.00 ± 0.00 
0.02 592.66 ± 75.57 2.80 ± 3.13 2.06 ± 2.06 0.55 ± 1.14 0.21 ± 0.21 1.00 ± 0.00 

N = 1,000 
None 20000.00 ± 0.00 15.94 ± 4.59 9.29 ± 1.26 4.19 ± 3.21 0.93 ± 0.13 1.00 ± 0.00 

0.2 4835.41 ± 221.45 15.91 ± 4.51 9.29 ± 1.26 4.19 ± 3.14 0.93 ± 0.13 1.00 ± 0.00 
0.18 4420.08 ± 216.65 15.90 ± 4.49 9.28 ± 1.26 4.17 ± 3.13 0.93 ± 0.13 1.00 ± 0.00 

0.16 3999.41 ± 208.94 15.87 ± 4.52 9.28 ± 1.26 4.16 ± 3.13 0.93 ± 0.13 1.00 ± 0.00 
0.14 3571.95 ± 200.65 15.82 ± 4.49 9.28 ± 1.27 4.14 ± 3.12 0.93 ± 0.13 1.00 ± 0.00 
0.12 3137.60 ± 191.64 15.78 ± 4.44 9.28 ± 1.26 4.09 ± 3.07 0.93 ± 0.13 1.00 ± 0.00 
0.10 2694.61 ± 181.44 15.77 ± 4.47 9.28 ± 1.27 4.08 ± 3.08 0.93 ± 0.13 1.00 ± 0.00 
0.08 2242.02 ± 165.49 15.74 ± 4.44 9.28 ± 1.27 4.07 ± 3.07 0.93 ± 0.13 1.00 ± 0.00 
0.06 1774.57 ± 146.65 15.74 ± 4.44 9.28 ± 1.27 4.07 ± 3.07 0.93 ± 0.13 1.00 ± 0.00 
0.04 1282.82 ± 122.97 15.73 ± 4.43 9.28 ± 1.26 4.07 ± 3.07 0.93 ± 0.13 1.00 ± 0.00 
0.02 755.97 ± 88.98 15.58 ± 4.37 9.25 ± 1.32 3.95 ± 3.00 0.92 ± 0.13 0.99 ± 0.00 
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Table 7.14 Mean and standard deviation results for P-value pruning using BIC for 

tuning parameter selection for differing percentage of variance explained with N = 500 

Pruning 
threshold 

No. of SNPs 
selected 

No. of true 
positive 

SNPs 

No. of false 
positive 

SNPs 
Sensitivity Specificity 

Variance Explained = 1% 
None 4.12 ± 3.79 0.73 ± 0.80 3.28 ± 3.50 0.07 ± 0.08 1.00 ± 0.00 

0.2 5.41 ± 4.47 0.85 ± 0.85 4.43 ± 4.23 0.08 ± 0.09 1.00 ± 0.00 
0.18 5.56 ± 4.68 0.88 ± 0.87 4.54 ± 4.42 0.09 ± 0.09 1.00 ± 0.00 
0.16 5.55 ± 4.67 0.87 ± 0.87 4.55 ± 4.40 0.09 ± 0.09 1.00 ± 0.00 
0.14 5.56 ± 4.84 0.87 ± 0.84 4.57 ± 4.60 0.09 ± 0.08 1.00 ± 0.00 
0.12 5.64 ± 4.89 0.88 ± 0.85 4.63 ± 4.62 0.09 ± 0.09 1.00 ± 0.00 

0.1 5.66 ± 5.15 0.87 ± 0.89 4.66 ± 4.81 0.09 ± 0.09 1.00 ± 0.00 
0.08 4.63 ± 4.80 0.74 ± 0.80 3.77 ± 4.50 0.07 ± 0.08 1.00 ± 0.00 
0.06 2.98 ± 4.08 0.56 ± 0.72 2.33 ± 3.79 0.06 ± 0.07 1.00 ± 0.00 

0.04 1.21 ± 1.28 0.32 ± 0.53 0.87 ± 1.13 0.03 ± 0.05 1.00 ± 0.00 
0.02 0.53 ± 0.64 0.19 ± 0.43 0.34 ± 0.53 0.02 ± 0.04 1.00 ± 0.00 

Variance Explained = 2.75% 
None 6.77 ± 6.09 3.48 ± 2.18 2.59 ± 4.04 0.35 ± 0.22 1.00 ± 0.00 

0.2 7.33 ± 6.09 3.66 ± 2.10 2.89 ± 4.12 0.37 ± 0.21 1.00 ± 0.00 
0.18 7.26 ± 5.96 3.66 ± 2.11 2.83 ± 3.91 0.37 ± 0.21 1.00 ± 0.00 
0.16 7.31 ± 6.14 3.68 ± 2.06 2.88 ± 4.27 0.37 ± 0.21 1.00 ± 0.00 
0.14 7.37 ± 6.37 3.69 ± 2.12 2.91 ± 4.39 0.37 ± 0.21 1.00 ± 0.00 
0.12 7.06 ± 5.93 3.60 ± 2.07 2.71 ± 4.00 0.36 ± 0.21 1.00 ± 0.00 
0.1 6.79 ± 5.88 3.50 ± 2.10 2.55 ± 3.84 0.35 ± 0.21 1.00 ± 0.00 

0.08 6.23 ± 5.72 3.32 ± 2.09 2.27 ± 3.77 0.33 ± 0.21 1.00 ± 0.00 
0.06 4.97 ± 4.72 2.91 ± 2.03 1.54 ± 2.85 0.29 ± 0.20 1.00 ± 0.00 
0.04 3.51 ± 3.41 2.38 ± 2.00 0.80 ± 1.45 0.24 ± 0.20 1.00 ± 0.00 
0.02 2.80 ± 3.13 2.06 ± 2.06 0.55 ± 1.14 0.21 ± 0.21 1.00 ± 0.00 

Variance Explained = 5.5% 
None 18.37 ± 9.45 7.97 ± 2.37 7.88 ± 6.91 0.80 ± 0.24 1.00 ± 0.00 

0.2 19.03 ± 9.81 8.04 ± 2.34 8.37 ± 7.38 0.80 ± 0.23 1.00 ± 0.00 
0.18 19.03 ± 9.79 8.05 ± 2.32 8.33 ± 7.22 0.81 ± 0.23 1.00 ± 0.00 
0.16 18.83 ± 9.60 8.03 ± 2.30 8.18 ± 7.11 0.80 ± 0.23 1.00 ± 0.00 
0.14 18.80 ± 9.71 7.99 ± 2.33 8.16 ± 7.17 0.80 ± 0.23 1.00 ± 0.00 
0.12 18.36 ± 9.45 7.97 ± 2.35 7.81 ± 6.93 0.80 ± 0.24 1.00 ± 0.00 
0.1 17.87 ± 9.28 7.91 ± 2.39 7.44 ± 6.75 0.79 ± 0.24 1.00 ± 0.00 

0.08 16.50 ± 8.68 7.76 ± 2.45 6.37 ± 5.98 0.78 ± 0.25 1.00 ± 0.00 
0.06 15.17 ± 8.27 7.58 ± 2.56 5.40 ± 5.50 0.76 ± 0.26 1.00 ± 0.00 
0.04 13.01 ± 6.90 7.30 ± 2.73 3.90 ± 3.93 0.73 ± 0.27 1.00 ± 0.00 
0.02 12.01 ± 6.39 7.16 ± 2.84 3.31 ± 3.35 0.72 ± 0.28 0.99 ± 0.01 
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Table 7.15 Mean and standard deviation results for P-value pruning using the permutation method for tuning parameter selection for differing 

sample sizes with the percentage of variance explained = 2.75% 

Pruning threshold 
No. of SNPs after 

pruning 
No. of SNPs 

selected 
No. of true 

positive SNPs 
No. of false 

positive SNPS 
Sensitivity Specificity 

N = 250 
None 20000.00 ± 0.00 2.13 ± 1.50 0.87 ± 0.86 1.13 ± 1.16 0.09 ± 0.09 1.00 ± 0.00 

0.2 4240.82 ± 215.10 2.22 ± 1.54 0.91 ± 0.88 1.16 ± 1.20 0.09 ± 0.09 1.00 ± 0.00 
0.18 3836.78 ± 208.17 2.18 ± 1.53 0.91 ± 0.87 1.14 ± 1.19 0.09 ± 0.09 1.00 ± 0.00 
0.16 3430.12 ± 199.71 2.14 ± 1.49 0.89 ± 0.86 1.11 ± 1.13 0.09 ± 0.09 1.00 ± 0.00 
0.14 3022.39 ± 190.14 2.20 ± 1.56 0.89 ± 0.87 1.16 ± 1.23 0.09 ± 0.09 1.00 ± 0.00 
0.12 2612.69 ± 179.20 2.15 ± 1.51 0.89 ± 0.88 1.13 ± 1.18 0.09 ± 0.09 1.00 ± 0.00 
0.1 2200.74 ± 164.71 2.11 ± 1.54 0.88 ± 0.88 1.09 ± 1.16 0.09 ± 0.09 1.00 ± 0.00 

0.08 1783.59 ± 149.36 2.16 ± 1.53 0.89 ± 0.88 1.13 ± 1.18 0.09 ± 0.09 1.00 ± 0.00 

0.06 1362.86 ± 129.83 2.17 ± 1.53 0.89 ± 0.87 1.14 ± 1.18 0.09 ± 0.09 1.00 ± 0.00 

0.04 934.28 ± 104.45 2.20 ± 1.55 0.90 ± 0.87 1.14 ± 1.20 0.09 ± 0.09 1.00 ± 0.00 
0.02 494.68 ± 70.89 2.17 ± 1.54 0.89 ± 0.88 1.14 ± 1.16 0.09 ± 0.09 1.00 ± 0.00 

N = 500 
None 20000.00 ± 0.00 5.94 ± 2.31 3.80 ± 1.43 1.37 ± 1.32 0.38 ± 0.14 1.00 ± 0.00 

0.2 4465.04 ± 217.16 5.91 ± 2.32 3.79 ± 1.44 1.35 ± 1.29 0.38 ± 0.14 1.00 ± 0.00 
0.18 4055.86 ± 210.67 5.92 ± 2.41 3.79 ± 1.46 1.35 ± 1.33 0.38 ± 0.15 1.00 ± 0.00 
0.16 3644.21 ± 202.70 5.95 ± 2.36 3.81 ± 1.45 1.34 ± 1.34 0.38 ± 0.14 1.00 ± 0.00 

0.14 3229.57 ± 193.26 5.94 ± 2.32 3.80 ± 1.44 1.35 ± 1.30 0.38 ± 0.14 1.00 ± 0.00 
0.12 2809.99 ± 181.02 5.96 ± 2.32 3.82 ± 1.43 1.37 ± 1.30 0.38 ± 0.14 1.00 ± 0.00 
0.1 2385.39 ± 167.49 5.95 ± 2.35 3.80 ± 1.45 1.33 ± 1.28 0.38 ± 0.14 1.00 ± 0.00 

0.08 1954.96 ± 150.16 5.87 ± 2.27 3.77 ± 1.43 1.33 ± 1.27 0.38 ± 0.14 1.00 ± 0.00 
0.06 1516.37 ± 131.59 5.92 ± 2.35 3.81 ± 1.47 1.33 ± 1.28 0.38 ± 0.15 1.00 ± 0.00 
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0.04 1065.22 ± 107.50 5.95 ± 2.35 3.80 ± 1.45 1.36 ± 1.35 0.38 ± 0.14 1.00 ± 0.00 
0.02 592.66 ± 75.57 5.92 ± 2.33 3.80 ± 1.44 1.36 ± 1.32 0.38 ± 0.14 1.00 ± 0.00 

N = 1,000 
None 20000.00 ± 0.00 12.25 ± 2.25 8.81 ± 1.06 1.29 ± 1.24 0.88 ± 0.11 1.00 ± 0.00 

0.2 4835.41 ± 221.45 12.32 ± 2.33 8.82 ± 1.05 1.31 ± 1.25 0.88 ± 0.10 1.00 ± 0.00 
0.18 4420.08 ± 216.65 12.28 ± 2.41 8.81 ± 1.06 1.28 ± 1.24 0.88 ± 0.11 1.00 ± 0.00 

0.16 3999.41 ± 208.94 12.25 ± 2.32 8.83 ± 1.04 1.29 ± 1.26 0.88 ± 0.10 1.00 ± 0.00 
0.14 3571.95 ± 200.65 12.24 ± 2.29 8.81 ± 1.05 1.27 ± 1.24 0.88 ± 0.11 1.00 ± 0.00 
0.12 3137.60 ± 191.64 12.22 ± 2.31 8.80 ± 1.06 1.29 ± 1.26 0.88 ± 0.11 1.00 ± 0.00 
0.1 2694.61 ± 181.44 12.25 ± 2.28 8.80 ± 1.05 1.28 ± 1.24 0.88 ± 0.11 1.00 ± 0.00 

0.08 2242.02 ± 165.49 12.26 ± 2.28 8.82 ± 1.05 1.30 ± 1.24 0.88 ± 0.10 1.00 ± 0.00 
0.06 1774.57 ± 146.65 12.25 ± 2.30 8.79 ± 1.08 1.28 ± 1.23 0.88 ± 0.11 1.00 ± 0.00 
0.04 1282.82 ± 122.97 12.24 ± 2.31 8.79 ± 1.04 1.29 ± 1.26 0.88 ± 0.10 1.00 ± 0.00 
0.02 755.97 ± 88.98 12.27 ± 2.27 8.81 ± 1.05 1.29 ± 1.24 0.88 ± 0.10 1.00 ± 0.00 
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Table 7.16 Mean and standard deviation results for P-value pruning using the 

permutation method for tuning parameter selection for differing percentage of 

variance explained with N = 500 

Pruning 
threshold 

No. of SNPs 
selected 

No. of true 
positive 

SNPs 

No. of false 
positive 

SNPs 
Sensitivity Specificity 

Variance Explained = 1% 
None 1.53 ± 1.38 0.43 ± 0.63 1.05 ± 1.15 0.04 ± 0.06 1.00 ± 0.00 

0.2 1.54 ± 1.36 0.43 ± 0.63 1.05 ± 1.16 0.04 ± 0.06 1.00 ± 0.00 
0.18 1.55 ± 1.38 0.44 ± 0.64 1.05 ± 1.14 0.04 ± 0.06 1.00 ± 0.00 
0.16 1.55 ± 1.37 0.44 ± 0.64 1.05 ± 1.16 0.04 ± 0.06 1.00 ± 0.00 
0.14 1.55 ± 1.35 0.43 ± 0.63 1.06 ± 1.12 0.04 ± 0.06 1.00 ± 0.00 

0.12 1.54 ± 1.38 0.43 ± 0.63 1.05 ± 1.17 0.04 ± 0.06 1.00 ± 0.00 
0.1 1.58 ± 1.35 0.45 ± 0.64 1.06 ± 1.12 0.04 ± 0.06 1.00 ± 0.00 

0.08 1.55 ± 1.35 0.44 ± 0.64 1.05 ± 1.13 0.04 ± 0.06 1.00 ± 0.00 
0.06 1.56 ± 1.41 0.43 ± 0.63 1.06 ± 1.16 0.04 ± 0.06 1.00 ± 0.00 
0.04 1.53 ± 1.34 0.43 ± 0.64 1.05 ± 1.13 0.04 ± 0.06 1.00 ± 0.00 
0.02 1.55 ± 1.40 0.45 ± 0.64 1.04 ± 1.15 0.04 ± 0.06 1.00 ± 0.00 

Variance Explained = 2.75% 
None 5.94 ± 2.31 3.80 ± 1.43 1.37 ± 1.32 0.38 ± 0.14 1.00 ± 0.00 

0.2 5.91 ± 2.32 3.79 ± 1.44 1.35 ± 1.29 0.38 ± 0.14 1.00 ± 0.00 
0.18 5.92 ± 2.41 3.79 ± 1.46 1.35 ± 1.33 0.38 ± 0.15 1.00 ± 0.00 
0.16 5.95 ± 2.36 3.81 ± 1.45 1.34 ± 1.34 0.38 ± 0.14 1.00 ± 0.00 
0.14 5.94 ± 2.32 3.80 ± 1.44 1.35 ± 1.30 0.38 ± 0.14 1.00 ± 0.00 

0.12 5.96 ± 2.32 3.82 ± 1.43 1.37 ± 1.30 0.38 ± 0.14 1.00 ± 0.00 
0.1 5.95 ± 2.35 3.80 ± 1.45 1.33 ± 1.28 0.38 ± 0.14 1.00 ± 0.00 

0.08 5.87 ± 2.27 3.77 ± 1.43 1.33 ± 1.27 0.38 ± 0.14 1.00 ± 0.00 
0.06 5.92 ± 2.35 3.81 ± 1.47 1.33 ± 1.28 0.38 ± 0.15 1.00 ± 0.00 
0.04 5.95 ± 2.35 3.80 ± 1.45 1.36 ± 1.35 0.38 ± 0.14 1.00 ± 0.00 
0.02 5.92 ± 2.33 3.80 ± 1.44 1.36 ± 1.32 0.38 ± 0.14 1.00 ± 0.00 

Variance Explained = 5.5% 
None 9.28 ± 2.44 6.66 ± 1.43 1.13 ± 1.23 0.67 ± 0.14 1.00 ± 0.00 

0.2 9.34 ± 2.43 6.68 ± 1.43 1.14 ± 1.22 0.67 ± 0.14 1.00 ± 0.00 
0.18 9.32 ± 2.43 6.66 ± 1.42 1.14 ± 1.22 0.67 ± 0.14 1.00 ± 0.00 
0.16 9.31 ± 2.36 6.69 ± 1.40 1.13 ± 1.20 0.67 ± 0.14 1.00 ± 0.00 
0.14 9.33 ± 2.40 6.69 ± 1.42 1.15 ± 1.20 0.67 ± 0.14 1.00 ± 0.00 
0.12 9.33 ± 2.41 6.70 ± 1.41 1.12 ± 1.20 0.67 ± 0.14 1.00 ± 0.00 

0.1 9.31 ± 2.47 6.66 ± 1.43 1.14 ± 1.21 0.67 ± 0.14 1.00 ± 0.00 
0.08 9.28 ± 2.39 6.67 ± 1.42 1.12 ± 1.18 0.67 ± 0.14 1.00 ± 0.00 
0.06 9.30 ± 2.42 6.68 ± 1.42 1.12 ± 1.22 0.67 ± 0.14 1.00 ± 0.00 
0.04 9.33 ± 2.43 6.68 ± 1.41 1.14 ± 1.21 0.67 ± 0.14 1.00 ± 0.00 
0.02 9.38 ± 2.36 6.72 ± 1.40 1.14 ± 1.22 0.67 ± 0.14 1.00 ± 0.00 
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7.4.3. LD clumping 

 

There were some differences between the results for LD pruning and for LD clumping 

when CV was used for tuning parameter selection. The mean number of SNPs selected 

along with the sensitivity rate decreased as the LD pruning threshold increased, but 

both the sensitivity and specificity rates increased as the LD clumping pruning 

threshold increased. The LD clumping method ensures that the most statistically 

significant variants remain, producing a dataset similar to that of pruning by P-value 

without the SNPs in LD of the most significant SNPs. Therefore the mean number of 

false positives selected was likely to lie between the values of LD pruning and P-value 

pruning. As seen with the other pruning methods, the increase in power of the causal 

SNPs leads to an increase to the model size and decrease in both sensitivity and 

specificity rates.  

 

The results for the BIC using LD clumping (Table 7.19 and Table 7.20) showed slightly 

better results compared to the LD pruning method (Table 7.7 and Table 7.8). This is 

expected as LD clumping will ensure the most statistically significant SNPs will remain 

in the dataset and not be pruned. This was also illustrated when the datasets were 

more heavily pruned, the mean model size and number of true positives selected 

decreased using LD pruning, but there is little change using LD clumping. However the 

mean number of false positive selected also increased when the dataset is more 

heavily pruned by LD clumping. As seen with all the pruning methods, using the BIC the 

datasets that were pruned selected a slightly higher number of SNPs than the same 

dataset that was not pruned. 

 

For all three tuning parameter selection methods the permutation selected the least 

number of SNPs in each scenario however the method was not affected by both SNP 

pruning method or the pruning threshold used. The results for LD clumping (Table 7.21 

and Table 7.22) were again the same as the results for both LD pruning (Table 7.9 and 

Table 7.10) and P-value pruning (Table 7.15 and Table 7.16). 
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Table 7.17 Mean and standard deviation results for LD clumping using repeated Cross-validation for tuning parameter selection for differing 

sample sizes with the percentage of variance explained = 2.75% 

Pruning 
threshold 

No. of SNPs after 
pruning 

No. of SNPs selected 
No. of true 

positive SNPs 
No. of false positive 

SNPS 
Sensitivity Specificity 

N = 250 
None 20000.00 ± 0.00 31.32 ± 31.43 2.99 ± 2.07 28.13 ± 30.15 0.29 ± 0.21 1.00 ± 0.00 

0.9 14973.03 ± 23.12 32.84 ± 31.93 3.04 ± 2.08 29.45 ± 30.41 0.30 ± 0.21 1.00 ± 0.00 
0.8 13219.21 ± 24.81 33.82 ± 32.14 3.08 ± 2.06 30.43 ± 30.64 0.31 ± 0.21 1.00 ± 0.00 
0.7 11538.73 ± 26.19 36.65 ± 34.40 3.18 ± 2.09 33.23 ± 32.98 0.32 ± 0.21 1.00 ± 0.00 
0.6 9944.99 ± 26.67 39.82 ± 36.36 3.31 ± 2.09 36.38 ± 35.00 0.33 ± 0.21 1.00 ± 0.00 
0.5 8454.05 ± 25.53 43.89 ± 39.58 3.39 ± 2.10 40.47 ± 38.30 0.34 ± 0.21 1.00 ± 0.00 

0.4 7062.36 ± 23.52 51.31 ± 44.33 3.57 ± 2.07 47.72 ± 43.14 0.36 ± 0.21 0.99 ± 0.01 
0.3 5729.32 ± 22.12 61.29 ± 51.08 3.75 ± 2.05 57.54 ± 50.00 0.38 ± 0.20 0.99 ± 0.01 
0.2 4388.77 ± 20.16 79.56 ± 59.70 3.96 ± 2.00 75.63 ± 58.77 0.40 ± 0.20 0.98 ± 0.01 

N = 500 
None 20000.00 ± 0.00 73.13 ± 30.37 8.31 ± 1.34 61.97 ± 30.03 0.83 ± 0.13 1.00 ± 0.00 

0.9 15019.94 ± 19.62 74.83 ± 30.96 8.34 ± 1.34 64.90 ± 30.27 0.83 ± 0.13 1.00 ± 0.00 
0.8 13272.66 ± 21.06 76.35 ± 31.15 8.37 ± 1.34 66.69 ± 30.50 0.84 ± 0.13 0.99 ± 0.00 
0.7 11582.75 ± 22.54 78.63 ± 32.85 8.38 ± 1.33 69.29 ± 32.25 0.84 ± 0.13 0.99 ± 0.00 

0.6 9978.88 ± 22.15 81.41 ± 33.27 8.44 ± 1.31 72.40 ± 32.78 0.84 ± 0.13 0.99 ± 0.00 
0.5 8480.43 ± 23.58 85.87 ± 34.90 8.49 ± 1.29 77.27 ± 34.53 0.85 ± 0.13 0.99 ± 0.00 
0.4 7086.22 ± 23.19 91.00 ± 37.42 8.41 ± 1.29 82.55 ± 37.10 0.84 ± 0.13 0.99 ± 0.01 
0.3 5755.76 ± 21.39 99.20 ± 40.40 8.32 ± 1.30 90.87 ± 40.10 0.83 ± 0.13 0.98 ± 0.01 
0.2 4416.63 ± 20.10 113.45 ± 47.34 8.18 ± 1.31 105.27 ± 47.11 0.82 ± 0.13 0.98 ± 0.01 
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N = 1,000 
None 20000.00 ± 0.00 87.69 ± 27.31 9.92 ± 0.33 73.62 ± 26.55 0.99 ± 0.03 1.00 ± 0.00 

0.9 15040.79 ± 16.01 87.69 ± 27.31 9.92 ± 0.33 74.94 ± 27.10 0.99 ± 0.03 1.00 ± 0.00 
0.8 13299.53 ± 17.21 88.19 ± 27.62 9.92 ± 0.33 76.08 ± 27.41 0.99 ± 0.03 0.99 ± 0.00 
0.7 11602.81 ± 19.44 89.94 ± 28.75 9.92 ± 0.33 78.47 ± 28.61 0.99 ± 0.03 0.99 ± 0.00 
0.6 9996.51 ± 20.79 91.89 ± 29.37 9.92 ± 0.33 81.05 ± 29.24 0.99 ± 0.03 0.99 ± 0.00 

0.5 8489.93 ± 20.96 94.69 ± 29.61 9.92 ± 0.34 84.60 ± 29.57 0.99 ± 0.03 0.99 ± 0.00 
0.4 7096.75 ± 21.11 99.27 ± 32.18 9.84 ± 0.42 89.37 ± 32.16 0.98 ± 0.04 0.99 ± 0.00 
0.3 5769.18 ± 20.28 105.69 ± 34.20 9.76 ± 0.51 95.92 ± 34.18 0.98 ± 0.05 0.98 ± 0.01 
0.2 4429.58 ± 20.11 116.76 ± 39.76 9.66 ± 0.58 107.10 ± 39.75 0.97 ± 0.06 0.98 ± 0.01 

 

 

  



 

216 
 

Table 7.18 Mean and standard deviation results for LD clumping using repeated Cross-

validation for tuning parameter selection for differing percentage of variance 

explained with N = 500 

Pruning 
threshold 

No. of SNPs 
selected 

No. of true 
positive 

SNPs 

No. of false 
positive SNPs 

Sensitivity Specificity 

Variance Explained = 1% 
1 18.67 ± 24.35 1.45 ± 1.50 17.10 ± 23.13 0.15 ± 0.16 1.00 ± 0.00 

0.9 19.89 ± 25.55 1.50 ± 1.55 18.27 ± 24.41 0.15 ± 0.16 1.00 ± 0.00 
0.8 20.91 ± 26.57 1.53 ± 1.57 19.28 ± 25.44 0.15 ± 0.16 1.00 ± 0.00 
0.7 23.11 ± 28.25 1.63 ± 1.62 21.40 ± 27.11 0.16 ± 0.16 1.00 ± 0.00 
0.6 25.54 ± 30.17 1.71 ± 1.65 23.78 ± 29.00 0.17 ± 0.17 1.00 ± 0.00 

0.5 29.30 ± 33.29 1.82 ± 1.69 27.48 ± 32.16 0.18 ± 0.17 1.00 ± 0.00 
0.4 33.67 ± 36.88 1.92 ± 1.70 31.76 ± 35.75 0.19 ± 0.17 1.00 ± 0.01 
0.3 41.20 ± 42.92 2.08 ± 1.74 39.12 ± 41.76 0.21 ± 0.17 0.99 ± 0.01 
0.2 55.12 ± 53.31 2.30 ± 1.77 52.82 ± 52.22 0.23 ± 0.18 0.99 ± 0.01 

Variance Explained = 2.75% 
1 73.13 ± 30.37 8.31 ± 1.34 61.97 ± 30.03 0.83 ± 0.13 1.00 ± 0.00 

0.9 74.83 ± 30.96 8.34 ± 1.34 64.90 ± 30.27 0.83 ± 0.13 1.00 ± 0.00 
0.8 76.35 ± 31.15 8.37 ± 1.34 66.69 ± 30.50 0.84 ± 0.13 0.99 ± 0.00 
0.7 78.63 ± 32.85 8.38 ± 1.33 69.29 ± 32.25 0.84 ± 0.13 0.99 ± 0.00 
0.6 81.41 ± 33.27 8.44 ± 1.31 72.40 ± 32.78 0.84 ± 0.13 0.99 ± 0.00 
0.5 85.87 ± 34.90 8.49 ± 1.29 77.27 ± 34.53 0.85 ± 0.13 0.99 ± 0.00 
0.4 91.00 ± 37.42 8.41 ± 1.29 82.55 ± 37.10 0.84 ± 0.13 0.99 ± 0.01 

0.3 99.20 ± 40.40 8.32 ± 1.30 90.87 ± 40.10 0.83 ± 0.13 0.98 ± 0.01 
0.2 113.45 ± 47.34 8.18 ± 1.31 105.27 ± 47.11 0.82 ± 0.13 0.98 ± 0.01 

Variance Explained = 5.5% 
1 89.98 ± 26.89 9.81 ± 0.48 76.73 ± 25.61 0.98 ± 0.05 0.99 ± 0.00 

0.9 90.90 ± 28.11 9.81 ± 0.48 78.53 ± 27.99 0.98 ± 0.05 0.99 ± 0.00 
0.8 91.96 ± 29.32 9.82 ± 0.48 80.09 ± 29.23 0.98 ± 0.05 0.99 ± 0.00 
0.7 93.09 ± 29.50 9.82 ± 0.48 81.80 ± 29.39 0.98 ± 0.05 0.99 ± 0.00 
0.6 95.55 ± 31.43 9.82 ± 0.48 84.86 ± 31.37 0.98 ± 0.05 0.99 ± 0.00 
0.5 98.59 ± 32.38 9.82 ± 0.47 88.59 ± 32.33 0.98 ± 0.05 0.99 ± 0.00 
0.4 102.46 ± 35.31 9.70 ± 0.59 92.69 ± 35.30 0.97 ± 0.06 0.99 ± 0.00 
0.3 108.81 ± 37.56 9.56 ± 0.68 99.23 ± 37.55 0.96 ± 0.07 0.98 ± 0.01 
0.2 120.73 ± 43.14 9.39 ± 0.79 111.24 ± 43.01 0.94 ± 0.08 0.97 ± 0.01 
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Table 7.19 Mean and standard deviation results for LD clumping using BIC for tuning parameter selection for differing sample sizes with the 

percentage of variance explained = 2.75% 

Pruning 
threshold 

No. of SNPs after pruning 
No. of SNPs 

selected 
No. of true 

positive SNPs 
No. of false 

positive SNPS 
Sensitivity Specificity 

N = 250 
None 20000.00 ± 0.00 9.69 ± 7.53 2.00 ± 1.28 7.54 ± 6.98 0.20 ± 0.13 1.00 ± 0.00 

0.9 14973.03 ± 23.12 9.77 ± 7.44 1.99 ± 1.29 7.63 ± 6.84 0.20 ± 0.13 1.00 ± 0.00 
0.8 13219.21 ± 24.81 9.90 ± 7.28 1.99 ± 1.28 7.77 ± 6.73 0.20 ± 0.13 1.00 ± 0.00 
0.7 11538.73 ± 26.19 10.04 ± 7.26 2.02 ± 1.29 7.92 ± 6.74 0.20 ± 0.13 1.00 ± 0.00 
0.6 9944.99 ± 26.67 9.60 ± 6.93 2.02 ± 1.27 7.55 ± 6.46 0.20 ± 0.13 1.00 ± 0.00 
0.5 8454.05 ± 25.53 9.67 ± 6.87 2.02 ± 1.28 7.64 ± 6.35 0.20 ± 0.13 1.00 ± 0.00 

0.4 7062.36 ± 23.52 9.82 ± 6.99 2.05 ± 1.29 7.77 ± 6.47 0.20 ± 0.13 1.00 ± 0.00 
0.3 5729.32 ± 22.12 9.61 ± 6.84 2.01 ± 1.27 7.60 ± 6.37 0.20 ± 0.13 1.00 ± 0.00 
0.2 4388.77 ± 20.16 9.56 ± 6.93 1.99 ± 1.29 7.57 ± 6.43 0.20 ± 0.13 1.00 ± 0.00 

N = 500 
None 20000.00 ± 0.00 7.90 ± 6.63 4.02 ± 2.25 3.27 ± 4.57 0.40 ± 0.23 1.00 ± 0.00 

0.9 15019.94 ± 19.62 8.02 ± 6.62 4.08 ± 2.26 3.55 ± 4.76 0.41 ± 0.23 1.00 ± 0.00 
0.8 13272.66 ± 21.06 8.30 ± 6.80 4.17 ± 2.26 3.84 ± 4.97 0.42 ± 0.23 1.00 ± 0.00 
0.7 11582.75 ± 22.54 8.36 ± 6.69 4.23 ± 2.27 3.91 ± 4.88 0.42 ± 0.23 1.00 ± 0.00 

0.6 9978.88 ± 22.15 8.79 ± 7.18 4.36 ± 2.31 4.29 ± 5.46 0.44 ± 0.23 1.00 ± 0.00 
0.5 8480.43 ± 23.58 8.79 ± 6.89 4.40 ± 2.29 4.36 ± 5.24 0.44 ± 0.23 1.00 ± 0.00 
0.4 7086.22 ± 23.19 8.85 ± 6.79 4.45 ± 2.27 4.40 ± 5.18 0.44 ± 0.23 1.00 ± 0.00 
0.3 5755.76 ± 21.39 8.93 ± 6.87 4.45 ± 2.29 4.49 ± 5.23 0.44 ± 0.23 1.00 ± 0.00 
0.2 4416.63 ± 20.10 9.03 ± 6.83 4.46 ± 2.27 4.58 ± 5.16 0.45 ± 0.23 1.00 ± 0.00 
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N = 1,000 

   
None 20000.00 ± 0.00 15.80 ± 4.21 9.36 ± 1.11 4.49 ± 3.23 0.94 ± 0.11 1.00 ± 0.00 

0.9 15040.79 ± 16.01 15.50 ± 4.18 9.37 ± 1.10 4.63 ± 3.27 0.94 ± 0.11 1.00 ± 0.00 
0.8 13299.53 ± 17.21 15.26 ± 4.16 9.39 ± 1.07 4.75 ± 3.34 0.94 ± 0.11 1.00 ± 0.00 
0.7 11602.81 ± 19.44 14.98 ± 4.08 9.40 ± 1.07 4.84 ± 3.38 0.94 ± 0.11 1.00 ± 0.00 
0.6 9996.51 ± 20.79 14.87 ± 4.02 9.41 ± 1.04 5.03 ± 3.43 0.94 ± 0.10 1.00 ± 0.00 

0.5 8489.93 ± 20.96 14.73 ± 3.97 9.44 ± 1.00 5.22 ± 3.54 0.94 ± 0.10 1.00 ± 0.00 
0.4 7096.75 ± 21.11 14.59 ± 3.75 9.39 ± 0.96 5.19 ± 3.37 0.94 ± 0.10 1.00 ± 0.00 
0.3 5769.18 ± 20.28 14.57 ± 3.92 9.34 ± 0.96 5.24 ± 3.59 0.93 ± 0.10 1.00 ± 0.00 
0.2 4429.58 ± 20.11 14.40 ± 3.75 9.27 ± 0.98 5.14 ± 3.44 0.93 ± 0.10 1.00 ± 0.00 
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Table 7.20 Mean and standard deviation results for LD clumping using BIC for tuning 

parameter selection for differing percentage of variance explained with N = 500 

Pruning 
threshold 

No. of SNPs 
selected 

No. of true 
positive 

SNPs 

No. of false 
positive SNPs 

Sensitivity Specificity 

Variance Explained = 1% 
None 4.83 ± 3.75 0.84 ± 0.84 3.98 ± 3.60 0.09 ± 0.09 1.00 ± 0.00 

0.9 5.08 ± 3.83 0.86 ± 0.85 4.17 ± 3.62 0.09 ± 0.09 1.00 ± 0.00 
0.8 5.24 ± 3.89 0.88 ± 0.85 4.32 ± 3.68 0.09 ± 0.09 1.00 ± 0.00 
0.7 5.20 ± 3.89 0.89 ± 0.84 4.29 ± 3.69 0.09 ± 0.08 1.00 ± 0.00 
0.6 5.34 ± 4.19 0.91 ± 0.86 4.42 ± 4.00 0.09 ± 0.09 1.00 ± 0.00 
0.5 5.13 ± 3.65 0.90 ± 0.86 4.23 ± 3.45 0.09 ± 0.09 1.00 ± 0.00 

0.4 5.23 ± 4.02 0.89 ± 0.87 4.34 ± 3.81 0.09 ± 0.09 1.00 ± 0.00 
0.3 5.17 ± 3.84 0.90 ± 0.86 4.28 ± 3.60 0.09 ± 0.09 1.00 ± 0.00 
0.2 4.91 ± 3.57 0.86 ± 0.84 4.06 ± 3.38 0.09 ± 0.08 1.00 ± 0.00 

Variance Explained = 2.75% 
None 7.90 ± 6.63 4.02 ± 2.25 3.27 ± 4.57 0.40 ± 0.23 1.00 ± 0.00 

0.9 8.02 ± 6.62 4.08 ± 2.26 3.55 ± 4.76 0.41 ± 0.23 1.00 ± 0.00 
0.8 8.30 ± 6.80 4.17 ± 2.26 3.84 ± 4.97 0.42 ± 0.23 1.00 ± 0.00 
0.7 8.36 ± 6.69 4.23 ± 2.27 3.91 ± 4.88 0.42 ± 0.23 1.00 ± 0.00 
0.6 8.79 ± 7.18 4.36 ± 2.31 4.29 ± 5.46 0.44 ± 0.23 1.00 ± 0.00 
0.5 8.79 ± 6.89 4.40 ± 2.29 4.36 ± 5.24 0.44 ± 0.23 1.00 ± 0.00 
0.4 8.85 ± 6.79 4.45 ± 2.27 4.40 ± 5.18 0.44 ± 0.23 1.00 ± 0.00 
0.3 8.93 ± 6.87 4.45 ± 2.29 4.49 ± 5.23 0.44 ± 0.23 1.00 ± 0.00 
0.2 9.03 ± 6.83 4.46 ± 2.27 4.58 ± 5.16 0.45 ± 0.23 1.00 ± 0.00 

Variance Explained = 5.5% 
None 20.18 ± 9.35 8.39 ± 1.90 10.03 ± 8.07 0.84 ± 0.19 1.00 ± 0.00 

0.9 20.70 ± 9.75 8.52 ± 1.91 10.71 ± 8.10 0.85 ± 0.19 1.00 ± 0.00 
0.8 21.17 ± 9.99 8.62 ± 1.82 11.43 ± 8.56 0.86 ± 0.18 1.00 ± 0.00 
0.7 21.09 ± 9.25 8.70 ± 1.73 11.59 ± 8.02 0.87 ± 0.17 1.00 ± 0.00 
0.6 21.17 ± 9.21 8.75 ± 1.72 11.96 ± 8.09 0.87 ± 0.17 1.00 ± 0.00 
0.5 21.50 ± 9.31 8.80 ± 1.64 12.63 ± 8.34 0.88 ± 0.16 1.00 ± 0.00 
0.4 21.50 ± 9.20 8.73 ± 1.62 12.76 ± 8.33 0.87 ± 0.16 1.00 ± 0.00 
0.3 21.32 ± 9.01 8.65 ± 1.63 12.67 ± 8.15 0.86 ± 0.16 1.00 ± 0.00 
0.2 21.05 ± 8.61 8.58 ± 1.57 12.47 ± 7.83 0.86 ± 0.16 1.00 ± 0.00 
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Table 7.21 Mean and standard deviation results for LD clumping using the permutation method for tuning parameter selection for differing 

sample sizes with the percentage of variance explained = 2.75% 

Pruning 
threshold 

No. of SNPs after pruning 
No. of SNPs 

selected 
No. of true 

positive SNPs 
No. of false 

positive SNPS 
Sensitivity Specificity 

N = 250 
None 20000.00 ± 0.00 2.20 ± 1.61 0.91 ± 0.88 1.13 ± 1.20 0.09 ± 0.09 1.00 ± 0.00 

0.9 14973.03 ± 23.12 2.19 ± 1.60 0.90 ± 0.88 1.14 ± 1.22 0.09 ± 0.09 1.00 ± 0.00 
0.8 13219.21 ± 24.81 2.21 ± 1.59 0.89 ± 0.88 1.17 ± 1.23 0.09 ± 0.09 1.00 ± 0.00 
0.7 11538.73 ± 26.19 2.17 ± 1.50 0.90 ± 0.86 1.12 ± 1.15 0.09 ± 0.09 1.00 ± 0.00 
0.6 9944.99 ± 26.67 2.18 ± 1.61 0.89 ± 0.88 1.15 ± 1.21 0.09 ± 0.09 1.00 ± 0.00 
0.5 8454.05 ± 25.53 2.18 ± 1.53 0.90 ± 0.87 1.14 ± 1.19 0.09 ± 0.09 1.00 ± 0.00 

0.4 7062.36 ± 23.52 2.17 ± 1.54 0.89 ± 0.86 1.14 ± 1.20 0.09 ± 0.09 1.00 ± 0.00 
0.3 5729.32 ± 22.12 2.19 ± 1.57 0.89 ± 0.87 1.17 ± 1.22 0.09 ± 0.09 1.00 ± 0.00 
0.2 4388.77 ± 20.16 2.17 ± 1.56 0.89 ± 0.87 1.14 ± 1.18 0.09 ± 0.09 1.00 ± 0.00 

N = 500 
None 20000.00 ± 0.00 5.93 ± 2.40 3.80 ± 1.43 1.37 ± 1.37 0.38 ± 0.14 1.00 ± 0.00 

0.9 15019.94 ± 19.62 5.95 ± 2.39 3.80 ± 1.43 1.37 ± 1.37 0.38 ± 0.14 1.00 ± 0.00 
0.8 13272.66 ± 21.06 5.99 ± 2.37 3.84 ± 1.45 1.38 ± 1.36 0.38 ± 0.15 1.00 ± 0.00 
0.7 11582.75 ± 22.54 5.98 ± 2.33 3.82 ± 1.45 1.37 ± 1.31 0.38 ± 0.15 1.00 ± 0.00 

0.6 9978.88 ± 22.15 5.95 ± 2.32 3.80 ± 1.44 1.35 ± 1.30 0.38 ± 0.14 1.00 ± 0.00 
0.5 8480.43 ± 23.58 5.92 ± 2.32 3.80 ± 1.46 1.33 ± 1.26 0.38 ± 0.15 1.00 ± 0.00 
0.4 7086.22 ± 23.19 5.91 ± 2.36 3.78 ± 1.48 1.33 ± 1.29 0.38 ± 0.15 1.00 ± 0.00 
0.3 5755.76 ± 21.39 6.03 ± 2.39 3.84 ± 1.47 1.38 ± 1.32 0.38 ± 0.15 1.00 ± 0.00 
0.2 4416.63 ± 20.10 5.95 ± 2.37 3.83 ± 1.47 1.33 ± 1.27 0.38 ± 0.15 1.00 ± 0.00 
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N = 1,000 

   
None 20000.00 ± 0.00 12.29 ± 2.23 8.81 ± 1.02 1.29 ± 1.25 0.88 ± 0.10 1.00 ± 0.00 

0.9 15040.79 ± 16.01 12.29 ± 2.28 8.81 ± 1.03 1.29 ± 1.27 0.88 ± 0.10 1.00 ± 0.00 
0.8 13299.53 ± 17.21 12.28 ± 2.35 8.81 ± 1.06 1.29 ± 1.25 0.88 ± 0.11 1.00 ± 0.00 
0.7 11602.81 ± 19.44 12.28 ± 2.32 8.81 ± 1.04 1.30 ± 1.26 0.88 ± 0.10 1.00 ± 0.00 
0.6 9996.51 ± 20.79 12.24 ± 2.29 8.82 ± 1.04 1.29 ± 1.27 0.88 ± 0.10 1.00 ± 0.00 

0.5 8489.93 ± 20.96 12.31 ± 2.28 8.84 ± 1.04 1.28 ± 1.25 0.88 ± 0.10 1.00 ± 0.00 
0.4 7096.75 ± 21.11 12.27 ± 2.31 8.81 ± 1.06 1.30 ± 1.25 0.88 ± 0.11 1.00 ± 0.00 
0.3 5769.18 ± 20.28 12.25 ± 2.29 8.80 ± 1.05 1.30 ± 1.24 0.88 ± 0.11 1.00 ± 0.00 
0.2 4429.58 ± 20.11 12.30 ± 2.34 8.81 ± 1.06 1.32 ± 1.26 0.88 ± 0.11 1.00 ± 0.00 

 

 

 



 

222 
 

Table 7.22 Mean and standard deviation results for LD clumping using the permutation 

method for tuning parameter selection for differing percentage of variance explained 

with N = 500 

Pruning 
threshold 

No. of SNPs 
selected 

No. of true 
positive 

SNPs 

No. of false 
positive 

SNPs 
Sensitivity Specificity 

Variance Explained = 1% 
None 1.51 ± 1.38 0.42 ± 0.62 1.05 ± 1.14 0.04 ± 0.06 1.00 ± 0.00 

0.9 1.56 ± 1.39 0.43 ± 0.64 1.06 ± 1.15 0.04 ± 0.06 1.00 ± 0.00 
0.8 1.58 ± 1.39 0.44 ± 0.63 1.08 ± 1.17 0.04 ± 0.06 1.00 ± 0.00 
0.7 1.54 ± 1.38 0.44 ± 0.63 1.04 ± 1.17 0.04 ± 0.06 1.00 ± 0.00 
0.6 1.58 ± 1.40 0.44 ± 0.64 1.08 ± 1.16 0.04 ± 0.06 1.00 ± 0.00 

0.5 1.55 ± 1.36 0.43 ± 0.63 1.06 ± 1.14 0.04 ± 0.06 1.00 ± 0.00 
0.4 1.53 ± 1.37 0.43 ± 0.64 1.04 ± 1.13 0.04 ± 0.06 1.00 ± 0.00 
0.3 1.58 ± 1.39 0.45 ± 0.63 1.07 ± 1.17 0.04 ± 0.06 1.00 ± 0.00 
0.2 1.58 ± 1.43 0.44 ± 0.63 1.08 ± 1.19 0.04 ± 0.06 1.00 ± 0.00 

Variance Explained = 2.75% 
None 5.93 ± 2.40 3.80 ± 1.43 1.37 ± 1.37 0.38 ± 0.14 1.00 ± 0.00 

0.9 5.95 ± 2.39 3.80 ± 1.43 1.37 ± 1.37 0.38 ± 0.14 1.00 ± 0.00 
0.8 5.99 ± 2.37 3.84 ± 1.45 1.38 ± 1.36 0.38 ± 0.15 1.00 ± 0.00 
0.7 5.98 ± 2.33 3.82 ± 1.45 1.37 ± 1.31 0.38 ± 0.15 1.00 ± 0.00 
0.6 5.95 ± 2.32 3.80 ± 1.44 1.35 ± 1.30 0.38 ± 0.14 1.00 ± 0.00 
0.5 5.92 ± 2.32 3.80 ± 1.46 1.33 ± 1.26 0.38 ± 0.15 1.00 ± 0.00 
0.4 5.91 ± 2.36 3.78 ± 1.48 1.33 ± 1.29 0.38 ± 0.15 1.00 ± 0.00 

0.3 6.03 ± 2.39 3.84 ± 1.47 1.38 ± 1.32 0.38 ± 0.15 1.00 ± 0.00 
0.2 5.95 ± 2.37 3.83 ± 1.47 1.33 ± 1.27 0.38 ± 0.15 1.00 ± 0.00 

Variance Explained = 5.5% 
None 9.32 ± 2.43 6.67 ± 1.41 1.13 ± 1.24 0.67 ± 0.14 1.00 ± 0.00 

0.9 9.32 ± 2.44 6.67 ± 1.41 1.14 ± 1.24 0.67 ± 0.14 1.00 ± 0.00 
0.8 9.39 ± 2.41 6.69 ± 1.43 1.17 ± 1.24 0.67 ± 0.14 1.00 ± 0.00 
0.7 9.32 ± 2.43 6.67 ± 1.45 1.15 ± 1.21 0.67 ± 0.14 1.00 ± 0.00 
0.6 9.32 ± 2.44 6.67 ± 1.45 1.16 ± 1.24 0.67 ± 0.15 1.00 ± 0.00 
0.5 9.34 ± 2.40 6.71 ± 1.42 1.12 ± 1.19 0.67 ± 0.14 1.00 ± 0.00 
0.4 9.28 ± 2.34 6.68 ± 1.40 1.12 ± 1.17 0.67 ± 0.14 1.00 ± 0.00 
0.3 9.36 ± 2.50 6.69 ± 1.42 1.13 ± 1.22 0.67 ± 0.14 1.00 ± 0.00 
0.2 9.31 ± 2.42 6.68 ± 1.43 1.13 ± 1.21 0.67 ± 0.14 1.00 ± 0.00 
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7.5 Conclusion 

 

In this chapter, a simulation study was conducted to assess the performance of a 

number of pruning methods implemented in my Prune package for variable selection. 

Data was simulated from the GRAPHIC dataset from a single chromosome. The results 

showed that the tuning parameter selection method was more influential on variable 

selection than the pruning method itself. Repeated 10-fold Cross-validation selected a 

large number of false positives regardless of pruning method (Table 7.5, Table 7.6, 

Table 7.11, Table 7.12,Table 7.17 and Table 7.18), however the mean number of false 

positives selected was greater with P-value pruning (Table 7.11 and Table 7.12). This 

particular combination of pruning method and tuning parameter selection method 

yielded the lowest specificity rate across all scenarios. This is unsurprising as CV is 

designed for model prediction rather than variable selection, however the mean 

number of false positives selected is concerning as the simulation was conducted on a 

single chromosome rather than genome-wide where the number of false positives 

selected is likely to increase substantially. Both Cho et al. (11) and Yao et al. (149) have 

used a combination of P-value pruning and Cross-validation for tuning parameter 

selection and both studies also selected a high number of SNPs (129 and 80 

respectively). Hong et al. also showed that the combination of P-value pruning and 

tuning parameter selection by CV selects a large number of variables; in this case over 

500 of the 1,000 SNPs were selected across four penalised regression methods (146). 

 

10 casual SNPs were simulated which may be a reasonable number of causal variants 

in a genome-wide study rather than there being 10 causal SNPs in each chromosome. 

Therefore it is likely that the number of true positive SNPs selected is more 

representative of a genome-wide study whilst the mean number of false positives may 

not be as representative. Of the three pruning methods LD pruning produces the 

highest specificity rate. 
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The BIC also selected a high proportion of false positive SNPs (Table 7.7, Table 7.8, 

Table 7.13, Table 7.14, Table 7.19 and Table 7.20). This was particularly the case in the 

underpowered scenarios (N = 250 or %VAR = 1%) where mean number of false 

positives selected increased as the pruning threshold increased. With the exception of 

some high powered scenarios, results showed that the LD based pruning methods 

increased the mean number of SNPs selected compared to not pruning at all which, in 

turn increased both the number of true and false positive SNPs selected. This increase 

was gradually countered by the increase in pruning.  

 

In most scenarios, for both repeated CV and the BIC methods, the mean number of 

false positives selected increased between the mid-powered scenario and high 

powered scenario (i.e. between N = 500 and N = 1,000 and between %VAR = 2.5% and 

5.5%). This could be partially due to defining any selected SNP with an r2 > 0.5 with a 

causal as a true positive rather than a lower threshold. It may be the case that SNPs 

with 0 < r2 < 0.5 may be selected due to the LD in the high powered scenario especially 

at the higher LD pruning thresholds. In this simulation, no pruning window was used 

which may affect the sensitivity rate. By not implementing a pruning window, there is 

a small chance that the simulated causal SNP may be in LD with another SNP with a 

large distance between them by chance and not a true association between alleles. 

Therefore selection of this SNP may also increase the sensitivity rate with false 

positives although the r2 > 0.5 threshold helps protect against this situation. 

 

 

It is recommended that to prune a GWAS dataset to apply the LASSO, LD clumping 

should be used and the tuning parameter should be selected by the permutation 

method. The permutation method produced similar results regardless of pruning 

method or pruning threshold (Table 7.9, Table 7.10, Table 7.15, Table 7.16, Table 7.21 

and Table 7.22). The method selected the lowest number of false positives; an average 

of 1 false positive SNP was selected in every scenario, where both the BIC and 

repeated CV select a higher number of false positives. Due to the number of false 
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positives selected on a simulation on a single chromosome for BIC and repeated CV, 

the permutation method outperforms the other two tuning parameter selection 

methods in terms of variable selection. Of the three pruning methods LD clumping 

seems to select a slightly higher mean number of true positive SNPs in most scenarios 

using the permutation method.  

 

7.6 Summary 

 

In this chapter, I ran a simulation study on the effects of SNP pruning methods, the 

pruning threshold and the tuning parameter selection method on variable selection. 

To current knowledge this is the first study that looks at the effects of pruning on 

variable selection. Results showed that pruning with LD clumping and using the 

permutation method produced the best performance for variable selection due to the 

high number of false positive SNPs selected by other methods, especially as both 

repeated 10-fold CV and the BIC selected a number of false positive SNPs across a 

single chromosome. 
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8 Application of the LASSO on the GRAPHIC 

study with SNP pruning 

 

8.1 Introduction 

 

In Chapter 4, I was unable to apply the LASSO to the full GWAS dataset of the GRAPHIC 

study (10) due to computational constraints (see section 4.7). I suggested SNP pruning 

as a step to reduce the number of dimensions in order to fit LASSO models on a 

genome-wide scale. In Chapter 6, I discussed a number of SNP pruning methods that 

could be utilised as well as my Prune package which applies these SNP pruning 

methods. I then followed up by conducting a simulation study applying these SNP 

pruning methods and to see the effect each pruning method has on variable selection 

using the LASSO.  

 

In this chapter, I return to the GRAPHIC study and apply the LASSO to the GWAS 

dataset after pruning SNPs. I firstly re-run the analysis on chromosome 19 to compare 

the number of SNPs selected by varying tuning parameter selection methods and 

pruning thresholds. This was to check whether results between the simulation study 

and the GRAPHIC dataset were consistent with each other, as the phenotype in the 

simulation study was different to the LDL phenotype in terms of effect sizes and 

variation. I then select the best combination pruning method and tuning parameter 

selection methods based on both the simulation study and the application on 

chromosome 19 and apply them on the full GRAPHIC study dataset. LDL-c was again 

used as the phenotype and the same quality control procedures discussed in section 

4.4 were applied to both analyses.  
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8.2 Application of the LASSO on chromosome 19 

after pruning the dataset 

 

8.2.1 Methods for chromosome 19 study 

 

The dataset consists of 12,376 SNPs and 979 subjects. My Prune package was used to 

prune the datasets. The three pruning methods were used, LD, P-value and clumping 

with three pruning thresholds for each pruning method. The LD pruning and clumping 

methods pruned the dataset with the r2 measure using thresholds of 0.8, 0.5 and 0.2 

and a pruning window of 500 adjacent SNPs. The P-value pruning method used 

thresholds of 0.2, 0.05 and 0.02. A random starting position for LD pruning was 

selected and the same start position was used for all pruning thresholds. Section 4.8.1 

outlines the procedures for fitting the LASSO using the three tuning parameter 

selection methods, repeated 10-fold Cross-validation, BIC and the permutation 

method. An increase in the pruning threshold was again defined as a decrease in the 

threshold value. The same imputation procedures were also implemented (see section 

4.8.1). The LASSO model was fitted using glmnet (53). 

 

8.2.2 Results of chromosome 19 study 

 

Table 8.1, Table 8.3 and Table 8.4 show the number of SNPs selected for each 

combination of SNP pruning method, tuning parameter selection method and pruning 

threshold. The results for LD pruning were consistent with the SNP pruning simulation. 

The number of SNPs selected by both repeated CV and BIC decreased as the pruning 

threshold increased, while the permutation method remained stable (Table 8.1). LD 

pruning allows any SNP to be pruned out therefore selected SNPs using a lower LD 

threshold could be pruned as the pruning threshold increases. This was the case in this 

analysis reducing the number of associations in the dataset but did not affect the 

number of SNPs and which regions were selected using the permutation method.  
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Table 8.2 shows the SNPs selected using the permutation method for LD pruning. The 

table shows that as pruning increases and if the selected SNP was pruned out of the 

dataset, this SNP was replaced with another SNP in the same region and in LD with the 

pruned out SNP (r2 > 0.53 in all cases). The BIC method selected the same four SNPs as 

the permutation method shown in Table 8.2 for the pruning thresholds of r2 < 0.8 and 

r2 < 0.5. For the r2 < 0.2 threshold the two SNPs on the APOE gene were selected; 

rs4420638 (p = 1.58E-07) and rs445925 (p = 3.37E-06). 

 

Table 8.1 Number of SNPs selected on chromosome 19 after pruning the dataset by LD 

using various forms of tuning parameter selection methods and LD pruning thresholds 

LD 
pruning 

threshold 
(r2) 

Number of 
SNPs in 

dataset after 
pruning 

Cross-
validation 

BIC 
Permutation 

method 

No 
pruning 

12,376 41 4 4 

0.8 8,615 41 4 4 
0.5 6,190 31 4 4 

0.2 3,655 11 2 4 
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Table 8.2 SNPs selected on chromosome 19 for varying levels of LD pruning and the 

permutation method for tuning parameter selection. 

LD pruning 
threshold 

Selected 
SNP 

Base 
position 

P-value 
LD between SNPs 

(r2) 

DNM2 - CARM1 

No pruning rs17001002 10,948,031 1.25E-05 - 

0.8 rs11881156 10,950,125 1.79E-05 0.993 

0.5 rs11881156 10,950,125 1.79E-05 - 

0.2 rs11881156 10,950,125 1.79E-05 - 

ZNF529 - ZNF567 

No pruning rs10402182 37,160,529 4.53E-06 - 

0.8 rs1525133 37,199,250 4.53E-06 1 

0.5 rs2967440 37,059,215 5.87E-06 0.981 

0.2 rs2967436 37,059,215 5.87E-06 0.539 

APOE 

No pruning rs7412 45,412,079 1.70E-12 - 

0.8 rs7412 45,412,079 1.70E-12 - 

0.5 rs7412 45,412,079 1.70E-12 - 

0.2 rs445925 45,415,640 3.37E-06 0.712 

APOE 

No pruning rs4420638 45,422,946 1.58E-07 - 

0.8 rs4420638 45,422,946 1.58E-07 - 

0.5 rs4420638 45,422,946 1.58E-07 - 

0.2 rs4420638 45,422,946 1.58E-07 - 

 

 

Like the simulation study in the previous chapter the combination of P-value pruning 

and repeated CV performed particularly poorly (Table 8.3). Using a p < 0.2 threshold, 

the LASSO model selected 770 SNPs from a dataset of 2,600 SNPs (29.62% of all SNPs 

after pruning). The proportion of SNPs selected increased as the pruning threshold 

increased and with a threshold of p < 0.02, 59.80% of SNPs (183 SNPs from a dataset of 

306) were selected. In fact, the numbers of SNPs selected in this case were comparable 

to a similar scenario in the simulation study (see N = 1,000 in Table 7.11) even though 

this analysis consisted of a smaller dataset after pruning than the simulation study. 

Like the results of the simulation study, the number of SNPs selected by the BIC 



 

230 
 

method was similar regardless of P-value pruning threshold. The same four SNPs 

(rs17001002, rs10402182, rs7412 and rs4420638, see Table 4.18) were selected 

regardless of P-value pruning threshold. Interestingly however, the number of SNPs 

selected increased using the permutation method as the pruning threshold increased 

compared to the simulation study, where the numbers of SNPs selected remained 

stable regardless of pruning threshold. 

 

Table 8.3 Number of SNPs selected on chromosome 19 after pruning the dataset by P-

value using various forms of tuning parameter selection methods and P-value pruning 

thresholds 

P-value 
pruning 

threshold 

Number of 
SNPs in 

dataset after 
pruning 

Cross-
validation 

BIC 
Permutation 

method 

No 
pruning 

12,376 41 4 4 

0.2 2,600 770 4 8 
0.05 719 358 4 16 
0.02 306 183 4 19 

 

 

The results for LD clumping (Table 8.4) also showed similar results with the simulation 

study. The number of SNPs selected greatly increased using repeated CV as the 

pruning threshold increased while both the BIC and permutation methods remained 

relatively stable. Both methods selected the same SNPs for each pruning threshold. On 

top of the four SNPs (rs17001002, rs10402182, rs7412 and rs4420638, see Table 4.18) 

selected by these two methods a fifth SNP; rs10853810 (p = 0.000166) was selected 

when a LD clumping threshold of r2 < 0.2 was applied. 
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Table 8.4 Number of SNPs selected on chromosome 19 after pruning the dataset by LD 

clumping using various forms of tuning parameter selection methods and LD clumping 

pruning thresholds 

LD 
clumping 
threshold 

(r2) 

Number of 
SNPs in 

dataset after 
pruning 

Cross-
validation 

BIC Permutation 

No 
pruning 

12376 41 4 4 

0.8 8595 41 4 4 
0.5 6109 45 4 4 
0.2 3539 93 5 5 

 

 

8.2.3 Conclusion from the chromosome 19 study 

 

With the exception of using the permutation method after P-value pruning the results 

of the analysis of various SNP pruning methods and tuning parameter selection 

methods showed similarities to the simulation study in the previous chapter.  

 

The combination of P-value pruning and permutation method increased the number of 

SNPs selected as the pruning threshold increased while the number of SNPs selected in 

the simulation study remained stable, much like the number of SNPs selected using the 

permutation method with LD pruning and clumping. This is illustrated in Figure 8.2 

which shows the histogram for each combination of pruning method and threshold for 

the permutation method. The vertical red line represents the median λ selected across 

the 100 repetitions. The median estimate is very similar for the LD pruning and 

clumping methods as the pruning threshold changes whereas the median λ decreases 

as the pruning threshold increases for P-value pruning. A similar pattern is seen for 

repeated CV after pruning by LD clumping (Figure 8.1) where the number of SNPs 

selected also increased. 
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Both the BIC and permutation method showed consistent selection of SNPs and/or 

regions for most SNP pruning methods seem to be similar for variable selection. P-

value pruning however should not be considered as a method of pruning for the LASSO 

as a number of false positives may be selected (Table 8.3). LD clumping is likely to 

select a larger model for LD pruning, as this method ensures that highly associated 

SNPs are not pruned although the results of this analysis show that SNPs in high LD 

with the top SNP in a region may be selected instead using LD pruning (Table 8.2). 

 

 

Figure 8.1 Histogram of 100 lambdas estimates using Cross-validation for each pruning 

method and pruning threshold. The red vertical line represents the median estimate. 
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Figure 8.2 Histogram of 100 lambdas estimates using the permutation method for each 

pruning method and pruning threshold. The red vertical line represents the median 

estimate. 
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8.3 Genome-wide association study on the GRAPHIC 

using the LASSO 

 

8.3.1 Methods for GWAS 

 

After quality control the GWAS dataset consisted of 591,774 SNPs and 979 subjects 

(see section 4.4), LDL-c was again used as the phenotype. LD clumping was used to 

prune the GRAPHIC GWAS dataset as this method ensures that the most statistically 

significant signals remain in the dataset. Both BIC and the permutation methods were 

selected as tuning parameter selection methods. These methods have shown that 

there is little difference in terms of variable selection across varying levels of pruning 

thresholds when pruning by LD clumping. For this reason a pruning threshold of r2 < 

0.2 was selected with a window size of 500 SNPs. Each chromosome was pruned 

separately to allow a random starting position for pruning on each chromosome. The 

time taken to prune each chromosome varied between 7 minutes 43 seconds for 

chromosome 1 and 1 minute and 53 seconds for chromosome 22. Table 8.5 shows the 

number of SNPs remaining in each chromosome after pruning. A total of 138,812 

remained after pruning (23.46% of all SNPs). Missing genotypes were again imputed 

with the median genotype value. Figure 8.3 plots the univariate P-values of each SNP 

before and after imuputation, again there is little difference between the P-values in 

most SNPS (mean absolute difference = 0.004). 162 SNPs were removed as they had an 

absolute difference P-value > 0.1 after imputation. The BIC values were calculated 

across 625 λ values with an increase 0.01 each time. The permutation method used 

200 repetitions. The LASSO model was fitted using glmnet (53). 
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Table 8.5 Number of SNPs remaining after pruning the GRAPHIC study dataset using 

the Prune package with window size = 500 and pruning threshold of r2 < 0.2 

Chromosome 
No. of SNPs 

on 
chromosome 

No. of 
SNPs 

remaining 
after LD 

clumping 

1 48,494 11,304 
2 47,899 11,193 
3 39,615 9,023 
4 34,217 8,193 
5 35,870 8,354 

6 40,655 8,403 
7 32,235 7,466 
8 31,753 6,982 
9 28,139 6,535 

10 32,500 7,254 
11 30,629 6,832 
12 29,614 6,987 
13 23,049 5,302 
14 19,492 4,661 
15 18,258 4,451 
16 19,114 4,765 
17 16,761 4,444 
18 17,962 4,515 

19 12,376 3,539 
20 15,560 3,934 
21 8,741 2,255 

22 8,841 2,420 
Total 591,774 138,812 
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Figure 8.3 Scatter plot comparing P-values for each SNP before and after imputation. 

Imputation was conducted by replacing missing genotype with the median genotype 

from the population. The red diagonal line represents the line if there is no change in 

P-values. 

 

8.3.2 Results of GWAS 

 

Figure 8.4 shows the coefficient path plot for the LASSO model fitted to the GRAPHIC 

dataset. There is clearly one large SNP with a large association with LDL compared to 

the remaining SNPs. This SNP was rs7412, the top SNP by P-value (Figure 4.7) and the 

only SNP selected by the Bonferroni correction method in section 4.5.2. The BIC 

method however selected a λ = 6.25 which returned a null model, therefore no SNPs 

were selected by this method. The permutation method selected a median λ = 4.733 

(mean = 4.770, S.E. = 0.225) which selected one SNP; rs7412. Figure 8.5 shows the 

histogram of the 200 λ estimates using the permutation method. For the next SNP 
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(rs4420638) to enter the model a λ < 4.672 was required which was close to the 

median estimate. 

 

Figure 8.4 Coefficient path plot for the LASSO on the GRAPHIC study. Each line 

represents a SNP and the path shows the βcoefficient on the y-axis as the penalty (on a 

𝑙𝑜𝑔(𝜆) scale) increases on the bottom x-axis. The top x-axis shows the number of SNPs 

remaining in the model at each 𝑙𝑜𝑔(𝜆) penalty value. 
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Figure 8.5 Histogram of 200 lambdas estimates using the permutation method. The red 

vertical line represents the median estimate. 

 

8.4 Discussion 

 

In this chapter, I conducted a GWAS study on the GRAPHIC study using the LASSO after 

pruning the dataset. Pruning was required to reduce the number of SNPs in the 

dataset in order to make the analysis more computationally viable (see section 4.7). 

The pruning was not needed to remove SNPs in correlation as there is evidence that 

the LASSO is able to handle correlated data in both the literature (24-26) and in 

previous chapters (see section 4.8.2.3).  

 

LD clumping was used as the method for pruning the dataset from my Prune package. 

This allowed greater flexibility for pruning as each chromosome was allowed to be 

pruned separately, and each with a random starting position for pruning. The pruning 

process in total took just over an hour in time, in contrast pruning in PLINK (19,20) 

using the same options (window size = 500, step size = 1, threshold = r2 < 0.2) took 

over 6 days, again highlighting the usefulness of the Prune package in terms of time 
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taken to prune a large dataset. Pruning if performed on each chromosome separately 

could be run in parallel with each other, further reducing the computational time.  

 Pruning by LD clumping ensured that the top SNPs by P-value remained in the dataset 

especially given the high pruning threshold used. Results on chromosome 19 showed 

that the LASSO performed well in selecting associated regions when the top SNP by P-

value was removed from the data by LD pruning (Table 8.2). 

 

The BIC and permutation methods were used for tuning parameter selection as these 

methods have performed well in terms of variable selection. The BIC method, which is 

the more conservative method of the two did not select any SNP while the 

permutation method after selecting the median value of 200 repetitions selected a 

single SNP; rs7412 which showed the strongest association with LDL in the dataset. 

The λ estimate permutation method was close to selecting more SNPs; 97 of the 200 λ 

estimates selected more than one SNP therefore a greater number of repetitions could 

have been used to provide greater accuracy. In Chapter 4, the Bonferroni correction 

and FDR methods were applied to GRAPHIC study dataset without pruning. The 

Bonferroni correction method also selected rs7412 (see section 4.5.2) while the FDR 

method selected both rs7412 and rs4420638 (see section 4.6.2). Both associations for 

rs7412 and rs4420638 have been replicated in previous studies 

(164,166,172,176,178,180,182,183,187). 
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9 Applications of integrative analyses in 

penalised regression  

 

9.1  Introduction 

 

In recent years there has been a shift from GWAS on single datasets to work 

performed in consortia that collaborate to combine multiple datasets in order to 

increase the sample size and power to detect associations. The large increase in 

sample size would again lead to computational issue using the LASSO and pruning 

would certainly be required. In section 2.3.5, I briefly discuss the meta-analysis in 

penalised regression and in particular the difficulty in combing summary statistics from 

penalised estimates. Given the difficulty in combining LASSO summary estimates into a 

meta-analysis, there has been very little work done in this field (37). An alternative 

method to meta-analysis is integrative analysis. Integrative analyses require individual 

level data (ILD) for each study to pool together for analysis. This differs from meta-

analysis which analyses each dataset individually then pools summary statistics 

together.  

 

In this chapter, I firstly review the current literature for integrative analysis based 

methods using penalised regression. I follow up by conducting a simulation study 

comparing meta-LASSO method against the stacked LASSO and separate LASSO. The 

stacked LASSO pools all datasets together and fits a LASSO model without regard of 

heterogeneity and the separate LASSO that applies the LASSO individually first then 

pools the summary results together.  
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9.2 Integrative analysis in penalised regression 

 

Although it is difficult and costly to obtain individual level data (ILD) analyses are 

considered the gold standard (235). Curran and Hussong discuss the potential 

advantages of integrating data which include the ability to replicate results in studies, 

increased statistical power and ability to explore between-study heterogeneity (35). 

Lambert et al. ran simulations comparing meta-regressions using summary statistics 

and individual patient data (IPD) and concluded that the IPD analyses result in a higher 

power to detect interaction effects (236). Berlin et al. showed that meta-analysis 

based methods also may fail to detect differences between subgroups that IPD 

analyses are able to find (237).  

 

There have been a number of methods that integrate datasets and analyse using 

penalised regression in gene expression data. There is high heterogeneity between 

studies in gene expression due to varying experimental factors and arrays leading to 

varying outcome measurements. Often transformations of the expression values is 

required (238), these transformations known as “intensity approaches”. Huang et al. 

showed by simulation on gene expression data that an intensity approach which 

combines all the dataset and applies the elastic net, outperforms meta-analysis that 

applies the elastic net in individual datasets (239). 

 

9.2.1 Variations of the group LASSO for integrative analysis 

 

In section 2.3.3, I reviewed the group LASSO (29) as a method to group desired 

variables within a single dataset, shown in (2.7). 𝐺1, … , 𝐺𝐾  denotes the pre-defined 

groups of variables and 𝑖 =  {1, …  𝑁} denotes the ith subject.   
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 �̂�(𝜆) = 𝑎𝑟𝑔min
𝛽

1

2𝑁
 ∑(𝑦𝑖 − ∑𝑥𝑖𝑘𝐺𝑘

𝐾

𝑘=1

)

2

+ 𝜆 ∑‖𝐺𝑘‖2

𝐾

𝑘=1

𝑁

𝑖=1

 (9.1) 

 

Ma et al. proposed an extension to the group LASSO by grouping β estimates across 

multiple datasets 𝐻1, … , 𝐻𝐷 and applied this to pancreatic cancer studies (240). The 

study proposed two methods (9.2); the group LASSO (𝛿 = 1) and group bridge LASSO (𝛿 

= 0.5).  

  

 �̂�(𝜆) = argmin
𝛽

1

2𝑁
∑∑(𝑦𝑑𝑖 − ∑𝑥𝑑𝑖𝑗𝛽𝑑𝑗

𝐷

𝑑=1

)

2

+ 𝜆 ∑‖𝛽𝑗‖2
𝛿

𝑃

𝑗=1

𝑁

𝑖=1

𝐷

𝑑=1

  (9.2) 

 where,  
 𝛿 = the bridge penalty  

 ‖𝛽𝑗‖2 = [∑(𝛽𝑑𝑗)
2
 

𝐷

𝑑=1

]

1
2

  

 

𝑗 =  {1, …  𝑃} denotes the jth SNP and 𝑑 =  {1, …  𝐷} represents the 

dth dataset. 

 

 

  

 

The penalty allows each  𝛽𝑑𝑗 to be estimated within individual datasets, and then 

grouped and penalised across datasets. The paper provides an algorithm to compute 

the group bridge LASSO that can be solved using Least Angle Regression (LARS), the 

group LASSO model can be fitted using the coordinate descent algorithm (241) (See 

section 2.4.2). The study compares integrative analysis of both the group LASSO and 

bridge group LASSO. The LASSO and bridge penalties are also applied on individual 

studies and variable selection is defined as when a gene is selected in at least one 

study. K-fold Cross-validation was used for variable selection in this study. It is 

therefore unsurprising that the results showed that the analysis on individual datasets 

over selects the number of variables and hence includes a large number of false 

positives (See Table 1). There integrative analyses methods show slightly superior 

performance than the intensity approaches in most simulated scenarios. The bridge 
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penalty outperformed the LASSO penalty as the bridge consistently selected a lower 

number of genes in the final model while maintaining a similar number of true 

positives. Integrative analysis with the bridge penalty also consistently showed the 

lowest prediction errors. 

 

A previous study by a number of the same authors also compared the group bridge 

penalty (𝛿 = 0.5) with AIC and BIC as the tuning parameter selection methods against 

the group LASSO, and another of other grouping methods, including the group LASSO, 

which used BIC and Mallows Cp as the tuning parameter selection method (242). 

Results were similar to the Ma et al. study (240) with the group bridge LASSO 

outperforming the competing methods in terms of both variable selection and 

prediction with the BIC especially performing well (See Table 1 (242)). 

 

As discussed by the authors, the aim of the bridge group LASSO is to identify “a 

common set of covariates across multiple studies” by pooling  𝛽𝑑𝑗 estimates across 

studies. Therefore the method does not allow any selection within studies (31,240). 

Another grouping method that has been suggested is the sparse group LASSO (84). This 

method uses two penalties and is similar to the elastic net, the first is a group penalty 

that penalises across datasets and the second is a LASSO penalty on the variables 

within each dataset (9.3).  

 

 
�̂�(𝜆) = argmin

𝛽

1

2𝑁
 ∑∑(𝑦𝑑𝑖 − ∑𝑥𝑑𝑖𝑗𝛽𝑑𝑗

𝑃

𝑗=1

)

2

+ 𝜆1∑‖𝛽𝑑𝑗‖2

𝑃

𝑗=1

𝑁

𝑖=1

𝐷

𝑑=1

+ 𝜆2 ‖𝛽𝑑𝑗‖1 

(9.3) 

 

This proposed method, allows for variables to be penalised both within and across 

datasets and can be solved using coordinate descent (243). Lin et al. used the sparse 

group LASSO to pool together multiple diverse datasets, in this case, SNP datasets and 
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gene expression studies (243). 3 datasets of 15,235 SNPs were simulated from 

chromosome 22 with the 3 phenotype and 3 expression datasets simulated based from 

the simulated SNP data. The authors use a 30 x 30 search grid to find the optimal 

combination of 𝜆1 and 𝜆2.The study compares the sparse group LASSO with a sparse 

group ridge regression and meta-analysis, each method was applied to the SNP data 

and gene expression datasets separately and were then combined. Variable selection 

was based on a gene level although the causal variants were simulated on individual 

SNPs. Results show that the sparse group LASSO performed better than the competing 

methods, especially when combining all datasets (See Figure 1 and 2 (243)). The group 

bridge method was not considered as previous simulations suggested poor 

performance compared to sparse group ridge in a single SNP dataset setting (244). 

Park et al. used the sparse group LASSO with latent variables to account for the 

overlapping between groups in single dataset analyses (245). 

 

9.2.2 The meta-LASSO method for integrative analysis 

 

The meta-LASSO method, proposed by Li et al. (246) incorporates a dual penalty much 

like other variations of the LASSO such as the elastic net (18). The study applies the 

meta-LASSO to gene expression data analysing the expression 88 genes across 5 

datasets of immune cells of subjects with either atherosclerosis or cardiac events such 

as myocardial infarction or stroke. Therefore each dataset is composed of a binary 

phenotype 𝑦𝑑𝑖  and a vector of gene expression profiles of P genes. By assuming the 

conditional probability that 𝑦𝑑𝑖 = 1 given the vector of gene expression, then 𝑦𝑑𝑖  

follows a logistic regression model (9.4). To account for heterogeneity, the effect 

estimate 𝛽𝑑𝑗 is parametrized (9.5). 𝛾𝑗 denotes the overall effect of the jth gene across 

all datasets and the 휁𝑑𝑗  term is the effect difference estimate that accounts for 

heterogeneity on the jth gene in the dth dataset. 𝛽𝑑𝑗 is reparameterized by multiplying 

𝛾𝑗 and 휁𝑑𝑗 . Therefore if there is no heterogeneity then 휁𝑑𝑗  = 1 and 𝛽𝑑𝑗 = 𝛾𝑗. As gene 

expression values only take positive values, a constraint is placed such that 휁𝑑𝑗  ≥ 0. 
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The overall estimate, 𝛾𝑗 take positive values also therefore produce positive 𝛽𝑑𝑗 

estimates only. 

 𝑙𝑜𝑔 (
Pr(𝑦𝑑𝑖 = 1|𝑥𝑑𝑖)

Pr(𝑦𝑑𝑖 = 0 |𝑥𝑑𝑖)
) =  𝛽0𝑑 + 𝑥𝑑𝑖𝛽𝑑𝑗 (9.4) 

 

 

 𝛽𝑑𝑗 = 𝛾𝑗휁𝑑𝑗                              𝑑 = 1,… , 𝐷; 𝑗 = 1,… , 𝑃   (9.5) 

 such that:  
  휁𝑑𝑗  ≥ 0  
 

 

 max
𝛽0,𝛾,𝜁

{∑𝐿𝑑(𝛼𝑑, 𝛾, 휁𝑑)

𝐷

𝑑=1

 − 𝜆𝛾  ∑|𝛾𝑗|

𝑃

𝑗=1

 −  𝜆𝜁  ∑∑|휁𝑑𝑗|

𝐷

𝑑=1

𝑃

𝑗=1

} (9.6) 

 where,  

 𝛾 =  {𝛾𝑗} and 𝐿𝑑(𝛼𝑑, 𝛾, 휁𝑑) is the log-likelihood function s.t.:  

 𝐿𝑑(𝛼𝑑, 𝛾, 휁𝑑) =  ∑𝑦𝑑𝑖{𝛼𝑑 + 𝑥𝑑𝑖
𝑇 (𝛾. 휁𝑑)}

𝑁𝑑

𝑖=1

− 𝑙𝑜𝑔[1 +  𝑒𝑥𝑝{𝛼𝑑 + 𝑥𝑑𝑖
𝑇 (𝛾. 휁𝑑)}] 

 

 

The meta-LASSO analysis can then solved by applying a penalty on both of the 𝛾𝑗 and 

휁𝑑𝑗  components each with a separate tuning parameter 𝜆𝛾 and 𝜆𝜁(9.6). The loss 

function 𝐿𝑑(𝛼𝑑, 𝛾, 휁𝑑) can take the form of other distributions such as normal or 

poisson distribution. The 𝜆𝛾tuning parameter controls variable on the overall gene 

effect across all m datasets and therefore can remove genes from all datasets if they 

are deemed no to be associated. The 𝜆𝜁  tuning parameter controls variable selection 

at an individual dataset level. The authors also show that (9.6) can be further simplified 

into one tuning parameter (9.7) where the penalty applied on |𝛾𝑗| is 1.  

 

 max
𝛼,𝛾,𝜁

{∑ 𝑙𝑑(𝛼𝑑 , 𝛾, 휁𝑑)

𝐷

𝑑=1

 −  1 ∑|𝛾𝑗|

𝑃

𝑗=1

 −  𝜆 ∑∑|휁𝑑𝑗|

𝐷

𝑑=1

𝑃

𝑗=1

} (9.7) 
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 where   

 𝜆 =  𝜆𝛾. 𝜆𝜁   
 

The studies compared the meta-LASSO to a number of other methods such as the 

“separate LASSO”, the “stack LASSO”, the group LASSO, the adaptively weighting (AW) 

method, Fisher’s method and both Fixed (FEM) and Random (RAM) effects meta-

analysis models in a simulation study. The separate LASSO method used in the study 

fits a LASSO model to each dataset separately, however it is not clear how results from 

each dataset are combined or if they are combined at all. The stacked LASSO method 

assumes that there is no heterogeneity between studies and hence 𝛽𝑑𝑗 is the same for 

all d. Datasets are combined together to fit a “stacked LASSO” model which is in effect 

a standard LASSO model as the data has been pooled together (9.8). 

 ∑𝑙𝑑(𝛼𝑑 , 𝛽)

𝐷

𝑑=1

 − 𝜆∑|𝛽𝑗|

𝑃

𝑗=1

 (9.8) 

where   
 𝛽𝑗  = The effect estimate across all d datasets  

 

For the meta-LASSO and other penalised regression methods used in the simulation 

study, the tuning parameter was selected by minimizing the BIC (9.9). For the AW 

method, Fisher’s method, FEM and RAM methods, a gene is selected if the gene is 

found to be significant across all studies 

 𝐵𝐼𝐶(𝜆) =  ∑{−2𝑙𝑑(�̂�𝑑,𝜆) + 𝐷𝐹𝑑 log(𝑁𝑑)}

𝐷

𝑑=1

 (9.9) 

 

The study used sensitivity and specificity as its outcome variables across varying levels 

of heterogeneity among datasets over 100 repetitions. Ten studies each with 1,000 

genes were simulated each with a sample size of 50 subjects. To simulate 

heterogeneity between datasets, the authors slightly modified the parameterization 

equation (9.5) to include 𝛾𝑑𝑗
∗  (9.10). The modification is to allow some variance 

between the overall estimates between studies. 
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 𝛽𝑑𝑗
∗ = 𝛾𝑑𝑗

∗ 휁𝑑𝑗
∗                             1, … ,𝑀; 𝑗 = 1,… , 10   (9.10) 

 

 

This was performed by allowing 𝛾𝑑𝑗
∗  ~ N(3, 0.5)² and 휁𝑑𝑗

∗  follows a Bernoulli 

distribution with probability (𝜋0). The inclusion of the Bernoulli distribution allowed 

each of the 10 important genes to either have an effect 𝛽𝑑𝑗
∗  ~ N(3, 0.5)² with 

probability 𝜋0 or 𝛽𝑑𝑗
∗ = 0 with probability 1 − 𝜋0. 𝜋0 took three values: 0.2, 0.5 and 

0.9 that denote high, mid and low levels of heterogeneity.  

 

For the high and mid ranged levels of heterogeneity (𝜋0 = 0.2 and 0.5 respectively) 

the meta-LASSO clearly outperformed the other methods (See Table 2 (246)). At a low 

level of heterogeneity (𝜋0 = 0.9) the stack LASSO and FEM methods outperformed the 

meta-LASSO as both had higher rates of sensitivity and specificity. When homogeneity 

is strong there is very little variance between datasets and hence each simulated 

dataset would produce similar summary statistics such as beta effect coefficients and 

P-values. The combination of m datasets would increase the power in the analysis and 

with the beta effect coefficients and P-values being similar across the datasets, a high 

sensitivity and specificity would be expected. The meta-LASSO would suffer in this 

scenario as the 휁𝑑𝑗  penalty would have very little impact as there is very little 

heterogeneity between the datasets and there is little need to penalise within a 

dataset. The group LASSO also performed well against competing methods for the high 

and mid ranged levels of heterogeneity, especially in terms of sensitivity, but did not 

perform well in the low heterogeneity setting. The high sensitivity and specificity of 

most of the methods in the simulation in the low heterogeneity scenario suggests that 

large effect sizes have been simulated and brings into question if this method works 

when smaller effect sizes, or lower powered associations are simulated. 
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9.2.2.1  Algorithm to fit meta-LASSO models 

 

The authors provide a brief algorithm to fit meta-LASSO models to solve the function 

shown in equation (9.7). The algorithm is based to optimising 𝛾𝑗 and 휁𝑑𝑗  separately, 

both can be optimised using coordinate descent algorithm (see section 2.5). 𝛾𝑗 is 

optimised using the “stacked” LASSO method discussed in the section above, where as 

휁𝑑𝑗  is optimised separately for each d 

The solutions for 𝛾𝑗 and 휁𝑑𝑗  and are derived using the same calculations shown in 

section 2.5.2. The algorithm is outlined in Table 9.1. 
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Table 9.1 Algorithm to fit meta-LASSO models for logistic regression 

 Let 𝑦𝑖𝑑 = A set of phenotype 

 Let 𝛾𝑗 = A 1 X P matrix of overall estimates 

 Let 휁𝑑𝑗  = A D X P matrix of effect difference estimates 

 Let 𝛽𝑑𝑗 = A D X P matrix of effect estimates s.t. 𝛽𝑑𝑗 = 𝛾𝑗  휁𝑑𝑗   

 Let 𝛽0𝑑 = A vector of intercept estimates  

1. Set {

𝛽𝑑𝑗 =  0 

𝛾𝑗 =  0

휁𝑑𝑗 = 1  
 

 

𝑓𝑜𝑟 𝑎𝑙𝑙 d = {1,… , D}, j = {1,… , P} 

 

2. Set  𝑂𝑙𝑑. 𝐵𝑒𝑡𝑎𝑑𝑗  =  𝛽𝑑𝑗 

3. Calculate �̃�𝑖  = 𝑥𝑖𝑗𝑑  휁𝑑𝑗  

4. Update 𝛾𝑗 using coordinate descent (section 2.5.2) by “stacking” �̃�𝑖𝑗1, … �̃�𝑖𝑗𝑑 

and 𝑦𝑖1, …,𝑦𝑖𝑑 

5. Calculate �̂�𝑖𝑑 = 𝑥𝑖𝑗𝑑  𝛾𝑗 

6. Update 휁𝑑𝑗  using coordinate descent (section 2.5.2) by setting x = �̂�𝑖𝑑  for each d 

and setting a constraint s.t.  휁𝑑𝑗  ≥ 0 

7. Update 𝛽𝑑𝑗 =  𝛾𝑗 휁𝑑𝑗  

8. Repeat steps 2 – 7 until 𝑚𝑎𝑥|𝛽𝑑𝑗 −  𝑂𝑙𝑑. 𝐵𝑒𝑡𝑎𝑑𝑗| < 0.00001 

 

9.2.3 The Data Shared LASSO for integrative analysis 

 

Gross and Tibshirani propose the Data Shared LASSO (DSL) (247) which is a similar 

approach to the meta-LASSO. Following the notation from the previous section, the 

reparameterisation used assumes an additive relationship between the overall 

estimate and the heterogeneity estimate (9.11) and is solved by minimising (9.12).  
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 𝛽𝑑𝑗 = 𝛾𝑗 + 휁𝑑𝑗                              𝑑 = 1,… , 𝐷; 𝑗 = 1,… , 𝑃   (9.11) 

 

 

𝑚𝑖𝑛𝛽𝑓(𝜃) =
1

2𝑁
 ∑∑(𝑦𝑖𝑑 − ∑𝑥𝑖𝑗𝑑𝛽𝑗𝑑

𝑃

𝑗=1

)

2

                        

𝑁

𝑖=1

𝐷

𝑑=1

+𝜆 (‖𝛾𝑗‖1 + ∑ 𝑟𝑑‖휁𝑑𝑗‖1

𝐷

𝑑=1

) 

(9.12) 

 

The 𝑟𝑑 term controls the strength of the penalty of the heterogeneity penalty relative 

to the overall penalty, similar to the 𝛼 term used in elastic net (18). 𝑟𝑑 =
1

√𝐷
 is 

suggested assuming 𝐷 >  3. The authors aim is to identify common variables across 

and within subgroups from a larger dataset. The DSL is not tested by simulation but 

only on a real-life dataset. Although this study uses a dataset of movie reviews, sub 

grouped into genres of drama, comedy and horror, it can easily be applied in an 

integrative analysis setting where each “subgroup” is a separate dataset and hence 

penalise both within and across datasets. Likewise the meta-LASSO could potentially 

combine subgroups as “datasets” for analysis. 

 

The authors used a real-life dataset for analysis for variable prediction rather than 

selection and were compared to a stacked LASSO (𝑟 = ∞) and the separate 

LASSO(𝑟 =  
1

4
). The dataset was split into a training set (n = 16,386) and test set (n = 

18,109) with Mean Squared Error (MSE) calculated from the test set. Results showed 

that the DSL produced the lowest MSE in the all, drama and horror genres with the 

stacked LASSO performing slightly better in comedy. With the exception of the horror 

genre however the difference in MSE between the 3 methods is small (See Table 1). 
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9.2.3.1 Fitting the Data Shared LASSO 

 

The DSL can be easily fitted using coordinate descent by using an augmented data 

approach. This approach pools together all the 𝑦𝑑 phenotypes into a single vector, an 

augmented matrix 𝑍 that is created using the predictor variables (9.13) where each cell 

in the matrix represents either an N x P matrix of 0′𝑠 or a dataset 𝑥𝑑 of the same 

dimensions. This makes the total dimensions of 𝑍 = 𝑁𝐷 𝑥 𝑃(𝐷 + 1).  
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(9.13) 

 

The augmentation allows the DSL method to be fitted using coordinate descent and 

can be fitted using the glmnet package. However in a GWAS setting this may prove 

difficult especially as both N and P are large for each dataset. Some GWAS datasets can 

potentially contain millions of SNPs and therefore lead to problems with memory in R 

(see section 4.7) and therefore is likely to be an unviable method with this particular 

algorithm. 

 

9.3  Simulation study comparing the meta-LASSO 

against the LASSO 

 

In this section, I run a simulation comparing the meta-LASSO against the stacked LASSO 

and separate methods on SNP datasets. The aim of this simulation is to assess the 

performance of the meta-LASSO in a genetic association setting where the power to 

select a causal SNP is often low. The stacked LASSO pools all datasets together without 
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regard for heterogeneity. The separate LASSO fits the LASSO separately on each 

dataset. The comparison against the stacked LASSO is to determine whether there is 

any advantage of the meta-LASSO in a GWAS setting as opposed to just combining all 

the datasets together. 

The meta-LASSO method can be applied to a GWAS study by redefining the gene effect 

estimates to SNP effect estimates. Using the parametrization (9.5), 𝛾𝑗 is defined as the 

overall SNP effect of the jth SNP across all d datasets, 휁𝑑𝑗  still accounts for 

heterogeneity across datasets on the jth SNP in the dth dataset. 𝛽𝑑𝑗  denotes the SNP 

effect of the jth SNP in the dth dataset. However as 𝛽𝑑𝑗 can now take negative values, 

the constraint placed on  휁𝑑𝑗  such that 휁𝑑𝑗  ≥ 0 is not applicable and is not included.  

 

9.3.1 Methods 

 

5 datasets of 50 independent SNPs and 100 subjects were simulated. SNP 10, 20, 30, 

40 and 50 were simulated as causal SNPs with MAFs of 0.02, 0.1, 0.2, 0.25 and 0.4 

respectively. The MAFs for remaining SNPs were randomly generated from a uniform 

distribution with ranging between 0.01 and 0.5. The MAF for each SNP was the same 

across all 5 datasets. SNPs that contained the same combination of alleles across all 

individuals in a dataset were re-simulated until this was not the case. Each dataset was 

standardised separately. 

 

1,000 simulations were run for each analysis with the seed varying between 1 and 101, 

with the exclusion of seed 56 and 10 repetitions for each seed. One dataset failed to 

converge for seed 56 and therefore results for that seed was not included. Closer 

inspection running the simulation for this dataset showed that the algorithm was 

converging however it was taking a greater number of iterations than the default 

setting of 10,000 iterations. In contrast the other datasets took < 10 iterations to 

converge. Li et al. proposed a simplification of the dual penalty by fixing the penalty on 
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𝛾𝑗 to 1 (9.7). This penalty however is too strong for the simulated dataset and returns a 

null model. The penalty was therefore fixed to 0.004(
1

∑ 𝑁𝑑𝑑
).  

 

10-fold CV, BIC and the permutation method were all used for tuning parameter 

selection. The permutation method used 100 repetitions with the optimal tuning 

parameter selected as the median from the 100 repeated estimates. The CV and BIC 

methods used a range of 100 lambda values. These were determined by calculating the 

smallest lambda value required for a null model as the largest lambda value, and the 

remaining 98 values were equidistant values between this value and 0. For the meta-

LASSO the sub-splitting required for CV and the permutations on the phenotype for 

the permutation method were both performed within respective datasets. The BIC for 

the meta-LASSO was calculated as shown in (9.9).  

 

For the stacked LASSO all 5 datasets are pooled together into on larger dataset and 

then fitted with each tuning parameter selection method across all datasets. For the 

separate LASSO, tuning parameter selection was applied to the 5 datasets separately, 

allowing a different optimum λ in each dataset.  

 

Heterogeneity between datasets was simulated by varying the percentage variance 

explained of each causal SNP (3.1) between datasets (Table 9.2). Each causal SNP was 

simulated with a positive β. Firstly a scenario to compare how both Cross-validation 

and the permutation would perform with the meta-LASSO was simulated in a high 

powered setting, similar to the Li study (246). In this scenario each causal SNP 

explained 5% of the variation with no heterogeneity between datasets. 

For the remaining scenarios, a baseline scenario was used that simulates 1% variance 

explained and across all datasets. In the remaining scenarios heterogeneity between 

datasets is increased. Each dataset varied in the percentage of variance explained but 

still averages 1% across all 5 datasets. 
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Table 9.2 Simulation of heterogeneity in datasets and the percentage of variance 

explained in each dataset 

Heterogeneity Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 

High variance 
explained 

5 5 5 5 5 

Baseline 1 1 1 1 1 
Low 0.7 1.3 1 0.7 1.3 
Mid 0.5 1.5 1 0.5 1.5 
High 0 2 1 0 2 

 

Variable selection performance is evaluated by two measures; the first is sensitivity 

and specificity which is based on the proportion of truly positive and negative SNPs as 

described by Li et al. (246). In this case sensitivity is defined as the proportion of truly 

causal SNPs that are selected with a non-zero 𝛽𝑑𝑗. For the remainder of this chapter 

this measure will be known as the single selection measure. Specificity is defined as 

the proportion of truly non-causal SNPs estimated as 𝛽𝑑𝑗 = 0. The second measure 

considered is based on the meta-LASSO and separate LASSO’s ability to replicate 

selection of any SNPs across the 5 datasets. In this case a replication defined as a SNP 

that is selected in more than one dataset. Sensitivity is defined as the proportion of 

truly causal SNPs that are replicated. Specificity is defined as the proportion of non-

causal SNPs estimated as 𝛽𝑑𝑗 = 0 in at least 4 of the 5 datasets (i.e. does not 

replicate). LASSO models for the stacked and separate method were fitted using 

glmnet. The meta-LASSO function was written in R using the algorithm described in 

Table 9.1 and using the coordinate descent algorithm described and written (see 

section 3.2.1). 
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9.3.2 Results in the high variance explained scenario 

 

Sensitivity and specificity rates in the high power scenario are shown in Table 9.3. The 

results for the BIC are similar to those shown by Li et al. in low heterogeneity (246). 

Both the meta-LASSO and stacked LASSO performed well with high sensitivity (0.972 

and 1.00) and specificity rates (0.995 and 0.982). In both this and the Li et al. 

simulation the stacked LASSO produced a higher sensitivity rate than meta-LASSO and 

in both simulations the separate LASSO produced a high specificity but the sensitivity 

were lower than the competing methods.  

 

For Cross-validation, the meta-LASSO performed well producing a high sensitivity rate 

(0.986) compared to the competing tuning parameter selection methods, but also the 

lowest specificity rate (0.992). Both the stacked and separate LASSO methods produce 

lower specificity rates (0.764 and 0.803) for CV than the BIC (0.982 and 0.948) and 

permutation method (0.995 and 0.991). This suggests that the stacked and separate 

LASSO based methods will select a greater number of false positives than the meta-

LASSO method. The stacked LASSO selected on average 10.72 FPs in each model where 

the separate LASSO selected on average 8.87 FPs using CV. The meta-LASSO however 

does not select as many false positives (mean number of false positives selected = 

0.36) suggesting that CV is a more conservative method for variable selection when 

using the meta-LASSO. While the stacked LASSO selected every true SNP using CV, the 

separate LASSO produced a lower sensitivity rate. 

 

 Across the 1,000 simulations the stacked LASSO selected the most causal SNPs and 

produced the highest sensitivity with every tuning parameter selection method. The 

meta-LASSO method performed well using the permutation method in terms of 

reducing the number of false positive SNPs selected and produced the highest 

specificity rate (0.998) across all methods and tuning parameter selection methods. In 

fact all three methods produced the highest specificity using the permutation method 

compared BIC or CV suggesting that this method should be the preferred choice in any 
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study where the number of false positives is to be reduced as much as possible. While 

the sensitivity rate for the permutation method was similar with the other tuning 

parameter selection methods using the meta-LASSO and stacked LASSO, this was not 

the case for the separate LASSO which produced the lowest sensitivity rate (0.486) 

amongst the three tuning parameter selection methods. 

 

The sensitivity rates for each of the 5 simulated causal SNPs were similar for each 

method and tuning parameter selection method (Table 9.4), although the sensitivity 

rate for the rarest causal SNP (MAF = 2%) was slightly lower than the other causal 

SNPs.  

 

Table 9.3 Mean and standard deviation of sensitivity and specificity results using single 

selection measure in a high variance explained scenario using the meta-LASSO, stacked 

LASSO and separate LASSO with Cross-validation, BIC and permutation method as 

tuning parameter selection methods over 1,000 simulations. 

Method 
Cross-validation BIC Permutation method 

Sens Spec Sens Spec Sens Spec 
Meta-
LASSO 

0.986 ± 
0.028 

0.992 ± 
0.016 

0.972 ± 
0.058 

0.995 ± 
0.008 

0.985 ± 
0.029 

0.998 ± 
0.005 

Stacked 
LASSO 

1.000 ± 
0.000 

0.764 ± 
0.122 

1.000 ± 
0.006 

0.982 ± 
0.021 

0.999 ± 
0.015 

0.995 ± 
0.011 

Separate 
LASSO 

0.857 ± 
0.096 

0.803 ± 
0.064 

0.702 ± 
0.129 

0.948 ± 
0.023 

0.486 ± 
0.092 

0.991 ± 
0.006 
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Table 9.4 Sensitivity rates of the 5 causal SNPs in the high variance explained scenario 

using the meta-LASSO, stacked LASSO and separate LASSO and Cross-validation, BIC 

and permutation method as tuning parameter selection methods over 1,000 

simulations. 

Method 
Minor allele 
frequency 

Meta - 
LASSO 

Stacked 
LASSO 

Separate 
LASSO 

Cross-validation 

MAF = 2% 0.972 1.000 0.833 
MAF = 10% 0.989 1.000 0.860 
MAF = 20% 0.989 1.000 0.859 
MAF = 25% 0.989 1.000 0.866 
MAF = 40% 0.993 1.000 0.868 

BIC 

MAF = 2% 0.948 0.999 0.682 
MAF = 10% 0.975 1.000 0.706 
MAF = 20% 0.978 1.000 0.703 
MAF = 25% 0.977 1.000 0.710 
MAF = 40% 0.981 1.000 0.709 

Permutation 
method 

MAF = 2% 0.970 0.996 0.472 

MAF = 10% 0.988 1.000 0.490 

MAF = 20% 0.988 0.999 0.490 

MAF = 25% 0.986 0.999 0.489 

MAF = 40% 0.992 1.000 0.489 

 

The sensitivity and specificity results based on replication across datasets for the meta-

LASSO and separate LASSO is shown in Table 9.5. For the meta-LASSO, SNP selection 

using this measure increased the sensitivity for all tuning parameter selection methods 

with only a small decrease (between 0.003 and 0.004) in specificity for each tuning 

parameter selection method. There was a significantly large increase in the sensitivity 

rates for the separate LASSO using the repetition measure compared to the single 

selection measure. The specificity again slightly decreases for CV but increases for the 

BIC and permutation method.  

 

The results for both LASSO based methods suggest that the replication measure may 

be a better measure to use for SNP selection compared to the single selection measure 

as this measure selects a larger proportion of true positives and at worst, a small 

increase in the number of false positives.  
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Table 9.5 Mean and standard deviation of sensitivity and specificity results for the 

proportion of replicated results in a high variance explained scenario using the meta-

LASSO, stacked LASSO and separate LASSO with Cross-validation, BIC and permutation 

method as tuning parameter selection methods over 1,000 simulations. 

Method 
Cross-validation BIC Permutation method 

Sens Spec Sens Spec Sens Spec 
Meta-
LASSO 

0.998 ± 
0.018 

0.988 ± 
0.024 

0.989 ± 
0.047 

0.992 ± 
0.014 

0.999 ± 
0.083 

0.989 ± 
0.007 

Separate 
LASSO 

0.997 ± 
0.023 

0.744 ± 
0.136 

0.973 ± 
0.082 

0.977 ± 
0.028 

0.793 ± 
0.177 

0.999 ± 
0.004 

 

 

9.3.3 Results on varying levels of heterogeneity 

 

9.3.3.1  Results based on the single selection measure 

 

Table 9.6 shows the results for Cross-validation for the varying levels of heterogeneity. 

The three methods produce very different results. As heterogeneity increased the 

sensitivity for the meta-LASSO and stacked LASSO decreased. The greatest decrease 

occurred between the mid and high levels of heterogeneity. The specificity rate 

remained mostly consistent between heterogeneity levels for all three methods using 

CV. The sensitivity rate for the separate LASSO increases slightly as the heterogeneity 

increases. 

The stacked LASSO again performs well in terms of sensitivity compared to the 

competing methods however, the specificity remains low (> 0.83 across all levels of 

heterogeneity) with on average 7.56 false positive selected at baseline (specificity = 

0.832) and decreasing to 4.82 in the high heterogeneity scenario (specificity = 0.893). 

In contrast both the meta-LASSO and separate LASSO performed poorly in terms of 

sensitivity where between a quarter and a fifth all truly causal SNPs were selected 

(0.174 - 0.264 for meta-LASSO and between 0.177 – 0.181 for separate LASSO). While 
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the separate LASSO still selects a number of false positives, the specificity rate is higher 

than the stacked LASSO and both the sensitivity and specificity for this method remain 

stable regardless of heterogeneity. The use of CV for the meta-LASSO works well in 

terms of reducing the number of false positives (sensitivity between 0.992 and 0.989) 

and in fact seems a relatively conservative method.   

 

Table 9.6 Mean and standard deviation of sensitivity and specificity results using the 

single selection measure for varying levels of heterogeneity using the meta-LASSO, 

stacked LASSO and seperate LASSO with Cross-vaildation over 1,000 simulations. 

Heterogeneity 
Meta - LASSO Stacked LASSO Separate LASSO 

Sens Spec Sens Spec Sens Spec 

Baseline 
0.264 ± 
0.197 

0.992 ± 
0.016 

0.741 ± 
0.291 

0.832 ± 
0.137 

0.177 ± 
0.104 

0.929 ± 
0.048 

Low 
0.257 ± 
0.191 

0.992 ± 
0.016 

0.732 ± 
0.294 

0.834 ± 
0.138 

0.178 ± 
0.103 

0.929 ± 
0.048 

Mid 
0.250 ± 
0.188 

0.991 ± 
0.016 

0.705 ± 
0.306 

0.840 ± 
0.138 

0.179 ± 
0.103 

0.929 ± 
0.049 

High 
0.174 ± 
0.158 

0.989 ± 
0.018 

0.432 ± 
0.329 

0.893 ± 
0.126 

0.181 ± 
0.104 

0.927 ± 
0.049 

 

 

The results for BIC (Table 9.7) show similar patterns to those shown for the CV. As 

heterogeneity increased the sensitivity for the meta-LASSO and stacked LASSO 

decreases. The sensitivity for the separate LASSO increases as heterogeneity increases. 

The specificity of the meta-LASSO and separate LASSO decreases while the specificity 

of the stacked LASSO increases. These patterns for the BIC replicate the patterns 

shown by Li et al. in their simulation (see Table 2 (246)). 

BIC has been shown to be a conservative method for variable selection (see section 

3.3.2.3). It is unsurprising therefore that all three LASSO methods produce high 

specificity rates using BIC as only a small number of variables are selected. Much like 

the simulation performed by Li et al. the meta-LASSO outperforms the competing 

methods using the BIC for tuning parameter selection. Both the meta-LASSO and 

stacked LASSO returned high specificity rates with little difference between them but 
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the meta-LASSO produced a slightly higher sensitivity rate. The separate LASSO returns 

the lowest sensitivity and specificity of the three methods using BIC. For the 

permutation method the stacked LASSO outperforms the competing methods (Table 

9.8). All three methods produce a high specificity rate however; the stacked LASSO has 

a higher sensitivity rate than both the meta-LASSO and separate LASSO. The poor 

performance of the meta-LASSO compared to the stacked LASSO could be attributed 

to the strength of the penalty chosen. As previously discussed, each dataset will have a 

different minimum λ estimate to produce a null model. However by permuting with 

the same λ across all datasets, variable selection may be restricted in some datasets. 

In 3.3.2, the permutation method performed well against the competing tuning 

parameter selection methods in terms of variable selection. All 3 methods produced 

similar results in this simulation for the three tuning parameter selection methods. 

Each method allowed a number of false positives using CV while the BIC does not 

select many true positives. The permutation method has similar specificity rates as BIC 

but a higher sensitivity rate. The separate LASSO produces the lowest sensitivity rate of 

all three methods regardless of which tuning parameter method is used. This is 

unsurprising as models are fitted individually on datasets rather than together 

therefore the analysis will lack power to select causal SNPs. For each tuning parameter 

selection method, the sensitivity increased slightly in the high heterogeneity scenario, 

while they decreased for the meta-LASSO and stacked LASSO. While the separate 

LASSO may lack the power to select truly causal SNPs, the increase in variance 

explained in 2 of the 5 datasets will increase the power within these datasets. In 

general meta-LASSO seems to be a conservative method compared to the stacked 

LASSO regardless of which tuning parameter is used as shown by the high specificity 

and low sensitivity for all three tuning parameter selection methods (Table 9.6, Table 

9.7 and Table 9.8).  

Given the lack of true positives selected, the meta-LASSO would work best with the 

permutation method for tuning parameter selection. The method already controls the 

FPR well and the use of permutation method will allow a higher TPR than BIC or CV. 

The stacked LASSO using the permutation method however showed superior 
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performance across all methods as the sensitivity rate was higher and specificity was 

only slightly lower than the meta-LASSO. 

Table 9.7 Mean and standard deviation of sensitivity and specificity using the single 

selection measure for varying levels of heterogeneity using the meta-LASSO, stacked 

LASSO and seperate LASSO with BIC over 1,000 simulations. 

Heterogeneity 
Meta - LASSO Stacked LASSO Separate LASSO 

Sens Spec Sens Spec Sens Spec 

Baseline 
0.095 ± 
0.105 

0.999 ± 
0.005 

0.076 ± 
0.117 

0.999 ± 
0.004 

0.049 ± 
0.047 

0.992 ± 
0.006 

Low 
0.098 ± 
0.107 

0.998 ± 
0.005 

0.081 ± 
0.121 

0.999 ± 
0.004 

0.049 ± 
0.045 

0.992 ± 
0.005 

Mid 
0.096 ± 
0.105 

0.998 ± 
0.005 

0.071 ± 
0.113 

0.999 ± 
0.004 

0.050 ± 
0.048 

0.993 ± 
0.006 

High 
0.086 ± 
0.100 

0.997 ± 
0.007 

0.049 ± 
0.088 

0.998 ± 
0.006 

0.055 ± 
0.054 

0.992 ± 
0.006 

 

 

Table 9.8 Mean and standard deviation of sensitivity and specificity results using the 

single selection measure for varying levels of heterogeneity using the meta-LASSO, 

stacked LASSO and seperate LASSO with the permutation method over 1,000 

simulations. 

Heterogeneity 
Meta - LASSO Stacked LASSO Separate LASSO 

Sens Spec Sens Spec Sens Spec 

Baseline 
0.307 ± 
0.173 

0.992 ± 
0.011 

0.423 ± 
0.217 

0.987 ± 
0.017 

0.073 ± 
0.051 

0.987 ± 
0.007 

Low 
0.299 ± 
0.171 

0.992 ± 
0.011 

0.416 ± 
0.217 

0.987 ± 
0.017 

0.073 ± 
0.050 

0.987 ± 
0.007 

Mid 
0.286 ± 
0.167 

0.992 ± 
0.011 

0.397 ± 
0.216 

0.987 ± 
0.017 

0.073 ± 
0.051 

0.987 ± 
0.017 

High 
0.171 ± 
0.141 

0.992 ± 
0.011 

0.224 ± 
0.183 

0.986 ± 
0.018 

0.074 ± 
0.050 

0.987 ± 
0.007 
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9.3.3.2  Results based on the proportion of the replication measure 

 

Table 9.9, Table 9.10 and Table 9.11 show the results for Cross-validation, BIC and the 

permutation methods respectively for both the meta-LASSO and separate LASSO using 

the replication measure. In each case the meta-LASSO performed well using this 

measure compared to the single selection measure. There is little difference in 

specificity rates between the two measures however there is an increase in sensitivity 

for each tuning parameter selection method. These results suggest that when a true 

positive is selected, there tends to be a replication in another dataset but this is not 

the case when a false positive is selected. Given the implications of these results the 

meta-LASSO with a replication measure should be used variable selection over the 

single selection measure proposed by Li et al. Both the sensitivity and specificity rates 

increased using the separate LASSO with CV. The sensitivity for permutation method 

and BIC both increased for the replication measure compared to the single selection 

measure but the specificity rate decreased slightly. This shows that the separate LASSO 

rarely selects SNPs using BIC and permutation method and when a SNP is selected it is 

rarely replicated, again this can be attributed to the lack of power.  
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Table 9.9 Mean and standard deviation of sensitivity and specificity results for both selection measures across varying levels of heterogeneity 

using the meta-LASSO and seperate LASSO with Cross-validation over 1,000 simulations. 

Heterogeneity 

Meta - LASSO Separate LASSO 

Single selection Replication Single selection Replication 

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 
Baseline 0.264 ± 0.197 0.992 ± 0.016 0.331 ± 0.240 0.988 ± 0.023 0.177 ± 0.104 0.929 ± 0.048 0.212 ± 0.234 0.958 ± 0.065 

Low 0.257 ± 0.191 0.992 ± 0.016 0.325 ± 0.237 0.988 ± 0.023 0.178 ± 0.103 0.929 ± 0.048 0.215 ± 0.235 0.957 ± 0.064 
Mid 0.250 ± 0.188 0.991 ± 0.016 0.320 ± 0.237 0.987 ± 0.024 0.179 ± 0.103 0.929 ± 0.049 0.215 ± 0.234 0.957 ± 0.064 
High 0.174 ± 0.158 0.989 ± 0.018 0.231 ± 0.201 0.983 ± 0.026 0.181 ± 0.104 0.927 ± 0.049 0.219 ± 0.243 0.955 ± 0.066 

 

Table 9.10 Mean and standard deviation of sensitivity and specificity results for both selection measures across varying levels of heterogeneity 

using the meta-LASSO and seperate LASSO and BIC over 1,000 simulations. 

Heterogeneity 

Meta - LASSO Separate LASSO 

Single selection Replication Single selection Replication 

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

Baseline 0.095 ± 0.105 0.999 ± 0.005 0.129 ± 0.144 0.998 ± 0.008 0.049 ± 0.047 0.992 ± 0.006 0.020 ± 0.064 1.000 ± 0.003 

Low 0.098 ± 0.107 0.998 ± 0.005 0.136 ± 0.151 0.997 ± 0.008 0.049 ± 0.045 0.992 ± 0.005 0.020 ± 0.063 0.999 ± 0.004 

Mid 0.096 ± 0.105 0.998 ± 0.005 0.132 ± 0.146 0.997 ± 0.008 0.050 ± 0.048 0.993 ± 0.006 0.019 ± 0.062 0.999 ± 0.004 

High 0.086 ± 0.100 0.997 ± 0.007 0.125 ± 0.146 0.995 ± 0.011 0.055 ± 0.054 0.992 ± 0.006 0.027 ± 0.077 0.999 ± 0.004 
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Table 9.11 Mean and standard deviation of sensitivity and specificity results for both selection measures across varying levels of heterogeneity 

using the meta-LASSO and seperate LASSO and permutation method over 1,000 simulations. 

Heterogeneity 

Meta - LASSO Separate LASSO 

Single selection Replication Single selection Replication 

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

Baseline 
0.307 ± 
0.173 

0.992 ± 
0.011 

0.388 ± 
0.212 

0.989 ± 
0.015 

0.073 ± 
0.051 

0.987 ± 
0.007 

0.046 ± 
0.092 

0.998 ± 
0.006 

Low 
0.299 ± 
0.171 

0.992 ± 
0.011 

0.381 ± 
0.212 

0.989 ± 
0.015 

0.073 ± 
0.050 

0.987 ± 
0.007 

0.045 ± 
0.091 

0.998 ± 
0.006 

Mid 
0.286 ± 
0.167 

0.992 ± 
0.011 

0.365 ± 
0.208 

0.989 ± 
0.015 

0.073 ± 
0.051 

0.987 ± 
0.017 

0.044 ± 
0.090 

0.998 ± 
0.006 

High 
0.171 ± 
0.141 

0.992 ± 
0.011 

0.229 ± 
0.183 

0.988 ± 
0.015 

0.074 ± 
0.050 

0.987 ± 
0.007 

0.043 ± 
0.090 

0.998 ± 
0.006 
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9.3.4 Sensitivity analysis 

 

Results of the simulation showed that the meta-LASSO seems to be a conservative 

method which produced a low sensitivity and high specificity regardless of the tuning 

parameter selection method that is used. Perhaps surprisingly, this is even the case 

when using Cross-validation which tends to over select variables. The reason for this 

must be attributed to the penalty on 휁𝑑𝑗  as removing this penalty from equation (9.6) 

reduces the equation to the stacked LASSO. Two reasons were considered as to why 

the meta-LASSO did not select many variables. The first is the nature of the penalty 

on 휁𝑑𝑗 , and the second is the strength of the fixed penalty on 𝛾𝑗. To check that this was 

not due to the strength of the fixed penalty, a sensitivity analysis was run by varying 

the fixed λ. The results are shown in Table 9.12, Table 9.13 and Table 9.14 for the three 

respective tuning parameter selection methods. The results show that there is little 

difference in sensitivity and specificity rates and that the conclusion to this simulation 

study would remain the same if a different fixed λ value was selected. The specificity 

rate remained similar across all levels heterogeneity, tuning parameter selection 

methods and fixed lambdas (between 0.987 and 0.999). The sensitivity rate for CV and 

permutation method was highest for λ = 0.002 suggesting a smaller penalty would 

work best, however there is only a 2-3% difference in sensitivity compared to the λ = 

0.004. A λ = 0.006 seemed to perform best for the BIC however this increase in 

sensitivity compared to λ = 0.004 was also small (<1% at most levels of heterogeneity). 

A grid search method could have been used in this simulation rather than fixing one 

penalty in order to find the optimum penalty. The meta-LASSO using the permutation 

method performed well compared to the other tuning parameter selection methods. 

This method produced a higher sensitivity rate while maintaining a similar specificity 

rate compared to the BIC. Results suggest that λ = 0.002 produced the best results as 

the specificity rate remained high but the sensitivity rate increased. These results 

however still do not outperform those using the stacked LASSO regardless of the 

heterogeneity level. 
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Given the strength of the fixed penalty has little effect on the sensitivity and specificity 

rates it seems the nature of the penalty on  휁𝑑𝑗  leads to the meta-LASSO producing 

conservative models. This is because the shrinkage of the heterogeneity estimates is 

towards 0 as does the fixed penalty on 𝛾𝑗. While the meta-LASSO is able to perform 

well when there are large effect estimates (Table 9.3) and when the effects sizes for a 

causal SNP across studies are small, the heterogeneity between SNPs will also be small. 

If the heterogeneity between SNPs is small then little shrinkage is required to remove 

the SNP from the model and hence lower the sensitivity rate.  

 

Table 9.12 Mean and standard deviation of sensitivity and specificity rates for the 

meta-LASSO using Cross-validation across varying levels of heterogeneity and fixed λ 

estimates over 1,000 simulations. 

Heterogeneity Measure 
Stacked 
LASSO 

λ = 
0.002 

λ = 
0.004 

λ = 
0.006 

λ = 
0.010 

λ = 
0.020 

Baseline 
Sensitivity 

0.741 ± 
0.291 

0.292 ± 
0.213 

0.264 ± 
0.197 

0.242 ± 
0.189 

0.224 ± 
0.190 

0.224 ± 
0.197 

Specificity 
0.832 ± 
0.137 

0.990 ± 
0.019 

0.992 ± 
0.016 

0.992 ± 
0.015 

0.992 ± 
0.014 

0.994 ± 
0.012 

Low 
Sensitivity 

0.732 ± 
0.294 

0.288 ± 
0.211 

0.257 ± 
0.191 

0.237 ± 
0.185 

0.218 ± 
0.186 

0.217 ± 
0.189 

Specificity 
0.834 ± 
0.138 

0.991 ± 
0.018 

0.992 ± 
0.016 

0.992 ± 
0.015 

0.992 ± 
0.014 

0.994 ± 
0.012 

Mid 
Sensitivity 

0.705 ± 
0.306 

0.275 ± 
0.204 

0.250 ± 
0.188 

0.230 ± 
0.181 

0.214 ± 
0.182 

0.212 ± 
0.190 

Specificity 
0.840 ± 
0.138 

0.990 ± 
0.018 

0.991 ± 
0.016 

0.992 ± 
0.015 

0.992 ± 
0.014 

0.993 ± 
0.013 

High 

Sensitivity 
0.432 ± 
0.329 

0.177 ± 
0.169 

0.174 ± 
0.158 

0.166 ± 
0.155 

0.156 ± 
0.152 

0.146 ± 
0.147 

Specificity 
0.893 ± 
0.126 

0.987 ± 
0.021 

0.989 ± 
0.018 

0.990 ± 
0.016 

0.991 ± 
0.016 

0.993 ± 
0.012 
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Table 9.13 Mean and standard deviation of sensitivity and specificity rates for the 

meta-LASSO using BIC across different levels of heterogeneity and fixed λ estimates 

over 1,000 simulations. 

Heterogeneity Measure 
Stacked 
LASSO 

λ = 
0.002 

λ = 
0.004 

λ = 
0.006 

λ = 
0.010 

λ = 
0.020 

Baseline 
Sensitivity 

0.076 ± 
0.117 

0.099 ± 
0.109 

0.095 ± 
0.105 

0.106 ± 
0.105 

0.097 ± 
0.097 

0.092 ± 
0.092 

Specificity 
0.999 ± 
0.004 

0.999 ± 
0.005 

0.999 ± 
0.005 

0.998 ± 
0.006 

0.998 ± 
0.005 

0.998 ± 
0.005 

Low 
Sensitivity 

0.081 ± 
0.121 

0.092 ± 
0.106 

0.098 ± 
0.107 

0.101 ± 
0.107 

0.098 ± 
0.096 

0.217 ± 
0.189 

Specificity 
0.999 ± 
0.004 

0.999 ± 
0.004 

0.998 ± 
0.005 

0.998 ± 
0.005 

0.998 ± 
0.005 

0.994 ± 
0.012 

Mid 
Sensitivity 

0.071 ± 
0.113 

0.096 ± 
0.104 

0.096 ± 
0.105 

0.102 ± 
0.107 

0.096 ± 
0.095 

0.091 ± 
0.093 

Specificity 
0.999 ± 
0.004 

0.999 ± 
0.005 

0.998 ± 
0.005 

0.998 ± 
0.005 

0.998 ± 
0.005 

0.998 ± 
0.005 

High 

Sensitivity 
0.049 ± 
0.088 

0.079 ± 
0.096 

0.086 ± 
0.100 

0.093 ± 
0.100 

0.086 ± 
0.089 

0.075 ± 
0.083 

Specificity 
0.998 ± 
0.006 

0.998 ± 
0.006 

0.997 ± 
0.007 

0.996 ± 
0.007 

0.996 ± 
0.006 

0.997 ± 
0.006 
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Table 9.14 Mean and standard deviation of sensitivity and specificity rates for the 

meta-LASSO using permutation method across different levels of heterogeneity and 

fixed λ estimates over 1,000 simulations. 

Heterogeneity Measure 
Stacked 
LASSO 

λ = 
0.002 

λ = 
0.004 

λ = 
0.006 

λ = 
0.010 

λ = 
0.020 

Baseline 
Sensitivity 

0.423 ± 
0.217 

0.357 ± 
0.192 

0.307 ± 
0.173 

0.273 ± 
0.161 

0.243 ± 
0.154 

0.273 ± 
0.173 

Specificity 
0.987 ± 
0.017 

0.990 ± 
0.013 

0.992 ± 
0.011 

0.993 ± 
0.010 

0.994 ± 
0.009 

0.993 ± 
0.011 

Low 
Sensitivity 

0.416 ± 
0.217 

0.349 ± 
0.189 

0.299 ± 
0.171 

0.268 ± 
0.159 

0.238 ± 
0.152 

0.267 ± 
0.169 

Specificity 
0.987 ± 
0.017 

0.990 ± 
0.013 

0.992 ± 
0.011 

0.993 ± 
0.010 

0.994 ± 
0.009 

0.993 ± 
0.011 

Mid 
Sensitivity 

0.397 ± 
0.216 

0.332 ± 
0.186 

0.286 ± 
0.167 

0.254 ± 
0.156 

0.228 ± 
0.150 

0.260 ± 
0.168 

Specificity 
0.987 ± 
0.017 

0.990 ± 
0.013 

0.992 ± 
0.011 

0.993 ± 
0.010 

0.994 ± 
0.009 

0.993 ± 
0.011 

High 

Sensitivity 
0.224 ± 
0.183 

0.185 ± 
0.156 

0.171 ± 
0.141 

0.161 ± 
0.132 

0.156 ± 
0.128 

0.172 ± 
0.142 

Specificity 
0.986 ± 
0.018 

0.990 ± 
0.013 

0.992 ± 
0.011 

0.990 ± 
0.001 

0.994 ± 
0.009 

0.992 ± 
0.011 

 

 

9.4  Discussion 

 

In the previous section, a simulation study was conducted to assess the relative 

performance of the meta-LASSO when the simulated effect sizes are not overpowered. 

The Li study simulated effect sizes of 𝛽𝑑𝑗 ~ N(3, 0.5)², in my high-powered simulation 

the 𝛽𝑑𝑗 effect estimates varied between 1.13 and 0.32 depending on the MAF of the 

causal SNP. Even with a smaller effect size the high powered scenario produced similar 

results as the Li et al. simulation. This simulation showed the same patterns for the 

three LASSO based methods as the Li et al. simulation, with the sensitivity and 

specificity rates decreasing and heterogeneity increased for both meta-LASSO and 

stacked LASSO. The separate LASSO saw an increase in sensitivity and a decrease in 

specificity as heterogeneity increased. These patterns were apparent in the lower 

powered simulations and across all three tuning parameter selection methods. To test 
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whether the selection of a fixed λ had any effect on the simulation results, a sensitivity 

analysis was conducted to test varying values of the fixed penalty. The results showed 

that the fixed penalty in fact had little effect on the overall result and that the stacked 

LASSO using the permutation method was the best performing method overall. 

 

Two defined measures were used in this simulation; the first was the single selection 

measure which calculated the total proportion of true and false SNPs that were 

selected, and the second was the replication measure which calculated the proportion 

of true and false SNPs replicated the correct result. The simulation showed that 

replication measure produced a higher sensitivity while maintaining a similar 

specificity as the single selection measure. The replication measure can be used to 

protect against selecting variables that are only selected in one dataset and may in fact 

be a false positive. This simulation showed that when a true positive is selected, there 

tends to be a replication in at least one dataset but this is not the case when a false 

positive is selected. 

 

9.5 Conclusion 

 

In this chapter, I have reviewed a number integrative analysis based methods that 

incorporate penalised regression. I followed up by conducting a simulation study 

comparing the meta-LASSO method (246) against both the stacked LASSO and 

separate LASSO in a SNP study setting. The results showed that the meta-LASSO 

performed well for both CV and BIC compared to the stacked and separate methods 

but did not perform well using the permutation method. For each tuning parameter 

selection method the meta-LASSO produced a low sensitivity and high specificity rates 

suggesting that the method is quite conservative for SNP selection. Of the three tuning 

parameter selection methods the permutation method performs the best but is 

outperformed by the stacked LASSO using the permutation method. 
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Results of the simulation showed that the meta-LASSO seems to be a conservative 

method which produced a low sensitivity and high specificity regardless of the tuning 

parameter selection method that is used. There were two potential reasons for this, 

first is the nature of the penalty on 휁𝑑𝑗 , the second is the strength of the fixed penalty 

on 𝛾𝑗. A sensitivity analysis was performed to see the influence of the fixed penalty; 

the results showed that there was little difference in varying this penalty (Table 9.12, 

Table 9.13 and Table 9.14). Therefore the conservative nature of this method seems to 

be due to the  휁𝑑𝑗  penalty as it shrinks to 0 further removing variables from the model.  

 

I also suggest an alternative measure for variable selection for both the meta-LASSO 

and separate LASSO which selects variables only if the SNP is selected in more than 

one dataset (i.e. replicated). Li et al. suggest variable selection to be based on if any 

SNP from any one dataset is selected (246). Results showed that the replication 

measure produces a similar specificity rates but a higher sensitivity rates which 

suggests a more powerful measure for variable selection.  

 

To current knowledge this is the first study that applies the meta-LASSO in a SNP study 

and also tests if the method works in a setting where the causal variables not 

overpowered. This is also the first study that tests other tuning parameter selection 

methods such as Cross-validation and the permutation method for the meta-LASSO. 
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10 The Integrative LASSO 

10.1 Introduction 

 

Results from the simulation study in Chapter 9 comparing a number of methods for 

integrative analysis produced low sensitivity rate in the lower powered scenario where 

the level of heterogeneity was varied. The stacked LASSO method was the exception to 

this rule; however the method is unable to allow for heterogeneity between datasets. 

In this chapter, I propose an alternative method, the Integrative LASSO (IL). The 

purpose of the Integrative LASSO is to penalise SNPs within datasets but also penalise 

some SNPs into the model by averaging β estimates across datasets and therefore 

potentially increasing the sensitivity rate.  

 

In this chapter, I firstly describe the Integrative LASSO and explain the reasoning 

behind the penalties that are used. I provide an algorithm to apply the IL method to 

datasets by coordinate descent. I then provide an example of how the Integrative 

LASSO works using a test dataset and finally conduct a simulation study comparing the 

IL to meta-LASSO, stacked LASSO and separate LASSO which were discussed in greater 

detail in Chapter 9. 

 

10.2 The Integrative LASSO 

 

Consider the same scenario described in the previous chapter where there are D 

datasets 𝐻1, … , 𝐻𝐷 for an integrative analysis. Each dataset of the D datasets consists 

of 𝑁𝑑 subjects and the same P SNPs. The following notation is used, let 𝑖 =  {1, …  𝑁} 

denote the ith subject, 𝑗 =  {1, …  𝑃} denote the jth SNP and 𝑑 =  {1, …  𝐷} represents 

the dth dataset. For simplicity it is assumed that each dataset consists of the same 
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number of subjects contains the same SNPs in each dataset. Each dataset is 

standardised separately. The Integrative LASSO (IL) minimises the following function: 
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(10.1) 

 

 

The IL incorporates two penalty terms with elements of both the fused LASSO (32) and 

elastic net (18) in the second penalty. The first penalty penalises SNPs within each 

dataset which will produce separate 𝛽𝑗 for each of the D datasets, similar to the 

penalty on ζ for the meta-LASSO method (246). The second penalty attempts to 

average 𝛽𝑑𝑗 estimates across datasets by penalising the squared difference between 

each 𝛽𝑑𝑗 estimates towards the mean estimate of these estimates across all datasets. 

For this chapter, the 𝜆1 penalty is called the LASSO penalty and the 𝜆2 penalty will be 

referred to as the variance penalty. The variance penalty penalises 𝛽𝑑𝑗 estimates 

towards the mean across all D datasets. The logic behind this penalty is that a casual 

SNP is likely to have a non-zero beta estimates with the same sign in most, if not all, 

datasets leading to a non-zero mean. In contrast mean beta across all D datasets for a 

non-causal SNP is likely to be zero. Therefore by forcing the SNPs towards the mean 

across all datasets the IL attempts to retain the causal SNPs by penalising these SNPs 

away from zero while non-causal SNPs are penalised further towards zero. An increase 

in 𝜆2 penalises SNPs towards the mean 𝛽𝑗 across all D datasets therefore for any large 

penalty on 𝜆2 combined with a small penalty on 𝜆1, the estimates are forced towards a 

OLS regression model, where the estimates across all datasets will be the same and 

none or a very small number of the SNPs are removed from the model. The square 

difference was used rather than the absolute difference for two reasons; the first was 

that removing SNPs from the datasets has greater importance (i.e variable selection is 

performed). The second reason is that the squared term in the elastic net encourages a 
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grouping effect that the absolute penalty does not (18), therefore this would aid in 

grouping SNP estimates across datasets. 

 

10.3 Fitting the Integrative LASSO via coordinate 

descent 

 

The Integrative LASSO can be fitted using the coordinate decent algorithm (CDA). This 

section presents the algebra and my own algorithm for the IL. Both the algebra and 

algorithm presented are similar for to those I show for the LASSO in sections 2.4.2 and 

3.2.1.  

 

10.3.1  The algebra for fitting the Integrative LASSO via coordinate descent 

 

The Integrative LASSO minimises the function shown in (10.1). Removing the 

𝜆2 penalty from this function, a function that fits the separate LASSO on each dataset 

is obtained which can be performed by coordinate descent and the solution to 

minimising the LASSO is shown in section 2.5.2.1. We can therefore concentrate on 

minimising the variance penalty. We wish to minimise this function of 𝜆2 (𝑓(𝜆2)) for 

some 𝛽𝑙𝑘 where 𝑙 = {1,… , 𝐷}, 𝑘 = {1,… , 𝑃} and therefore differentiate w.r.t 𝛽𝑙𝑘 to 

produce a solution.  
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 We firstly expand summation of the penalty over the D datasets (10.2).  
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(10.2) 

 

For any 𝑙 = {1,… , 𝐷} equation (10.2) can be generalised as: 

 

 

𝑓(𝜆2) = ∑((𝛽𝑙𝑘 − 
1

𝐷
 ∑𝛽𝑑𝑘

𝐷

𝑑=1

)

2𝑃

𝑘=1

+ ∑ (𝛽𝑚𝑘 − 
1

𝐷
 ∑𝛽𝑑𝑘

𝐷

𝑑=1

)

2𝐷

𝑚=1,𝑚≠𝑙,

)  

 

(10.3) 

 

We now differentiate w.r.t. 𝛽𝑙𝑘 and simplify: 
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 [(𝐷 − 1)𝛽𝑙𝑘 − ( ∑ 𝛽𝑚𝑘

𝐷

𝑚=1,𝑚≠𝑙

) + (
𝐷 − 1

𝐷
−
𝐷 − 1

𝐷
)∑𝛽𝑑𝑘

𝐷

𝑑=1

] 
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 ∴  
𝛿𝑓(𝜆2)

𝛿𝛽𝑙𝑘
= 
2

𝐷
 [(𝐷 − 1)𝛽𝑙𝑘 − ( ∑ 𝛽𝑚𝑘

𝐷

𝑚=1,𝑚≠𝑙

)] (10.4) 

 

 

Therefore the Integrative LASSO can be solved for any �̂�𝑙𝑘 by: 

 

 

 

�̂�𝑙𝑘 = 
1

∑ 𝑥𝑙𝑖𝑘
2𝑁

𝑖=1

(−
1

𝑁
∑(𝑦𝑙𝑖 − 𝜇𝑙 − ∑ 𝑥𝑙𝑖𝑗𝛽𝑙𝑗

𝑃

𝑗=1,𝑗≠𝑘

 )

𝑁

𝑖=1

𝑥𝑙𝑖𝑘

+ 𝜆1 𝑠𝑖𝑔𝑛(𝛽𝑙𝑘)

+ 𝜆2
2

𝐷
 [(𝐷 − 1)𝛽𝑙𝑘 − ( ∑ 𝛽𝑚𝑘

𝐷

𝑚=1,𝑚≠𝑙

)]) 

(10.5) 
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The derivative of the LASSO penalty function again yields directional derivatives 

dependant on the sign of 𝛽𝑘. For any 𝛽𝑘 a right (positive) and left (negative) derivatives 

are calculated using the following steps: 

 

 

 

𝐿𝑒𝑡 
1

𝑁
 ∑(𝑦𝑙𝑖 − 𝜇𝑙 − ∑ 𝑥𝑙𝑖𝑗𝛽𝑙𝑗

𝑝

𝑗=1,𝑗≠𝑘

 )

𝑁

𝑖=1

𝑥𝑙𝑖𝑘  

+ 𝜆2
2

𝐷
 [(𝐷 − 1)𝛽𝑙𝑘 − ( ∑ 𝛽𝑚𝑘

𝐷

𝑚=1,𝑚≠𝑙

)]

=  𝑆(𝑙, 𝑦, 𝜇, 𝑥, 𝛽, 𝜆2) 
 

𝐿𝑒𝑡 ∑𝑥𝑙𝑖𝑘
2

𝑁

𝑖=1

 =  𝑆𝑥𝑥𝑙  

 

𝑖𝑓 𝛽𝑘 > 0 

{
 
 

 
 𝑟𝑑 =

−𝑆(𝑙, 𝑦, 𝜇, 𝑥, 𝛽, 𝜆2) + 𝜆1 

𝑆𝑥𝑥𝑙

𝑙𝑑 =  
−𝑆(𝑙, 𝑦, 𝜇, 𝑥, 𝛽, 𝜆2) + 𝜆1

𝑆𝑥𝑥𝑙

 

 
 

𝑖𝑓 𝛽𝑘 < 0 

{
 
 

 
 𝑟𝑑 =

−𝑆(𝑙, 𝑦, 𝜇, 𝑥, 𝛽, 𝜆2) − 𝜆1 

𝑆𝑥𝑥𝑙

𝑙𝑑 =  
−𝑆(𝑙, 𝑦, 𝜇, 𝑥, 𝛽, 𝜆2) − 𝜆1

𝑆𝑥𝑥𝑙

 

 

𝑖𝑓 𝛽𝑘 = 0 

{
 
 

 
 𝑟𝑑 =

−𝑆(𝑙, 𝑦, 𝜇, 𝑥, 𝛽, 𝜆2) + 𝜆1 

𝑆𝑥𝑥𝑙

𝑙𝑑 =  
−𝑆(𝑙, 𝑦, 𝜇, 𝑥, 𝛽, 𝜆2) − 𝜆1

𝑆𝑥𝑥𝑙

 

 
 

(10.6) 

 

In order to update  𝛽𝑙𝑘 for any iteration, if 𝑙𝑑. 𝑟𝑑 >  0 then: 

 𝛽𝑙�̂� =  𝛽𝑙𝑘 − 𝑟𝑑 (10.7) 
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10.3.2  My coordinate descent algorithm for the Integrative LASSO 

 

Table 10.1 shows the pseudo code for my coordinate decent algorithm to fit the 

Integrative LASSO. The algorithm is very similar to the coordinate descent algorithm 

for the LASSO described in section 2.4.2. Each dataset is optimised separately and 

repeated over a loop across datasets until convergence is met. Convergence is based 

on the sum of the absolute differences between iterations from the current iteration 

loop (�̂�) and the beta estimates from the previous iteration loop (Oldbeta) both within 

(step 19) and across datasets (step 20). However the convergence threshold can be 

different for the two loops. An alternative convergence threshold that could be used is 

the maximum absolute difference across all SNPs. The inclusion of the variance penalty 

is shown in step 16. 

 

Table 10.1 My pseudo code to fit the Integrative LASSO using the coordinate descent 

algorithm 

 D = the number of datasets 

 Let d = the dth dataset, where d = {1, …, D} 

 Let N = the number of subjects in the dataset 

 Let i = the ith subject, where i = {1, …, N} 

 Let P = the number of SNPS in each dataset 

 Let j = the jth SNP, where j = {1, …, P} 

 𝑥𝑑= The N x P standardised SNP matrix for the dth dataset 

 𝑦𝑑  = A continuous phenotype with mean μd and standard deviation 𝜎2 for 

the dth dataset 

1. Specify two penalty thresholds for the LASSO penalty and variance 

penalty. Call them 𝜆1 and 𝜆2. 

2. Specify the maximum number of iterations that are to be used within each 

dataset. Call it NIter1 

3. Specify the maximum number of iterations that are to be used across 

dataset. Call it NIter2 
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4. Specify convergence threshold > 0 for convergence within a dataset. Call 

it THRESH1 

5. Specify convergence threshold > 0 for convergence across datasets. Call it 

THRESH2 

6. Calculate the intercept which is the mean of yd. Call it 𝑚𝑢𝑑  for all 𝑑 

7. Calculate sxxd for all 𝑑, where 𝑠𝑥𝑥𝑑 = ∑ 𝑥𝑑𝑗
2𝑃

𝑗=0  

8. Generate a 𝐷 𝑥 𝑃 matrix of initial estimates of length P. Call it Betahat (�̂�) 

9. Generate the same 𝐷 𝑥 𝑃 matrix of initial estimates of length P. Call it 

Oldbeta 

10. Set 𝑑 =  1 

11. Set 𝑖𝑡𝑒𝑟2 =  1 

12. Set 𝑖𝑡𝑒𝑟1 =  1 

13. For each cell in the dth row of Oldbeta, replace the Oldbeta values with 

those in the dth row of Betahat (�̂�) 

14. Set 𝑗 =  1 

15. Take the jth column of �̂�, �̂�𝑗  and remove the dth row. Call this vector 

OtherBetas 

16. Calculate 

𝑟 =  ∑ (𝑦𝑑𝑖 −𝑚𝑢𝑑)𝑥𝑑𝑗
𝑁
𝑖=1 − 𝜆2

2𝑁

𝐷
 ((𝐷 − 1) �̂�𝑑𝑗 −∑𝑂𝑡ℎ𝑒𝑟𝐵𝑒𝑡𝑎𝑠) 

17. Calculate the left (ld) and right derivatives (rd) 

 

a. If �̂�𝑑𝑗 = 0 {
𝑙𝑑 =  −𝑟 + 𝑁𝜆1
𝑟𝑑 =  −𝑟 − 𝑁𝜆1

 

b. If  �̂�𝑑𝑗 > 0 {
𝑟𝑑 =  −𝑟 + 𝑁𝜆1
𝑙𝑑 =  −𝑟 + 𝑁𝜆1

 

c. If  �̂�𝑑𝑗 < 0 {
𝑟𝑑 =  −𝑟 − 𝑁𝜆1
𝑙𝑑 =  −𝑟 − 𝑁𝜆1

 

18. Let 𝑁𝑒𝑤. 𝑏𝑒𝑡𝑎 denote the updated Beta estimate. In order to calculate this: 

a. If 𝑟𝑑 𝑥 𝑙𝑑 ≤ 0 then  �̂�𝑑𝑗 = 0 

b.  If 𝑟𝑑 𝑥 𝑙𝑑 > 0 then 

i. Calculate 𝑁𝑒𝑤. 𝑏𝑒𝑡𝑎𝑑𝑗  =  �̂�𝑑𝑗 − 
𝑟𝑑

𝑠𝑥𝑥𝑑
 

ii. Update 𝑚𝑢𝑑 = 𝑚𝑢𝑑 + (𝑁𝑒𝑤. 𝑏𝑒𝑡𝑎𝑑𝑗 −  �̂�𝑑𝑗)𝑥𝑑𝑗 
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iii. Replace  �̂�𝑑𝑗 = 𝑁𝑒𝑤. 𝑏𝑒𝑡𝑎𝑑𝑗 

19. Decide if the convergence criterion within dataset has been met. 

a. If ∑ | �̂�𝑑𝑗 − 𝑂𝑙𝑑𝑏𝑒𝑡𝑎𝑑𝑗|
𝑃
𝑗=1 < 𝑇𝐻𝑅𝐸𝑆𝐻1 and 𝑗 =  𝑃 then convergence 

criterion has been met. Go to Step 20 

b. If ∑ | �̂�𝑑𝑗 − 𝑂𝑙𝑑𝑏𝑒𝑡𝑎𝑑𝑗|
𝑃
𝑗=1 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ1 then convergence criterion has not 

been met.  

i. If 𝑖𝑡𝑒𝑟1 =  𝑁𝐼𝑡𝑒𝑟1. Stop. Model has not converged 

ii. If 𝑗 =  𝑃, set 𝑖𝑡𝑒𝑟1 =  𝑖𝑡𝑒𝑟1 + 1. Go to step 14. 

iii. If 𝑗 <  𝑃 & 𝑖𝑡𝑒𝑟1 <  𝑁𝐼𝑡𝑒𝑟, set 𝑗 =  𝑗 + 1. Go to step 15. 

20. Decide if the convergence criterion across datasets has been met. 

a. If ∑ ∑ | �̂�𝑑𝑗 − 𝑂𝑙𝑑𝑏𝑒𝑡𝑎𝑑𝑗|
𝑃
𝑗=1

𝐷
𝑗=1 < 𝑇𝐻𝑅𝐸𝑆𝐻2 and 𝑑 = 𝐷 then 

convergence criterion has been met.  �̂�𝑑𝑗 contains a matrix of beta 

estimates obtained by the Integrative LASSO for tuning parameter 𝜆1 

and 𝜆2. 

b. If ∑ ∑ | �̂�𝑑𝑗 − 𝑂𝑙𝑑𝑏𝑒𝑡𝑎𝑑𝑗|
𝑃
𝑗=1

𝐷
𝑗=1 > 𝑇𝐻𝑅𝐸𝑆𝐻2 then convergence 

criterion has not been met. 

i. If 𝑖𝑡𝑒𝑟2 =  𝑁𝐼𝑡𝑒𝑟2. Stop. Model has not converged 

ii. If 𝑑 =  𝐷, set 𝑖𝑡𝑒𝑟2 =  𝑖𝑡𝑒𝑟2 + 1. Go to step 12 

iii. If 𝑑 <  𝐷, set 𝑑 =  𝑑 + 1. Go to step 12 

 

 

10.4 Example of the Integrative LASSO on a test 

dataset 

 

For this example, a dataset was simulated as described in section 9.3.1 with 5 datasets 

of 50 independent SNPs and 100 subjects in each dataset. Each of the five causal SNPs 

explained 5% of the total variance of the phenotype. Each casual SNP was simulated 

with a positive effect estimate. A seed was set to 1 using the set.seed()command 

in R. 10,000 iterations (NIter1 in Table 10.1) and a convergence threshold of 0.0001 

(THRESH1 in Table 10.1) was used for convergence within each dataset. 40 iterations 
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(NIter2 in Table 10.1) and a convergence threshold of 0.001 (THRESH2 in Table 10.1) 

was used for convergence within each dataset.  

 

10.4.1 Illustration of the variance penalty 

 

The smallest 𝜆1 required for a null model was 0.52513. Values of 𝜆2 ranged between 0 

and 0.62. When 𝜆2 > 0.62 the model failed to converge within each dataset and is 

discussed futher in section 10.4.2. 

 

Figure 10.1 shows the coefficient path plot for the 45 non-causal SNPs (top left) and 

the 5 causal SNPs in all 5 datasets across a range of 𝜆2 values with no LASSO 

penalty, 𝜆1 = 0. When 𝜆2 = 0 the β estimates obtained are the OLS regression 

estimates for each SNP in each dataset. As the variance penalty increases, these 

estimates were forced towards the mean β across all datasets which is the 𝛽𝑗 

produced by pooling all datasets together and fitting an OLS regression. It is clear in 

Figure 10.1 that the non-causal SNPs were generally being shrunk towards 0, which is 

the approximate simulated mean for a non-causal SNP. The causal SNPs do not shrink 

towards 0 but to some value > 0 as their simulated effect is also some positive non-

zero value. The shrinkage for each SNP is shown in greater detail in Appendix D. 

 

The addition of the LASSO penalty will also penalise SNPs towards 0, much like the 

separate LASSO method discussed in Chapter 9. Figure 10.2 shows the coefficient path 

plot for the 45 non-causal SNPs and the 5 causal SNPs in all 5 datasets across a range of 

𝜆2 values with the LASSO penalty 𝜆1 = 0.1. A number of SNP estimates have shrunk to 

0 and have been removed from the model. The increase in the variance penalty is 

further forcing the remaining non-causal SNPs with larger effect estimates towards 0. 

When 𝜆2 = 0, 67 of the 250 SNPs remain in the model including 24 of the 25 casual 

SNPs (sensitivity = 0.960, specificity = 0.809). By increasing the variance penalty a 

number of SNPs were forced out of the model but also some SNPs were forced back 
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into the model. This is all dependant on the mean β estimate for the SNP across the 

datasets when 𝜆1 = 0.1. A total of 71 SNPs were selected when 𝜆2 = 0.62 (sensitivity 

= 1.000, specificity = 0.796), an overall increase of 4 SNPs being selected. The aim for 

this method is to attempt include a larger number of true positives in the model and 

the increase in the variance penalty forces the single causal SNP estimated as 0 when 

𝜆2 = 0 on SNP 10 into the model (Figure 10.2). Of the remaining SNPs forced into the 

model, the β estimates remain small (|𝛽𝑑𝑗|  <  0.0011).  

 

When  𝜆1 = 0.2 and 𝜆2 = 0, the model selects 17 SNP, 13 of which are causal SNPs 

(sensitivity = 0.520, specificity = 0.982). Figure 10.4 shows the effect of the variance 

penalty as some causals SNPs are forced back into the model. When 𝜆2 = 0.62, the 

model selects 27 SNPs of which 21 are causal SNPs resulting in a higher sensitivity rate 

and only slightly lower specificity rate (sensitivity = 0.778, specificity = 0.973). In this 

case, no SNPs were removed from the model when the variance penalty was 

increased. Further increasing the LASSO penalty to 𝜆1 = 0.3 (Figure 10.5) shows similar 

results, where 𝜆2 = 0, 7 causal SNPs were selected (sensitivity = 0.280, specificity = 

1.000) whereas 𝜆2 = 0.62 selects a further two causal SNPs (sensitivity = 0.360, 

specificity = 1.000). None of the non-causal SNPs are selected at this point.  

 

In this example, 𝜆1 = 0.3 is the largest 𝜆1 value that will penalise SNPs into the model. 

After this point increasing  𝜆1 will shrink the mean β estimates across all datasets 

towards 0. As the LASSO penalty increases, the 𝛽𝑑𝑗 estimates shrink towards 0 as does 

the mean across all datasets. Therefore for 𝜆1 > 0.3, the mean β estimates across all 

datasets becomes too small to be able to force more SNPs into the dataset. 
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Figure 10.1 Coefficient path plots for the Integrative LASSO when 𝜆1 = 0. The top left plot shows the forty-five non-causal SNPs in each of the 

five datasets. The remaining five plots show the five causal SNPs. Each line represents a SNP from a dataset and the path shows the βcoefficient 

on the y-axis as the 𝜆2 penalty increases on the bottom x-axis. 
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Figure 10.2. Coefficient path plots for the Integrative LASSO when 𝜆1 = 0.1. The top left plot shows the forty-five non-causal SNPs in each of 

the five datasets. The remaining five plots show the five causal SNPs. Each line represents a SNP from a dataset and the path shows the 

βcoefficient on the y-axis as the 𝜆2 penalty increases on the bottom x-axis. 
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Figure 10.3 Number of SNPs selected by the Integrative LASSO for varying 𝜆2 penalties with  𝜆1 = 0.1 
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Figure 10.4 Coefficient path plots for the Integrative LASSO when 𝜆1 = 0.2. The top left plot shows the forty-five non-causal SNPs in each of the 

five datasets. The remaining five plots show the five causal SNPs. Each line represents a SNP from a dataset and the path shows the βcoefficient 

on the y-axis as the 𝜆2 penalty increases on the bottom x-axis. 
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Figure 10.5 Coefficient path plots for the Integrative LASSO when 𝜆1 = 0.3. The top left plot shows the forty-five non-causal SNPs in each of the 

five datasets. The remaining five plots show the five causal SNPs. Each line represents a SNP from a dataset and the path shows the βcoefficient 

on the y-axis as the 𝜆2 penalty increases on the bottom x-axis 
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10.4.2 Convergence issues of the Integrative LASSO 

 

For all values of 𝜆1, a variance penalty of 𝜆2 > 0.62, the model failed to converge 

within each dataset. This was the case for all seeds although the 𝜆2 varied. When 𝜆1 =

 0 and 𝜆2 = 0.63, the sum of the absolute difference in β estimates in the last iteration 

in a single dataset varied between 0.2985 and 0.5867 and increasing the number of 

iterations to 100,000 did not make any difference to these values. To see if the model 

would converge across datasets the stop rule in step 19bi (Table 10.1) was removed. 

Convergence in this case was also not reached with the sum of the absolute beta 

estimates across all datasets varying between 0.70 and 1.38 after the fourth iteration 

(Figure 10.6). The lack of convergence was not due to any single SNP in a dataset but 

for most SNPs in each dataset. Figure 10.7 shows the maximum value of the absolute 

difference of beta estimates at each iteration was > 0.028 after the fourth iteration. To 

ensure this was not due to a small sample size, it was increased to 500 in each dataset. 

Using the same combination of penalties the model did not converge. The plots of the 

sum and maximum of the absolute difference across all datasets are shown in the 

Appendix E (Figure E.0.1 and Figure E.0.2). The sum of the absolute difference varied 

between 0.678 and 1.326 while the maximum absolute difference varied between 

0.011 and 0.028. 

 

As the LASSO penalty increases the sum of the absolute difference in β estimates 

decreases as a number of SNPs are removed from the dataset and these SNPs do 

converge. Therefore as the 𝜆1 increases the sum of the absolute difference within and 

across datasets steadily decreases however, the model still does not converge within 

dataset but does converge across datasets for 𝜆1 <  0.38.  

 

Although the model fails to convergence in every dataset for at some value of 𝜆2, this 

becomes less important when considering the Integrative LASSO in terms of variable 

selection. For variable selection the LASSO penalty has greater importance than the 

variance penalty. As seen in section 10.4.1, as the 𝜆2 penalty increases, the number of 
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SNPs in the model also increases. A large 𝜆2 penalty may over select the number SNPs 

in a model. Therefore while the variance penalty is desirable it should be restricted to 

an extent such that models to not over select too many variables. The example 

illustrated in section 10.4.1, shows that at the limit where the model fails to converge 

(𝜆2 = 0.62), the IL selects a few more SNPs into the model but does not select too 

many more SNPs. Most of these extra SNPs are truly causal SNPs.   

 

Figure 10.6 Plot of the sum of absolute difference after each iteration across all 

datasets against its iteration number 
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Figure 10.7 Plot of the maximum value in the absolute difference across all SNPs in all 

datasets after each iteration across all datasets against its iteration number 

 

10.5 Simulation study comparing the Integrative 

LASSO with the LASSO and meta-LASSO 

 

In this section, I run a simulation comparing the Integrative LASSO against the meta-

LASSO, separate LASSO and stacked LASSO. The results of the competing methods are 

shown in section 9.3.2 and 9.3.3.  

 

10.5.1  Methods 

 

Simulation of datasets is described in section 9.3.1 with the same levels of 

heterogeneity used in each scenario as shown in Table 9.2. Repeated 10-fold Cross-

validation, BIC and the permutation methods were used for tuning parameter 

selection. For each dataset the minimum  𝜆1 penalty for a null model was calculated, 

this value was then rounded up to 2 decimal places and was used as the largest 𝜆1 for 
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that dataset. Testing showed that models were failing to converge for some  𝜆2 values 

varying between 0.52 and 0.59.Therefore for BIC and the permutation method the  𝜆2 

ranged between 0 and 0.50 in order to allow convergence in every simulated dataset. 

BIC was calculated using a grid search of all combinations of 𝜆1 and 𝜆2 penalties at 

intervals of 0.01 for each penalty.  

 

A grid search cannot be used for the permutation method as unlike the BIC and CV 

methods as there is no measure, such as BIC and MSE that is attributed to the 

selection of tuning parameters. The permutation method selects the tuning parameter 

based on the smallest  𝜆1 penalty required for a null model after permutation of the 

dataset. This value of 𝜆1 was obtained for each value of 𝜆2 by selecting the median 

penalty across 25 permutations. For each value of 𝜆2, the minimum 𝜆1 required for a 

null model was estimated. As the aim is to attempt to select as many true positive 

SNPs as possible, with the 𝜆2 corresponding to the smallest 𝜆1 penalty was selecting as 

the optimum tuning parameters.  

 

The upper limit for the variance penalty was reduced to 0.35 for 10-fold CV. CV divides 

the dataset further into smaller sets, this reduction in sample size again lead to issues 

with convergence in the training set for larger values of 𝜆2. There were also issues with 

convergence for rare SNPs using CV, again due to the smaller sample size. Simulated 

SNPs with a low minor allele count (MAC) in any dataset particularly struggled to 

converge regardless of the 𝜆2 penalty applied. The smallest MAF for simulated SNPs 

was increased to 0.05 from 0.01. In each case, if a SNP previously had a 𝑀𝐴𝐹 <  0.05, 

0.04 was added to the MAF before simulating the dataset to allow the SNP to remain 

relatively rare. The MAF for the causal SNP which previously had a MAF of 0.02 was set 

to 0.05. Increasing the sample size was not considered as this would increase the 

power to select causal SNPs and therefore would not be a fair as a comparison with 

the previous simulation. For repeated CV and BIC, the optimum combination of tuning 

parameters was performed using a grid search of all combinations of  𝜆1 and 𝜆2 

penalties at intervals of 0.01 for each penalty. The combination of  𝜆1 and 𝜆2 that 
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produced the smallest MSE across the 10 folds was selected for CV, likewise the 

smallest BIC value and its corresponding combination of  𝜆1 and 𝜆2 was selected for 

the BIC. A total of 1,000 simulations were run with 10 repetitions for each seed 1-101. 

Seed 56 was omitted as it was omitted in the simulation study conducted in section 

9.3. Both the single selection and replication measures were considered as measures 

for variable selection (section 9.3.1). 

 

10.5.2  Results 

 

10.5.2.1 Results for high variance explained scenario  

 

Table 10.2 compares the sensitivity and specificity rate the Integrative LASSO against 

the meta-LASSO, stacked LASSO and separate LASSO methods (see section 9.3.2) for 

the single selection measure. In this scenario, the IL performs well in terms of 

sensitivity rates compared to the competing methods using 10-fold CV. Only the 

stacked LASSO, which selected all causal SNPs in the 1,000 simulations, produced a 

higher sensitivity rate. The specificity rate however was much lower than the 

competing methods (0.538). As shown in Table 10.3 this is due to a large mean number 

of SNPs selected. On average half of all SNPs were selected in the model (mean = 

128.850, S.D. = 27.424). Figure 10.4 plots all the estimated 𝜆1 and 𝜆2 penalties over the 

1,000 simulations and shows that CV consistently selected a relatively small  𝜆1 and 

relatively 𝜆2 large penalty. A combination of these penalties will include a large 

number of SNPs in the model. The permutation method also performs poorly. 

Although not many non-causal SNPs are selected, the IL does not select may true 

positives either and produces the lowest sensitivity rate across all methods and tuning 

parameter selection methods. 

 

The BIC worked well for the IL in this scenario selecting every causal SNP across the 

1,000 simulations. Unlike CV, the BIC maintained a high specificity rate (0.960) and on 
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average selected 9 non-causal SNPs (Table 10.3). The stacked LASSO produced a similar 

sensitivity rate but a slightly higher specificity rate (0.982). 

 

Table 10.2 Mean and standard deviation of sensitivity and specificity results using the 

single selection measure in a high variance explained scenario using the meta-LASSO, 

stacked LASSO, seperate LASSO and Integrative LASSO with Cross-vaildation, BIC and 

permutation method as tuning parameter selection methods over 1,000 simulations. 

Method 
Cross-validation BIC Permutation method 

Sens Spec Sens Spec Sens Spec 

Meta-LASSO 
0.986 ± 
0.028 

0.992 ± 
0.016 

0.972 ± 
0.058 

0.995 ± 
0.008 

0.512 ± 
0.211 

1.000 ± 
0.000 

Stacked 
LASSO 

1.000 ± 
0.000 

0.764 ± 
0.122 

1.000 ± 
0.006 

0.982 ± 
0.021 

0.999 ± 
0.015 

0.995 ± 
0.011 

Separate 
LASSO 

0.857 ± 
0.096 

0.803 ± 
0.064 

0.702 ± 
0.129 

0.948 ± 
0.023 

0.486 ± 
0.092 

0.991 ± 
0.006 

Integrative 
LASSO 

0.997 ± 
0.013 

0.538 ± 
0.121 

1.000 ± 
0.000 

0.960 ± 
0.020 

0.390 ± 
0.103 

0.996 ± 
0.004 

 

Table 10.3 Mean and standard deviation summary statistics for variable selection using 

the Integrative LASSO over 1,000 simulations in the high variance explained scenario. 

Tuning parameter 
selection method 

Lambda1 Lambda2 
Number 
of SNPs 
selected 

Number 
of true 

positive 
SNPs 

selected 

Number 
of false 
positive 

SNPs 
selected 

Cross-validation 
0.056 ± 
0.015 

0.314 ± 
0.036 

128.850 ± 
27.424 

24.914 ± 
0.324 

103.936 ± 
27.337 

BIC 
0.075 ± 
0.007 

0.102 ± 
0.166 

34.002 ± 
4.445 

25.000 ± 
0.000 

9.002 ± 
4.445 

Permutation method 
0.279 ± 
0.003 

0.254 ± 
0.147 

10.595 ± 
2.721 

9.761 ± 
2.581 

0.834 ± 
0.936 
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Figure 10.8 Scatter plot of the selected 𝜆1and 𝜆2 values for each of the 1,000 
simulations using repeated 10-fold Cross-validation in the high variance explained 
scenario 

 

Table 10.4 compares the sensitivity and specificity rate for each method using the 

replication measure. For CV the specificity rate is lower using this measure (0.272) 

compared to single selection measure (0.538). In comparison the meta-LASSO 

produces high sensitivity and specificity rates (0.998 and 0.988) and is clearly the best 

method for variable selection by the replication measure using CV. The IL shows 

superior performance to the meta-LASSO using the permutation method with a higher 

sensitivity rate. This sensitivity rate, however is lower than the separate LASSO which 

shows the best performance as all three methods produce the same specificity rates 

however the separate LASSO has the highest sensitivity rate (0.793). Of all 

combinations of integrative analysis methods and tuning parameter selection methods 

the IL with BIC shows the best performance as it selects all causal SNPs and has a high 

specificity rate (0.984) using the replication measure. 
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Table 10.4 Mean and standard deviation of sensitivity and specificity results for the 

proportion of replicated results in a high variance explained scenario using the meta-

LASSO, stacked LASSO, seperate LASSO and Integrative LASSO with Cross-vaildation, 

BIC and permutation method as tuning parameter selection methods over 1,000 

simulations. 

Method Cross-validation BIC Permutation method 

Sens Spec Sens Spec Sens Spec 
Meta-LASSO 0.998 ± 

0.018 
0.988 ± 
0.024 

0.989 ± 
0.047 

0.992 ± 
0.014 

0.517 ± 
0.213 

1.000 ± 
0.000 

Separate 
LASSO 

0.997 ± 
0.023 

0.744 ± 
0.136 

0.973 ± 
0.082 

0.977 ± 
0.028 

0.793 ± 
0.177 

0.999 ± 
0.004 

Integrative 
LASSO 

1.000 ± 
0.000 

0.272 ± 
0.167 

1.000 ± 
0.000 

0.984 ± 
0.022 

0.628 ± 
0.207 

1.000 ± 
0.002 

 

10.5.2.2 Results for varying levels of heterogeneity 

 

In this simulation all three tuning parameter selection methods for varying levels of 

heterogeneity performed poorly compared to the simulation results shown in section 

9.3.3.  

 

Table 10.5, Table 10.6 and Table 10.7 show the mean and standard deviation 

sensitivity and specificity rates for the IL method using 10-fold CV, BIC and 

permutation method. In each case the IL produced the lowest sensitivity rate of all 

methods. This suggest that the IL lacks power to detect associations compared to the 

competing methods and that the stacked LASSO with the permutation method for 

tuning parameter selection may be the best method for variable selection in 

integrative analyses.  
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As seen in previous section, CV tends to select large models with the IL which were 

also the case in this simulation. A mean of 18 SNPs were selected for the lower 

heterogeneity levels (Table 10.8). Most of the selected SNPs were non-causal SNPs 

(specificity = 0.933 – 0.934) and only an average of 3 causal SNPs were selected 

(sensitivity = 0.147 – 0.149). The number of SNPs selected produced a high standard 

deviation of the mean, which was also seen in the high variance explained scenario 

(Table 10.3.) Figure 10.9 plots the selected 𝜆1 and 𝜆2 values against each other. The 

plots show that in each case there seem to be two distinct groupings in 𝜆1. This is in 

contrast to the high variance explained scenario where there were no divisions in the 

distribution of 𝜆1 (Figure 10.8). One grouping selects a small value of 𝜆1 between 0 and 

0.20, the other larger values of 𝜆1 between 0.25 and 0.35. The majority of the 

simulations selected a large 𝜆1, as the median number of SNPs selected at each level of 

heterogeneity was approximately 1. The group of small 𝜆1 values seemed to be a 

correlated with 𝜆2 as larger averaging penalties were being selected alongside small 

LASSO penalties. This combination of penalties would increase the numbers of SNPs in 

the model. A large LASSO penalty will select a small number of SNPs in the model 

regardless of the variance penalty that is selected, as shown in section 10.4.1. These 

two contrasts in 𝜆1 selection lead to a large variance in the number of SNPs selected. 

In order to reduce the variance repeated CV could be used, however this is at the 

expense of computational time.  

 

Variable selection by the BIC produced the lowest sensitivity rate across all 

simulations. One of the problems with the BIC in these scenarios was that, nearly all (n 

≥ 938) of the final models did not utilise the variance penalty, instead selecting 𝜆2 = 0. 

This is because the BIC penalises on the number of parameters in the model and 

therefore is likely to select the simplest model possible. This was also the case in the 

high variance explained scenario where 531 of the 1,000 models selected 𝜆2 = 0. Of 

the three tuning parameter selection methods, the permutation method shows the 

best performance for variable selection using the IL as there is a higher sensitivity rate 

and similar specificity rate than the BIC.  
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Table 10.5 Mean and standard deviation of sensitivity and specificity results using the single selection measure for varying levels of 

heterogeneity using the meta-LASSO, stacked LASSO and seperate LASSO with Cross-vaildation over 1,000 simulations. 

Heterogeneity 

Meta - LASSO Stacked LASSO Separate LASSO Integrative LASSO 

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

Baseline 
0.264 ± 
0.197 

0.992 ± 
0.016 

0.741 ± 
0.291 

0.832 ± 
0.137 

0.177 ± 
0.104 

0.929 ± 
0.048 

0.147 ± 
0.233 

0.934 ± 
0.126 

Low 
0.257 ± 
0.191 

0.992 ± 
0.016 

0.732 ± 
0.294 

0.834 ± 
0.138 

0.178 ± 
0.103 

0.929 ± 
0.048 

0.148 ± 
0.230 

0.933 ± 
0.126 

Mid 
0.250 ± 
0.188 

0.991 ± 
0.016 

0.705 ± 
0.306 

0.840 ± 
0.138 

0.179 ± 
0.103 

0.929 ± 
0.049 

0.149 ± 
0.228 

0.933 ± 
0.125 

High 
0.174 ± 
0.158 

0.989 ± 
0.018 

0.432 ± 
0.329 

0.893 ± 
0.126 

0.181 ± 
0.104 

0.927 ± 
0.049 

0.125 ± 
0.189 

0.944 ± 
0.105 
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Table 10.6 Mean and standard deviation of sensitivity and specificity using the single selection measure for varying levels of heterogeneity 

using the meta-LASSO, stacked LASSO and seperate LASSO with BIC over 1,000 simulations. 

Heterogeneity 

Meta - LASSO Stacked LASSO Separate LASSO Integrative LASSO 

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

Baseline 
0.095 ± 
0.105 

0.999 ± 
0.005 

0.076 ± 
0.117 

0.999 ± 
0.004 

0.049 ± 
0.047 

0.992 ± 
0.006 

0.014 ± 
0.025 

0.998 ± 
0.003 

Low 
0.098 ± 
0.107 

0.998 ± 
0.005 

0.081 ± 
0.121 

0.999 ± 
0.004 

0.049 ± 
0.045 

0.992 ± 
0.005 

0.014 ± 
0.023 

0.998 ± 
0.003 

Mid 
0.096 ± 
0.105 

0.998 ± 
0.005 

0.071 ± 
0.113 

0.999 ± 
0.004 

0.050 ± 
0.048 

0.993 ± 
0.006 

0.014 ± 
0.025 

0.998 ± 
0.003 

High 
0.086 ± 
0.100 

0.997 ± 
0.007 

0.049 ± 
0.088 

0.998 ± 
0.006 

0.055 ± 
0.054 

0.992 ± 
0.006 

0.016 ± 
0.026 

0.998 ± 
0.003 
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Table 10.7 Mean and standard deviation of sensitivity and specificity results using the single selection measure for varying levels of 

heterogeneity using the meta-LASSO, stacked LASSO and seperate LASSO with the permutation method over 1,000 simulations. 

Heterogeneity 

Meta - LASSO Stacked LASSO Separate LASSO Integrative LASSO 

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

Baseline 
0.307 ± 
0.173 

0.992 ± 
0.011 

0.423 ± 
0.217 

0.987 ± 
0.017 

0.073 ± 
0.051 

0.987 ± 
0.007 

0.038 ± 
0.038 

0.995 ± 
0.005 

Low 
0.299 ± 
0.171 

0.992 ± 
0.011 

0.416 ± 
0.217 

0.987 ± 
0.017 

0.073 ± 
0.050 

0.987 ± 
0.007 

0.038 ± 
0.037 

0.995 ± 
0.005 

Mid 
0.286 ± 
0.167 

0.992 ± 
0.011 

0.397 ± 
0.216 

0.987 ± 
0.017 

0.073 ± 
0.051 

0.987 ± 
0.017 

0.038 ± 
0.037 

0.995 ± 
0.005 

High 
0.171 ± 
0.141 

0.992 ± 
0.011 

0.224 ± 
0.183 

0.986 ± 
0.018 

0.074 ± 
0.050 

0.987 ± 
0.007 

0.041 ± 
0.039 

0.995 ± 
0.005 
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Table 10.8 Mean and standard deviation summary statistics for variable selection using 

the Integrative LASSO with Cross-Vaildation as the tuning parameter selection method 

over 1,000 simulations across varying levels of heterogeneity. 

Heterogeneity Lambda1 Lambda2 
Number 
of SNPs 
selected 

Number 
of true 

positive 
SNPs 

selected 

Number 
of false 
positive 

SNPs 
selected 

Baseline 
0.246 ± 
0.086 

0.192 ± 
0.104 

18.644 ± 
33.937 

3.686 ± 
5.817 

14.958 ± 
28.425 

Low 
0.245 ± 
0.086 

0.191 ± 
0.105 

18.708 ± 
33.848 

3.691 ± 
5.761 

15.017 ± 
28.399 

Mid 
0.244 ± 
0.086 

0.190 ± 
0.105 

18.862 ± 
33.529 

3.724 ± 
5.707 

15.138 ± 
28.117 

High 
0.250 ± 
0.082 

0.185 ± 
0.106 

15.647 ± 
28.022 

3.128 ± 
4.736 

12.519 ± 
23.573 

 

 

Figure 10.9 Scatter plot of the selected 𝜆1and 𝜆2 values for each of the 1,000 

simulations using 10-fold Cross-validation 

 



 

300 
 

 Table 10.9 shows the results of the simulation using the replication measure. Due to 

the lack of power to select variables in this scenario the sensitivity rate decreases and 

specificity rate increases for the BIC and permutation methods. Of the SNPs selected 

using these methods there were not many SNPs that were replicated. In only 11 of the 

1,000 models were one of the causal SNPs replicated, and in one of these cases, two 

causal SNPs were replicated. Of the three methods, the meta-LASSO performed the 

best for variable selection using the replication measure as it produced the highest 

sensitivity rate as well as a high specificity rate (≤ 0.983) for all tuning parameter 

selection methods.
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Table 10.9 Mean and standard deviation of sensitivity and specificity results for the proportion of replicated results in across varying levels of 

heterogeneity using the Integrative LASSO with Cross-vaildation, BIC and permutation method as tuning parameter selection methods over 

1,000 simulations. 

Heterogeneity 

Cross-validation BIC Permutation method 

Single selection Replication Single selection Replication Single selection Replication 

Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec 

Baseline 
0.147 ± 
0.233 

0.934 ± 
0.126 

0.200 ± 
0.346 

0.911 ± 
0.196 

0.014 ± 
0.025 

0.998 ± 
0.003 

0.002 ± 
0.024 

1.000 ± 
0.000 

0.038 ± 
0.038 

0.995 ± 
0.005 

0.015 ± 
0.054 

1.000 ± 
0.003 

Low 
0.148 ± 
0.230 

0.933 ± 
0.126 

0.202 ± 
0.343 

0.910 ± 
0.197 

0.014 ± 
0.023 

0.998 ± 
0.003 

0.002 ± 
0.019 

1.000 ± 
0.001 

0.038 ± 
0.037 

0.995 ± 
0.005 

0.013 ± 
0.050 

1.000 ± 
0.003 

Mid 
0.149 ± 
0.228 

0.933 ± 
0.125 

0.202 ± 
0.340 

0.910 ± 
0.195 

0.014 ± 
0.025 

0.998 ± 
0.003 

0.002 ± 
0.024 

1.000 ± 
0.001 

0.038 ± 
0.037 

0.995 ± 
0.005 

0.014 ± 
0.051 

1.000 ± 
0.002 

High 
0.125 ± 
0.189 

0.944 ± 
0.105 

0.178 ± 
0.312 

0.929 ± 
0.161 

0.016 ± 
0.026 

0.998 ± 
0.003 

0.003 ± 
0.025 

1.000 ± 
0.000 

0.041 ± 
0.039 

0.995 ± 
0.005 

0.016 ± 
0.054 

1.000 ± 
0.002 
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10.6 Discussion 

 

The simulation study showed that the Integrative LASSO performed poorly compared 

to the competing methods of the meta-LASSO, stacked LASSO and separate LASSO, 

especially in terms of the sensitivity rate. The exception to this is when applying the 

BIC in a high powered scenario where the IL was able to select all causal SNPs. The lack 

of power to select causal SNPs were for a number of reasons. The first is the LASSO 

penalty (𝜆1) which is applied separately on each dataset individually. The simulations 

have shown that stacked LASSO and meta-LASSO were the best performing methods 

for variable selection and both of these methods include a penalty across all datasets 

rather than individually. This provides greater power to select causal SNPs as the 

sample size increases. The penalty on individual datasets is required however in order 

to allow for averaging across datasets. 

 

The second reason was the lack of flexibility for the LASSO penalty. Both the separate 

LASSO and IL apply penalties to datasets separately; however in most cases the 

separate LASSO outperformed the IL in terms of selecting causal SNPs. The difference 

was that the separate LASSO was allowed to have a different λ in each dataset 

whereas the IL was forced to have the same λ penalty in each dataset and therefore 

was less flexible. By fixing the same penalty in all datasets the IL will restrict variable 

selection in certain datasets where the  𝜆1 required for a null model. The IL could be 

allowed to have different  𝜆1 penalties in each dataset as shown in (10.8). This would 

essentially make the IL the same as the separate LASSO with a variance penalty. 

However allowing separate 𝜆1 penalties for each dataset comes at great computation 

cost, when selecting the optimum combination of 𝜆1𝑑 and 𝜆2. The BIC and CV methods 

both use a two-dimensional grid search to calculate the optimum combination of 𝜆1 

and 𝜆2. By allowing each dataset a separate 𝜆1𝑑 the grid search would be in six 

dimensions for five datasets and the number of combinations required to find the 

optimal tuning parameter increases. 
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(10.8) 

 where,   
 𝜆1𝑑 is a vector of D 𝜆1 penalties for each of the D datasets  
 

The range of averaging penalties that were used was restricted due to issues with 

convergence for some large 𝜆2. As the variance penalty is based on the fused LASSO 

other algorithms that fit the fused LASSO such as augmented Lagrangian method 

(ALM) could be considered (248). Allowing models to converge for larger 𝜆2 

potentially allows more SNPs to be selected. The example shown in section 10.4.1 only 

penalised SNPs back into the model for a lower LASSO penalty, with the ability for the 

model to converge at a larger variance penalty, this may allow SNPs to enter the model 

for a larger LASSO penalty. 

 

Results in the high variance explained scenario showed that the BIC performed well, 

selecting all causal SNPs (Table 10.2). The LASSO penalty for the permutation method 

was selected as the smallest median  𝜆1 over 25 permutations with the corresponding 

 𝜆2 penalty was selecting as the optimum tuning parameters. Allowing  𝜆1 to be the 

smallest possible value would allow a greater number of SNPs and potentially true 

positives to be selected. The permutation method however produced a lower 

sensitivity rates using both single SNP and replication measures compared to most 

competing methods. 10-fold CV also performed poorly in both measure, selecting a 

large mean number of SNPs in both scenarios which included a number of false 

positives (Table 10.3 and Table 10.8). Repeated CV should be used due to the high 

variance in both  𝜆1 and  𝜆2 estimates.  
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10.7 Conclusion 

 

In this chapter, I proposed a novel approach to penalised regression in integrative 

analyses. The Integrative LASSO method applies two penalties, the first is a LASSO 

penalty on each dataset individually, and the second penalises SNPs towards the mean 

β across all datasets. Testing showed that the model was unable to converge for a 

large variance penalty using coordinate descent algorithm and therefore other 

algorithms such as augmented Lagrangian method (ALM) (see section 2.4.1) could 

instead be used. A large variance penalty is of less importance to the LASSO penalty for 

variable selection as it penalty tends to increase the number of SNPs selected in a 

model. As the IL uses a fusion penalty the fused-LASSO signal approximator (FLSA) by 

Friedman et al. (51) could also be considered, however this would only give 

approximate solutions rather than exact ones. 

 

The simulation study showed that the sensitivity rate for the IL was lower than the 

competing methods with the exception of BIC in the high variance explained scenario. 

The poor performance of the IL compared to the meta-LASSO and stacked LASSO is 

because the IL penalises datasets individually rather than pooled across all dataset. 

The poor performance relative to the separate LASSO is likely to be because the IL 

applies the same penalty in all datasets where the separate LASSO allows each dataset 

to have a different tuning parameter. By fixing the same penalty in all datasets the IL 

will restrict variable selection in certain datasets where the 𝜆1 required for a null 

model. The IL method could however be modified to allow a different LASSO penalty in 

each dataset which would give the method similar or superior performance to the 

separate LASSO.  
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Of all the methods used in the simulation study, the stacked LASSO using the 

permutation method for tuning parameter selection showed the best performance in 

terms of variable selection in both the high variance explained scenario (Table 10.2) 

and the lower powered scenario where the heterogeneity varied (Table 10.7) using the 

single selection measure. The performance of the stacked LASSO is only beaten by the 

meta-LASSO for the BIC in the low powered scenario with varying levels of 

heterogeneity (Table 10.6); however the permutation method outperforms the BIC in 

terms of variable selection.  
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11 Conclusions and future work 

 

In the past decade, genome-wide association studies play a key role in understanding 

complex diseases by identifying many casual genetic variants or regions associated 

with disease. The aim of these studies is to identify causal SNPs of regions in order to 

develop new therapies, improve diagnosis and better disease prevention (3). For 

example, four GWAS studies have identified the rs12916 SNP (MAF ~ 0.4) on the 

HMGCR gene (Table 4.5) to have a small but significant effect with LDL 

(171,179,180,182). The SNP has been shown to increase the LDL levels by 2.8 mg/dL 

for every minor C allele (180), and has been the target for therapeutic drugs such as 

statins that are designed to lower LDL cholesterol and are used by tens of millions of 

people world-wide (249).  

 

Current methods to identify associated SNPs in GWAS are not without their flaws 

however. Methods such as Bonferroni correction and FDR are performed on a 

univariate level and as shown both in the literature (127) and this thesis (see section 

4.8.2) these methods are also unable to account for LD therefore select multiple 

associated SNPs within a region. In such regions of high LD it is often difficult to 

determine which of a group of SNPs the causal variant is. The causal SNP may not 

necessarily be the top SNP by P-value which could be due to a combination of random 

error and LD with the truly causal SNP. There is also a case that the causal SNP may not 

be present in the GWAS dataset and all SNPs in an associated region are associations 

rather than the causal SNP. In each case however, further investigation is often 

required to determine the truly associated SNP. 

 

In this thesis, I consider penalised regression, specifically the LASSO (9) as an 

alternative method for variable selection in both single and multi-cohort datasets. The 

three main aims of this thesis were: 
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1. Apply the LASSO to discover genetic associations with Low-density Lipoprotein 

(LDL-c) in the Genetic Regulation of Arterial Pressure of Humans in the 

Community (GRAPHIC) study (10). Compare the results of this analysis with 

analyses performed using Bonferroni correction, FDR and the current literature. 

 

2. Determine the best methods to reduce the dimensionality of the dataset such 

that the impact on variable selection is minimised.  

 

 

3. Compare the current penalised regression methods for integrative analysis by a 

simulation study and also present and test an alternative approach for 

integrative analysis. 

 

11.1 Summary of findings 

 

11.1.1  Aim 2: Determining the best methods to reduce the dimensionality 

of the dataset 

 

In order to fully address Aim 1, Aim 2 needed to be addressed. In section 4.7, I 

described that due to the computational intensivity of the LASSO on such a large 

dataset (591,774 SNPs and 979 subjects), I was unable to fit the LASSO to the GRAPHIC 

study dataset initially due to first memory restrictions and then time restrictions. 

Therefore to be able to perform a GWAS on the GRAPHIC cohort SNP pruning was 

required. In Chapter 7, I conducted a simulation study to determine the effects of SNP 

pruning on LASSO models. As was the case throughout this thesis, three tuning 

parameter selection methods were considered; repeated 10-fold CV, BIC and the 

permutation method. I considered three pruning approaches, P-value pruning, LD 
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pruning and LD clumping. All three of these approaches were implemented in my 

Prune package written in R and is described in section 6.4.  

 

Both the repeated 10-fold CV and BIC performed poorly regardless of pruning method. 

Both tuning parameter selection methods were influenced by pruning and both 

selected larger sized models and therefore as the pruning threshold increased. This 

was particularly the case when pruning by P-value and selecting the tuning parameter 

by CV. This particular combination of pruning and tuning parameter selection methods 

yielded the lowest specificity rate across all scenarios. This has also been seen in 

previous studies in which the combination of P-value pruning and CV has selected a 

large model (11,146,149). LD clumping ensures that the top independent associations 

remain in the dataset and the SNPs that are correlated with the top associations are 

removed. 

 

In contrast the permutation method showed good performance for each pruning 

method. Although it was the most conservative of the three tuning parameter 

selection methods, this greatly reduced the number of false positives selected with an 

average of 1 false positive SNP selected in every scenario. Unlike the BIC and CV 

methods, the permutation method was robust against pruning. There was little 

difference in the sensitivity and specificity rate regardless of the pruning method and 

threshold used. Of the three pruning methods, LD clumping was able to select a 

slightly higher number of true positives and therefore I concluded this was the best 

combination of pruning method and tuning parameter selection method for variable 

selection in GWAS data. 

 

11.1.2  Aim 1: Application of LASSO to the GRAPHIC study to identify 

associations with LDL 
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11.1.2.1 The LASSO on chromosome 19  

 

A genetic association study was conducted on chromosome 19, as the GRAPHIC 

dataset (Table 4.14 and Figure 4.1) and previous literature (Table 4.5) both suggested 

that this chromosome contained a number of associations.  

The Bonferroni correction method, selected four SNPs, rs7412, rs4420638, rs2075650 

and rs445925. However as SMAs are unable to account for the LD between SNPs and 

therefore some correlation between the four selected SNP were discovered. 

Correlations were found between both rs7412 and rs445925 (r2 = 0.712, Figure 4.12) 

and rs4420638 and rs2075650 (r2 = 0.416, Figure 4.13), resulting in only two 

independent signals being selected from the same region. Both rs7412 and rs4420638 

have been identified to have an association with LDL in previous studies.  

 

The FDR method selected 13 SNPs (Table 4.17) and two novel genetic regions, one 

between ZNF520 and ZNF567 genes (Figure 4.18) and the second between DNM2 and 

CARM1 genes (Figure 4.19). Both these regions have not been identified in previous 

studies and require further investigation. The identified region between DNM2 and 

CARM1 is close (~200kb) to the LDLR gene which has been identified in multiple 

previous studies (Table 4.6). It is not known if these two regions are truly associated 

and therefore requires further investigation. 

 

The LASSO using the BIC and permutation methods was able to select the top 

associations in the four regions selected by the FDR analysis. The difference between 

the two methods was that the LASSO eliminates the correlated SNPs from the model 

selecting four SNPs compared to thirteen and therefore produces a simpler model. 

This suggested that for this analysis that the LASSO using either the BIC or permutation 

method produces a similar performance to the FDR method in terms of variable 

selection but is able to remove correlated data. Repeated 10-fold CV selected 41 SNPs. 
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The analysis using the LASSO was repeated using a range of pruning methods and 

threshold that were used in the simulation study discussed in the previous section. 

Results showed that both the BIC and permutation method where relatively consistent 

in most cases and the same regions were identified regardless of pruning method and 

threshold. Unlike the simulation study, the number of SNPs selected increased as the 

pruning threshold increased after P-value pruning and tuning parameter selection was 

performed by the permutation method. Despite this, it reinforced my earlier 

conclusion that the permutation method showed the best performance for variable 

selection after pruning. Repeated CV also showed similar performance to the 

simulation with the number of SNPs selected decreasing after pruning by LD but 

increasing after pruning by either P-value or LD clumping. Previous studies that have 

applied penalised regression to GWAS datasets have commonly used P-value based 

pruning or CV for tuning parameter selection. This combination was shown to have the 

worst performance for variable selection as the model selected included a high 

number of false positives, which was also noticed in previous literature (11,149). 

Overall the results between the applications on this real dataset were consistent with 

the results from the simulation study which validates my conclusion for Aim 2.  

 

11.1.2.2 The LASSO on the GRAPHIC study 

 

In Chapter 4, I applied the Bonferroni correction and FDR methods to the GRAHPIC 

study dataset. The Bonferroni correction method only selected the top association 

with LDL-c, rs7412 on the APOE gene on chromosome 19 (BP = 45,412,079, p = 

1.70x10-12). The FDR method also selected rs7412 as well as a second SNP on the APOE 

gene rs4420638 (BP = 45,422,946, p = 1.58x10-7). Although in close proximity to one 

another, both SNPs have independent effects. 

 

As stated in a number of studies (11-16), the LASSO is unable to fit a whole genome-

wide dataset therefore SNP pruning is required to reduce the dimensionality of the 



 

311 
 

dataset. Based on the conclusions from the single chromosome analysis and for Aim 2, 

both the BIC and permutation methods were used for tuning parameter selection and 

the dataset was pruned by LD clumping. The BIC, which is the more conservative of the 

two tuning parameter selection methods, selected a null model. The permutation 

method selected the top SNP, rs7412 with the λ estimate being close to also selecting 

rs4420638. Both the Manhattan plot (Figure 4.7) and Q-Q plot (Figure 4.6) showed that 

there were not many association in this dataset and it is therefore unsurprising that 

not many associations were discovered in this analysis. To current knowledge, this is 

the first study that had used LD clumping as a form of pre-screening in a GWA study 

and also the first time either the BIC or permutation method been used in human GWA 

study. 

 

11.1.3  Aim 3: The LASSO in integrative analysis 

 

In Chapter 10, I considered the role of penalised regression in the context of a multi-

cohort study, in particular integrative analyses. I began by comparing a number of 

proposed methods in the current literature and then selected the meta-LASSO method 

proposed by Ma et al. (240) as the basis for a simulation study. This study was 

proposed in the context of gene expression data, which often has a small sample size 

and number of genes. I adapted this method for GWAS data and tested the method 

against the stacked LASSO and separate LASSO in terms of variable selection. 

 

The results of the meta-LASSO showed that it was a relatively conservative method in 

terms of variable selection, while not many false positive SNPs were selected, not 

many true positive SNPs were selected either. This was the case for all three tuning 

parameter selection methods. The separate LASSO performed poorly as it lacked 

power. Overall the stacked LASSO showed superior performance using the 

permutation method selecting the highest sensitivity rate across the simulation and 

maintaining a high specificity rate at the same time (Table 9.8). The meta-LASSO 

outperformed the stacked LASSO using the BIC for tuning parameter selection. I also 
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proposed an alternative definition for variable selection; the replication measure. The 

sensitivity and specificity rates were high using the replication measure compared to 

the single selection measure.  

 

Although the stacked LASSO showed the best overall performance in this simulation, 

there were two problems with this method; the first is that the method is unable to 

account for heterogeneity between dataset. The second is that the method still 

selected a low number of true positives using the permutation method. I therefore 

suggested an alternative penalised approach; the Integrative LASSO. This approach 

penalises the effect estimates in each dataset and also penalises the variance of the 

estimates across cohorts. I provide an algorithm that can be used to fit the IL. In 

section 10.4.1, I showed an example of how the IL method works and this example 

showed some potential promise for the use of the variance penalty. However as 

discussed in section 10.4.2 there are issues concerning convergence when the variance 

penalty is large. Two reasons were considered for the lack of convergence, the first 

was due to the opposing penalties that for some SNPs are penalising in two different 

directions leading to a “tug of war” type situation. The second is that for a large 

variance penalty there are many solutions and the algorithm is simply moving from 

one solution to the next across iterations. More work is required to determine the 

reason why the IL does not converge in these situations.  

 

The simulation study showed that the IL method did not perform well compared to the 

competing methods that were used in Chapter 10. In fact the IL performed worst of 

the four methods in terms of variable selection. This is likely due to the nature of the 

penalty that penalizes each dataset separately, and by doing so the method lacks 

power compared to the stacked LASSO and meta-LASSO which both have a penalty 

penalizing all SNPs across all datasets.  
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11.1.4  Addressing the criticisms of the LASSO in GWAS 

 

There are two main criticisms of the LASSO outlined by Zou et al. net (18).  

1. When 𝑃 >  𝑁, then the LASSO is only able to select at most N variables for a 

model.  

 

2. In a group of highly correlated variables, the LASSO tends to select one variable 

without regard for which variable is selected.  

 

The first criticism is of little concern in GWAS, study sample sizes tend to be large, 

typically containing thousands or hundreds of thousands of subjects, meanwhile the 

number of truly causal variants is very small in comparison to these sample sizes. 

  

The second criticism can be argued as an advantage for the LASSO in GWAS and was 

illustrated in the application of the LASSO on chromosome 19 (see section 4.8.2). Both 

Bonferroni correction and FDR methods are unable to account for LD between SNPs 

and therefore selected a number of false positive SNPs that are correlated with the 

lead SNP in the region. My analyses show that the LASSO does select only one SNP out 

of a group of highly correlated SNPs, however it is not “without regard for which 

variable is selected” (18), rather the LASSO consistently selects the SNP with the 

highest correlation with the phenotype. All other SNPs that were correlated with this 

top SNP were removed from the model. This has also been seen in other studies that 

conclude the LASSO is able to handle LD in GWAS (24-26). The removal of these false 

positives from the model is particularly desirable for variable selection in GWA studies. 

When an association in a region happens to be perfectly correlated (r2 = 1) with one or 

more SNPs, the assertion that the selected SNP is selected at random is somewhat true 

as discussed in section 4.8.2.3. However, regardless of whether one or all of these 

SNPs were selected, further investigation would be required to determine which SNP is 

the truly causal variant. 
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Hoffmann et al. also listed a number of criticisms of penalised regression methods in 

GWA studies (13) which included: 

3. The inability to scale for very large GWAS datasets  

4. Poor performance on simulated data  

5. Finding too many ‘hits’ to be biologically plausible for a given GWAS sample size  

6. They do not identify novel, well-supported associations that are not detectable 

by standard methods  

Amongst others, all four criticisms reference a study by Hoggart et al. who uses 

penalised Bayesian approaches (250), which I did not consider in my thesis. Not all 

these criticisms may extend to the frequentist methods such as the LASSO, especially 

criticism 5 which only references the Hoggart study. The issue regarding the inability to 

scale for large GWAS is well established and was one of the aims of my thesis. As 

concluded in section 11.1.1, this can be overcome using LD clumping as a SNP pruning 

method. 

 

Hoffmann et al. cites a study by Wu et al. regarding the poor performance in simulated 

data (145). In my thesis, I showed that performance in terms of variable selection is 

heavily influenced by the tuning parameter selection method used (see section 3.3.2). 

Wu et al. did not use any tuning parameter selection method to select a model; rather 

they pre-selected a model size therefore, the poor performance could easily be due to 

the author’s choice of model size rather than the method itself. Throughout this thesis, 

I have demonstrated that, in both simulations and real data, the permutation method 

and to a lesser extent the BIC perform well for variable selection in GWA studies 

however, neither have previously used in a GWAS.  
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One of the conclusions made in section 11.1.2, was that the LASSO showed similar 

performance to FDR when both methods were applied to the GRAPHIC study. This 

conclusion is consistent with criticism 6 as the FDR can be considered as a standard 

method and both the FDR and LASSO selected similar models in terms of the genetic 

regions selected in both the single chromosome analysis and the genome-wide 

analysis after pruning.  

 

11.2 Limitations and future work 

 

This thesis limited the work to the application of the LASSO in GWAS data in terms of 

variable selection and therefore any conclusions made are only applicable in this 

context. There are plenty of alternative penalised regression approaches that could 

also be used. Given the criticism that the LASSO is not able to select novel variants that 

standard analyses are also unable to select (13), the elastic net could be a potential 

alternative to the LASSO. Waldmann et al. showed that the elastic net tends to select a 

large model than the LASSO in genetic studies (128), this would at least allow more 

variables to be selected and potentially some novel associations. This would require 

both tuning parameter selection methods and pruning methods to be optimised for 

the elastic net. Although this is straight forward using a grid search for CV and BIC, it is 

less clear how to optimise for the permutation method. My analyses showed that the 

permutation method performed particularly well relative to competing methods such 

as CV and BIC, however as the elastic net has two penalties it may be difficult to select 

the tuning parameter unless the α controlling the relative strength between the LASSO 

and ridge regression penalties is pre-specified. Other dual penalty methods such as the 

sparse group LASSO and the fused LASSO also use dual penalties and unlike the elastic 

net, do not have use an α to control the relative strength of penalties. Therefore some 

methodology does need to be developed for the permutation method for dual 

penalties.  
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In Chapter 3, I ran a simulation comparing a number of tuning parameter selection 

methods to determine the relative performance of each method in terms of variable 

selection. Stability selection (251) was not considered due to concerns with the 

subsampling used for this method may lack power to detect rare variants. Further 

work is required to determine whether this is the case or not. The analysis on the 

GRAPHIC study did not select rare variants either. Two approaches could be 

considered to increase the power to detect rare variants, the first is the use of 

grouping penalties (133-135), and the second by using the adaptive LASSO with 

weightings that favour selection of rarer SNPs over common SNPs.  

 

Further applications of the LASSO are required on other real datasets to see whether 

the analyses draw the same conclusions in terms of tuning parameter selection and 

pruning methods. Given that the GRAPHIC study is a relatively small dataset, it would 

be of particular interest to test these methods hold up in a large GWAS study such as 

the UK Biobank data which consists of over 500,000 subjects and 73,000,000 variants. 

For such a large dataset, the pruning required to fit a LASSO model would need to be 

very heavy, in fact, even after quality control, pruning by just LD or LD clumping may 

not be sufficient to produce a small enough dataset to fit the LASSO. In this case, 

another pruning step may be required. The effect of imputation should also be 

considered as to how this may affect the LASSO model. In Chapter 4, I imputed missing 

genotypes with the median genotype value for that SNP. In Chapter 7, I used fastPhase 

to impute missing genotypes and it is not known if or how these imputation methods 

may affect the LASSO model.  

 

There were main two limitations when applying the LASSO to the GRAPHIC study in 

both Chapters 4 and 8. The first was small sample size (N = 979) as only parental 

subjects were used which may have contributed towards low number of associations 

with LDL in the dataset (Figure 4.6 and Figure 4.7). The GRAPHIC study itself is a family 

based study consisting of over 2,000 subjects in 520 nuclear families, therefore in 

order to increase the power to select causal SNPs the offspring could also be included 
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for analysis. Papachristou et al. proposed a version of the LASSO for familial data (252) 

that could be used as a start point for this analysis. One of the limitations of my 

application of the LASSO to the GRAPHIC study is that I did not adjust for non-genetic 

factors such as age and sex or potential confounding factors. Ethnicity and differences 

between local populations were controlled for in this study by recruiting families from 

a local area, all with a white European ancestry. In my thesis, I applied the LASSO to a 

continuous phenotype, and binary phenotypes were not considered. Association 

testing on binary outcomes tends to be less powerful than continuous and requires 

testing to see if this is the case. 

 

Added extensions to the Prune package are currently being considered. This includes 

pruning by stepwise models. Pruning by a stepwise model would allow pruning on a 

multivariate level, pruning by this method would require a specified cut-off point to 

select a certain number of SNPs for analysis. The concern with this method is that it 

may be computationally intensive in high-dimensional data and requires further work 

to see if this is the case. As discussed in section 7.2, pruning by effect estimates is not 

considered as it tends to prune common variants. If pruning by MAF is particularly 

desirable, this can be done with the current Prune package in one of two ways. The 

first is to use the Fix option to fix rare variants into the dataset. The second is to 

prune by LD clumping and set all the rare variants to have a P-value = 0. In terms of the 

simulation study on the effects of pruning, only the r2 measure was used. This is the 

most commonly used measure for LD and pruning in general. The Prune package 

allows a number of other LD measures that could have been used (see section 6.6) and 

an extension to this work is to see how other measures such a D-prime and VIF 

perform.  

 

The Integrative LASSO method had two main limitations. The first was the inability to 

converge for a large variation penalty and the second was the low power associated 

with the method, compared to competing methods. It is difficult to say why the IL does 

not converge ‘so suddenly’ without further testing, although I suggest two reasons why 

this may be the case in section 11.1.3. As the variance penalty is based on the fused 
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LASSO other algorithms that fit the fused LASSO such as augmented Lagrangian 

method (ALM) could be considered instead of the CDA (248). However, even if the 

algorithm could work for a large variance penalty, it is not likely to improve the 

performance compared to the stacked LASSO and meta-LASSO. One variation of the 

stacked LASSO that could be considered is the use of data-splitting approaches as 

recently described by Lu et al. (253). This is a similar approach to stability selection 

with a pooled dataset.  

 

I suggested a slight variation on the IL that allows a different λd for each dataset. This 

gives the method greater flexibility and should show better performance compared 

to the separate LASSO. However, without a penalty on β across all datasets it is 

unlikely to outperform the meta-LASSO and stacked LASSO. Therefore, I consider two 

alternative approaches. For the first approach, I consider replacing the LASSO penalty 

on each dataset with one across all datasets therefore penalising across all datasets. 

The variance penalty is also slightly modified. Now I propose fitting the LASSO 

separately in each dataset using the same penalty that was applied across all 

datasets 𝜆 = 𝜆1 and the resulting 𝛽𝑑𝑗 estimates are then used in the variance penalty. 

Thus the proposed method would minimise the following: 
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(11.1) 

 

 

If 𝜆1 is not scaled the same across all datasets, as it is in individual datasets, the 

penalty applied in separate datasets may need adjusting. 
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The second is the Data Shared LASSO discussed in section 9.2.3. This was not used as 

a comparative method as the algorithm the authors use is unviable in GWAS. Either 

very heavy pruning or an alternative algorithm that does not require such a high-

dimensional dataset would be required for this method to be viable. Although it 

would need extensive testing, an algorithm similar to that proposed by Ma et al. 

(240) may work in this case.  

 

These methods along with the meta-LASSO and stacked LASSO should be compared to 

traditional meta-analyses to gauge the difference between the methods for variable 

selection in multi-cohort studies across a much wider range of sample sizes, number of 

SNPs and different sources and levels of heterogeneity. 
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Appendix A: My LASSO function using the 

coordinate descent algorithm 

Table A.1 My LASSO function using the coordinate descent algorithm 

 #---------------------------------------------------------------------------------------------------------------# 
 # Set the seed                                                                                                                                
 #---------------------------------------------------------------------------------------------------------------# 
 
set.seed(1) 
 
#---------------------------------------------------------------------------------------------------------------# 
# Function to create a dataset of independent SNPs 
#---------------------------------------------------------------------------------------------------------------# 
 
Make.Dataset <- function(NVAR, N, pExplained, MAF, MAF.min, MAF.max, Causal.MAF, 
Causal.location, Error.Mean){  
   
#---------------------------------------------------------------------------------------------------------------# 
# Default and error settings for Make.Dataset function 
#---------------------------------------------------------------------------------------------------------------# 
  if( missing( NVAR ) )stop( "Must specify NVAR" ) 
   
  if( missing( N ))stop( "Must specify N" ) 
   
  if( missing( pExplained ) )stop( "Must specify pExplained" ) 
   
  if( missing( Causal.location ) )stop( "Must specify Causal.location" ) 
   
  if( missing( MAF.min ) ){ 
 
    message( paste( "MAF.min is missing: MAF.min set to 0.01" ) ) 
 
    MAF.min <- 0.01 
  } 
   
  if( missing( MAF.max )){ 
 
    message( paste( "MAF.max is missing: MAF.max set to 0.5" ) ) 
 
    MAF.max <- 0.5 
  } 
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  if( length( Causal.MAF ) != length( Causal.location ) ) { stop( "Causal.MAF and 
Causal.location are not of same length" ) } 
   
  if( pExplained < 0 | pExplained > 1) { stop( "Percentage Explained must be between 0 
and 1" ) } 
   
  if( MAF.min < 0.001 | MAF.min > 0.999) { stop( "MAF.min must be between 0 and 1" ) 
} 
   
  if( MAF.max < 0.001 | MAF.max > 0.999) { stop( "MAF.max must be between 0 and 1" 
) } 
   
  if( MAF.min >  MAF.max ) { stop( "MAF.max must be greater than MAF.min" ) } 
   
  if( length(Causal.location ) < 1) { stop( "Must have at least 1 causal SNP" ) } 
   
  if(length(Causal.location ) > NVAR) { stop( "Number of causal SNPs is greater than the 
number of SNPs" ) } 
   
  if( missing( Error.Mean ) ) { message(paste( "Error.Mean is missing: Error.Mean set to 
0" )) 
     
  Error.Mean <- c(0) 
  } 
   
#---------------------------------------------------------------------------------------------------------------# 
# Create vectors for x, y, Beta and residual variance 
#---------------------------------------------------------------------------------------------------------------# 
   
  MAF.err <- matrix(0, nrow = 1, ncol = NVAR) 
   
  Error.SD <- 1 - (length( Causal.location )*pExplained) 
   
  x <- matrix(0, nrow = N, ncol = NVAR) 
   
  y <- matrix(0, nrow = N, ncol = 1)   
   
  Beta <- matrix(0, nrow = 1, ncol = length(Causal.location)) 
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#---------------------------------------------------------------------------------------------------------------# 
# Fix the MAF for causal SNPs and simulate a vector of minor allele frequencies  
#---------------------------------------------------------------------------------------------------------------# 
  if(missing(MAF)){ 
 
    message(paste("MAF is missing: MAF randomly generated")) 
 
    MAF <- matrix( 0, nrow = 1, ncol = NVAR) 
 
    maf <- runif(NVAR, min = MAF.min, max = MAF.max) 
     
    for (j in 1:NVAR){ 
 
      MAF[,j] <- maf[j] + MAF.err[,j] 
    } 
  } 
   
  for (j in 1:length(Causal.MAF)){ 
    MAF[ ,Causal.location[j]] <- Causal.MAF[j] 
  } 
 
#---------------------------------------------------------------------------------------------------------------# 
# Simulate the genotype matrix X based on the MAF of each SNP 
#---------------------------------------------------------------------------------------------------------------# 
   
  for (j in 1:NVAR){    
 
    x[, j] <- rbinom(N, 2, MAF[,j]) 
 
  } 
 
#---------------------------------------------------------------------------------------------------------------# 
# Simulate effect estimates for the causal SNPs  
#---------------------------------------------------------------------------------------------------------------# 
   
  for (i in 1:length(Causal.MAF)){ 
    Beta[i] <- (sqrt(pExplained/(2*maf[Causal.location[i]]*(1 - maf[Causal.location[i]])))) 
  } 
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#---------------------------------------------------------------------------------------------------------------# 
# Simulate the phenotype y  
#---------------------------------------------------------------------------------------------------------------# 
   
  y <- rnorm(N, mean = Error.Mean, sd = Error.SD) 
   
  for (i in 1:length(Causal.MAF)){ 
    y <- y + Beta[i]*x[ ,Causal.location[i]]   
  } 
   
#---------------------------------------------------------------------------------------------------------------# 
# Standardise X  
#---------------------------------------------------------------------------------------------------------------# 
   
  x <- scale(x) 
  
#---------------------------------------------------------------------------------------------------------------# 
# List of outputs  
#---------------------------------------------------------------------------------------------------------------# 
   
  return(list(X = x, Y = y, SNP.MAF = MAF, Causal.Beta = Beta)) 
   
} 
 
#---------------------------------------------------------------------------------------------------------------# 
# Function to fit the LASSO using coordinate descent 
#---------------------------------------------------------------------------------------------------------------# 
 
LASSO <- function(z, y, Convergence.Threshold, Iterations, Lambda){ 
#---------------------------------------------------------------------------------------------------------------# 
# Default and error settings for the LASSO function 
#---------------------------------------------------------------------------------------------------------------# 
   
if( missing(z))stop( "Must specify z" ) 
   
  if( missing(y))stop( "Must specify y" ) 
   
  if( missing(Lambda))stop( "Must specify Lambda" ) 
   
  if( missing(Convergence.Threshold) ){ 
 
    message(paste( "Convergence.Threshold is missing: Convergence.Threshold set to 
0.0001" )) 
 
    Convergence.Threshold <- 0.0001 
} 
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  if( missing(Iterations) ){ 
 
    message( paste( "Iterations is missing: Iterations set to 10000" ) ) 
 
    Iterations <- 10000}   
 
#---------------------------------------------------------------------------------------------------------------# 
# Simulate results matrices 
#---------------------------------------------------------------------------------------------------------------# 
   
  N <- nrow(z) 
   
  results <- matrix(0, nrow = length(Lambda), ncol = ncol(z)) 
   
  a0 <- matrix(0, nrow = length(Lambda), ncol = 1) 
   
  rss <- matrix(0, nrow = length(Lambda), ncol = 1) 
   
  beta.hat <- as.numeric(matrix(0, nrow = 1, ncol = ncol(z))) 
   
  old.beta <- as.numeric(matrix(0, nrow = 1, ncol = ncol(z))) 
   
#---------------------------------------------------------------------------------------------------------------# 
# calculate SXX 
#---------------------------------------------------------------------------------------------------------------# 
   
  sxx <-matrix(0, nrow = 1,ncol = ncol(z)) 
  for(i in 1:ncol(X)){sxx[i] <- sum(z[,i]^2)} 
 
#---------------------------------------------------------------------------------------------------------------# 
# Coordinate descent algorithm 
#---------------------------------------------------------------------------------------------------------------# 
 
   
#---------------------------------------------------------------------------------------------------------------# 
# Loop over Lambda 
#---------------------------------------------------------------------------------------------------------------# 
   
  for (k in 1:length(Lambda)){ 
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#----------------------------------------------------------------------------------------------------------------# 
# Loop over number of iterations 
#----------------------------------------------------------------------------------------------------------------# 
    for (i in 1:Iterations){ 
       
#----------------------------------------------------------------------------------------------------------------# 
# Let the beta estimate from the previous iteration be called Oldbeta 
#----------------------------------------------------------------------------------------------------------------# 
 
      old.beta <- beta.hat 
       
#----------------------------------------------------------------------------------------------------------------# 
# Loop over number of SNPs 
#----------------------------------------------------------------------------------------------------------------# 
 
      for(j in 1:ncol(z)){ 
 
#----------------------------------------------------------------------------------------------------------------# 
# In the case of a monomorphic SNP, do not change Beta 
#----------------------------------------------------------------------------------------------------------------# 
           
 
        if (sxx[j]==0){ 
           
          new.beta <- beta.hat[j] 
           
        } else { 
#----------------------------------------------------------------------------------------------------------------# 
# Calculate r 
#----------------------------------------------------------------------------------------------------------------# 
           
          
          beta.hat <- as.vector(beta.hat) 
           
          r <- sum((y - a0[k] - z%*%beta.hat)*z[,j]) 
           
#----------------------------------------------------------------------------------------------------------------# 
# Calculate left and right derivatives 
#----------------------------------------------------------------------------------------------------------------# 
           
          if(beta.hat[j]==0){ 
             
            right.der <- - r + (N - 1)*Lambda[k] 
             
            left.der <- - r - (N - 1)*Lambda[k] 
          } 
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          if(beta.hat[j] > 0){ 
             
            right.der <- - r + (N - 1)*Lambda[k] 
             
            left.der <- - r + (N - 1)*Lambda[k]  
          } 
           
          if(beta.hat[j] < 0){ 
             
            right.der <- - r - (N - 1)*Lambda[k] 
             
            left.der <- - r - (N - 1)*Lambda[k]  
          } 
           
#----------------------------------------------------------------------------------------------------------------# 
# Calculate the new beta estimate 
#----------------------------------------------------------------------------------------------------------------# 
           
           
          if (right.der*left.der > 0){ 
             
            if (beta.hat[j]==0 & r < 0){ 
               
              new.beta <- beta.hat[j] - (left.der/sxx[j]) 
               
            } else { 
               
              new.beta <- beta.hat[j] - (right.der/sxx[j])  
               
            } 
             
            if (new.beta*beta.hat[j] < 0){new.beta <- 0} 
             
            beta.hat[j] <- new.beta 
             
#---------------------------------------------------------------------------------------------------------------# 
# Estimate the intercept Beta0                                                                                                                     
#---------------------------------------------------------------------------------------------------------------# 
             
            a0[k] <- mean(y - z%*%beta.hat) 
             
          } 
        } 
      } 
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#---------------------------------------------------------------------------------------------------------------# 
# Check if convergence criteria has been met, if so stop. If not check the maximum        
# number of iterations has not been met 
#---------------------------------------------------------------------------------------------------------------# 
      if(sum(abs(old.beta - beta.hat)) < Convergence.Threshold){break} 
       
      if(i==Iterations){stop("LASSO failed to converge")} 
       
    } 
     
#---------------------------------------------------------------------------------------------------------------# 
# Record the beta estimates for the k’th lambda and residual sum of squares                                                                                                                     
#---------------------------------------------------------------------------------------------------------------# 
    results[k, ] <- beta.hat 
     
    rss[k,] <- sum((y - a0[k] - z%*%beta.hat)^2)+((N - 1)*Lambda[k]*sum(abs(beta.hat))) 
     
  } 
#---------------------------------------------------------------------------------------------------------------# 
# List of outputs  
#---------------------------------------------------------------------------------------------------------------# 
   
 
  return(list(Beta = results, RSS = rss, b0 = a0)) 
} 
 
#---------------------------------------------------------------------------------------------------------------# 
# Command to produce a dataset  
#---------------------------------------------------------------------------------------------------------------# 
   
 
data <- Make.Dataset(NVAR = 25, N = 50, pExplained = 0.01, MAF.min = 0.01, MAF.max 
= 0.5, Causal.MAF = c(0.02, 0.2), Causal.location = c(15, 25)) 
 
#---------------------------------------------------------------------------------------------------------------# 
# Output the genotype matrix and vector of phenotypes  
#---------------------------------------------------------------------------------------------------------------# 
 
X <- data$X 
Y <- data$Y 
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#---------------------------------------------------------------------------------------------------------------# 
# Run LASSO function, input genotype matrix, pehotype vector, convergence                 
# threshold, number of iterations and a sequence of lambda estimates  
#---------------------------------------------------------------------------------------------------------------# 
 
lasso <- LASSO(z = X, y = Y, Convergence.Threshold = 0.0001, Iterations = 10000, 
Lambda = seq(from = 0, to = 0.2, by = 0.01)) 
 
#---------------------------------------------------------------------------------------------------------------# 
# Output a matrix of beta estimates for varying lambda estimates 
#---------------------------------------------------------------------------------------------------------------# 
 
betas <- lasso$Beta 
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Appendix B: Summary of studies that have performed GWAS on the LDL 

 

 

Table B.0.1 Summary of studies that have performed GWAS on the Low-density Lipoprotein phenotype 

Author 
Pub. 
Date 

Methods 
used 

Sample 
Size 

Ancestry 
No. of 
SNPs 

Chr. Gene SNP Position 
P-

value 

Asselbergs 
(162) 

Nov-
12 

Meta-
analysis. 

Corrected 
for 

population 
stratification, 

age & lipid 
medication. 

66,420 European 49,227 

1 PCSK9 rs499883 55,519,174 
1.92E-

09 

2 APOB rs693 21,232,195 
1.81E-

12 

2 ABCG5, ABCG8 rs4953023 44,074,000 
1.15E-

05 

6 LPA rs3798220 160,961,137 
5.55E-

06 

11 SPT2 rs3781799 19,208,319 
3.16E-

05 

19 LDLR rs5930 11,224,265 
7.84E-

09 

19 APOE rs769450 45,410,444 2.62E-
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10 

Aulchenko 
(163) 

Dec-
08 

Meta-
analysis 

17,797 
European 

(Scandanvian) 
~600,000 

1 DOCK7 rs10889353 63,118,196 
8.00E-

06 

1 CELSR2, SORT1 rs646776 109,818,530 
8.00E-

23 

2 APOB rs693 21,232,195 
4.00E-

17 

2 ABCG5, ABCG8 rs6756629 44,065,090 
3.00E-

10 

5 HMGCR rs3846662 74,651,084 
2.00E-

11 

7 DNAH11 rs12670798 21,607,352 
6.00E-

09 

8 TRIB1 rs6987702 126,504,726 
3.00E-

06 

11 FADS2, FADS3 rs174570 61,597,212 
4.00E-

13 

11 APOA1 rs12272004 116,603,724 
5.00E-

13 

19 LDLR rs2228671 11,210,912 
4.00E-

14 

19 NCAN rs2304130 19,789,528 
3.00E-

06 

19 APOE rs157580 45,395,266 
2.00E-

19 

Chasman 
(164) 

Jun-
08 

Additive 
regression 

6,382 
(all 

American 341,518 1 CELSR2, SORT1 rs646776 109,818,530 
4.90E-

19 
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model 
adjusting for 

age, BMI, 
smoking 
status, 

menopausal 
status & HRT 

status 

female 
cohort) 

2 APOB rs506585 21,397,182 
9.30E-

09 

19 LDLR rs6511720 11,202,306 
5.20E-

15 

19 APOE rs4803750 45,247,627 
3.60E-

14 

Chasman 
(186) 

Jan-
12 

Additive 
regression 

model. 
6,989 European 814,418 

1 PCSK9 rs11591147 55,505,647 
4.70E-

09 

19 APOE rs7412 45,412,079 
1.60E-

47 

Kathiresan 
(166) 

Jan-
08 

Meta-
analysis 

2,758 European 389,878 

1 PCSK9 rs11591147 55,505,647 
2.00E-

44 

1 CELSR2, SORT1 rs646776 109,818,530 
3.00E-

29 

2 APOB rs693 21,232,195 
1.00E-

21 

5 HMGCR rs12654264 74,648,603 
1.00E-

20 

19 LDLR rs6511720 11,202,306 
2.00E-

51 

19 CILP2 rs16996148 19,658,472 
3.00E-

08 

19 APOE rs4420638 45,422,946 
1.00E-

60 
Kathiresan 

(167) 
Dec-
08 

Meta-
analysis 

19,840 European 
~2.6 

million 
1 PCSK9 rs11206510 55,496,039 

4.00E-
08 
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(Imputed) 
1 CELSR2, SORT1 rs12740374 109,817,590 

2.00E-
42 

2 APOB rs515135 21,286,057 
5.00E-

29 

2 ABCG5, ABCG8 rs6544713 44,073,881 
2.00E-

20 

5 HMGCR rs3846663 74,655,726 
8.00E-

12 

5 HAVCR1 rs1501908 156,398,169 
1.00E-

11 

12 HNF1A rs2650000 121,388,962 
2.00E-

08 

19 LDLR rs6511720 11,202,306 
2.00E-

26 

19 CILP2 rs10401969 19,407,718 
2.00E-

08 

19 APOE rs4420638 45,422,946 
4.00E-

27 

20 MAFB rs6102059 39,228,784 
4.00E-

09 

Kim (254) 
Oct-
11 

Meta-
analysis 

23,921 

Korean - 

1 CELSR2, SORT1 rs599839 109,822,166 
1.84E-

19 

25,098 5 HMGCR rs12654264 74,648,603 
1.21E-

20 

25,112 9 ABO rs651007 136,153,875 
6.00E-

09 

25,120 19 LDLR rs2738446 11,227,326 
2.02E-

12 
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Lettre (169) 
Feb-
11 

Linear 
regression 

model 
8,090 

African 
American 

909,622 

1 PCSK9 rs10493178 55,597,067 
4.76E-

12 

1 DOCK7 rs10889335 62,960,101 
1.26E-

04 

1 DOCK7 rs10889353 63,118,196 
4.00E-

03 

1 CELSR2, SORT1 rs12740374 109,817,590 
1.36E-

16 

2 APOB rs562338 21,288,321 
3.16E-

07 

2 APOB rs503662 21,414,142 
2.56E-

09 

19 LDLR rs6511720 11,202,306 
7.26E-

08 

19 APOE rs1160985 45,403,412 
7.26E-

21 

Middelberg 
(170) 

Sep-
11 

Multivariate 
analysis 

11,693 Australian - 

1 CELSR2 rs660240 109,817,838 
7.00E-

09 

2 APOB rs10199768 21,244,000 
2.30E-

08 

19 APOE rs2075650 45,395,619 
5.70E-

10 

Musunuru 
(171) 

May-
12 

Additive 
regression 

model. 
44,957 

European 

49,320 

1 PCSK9 rs11591147 55,505,647 
1.75E-

28 
African 

American 
1 PCSK9 rs11806638 55,518,160 

5.06E-
11 

African 
American & 

1 CELSR2, SORT1 rs7528419 109,817,192 
1.70E-

51 
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European 

African 
American & 
European 

1 CELSR2, SORT1 rs12740374 109,817,590 
2.91E-

51 

European 2 APOB rs934197 21,267,461 
2.89E-

34 
African 

American & 
European 

2 APOB rs562338 21,288,321 
7.61E-

34 

European 2 ABCG5, ABCG8 rs4953023 44,074,000 
2.42E-

08 

European 5 HMGCR rs12916 74,692,295 
5.51E-

13 

European 6 LPA rs10455872 161,010,118 
2.82E-

12 

European 7 NPC1L1 rs17725246 44,581,986 
5.57E-

07 

European 8 TRIB1 rs6982636 126,479,315 
4.30E-

09 

European 16 HPR rs2000999 72,108,093 
2.40E-

08 
African 

American 
19 ICAM1 rs5030359 10,388,462 

1.25E-
08 

African 
American & 
European 

19 LDLR rs6511720 11,202,306 
1.39E-

49 

African 19 APOE rs389261 45,420,343 1.11E-



 

335 
 

American 14 

European 19 APOE rs12721046 45,421,254 
2.25E-

29 

Rasmussen-
Torvik (172) 

Oct-
12 

- 1249 
African 

American 
910,341 19 APOE rs7412 45,412,079 

2.00E-
09 

Roslin (173) 
Dec-
09 

Growth 
Curve Model 
adjusted for 
sex, baseline 

age, 
diabetes, 

BMI & 
smoking (per 
day) as time-

varying 
covariates 

1,659 
United States 

of America 
348,053 1 CELSR2, SORT1 rs599839 109,822,166 

3.04E-
10 

Sabatti 
(174) 

Dec-
08 

OLS 
Regression 

adjusted for 
various traits 

4,763 Finland 329, 091 

1 CELSR2, SORT1 rs646776 109,818,530 
2.00E-

12 

2 APOB rs693 21,232,195 
3.00E-

11 

11 FADS1 rs174546 61,569,830 
1.00E-

07 

19 LDLR rs11668477 11,195,030 
2.00E-

07 

19 APOE rs157580 45,395,266 
5.00E-

08 

Saleheen 
(175) 

Jun-
10 

Linear 
regression 

5,576 Pakistani 31,883 1 CELSR2, SORT1 rs646776 109,818,530 
7.19E-

10 
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model 

Sandhu 
(176) 

Feb-
08 

Meta-
analysis. 

Corrected 
for 

population 
stratification 

11,685 UK 461,986 

1 CELSR2, SORT1 rs599839 109,822,166 
1.00E-

33 

2 APOB rs562338 21,288,321 
1.00E-

09 

19 APOE rs4420638 45,422,946 
1.00E-

20 

Shen (255) 
Nov-

10 

Multi-level 
model. 

Corrected 
for sex, age 

and age2 

841 Amish 369,241 2 APOB rs4971516 20,903,015 
2.00E-

52 

Smith (178) 
Sep-
10 

Linear mixed 
mode 

adjusting for 
age & sex 

with random 
slope and 
random 

intercept 

525 European 545,821 

5 KIF4B, SGCD rs10044666 155,128,570 
4.76E-

07 

6 - rs7738656 121,714,848 
2.56E-

07 

19 APOE rs7412 45,412,079 
1.66E-

08 

21 MRPS6, KCNE2 rs8131349 35,571,906 
1.46E-

08 

Talmund 
(179) 

Nov-
09 

Additive 
regression 

model 
adjusting for 
age and sex 

5,059 UK 48,032 

1 PCSK9 rs11591147 55,505,647 
9.28E•-

12 

1 CELSR2, SORT1 rs4970834 109,814,880 
5.18E•-

09 

1 CELSR2, SORT1 rs12740374 109,817,590 
1.82E•-

09 
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1 CELSR2,SORT1 rs629301 109,818,306 
6.50E•-

09 

2 APOB rs693 21,232,195 
3.86E•-

08 

2 APOB rs934197 21,267,461 
3.43E•-

08 

2 APOB rs562338 21,288,321 
1.21E-

11 

2 ABCG5, ABCG8 rs4299376 44,072,576 
8.70E•-

10 

5 HMGCR rs12916 74,692,295 
6.66E•-

09 

5 HMGCR rs3804231 74,696,779 
5.15E-

06 

11 APOA5 rs2072560 116,661,826 
2.36E-

07 

16 CETP rs17231506 56,994,528 
5.02E-

07 

19 LDLR rs1529729 11,163,562 
6.71E-

06 

19 LDLR rs17248720 11,198,187 
7.86E-

25 

19 LDLR rs8110695 11,206,530 
1.12E-

08 

19 LDLR rs2228671 11,210,912 
6.52E•-

10 

19 BCL3 rs1531517 45,242,173 
6.26E-

08 
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19 BCL3/PVRL2 rs10402271 45,329,214 
2.06E-

12 

19 APOE rs519113 45,376,284 
9.37E-

07 

19 APOE rs6859 45,382,034 
3.53E-

08 

19 APOE rs283813 45,389,174 
2.51E•-

06 

19 APOE rs2075650 45,395,619 
1.14E•-

14 

19 APOE rs12721046 45,421,254 
7.58E-

14 

19 APOE rs12721109 45,447,221 
5.06E•-

14 

Teslovich 
(180) 

Feb-
11 

Meta-
analysis 

95,454 European 
~2.6 

million 
(Imputed) 

1 TMEM57,LDLRAP1 rs12027135 25,775,733 
1.00E-

10 

1 PCSK9 rs2479409 55,504,650 
2.00E-

28 

1 DOCK7 rs2131925 63,025,942 
3.00E-

18 

1 CELSR2, SORT1 rs629301 109,818,306 
1.00E-

170 

1 MOSC1 rs2642442 220,973,563 
6.00E-

11 

1 TOMM20 rs514230 234,858,597 
9.00E-

12 

2 APOB rs1367117 21,263,900 
4.00E-

114 
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2 ABCG5,ABCG8 rs4299376 44,072,576 
2.00E-

47 

5 HMGCR rs12916 74,656,539 
5.00E-

45 

5 HAVCR1 rs6882076 156,390,297 
2.00E-

22 

6 IDOL rs3757354 16,127,407 
1.00E-

11 

6 HFE,HIST1H4C rs1800562 26,093,141 
6.00E-

10 

6 HLA rs3177928 32,412,435 
2.00E-

15 

6 FRK rs9488822 116,312,893 
3.00E-

09 

6 LPA rs1564348 160,578,860 
2.00E-

17 

7 DNAH11 rs12670798 21,607,352 
7.00E-

10 

7 NPC1L1 rs2072183 44,579,180 
4.00E-

11 

8 PPP1R3B rs9987289 9,183,358 
7.00E-

15 

8 CYP7A1 rs2081687 59,388,565 
4.00E-

09 

8 TRIB1 rs2954029 126,490,972 
3.00E-

29 

8 PLEC1 rs11136341 145,043,543 
4.00E-

13 
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9 ABO rs635634 136,155,000 
8.00E-

22 

10 GPAM rs2255141 113,933,886 
2.00E-

09 

11 FADS1 rs174546 61,569,830 
1.00E-

21 

11 APOA1 rs964184 116,648,917 
1.00E-

26 

11 ST3GAL4 rs11220462 126,243,952 
1.00E-

15 

12 BRAP rs11065987 112,072,424 
2.00E-

09 

12 HNF1A rs1169288 121,416,650 
1.00E-

15 

14 CBLN3,KIAA0323 rs8017377 24,883,887 
4.00E-

11 

16 CETP rs3764261 56,993,324 
9.00E-

13 

16 HPR rs2000999 72,108,093 
2.00E-

22 

17 OSBPL7 rs7206971 45,425,115 
4.00E-

09 

19 LDLR rs6511720 11,202,306 
4.00E-

117 

19 CILP2 rs10401969 19,407,718 
7.00E-

22 

19 APOE rs4420638 45,422,946 
9.00E-

147 
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20 MAFB rs2902940 39,091,487 
1.00E-

08 

20 TOP1 rs6029526 39,672,618 
3.00E-

19 

Trompet 
(181) 

Oct-
11 

Linear 
regression 

model 
adjusted for 
Age, Sex & 

Country 

5,244 European 557,192 

1 CELSR5 rs602633 109,821,511 
5.00E-

08 

5 HMGCR rs258494 75,038,718 
1.30E-

09 

11 FADS2 rs174541 61,565,908 
1.10E-

08 

19 LDLR rs6511720 11,202,306 
5.20E-

15 

19 APOE rs445925 45,415,640 
2.80E-

30 

Waterworth 
(182) 

Sep-
10 

Meta-
analysis 

17,243 European 
2,155,369 
(Imputed) 

1 PCSK9 rs11206510 55,496,039 
1.00E-

10 

1 CELSR2 rs660240 109,817,838 
1.00E-

26 

2 APOB rs515135 21,286,057 
2.00E-

20 

5 HMGCR rs12916 74,656,539 
1.00E-

11 

6 MYLIP,GMPR rs2142672 16,197,194 
2.00E-

08 

8 PPP1R3B rs2126259 9,185,146 
7.00E-

12 

8 TRIB1 rs2954021 126,482,077 
1.00E-

07 
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11 APOA1 rs1558861 116,607,437 
2.00E-

06 

19 LDLR rs2738459 11,238,473 
7.00E-

06 

19 CILP2 rs10401969 19,407,718 
1.00E-

11 

19 APOE rs4420638 45,422,946 
2.00E-

40 

Willer (183) 
Apr-
12 

- 8,589 - 
~2,261,000 
(Imputed) 

1 PCSK9 rs11206510 55,496,039 
4.00E-

11 

1 CELSR2, SORT1 rs599839 109,822,166 
6.00E-

33 

2 APOB rs562338 21,288,321 
6.00E-

22 

6 COL11A2 rs2254287 33,143,948 
5.00E-

08 

19 LDLR rs6511720 11,202,306 
4.00E-

26 

19 CILP2 rs16996148 19,658,472 
3.00E-

09 

19 APOE rs4420638 45,422,946 
3.00E-

43 

Wu (184) 
Mar-

13 

Trans-ethic 
Meta-

analysis 
20,278 

African 
American, 
East Asian 
and White 
European 

15,000+ 
SNP's over 

58 
different 

Locus 

1 PCSK9 rs11591147 55,505,647 
4.60E-

32 

1 CELSR2, SORT1 rs12740374 109,817,590 
7.60E-

37 

2 - rs7575840 21,273,490 
4.20E-

19 
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2 ABCG5, ABCG8 rs76866386 44,075,482 
4.00E-

11 

5 - rs7722186 74,576,285 
4.00E-

08 

5 HAVCR1 rs9715911 156,394,441 
5.70E-

06 

8 TRIB1 rs4870941 126,498,828 
4.80E-

06 

9 ABO rs2519093 136,141,870 
2.20E-

13 

16 HPR rs72626182 72,078,990 
2.00E-

06 

19 LDLR rs73015011 11,189,764 
7.40E-

38 

19 APOE rs7412 45,412,079 
5.90E-

209 

20 - rs1883511 39,641,517 
6.50E-

06 
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Appendix C: Summary of SNPs selected using the LASSO on chromosome 19 of 

the GRAPHIC study using repeated Cross-validation 

Table C.1 SNPs selected by the LASSO on chromosome 19 of the GRAPHIC study dataset using 100 repeats of 10-fold Cross-validation for tuning 
parameter selection 

SNP Base position Beta S.E. MAF P-value Q-value LASSO Beta 

rs7412 45412079 -16.28 2.28 0.0861 1.70E-12 2.09E-08 -9.58638 
rs4420638 45422946 8.01 1.52 0.2106 1.58E-07 0.000968 2.13897 

rs2075650 45395619 8.45 1.71 0.1573 9.66E-07 0.003951 0.45674 
rs10402182 37160529 6.29 1.36 0.3013 4.53E-06 0.007943 2.31366 
rs17272386 37180297 6.29 1.36 0.3013 4.53E-06 0.007943 4.20E-15 
rs1525133 37199250 6.29 1.36 0.3013 4.53E-06 0.007943 6.00E-16 

rs17001002 10948031 -6.97 1.59 0.1839 1.25E-05 0.014524 -2.91778 
rs10402271 45329214 5.44 1.36 0.3121 6.78E-05 0.055104 0.17373 
rs10853810 49969085 -4.92 1.3 0.3683 0.000166 0.114392 -1.31339 
rs12975624 40335037 -4.51 1.24 0.4847 0.000304 0.178521 -0.86207 

rs7253937 20474655 -6.15 1.75 0.167 0.000459 0.230804 -1.21638 
rs887030 2528705 5.02 1.44 0.284 0.000501 0.242565 0.48490 
rs10896 19287928 4.5 1.29 0.3698 0.000531 0.250326 0.89130 

rs1860328 42136626 -4.93 1.46 0.2579 0.000773 0.310623 -0.60908 
rs846866 45134110 6.06 1.82 0.142 0.000871 0.330124 1.27082 
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rs6509544 52003331 -5.6 1.69 0.1741 0.000946 0.343679 -1.15941 
rs7253451 40259342 4.55 1.38 0.2845 0.001029 0.357392 0.58311 

rs10407413 5947871 7.04 2.15 0.0947 0.001116 0.370545 1.30276 
rs260415 58715944 -4.38 1.37 0.324 0.001414 0.407971 -1.18267 

rs2607272 13912062 4.26 1.36 0.3176 0.001743 0.439339 0.17139 
rs2233152 41281016 -5.4 1.76 0.1494 0.002202 0.471841 -0.34642 

rs2287692 41289756 -5.4 1.76 0.1494 0.002202 0.471841 -5.10E-14 
rs2228671 11210912 -5.56 1.81 0.1361 0.002234 0.473747 -0.23144 

rs10425830 6352936 9.08 2.97 0.0473 0.002291 0.477047 1.02056 
rs10854133 14955029 -4.3 1.41 0.266 0.002415 0.483828 -0.06386 

rs734570 49606449 -5.22 1.73 0.1726 0.002651 0.495412 -0.18926 
rs8110944 51909821 8.33 2.81 0.0538 0.003069 0.512514 0.00226 
rs3826838 49183284 -5.48 1.85 0.1369 0.00312 0.514355 -0.38901 

rs10417957 4647231 4.46 1.51 0.2265 0.003177 0.516357 0.05071 

rs11084440 56782965 3.91 1.32 0.4573 0.003187 0.516703 0.11474 
rs806711 5618654 -7.03 2.4 0.07 0.003531 0.527629 -1.06273 

rs4251950 44153255 13.58 4.69 0.0202 0.003848 0.536283 0.25613 
rs17833533 33630693 5.3 1.84 0.1371 0.004038 0.540934 0.07895 
rs2278434 38713568 -5.1 1.78 0.1534 0.004254 0.545801 -0.05245 

rs12986307 57519466 -4.28 1.51 0.2244 0.004725 0.555109 -0.31246 
rs11665818 39768216 -4.42 1.57 0.2045 0.005005 0.559934 -0.05974 
rs12327843 18004912 3.96 1.41 0.2572 0.005124 0.561847 0.05206 
rs4807284 2493811 5.54 1.98 0.119 0.005197 0.562984 0.01917 

rs10500293 46431638 3.52 1.27 0.4433 0.005566 0.568335 0.00162 
rs11083567 41318306 -4.34 1.57 0.1881 0.005841 0.57194 -0.19856 
rs3745245 10676423 4.13 1.5 0.2352 0.006174 0.575927 0.11756 
rs3218222 10676681 4.13 1.5 0.2352 0.006174 0.575927 4.60E-15 

rs28433973 8660890 -4.38 1.61 0.195 0.006691 0.589904 -0.16029 
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rs10426401 45147719 3.92 1.46 0.2406 0.00752 0.610096 0.09552 
rs1466448 8289519 -3.99 1.57 0.1967 0.01135 0.67282 -0.01455 
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Appendix D: Coefficient path plots all 50 simulated SNPs using the Integrative 

LASSO when 𝜆1 = 0 
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Figure D.0.1 Coefficient path plots for SNP1 to SNP10 using the Integrative LASSO when 𝜆1 = 0. Each line represents the SNP from a dataset 

and the path shows the βcoefficient on the y-axis as the 𝜆2 penalty increases on the bottom x-axis. 
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Figure D.0.2 Coefficient path plots for SNP11 to SNP20 using the Integrative LASSO when 𝜆1 = 0. Each line represents the SNP from a dataset 

and the path shows the βcoefficient on the y-axis as the 𝜆2 penalty increases on the bottom x-axis. 
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Figure D.0.3 Coefficient path plots for SNP21 to SNP30 using the Integrative LASSO when 𝜆1 = 0. Each line represents the SNP from a dataset 

and the path shows the βcoefficient on the y-axis as the 𝜆2 penalty increases on the bottom x-axis. 
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Figure D.0.4 Coefficient path plots for SNP31 to SNP40 using the Integrative LASSO when 𝜆1 = 0. Each line represents the SNP from a dataset 

and the path shows the βcoefficient on the y-axis as the 𝜆2 penalty increases on the bottom x-axis. 
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Figure D.0.5 Coefficient path plots for SNP41 to SNP50 using the Integrative LASSO when 𝜆1 = 0. Each line represents the SNP from a dataset 

and the path shows the βcoefficient on the y-axis as the 𝜆2 penalty increases on the bottom x-axis. 
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Appendix E: Convergence of the Integrative 

LASSO 

 

Figure E.0.1 Plot of the sum of absolute difference after each iteration across all 

datasets against its iteration number for a sample size of 500 in each dataset 

 

Figure E.0.2 Plot of the maximum value in the absolute difference across all SNPs in all 

datasets after each iteration across all datasets against its iteration number for a 

sample size of 500 in each dataset 
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