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Abstract. Lumen segmentation from clinical intravascular optical coherence tomography (IV-OCT) images has
clinical relevance as it provides a full three-dimensional perspective of diseased coronary artery sections.
Inaccurate segmentation may occur when there are artifacts in the image, resulting from issues such as inad-
equate blood clearance. This study proposes a transmittance-based lumen intensity enhancement method that
ensures only lumen regions are highlighted. A level-set-based active contour method that utilizes the local
speckle distribution properties of the image is then employed to drive an image-specific active contour toward
the true lumen boundaries. By utilizing local speckle properties, the intensity variation issues within the image are
resolved. This combined approach has been successfully applied to challenging clinical IV-OCT datasets that
contains multiple lumens, residual blood flow, and its shadowing artifact. A method to identify the guide-wire and
interpolate the lost lumen segments has been implemented. This approach is fast and can be performed even
when guide-wire boundaries are not easily identified. Lumen enhancement also makes it easy to identify vessel
side branches. This automated approach is not only able to extract the arterial lumen, but also the smaller micro-
vascular lumens that are associated with the vasa vasorum and with atherosclerotic plaque. © 2016 Society of Photo-

Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.3.4.044001]
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1 Introduction
Intravascular optical coherence tomography (IV-OCT) is now
widely used for the clinical assessment of atherosclerotic plaque,
as this technology provides high-resolution (axially ≈15 μm
resolution) cross-sectional images of the coronary arterial wall.1

While structural images can provide a high-contrast view from
these cross-sections, clinical image interpretation from two-
dimensional (2-D) sections requires considerable experience
leading to significant interobserver variability.1 Automated
assessment can reduce this error and produce more consistent
image interpretation. Various techniques have been reported for
lumen segmentation,1–8 stent strut detection,7 and plaque charac-
terization.1,9 These approaches are either semi or fully automated.

Lumen segmentation and three-dimensional (3-D) recon-
struction of the coronary artery has been a key objective due to
the clinical applicability of this approach for the assessment and
treatment of coronary stenosis. In IV-OCT images, lumen
regions are visualized as a signal-sparse region surrounded by
the bright tissue regions constituting the vessel wall. Thus, the
wall–lumen interface provides a high degree of contrast and
this is generally exploited by various techniques to extract the
lumen boundary. Some of the methods previously employed
include image thresholding,1 A-line intensity-variation analysis,2,3

intensity difference-dependent cost function and its minimiza-
tion approach,4,5 and labeling methods using Markov random
field (MRF).7 Alternatively, a combination approach with
expectation maximization (EM) for labeling and graph-cut for
lumen segmentation has been reported.8 All these techniques
use the tissue region as the reference from which to determine
the boundary. The lumen geometry generated can then be
refined using an active contour method (ACM).6,8

The IV-OCT images in reports describing application of
these lumen segmentation methods are usually selected to
have optimal image quality. However, the real-world context of
clinical IV-OCT frequently generates more challenging images
resulting from complex anatomy, artifacts, and disease. For
example, although rapid pullback technologies have eliminated
the need for proximal balloon occlusion, during clinical image
acquisition images are frequently partially distorted by blood
artifacts10 [Fig. 1(a)]. Additionally, diseased arteries may
present highly altered lumen shapes [Fig. 1(b)] that can be chal-
lenging for current segmentation tools. Morphological opera-
tions,6 prior to the lumen segmentation, can be applied to the
IV-OCT images to minimize the effect of blood artifacts.
However, complete removal is not guaranteed, especially when
blood is flowing very close to, or in continuity with the luminal
wall. In such situations, cost function minimization methods4,5
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also fail and manual intervention is advised.1,5 More impor-
tantly, when the intensity of a tissue region is reduced by the
shadowing effect, intensity-dependent segmentation methods
may fail to distinguish the luminal region. In such situations,
statistical property-based labeling methods such as MRF7 and
EM+graph-cut8 may be able to identify tissue regions, but sys-
tematic assessment of this strategy on challenging “real world”
clinical datasets has not been reported. There is, therefore, a
need for an automatic lumen segmentation tool that can account
for such variations.

To create a fully automated lumen segmentation method, in
this study, a technique to enhance lumen intensity was applied,
thereby focusing the segmentation approach on the lumen
instead of the tissue region. A statistically formulated level-
set-based ACM segmentation method was then employed to
extract the lumen. To demonstrate the capability of this com-
bined approach, challenging in vivo clinical IV-OCT images
with blood-flow artifacts and multiple lumens were successfully
analyzed. The proposed method is also capable of compensating
for guide-wire artifacts and yields the correct lumen contours for
side-branch ostia.

2 Methods
Figure 2 shows the steps developed to automate the lumen seg-
mentation process. Steps 1 to 5 were implemented individually
for each frame in the pullback dataset. The lumen region in
every frame was enhanced and then a localized region-based
level-set segmentation method was applied to segment the
lumen. Once the lumen geometry was segmented from every
frame, a 3-D vessel shape was rendered. The lumen enhance-
ment method enabled the identification of guide-wire artifacts
and side-branch openings, which were then compensated after
the lumen contour was obtained (see Fig. 2).

2.1 Transmissivity-Dependent Intrinsic Lumen
Contrast

An attenuation coefficient-based strategy has been widely used
for OCT image enhancement11 and also as a quantitative
diagnostic parameter.12 It has been employed for coronary
artery tissue characterization13 and classification of plaque
constituents.9,14 Due to blood clearance, luminal regions are
largely devoid of any scattering material and, therefore, have
very low attenuation coefficients, making this an ineffective
contrasting agent. However, the reciprocal of attenuation coef-
ficient gives the transmissivity of the region. Thus, the lower
the attenuation, the higher the transmissivity and vice-versa.
Subsequently, in a transmissivity map for an IV-OCT image,
the luminal regions are expected to have bright contrast while
tissue regions remain dark. This enables direct visualization of
all lumen regions that can then be segmented with an appropri-
ate technique.

The transmissivity (τ) map (inverse of attenuation coeffi-
cient), for a radial A-line was estimated using a depth resolved
method,11,12 given by

EQ-TARGET;temp:intralink-;e001;326;388τðzÞ ¼ 1

μðzÞ ¼
2
R∞
z IðuÞdu
IðzÞ ; (1)

where, μðzÞ is the attenuation coefficient, IðzÞ is the OCT signal
along the radial A-line of the IV-OCT image, and z is the
depth position. In Eq. (1), it was assumed that all the light
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Fig. 1 Examples of lumen segmentation challenges from in vivo
clinical IV-OCT images. (a) Residual blood circulation (arrow) within
the lumen during imaging with associated shadowing artifact on the
tissue region. (b) Image cross-section showingmultiple lumens (arrow
heads) in a diseased coronary section. The marking * indicates the
guide-wire and its shadow artifact on the image.
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Fig. 2 Block diagram illustrating the steps followed for segmenting the lumen from clinical in vivo IV-OCT
images. The encircled numerals 1 to 5 indicate the order of the steps. DPAD, detail preserving anisotropic
diffusion.
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was attenuated within the imaging depth and that a certain frac-
tion of attenuated light was always received at the detector.
For practical implementation, the infinity was replaced by total
image depth,D. Since the transmissivity property was employed
only to enhance the contrast of the luminal regions, intensity
exponentiation11 was performed before a transmissivity calcula-
tion was implemented. Thus, Eq. (1) becomes

EQ-TARGET;temp:intralink-;e002;63;675τðzÞ ¼ 2
R
D
z InðuÞdu
InðzÞ : (2)

From Eq. (2), it could be observed that the transmissivity map of
a given IV-OCT image could change as the exponential factor
n was varied. Therefore, the effect of exponentiation on τ was
analyzed and an appropriate value was determined that provided
suitable contrast for the lumen.

The application and optimization of the technique are shown
in Fig. 3. Based on Eq. (2), a set of transmittance maps for
Fig. 3 were generated using n ¼ 1, 2, 4, 6, 10 values. As
shown in Fig. 3(c), the log-scale compressed transmittance
value for the lumen regions [marked (II)] increased with the
n value, whereas, other regions such as tissue regions [marked
(III)] and background regions [marked (IV)] had negligible
changes when compared to the lumen region. Though the

catheter region [marked (I) in Fig. 3(c)] had transmissivity levels
similar to the lumen region for a given n value, it did not affect
the lumen segmentation.

From Fig. 3(c), it was evident that increasing the exponential
value improved both the τ value and the relative contrast of
the lumen region. As the objective was to enhance the lumen
contrast, the log-scale transmissivity values at the lumen region
were compared with the background region, as it had higher
transmissivity when compare to the tissue region. Using Eq. (3),
interlayer contrast was determined for every transmissivity map
obtained for n ¼ 1; 2; : : : ; 10.

EQ-TARGET;temp:intralink-;e003;326;631C ¼ logðτlmÞ − logðτbgÞ
logðτlmÞ − logðτbgÞ

× 100; (3)

where C was the calculated contrast in percentage, τlm and τbg
were the transmissivity values, respectively, for a selected region
of interest pixels in the lumen (lm) and background (bg) regions.
The mean of the logðτÞ value at (5 × 1) pixels for each region in
the polar-format IV-OCT image were used. The plot in Fig. 3(d)
shows the change in the calculated contrast for various n values.
The profile shows that the contrast improves nonlinearly for
n ≤ 6 values, beyond which there was only minor improvement.
Also, at n ¼ 6, about 50% contrast was achieved, which was
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Fig. 3 Transmittance-dependent contrast generation and optimization for the luminal region in an IV-
OCT image. (a) In vivo clinical IV-OCT image and (b) polar format image of (a). (c) Transmittance profile
along the A-line marked in (b), for n different exponent values [in Eq. (2)]. The subregions in (c) corre-
sponds to areas marked in (b) where identifiers denote, I. catheter, II. lumen, III. tissue, and IV. back-
ground. From (c) it is evident that, with increasing exponent value, the log-scale transmittance is mainly
enhanced in the lumen. (d) Interlayer contrast for n values, calculated using log-scale transmittance at
lumen and background regions (marked II and IV, respectively) along the A-line in (b). Contrast between
the two layers increased with n value and at n ¼ 6, 50% improvement in contrast was achieved.
(e) Transmittance-dependent intensity image of (b) obtained using n ¼ 6. (f) Display format image of
(e). Arrows in (a) and (b) points the blood volume between the wall and the catheter. The marking *
indicates the guide-wire.
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found to be adequate enough to generate good lumen contrast as
shown in Figs. 3(e) and 3(f). Throughout the study, n ¼ 6 was
used to calculate the transmissivity coefficients for the IV-OCT
images.

The transmissivity mapping method enabled selective
enhancement of the lumen intensity and the luminal regions
were readily visualized. The catheter area, which had similar
transmissivity as the lumen region, appeared as embedded
within the latter [as in Fig. 3(f)]. Therefore, a direct segmenta-
tion of the lumen was now possible from display format images,
without the need for sequential removal of the catheter and its
protective sheath.4

To obtain lumen intensity-enhanced IV-OCT images, first
transmissivity maps were generated with n ¼ 6 value, from
every polar domain IV-OCT image. Then a log-scale compres-
sion was applied to the transmissivity maps to reduce the
dynamic range which was both inherently present and resulted
from the exponentiation. The resultant was then converted to
an 8-bit grayscale intensity image. Thus the obtained lumen
intensity-enhanced polar-format images were transformed to
image co-ordinates [Fig. 3(f)].

2.1.1 Speckle analysis of lumen intensity-enhanced
IV-OCT images

The lumen segmentation method employed in this study utilized
the speckle distribution properties of the image. Therefore, a
speckle analysis was carried out to determine the type of speckle
distribution exhibited by the lumen intensity-enhanced IV-OCT
image. Figures 4(a) and 4(b) show a normal IV-OCT image
and its lumen intensity-enhanced version, respectively. The
image used here was also a representative model of challenges

commonly observed in IV-OCT datasets. A lumen region, with
residual blood circulation between the 6 and 5 o’clock positions
but otherwise with high-contrast, was clearly identifiable in both
Figs. 4(a) and 4(b). A low-contrast lumen of a side-branch was
also visible in both images Figs. 4(a) and 4(b). The image in
Fig. 4(b) was smoothed with a (2 × 2) averaging filter and
then speckle analysis carried out for selected regions—lumen
(black square), tissue [tissue 1 and tissue 2 (orange squares)],
low-contrast lumen (green square), background (blue square),
and residual blood artifacts (red square) markedly shown in
Fig. 4(b). The histogram of pixel intensities at these regions
demonstrated that all regions [see, Figs. 4(c) and 4(d)], except
for the residual blood flow region [see Fig. 4(e)] had a Gaussian
distribution. From Fig. 4(c), it is also evident that the mean and
SD values for the main and the low-contrast lumen regions were
different when compared to their respective surrounding
regions. It should be noted that the speckle in OCT images
are generally considered to have a Rayleigh-type distribution.15

This change in speckle distribution may be attributed to the
interpolation method used for constructing such images from
the polar-format counterpart.16

A statistics-based segmentation method has the potential to
discriminate lumen areas; when the residual blood artifact was
very close to the lumen boundary and had similar intensities to
the vessel wall. This was demonstrated by the regions at the 6 and
5 o’clock positions of Figs. 4(a) and 4(b), where two sets of
streaky structures—the outer blood flow and a tissue region
jutting into the lumen—are present. The speckle distribution at
the residual blood flow region [see Fig. 4(e)] had a different type
of distribution when compared to regions shown in Figs. 4(c)
and 4(d).
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Fig. 4 Speckle analysis of the lumen intensity-enhanced IV-OCT image. (a) Normal clinical in vivo IV-
OCT image. (b) Intensity-enhanced counterpart of (a). Inset: Enlarged view of the tissue 2 and residual
blood regions in (b). (c–e) Distribution of pixel intensities at selected regions, marked in (b). In all the plots,
the Gaussian fit was applied to the data. All regions except the blood flow region exhibit a Gaussian
distribution. The marking * indicates the guide-wire and its shadow artifact on the image.
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2.2 Localized Region-Based Level-Set Active
Contour Method

Application of the contrast enhancement technique, discussed in
Sec. 2.1, allowed direct visualization of the lumen and if the
blood were effectively cleared, morphological operations
would be adequate to extract the lumen shapes. However, in
in vivo clinical IV-OCT images, complete blood clearance is
not always possible. The presence of blood in the lumen
would reduce the transmissivity in those regions and, therefore,
appears darker in the transmissivity maps. Thus images gener-
ated from these maps would also contain image artifacts for the
luminal regions. In such cases, intensity-dependent methods
would require manual intervention to accurately extract the
luminal boundaries. To overcome these issues and to automati-
cally segment the lumen boundaries, a local region-based ACM
method17 with a level-set function was employed in this study.
This segmentation approach followed the method proposed by
Wang et al.18 that had been demonstrated for medical images
such as ultrasound and MR images, but had not been imple-
mented for IV-OCT datasets. Its essential derivation steps
have been summarized in Appendix.

As it is an active contour-based image segmentation method,
an energy functional consisting of an image-dependent data
term and a length penalizing regularizer function that smooths
the curve was first defined. The image-dependent energy func-
tional was defined locally using the speckle distribution prop-
erty of the image. As discussed in Sec. 2.1.1 and shown in
Fig. 4, a Gaussian-type speckle distribution was appropriate,
therefore, the level-set approach proposed by Wang18 et al.
was suitable. The image-dependent energy functional term was
defined for a local neighborhood using the Gaussian probability
distribution function shown in Eq. (5). The image-dependent
energy minimization term was derived on the basis that the con-
tour segments the region so as to have a maximum a posteriori
probability (MAP),18 see Eq. (6). Since it is a local-region-based
method, this minimized energy term was localized by incorpo-
rating a window function into the energy equation, as shown in
Eq. (8). The obtained local energy functional was integrated
over the entire image region to obtain the energy functional
term for the whole image.

The total energy functional employed in this study is shown
in Eq. (12). It can be observed that this energy functional was
also dependent on a level-set function, ϕ, which embedded the
active contour as its zero level-set. Thus, ϕ provided an implicit
representation of the evolving curve. The total energy functional

in Eq. (12) was minimized to achieve the segmentation. The
image-dependent parameters, i.e., local mean (ui) and standard
deviation (SD) (σi) that minimized the energy functional are
shown in Eqs. (13) and (14), respectively. Finally, using a gra-
dient descent method, the equation [see, Eq. (15)] describing
the curve evolution to minimize the energy was determined.

The implementation of the local-region-based ACM method
consisted of the following steps:

Step 1.1 The initial level-set function ϕi for the lumen seg-
mentation was derived from the image itself by taking
a distance transform of the corresponding intensity
thresholded binary image.

Step 1.2 The local mean, ui, and local SD, σi, were calcu-
lated using Eqs. (13) and (14), respectively, for a given
ϕi. In both equations, W was a kernel window of
(K × K) size applied to the image, I, for localization.
TheHε was determined using Eq. (10) and subsequently
used for determining Mi;ε.

Step 1.3 The ui and σi values were then used to solve the
right-hand side of Eq. (15). In Eq. (15), a suitable
weighting constant, ν, value was used.

Step 1.4 Using the gradient descent method, Eq. (15) was
solved to obtain a new level-set function, ϕiþ1, i.e.,
ϕiþ1 ¼ ϕi þ ðEΔtÞ, where E represents the solution
obtained in step 1.3. Δt is the time-step.

Steps 1.1 to 1.4 were computed in a loop with N number of
iterations, during which the contour was expected to trace the
true lumen boundary. The parameters such as kernel window
size—K, weighting constant—ν, time-step—Δt, and N were
tuned to achieve accurate lumen segmentation. For implement-
ing this segmentation method for a pullback dataset, these
parametric values were generally determined for a selected
frame and then applied for every frame in the whole pullback
dataset. If the segmentation was not fully achieved for any of
the frames, then the parametric values were altered and recom-
puted for the affected frames. For a pullback dataset, the lumen
segmentation was implemented sequentially for every frame in
the stack. All the computational calculations involved in steps
1.1 to 1.4 were performed in MATLAB®.

The binary image required for step 1.1 was obtained by the
following approach, shown in Fig. 5. The image was first
smoothed using an edge-preserving anisotropic diffusion19

method [see Fig. 5(b)] and then from its histogram the upper
value of the full-width at half maximum for the largest peak
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Fig. 5 Initialization of the level-set function using image thresholding. (a) Lumen intensity-enhanced
IV-OCT image. (b) Image smoothing using anisotropic diffusion scheme to reduce the speckle noise
and to enhance the low SNR regions. (c) Histogram plot of pixel intensities of image in (b). The
value at τh was used as the threshold value. (d) Binary image of (b) obtained using the threshold
value determined from the histogram.
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[see Fig. 5(c)] was determined. This value [τh in Fig. 5(c)]
was used as the threshold value to generate the binary image
[as in Fig. 5(d)]. This process was performed automatically
for every frame in the pullback. Additionally, morphological
operations using bwareaopen, imfill, and imclose functions of
MATLAB® were performed on the binary images to remove
small isolated regions and to close holes if any were present.
These imperfections were found to increase the computation
time for segmentation.

The ϕi of step 1.1 was obtained by applying a MATLAB®

function, bwdist—Euclidean distance transform function, to the
binary mask [as in Fig. 5(d)]. The active contour was the zero
level-set of the ϕ. Initial ϕ derived in this manner ensured that
the initial contour was in close proximity to the lumen boundary,
therefore, the lumen boundary can be obtained very quickly.
Because the initial contour was close to the lumen boundary,
ϕ did not undergo a large shape change as it evolved. Therefore,
no regularizer function, used by Wang et al.18 to control the
deviation in level-set function from its initial shape, was incor-
porated into the total energy functional in Eq. (12). The length
penalizing regularizer function (L) included in Eq. (12) con-
trolled the smoothness of the contour.

Figure 6 demonstrates the lumen segmentation process using
a lumen intensity-enhanced IV-OCT image. The binary mask
required for initializing ϕ was generated using the histogram
approach shown in Fig. 5. The ϕi obtained from a different
binary mask was used to demonstrate the active contour evolu-
tion and segmentation of the lumen in the presence of artifacts.
Figure 6(a) shows the zero level-set of the ϕi overlaid on the top
of the image to be segmented. Small noisy contours that appear
along with the larger contours, in Fig. 6(a), were artifacts in the
binary mask. In actual implementation, these small artifacts
would be removed from the binary image through the morpho-
logical operations. As contour evolution progresses, these noisy
contours observed in Fig. 6(a) disappear in Fig. 6(b). N ¼ 500

iterations were required to obtain the true lumen boundary. The
final lumen contour in Fig. 6(c) closely follows the lumen boun-
dary. The lumen contour at the low-contrast region [marked by

the arrow in Fig. 6(c)] also fit its boundaries accurately. Though
the lumen contour contained the guide-wire artifact [see
Fig. 6(c)], this could be compensated by the method proposed
in Sec. 2.3.

Although in Fig. 6, N ¼ 500 iterations were employed, gen-
erally ≤50 iterations were required. This is because the ϕi was
usually determined from the same image so the initial contour
was close to the actual lumen contour.

2.3 Guide-Wire Correction Using Dynamic
Programming Method

The guide-wire identification and its artifact correction is a
requirement for the segmentation of most in vivo clinical IV-
OCT images. In the Maximum Intensity Projection (MIP) of
a polar-format, log-compressed IV-OCT image pullback stack
the guide-wire appears as a continuous feature2,5 [see Fig. 7(a)].
The guide-wire segmentation is usually achieved from the
MIP images by means of intensity thresholding2 or boundary
detection through a dynamic programming method.5 As shown
by the overlaid contour in Fig. 7(a), some regions (marked by
bold arrows) were missed out in the intensity thresholding
method. This would result in underestimation of the guide-
wire width as shown in Fig. 7(b). While the DP method may
succeed in segmenting such guide-wire portions, it may fail
to distinguish a guide-wire region from a side-branch if both
were overlapping [see the double arrow area in Fig. 7(a)].
If the boundaries were indistinct, accurate segmentation may
not be possible and would require manual interference.

In this study, the bright reflecting centerline [see Fig. 7(c)] of
the guide-wire was segmented using a DP approach.20 As a
strongly reflective1 body, it generally appears the brightest
(metallic stents can also appear bright). From Fig. 7(c), the opti-
mal path, PC1→CN

for the guide-wire starts from the first column
C1 and traces up to the last column CN . From all possible paths,
the optimal path had the highest cumulative cost, with the
cumulative cost, Gk;j, for a partial path PCi→Cj

defined as in
Eq. (4).

(a) (b) (c)

N =  50

N = 250

Fig. 6 Local-region-based level-set-based lumen segmentation method employing statistical properties
of the image. (a) Initial contour at zero level-set of ϕ obtained from a binary image. (b) Intermediate zero
level-set contours after N iterations. (c) Final zero level-set contour after 500 iterations (Video 1). The
encircled region in (a) highlights the lumen region which due to residual blood artifact appear as part of
tissue region (darker area), however the final contour in (c) was able to segment the lumen correctly. The
marking * indicates the guide-wire and the arrow points to the low-contrast region. The parametric values
K ¼ 41,N ¼ 500, ν ¼ 0.05 × 255 × 255, andΔt ¼ 0.01were used. The enlarged view of encircled region
in (a) can be seen in the inset of Fig. 4(b) (Video 1, MPEG, 74 KB) [URL: http://dx.doi.org/10.1117/1.JMI.
3.4.044001.1].
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Gk;1 ¼ Ik;1

Gk;j ¼ Ik;jþ max
k−n≤k≤kþn

fGk;ig where; 1 < j≤N and i < j:

(4)

The “I” in Eq. (4) represents the projection map [see Fig. 7(c)]
from which the optimal path was determined. In Eq. (4), the
subscripts ðk; jÞ refer to the rows and columns of the cumulative
cost matrix,G, respectively. Since the optimal path had the high-
est cumulative cost, the path retrieval process starts from the
location for the highest cumulative value, i.e., maxfGNg is
the maximum value in the last column of the G matrix. The
process then retraces back through the preceding columns up
to the first column, finding for every column the location (or
row) of the connected optimum predecessor, within the archived
steps.

The index “k� n” in Eq. (4) is the window length within
which the path search was constrained. In this study, n ¼ 10,
i.e., a window length of ð2nþ 1Þ ¼ 21 was used for detecting
the guide-wire. The red curve in Fig. 7(c) traces the path
detected by the DP-based guide-wire detection method.

The width, d, of the guide-wire within a frame was assumed
to be d ¼ dmax, where dmax was the largest width observed in
the pullback. Then two contours at distances of (d∕2) from the
detected guide-wire centerline were traced out on either side, as
shown in Fig. 7(c). As each column of the map represents an IV-
OCT image from a pullback dataset, the radial co-ordinates for
the two edges of the guide-wire artifact can be determined
from the locations of the two outer contours at a given column.
Once the guide-wire edge co-ordinates were determined, the
lumen contour portions within it were masked out and the
ends interpolated [as shown in Fig. 7(e)].

Here, it was assumed that every frame had the same width
for the guide-wire artifact. However, in practice, narrowing and
broadening of the guide-wire shadow are commonly observed in
clinical datasets. Since the maximum width was considered, in
some frames the guide-wire artifact width would be overesti-
mated [see Fig. 7(d)]. However, this had a negligible effect on
the final lumen contour as the lumen segment at the guide-wire
shadow region and its vicinity were interpolated using the curve
shape information of a much larger length.

2.4 Compensation of Lumen Contour at
Low-Intensity Segments of Side Branch

It was observed that sometimes the sections of the segmented
lumen contour (from Sec. 2.2) were inconsistent with the
expected lumen shape. Such irregularities were especially
observed for the side branch lumen segments that were either
extending beyond the imaging range or had diffused boundaries.
The presence of blood artifacts further deteriorates the contrast
of these regions. Also, sometimes parts of a side-branch would
appear to fold over into the image due to limitations in the rang-
ing depth.10 In such scenarios, lumen segmentation methods
cannot guarantee an accurate lumen contour for the affected
regions. Corrupted lumen contours can affect the lumen quan-
tification methods such as geometrical analysis3,4 of the contour
to identify bifurcation points of the side branches. To overcome
this, a scheme is presented wherein low-intensity lumen regions
of the side branches were identified and subsequently the erro-
neous contour sections were masked out.

The implementation of the compensation method consisted
of the following steps:

Step 2.1 An intensity map was first constructed using the
mean intensity for the last “N” rows of the polar-format
lumen intensity-enhanced IV-OCT images in the
pullback.

Step 2.2 By intensity thresholding, the side-branch location
within a frame and the frame number were automatically
identified from the intensity map.

Step 2.3 Using the location information from step 2.2, the
side-branch and its surrounding regions were selected
from the frame and then a sobel-type image gradient
was applied.

Step 2.4 By intensity thresholding, low gradient regions
were suppressed and a binary image containing only
strong lumen boundaries was constructed.

Step 2.5 The empty A-lines of the binary image that had
strong lumen gradient regions on either side were
automatically identified as regions requiring contour
compensation.

The implementation of the method is shown in Fig. 8. As
shown in Fig. 8(b), the locations of the side-branches within

(a) (b) (c) (d) (e)

Binary image edge Centerline Edges

Catheter
Catheter

Fig. 7 Illustration of the guide-wire segmentation approach. (a) Guide-wire segmentation by intensity
thresholding of the maximum intensity projection (MIP) map of the pullback stack. The slim arrow points
to the side-branches. Bold arrow, guide-wire region underestimated, double arrow, side-branch misiden-
tified as part of guide-wire. (b) Effect of underestimation of the guide-wire thickness. (c) Centerline con-
tour obtained using dynamic programming method. Edge contours are the boundaries of the guide-wire
obtained by shifting the centerline contour upward and downward by half the maximum width (i.e., 25 pix-
els) of the guide-wire. (d) Effect of underestimation of the guide-wire thickness. (e) The segment of
the lumen contour (a red dash dash line) within the identified guide-wire area (an orange dash dot
dash line) was masked out and then interpolated over the region to obtain the final lumen contour (a
continuous cyan yellow line). The asterisks in (b), (d), and (e) denote the guide-wire. The images in
(b) and (d) have their background regions cropped out for this figure and enlarged for better view.
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a pullback can be easily visualized through step 2.1. High con-
trast was achieved for side-branch regions, as shown in Fig. 8(c).
This was possible because the lumen intensity enhancement (see
Sec. 2.1) enabled lumen regions of the side-branches to have
higher intensities than the surrounding regions, especially
when the side branches extended beyond the ranging depth
[as in Fig. 8(a)]. The intensity thresholding in step 2.2 was
applied and a binary image containing only the side branches
was constructed. From this binary image, the frames containing
the side-branches can be easily identified.

The determination of the extent of the side-branch, within a
frame, was achieved by identifying the corresponding peak [as
in Fig. 8(c)] and then averaging the values of the 20 sample
points on either side of the peak. The A-lines within the selected
peak region which had this average value was considered as the
span of that particular side branch. It can be noticed that this was
a rough estimate, as it depended upon the “N” value used to
generate the mean intensity map [e.g., Fig. 8(b)] and also on
the accurate determination of the peak positions. However,
the rough estimate of the side-branch location was adequate
for determining the low-contrast lumen regions of the side
branch. From Fig. 8(c), the widths of the side-branches in
Fig. 8(a) were determined in terms of A-lines.

The implementation of step 2.3 for Fig. 8(a) is shown in
Figs. 8(d) and 8(e). The image gradient operation enhanced
the lumen regions with strong boundaries while the low-contrast
regions appeared noisy [see Fig. 8(e)] and is further shown in
Fig. 8(f). Before, step 2.4 was applied the strong gradient loca-
tions of the catheter were masked out. Accurate knowledge of
the catheter boundaries was not necessary as the lumen region of
the selected side-branch was always away from the catheter.
In the case of Fig. 8(e), all the rows ≤100 were masked out.

The binary image obtained for Fig. 8(e), from step 2.4, con-
tained only lumen regions with strong boundaries [see Fig. 8
(g)]. This was achieved by applying a unique threshold value
for every A-line in the gradient image. The threshold value,
“th,” for a given A-line was defined as the sum of the mean
(M) and twice the SD (i.e., th ¼ M þ 2 × SD) of the gradient
profile. Any gradient value below the threshold was assumed to
be noise and was suppressed. Subsequently, a binary image
containing only the strong lumen boundaries was generated.
Sometimes, localized blood artifacts would appear in the binary
image, but due to their relatively smaller size they were removed
by morphological operations such as bwareaopen and imclose
MATLAB® functions. Using step 2.5, the span of the low-
contrast lumen regions were determined from the binary image.
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Fig. 8 Compensation of the lumen contour discrepancy at low-intensity lumen boundaries of the side-
branches. (a) Lumen intensity-enhanced IV-OCT image with side-branch regions (pointed arrows).
(b) Mean intensity map for the last N ¼ 100 rows [yellow dotted box in (a)] of every image in the pullback
stack. The side-branches (numbered) are conspicuous. (c) Line profile of the values along the dotted line
in (b) for the image in (a). (d) Using the side-branch location information in (b) second side-branch in (a)
was segregated. (e) Image gradient operation applied to (d) for identifying low intensity lumen regions of
the side branch. Only true lumen boundaries had a strong gradient. (f) Comparison of true lumen and
noisy regions in the gradient image. (g) Intensity thresholded binary image of (e). The catheter region has
been masked out. Only the lumen regions that had a strong gradient are observed in the binary image.
The empty A-lines (shaded red) between these regions were identified as low-contrast regions, as high-
lighted by the overlay plot in (g). (h) The low-intensity lumen regions of the side-branches in (a) were thus
identified and the lumen contour within these regions was masked out to obtain the final lumen. The
asterisk in (a) denotes the guide-wire.
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The lumen contour (from Sec. 2.2) was then corrected by
masking out the contour sections over the low-contrast regions.
The contour correction of the IV-OCT in Fig. 8 is shown in
Fig. 8(h) where both the initial uncorrected and the final contour
has been displayed. The low-contrast segments obtained by
this method has been overlaid alongside the detected guide-wire
segment (from Sec. 2.3).

2.5 Computational Implementation

The image processing methods, lumen enhancement, followed
by its segmentation, and contour correction for artifacts,
were implemented in MATLAB® 2015a, 64-bit version-8.5
(MathWorks, Natick, Massachusetts). The programs were first
applied on an HP EliteBook 8770w laptop (Intel Core i7-
3720QM, 32GB RAM, and 64 bit Windows 7). The computa-
tional time required for each method is listed in Table 1. On
a per frame basis, the largest computing time was required
for the anisotropic diffusion-based edge preserved smoothing,
whereas the guide-wire segmentation from the projection image
of a pullback dataset required only 0.47 s to compute.

Computational analysis for the validation studies (discussed
in Sec. 4) was however performed at the high-performance
computing (HPC) facility of the University of Leicester, UK.
The computing jobs were submitted as serial jobs and allocated
only one node and one processor core with an 8 GB memory.
The HPC system accepted all the job submission for the vali-
dation study and serially computed every dataset at the same
time. This greatly reduced the total computational time.

3 Materials
A St Jude C7-XR IV-OCT (St Jude inc., “ILUMIEN™”) clinical
system was used for all imaging. This system has a fixed A-scan
rate of 50 kHz and frame-rate of 100 Hz. All the imaging was
performed with a pullback speed of 20 mm∕s and travel length
of 54 mm. Each circumferential scan consists of 504 A-lines,
which were then transformed into polar form as cross-sectional
images. A clinical grade catheter (C7 Dragonfly, St Jude inc.,
“ILUMIEN™”) was used throughout the study. The lumen
intensity enhancement and the segmentation were further
applied to an anonymized clinical IV-OCT dataset. Imaging was
performed after contrast flushing for blood clearance. Human
imaging was undertaken on clinical grounds as part of proce-
dures undertaken with informed consent according to institu-
tional guidelines for the University Hospitals of Leicester, UK.

4 Validation Experiments
The image processing approach presented in Sec. 2 was applied
to 30 randomly selected clinical IV-OCT pullback datasets and
then compared with manual segmentation, performed by two
independent image analysis experts. The first observer, O1,
manually analyzed every 20th frame in each of the 30 datasets,
while the second observer, O2, performed the same for first 15
datasets. Each pullback dataset consisted of 270 frames. The
selected datasets contained images corrupted by blood artifacts
and catheter rotation issues. Four pullback datasets had the last
20 to 40 frames completely lost to blood circulation. Six dataset
contained metallic stents while three dataset had bioreabsorb-
able vascular scaffolds; the remainder of the datasets did not
have any stent or scaffolds. All 30 datasets contained the
guide-wire artifacts.

Both O1 and O2 observers manually segmented the lumen
region using the roipoly MATLAB® function. The lumen con-
tour was then generated as an outline for the segmented region.
For manual segmentation, normal IV-OCT images [such as
Fig. 7(h)] were used, while the computed approach used the
lumen intensity-enhanced IV-OCT images, as in Fig. 6. The
degree of agreement between any two segmentations, i.e., O1
versus O2, O1 versus At, and O2 versus At (where At refers
to the automatic method), was carried out using an intraclass
coefficient (ICC) method.4 For any two segmentations, the
ICC method compared the radial distance (measured in pixels)
of the lumen contour points from the image center. The radial
distance error (i.e., differences in the measured radial distance)
between any two approaches was also performed. The interpo-
lated lumen segment for the guide-wire artifact was not consid-
ered for the comparison.

For manual analysis of the guide-wire, polar-format images
[e.g., Fig. 7(b)] were used and both observers visually deter-
mined the radial distance (measured in pixels) of the bright
center location from the top of the image. The identified guide-
wire distances (by O1 and O2 observers) and also those
extracted automatically (Sec. 2.3) were compared using the
ICC and Bland–Altman (BA) methods.

To validate the automatic method presented in Sec. 2.4, both
manual observers O1 and O2 only analyzed the side-branches
with low-contrast lumen, out of the 81 side branches that were
present in the 30 datasets. O1 observer analyzed 28 side
branches while its subset of 18 side-branches were evaluated
by observer O2. Polar-format log-scale compressed normal
IV-OCT images were used and the angular width and location
of the signal-sparse lumen regions of the side-branches were
determined in terms of the A-line separations.

5 Results
The ICC comparison of the automated lumen segmentation
with both manual segmentations exhibited a high correlation,
as O1 versus At and O2 versus At had 0.912 and 0.893
correlation values, respectively. The difference in the radial dis-
tances between the computed and manually segmented lumens
showed an average error of −1.82� 18.6 and −1.43� 18.8.
As expected, both manual segmentations closely matched each
other and the radial distance error was about −0.5� 1.3.

Automatic versus manual segmentation analysis of the
guide-wire centerline also showed a high correlation, as shown
in Fig. 9. In Fig. 9(a), manual observations are plotted against
the automatic measurement and a strong linear relationship was
observed. The BA plot, in Fig. 9(b), compares each observer

Table 1 Computational time required for each of the image process-
ing methods on an HP EliteBook laptop.

Method Image size Computing time (s)

Transmissivity mapping 968 × 504 1.15

Polar-Image transform 968 × 504 2.89

Edge preserved smoothing 512 × 512 4.3

Lumen segmentation
(20 iteration)

512 × 512 <4

Guide-wire 504 × 270 0.47

Low-contrast side-branch 968 × 504 × 270 47.54
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(O1 and O2) to the automatic method and shows a narrow
spread for both cases. A mean bias of ∼ − 0.16� 9 and
∼ − 0.07� 9 was obtained with respect to observers O1 and
O2, respectively.

The contour correction approach (in Sec. 2.4) was validated
with manual observations (by O1 and O2 observers), which

detected the signal sparse lumen boundaries at the side-
branches, where the lumen segmentation approach would pos-
sibly fail. Between the two observers, O1 and O2, 75% (true
positive rate, TP value) of the 18 side-branches which had
the degraded lumen segments were detected correctly with
8.75% false positives (FP). Comparison of the observer against
the automatic approach shows that 60% of the 28 (O1 observer)
and 18 (O2 observer) side-branches with such lumen segments
can be correctly identified with about 13.5% FP. The average
Dice’s coefficient for the angular spread of the detected signal
sparse side-branch lumen region versus the two observers’
measurement was about 0.78� 0.2. Comparatively lower TP
values were observed here because the low signal-to-noise
ratio (SNR) pixel intensities at these regions resulted in varia-
tions of the boundary locations determined by each method.
Since this approach is employed only to mask out the corrupted
lumen contour segments, such TP values were adequate.

A summary of the results for validation of lumen and guide-
wire segmentations and automatic identification of low contrast
lumen regions of the side branches has been presented in
Table 2.

6 Additional Capabilities
The intensities of all luminal regions can be enhanced by the
transmittance mapping method (Sec. 2.1). With the proposed
level-set-based lumen segmentation method, multiple lumens
can be simultaneously segmented, as shown in Fig. 10(a).
The steps illustrated in Fig. 2 and described in Sec. 2.2 were
followed for this segmentation. It can be noticed that all the
larger lumens and smaller microvascular lumens [at 11 and
12 “o” clock positions in Fig. 10(a)] were segmented by this
approach. Common lumen segmentation methods1,2,4 have gen-
erally been shown for single simple lumen geometries. While
observation of multiple lumens [as in Fig. 10(a)] may not be
common, lumen dissections are not uncommonly observed in
coronary artery diseases.10,21 It can also be shown that the pro-
posed method can also extract elements of the plaque associated
with microvasculature, a prevalent feature related to athero-
sclerotic plaque progression.22,23 By applying the proposed
segmentation approach to a pullback, it was possible to not
only construct a 3-D vessel geometry, but also visualize the
microvascular branch associated with the main artery [see
Fig. 10(b)].

Table 2 Comparison of the manual (O1 and O2) and automatic (At)
methods for segmentation of lumen and guide-wire and identification
of low-contrast regions in side branches.

O1 versus At O2 versus At O1 versus O2

Lumen ICC 0.912 0.893 0.999

Diff −1.815
�18.6037

−1.4258�
18.793

−0.521�
1.339

Guide-wire ICC 0.999 0.999 1.0

BA −0.1569�
8.9951

−0.0725�
8.9792

−0.3478�
2.215

Side branch TP (%) 60 59 75

FP (%) 13 13.5 8.75

Dice 0.78� 0.2 0.78� 0.2 0.87� 0.14

Side branch

Side branch

Microvascular
branch

Arterial
lumen

(a) (b)

Fig. 10 Segmentation of multiple lumen using the proposed method. (a) Lumen shapes of various sizes
have been simultaneously segmented using the proposed method. (b) 3-D visualization of the lumen
geometry.
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Fig. 9 Validating the guide-wire segmentation. (a) Comparison of
manual and automatic guide-wire segmentation results. The A-line
position of the guide-wire center determined by respective methods
was compared. A strong linear correlation can be observed. (b) BA
plot compares the differences between each observer versus the
automatic method.
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7 Comparison of the Proposed Segmentation
Methods with Other Methods

The performance of the proposed segmentation method was
compared with another contour evolution approach—the
Chan–Vese24 (CV) method and manual segmentation. The CV
method has been employed for IV-OCT image segmentation,1

whereas manual segmentation is still a gold standard for
lumen segmentation and is commonly used for validating (as
in Sec. 4) the techniques.

The CV method and local region-based ACM (Sec. 2.2) were
applied to an IV-OCT image containing multiple lumen. The
same initial ϕ derived from a particular binary mask was used
in both cases. The final lumen contour generated by both
approaches is shown in Fig. 11(a). The evolution of the local
region-based contour stopped once it had arrived at the
lumen boundary; however, the CV-based active contour pro-
gressed until the iteration stopped. Thus global region-based
techniques such as CV method have limitations when the con-
trast is low.

Though a quantitative comparison of the manual and the pro-
posed segmentation approaches has been provided in Sec. 4,
a visual comparison of both techniques is done in Fig. 11(b).
It can be observed that the automated method was able to
generate a closely resembling lumen contour even though the
contrast of the arterial cross-section was poor. Certain discrep-
ancies can be noticed where the automated contour appears
not to be as smooth as that of the manual contour. This may
be due to the diffused boundaries of the low-contrast lumen.

8 Discussion
In this study, a lumen segmentation method was presented that
can not only extract the lumen boundaries automatically from
a 3-D image-stack, but can also handle blood artifacts and
correct the contour for guide-wire artifacts and side-branches.
Generally, a sequential approach is followed for lumen segmen-
tation, where first the catheter, its covering sheath, and guide-
wire are removed from the image and then the lumen is

segmented.4 No such steps were required in the proposed
method, as lumen intensity-enhanced IV-OCT images were used
for segmenting the lumen boundaries. This was possible as a
result of the large transmissivity (see Sec. 2.1) in the luminal
region, which created a contrast between the lumen and its
surrounding tissue and background regions.

Pullback datasets that provided various image processing
challenges, shadowing effects, presence of residual blood,
multiple lumen, low-contrast regions, and microvascular fea-
tures were used in this current study. The ability of the proposed
segmentation method to segment the lumen in the presence
of these challenges proved the capability of the technique.
Generally, the lumen segmentation method was implemented
directly for a pullback stack using the ν, Δt, K, and N values
determined for one of the frames in the stack. No human
intervention was required when the true lumen boundary
was the only one nearest to the zero level-set contour of ϕ.
Sometimes when the contour was close to the abluminal borders
of a plaque, it could evolve toward this boundary rather than the
true lumen. This was due to the threshold level used in step 1.1,
whereby nonluminal regions were also included in the ϕi.
In such cases, the threshold level was modified and the
lumen segmentation process (steps in Sec. 2.2) was repeated for
those frames. In some images, blood-flow artifacts such as a
blood column linking the lumen and the catheter or flowing
very close to the wall could influence the contour evolution.
In such cases, the parametric values were tuned so that true
lumen was segmented quickly. As shown in Fig. 11(b), some-
times lumen regions associated with the lumen may have low
contrast and depending upon the parametric values the contours
may not be very smooth. In such cases, by tuning the parametric
values the desired lumen smoothness can be achieved. However,
during validation analysis no such corrections were performed
during lumen segmentation. Thus, the ICC and Diff values for
lumen segmentation in Table 2 can be further improved by
using specific parametric values for the affected frames.

The contour compensation method discussed in Sec. 2.4 was
applied only to mask out abnormal contour sections resulting
from the degraded lumen boundaries at the far regions of the
side-branch. The masked out sections can be interpolated as per-
formed for the guide-wire. However, in Fig. 8(h) this was not
preformed because at the first side-branch there was an overlap-
ping guide-wire shadow, while the second side-branch extended
beyond the imaging range.

In the present study, all the computing was performed seri-
ally in a MATLAB® environment. This increased the computa-
tional time as observed in Table 1. The processing times for
polar-image conversion and anisotropy-based edge preserved
image smoothing methods can be greatly reduced when per-
formed in C or C++. The lumen segmentation method can be
made 15 times faster by making the job parallel and implement-
ing graphical processing units.25

While level-set-based localized region ACM was used in this
study, alternate approaches such as MRF7 or an EM8 labeling
method could also be applied to lumen intensity-enhanced
IV-OCT images, to segment the lumen. The advantage of
using lumen intensity-enhanced images are that the labeling
technique can now cluster the lumen regions separately from
the background regions, which was not possible in nonenhanced
IV-OCT images. Thus, this transmissivity-based lumen intensity
enhancement method allows direct segmentation of the lumen,
instead of inferring it from the tissue boundaries.

(a) (b)

Proposed method ManualChan-vese

Fig. 11 Comparison of the proposed lumen segmentation with CV
and manual segmentation methods. (a) Multiple lumens segmented
by the current approach and CV technique (Video 2). Same initial ϕ
was used in both cases. Contour for the CV method continued to
evolve past the lumen boundaries until the iteration stopped while
in the proposed the contour stopped to evolve at the true lumen.
(b) Low-contrast lumen image segmented by both manual and local-
ized level-set methods. Though both contours closely follow the same
path, the manually obtained lumen is very smooth (Video 2, MPEG,
219 KB) [URL: http://dx.doi.org/10.1117/1.JMI.3.4.044001.2].
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As improved IV-OCT systems are made clinically available
and with high-density volume imaging,26 it would be possible to
construct microvascular beds associated with atherosclerosis
in in vivo clinical cases. While this lumen segmentation
method can identify blood-cleared microvessels, cross-correla-
tion-based microvessel segmentation22,23 can be used to extract
other microvessels with blood flow in them. Both approaches
when combined, can help in visualizing the complete
microvasculature.

9 Conclusions
An automatic lumen segmentation approach for an IV-OCT
pullback dataset was demonstrated, which combines the trans-
missivity property of luminal regions and the capability of
the localized level-set segmentation method to extract luminal
boundaries. The transmissivity-based mapping method enhanced
the lumen intensity while the localized level-set method
employed local speckle distribution properties to evolve the
zero-level set function toward the object boundary. The tech-
nique performed adequately even in the presence of image
artifacts such as loss of contrast and the presence of residual
blood. The proposed segmentation tool also performs correction
for guide-wire artifacts and accurately demonstrates side-branch
openings.

Appendix: Derivation of Localized Gaussian
Speckle Distribution-Based Level-Set ACM
Method
The energy functional is derived on the assumption that the
intensity-enhanced IV-OCT image has Gaussian-type speckle
distribution, as shown in Eq. (5)

EQ-TARGET;temp:intralink-;e005;63;389pðIÞ ¼ 1ffiffiffiffiffi
2π
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where σ and u denote the SD and mean of the pixel intensities at
the selected region of the image.

As shown by Wang18 et al., for any given local region
Ox to be segmented on the basis of MAP requires that the
product of the probability distribution in each subregion,
namely Ox ∩ Ω1 and Ox ∩ Ω2, should be a maxima, [i.e.,Q

2
i¼1

Q
y∈Ox∩Ωi

pi;x½IðyÞ� is maximum, where pi;x½IðyÞ� follows
Eq. (5)]. By taking a log of this term and introducing a minus
sign, so that the energy is minimized, the image-dependent
energy functional is defined. Thus, the energy minimization
term for the localized region Ox is expressed as

EQ-TARGET;temp:intralink-;e006;63;221Ex ¼
X2
i¼1

Z
OX∩Ωi

− log pi;x½IðyÞ�dy: (6)

Equation (6) can be generalized for any local region by defining
a window function that can be introduced at any location of the
image. Any region outside the window function will be masked
out. W is the window function used in the current study and is
expressed as

EQ-TARGET;temp:intralink-;e007;63;116Wðx; yÞ ¼
�
1; kx − yk < r
0; otherwise;

(7)

where r is the radius parameter of the window.

Thus, Eq. (6) can be expressed as

EQ-TARGET;temp:intralink-;e008;326;741Ex ¼
X2
i¼1

Z
Ωi

−Wðx − yÞ log pi;x½IðyÞ�dy: (8)

As shown in Eq. (8), the W is centered at point x in the
image. By integrating Eq. (8) over the entire image domain,
E ¼ ∫ ΩExdx, the energy functional for the whole image can
be obtained.

In this study, the closed contour C is considered to be the
zero level-set of an implicit level-set function, ϕ, (i.e., contour,
C ¼ fx∶ϕðxÞ ¼ 0g). Thus for a given local region Ox, the
two regions Ω1 and Ω2 can be defined in terms of ϕ as
Ω1 ¼ fx∶ϕðxÞ > 0g and Ω2 ¼ fx∶ϕðxÞ < 0g. As both are
disjoint regions, when the Heaviside function is applied to ϕ,
each region can be identified. Thus rewriting Eq. (8) in terms
of ϕ and the Heaviside function gives

EQ-TARGET;temp:intralink-;e009;326;561Ex ¼ −
Z

Wðx − yÞflog p1;x½IðyÞ�Hε½ϕðyÞ�

þ log p2;x½IðyÞ�f1 −Hε½ϕðyÞ�gÞdy: (9)

For computational implementation, in Eq. (9), a smoothed
Heaviside function, Hε is used and it is defined as

EQ-TARGET;temp:intralink-;e010;326;481HεðxÞ ¼
1

2

�
1þ 2

π
arctan

�
x
ε

��
(10)

and its derivative δε is defined as follows:

EQ-TARGET;temp:intralink-;e011;326;425δεðxÞ ¼ H 0
εðxÞ ¼

1

π

ε

ε2 þ x2
: (11)

By integrating Eq. (9) for entire image domain, the energy E as
a function of ϕ can be obtained. Generally, in level-set ACM
methods a regularizing function, L, that smooths the contour
by penalizing its length is added to the energy functional.
Thus the total energy functional is expressed as
EQ-TARGET;temp:intralink-;e012;326;329

F ¼
Z
Ω
Exdxþ νLðϕÞ

¼
Z
Ω
−
Z

Wðx − yÞðlog p1;x½IðyÞ�Hε½ϕðyÞ�

þ log p2;x½IðyÞ�f1 −Hε½ϕðyÞ�gÞdy dx

þ ν

Z
j∇H½ϕðxÞ�jdx; (12)

where ν > 0 is the weighting constant.
For segmentation, this energy functional in Eq. (12) should

be minimized. It can be noted that this energy functional is not
only a function of ϕ but also of mean, ui, and SD, σi, values for
each i-th region, as a result of the probability function, pi;x, in
the equation. Therefore, to minimize the functional, in terms of
its parameters u1, u2, σ1, σ2, a calculus of variation is used.18

The expression for these parameters at which the energy is
minimized can be obtained by applying the Euler–Lagrange
equation 18 to Eq. (12) and is summarized here.

EQ-TARGET;temp:intralink-;e013;326;107uiðxÞ ¼
R
Wðy − xÞIðyÞMi;ε½ϕðyÞ�dyR
Wðy − xÞMi;ε½ϕðyÞ�dy

; (13)
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EQ-TARGET;temp:intralink-;e015;63;748σiðxÞ2 ¼
R
Wðy − xÞ½uiðxÞ − IðyÞ�2Mi;ε½ϕðyÞ�dyR

Wðy − xÞMi;ε½ϕðyÞ�dy
: (14)

In Eqs. (13) and (14), i ¼ 1, 2; M1;ε½ϕðyÞ� ¼ Hε½ϕðyÞ� and
M2;ε½ϕðyÞ� ¼ f1 −Hε½ϕðyÞ�g. Finally the energy functional in
Eq. (12) is minimized in terms of ϕ, using a gradient descent
method,18 which gives the following gradient flow equation:
EQ-TARGET;temp:intralink-;e015;63;671

∂ϕ
∂t

¼ δðϕÞ
Z

Wðy − xÞ
�
log

�
σ1ðyÞ
σ2ðyÞ

�
þ ½u1ðyÞ − IðxÞ�2

2σ1ðyÞ2

−
½u2ðyÞ − IðxÞ�2

2σ2ðyÞ2
�
dyþ νδðϕÞdiv

�
∇ϕ
j∇ϕj

�
: (15)
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