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Abstract

The concept of crossed modules was introduced by J.H.C. Whitehead in the

late 1940s and then Loday [27] reformulated it as cat1-groups. Crossed modules

and cat1-groups are two-dimensional generalisations of a group. Loday showed in

[9] that crossed modules can be understood also as 2-groups. In much the same

way, a higher dimensional analogue of crossed modules, the concept of crossed

squares was introduced by Loday and Guin-Valery [27] and then Arvasi [2] linked

it to the concept of higher categorical groups, namely cat2-groups. From the

same point of view, crossed squares and cat2-groups are analogues of a three-

dimensional generalisation of a group namely 3-groups. A group can be seen

as a category with one object and morphisms given by the elements and with

composition being the group multiplications. In classical representation theory

the elements of a group can be realised as automorphisms of some object in some

category, particularly in the category of vector spaces over a field K (see [13]).

A 2-categorical analogue of the category of vector spaces over a field K has been

described by Forrester-Barker [17] as the concept of a 2-category of length 1

chain complexes. Here, we describe a 3-groupoid of length 2 chain complexes as

a 3-categorical analogue of the category of vector spaces over a field K. In this

thesis, we first construct a 3-groupoid of length 2 chain complexes and describe

it in a matrix language respecting the chain complex conditions. Also, imitating

representations of a group G and homomorphisms of the group G into the general

linear group of a vector space, we discuss representations of a category, which is

a functor into a category of vector spaces over a field K. Here we develop a

notion of representation of cat2-groups and crossed squares, which will be defined

as 3-functors. This extends the previous work by Forrester-Barker [17] where

he defined the representation theory of cat1-groups and crossed modules, which

are given by 2-functors from the categorical dimension two to the categorical

dimension three. The main objective in this thesis is to construct the general

form of the automorphism Aut(γ) after we introduce the path between matrices,

which represents length 2 chain complexes γ and automorphisms of them.
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Chapter 1

Introduction

Representation theory is an area that was started in 1896 by F. G. Frobenius. The

theory investigates any abstract algebraic structure such as groups, Lie groups

or modules, by representing their elements as linear transformations of vector

spaces over a field. One of the reasons that representation theory is considered

a very important subject is that it has many applications in different fields of

mathematics such as algebra, number theory, probability theory, mathematical

physics and many others. Representation theory comes in many ways depending

on what the problem addresses; for instance, the representations of groups present

groups in terms of linear transformations of vector spaces, so every element of

the group is mapped to an invertible linear transformation and also permutation

representations of groups are the same thing as group actions (see [10]). If a

group G acts on a set S, then the action gives a homomorphism from G to the

group of permutations on S,

G× S → S; (a, x)→ a.x

Linear representations are defined as group homomorphisms from the group G to

the general linear group GL(K) for a field K. As a basic example, we can see a

linear representation as a functor from G (seen as a category with only one object

and invertible morphisms) to the category of vector spaces over a field k. We are

thus lead to RepKG , which is the category of K-linear representation of a group

G, whose objects are the functors G → V ectK from the category of the group

1
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G to a category of vector spaces over a field K and morphisms are the natural

transformations between such functors (see [5] and [6]). In general, representa-

tion theory provides calculational tools using matrices, and it is a useful tool

for connecting group theory with other abstract algebraic structures. While it is

well known that the theory of representations is easily extended to group theory,

Forrester-Barker [17] has also shown that it can be successfully applied to higher

dimensional representation theory of 2-groups which are 2-dimensional categor-

ical analogs of groups. The aim of this thesis is to extend Forrester-Barker’s

generalisation to the categorical dimension three. As such, this thesis focuses on

the representation theory of higher dimensional groups referred to as 3-groups.

Let us put this in a general perspective. In homotopy theory, we define a homo-

topy n-type as a space X with trivial homotopy groups πi for i > n i.e. πiX = 0

for i > n. In the case n = 1, the homotopy type of a space X is determined

by its fundamental group π1(X, x), therefore a homotopy 1-type is modelled by

the fundamental group π1(X, x). When n = 2 the homotopy type is determined

by the action of π1(X, x) on π2(X, x) (see [31]). Furthermore, cat1−groups or

categorical groups as they are known in some other sources, are group objects

in the category of small categories. They are a convenient algebraic model for

homotopy 2-types. Cat1−groups are given as a triple C = (e; t, h, : G→ R), con-

sisting of groups G and R, two surjections t, h : G→ R and e : R→ G satisfying

two conditions:

(CAT1) : te = he = idR.

(CAT2) : [Ker t,Ker h] = 1G.

G R
t

h

e

Moving up to the higher dimensional cat2-groups, we describe an algebraic model

for homotopy 3-types which are analogous to Gray 3-groupoids in higher category

theory (see [32]).

A number of phenomena in group theory are better seen from a crossed module

perspective. A crossed module is a triple (G1, G2, σ) consisting of a group homo-

morphism σ : G1 → G2 between two groups G1 and G2, together with an action
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(g2, g1)→ g2g1 of G2 on G1 satisfying:

σ(g2g1) = g2σ(g1)g2
−1,

σ(s)g1 = sg1s
−1,

for all g2 ∈ G2 and s, g1 ∈ G1. In the 2-group case, an important example of

crossed modules emerges which is equivalent to a cat1-group (see [2] and [30]).

Here, we study the higher dimensional versions such as 2-crossed modules and

crossed squares. This model generalises a higher-dimensional categorical concept

from dimension two to three namely 2-crossed modules of groups and cat2-groups

and morphisms between each of them. These concepts will be described explic-

itly. Furthermore, the collection of all cat2-groups with their morphisms, crossed

squares with their morphisms and 2-crossed modules with their morphisms form

categories.

As the present study focuses on three-dimensional groups, our analysis will con-

centrate on the higher dimensional versions of crossed modules, which are 2-

crossed modules or crossed squares, and cat2-groups. Furthermore, these two

concepts are equivalent and related to 3-groups.

To achieve this, an equivalence between cat2-groups and 2-crossed modules and

3-groupoids will be described. 3-Categories, presented here as 3-groups with one

object, in which all 1-cells, 2-cells and 3-cells are invertible, are the higher dimen-

sional analogues of 2-categories, which can be described as strict 2-categories or

bicategories. They are referred to as strict 3-categories, tricategories and Gray

categories.

In the classical representation theory, the simplest algebraic structure of a rep-

resentation of category C is a functor from C to the category of vector spaces

V ect(K) over a field K. In order to describe the representations of cat2-groups

G, we have to replace V ect(K) by the Gray category of length 2 chain complexes

of vector spaces.

γ : C2
γ2
// C1

γ1
// C0

This study generalises the 2-category of length 1 chain complexes Ch(1) to a Gray

category of length 2 chain complexes Ch(2). The latter consists of the following:
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1. 0-morphisms, which are chain complexes of length 2,

2. 1-morphisms, which are chain maps between chain complexes of length 2,

3. 2-morphisms, which are homotopies between chain maps,

4. 3-morphisms, which are 2-homotopies between homotopies.

For ease of calculation, Gray category of length 2 chain complexes Ch(2) is con-

verted into a matrix form, which respects the conditions and properties of chain

complexes. One of the most important result in this thesis is the construction of

the matrix form for 3-groupoids of length 2 chain complexes consists of two ma-

trices: each one represents the morphism or differential or boundary map between

two objects or chains depending on the algebraic structure under study, whether

categories or a singular chain complex. This matrix form is far more informative

than the chain complexes themselves; for instance, the forms for chain maps are

constructed between chain complexes and homotopies between chain maps and

also 2-homotopies between homotopies. In the cat2-group and the crossed square

representation, automorphisms of length 2 chain complexes should also be con-

sidered as a 3-group of chain automorphism on a length 2 chain complex and

1-homotopies and 2-homotopies between them. The notion of a group automor-

phism, which is an isomorphism from a group to itself, corresponds to the notion

of a chain complex automorphism, which is a morphism from a length 2 chain

complex to itself. If

γ : C2
γ2
// C1

γ1
// C0

is a 2-length chain complex, a 3-groupoid of length 2 chain complexes Aut(γ) can

be described using the following diagram

C2

γ2

��

F2 // C2

γ2

��

C1

γ1

��

F1 // C1

γ1

��

C0
F0 // C0
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with different morphisms, starting with 0-morphisms and finishing with 3-morphisms

to construct the group of automorphisms of cat2-groups. The general form of

automorphism of cat2-groups Aut(γ) are represented as matrices in different ex-

amples. For a representation of a category C by objects in another category D is

nothing but a 1-functor C → D and Forrester-Barker [17] defined a representation

of cat1-groups, which are 2-groups C as a 2-functor C → Ch
(1)
K . Following this

lead, the new notion of a cat2-group representation will be defined as a 3-functor

G→ Ch
(2)
K , generalising the notion of a cat1-group representation.



Thesis outline

This thesis has six main chapters presenting the main subject coherently as fol-

lows:

The introduction in Chapter 1 reviews some basic background of representation

theory and homotopy n-types and also describes algebraic models for homotopy

types. Then, we introduce crossed modules and cat1-groups and the relation

between them. Then we introduce our primary idea about higher dimensional

analogues of both cat1-groups and crossed modules and discuss the relationship

between them. At the end of this chapter, we give a basic description of how

to convert the representation theory from the group theoretical language to the

3-group language that we will use throughout the next chapters.

Chapter 2 is first concerned with recalling the notions of categories and mor-

phisms between them, namely functors and natural transformations. We give

several examples for illustration. We also introduce 2-categories and morphisms

between them and lay out some examples. The third section of this chapter

presents the most important part which is the theory of 3-categories. As well

as defining the morphisms between them, we give an explicit construction for

3-functors and 3-natural transformations by presenting some diagrams to explain

them.

Chapter 3 introduces categorical representation theory. We describe how rep-

resentation theory deals with different algebraic structures such as group repre-

sentations and representations of a category and a 2-category with some examples.

Chapter 4 provides the definitions of crossed modules and cat1-groups and the

categorical equivalence between them. Then we discuss the higher dimensional

analogues of crossed modules which are given by 2-crossed modules and crossed

squares and the higher analogues of cat1-groups which are cat2-groups and the

6
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categorical equivalence between them.

Chapter 5 introduces the particular Gray categories of chain complexes Ch used

here. We begin by constructing a Gray category of length 2 chain complexes Ch
(2)
K

as a 3-categorical analogue of vector spaces. The second section provides some

important basic results which relate the length 2 chain complexes to particular

matrices for easy calculations.

In chapter 6 a representation of cat2-groups and crossed squares will be given.

Then, we provide the definition of automorphisms of cat2-groups and introduce a

free path between matrices, which represent length 2 chain complexes γ and au-

tomorphisms of them. Then, we construct the general form of the automorphism

Aut(γ), and give examples of such automorphisms to remove any ambiguity in

constructing Aut for cat2-groups. Finally, .



Chapter 2

Classic Categorical Concepts

Category theory is a relatively new branch of abstract algebra which aims to de-

scribe general characteristics of structures in mathematics and the relationships

between them. One of the most important reasons why categories are so inter-

esting is that many similarities have been identified across very different areas

of mathematics, thus providing a common unifying language. Category theory,

like set theory, is now considered fundamental in the mathematical discourse. In

set theory, the most basic concept is an element. In category theory, the basic

structures are the objects and the maps between any two objects are called mor-

phisms; whatever internal structure they may possess is ignored. The morphisms

of category theory are often said to represent a process connecting two objects,

or in many cases a structure-preserving transformation connecting two objects.

This definition results in almost any structure either being its own category or

the collection of all such structures with their obvious structure-preserving map-

pings forming a category. Gradually, the 2-categorical concepts are shown in this

chapter as well for instance 2-categories, 2-functors and 2-natural transformation

are explained with some examples. The main concepts in this chapter are Gray

categories and 3-groupoids that are assumed to be a classification of the concept

of 3-categories, using the definition of Gray-categories outlined in the paper by

Crans in [11].

8
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2.1 Categories, functors and natural transfor-

mations

2.1.1 Categories

Basic description will be given about our main concept in this section which is

the notion of a category. The definition and some examples of categories will be

considered. The main books will be used in this section [4] p.4-10 and [7] p.4-10.

Definition 2.1.1. A category C is given by a collection C0 of objects and a

collection C1 of morphisms which have the following structure.

• Each morphism has two objects which are called domain (dom) and codomain

(cod); one writes f : X → Y , if X is the domain of the morphism f , and

Y its codomain. One also writes X = dom(f) and Y = cod(f).

• Given two morphisms f and g such that cod(f) = dom(g), the composition

of f and g, written g ◦ f , is defined and has dom(f) and cod(g)

X
f
// Y

g
// Z → X

g◦f
// Z

• Composition is associative, that is: given f : X → Y , g : Y → Z and

h : Z → W , h ◦ (g ◦ f) = (h ◦ g) ◦ f .

• For every object X there is an identity morphism idX : X → X, satisfying

idXg = g for every g : Y → X and f ◦ idX = f for every f : X → Y .
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Examples of Categories

Categories List
Category Objects morphisms
Set Sets functions
Grp Groups group homomorphisms
Top Topological Spaces continuous functions
Vect Vector Spaces linear transformations
Pos posets monotone functions
CAT Categories functors
Funct Functors natural transformations

Table 2.1: Table of some examples of categories

On the first level, categories consist of a number of algebraic properties of

transformations between mathematical objects, known as morphisms (such as bi-

nary relations, groups, sets, topological spaces, etc.) of the same type; conditions

vary depending on the kind of collections. Moreover, these categories contain a

unit (identity) morphism and a composition of morphisms. On the second level,

2- categories, which generalise categories consist of morphisms and 2-morphisms,

which are morphisms between morphisms. There are, however, many applications

where far more abstract concepts are represented by objects and morphisms.

The most important property of the morphisms is that they can be ”composed”

in other words, arranged in a sequence to form a new morphism.

In sets, we often consider elements and functions, but in category theory, we

will consider objects and the morphisms between them in categories and in 2-

categories. As well as, objects and morphisms, 2-morphisms will be considered.

2.1.2 Functors

The morphisms between categories, which are called functors, consist of a pair of

functions sending objects and morphisms of the first category to items of the same

types in the second category in order to preserve all of the categorical structures,

as the following definition explains (see section 1 in [28] and also section 1 in

[33]).

Definition 2.1.2. A functor is a morphism between categories. Given two
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categories C and D, a functor F from C to D consist of an object F (A) in D for

all A in C

• F1A = 1F (A)

• whenever f : A→ B and g : B → C is a pair of composable morphisms in

C

F (g ◦ f) = F (g) ◦ F (f)

Functors can be composed, and there is an identity functor for each category.

In the category theory, there are lots of functors between the categories and every

functor has a unique source category and a unique target category. Here we define

covariant and contravariant functors.

Definition 2.1.3. A (covariant) functor F from one category C to another

category D assigns

• to each object X in C an object F (X) in D,

• to each morphism f : X → Y a morphism F (f) : F (X)→ F (Y )

such that the following two properties hold:

• F (1X) = 1F (X), for every object X in C ,

• F (g ◦ f) = F (g) ◦ F (f) for all morphisms f : X → Y and g : Y → Z.

Definition 2.1.4. A (contravariant) functor F from one category C to another

category D assigns

• to each object X in C an object F (X) in D,

• to each morphism f : X → Y a morphism F (f) : F (Y )→ F (X)

such that the following two properties hold:

• F (1X) = 1F (X), for every object X in C ,

• F (g ◦ f) = F (f) ◦ F (g) for all morphisms f : X → Y and g : Y → Z.
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Examples of functors

• Forgetful functor(Grp→ Set): This functor takes a group to its underlying

set and homomorphism to its underlying function.

• The inclusion functor (Ab→ Grp).

• Free functor (Set → V ectk): This takes a set X to the space of formal

k-linear combination of elements of X which is a vector space with X as

basis.

• Order-Preserving functor: (Pos→ Pos) This takes a poset P to a poset Q.

• Diagram : A diagram ∆I in a category C of shape I is a functor ∆I : I → C

where I is a category (Index category). For example

I : •

��

// •

• =⇒

A•

f
��

g
// B•

C•

I : • • =⇒ A• B•

I : • //

// • =⇒ A
f
//

g
// B

2.1.3 Natural transformations

Lifting up the dimension of morphisms, natural transformations are 2-morphisms,

which are the morphisms between two functors, which are 1-morphisms. In this

section we will show the definition and some examples of natural transformations.

Definition 2.1.5. : A natural transformation is a morphism between func-

tors. Given functors F , G and categories C, D. Then η : F → G is a natural

transformation as follows:

C
F
''

G

77�� η D

(η) is given by:

There is ηx : Fx → Gx for all objects x in C called a component of η at x satisfying
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naturality which is for all f in C such that f : x → y the following diagram is

commute:

Fx

Ff

��

ηx
// Gx

Gf

��

Fy ηy
// Gy

Naturality Square

This means

Gf ◦ ηx = ηy ◦ Ff

A cone over the diagram with vertex u is precisely one of the most important ex-

amples of natural transformation. So a cone 4u → D(I) such that 4u : I → C,

which maps i : i → u and f : f → 1u, thus for all I ′ and f in I there exists

morphism u→ D(f).

u

iu

��

η(I′)
// D(I ′)

D(f)

��

u
η(I′′)
// D(I ′′)

Composition of natural transformations

The important property of morphisms is the composition between them which

satisfies the composition conditions. As the natural transformations are mor-

phisms so they can be composed as the following definition explains.

Definition 2.1.6. Given two natural transformations η and α as in the following

diagrams

C
F
''

G

77�� η D

C
G
''

H

77�� α D

The composition of η and α is denoted as α ◦ η : F → H as in this diagram

C
F
''

G

77�� η D + C
G
''

H

77�� α D =⇒ C
F
((

H

66��α◦ηD
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The composite α ◦ η has components as follows

(α ◦ η)x : Fx
ηx
// Gx

αx // Hx

Fx

Ff

��

ηx
// Gx

Gf

��

αx // Hx

Hf

��

Fy
ηy
// Gy

αy
// Hy

Definition 2.1.7. Two categories C and D are isomorphic in (Cat) if and only

if there are functors

C
F //

D
G
oo

such that F ◦G = 1D and G ◦ F = 1C .

Definition 2.2.3: A natural isomorphism is an isomorphism in the functor

category. That means a natural transformation η can be described as a diagram

C
F
''

G

77�� η D

such that for each c in C, ηc is an isomorphism in D. Moreover, the most

interesting example of a natural isomorphism is a universal cone over the diagram

with vertex u.

2.2 2-Categories, 2-functors and 2-natural trans-

formations

Building on the previous discussion of categories, functors and natural transfor-

mations, the corresponding concepts will be presented in this section which are

2-categories, 2-functors and 2-natural transformations, referring to [2].

2.2.1 2-Categories

The notion of a 2-category generalises that of a category where besides of the

objects and morphisms, there are also 2-morphisms, as in the following definition

from (section 1.2 and 1.3 in [25]) and (section 7 in [8]).

Definition 2.2.1. A 2-category consists of the following data, consisting of two

kinds of things:
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• Objects 0-morphisms : A,B,C, ....

• A small category C(A,B) for each pair of objects. Objects of C(A,B)

are called 1-morphisms {f, g, h, ....} while morphisms in C(A,B) are called

2-morphisms {α, β, γ, ....}.

There are the following operations:

1. A unit functor

uA : 1→ C(A,A)

for each object A and 1 as a terminal category (with one object(idA) and

one morphism (ididA)).

2. An associative composition functor (compositions of 1-morphisms)

CABC : C(A,B)× C(B,C)→ C(A,C)

for every triple of objects.

3. There are two kinds of composition in a 2-category (composition of 2-

morphisms)

• vertical composition: Given two functors (2-morphisms) α and β

in C(A,B) such that

α : f → g and β : g → h

so

β ◦ α : f → h

is a vertical composition.

• horizontal composition: Given two functors (2-morphisms) α ∈

C(A,B) and β ∈ C(B,C) such that

A
f
&&

g
88�� β B

f ′
&&

g′
88�� γ C =⇒ A

f ′◦f
%%

g′◦g
99��γ∗βC
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so

γ ∗ β : f ′ ◦ f → g′ ◦ g

is a horizontal composition.

There are objects and morphisms and 2-morphisms as follows:

A B C

f

g

h

f ′

g′

h′

α

β

α′

β′

The interchange law satisfies the following

(β′ ∗ β) ◦ (α′ ∗ α) = CABC(β, β′) ◦ CABC(α, α′) (1)

= CABC((β, β′) ◦ (α, α′)) (2)

= CABC((β ◦ α, β′ ◦ α′)) (3)

= ((β ◦ α, β′ ◦ α′)) (4)

= (β′ ◦ α′) ∗ (β ◦ α) (5)
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Examples of 2-categories

List of 2-categories
2-Category 0-morphisms 1-morphisms 2-morphisms
Cat categories functors natural transfor-

mations
Mon cat. monodial cate-

gories
monodial func-
tors

monodial natu-
ral transforma-
tions

Enriched cat. enriched cate-
gories

enriched func-
tors

enriched natural
transformations

Table 2.2: Table of some examples of 2-categories

Weak 2-categories or bicategories is a generalization of 2- categories,

which consists of the data of a 2-category except that the associativity and unital

axioms for horizontal composition are replaced by extra data of invertible natural

transformations of 2-morphisms as the following points explain. We use the source

[9]

• An associator is a natural family of isomorphisms of horizontal composition

from

(A→ B → C)→ D

to horizontal composition

A→ (B → C → D)

that means

- for any 1-morphisms f, g, h such that

A
f
// B

g
// C

h // D

there is an invertible 2-morphisms α such that

A D

h◦(g◦f)

(h◦g)◦f

α(f,g,h)

- for any 2-morphisms F,G,H
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A B C D

f

f ′

g

g′

h

h′

F G H

the following diagram commutes.

h ◦ (g ◦ f)

H◦(G◦F )

��

α(f,g,h) +3 (h ◦ g) ◦ f
(H◦G)◦F
��

h′ ◦ (g′ ◦ f ′)
α(f ′,g′,h′)

+3 (h′ ◦ g′) ◦ f ′

• A left identifier is a natural family of isomorphisms from horizontal com-

position with identity on the left to the identity functor on A → B, that

means:

- for any 1-morphisms f such that

A
f
// B

an invertible 2-morphisms λ(f) such that

1B ◦ f
λ(f)

// f

- for any 2-morphisms F

A B

f

f ′

F

the following diagram commutes.

1B ◦ f
11B
◦F
��

λ(f) +3 f

F
��

1B ◦ f ′
λ(f ′)

+3 f ′

• A right identifier is a natural family of isomorphisms from horizontal com-

position with identity on the right to the identity functor on A→ B, that
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means.

- for any 1-morphisms f such that

A
f
// B

an invertible 2-morphisms ρ(f) such that

f ◦ 1A
ρ(f)

// f

- for any 2-morphisms F

A B

f

f ′

F

the following diagram commutes.

f ◦ 1A

F◦11A
��

ρ(f) +3 f

F
��

f ′ ◦ 1A
ρ(f ′)

+3 f ′

These are called associativity and unital constraints, as associativity pentagons

and unit triangles are imposed, as the following diagrams explain.

i ◦ ((h ◦ g) ◦ f))

i ◦ (h ◦ (g ◦ f))

(i ◦ h) ◦ (g ◦ f) ((i ◦ h) ◦ g) ◦ f

(i ◦ (h ◦ g)) ◦ f

1i ◦ α(h, g, f)

α(i, h, g ◦ f)

α(i ◦ h, g, f)

α(i, h, g) ◦ 1f

α(i, h ◦ g, f)

(Pentagon Diagram)
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g ◦ (1B ◦ f) (g ◦ 1B) ◦ f

g ◦ f

α(g, 1B, f)

1g ◦ λ(f) ρ(g) ◦ 1f

(Unit Triangle Diagram)

2.2.2 2-Functors

In this section, the morphisms between 2-categories will be defined. This concept

is referred to as a 2-functor, which consists of a triple of functions sending objects,

morphisms and 2-morphisms of the first 2-category to items of the same types in

the second 2-category in order to preserve all of the 2-categorical structures, as

the following definition shows.

Definition 2.2.2. Given two 2-categories A and B, a 2-functor F:A → B from

A to B consists of giving:

1. for each object A in A, an object FA in B.

2. for each pair of objects A and A′ in A, a functor FA,A′ : A(A,A′) →

B(FA, FA′)

This data is required to satisfy the following axioms:

• Compatibility with composition: given three objects A, A′ and A′′ in A,

the following equality holds:

FA,A′′ ◦ AA,A′,A′′ = BFA,FA′ ,FA′′
◦ FA,A′ × FA′,A′′

A(A,A′)×A(A′, A′′)

FA,A′×FA′,A′′

��

AA,A′,A′′
// A(A,A′′)

FA,A′′

��

B(FA, FA′)× B(FA′, FA′′)
BFA,FA′,FA′′

// B(FA, FA′′)
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• Unit: for every object A in A, the following quality holds:

FA,A ◦ uA = uFA

1 A(A,A)

B(FA, FA)

uA

uFA
FA,A

It is evident that a 2-functor includes an ordinary functor between underlying

categories of objects and morphisms.

Examples of 2-functors

• A constant 2-functor ΘA : D → K for all A in K which is sending

– every object D in D to the object A,

– all 1-morphisms in D to the identity 1A,

– all 2-morphisms in D to the identity 2-morphism id1A .

• A lax functor is a 2-functor between bicategories (including 2-categories).

Given bicategories C and D, a lax functor P : C → D consist of :

1. for each object x of C, an object Px of D.

2. for each C(x, y) in C, a functor Px,y : C(x, y)→ D(Px, Py).

3. for each object x of C, a 2-morphism Pidx : idPx ⇒ Px,x(idx).

4. for each triple x, y, z of C, a 2-morphism

Px,y,z(f, g) : Px,y(f) ◦ Py,z(g)⇒ Px,z(f ◦ g)

such that (f : x→ y and g : y → z).

5. for each C(x, y) the following diagrams commute where

λf = idx ◦ f = f ◦ idy

.
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idPx ◦ Px,y(f)

Px,x(idx) ◦ Px,y(f) Px,y(f)

Px,y(idx ◦ f)

Pidx ◦ idPx,y(f)

Px,x,y(idx ◦ f) Px,y(λf )

λPx,y(f)

and

Px,y(f) ◦ idPy

Px,y(f) ◦ Py,y(idy) Px,y(f)

Px,y(f ◦ idy)

idPx,y(f) ◦ Pidy

Px,y,y(f ◦ idy) Px,y(λf )

λPx,y(f)

6. for each quadruple w, x, y, z in C the following diagram commutes,

where αf,g,h : (f ◦ g) ◦ h→ f ◦ (g ◦ h).

(Pw,x(f) ◦ Px,y(g)) ◦ Py,z(h)

Pw,y(f ◦ g) ◦ Py,z(h) Pw,x(f) ◦ Px,z(g ◦ h)

Pw,x(f) ◦ (Px,y(g) ◦ Py,z(h))

Pw,z((f ◦ g) ◦ h) Pw,z(f ◦ (g ◦ h))

αPw,x(f),Px,y(g),Py,z(h)

Pw,x,y(f, g) ◦ idPy,z(h) idPw,x(f) ◦ Px,y,z(g, h)

Pw,y,z(f ◦ g, h) Pw,x,z(f, g ◦ h)
Pw,z(αf,g,h)

• An oplax functor is a 2-functor between two bicategories (including 2-

categories). If all morphisms in a lax functor are reversed, the notion of an

oplax functor is obtained.

• A pseudo functor is a 2-functor between two bicategories (including 2-

categories). The definition of a pseudo functor is the same as the definition
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of a lax functor, with the additional requirement that Pidx and Px,y,z(f, g)

be invertible as follows.

Given bicategories C and D, a pseudo functor P : C → D consists of:

1. for each object x of C, an object Px in D.

2. for each C(x, y) in C, a functor Px,y : C(x, y)→ D(Px, Py).

3. for each object x of C, an invertible 2-morphism Pidx : idPx ⇒ Px,x(idx).

4. for each triple x, y, z of C, an isomorphism (natural in f : x → y and

g : y → z)

Px,y,z(f, g) : Px,y(f) ◦ Py,z(g)⇒ Px,z(f ◦ g)

5. for each C(x, y) the following diagrams commute where

λf = idx ◦ f = f ◦ idy

idPx ◦ Px,y(f)

Px,x(idx) ◦ Px,y(f) Px,y(f)

Px,y(idx ◦ f)

Pidx ◦ idPx,y(f)

Px,x,y(idx ◦ f) Px,y(λf )

λPx,y(f)

and

Px,y(f) ◦ idPy

Px,y(f) ◦ Py,y(idy) Px,y(f)

Px,y(f ◦ idy)

idPx,y(f) ◦ Pidy

Px,y,y(f ◦ idy) Px,y(λf )

λPx,y(f)
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6. for each quadruple w, x, y, z of C the following diagram commutes,

where αf,g,h : (f ◦ g) ◦ h→ f ◦ (g ◦ h)

(Pw,x(f) ◦ Px,y(g)) ◦ Py,z(h)

Pw,y(f ◦ g) ◦ Py,z(h) Pw,x(f) ◦ Px,z(g ◦ h)

Pw,x(f) ◦ (Px,y(g) ◦ Py,z(h))

Pw,z((f ◦ g) ◦ h) Pw,z(f ◦ (g ◦ h))

αPw,x(f),Px,y(g),Py,z(h)

Pw,x,y(f, g) ◦ idPy,z(h) idPw,x(f) ◦ Px,y,z(g, h)

Pw,y,z(f ◦ g, h) Pw,x,z(f, g ◦ h)
Pw,z(αf,g,h)

2.2.3 2-Natural transformations

The notion of a 2-natural transformation is a generalisation of the notion of a

natural transformation from category theory to 2-category theory. As a nat-

ural transformation is a morphism between two functors between categories,

a 2-natural transformation is a morphism between two 2-functors between 2-

categories; where a natural transformation has a commuting naturality square, a

2-natural transformation has a 2-morphism filling that square, as the following

definition explains.

Definition 2.2.3. Given two 2-categories A and B and two 2-functors F and G

between them

F,G : A⇒ B.

A 2-natural transformation

θ : F ⇒ G

consisting in giving, for every object A in A, a morphism θA : FA ⇒ GA such

that the equality

B(1FA, θA′) ◦ FA,A′ = B(θA, 1GA′) ◦GA,A′ .



Classic Categorical Concepts 25

holds for each pair of objects A,A′ ∈ A, as in the following diagram:

A(A,A′)

GA,A′

��

FA,A′
// B(FA, FA′)

B(1FA,θA′ )
��

B(GA,GA′)
B(θA,1GA′ )

// B(FA,GA′)

It can therefore be said that a 2-natural transformation includes an ordinary

natural transformation between underlying functors.

Examples of 2-natural transformations

• A 2-cone is one of the most important examples of a 2-natural transfor-

mation.

A 2-cone (A,F ):ΘA ⇒ F where A ∈ K such that a 2-functor ΘA is a

constant 2-functor and a 2-functor between 2-categories F : D → K.

• A 2-cocone (F ,A):F ⇒ ΘA where A ∈ K such that a 2-functor ΘA is a

constant 2-functor and a 2-functor F : D → K between 2-categories .

• A lax natural transformation is a morphism between 2-functors between

2-categories.

Given 2-categories C and D and (lax and oplax) 2-functors F,G : C → D,

a lax natural transformation α : F ⇒ G is given by:

1. for each A in C a 1-morphism αA : F (A)→ G(A) in D.

2. for each f : A→ B in C a 2-morphism αf : G(f) ◦ αA ⇒ αB ◦ F (f) .

• An oplax natural transformation is as above, only with 2-morphisms

αf reversed.

• A pseudo natural transformation is a lax natural transformation if

each αf is invertible.
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2.3 3-Categories, 3-functors and 3-natural trans-

formations

The notion of a 3-category theory is the part of category theory dealing with

the higher dimensional categories. It generalizes that of 2-category, which con-

sists objects, morphisms, 2-morphisms. Moreover, in 3-categories an additional

kind of morphisms is added which are 3-morphisms. There are three kinds of

3-category which are strict 3-categories, the Gray categories which are semi strict

3-categories; and tricategories, which are weak 3-categories. We also have rela-

tions between 3-categories C and D which we could represent by 3-functors and

3- natural transformations just as 2-categories and categories. The main sources

which will be used in this section are [11], [29] and [23]. To be more precise, see

(section 2 in [11]), (section 1.2.4 in [29]) and (section 4.3 in [23]). [You could find

more information about this section in the following sources [24], [22], [29], [32]

and [35]].
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2.3.1 Gray categories

Here we define the notion of Gray category. This notion explains the semi-strict

kind of 3-categories, in which composition is strictly associative and unital, but

the interchange law holds only up to isomorphism.

Definition 2.3.1. A Gray category C consists of collections C0 of objects, C1

of morphisms, C2 of 2-morphisms and C3 of 3-morphisms, together with:

• maps sn, tn : Ci → Cn for all 0 ≤ n < i ≤ 3, also denoted d−n and d+
n and

called n-source and n-target,

• maps #n : Cn+1 sn ×tn Cn+1 → Cn+1 for all 0 ≤ n < i ≤ 3, called vertical

composition,

• maps #n : Ci sn ×tn Cn+1 → Ci and #n : Cn+1 sn ×tn Ci → Ci for all

0 ≤ n < i ≤ 3, called whiskering,

• a map #0 : C2 s0 ×t0 C2 → C3, called horizontal composition, and

• maps id:Ci → Ci+1 for all 0 ≤ i ≤ 2, called identity,

such that:

i. C is a 3-skeletal reflexive globular set [19].

ii. for every C,C ′ ∈ C0, the collection of elements of C with 0-source

C and 0-target C ′ form a 2-category C(C,C ′), with n-composition in

C(C,C ′) given by #n+1 and identities given by id−,

iii. for every g : C ′ → C ′′in C1 and every C and C ′′′ ∈ C0,−#0g is a

2-functor C(C ′′, C ′′′)→ C(C ′, C ′′′) and g#0− is 2-functor C(C,C ′)→

C(C,C ′′).

iv. for every C ′ ∈ C0 and every C and C ′′ ∈ C0, −#0idC′ is equal to the

identity functor C(C ′, C ′′) → C(C ′, C ′′) and idC′#0− is equal to the

identity functor C(C,C ′)→ C(C,C ′),

v. for every γ : C
f
''

f ′
77�� C ′ in C and δ : C ′

g
((

g′
66�� C ′′ in C,

s1(δ#0γ) = (g′#0γ)#1(δ#0f)
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t1(δ#0γ) = (δ#0f
′)#1(g#0γ)

and δ#0γ is an iso 3-morphism,

vi. for every ϕ : C C ′γγ′

f

f ′

DD

��

�� ��

3px in C and δ : C ′
g
((

g′
66�� C ′′ in C,

((δ#0f
′)#1(g#0ϕ))#2(δ#0γ) = (δ#0γ

′)#2((g′#0ϕ)#1(δ#0f))

and for every γ : C
f
''

f ′
77�� C ′ in C,ψ : C ′ C ′′δδ′

g

g′

DD

��

�� ��

3px in C,

(δ′#0γ)#2((g′#0γ)#1(ψ#0f)) = ((ψ#0f
′)#1(g#0γ))#2(δ#0γ)

vii. for every C C ′

f

f ′

f ′′

γ

γ′
and δ : C ′

g
((

g′
66�� C ′′ in C

δ#0(γ′#1γ) = ((δ#0γ
′)#1(g#0γ))#2((g′#0γ

′)#1(δ#0γ)),

and for every γ : C
f
''

f ′
77�� C ′ and C ′ C ′′

g

g′

g′′

δ

δ′
in C,

(δ′#1δ)#0γ = ((δ′#0f
′)#1(δ#0γ))#2((δ′#0γ)#1(δ#0f)),

viii. for every f : C → C ′ in C and δ : C ′
g
((

g′
66�� C ′′ in C,

δ#0idf = idδ#0f ,
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and for every γ : C
f
''

f ′
77�� C ′ in C and g : C ′ → C ′′ in C,

idg#0γ = idg#0γ,

ix. for every c ∈ (C,C ′)p, c
′ ∈ (C ′, C ′′)q and c′′ ∈ (C ′′, C ′′′)r with p+q+r ≤

2,

(c′′#0c
′)#0c = c′′#0(c′#0c).

Example of Gray categories

There are many examples of Gray categories which are weak 3-categories. One

of the important examples is a 3-groupoid, which is the higher generalisation of

a groupoid or a 2-groupoid.

Definition 2.3.2. A Gray 3-groupoid C is given by a set C0 of objects, a set

C1 of morphisms, a set C2 of 2-morphisms and a set C3 of 3- morphisms together

with maps si, ti : Ck → Ci−1, where i = 1, ..., k (and k = 1, 2, 3) such that:

1. s2t2 ◦ s3t3 = s2t2, as maps C3 → C1.

2. s1t1 = s1t1 ◦ s2t2 = s1t1 ◦ s3t3, as maps C3 → C0.

3. s1t1 = s1t1 ◦ s2t2, as maps C2 → C0.

4. An horizontal multiplication J\3J
′ of 3-morphisms if s3(J) = t3(J ′), making

C3 into a groupoid whose set of objects is C2.

5. A vertical composition Γ\2Γ′ =

Γ′

Γ

 of 2-morphisms if s2(Γ) = t2(Γ′),

making C2 into a groupoid whose set of objects is C1.

6. A vertical composition J\2J
′ =

J ′
J

 of 3-morphisms whenever s2(J) =

t2(J ′), making the set of 3-morphisms into a groupoid with set of objects

C1 and such that the boundaries s3, t3 : C3 → C2 are functors.

7. The vertical and horizontal compositions of 3-morphisms satisfy the inter-

change law

(J\3J
′)\2(J1\3J

′
1) = (J\2J1)\3(J ′\2J

′
1),
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whenever the compositions are well defined. This means that the vertical

and horizontal compositions of 3-morphisms and vertical composition of

2-morphisms give C3 the structure of a 2-groupoids, with set of objects

being C1, set of morphisms C2 and set of 2-morphisms C3 which is exactly

a 2-groupoid.

8. (Existence of whiskering by 1-morphisms): For each x, y in C0, we can

therefore define a 2-groupoid (C)(x, y) of all 1-, 2-, 3-morphisms a such

that t1(a) = x and s1(a) = y. Given a 1-morphism γ with t1(γ) = y and

s1(γ) = z there exists a 2-groupoid map \1(γ) : (C)(x, y) → (C)(y, z),

called right whiskering. Similarly if s(γ′) = x and t(γ′) = w there exists a

2-groupoid map γ′\1 : (C)(x, y)→ (C)(w, y) called left whiskering.

9. The horizontal composition γ\1γ
′ of 1-morphism γ if s1(γ) = t1(γ′), which

is to be associatove and to define a groupoid with set of objects C0 and set

of morphisms C1.

10. Given γ, γ′ ∈ C1 we must have :

\1γ ◦ \1γ′ = \1(γγ′)

γ\1 ◦ γ′\1 = (γγ′)\1

γ\1 ◦ \1γ′ = \1γ
′ ◦ γ\1,

11. Now we define two horizontal composition of 2-morphisms

 Γ′

Γ

 =

s2(Γ)\1 Γ′

Γ \1t2(Γ′)

 = (Γ\1t2(Γ′))\2(s2(Γ)\1Γ′)

and Γ

Γ′

 =

 Γ \1s2(Γ′)

t2(Γ)\1 Γ′

 = (t2(Γ)\1Γ′)\2(Γ\1s2(Γ′))
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and of 3-morphisms: J ′

J

 =

s2(J)\1 J ′

J \1t2(J ′)

 = (J\1t2(J ′))\2(s2(J)\1J
′)

and J
J ′

 =

 J \1s2(J ′)

t2(J)\1 J ′

 = (t2(J)\1J
′)\2(J\1s2(J ′))

It follows from the previous axioms that they are associative. They also

define the functor C3(x, y)× C3(y, z)→ C3(x, z), where C3(x, y)is the cat-

egory with objects 2-morphisms Γ with t2(Γ) = x and s2(Γ) = y and the

3-morphisms J with t2(J) = x and s2(J) = y, and the horizontal multipli-

cation as composition.

12. (Interchange 3-morphisms): For any two 2-morphisms Γ and Γ′ with s1(Γ) =

t1(Γ) a 3-morphism

 Γ′

Γ

 = t3(Γ#Γ′)
Γ#Γ′

// s3(Γ#Γ′) =

Γ

Γ′


13. For any 3-morphisms

Γ1 = t3(J) J // s3(J) = Γ2 and Γ′1 = t3(J ′) J ′ // s3(J ′) = Γ′2

with s1(J) = t1(J ′) the following horizontal compositions of 3-morphisms

coincide

 Γ′1

Γ1

 Γ1#Γ′1//

Γ1

Γ′1


J

J ′


//

Γ2

Γ′2


and

 Γ′1

Γ1


 J ′

J


//

 Γ′2

Γ2

 Γ2#Γ′2//

Γ2

Γ′2


14. For any three 2-morphisms γ Γ // φ Γ′ // ψ and γ′′ Γ′′ // φ′′ with s2(Γ) =
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t2(Γ′) and s1(Γ) = s1(Γ′) = t1(Γ′′), the following compositions of 3-morphisms

coincide


ψ\1 Γ′′

Γ′ \1γ
′′

Γ \1γ
′′



Γ′#Γ′′

Γ\1γ
′′


//


Γ′ \1φ

′′

φ\1 Γ′′

Γ \1γ
′′



Γ′\1φ
′′

Γ#Γ′′


//


Γ′ \1φ

′′

Γ \1φ
′′

γ\1 Γ′′


where the 2-morphism components of the 3-morphisms stand for the corre-

sponding identity 3-morphism, and


ψ\1 Γ′′

Γ′ \1γ
′′

Γ \1γ
′′



Γ′

Γ

#Γ′′

//


Γ′ \1φ

′′

Γ \1φ
′′

γ\1 Γ′′



2.3.2 3-Functors

There are now also higher morphism between 3-categories, which we explain now.

As we know a functor F from a category C to a another one D is a map sending

each object x in C to an object F (x) in D. For higher dimensions, we can

characterize a 3-functor as a morphism between 3-categories in the following

way.[The following definitions (2.3.3) and (2.3.4) has been taken from [35]].

Definition 2.3.3. We can describe 3-categories as special categories internal to

2Cat. Based on this description, a 3-category has a 2-category of objects Q as in

the following diagram

γ1 γ2

y

x

��

??
S //
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We have a 2-category of morphisms S1 S2
V

γ1 γ2

y

S2

x

S1

��

99

��

%%
V

��

Instead of saying V is a morphism internal 2Cat, we have to say that V is a

3-morphism, S1 and S2 are 2-morphisms, γ1 and γ2 are 1-morphisms and x and y

are objects. A 3-functor F : S → T between 3-categories S and T is a functor

internal to 2Cat, giving by the following morphism

F : γ1 γ2

y

S2

x

S1

��

99

��

%%
V

��

7→ F (γ1) F (γ2)

F (y)

F (S2)

F (x)

F (S1)

��

99

��

%%

F (V )

��

2.3.3 3-Natural transformations

A morphism between two 3-functors is a 3-natural transformation, which gener-

alises the concept of a 2-natural transformation. The following definition will be

a brief explanation of it.

Definition 2.3.4. A 1-morphism η : F1 → F2 between two such 3-functors is

a natural transformation internal to 2Cat, hence a 2-functor from the object

2-category to the morphism 2-category, so we can illustrate the natural transfor-
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mations as in the following diagram:

η : γ1 γ2

y

x

�� ��

S // 7→

F1(γ1) F1(γ2)

F1(y)

F1(x)

F2(γ1) F2(γ2)

F2(y)

F2(x)

## {{

## {{

η(γ1)

&&

η(γ2)

��

F1(S) //

F2(S) //

��

��

η(S) $,

that satisfies the naturality condition

F1(γ1) F1(γ2)

F1(y)

F1(S1)

F1(S2)

F1(x)

F2(γ1) F2(γ2)

F2(y)

F2(x)

## {{

## {{

''

��

77

��

F2(S2) //

η(γ1)

&&

η(γ2)

��

F1(V )

��

η(S2)

� 

=

F1(γ1) F1(γ2)

F1(y)

F1(x)

F2(γ1) F2(γ2)

F2(y)
F2(S2)

F2(x)
F2(S1)

## {{

## {{

��

77

''

''

77

��

F1(S2) //

F2(V )

��

η(γ1)

&&

η(γ2)

��

η(S2)

��

Systematically, 2-morphisms and 3-morphisms of 3-functors are 1-morphisms

and 2-morphisms of these 2-functors η. For this reason, a 2-morphism η η′
ρ
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of our 3-functors is a 1-functor assignment.

ρ :
x

y

γ

		

7→

F1(x) F1(x)

F1(y) F1(y)
F2(x)

F2(y) F2(y)

F2(x)

ρ1(x) //

F1(γ)

		

η(x)

��

F1(γ)

		

η2(y)

��ρ1(y) //

η(y)

��

η2(x)

��

ρ2(x) //

F2(γ)

		

F2(γ)

		

ρ2(y) //

ρ(γ)

��

It also satisfies the naturality conditions as the following diagram illustrates

F1(x) F1(x)

F1(y) F1(y)

F2(x)

F2(y) F2(y)

F2(x)

η(γ1)

��

η(γ2)

��

ρ1(x) //

η(S)

F1(S)
))

F2(S)
))

F1(γ1)

uu

F1(γ2)

�� η(x)

��

F1(γ)

		 η2(y)

��

ρ1(y) //

η(y)

��

η2(x)

��

ρ2(x) //

F2(γ1)

uu

F2(γ2)

��

F2(γ)

		

ρ2(y) //

ρ(γ)

��

=
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F1(x) F1(x)

F1(y) F1(y)

F2(x)

F2(y) F2(y)

F2(x)

η′(S)

ρ′(γ2)

vv

ρ′(γ1)

((

F1(S)
))

F2(S)
))

ρ′1(x) //

F1(γ)

		 η(x)

��

η2(y)

��

ρ′1(y) //

η(y)

��

η2(x)

��

ρ′2(x) //

F2(γ)

		

ρ′2(y) //

ρ′(γ)

��

F1(γ1)

uu

F1(γ2)

��

F2(γ1)

uu

F2(γ2)

��

If we restrict those ρ for which the horizontal 1-morphisms ρ1(x) and ρ2(x) are

identities only, we can illustrate this in the following diagram.

ρ :
x

y

γ

		

7→

F1(x)

F2(x)

ρ(γ)

��

η2(x)

yy

η1(x)

&&

F1(y)

F2(y)

η2(y)

yy

η1(y)

%%

F1(γ)

��

F2(γ)

��

ρ(x) //

ρ(y) //

η1(γ)

��

η2(γ)





Moving to the higher dimension, we consider the morphisms between those nat-

ural transformations ρ which are called modifications λ : ρ1 → ρ2. It is just a

brief description of 3-morphisms of 3-functors λ and we can state the technical

definition as follows
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ρ : x 7→ η1(x) η2(x)

F2(x)

ρ1(x)

ρ2(x)

F1(x)

## {{

''

77
λ(x)

��

The naturality conditions are also satisfied as the next picture illustrates.

η1(x) η2(x)

F2(x)

ρ1(x)

ρ2(x)

F1(x)

η1(y) η2(y)

F2(y)

F1(y)

## {{

## {{

''

77

ρ2(y) //

η1(γ)

&&

η2(γ)

��

λ(x)

��

ρ2(γ)

� =

η1(x) η2(x)

F2(x)

ρ1(y)

ρ2(y)

F1(x)

η1(y) η2(y)

F2(y)

F1(y)

## {{

## {{

''

77

ρ1(x) //

η1(γ)

&&

η2(γ)

��

λ(y)

��

ρ1(γ)

� 



Chapter 3

Linear Representations

To consider representations of cat2-groups which are the aim of this thesis, vari-

ous aspects of representation theory will be illustrated, along with examples.

Representation theory is a very active subject which has many applications, cre-

ated more than 100 years ago by Frobenius. The concept studies different kinds

of algebraic structures by representing their elements as linear transformations of

a vector space giving by matrices incorporating numerous algebraic operations.

The categories and their higher dimensional versions are specific examples of an

algebraic structure presented in this chapter, representations of them are shown

as well. Here we use [15] and [40].

3.1 Representations of groups

Let V be a vector space over a field K and let GL(V ) be the group of all au-

tomorphisms V → V . An element a ∈ GL(V ) is a linear map from V into V ,

which has an inverse a−1; the latter is also linear. Suppose {e1, e2, ..., en} is a

basis for V . Then each linear map is defined by a n × n martix T : V → V , as

the following equation explains:

T (ej) =
∑
i

tijei

Definition 3.1.1. A representation α of a group G in a vector space V over

38
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K is defined by a homomorphism

α : G→ GL(V ).

where GL(V ) - the general linear group on V - is the group of invertible linear

maps, t : V → V . The degree of the representation is the dimension of the

vector space:

deg(α) = dimK(V ).

Note that the representation α is finite if we require the vector space V to be

a finite dimensional. In this case we have GL(V ) = GL(dim(V ), K).

Definition 3.1.2. A representation of a group G on a vector space V

α : G→ GL(V )

is a faithful representation if ker(α) = idG.

3.1.1 Group representation examples

Some examples will be given here for further clarity.

Example 3.1.1. Trivial representation

Given any K-vector space and any group G, we can define a representation

α : G → GL(V ) by α(g) = idV for any g ∈ G which it is called the trivial

representation.

Example 3.1.2. Regular representation

For any group G, we can associate the K-vector space Gk which has a basis

{g : g ∈ G}, then G acts on Gk by multiplication on the left. The induced

representation is called the regular representation.

Example 3.1.3. The symmetric group

S3 = {e, (12), (13), (23), (123), (132)}

has a representation on R by

α(σ)v = sgn(σ)v
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where sgn is the permutation symbol of the permutation σ.

Example 3.1.4. The circle group

G = C6 =< c : c6 = e > .

Let GL(C) be a group of non-zero complex numbers when n = 1. Define

α : G→ GL1(C)

α : c 7→ e
2Πi
3

so α(ck) = e
2Πi
3 . We check α(c)6 = 1, so this is a representation of C6. But if

α(c3) = 1, the kernel of α is {e, c3} and the image of α is {1, e 2Πi
3 , e

4Πi
3 }, which is

isomorphic to C3.

3.2 Matrix representations

The following section defines matrix representations, which are of great impor-

tance for this study. As such, it is useful to review the foundations of this par-

ticular kind of representation and understand its applicability to more general

cases. [36] will be used in this section. Suppose β = {u1, u2, ..., un} be an ordered

basis for a finite-dimensional vector space V , so for any vector v in V write it as

a linear combination of the vectors in the basis

v =
n∑
i=1

aiui.

and the coordinate vector of x relative to β, denoted [x]β is

[x]β =


a1

a2

...

an

 .

Definition 3.2.1. Let L : V → W be a linear transformation and β = {v1, v2, ..., vn}

and γ = {w1, w2, ..., wn} be a basis for V and W respectively.
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A matrix representation A of L in the ordered bases β and γ is defined as a

m× n matrix by the scalars aij as follows

L(vi) =
n∑
i=1

aijwi for 1 ≤ j ≤ n.

We write A = [L]β
γ.

3.3 Representations of categories

The representation of a group G can be generalised to any category as the fol-

lowing definition indicates (see section 4 in [6]).

Definition 3.3.1. Suppose C is a category and G is a group. A representation

of G in C is a pair (X, ρ), where X is an object in C and ρ : G → Aut(X) is a

group homomorphism.

All the representations of G in C form a category of representations which has

objects like (X, ρ) and (X ′, ρ′). As well as the objects, it has

mor((X, ρ), (X ′, ρ′))

which are the set of all morphisms ψ : X → X ′ between objects (X, ρ) and

(X ′, ρ′) such that for each g in G, the diagram

X
ρg
//

ψ
��

X

ψ
��

X ′
ρ′g

// X ′

commute.

Every group can be represented by a category with one object (see [26]). Func-

tors from this category into any other category are representations of that group

in terms of the objects in the category, and choosing a functor into the category

of vector spaces recovers classical representation theory. In this case, a represen-

tation of C on objects in another category D is a functor C → D. Therefore,

the representation category Rep(C) is the functor category Func(C,D) which
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has all the functors between C and D as objects and the natural transformations

between these functors as morphisms of this category.

3.4 Representations of 2-categories

Let G be a group. G may be viewed as a 2-category with one object g, whose

1-morphism HomG(g, g) is equal to G and whose 2-morphisms are all identities

(see section 3 in [13]).

Definition 3.4.1. Let C be a 2-category. A representation of G in C is a

lax-2-functor from G to C, providing the following:

1. An object c of C.

2. For each element g in G, a 1-morphism α(g) : c→ c.

3. A 2-isomorphism, φ1 : α(1)→ idc.

4. For any pair g and h in G, a 2-isomorphism φg,h : (α(g) ◦ α(h))⇒ α(gh).

5. For any g, h and k in G, we have φgh,k(φg,h ◦ α(k)) = φg,hk(α(g) ◦ φh,k).

6. We have φ1,g = φ1 ◦ α(g) and φg,1 = α(g) ◦ φ1.

Definition 3.4.2. Two 2-representations of G in C, α and α′ are equivalent

whenever there is a lax-2-natural transformation η : α ⇒ α′ such that each

component of η is an equivalence in C.
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Higher Dimensional Groups

There are different ways to generalise the abstract concepts of group to higher

dimensional categorical concepts. In this section we will focus on the concept of

3-groups. It is known that cat1-groups and crossed modules are equivalent formu-

lations of the categorical concepts of 2-groups. Here we will show similarly that

cat2-groups and crossed squares are equivalent. Crossed squares are equivalent to

2-crossed modules which can also be seen as Gray 3-grouoids. In this section we

will assume that all 2-crossed modules and crossed squares are given as 2-crossed

modules of groups and crossed squares of groups.

4.1 cat1-groups and crossed modules

In this section, we introduce the concepts of both cat1-groups and crossed modules

with their morphisms. We also state the equivalence between them. (Section 2

in [1]) will be followed in this section. [Also, [16] and [38] could give quiet enough

information about both cat1-groups and crossed modules].

4.1.1 cat1-groups

We consider one of the most important kinds of 2-categories namely cat1-groups

which are high dimensional analogues of categories and groups.

Definition 4.1.1. Suppose G is a group with a pair of endomorphisms

t, h : G→ G

43
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having a common image R (i.e. Im(t) = Im(h) = R) and satisfying the following:

A cat1-group C, where C = (e; t, h : G → R) has domain G and codomain R

with three homomorphisms; two surjections t, h : G → R and an embedding

e : R→ G as shown in the following diagram:

G R
t,h

////

e
oo

These homomorphisms are required to satisfy the following axioms:

C1 : te(r) = he(r) = r for all r ∈ R

C2 : [Ker(t), Ker(h)] = {1G}.

Morphisms of cat1-groups

The most important maps between two cat1-groups are those that preserve the

cat1-group structure, and they are called morphisms of cat1-groups which the

following definition explains.

Definition 4.1.2. A morphism of cat1-groups C1 and C2 is a pair (γ, ρ) where

γ : G1 → G2 and ρ : R1 → R2 are homomorphisms satisfying

t2γ = ρt1, h2γ = ρh1, e2ρ = γe1.

4.1.2 Crossed modules

The concept of crossed modules originated in 1946 when J.H.C. Whitehead intro-

duced it in his paper [39], arguing that the algebraic models for homotopy 2-types

are the same as 2-groups. The equivalence between them was later established.

Definition 4.1.3. A crossed module (G1, G2, ϑ) consist of a group homo-

morphism ϑ : G1 → G2 called the boundary map, together with an action

(g2, g1)→g2 g1 of G2 on G1 satisfying

1. ϑ(g2g1) = g2ϑ(g1)g2
−1,

2. ϑ(s)g1 = sg1s
−1, for all g2 in G2 and g1, s in G1.
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Suppose N is a subgroup of G. The inclusion homomorphism N → G together

with the action gn = gng−1 of G on N is an inclusion crossed module which is

the simplest example of a crossed module.

4.1.3 Morphisms of crossed modules

We consider a crossed module as an important fundamental algebraic structure.

The following definition gives the notion of the morphism between crossed mod-

ules.

Definition 4.1.4. Suppose ϑ : G1 → G2 and ϑ′ : G′1 → G′2 are two crossed

modules, then a pair of homomorphisms ϕ, φ, where ϕ : G1 → G′1, φ : G2 → G′2

is a morphism of crossed modules if

φ(ϑ(g1)) = ϑ′(ϕ(g1))

and

ϕ(g2g1) =φ(g2) ϕ(g1)

for all g1 in G1 and g2 in G2.

Theorem 4.1.1. The following data are equivalent:

1. a cat1-group C.

2. a crossed module.

3. a 2-groupoid with a single object.

Proof : See [17] p. 18-21.

4.2 cat2-groups and 2-crossed modules

Some light on the background of cat2-groups and crossed modules will be shed in

this section and a neat description is given of the passage from higher dimensions

of cat1-groups to higher dimensions of crossed modules (see section 3 in [3]).
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4.2.1 cat2-groups

cat2-groups are higher dimensional cat1-groups. It is a cat1-object in the category

of cat1-groups, which can also be described as double groupoids internal to the

category of groupoids Grpd. In the order of catn-groups, we can extract the

definition of cat2-groups.

Definition 4.2.1. A catn-group is a group together with n categorical struc-

tures which commute pairwise, with n subgroups N1, N2, ..., Nn of G and 2n group

homomorphisms si, ti : G→ Ni, i = 1, 2, ..., n, such that for 1 ≤ i ≤ n, 1 ≤ j ≤ n,

satisfying the following conditions:

• si/Ni
= ti/Ni

= idNi
, (siti = ti and tisi = si for all i).

• [Ker(si), Ker(ti)] = 1,

• sisj = sjsi, titj = tjti, and tisj = sjti, i 6= j, such that all morphisms si

and ti are endomorphisms for all 1 ≤ i ≤ n .

For a cat2-group G, we have a group, G, but this time with two independent

cat1-group C structures on it. Therefore,

A cat2-group G is a 5-tuple (G, s1, t1, s2, t2), where (G, si, ti), i = 1, 2, are cat1-

groups and

1. sisj = sjsi, titj = tjti, sitj = tjsi for i, j = 1, 2, i 6= j.

2. [Kersi, Kerti] = 1, for i = 1, 2.

Morphisms of cat2-groups

The process, which connects two objects and preserves structures of them, is

usually called a morphism. Here, morphisms between cat2-groups will be shown.

Definition 4.2.2. Suppose we denote such cat2-group G by

G = (G, s1, t1, s2, t2)

and other one by

G′ = (G′, s′1, t
′
1, s
′
2, t
′
2).



Higher Dimensional Groups 47

A morphism of cat2-groups f : G→ G′ is a group homomorphism f : G→ G′

such that

s′1f = fs1 and s′2f = fs2

t′1f = ft1 and t′2f = ft2.

cat2-groups and their morphisms, along with their composition, can now be con-

sidered as a category of cat2-groups.

4.2.2 Higher dimensional crossed modules

The dimension of crossed modules can then be elevated to the second dimension

to produce two concepts: one is a 2-crossed module and the other is a crossed

square. This section aims to define these two concepts and investigate if any

relationship exists between them (see section 3 in [3] and section 4 in [30].

1. Crossed squares

Crossed squares were defined by D. Guin-Walery and J.-L. Loday in [21] to

study homotopy 3-types.

Definition 4.2.3. Let P , L, M and N be groups. A crossed square of

groups is a commutative square of groups together with actions of P on L,

M and N .

Moreover, there are actions of N on L and M via µ′ and M acts on L and

N via µ, and h-map h : M ×N → L, such that

M ×N
h

$$
L

λ //

λ′

��

M

µ
��

N
µ′
// P

(a) the homomorphisms λ, λ′, µ, µ′ and K = µλ = µ′λ′ are crossed

modules for corresponding actions and the morphisms of maps λ→ K

; K → µ; λ′ → K ′ ; K ′ → µ′, are morphisms of crossed modules.

(b) λh(m,n) = mµ′(n)m.
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(c) λ′h(m,n) =µ(m) n(n)−1.

(d) h(λ(l), n) = lnl−1.

(e) h(m,λ′(l)) =m ll−1.

(f) h(mm′, n) =m h(m′, n)h(m,n).

(g) h(m,nn′) = h(m,n)nh(m,n).

(h) h(Pm,P n) =P h(m,n).

Examples of crossed squares

(a) Any pullback of a crossed module along a crossed module is an example

of crossed square as the following explains:

Suppose N and M be two normal subgroups of P where N ∩M acts

by conjugation and h : M ×N → N ∩M is given by h(m,n) = [m,n].

(b) From a simplicial group, which is a simplicial object in the category of

groups, and two simplicial normal groups M and N , a crossed square

can construct.

Morphisms of crossed squares

Morphisms refer to a structure-preserving morphism from one crossed square

to another.

Definition 4.2.4. A morphism of crossed squares is a commutative

diagram

φ : (φ1, φ2, φ3, φ4) : (L1,M1, N1, P1)→ (L2,M2, N2, P2)

consisting of homomorphisms

φ1 : L1 → L2

φ2 : M1 →M2

φ3 : N1 → N2
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φ4 : P1 → P2

such that the cube of homomorphisms is commutative

φ1h(m1, n1) = h(φ2(m1), φ3(n1))

with m1 ∈M1, n1 ∈ N1 and each of the homomorphisms φ1, φ2, φ3 are φ4-

equivariant (see the definition of equivariant in [37] p.128) as the following

diagram .

L1 M1

L2 M2

N1 P1

N2 P2

φ1

λ1

λ′1

µ1

φ3

λ2

λ′2

µ2

µ′1

φ2

φ4

µ′2

Crossed squares and their morphisms form a category which is equivalent to

the category of internal crossed modules in the category of crossed modules.

2. 2-Crossed modules

A crossed module is an efficient algebraic tool. This section introduces the

notion of a 2-crossed module which extends the concept of a crossed module

(see [24] p.385).

Definition 4.2.5. A 2-crossed module T consists of a complex of groups

L
σ2 //M

σ1 // N

together with an action of N on L and M so that σ1, σ2 are morphisms

of N -groups, where the group N acts on itself by conjugation, and an N -

equivariant function

{, } : M ×M → L called a Peiffer lifting, which satisfies the following

axioms:
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(a) σ2{m,m′} = (mm′m−1)(σ1(m) B m′−1),

(b) {σ2(l), σ2(l′)} = [l, l′], here [l, l′] = ll′l−1l′−1

(c) • {mm′,m′′} = {m,m′m′′m′−1}σ1(m) B {m′,m′′}, for each m,m′

and m′′ ∈M

• {m,m′m′′} = {m,m′}(σ1m B m′) B′ {m,m′′},

(d) {σ2l,m}{m,σ2l} = l(σ1(m) B l−1),

(e) {m,m′} B n = {m B n,m′ B n},

for all l, l′ ∈ L, m,m′,m′′ ∈M and n ∈ N . We can define

m B′ l = l{σ2(l)−1,m} (1)

From condition (5) yields:

(m,m′m′′) = (m,m′)(σ2 B m′) B′ {m,m′′}

= (σ1({m,m′}) B′ (σ2(m) B m′) B′ {m,m′′}){m,m′}

= ((m,m′,m−1) B′ {m,m′′}){m,m′}, (2)

However, the above definition of 2-crossed modules has many axioms, we

need some more properties of them to make the path between 2-crossed

modules and crossed squares easy to find. the following lamma has such

important properties to use.(see [20] p.996).

Lemma 4.2.1. In a 2-crossed module T = ( L
σ2 //M

σ1 // N ,B, {, }) and

for each m,m′ ∈M , we have

{m,m′}−1 = σ1(m) B {m−1,mm′e−1}, (3)

{m,m′}−1 = (mm′m−1) B′ {m,m−1}, (4)

{m,m′}−1 = (σ1(m) B m′) B′ {m,m′−1}, (5)

by the condition (d) of definition (4.2.5) it follows that

σ1(m) B l = (m B′ l){m,σ2(l)−1}. (6)
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also,

(σ1(m) B m′) B′ (σ1(m) B l)

= (σ1(m) B l){(σ1(m) B σ2(l−1), σ1(m) B m′}

= (σ1(m) B l)(σ1(m) B {σ2(l−1),m′}

= σ1(m) B (m′ B′ l)

Proof : Using the property {1M ,m} = {m, 1M} = 1L for all m ∈M which

apply directly axioms (4) and (5) of the definition of 2-crossed modules

(4.2.5) as well as equation (2).

where we have used the fact that the Peiffer lifting {, } is G-equivariant and

that G acts on L by automorphisms. We thus have the following identity

for each e, f ∈ E and l ∈ L:

(σ2(m) B m′) B′ (σ2(m) B l) = σ2(m) B (m′ B′ l)

We have also:

(m B′ {m′,m′′}){m,σ2(m′) B m′′}

= σ2(m) B {m′,m′′}{m, (σ2(m′) B m′′)m′m′′−1m′−1}−1{m,σ2(m′) B m′′}

= σ2(m) B {m′,m′′}(σ2(m) B σ2(m′) B m′′) B′ {m,m′m′′−1m′−1}−1

= σ2(m) B {m′,m′′}(σ2(m) B σ2(m′) B m′′) B′ (σ2(m) B (m′m′′−1m′−1))

B′ {m,m′m′′m′−1}

= σ2(m) B {m′,m′′}(σ2(m) B σ1{m′,m′′}−1 B′ {m,m′m′′m′−1}

= {m,m′m′′m′−1}σ2(m) B {m′,m′′} = {mm′,m′′},

by the equation (6) in the lemma (4.2.1) and the condition (e) of the def-

inition (4.2.5) and also the equation (5). The next step follows from the

fact that (σ1 : L → E,B′) is a crossed module. From all the above, the

following equations have already proved (see [29] p.8):
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Lemma 4.2.2. In each 2-crossed module we have, for each m,m′,m′′ ∈M :

{mm′,m′′} = (m B′ {m′,m′′}){e, σ(m′) B m′′}, (7)

{mm′,m′′} = (m,m′m′′m′−1}σ(m) B {m′,m′′}, (8)

and

{m,m′m′′} = {m,m′}(σ(e) B′ m′ B′ {m,m′′}, (9)

{m,m′m′′} = ((mm′m−1) B′ {m,m′′}){m,m′}, (10)

and also,

{m,m′}−1 = m B′ {m−1, σ(m) B m′}, (11)

Examples of 2-crossed modules

(a) The simplest example of 2-crossed modules are crossed modules them-

selves. So, any crossed module χ = [ϕ : G2 → G1] gives a 2-crossed

module, L
σ2 //M

σ1 // N , by setting L = 1, the trivial group and

M = G2, N = G1.

(b) Crossed complexes are another example of 2-crossed modules. So, any

crossed complex,

· · · // 1 // 1 // C3
σ3 // C2

σ2 // C1 ,

in which all higher dimensional terms are trivial , by supposing L = C3,

M = C2 and N = C1, with trivial Peiffer lifting.

Morphisms of 2-crossed modules

As a 2-crossed module is one of the most important algebraic models, there

is a relationship between them that preserves the entire structure of 2-

crossed modules known as a morphism (see section 2 in [34]).
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Definition 4.2.6. A morphism between 2-crossed modules: If we denote

such a 2-crossed module by {L,M,N, σ2, σ1} and the other by {L′,M ′, N ′, σ′2, σ
′
1}.

A morphism between them is given by the diagram:

L
σ2 //

f2
��

M
σ1 //

f1
��

N

f0
��

L′
σ′2

//M ′
σ′1

// N ′

where f0σ1 = σ′1f1, f1σ2 = σ′2f2

f1(nm1) =f0(n) f1(m1), f2(nl) =f0(n) f2(l)

and

{, }f1 × f1 = f2{, }

for all l ∈ L, m1 ∈M , n ∈ N .

4.2.3 Equivalence between cat2-groups and higher dimen-

sional crossed modules

After we have now described cat2-groups and 2-crossed modules, we can know

state the following theorem which gives the categorical equivalences of the dif-

ferent concepts we are using here. The content of this theorem can be extracted

from various sources (see [2], [29] and [34]), but we state it in a comprehensive

form collecting all the different categorical equivalences. We also give more ex-

plicit details in the proofs which again follow the material from (section 3 in [2]),

( section 1 in [29]) and (section 2 in [34]).

Theorem 4.2.3. The following data are equivalent:

1. a cat2-group G.

2. a crossed square.

3. a 2-crossed module.

4. a Gray 3-groupoid with single object.
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Proof : (1)⇔ (2).

Starting with the cat2-group (G, s1, s2, t1, t2). Here, the cat1-group (G, s1, t1) will

give us a crossed module with M = ker(s1), N = Im(s1) and σ = t1/M and the

other cat1-group (G, s2, t2) will give us another crossed module withM ′ = ker(s2),

N ′ = Im(t2) and σ′ = t2/M ′ morphism of cat1-group. We thus get a morphism

of crossed modules.

ker(s1) ∩ ker(s2) //

��

Im(s1) ∩ ker(s2)

��

ker(s1) ∩ Im(s2) // Im(s1) ∩ Im(s2)

It remains to produce the h-map (see definition (4.2.3)) but this is given by

commutators within G.

If x = ker(s1) ∩ Im(s2) and y = ker(s2) ∩ Im(s1) then,

[x, y] ∈ ker(s1) ∩ ker(s2) = L,

and the h-map is given by

h : x× y → L

such that h(m,m′) = [m,m′].

On the other hand, let us suppose we have a crossed square

L
λ //

λ′

��

M

µ
��

N
µ′
// P

this gives a morphism

σ : (LoN, s, t)→ (M o P, s′, t′)

of cat1-groups. There is an action of (m, p) ∈M o P on (l, n) ∈ LoN ,

(m,p)(l, n) =m (pl,p n) = (µ(m)ph(m,p n),p n)
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using this action, we thus form the associated cat1-group with (LoN)o (MoP )

and induced endomorphism s1,s2, t1 and t2.

(2)⇔ (3).

Suppose we have a crossed square

L λ //

λ′

��

M

µ
��

N
µ′
// P

now we can derive

L
σ2 //M oN

σ1 // P

a 2- crossed module, where σ2(z) = (λ−1(z), λ′(z)) for z ∈ L,

σ1(xy) = µ(x)µ′(y), forx ∈M, y ∈ N,

Moreover the Peiffer lifting is given by

(x, y), (x′, y′) = h(x, yy′y−1).

On the other hand, let us suppose L
σ2 //M

σ1 // N be a 2-crossed module

and let G∗ be the corresponding simplicial group. The derived crossed square

associated to G∗.

N(G)2
σ2 //

σ2

��

ker(d0)

i

��

ker(d1)
i

// G1

with

N(G)2 = ker(d0)
⋂

ker(d1)

because

N(G)n = ∩ker(di)

So we have shown that cat2-groups, crossed squares and 2-crossed modules are

equivalent. Now, it will be demonstrated that these are equivalent to 3-categories.

(3)⇔ (4).
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Starting with a 2-crossed module

T = L
σ2 //M

σ1 // N

we can construct a Gray 3-groupoid C with a single object. Let us suppose

C0 = {∗}, C1 = N , C2 = N ×M and C3 = N ×M × L. Now as boundaries

s1, t1 : Ck → C0 = {∗}, where k = 1, 2, 3 (see [24]). Furthermore, t2(X, e) = X

and s2(X, e) = σ1(e)−1X. Let us put a vertical composition as the following

(X, e)\2(σ1(e)−1X, f) = (X, ef),

and also

(Y, e)\1X = (Y X, e)

and

X\1(Y, e) = (XY,X B e)

In the same way,

X\1(Y, e, l) = (XY,X B e,X B l)

and

(Y, e, l)\1X = (Y X, e, l).

Moving to 3-morphisms, put

t3(X, e, l) = (X, e)

and

s3(X, e, l) = (X, σ2(l)−1e)

and also

t2(X, e, l) = X

and

s2(X, e, l) = σ1(e)−1X.

We note that s2s3(X, e, l) = s2(X, σ2(l)−1e) = σ1(e)−1X = s2(X, e, l), because
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σ1σ2 = 1. As vertical composition of 3-morphisms we put:

(X, e, l)\2(σ1(e)−1X, f, k) =

(σ1(e)−1X, f, k)

(X, e, l)

 = (X, ef, (e B′ k)l)

and as the horizontal composition of 3-morphisms, we put

(X, e, l)\2(X, σ2(l)−1e, k) = (X, e, lk)

The vertical and horizontal compositions of 2-morphisms define a 2-groupoid

that’s because (σ2 : N × L→ N ×M,B′) is a crossed module of groupoids. Let

us now define the interchange 3-morphisms. We can see that: (Y, f)

(X, e)

 = (XY, e(σ1(e)−1X) B f)

and (X, e)

(Y, f)

 = (XY, (X B f)e).

We therefore take:

(X, e)#(Y, f) = (XY, e(σ1(e)−1X) B f, e B′ {e−1, X B f}−1).

We have to note that

σ2(e B′ {e−1, X B f}−1)−1e(σ1(e)−1X) B f

= ee−1(X B f)e(σ1(e)−1X) B f−1e−1e(σ1(e)−1X) B f = (X B f)e.

It is easy to see that: (Y, f, l)

(X, e, k)

 =

(σ1(e)−1XY, σ1(e)−1X B f, σ1(e)−1X B l)

(XY, e, k)


= (XY, e(σ1(e)−1X) B f, (e B′ σ1(e)−1X B l)k)
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and (X, e, k)

(Y, f, l)

 =

 (Xσ1(f)−1Y, e, k)

(XY,X B f,X B l)


= (XY, (X B f)e, ((X B f) B′ k)X B l).

Now, to prove the condition 13 in the definition (2.3.2), we must prove that for

each X ∈ N , e, f ∈M and k, l ∈ L.

e B′ {e−1, X B f}−1((X B f) B′ k)X B l

= (e B′ σ1(e)−1X B l)k(σ2(k)−1e) B′ {e−1σ2(k), X B (σ2(l)−1f)}−1. By using

(σ2 : L→M,B′) is a crossed module

e B′ {e−1, X B f}−1((X B f) B′ k)X B l

= (e B′ σ1(e)−1X B l)e B′ {e−1σ2(k), X B (σ2(l)−1f)}−1k.(a) (12) For

l = 1 this is equivalent to:

e B′ {e−1, X B f}−1((X B f) B′ k) = e B′ {(e)−1σ2(k), X B f}−1k.

or

((X B f) B′ k−1)e B′ {e−1, X B f} = k−1e B′ {(e)−1σ2(k), X B f}

from the equation (7) of the lemma(4.2.2)and the definition of

e B′ l = l{σ2(l−1), e}.

Note that σ1σ2 = 1L. For k = 1 the equation (12) is the same as:

e B′ {e−1, X B f}−1X B l = (e B′ σ1(e)−1X B l)e B′ {e−1, X B (σ2(l)−1f)}−1,

or

(X B l−1)e B′ {e−1, X B f} = e B′ {(e)−1, X B (σ2(l)−1f)}(e B′ σ1(e)−1X B l−1).

This can be proved as follows, by using the equation(11) of the lemma(4.2.2)

e B′ {e−1, X B (σ2(l)−1f)}(e B′ σ1(e)−1X B l−1)

= (σ2(X B l−1)e B′ {e−1, X B f})(e B′ {e−1, X B σ2(l)−1})(e B′ σ1(e)−1X B l−1)
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= (X B l−1e B′ {e−1, X B f})(X B l)(e B′ {e−1, X B σ2(l)−1})(e B′ σ1(e)−1X B l−1)

where we have used that (σ2 : L→M,B′) is a crossed module.

Now , by using the condition(d) of the definition(4.2.5):

(e B′ {e−1, X B σ2(l)−1})(e B′ σ1(e)−1X B l−1)

= e B′ ({X B σ2(l)−1, e−1}−1(X B l−1))

= (eσ2(X B l−1)) B′ ({X B σ2(l), e−1})e B′ (X B l−1)

by equation (11)

= (e B′ X B l−1)e B′ ({X B σ2(l), e−1})

since (σ2 : L→M,B′) is a crossed module.

= e B′ ((X B l−1){X B σ2(l), e−1})

= X B l−1

the general case of equation(12) follows from k = 1 and l = 1 cases by the

interchange law for the horizontal and vertical compositions.

Let us now prove the condition (13) of the definition (2.3.2) , the first condition

is equivalent to:

(ef) B′ {f−1e−1, X B g}−1 = (ef) B′ {f−1, σ1(e)−1X B g}−1e B′ {e−1, X B g}−1

this follows from the equation (7). The second condition is equivalent to:

e B′ {e−1, X B fX B g}−1 = e B′ {e−1, X B f}−1((X B f)e) B′ {e−1, X B g}−1

this follows from the equation (10). We have proved that any 2-crossed module T

defines a Gray 3-groupoid C(T), with a single object. Conversely, with revising

the process: a Gray 3-groupoid C together with an object x ∈ C0 of it defines a
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2-crossed module.

�



Chapter 5

A Gray Category of Chain

Complexes

As Forrester-Barker in [17] concluded, a 2-category of length 1 chain complexes

ch
(1)
k is equivalent to k-vector spaces in groups. In this chapter, we discuss the

3-categories of length 2 chain complexes which are analogues of K-vector spaces

in groups as Gray categories (see [24]).

Definition 5.0.1. We work in Ch, the category of chain complexes over a field

K. Suppose C is a chain complex, then we set

(I ⊗ C)n = Cn ⊕ Cn ⊕ Cn−1,

with differential

δI⊗C(x, y, z) = (δx−z, δy+z,−δz),

to get a chain complex I ⊗ C. This is a cylinder structure given by:

e0 : C → I ⊗ C

such that

e0(c)(x) = (x, 0, 0)

e1 : C → I ⊗ C

61
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such that

e1(c)(y) = (0, y, 0)

σ : I ⊗ C → C

such that

σ(x, y, z) = x+ y

Suppose f0, f1 : C → D are two chain maps and h : I ⊗ C → D is a homotopy

such that h : f0 ' f1.

Then, there is a degree 1 map h′ where h′n : Cn → Dn+1 such that

h(x, y, z) = f0(x) + f1(y) + h′(z).

We can recover f1 from f0 and h′ by the chain homotopy formula

f1 = f0 + δh′.

So, we will use (f0, h
′) as an alternative form for h,

h : h→ (f0, h
′) or h = (f0, h

′).

The cylinder construction I ⊗ I ⊗ C is given by

(I ⊗ I ⊗ C)n = (Cn ⊕ Cn ⊕ Cn−1)⊕ (Cn ⊕ Cn ⊕ Cn−1)⊕ (Cn−1 ⊕ Cn−1 ⊕ Cn−2)

Suppose X = (x, y, z) ∈ I ⊗ C. The differential and the face operator:

ei(I ⊗ C) = I ⊗ ei(C) : I ⊗ C → I ⊗ I ⊗ C,

are given by the formula

δ(X0, X1, X2) =

(δx0−z0−x2 , δy0−z0−y2δz0−z2 ; δx1−z1+x2 , δy1+z1+y2 ,−δz1+z2 ; δx2−z2 , δy2+z2 ,−δZ1)

e0(I ⊗ C)(X) = (X; 0; 0)

so I ⊗ e0(C) = (x, 0, 0; y, 0, 0; z, 0, 0) e1(I ⊗ C)(X) = (0;X; 0)

so I ⊗ e1(C) = (0, x, 0; 0, y, 0; 0, z, 0).
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A 2-homotopy α is a homotopy between homotopies having the same dom and

codom:

α : I ⊗ I ⊗ C → D;α : h0 ' h1

h0e0(c) = h1e0(c) = f0 and h0e1(c) = h1e1(c) = f1

αe0(I ⊗ C)(X) = h0 or α(I ⊗ e0(C)) = f0δc

αe1(I ⊗ C)(X) = h1 or α(I ⊗ e1(C)) = f1δc.

Now, α is a chain map α → (f0, h
′
0, α

′) where α′ ∈ Hom(C,D)2, that is (α′)n :

Cn → Dn+2, is a degree 2 map.

In fact, writing X = (x, y, z) ∈ I ⊗ C, we get:

α(X0, X1, X2) = f0(x0 + x1) + f1(y0 + y1) + h′0(z0) + h′1(z1) + α′(z2).

But as α : h0 ' h1 it can be recovered from α′, h′0 and f1, that means

f1 = f0 + δ.h′0 and h′1 = h′0 + δ.α′.

Two 2-homotopies α0, α1 determine the same 2-track, which is an equivalence

class of relative homotopy classes of 2-homotopies (see [18]).

If

α0 → (f0, h
′
0, α

′
0)

α1 → (f1, h
′
1, α

′
1)

We write [α0] = [α1] if there is A ∈ Hom(C,D)3 such that α′1 = α′0 + δ.A.

From the definition above, we can define a length 2 chain complex over a field

K simply as the following:

Suppose C0, C1 and C2 be vector spaces over K and if σ2 : C2 → C1 and

σ1 : C1 → C0 are linear transformations. Then C2
σ1
// C1

σ1 // C0 is a length 2

chain complex.

As we are dealing with a 3-categorical generalisation of group representations, we

need to find a 3-categorical analogue of V ectK .

Now, we include an algebraic structure of Gray categories on Ch which is Gray-
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category of arbitrary length chain complexes over V ectK .

Definition 5.0.2. A structure of a Gray category of length 2 chain complexes

(ch2
k) consists of:

Ch0: collection of chain complexes (objects);

Ch1: collection of chain maps (1-morphisms);

Ch2: collection of homotopies (2-morphisms);

Ch3: collection of 2-homotopies (3-morphisms);

Source and target maps as follows:

sin, t
i
n : Chi → Chn; 0 ≤ n ≤ i ≤ 3

1. i = 1, n = 0

• s1
0 = dom(f0)

• t10 = codom(f0)

2. i = 2, n = 1

• s2
1(f0, h

′
0) = f0

• t21(f0, h
′
0) = f0 + σh′

3. i = 3, n = 2

• s3
2(f0, h0, [α

′]) = (f0, h
′
0)

• t32(f0, h
′
0, [α

′]) = (f0, h
′
0 + σα′)

C2

σC
2
��

// D2

σD
2
��

// E2

σE
2
��

C1

h′2
>>

σC
1
��

// D1

k′2
>>

σD
1
��

// E1

σE
1
��

C0

α′

FF

h′1
>>

// D0

α′

FF

k′1
>>

// E0

1- vertical composition

#n : Chn+1sn ×tn Chn+1 → Chn+1

Here we have different levels of vertical compositions starting with 3-morphisms

and ending with 1-morphisms.
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• n=2 suppose α→ (f0, h
′
0, [α

′])

β → (g0, k
′
0, [β

′], with t2(α) = s2(β), (f0, h
′
0 + σα′) = (g, k′0)

β#2α = (f0, h
′
0, [α

′ + β′])

• n=1

#1 : Ch2s1 ×t1 Ch2 → Ch2

suppose h→ (f0, h
′) and k → (g0, k

′)

with t1(h) = s1(k), (f0 + σh′) = g0

k#1h = (f0, h
′ + k′)

• n=0

#0 : Ch1s0 ×t0 Ch1 → Ch1

suppose f → f0 and g → g0

with t0(f) = s0(g), codom(f) = dom(g)

As a Gray category has various forms of whiskering (see definitions (2.3.1)

and (2.3.2)), we do that as in the following:

#n : Chisn ×tn Chn+1 → Chi

and

#n : Chn+1sn ×tn Chi → Chi,

where n+ 1 < i ≤ 3.

Here, we apply the above two forms of whisking on different levels.

1. n=1 , i=3

#1 : Ch3s1 ×t1 Ch2 → Ch3

If

h = (f0, h
′) ∈ Ch2 and β = (g0, k

′, [β′])



A 3-Groupoid of Chain Complexes 66

with t1(h) = s1(β), (f0 + σh′) = g0, it follows

β#1h = (f0, k
′ + h′, [β′])

The whiskering from the other hand gives:

#1 : Ch2s1 ×t1 Ch3 → Ch3

we have

α = (f0, h
′
0, [α

′]) ∈ Ch3 and g = (g0, k
′) ∈ Ch2

with t1(α) = s1(g), (f0 + σh′) = g0, it follows

g#1α = (f0, h
′ + k′, [α′])

2. n=0 , i=2

#0 : Ch2s0 ×t0 Ch1 → Ch2

If

k = (g0, k
′) ∈ Ch2 where f ∈ Ch1

with t0(f) = s0(k), it follows

k#0f = (g.f, k′f)

Again for n=0 , i=2

#0 : Ch1s0 ×t0 Ch2 → Ch2

If

h = (f0, h
′) ∈ Ch2 where g ∈ Ch1

with t0(h) = s0(g), it follows

g#0h = (g.f0, g.h
′)
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3. n=0 , i=2

#0 : Ch3s0 ×t0 Ch1 → Ch3

If

α = (g0, k
′
0, [α

′]) ∈ Ch3 where f ∈ Ch1

with t0(f) = s0(α), it follows

α#0f = (g.f0, k
′
0.f, [α

′.f ])

Again for n=0 , i=3

#0 : Ch1s0 ×t0 Ch3 → Ch3

If

g ∈ Ch1, α = (f0, h
′
0, [α

′]) where g ∈ Ch3

with t0(g) = s0(α), it follows

g#0α = (g.f0, g.h
′
0, [g.α

′])

Now, we determine another kind of composition as follows:

2- horizontal composition

#0 : Ch2s0 ×t0 Ch2 → Ch3

If

h = (f0, h
′) ∈ Ch2 where k = (g0, k

′) ∈ Ch2

with t0(f) = s0(g), it follows

k#0h = (g0.f0, g0.h
′ + k′.f1, [k

′.h′]).

Now, we note that Ch(C,D) is the collection of elements (1-,2-,3- morphisms)

with a source C and a target D. There are n-compositions on Ch(C,D) given by

#n+1, n = 0, 1 and identities.
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• Here we describe the identity of 1-morphisms

id− : Ci → Ci+1, 0 ≤ i ≤ 2.

Then,

idf = (f, 0) and idh = (f0, h
′, 0)

• If h ∈ Ch2 is a 2-morphism, then h = (f0, h
′), where

dom(f0) = C, codom(f0) = D, h ∈ Hom(C,D)1 and k : f1 → f1 + σk′

since, k#1h = (f0, k
′ + h′) for all h ∈ Ch(C,D).

There is

h−1 ∈ Ch(C,D), h = (f0, h
′) and h−1 = (f0, σ.h

′,−h′)

In 3-morphism of Ch(C,D) act in a similar way under #2 making Ch(C,D)

in to 2-groupoid.

• Let g : D → E, where

g#0− : Ch(C,D)→ Ch(D,E)

so, g#0(k#1h) = (g.f0, g.(k
′ + h′)), where

h = (f0, σ.h
′) and k = (g0, σ.k

′)

Then

(g#0k)#1(g#0h) = (g.g0, g.k
′)#1(g.f0, g.h

′) = (g.f0, g.(k
′ + h′))

Similarly, if α and β are 3-morphisms, so that β#2α is defined where α =

(f0, h
′
0, [α

′]) and β = (g0, k
′
0, [β

′])

Then

g#0(β#2α) = g#0(f0, h
′
0, [α

′ + β′]) = (g.f0, g.h
′
0, [gα

′ + gβ′])
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and

(g#0β)#2(g#0α) = (gg0, g.k
′
0, [gβ

′])#2(gf0, gh
′
0, [gα

′])

= (g.f0, g.h
′
0, [gα

′ + gβ′])

• If g is an identity, the g#0− and −#0g likewise the relevant identity 2-

functor.

• Let h = (f0, h
′) and k = (g0, k

′), where codom(f) = dom(g) and f1 =

f0 + σh′ and g1 = g0 + σk′ , k#0h is defined

so,

s2(k#0h) = (g0.f0, g0.h
′ + k′.f1)

Then

(k#0f1)#1(g0#0h) = (g0.f1, k
′.f1)#1(g0.f0, g0.h

′)

= (g0f0, g0h
′ + k′.f1)

to know t2(k#0h), we will need to know σ(k′h′)

(k′h′)n : Cn → Dn+1 → En+2

If α′ ∈ Hom(C,E)2, then the usual differential formula gives

(σα′)n(c) = σE(α′n(c))− α′n−1(σC(c)) for c ∈ C

For α′ = k′h′ and c ∈ C

σ(k′h′)(c) = σE(k′n+1h
′
n(c)−k′nh′n−1(σC(c)) = (σk′)n+1h

′
n(c)−k′n((σh′)n−1(c))

Then

t2(k#0h) = (g0f0, g0h
′ + f1k

′ + σk′h′ − k′σh′)

= (g0f0, g1h
′ + k′f0)

= (g#0h)#1(k#0f0)

• suppose we have α = (f0, h
′
0, [α

′]) such that dom(f0) = C and codom(f0) =

D where f1 = f0 + σh′0 and h′1 = h0 + σα′

When
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s2(α) = h0 = (f0, h
′
0) and t2 = h1 = (f0, h

′
1)

Let k = (g0, k
′) : g0 ' g1 so g1 = g0 + σk′ : D → E.

Then,

((g1#0α)#1(k#0f0))#2(k#0h0) and (k#0h
′)#2((k#0f1)#1(g0#0α))

that means

[g0α
′ + k′h′1] = [k′h0 + g1α

′]

consider the composite k′α′ ∈ Hom(C,E)3 this is given by

(k′α′)n = kn+1α
′
n.

So,

σ(k′α′)(c) = σE(k′α′)(c) + k′α′(σcc)

= σEk′(α′(c)) + k′(σDα′(c))− k′(σDα′(c)) + k′α′σc(c)

= σk′(α′(c))− k′(σα′(c))

= g1α
′(c)− g0α

′(c)− k′h′(c)− k′h′0(c)

= (g1α
′(c)− k′h′0(c))− (g0α

′(c) + k′h′1(c)).

So, the two classes are the same.

The dual rule takes β ∈ Ch3 and h = (f0, h
′) ∈ Ch2,

β = (g0, k
′
0, [β

′]) with g0 ' g1 = g0 +σk′0 and k′1 = k′0 +σβ′ with g0 : D → E,

where f0 : C → D, h = f0 ' f1 = f0 + σh′.

The formula that needs verifying is the equality of

(k1#0h)#2((β#0f1)#1(g0#0h))

and

((g1#0h)#1(β#0f0))#2(k0#0h)

That means β′h′ : C → E of degree 3.

Suppose β = (g0, k
′
0, [β

′]) with dom(g0) = D, codom(g0) = E and h =
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(f0, h
′
0) where f0 : C → D

[k′0h
′ + f0β

′] = [f1β
′ + k′1h

′].

So

σ(β′h′)(c) = σE(β′h′(c))

= σE(β′h′(c)) + β′(σc(c))h′

= σE(β′(c))h′ + (σDβ′(c))h′ − (σD(β′)h′ + σβ′σC(c)h′

= β′(c)σh′ − σ(β′(c))h′

• This axiom describes the interaction of interchange with composition.

If we have

h = (f0, h
′)f0 ' f1 = f0 + σh′, k = (f1, k

′), such that h, k ∈ Ch(C,D).

Again ι = (g0, ι
′) : g0 ' g1 = g0 + σι′, such that ι ∈ Ch(D,E).

The axioms states the equality of

ι#0(k#1h) and (g1#0k)#1(ι#0h))#2((ι#0k)#1(g0#0h))

as k#1h = (f0, k
′ + h′)

We have

ι#0(k#1h) = (g0f0, g0(k′ + h′) + ι′f1, [ι
′(k′ + h′)])

The dual equality is the same

(k#1h)#0ι such that k#1h = (f0, k
′ + h′),

so

(k#1h)#0ι = (f0g0, (k
′ + h′)g0 + f1ι

′, [(k′ + h′)ι′])

• This axiom describes the interaction of interchange with identities

Given f : C → D, f ∈ Ch1

and

k = (g, k′) = g ' g = g + σk′ : D → E

so

k#0idf = (g, k′)#0(f, 0) = (gf, k′f, 0) = idk#0f
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similarly for the dual.

• This last axiom gives that #0 is associative.

Given c ∈ Ch(C,D)p, c
′ ∈ Ch(D,E)q and c′′ ∈ Ch(E,F )r.

Then,

(c′′#0c
′)#0c = c′′#0(c′#0c).

From here we suppose (ch2
k) as a sub3-groupoid by taking in consideration

just the invertible maps.

5.1 A matrix formulation for calculations

Proceeding from the fact, in linear algebra, is that the linear transformations

between vector spaces are equivalent to matrices over a field K. Ch
(2)
K have been

considered in this chapter earlier as linear transformation, we will work in this

section to represent Ch
(2)
K as the matrices for making the calculation easy to per-

formed. The category of length 2 chain complexes of K-vector spaces is denoted

by Ch
(2)
K . As it has been shown in the last section that Ch

(2)
K is an 3-groupoid

with 0,1,2,3-morphisms such that 0-morphisms are length 2 chain complexes, 1-

morphisms are chain maps between chain complexes, 2-morphisms are homotopies

between chain maps and 3-morphisms are 2-homotopies between homotopies with

all kinds of compositions and whiskers between morphisms. To make calculation

simpler, we will describe Ch
(2)
K by matrices.

In 2003, Forrester-Barker in [17] showed that for a category of length 1 chain

complexes X = Ch
(1)
K with differential δ : C1 → C0 can be represented by an

n0 × n1 a single matrix ∆C for each one object in this category where ni is the

dimension of Ci.

Here a certain matrix formulation will be considered for a length 2 chain complex.

It will be shown that this can be extended depending on the length of the chain

complex. An example using Ch
(2)
K will also be given.

Objects in Ch
(2)
K are chain complexes of length 2, denoted by (γ) with two differ-

entials γC2 : C2 → C1 and γC1 : C1 → C0. These differentials can be represented

by n1 × n2 and n0 × n1 matrices ∆C
2 and ∆C

1 with ∆1
C .∆

2
C = [0].

Suppose that γ′ is another chain complex of length 2, with two differentials:
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γ′d2 : d2 → d1 and γ′d1 : d1 → d0, where the dimension of Di is mi and ∆1
D.∆

2
D = [0].

Moving on to the chain map between γ and γ′ which is f : γ → γ′ is given by

the triple of matrices (F2(m2× n2), F1(m1× n1), F0(m0× n0)) with the following

conditions and (further details are shown in the diagram):

1. F0.∆
1
C = ∆1

D.F1 which is an m0 × n1 matrix.

2. F1.∆
2
C = ∆2

D.F2 which is an m1 × n2 matrix.

C2

γC2
��

F2 // D2

γ′d2
��

C1

γC1
��

F1 // D1

γ′d1
��

C0
F0 // D0

Moving up to dimension two, we define a homotopy which is a map between two

chain maps. So let us suppose we have another chain map between γ and γ′ such

that f ′ : γ → γ′ and a homotopy h : f ' f ′. As we work on Ch
(2)
K so there are

two chain homotopies

1. h′1 : C0 → D1 with a corresponding m1 × n0 matrix H1 such that H1.∆
C
1 =

F ′1 − F1 and ∆D
1 .H1 = F ′0 − F0

2. h′2 : C1 → D2 with a corresponding m2 × n1 matrix H2 such that H2.∆
C
2 =

F ′2 − F2 and ∆D
2 .H2 = F ′1 − F1 we can describe it just like in the following

diagram:

C2

γC2
��

//

F2

F ′2

// D2

γ′d2
��

C1

γC1
��

//

F1

F ′1

//

h′2
>>

D1

γ′d1
��

C0 //

F0

F ′0

//

h′1
>>

D0

Again raising the dimension to three, a 2-homotopy is a map between two homo-

topies. Suppose we have another homotopy between f and f ′ which is h∗ : f ' f ′

such that there are another two chain homotopies

1. h∗1
′ : C0 → D1 with a corresponding m1×n0 matrix H∗1 such that H∗1 .∆

C
1 =

F ′1 − F1 and ∆D
1 .H

∗
1 = F ′0 − F0
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2. h∗2
′ : C1 → D2 with a corresponding m2×n1 matrix H∗2 such that H∗2 .∆

C
2 =

F ′2 − F2 and ∆D
2 .H

∗
2 = F ′1 − F1

A 2-homotopy between homotopies α : H ' H∗ is given by α : C0 → D2, where

α is a matrix with dimension m2×n0 which must satisfy the following conditions:

1. ∆2
D.α = H∗1 −H1

2. α.∆1
C = H∗2 −H2

C2

γC2
��

// D2

γd2
��

C1

γC1
��

>>

h′2

h∗2

>>

D1

γ′d1
��

C0
//

α′

FF

>>

h′1

h∗1

>>

D0

To summarize, we have obtain the following theorem. Here we will use the same

notations in this section:

Theorem 5.1.1. The morphisms of 3-groupoid length 2 chain complexes Ch
(2)
K

can be described as matrices as the following:

1. Chain complexes of length 2 (0-morphisms), denoted by (γC) with two dif-

ferentials γC2 : C2 → C1 and γC1 : C1 → C0. These differentials can be

represented by n1× n2 and n0× n1 matrices ∆C
2 and ∆C

1 with ∆1
C .∆

2
C = [0]

2. Suppose we have another chain complexes of length 2, denoted by (γD) with

two differentials ∆D
2 and ∆D

1 with ∆1
D.∆

2
D = [0].

A chain map between γC and γD (1-morphisms) which is f : γC → γD is

given by the triple of matrices (F2(m2×n2), F1(m1×n1), F0(m0×n0)) with

the following conditions:

(a) F0.∆
1
C = ∆1

D.F1 which is an m0 × n1 matrix.

(b) F1.∆
2
C = ∆2

D.F2 which is an m1 × n2 matrix.

3. A homotopy (2-morphisms) which is a map between two chain maps. So

let us suppose we have another chain map between γC and γD such that

f ′ : γ → γ′ and a homotopy h : f ' f ′. As we work on Ch
(2)
K so there are

two chain homotopies
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(a) h′1 : C0 → D1 with a corresponding m1 × n0 matrix H1 such that

H1.∆
C
1 = F ′1 − F1 and ∆D

1 .H1 = F ′0 − F0

(b) h′2 : C1 → D2 with a corresponding m2 × n1 matrix H2 such that

H2.∆
C
2 = F ′2 − F2 and ∆D

2 .H2 = F ′1 − F1.

4. A 2-homotopy (3-morphisms) is a map between two homotopies. Suppose

we have another homotopy between f and f ′ which is h∗ : f ' f ′ such that

there are another two chain homotopies A 2-homotopy between homotopies

α : H ' H∗ is given by α : C0 → D2, where α is a matrix with dimension

m2 × n0 which must satisfy the following conditions:

(a) ∆2
D.α = H∗1 −H1

(b) α.∆1
C = H∗2 −H2.

Proof : This follows from the section 5.1 which explains explicitly the fact

that morphisms of 3-groupoids can be described as matrices with some conditions.

5.2 Examples of a matrix formulation

For ease of computation, we work over IR with the standard basis for I !Rn. A

chain complexes of length 2, IR3 → IR2 → IR2, is given

C = (∆1
C ,∆

2
C ; ∆1

C .∆
2
C = [0]) where

∆1
C =

0 0

0 1

 and ∆2
C =

0 0 1

0 0 0

 ,
with ∆1

C .∆
2
C = [0]

D = (∆1
D,∆

2
D; ∆1

D.∆
2
D = [0]) such that

∆1
D =

0 0

0 2

 and ∆2
D =

0 0 3

0 0 0

 ,
with ∆1

C .∆
2
C = [0].

Chain maps between C and D as the following:
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F0 =

1 0

0 0

 , F1 =

2 0

0 0

 and F2 =


1 0 0

0 1 o

0 0 2/3

 ,
such that F0.∆

1
C = ∆1

D.F1 and F1.∆
2
C = ∆2

D.F2.

Suppose we have another chain map, as follows:

F ′0 =

1 0

0 0

 , F ′1 =

2 1/2

0 0

 and F ′2 =


1 0 0

0 1 o

0 0 2/3

 ,
such that F ′0.∆

1
C = ∆1

D.F
′
1 and F ′1.∆

2
C = ∆2

D.F
′
2.

Moving up to the homotopy which are (2×2) two matrices H1 and H2 = F ' F ′

such that

1. H1.∆
1
C = F ′1 − F1 and ∆1

D.H1 = F ′0 − F0

2. H2.∆
2
C = F ′2 − F2 and ∆2

D.H2 = F ′1 − F1

where

H1 =

1 1/2

0 0

 and H2 =


0 5

0 0

0 1/6


Again suppose there are another chain maps as the following:

F ′′0 =

1 0

0 0

 , F ′′1 =

2 1/2

0 0

 and F ′′2 =


1 0 0

0 1 o

0 0 2/3

 ,
such that F ′′0 .∆

1
C = ∆1

D.F
′′
1 and F ′′1 .∆

2
C = ∆2

D.F
′′
2 .

It follows that, there are other homotopies which are given by two (2×2) matrices

H ′1 and H ′2 = F ′ ' F ′′ such that

1. H ′1.∆
1
C = F ′′1 − F ′1 and ∆1

D.H
′
1 = F ′′0 − F ′0

2. H ′2.∆
2
C = F ′′2 − F ′2 and ∆2

D.H
′
2 = F ′′1 − F ′1
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where

H ′1

2 0

0 0

 and H ′2 =


0 3

0 1

0 0


Progressing to a 2-homotopy which is a (3 × 2) matrix α = H ' H ′ such that

∆2
D.α = H ′1 −H1 and α.∆1

c = H ′2 −H2 where

α =


1 −2

0 0

2/3 −1/6


Hence, we actually represent length 2 chain complexes C = IR3 → IR2 → IR2 and

D = IR3 → IR2 → IR2 in thr matrix form with ∆1
C and ∆2

C as objects of C and

∆1
D and ∆2

D as objects of D. Also, chain maps between them F0, F1 and F2 are

matrices and so on with chain homotopies and 2-homotopies.



Chapter 6

Automorphisms of Linear

Transformations

Suppose that γ : C2 → C1 → C0 is a linear transformation of vector spaces. As

explained previously it is an object in ch
(2)
k . Objects of ch

(2)
k , chain automorphisms

γ → γ, homotopies between them and 2-homotopies, form a subcategory of ch
(2)
k .

As is known, automorphisms indicate an isomorphism of an object to itself. Our

aim is to develop a representation of cat2-groups and crossed squares. In this

chapter, we will introduce some examples of Automorphisms and generalise the

form of automorphisms Aut(γ).

Definition 6.0.1. Let γ : C2 → C1 → C0 be a length 2 chain complex of k-vector

spaces. The automorphism cat2-group of γ, Aut(γ), consists of:

1. the group Aut(γ)1 of all chain automorphisms γ → γ.

2. the group Aut(γ)2 of all homotopies on Aut(γ)1.

3. the group Aut(γ)3 of all 2-homotopies on Aut(γ)2.

4. morphisms

s0, t0 : Aut(γ)1 → Aut(γ)0

s1, t1 : Aut(γ)2 → Aut(γ)1

s2, t2 : Aut(γ)3 → Aut(γ)2

78
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5. morphisms

i1 : Aut(γ)1 → Aut(γ)2

i2 : Aut(γ)2 → Aut(γ)3

Here, after we show that the morphisms in Aut(γ) form a Gray category,

we need to show that there is a 0-morphism as Aut(γ)0 which is a length 2

chain complex, which can be unpacked as a pair (γ1, γ2).

Aut(γ1) consists of 1-morphisms γ
f
// γ ,(f0, f1, f2) and γ = (γ1, γ2),

Aut(γ2) consists of 2-morphisms

γ
f
%%

f ′
99�� h γ

between chain maps f = (f0, f1, f2) and f ′ = (f ′0, f
′
1, f

′
2), which can be

unpacked as a triple (h, f, γ) such that h = (h′1, h
′
2), f = (f0, f1, f2) and

γ = (γ1, γ2), while Aut(γ3) consists of 3-morphisms

f
h
&&

ĥ

88�� α f ′

between homotopies h = (h′1, h
′
2) and ĥ = (ĥ′1, ĥ

′
2), which can be unpacked

as a quadruple (α̃, h, f, γ)

The following diagram explains all the morphisms:

C2

γ2

��

f2
//f ′2
// C2

γ2

��

C1

γ1

��

h′2

77

ĥ′2

77

f1
//f1
// C1

γ1

��

C0 f0
//f ′0
//

α̃

??

h′1

77

ĥ′1

77

C0

It is easy to compose between the elements of Aut(γ1). Now we are moving

to Aut(γ2) which are homotopies as follows:

A homotopy h : f → f ′ is a triple

((h′1, h
′
2), (f0, f1, f2), (f ′0, f

′
1, f

′
2)),
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with h′1, h
′
2 chain homotopies and f the source of h, along with f ′ the target.

These satisfy the chain homotopy conditions

f ′0 − f0 = γ1h
′
1, f

′
1 − f1 = h′1γ1

and

f ′1 − f1 = γ2h
′
2, f

′
2 − f2 = h′2γ2,

we can make an equivalent condition for all these which is given by

f ′ − f = γ1h
′
1 + h′1γ1 + γ2h

′
2 + h′2γ2.

Aut(γ3) is a 2-homotopy between Aut(γ2) homotopies; α : h ' k where

α ∈ Aut(γ3). We can describe them as a triple (α̃, h, f), where h = (h′1, h
′
2)

and f = (f0, f1, f2), with α̃ is a 2-chain homotopy such that h is a source

and k as a target, satisfying the following conditions:

α̃γ1 = k′2 − h′2

and

γ2α̃ = k′1 − h′1.

There is no doubt that the condition for the structure homomorphism in

Aut(γ) are satisfied. The maps s0, t0 give respectively the source f =

(f0, f1, f2) and the target f ′ = (f ′0, f
′
1, f

′
2), while i0 is an identity map of

homotopy (h′, f) = ((h′1, h
′
2), (f0, f1, f2)) which comes from a chain map

f = (f0, f1, f2) together with the identity homotopy

1f0 : f0 → f0, 1f1 : f1 → f1, 1f2 : f2 → f2

such that

i0 : f0 → 1f0 , i1 : f1 → 1f1 , i2 : f2 → 1f2

Moving up to Aut(γ)3 with two of 2-chain homotopies α and α̃. The source

of chain homotopy h = (h′, f) = ((h′1, h
′
2), (f0, f1, f2)) while i1 maps each
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chain homotopy h = (h′, f) to the identity 2-chain homotopy such that

1h′1 : h′1 → h′1, 1h′2 : h′2 → h′2

and

i1 : h′1 → 1h′1 , i2 : h′2 → 1h′2

The group operation in Aut(γ)1 is the composition of chain automorphism.

The identity is idγ, the chain map consisting of the identity linear transfor-

mation at both levels.

Since, every f ∈ Aut(γ)1 is a chain automorphism, it has an inverse f−1,

which is also a chain automorphism on γ ∈ Ch2
k and f−1 ∈ Aut(γ)1.

Vertical composition provides the group operation Aut(γ)2. For example

Ch2
k, in this case if

h = ((h′1, h
′
2), (f0, f1, f2) and k = ((k′1, k

′
2), (g0, g1, g2))

are homotopies, the composition k#h is the homotopy specified by the

source chain map g#f and the chain homotopy

(g1h
′
1 + k′1f0, g2h

′
2 + k′2f1)

and the inverse of

((h′1, h
′
2), (f0, f1, f2))

is the element

((−f1
−1h′1(f ′0)−1,−f2

−1h′2(f ′1)−1), f−1)

where f = (f0, f1, f2). The element in Aut(γ)2 can be also joined by vertical

composition #1, which is defined for pairs of 2-morphisms for which the

target 1-morphism of the first is the source of the second, that is, if

((h′1, h
′
2), (f0, f1, f2))
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and

ĥ = (ĥ1, f + γ1h
′
1 + h′1γ1 + γ2h

′
2 + h′2γ2) where h, ĥ ∈ Aut(γ)2

The vertical composite is

ĥ#1h = (ĥ1 + h′, f) = ((ĥ′1, ĥ′2) + (h′1, h
′
2), (f0, f1, f2))

in Aut(γ)2. Turning to the composition in Aut(γ)3, in this case, if

α = (α̃, h′, f) = (α̃, (h′1, h
′
2), (f0, f1, f2))

and

β = (β̃, k′, g) = (β̃, (k′1, k
′
2), (g0, g1, g2))

with target of α is the source of β. The composition is given by

β#2α = (α̃ + β̃, (h′1, h
′
2), (f0, f1, f2))

and the identity of this composition as (0, 1h, 1f ). The inverse of

(α̃, (h′1, h
′
2), (f0, f1, f2))

is the element

(−f−1
2 α̃(f ′0)−1, h−1)

An element of Aut(γ)3 can also be joined by vertical composition #2, which

is defined for a pair of 3-morphisms for which the target 2-morphism of the

first is the same as the source of the second. That is,

α = (α̃, h′, f) where h′ = (h′1, h
′
2)

and

f = (f0, f1, f2)
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and

β = (β̃, h′ + γα̃ + α̃γ)

are in Aut(γ)3, the vertical composite is

β#2α = ([α̃ + β̃], h′, f),

in the same groupoid operation with each 2-morphism

h = (h′, f)

having an identity

1h = (0, h′, f)

for vertical composition and every 3-morphism

(α̃, h′, f)

having the inverse

(−α̃, h′ + γα̃ + α̃γ).

6.1 Representations of cat2-groups and crossed

squares

The idea of representations of cat1-groups will be extended to the representation

of cat2-groups in this section as we lift the dimension up. The representation

theory of cat1-groups was defined by Forrester-Barker in [17] as follows:

Suppose C is a cat1-group and ch
(1)
k is a length 1 chain complex so the represen-

tation φ is as follows:

φ : C→ ch
(1)
k .

However, the dimension of cat1-groups have been lifted in this thesis to cat2-

groups and we have shown that it is the same thing as 3-groups. After that the

definition of cat2-groups representations can be established as follows:

φ∗ : G→ ch
(2)
k ,
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where G is a cat2-group and φ∗ is a 3-functor which takes every single element of

G to the length 2 chain complexes.

Given G, to define the representation of G, which is φ∗(G) we must find a chain

complex γ to represent as a target object, φ∗(?) = γ. All the elements of cat2-

group G must be mapped to elements of ch
(2)
k , with 0-morphism (a lengths 2

chain complex), 1-morphisms (chain maps), 2-morphisms (homotopies) and 3-

morphisms (2-homotopies) and to φ∗ be a functor, all this mapping must preserve

identities and compositions. Aut(γ), which is a main concept that was considered

as an automorphism in this chapter earlier, is the image of G.

Considering Aut(γ) as a cat2-group give us another way to define the represen-

tation of cat2-group as follows:

φ∗ : G→ Aut(γ).

We explained earlier in section (4.2.3) that cat2-groups are equivalent to crossed

squares. Therefore, we conclude a representation of crossed squares as itself a

representation of cat2-groups.

6.1.1 Faithful representations of cat2-groups

In group terms, the faithful representation is defined in (3.1.2), to use this concept

from a categorical viewpoint, we can define it as follows:

Suppose G is a category and φ : G =⇒ V ectK is a faithful functor i.e. if for every

g, h ∈ G and φ(g) = φ(h) then g = h. As a representation of a cat2-group is

defined as a 3-functor, the faithful representations of cat2-groups are the faithful

3-functors. With an accurate search to define a faithful 3-functor we can rely on

the analysis, mentioned in [11] that a faithful representation of a cat1-group is

a faithful 2-functor, and develop this idea to higher dimensions as we study in

this thesis so the faithful representation of cat2-groups are exactly the faithful

3-functors.

6.1.2 The category of representations of cat2-groups

Here, we take a categorical view of cat 2 - groups representations and determine

the morphisms between them to discover a new category.



Automorphisms of Linear Transformations 85

In sections (3.3) and (3.4) it was introduced the definitions of representations

of categories and 2-categories respectively. Here, we define the 3-category of

representation of cat2-groups.

Since the category of (K-linear) representation of a group G is a functor category

RepGk = (V ectk)
G

whose objects are functors G→ V ectK and whose morphisms are natural trans-

formations between such functors.

Lifting up the dimension of categories to 2-categories, cat1-groups have been de-

scribed as 2-categories in [14]. So, a 2-category of representations of cat1-group

C is a 2-functor 2-category

RepCk = (Ch
(1)
k )C

whose objects are 2-functors C→ Ch
(1)
k , whose 1-morphisms are 2-natural trans-

formations between such 2-functors and whose 2-morphisms are called modifi-

cation which are as follows:

For any two 2-natural transformations α and β between two 2-functors F and F ′

between two 2-categories C and D as follows

α, β : F → F ′ : C → D

would consist of a function µ : α→ β such that for each 0-morphism C ∈ C there

is a 2-morphism µC : αC → βC in D, we can describe it as follows:

C

D

F ′

{{

F

##

α

��

β

DDµ

��

Now moving to the higher dimension, we can define the 3-category of repre-

sentations of cat2-group G as follows, using the concepts and notations from the

previous chapters.
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Definition 6.1.1. We consider cat2-groups as 3-groupoids which are kind of

3-categories in the theorem (4.2.3). A 3-category of representations of cat2-

group G is a 3-functor 3-category

RepGk = (Ch
(2)
k )G,

whose objects are 3-functors G→ Ch
(2)
k , whose 1-morphisms are 3-natural trans-

formations between such 3-functors, whose 2-morphisms are modifications be-

tween such 3-natural transformations and whose 3-morphisms are called pertur-

bation (see section 2.3 [12] p.15) which are as follows:

For any two modifications µ and µ′ between two 3-natural transformations η and

η′ between two 3-functors K and K ′ between two 3-categories A and B as follows

µ, µ′ : η → η′ : K → K ′ : A → B

would consist of a function ν : µ → µ′ such that for each 0-morphism A ∈ A

there is a 3-morphism νA : µA → µ′A in B, we can describe it simply as follows:

A

B

K′

zz

K

$$

η

��

η′

DDµ′

ww

µ

''

ν //

If K1, K2 : G→ Ch
(2)
k are two representations of G with representation com-

plexes γ and γ′ respectively. A 3-natural transformation is a morphism η : γ → γ′

such that the following diagram commutes

γ

γ

K′1

zz

K1

$$

γ′

γ′

K′2

{{

K2

##

η1 //

η2 //

i.e. η2K1 = K2η1.
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The following section establish to find the path between matrices and auto-

morphisms.

6.2 Connection between matrices and automor-

phisms

Suppose that γ : C2
∆2 // C1

∆1 // C0 is a linear transformation of vector spaces

which consists of two matrices: ∆2 which is an n1 × n2-matrix, where n1 and n2

are the dimensions of C1 and C2 respectively; and the other matrix ∆1 which

is an n0 × n1-matrix, where n0 is the dimension of C0. In order to connect the

matrices and automorphisms of linear transformation, an element of Aut(γ)1 is

used. This is a triple

F = (F2, F1, F0)

of matrices such that

γ1F2 = F1γ1 and γ2F1 = F0γ2.

As it is known that F2, F1 and F0 are invertible matrices, so the above equation

can be rewritten as the following:

F2 = γ−1
1 F1γ1 or F1 = γ1F2γ

−1
1

and

F1 = γ−1
2 F0γ2 or F0 = γ2F1γ

−1
2

The elements of Aut(γ)2 are homotopies

h : f → f ′,

where f and f ′ are two linear transformations

f = (f2, f1, f0) and f ′ = (f ′2, f
′
1, f

′
0)
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respectively. This we can now analyse further, the homotopy element can be

expressed as a pair (h′, f) where

f = (f2, f1, f0) and h′ = (h′1, h
′
2)

with h′1 as a n1 × n0 matrix H1 and h′2 as a n2 × n1 matrix H2.

As with the elements in Aut(γ)1, the compatibility condition in Aut(γ)2 gives the

following

H1γ2 = F ′1 − F1 and γ2H1 = F ′0 − F0

and

H2γ1 = F ′2 − F2 and γ1H2 = F ′1 − F1.

When this information is converted into the matrix language, it can be assumed

that

H1 ∈ Kn1,n0 while γ1 ∈ Kn0,n1

so both

γ2H1 and H1γ2

are defined and

H2 ∈ Kn2,n1 while γ2 ∈ Kn1,n2

as well as both

H2γ1 and γ1H2

are defined. At this point, the s, t and i maps in the matrix formulation can be

checked.

Suppose that

F = (f2, f1, f0) and F ′ = (f ′2, f
′
1, f

′
0)

are elements in Aut(γ)1 and

(H,F ) : F ⇒ F ′
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is an element in Aut(γ)2 such that

s(H,F ) = F and t(H,F ) = F + γH +Hγ.

This means that

t((H ′1, H
′
2), (f2, f1, f0)) = (f2, f1, f0) + γ2H1 + γ1H2 +H1γ2 +H2γ1

and

i(F ) = (0, F )

Moving on to the elements of Aut(γ)3, a 2-homotopy

α : h −→ ĥ,

where h and ĥ are two homotopies

h = (h′1, h
′
2) and ĥ = (ĥ′1, ĥ′2),

the 2-homotopy element can be expressed as a triple

α = (α̃, h, F )

where

h′ = (h′1, h
′
2) and F = (f2, f1, f0)

with α̃ is an n2 × n0 α. To check the compatibility condition in Aut(γ)3, the

following criteria should be satisfied:

γ1α = Ĥ1 −H1 and αγ2 = Ĥ2 − h2

As we know that

γ1 ∈ Kn0,n1 , α ∈ Kn2,n0 and γ2 ∈ Kn1,n2
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both

γ1α and αγ2

can be defined.

Furthermore, the s, t and i maps in the matrix formulation must be checked.

Suppose that

H = (h′, F ) and Ĥ = (ĥ′, F )

where

H, Ĥ ∈ Aut(γ)2

and

(α,H, F ) : H −→ Ĥ

which is an element in Aut(γ)3, then

s(α,H, F ) = H, t(α,H, F ) = H + γ1α + αγ2

and

i(α,H, F ) = (0, H, F ).

In vector space language, suppose

V =< v1, ..., vn > and W =< w1, ..., wn >

as bases for Kn. So, there is a unique non-singular matrix

P ∈ GLn(k)

sometimes known as a change matrix from V to W such that if

x ∈ Kn

is a vector space expressed in terms of coefficients with respect to the basis V

then Px is the same vector expressed with respect to the basis W .

Each vector can be expressed depending on the basis that comes from it: for
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example Xv, Xw. A matrix from V to W is P , so P−1 is a matrix from W to V .

Suppose that

F : Km → Kn

is a linear transformation such that v, w and s are bases of Km and v′, w′ and s′

are bases of Kn, with matrices P1, P2, P
′
1 and P ′2 such that P1 from V to W , P2

from W to S, P ′1 from V ′ to W ′ and P ′2 is a matrix from W ′ to S ′.

Now, reverting to the linear transformation F , assume that there are three matri-

ces that can be extracted depending on the bases. For instance, Fv is the matrix

which can obtained from F by using V, V ′ as bases, Fw is the matrix which can

obtained from F using W,W ′ and the last one, Fs, can be extracted using S, S ′

as bases. A a result all of the above matrices can be collected in the following

formulae:

Fw = P ′1FvP
−1
1

Fs = P ′2FwP
−1
2

Depending on the linear transformation between the vector spaces, all can be

defined as Aut(γ)

6.3 Examples of Aut(γ)

For more in-depth understanding of automorphisms of linear transformation and

their appearance in higher categories, some simple examples will be considered,

as well as the matrix formulation of these examples. Here, we will introduce the

examples in order of the difficulty beginning with the simplest.

6.3.1 Simple example

The cyclic group is a suitable example to describe its Aut(γ). Suppose

γ : C2 → C → C
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to be a linear transformation between cyclic groups C2 and C

γ : C2 → C2 → C1

γ :

x
y

→
x
y

→ [
x
]

We can convert these in matrix language,

γ2 =

1 0

0 0

 ∈ C2×2 and γ1 =
[
0 1

]
∈ C1×2

Now, we describe the elements of Aut(γ)1 which are chain automorphisms. They

consist of a triple of non-singular matrices (F2, F1, F0) such that

F2 =

a2 b2

c2 d2

 , F1 =

a1 b1

c1 d1

 , F0 =
[
a0

]
and they should satisfy the following conditions:

F0γ1 = γ1F1 and F1γ2 = γ2F2.

To apply these conditions on what we get from matrices, for the first condition

F0γ1 = γ1F1 we will get

F0γ1 =
[
a0

] [
0 1

]
=

[
0 a0

]

γ1F1 =
[
0 1

]a1 b1

c1 d1

 =
[
c1 d1

]
,

so [
0 a0

]
=

[
c1 d1

]
,

that means c1 = 0 and a0 = d1.

We will keep going to check the second condition F1γ2 = γ2F2

F1γ2 =

a1 b1

c1 d1

1 0

0 0

 =

a1 0

c1 0
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and

γ2F2 =

1 0

0 0

a2 b2

c2 d2

 =

a2 b2

0 0


As the condition is

F1γ2 = γ2F2,

so

a1 = a2, b2 = 0 and c1 = 0.

After that F will be given as follows

F = (F2, F1, F0) = (

a2 0

c2 d2

 ,
a2 b1

0 d1

 , [d1

]
)

where a2, c2, d2, b1, d1 ∈ C and a2 6= 0.

The simplest example for matrices of the above automorphism on (γ1, γ2) is

idF = (F2, F1, F0) = (

1 0

0 1

 ,
1 0

0 1

 , [1
]
)

It definitely satisfies the compability conditions above.

Suppose we have another automorphism on

γ = (γ1, γ2),

for instance

G = (G1, G2, G0)

with

G2 =

a′2 0

c′2 d′2

 , G1 =

a′2 b′1

0 d′1

 , G0 =
[
d′1

]
with the same conditions

G0γ1 = γ1G1 and G1γ2 = γ2G2.



Automorphisms of Linear Transformations 94

Now, to prove that Aut(γ)1 is a group, we have to check the group operations.

Assuming that we have two automorphisms F and G as follows:

F = (F2, F1, F0) = (

a2 0

c2 d2

 ,
a2 b1

0 d1

 , [d1

]
)

G = (G2, G1, G0) = (

a′2 0

c′2 d′2

 ,
a′2 b′1

0 d′1

 , [d′1])

Then, F#0G is a chain automorphism with

(F#0G)0 = F0G0,

(F#0G)1 =

a2 b1

0 d1

a′2 b′1

0 d′1



=

a2a
′
2 a2b

′
1 + b1d

′
1

0 d1d
′
1

 ,

(F#0G)2 =

a2 0

c2 d2

a′2 0

c′2 d′2



=

 a2a
′
2 0

c2a
′
2 + d2c

′
2 d2d

′
2


Moving up to the homotopies (Aut(γ)2) which are the morphisms between chain

automorphisms F and G: Suppose given a homotopy

H : F → G

between two chain automorphisms F and G. This is a pair of matrices

H = (H1, H2),
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where H1 is a (2 × 1) matrix and H2 is a (2 × 2) matrix and they must satisfy

the following condition:

H1γ1 = G1 − F1 and γ1H1 = G0 − F0

Also

H2γ2 = G2 − F2 and γ2H2 = G1 − F1,

Suppose H = (H1, H2) such that

H1 =

e1

f1

 and H2 =

e2 m2

f2 n2


Then, we show how it satisfies the above conditions

H1γ1 =

e1

f1

[
0 1

]
=

0 e1

0 f1


and

G1 − F1 =

a′2 b′1

0 d′1

−
a2 b1

0 d1



=

a′2 − a2 b′1 − b1

0 d′1 − d1


So, by the condition

H1γ1 = G1 − F1

this implies

a′2 − a2 = 0, e1 = b′1 − b1 and f1 = d′1 − d1

Again, with the next condition

γ1H1 =
[
0 1

]e1

f1

 =
[
f1

]

and

G0 − F0 =
[
d′1

]
−
[
d1

]
=

[
d′1 − d1.

]
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So, by the condition

γ1H1 = G0 − F0

this implies

f1 = d′1 − d1.

The process continues with the next couple of conditions

H2γ =

e2 m2

f2 n2

1 0

0 0



=

e2 0

f2 0


and

G2 − F2 =

a′2 0

c′2 d′2

−
a2 0

c2 d2



=

a′2 − a2 0

c′2 − c2 d′2 − d2

 .
So, by the condition

H2γ2 = G2 − F2

this implies

e2 = a′2 − a2, f2 = c′2 − c2 and d′2 − d2 = 0.

Also with the last section of conditions

γ2H2 =

1 0

0 0

e2 m2

f2 n2



=

e2 m2

0 0


By the condition

γ2H2 = G1 − F1

this implies

e2 = a′2 − a2,m2 = b′1 − b1 and d′1 − d1 = 0.
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So,

H = (H1, H2) = (

b′1 − b1

d′1 − d1

 ,
a′2 − a2 b′1 − b1

c′2 − c2 n2

)

with some processes, we have to prove that Aut(γ)2 is a group. The elements of

Aut(γ)2 are the homotopies

(H,F )

where

H = (H1, H2) and F = (F2, F1, F0).

By this point, we have two kinds of compositions, the first one is a horizontal

composition.

If we have two homotopies

(H,F ) and (H ′, F ′)

such that

H = (H1, H2) : F → G

where

F = (F2, F1, F0) and G = (G2, G1, G0)

and the other homotopy

(H ′, F ′)

such that

H ′ = (H ′1, H
′
2) : F ′ → G′

where

F ′ = (F ′2, F
′
1, F

′
0) and G′ = (G′2, G

′
1, G

′
0).

So, the horizontal composite

(H ′, F ′)#0(H,F )

is defined to be the homotopy with source F ′#0F and the chain homotopy is

g1H +H ′f0. The second one is a vertical composition.
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If

(H,F ) : F → F ′ and (H ′, F ′) : F ′ → F ′′,

then, the vertical composition

(H ′, F ′)#1(H,F )

is also defined to be a homotopy with source F and its chain homotopy is the sum

of both chain homotopies H + H ′. Lift up the dimension to get 2- homotopies

Aut(γ)3 which are the morphisms between homotopies and we can denote them

as a triple

(α,H, F ), where H = (H1, H2) and F = (F2, F1, F0).

In this case, there are more complicated compositions; as well as all of the kinds

of compositions which have already been shown, there are many whiskers:

• The vertical composition: The vertical composition of the element inAut(γ)3.

Suppose we have

α, β ∈ Aut(γ)3

such that

α = (α,H, F ) where H = (H1, H2) and F = (F2, F1, F0)

and the other element which is

β = (β,K,G), where K = (K1, K2) and G = (G2, G1, G0)

So

β#2α

defines a 2-homotopy with source F0 and 2-homotopy [α + β].

But regarding the horizontal compositions and whiskers will be more com-

plicated than the elements of Aut(γ)2.
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• The horizontal composition: If

(α,H, F ) : H → K

and

(β,H ′, F ′) : H ′ → K ′

are 2-homotopies, the horizontal composite

(β,H ′, F ′)#0(α,H, F )

is a 2-homotopy with source

F ′#0F ∈ Aut(γ)1

and 2-chain homotopy

g2α + βf0.

There are many whiskers between the elements in different groups.

1. suppose we have G ∈ Aut(γ)1 and k, h ∈ Aut(γ)2 such that

G = (g2, g1, g0),

k = (G, k) where k = (k1, k2)

and

h = (F, h) where h = (h1, h2).

So

g#0(k#1h)

is an element in Aut(γ)2 with source gf and its chain homotopy g(k′ + h′).

2. suppose we have G ∈ Aut(γ)1, there are whiskers with two elements in

Aut(γ)3

α and β
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such that

α = (F, h, α) and β = (G,K, β)

so

g#0(β#2α)

is an element in Aut(γ)3 with source g.f and its 2-homotopy is

gα′ = gβ′.

6.3.2 Inclusion example

As is well known, an inclusion map is a function that sends each element of the

domain which is a subset of the co-domain to the co-domain. Here the same idea

applies in our constructions.

Suppose γ : Km ↪→ Kn ↪→ Kr is an inclusion linear transformation, such that

m ≤ n ≤ r, where n = m+ p and r = n+ s = m+ p+ s therefore

Kn = Km ⊕Kp

and

Kr = Kn ⊕Ks = Km ⊕Kp ⊕Ks.

The matrix formulation which corresponds to γ is a pair

γ = (γ1, γ2) and γ1 =

Im
0

 and γ2 =


0 0

0 Ip

0 0

 ,

seen as elements in Aut(γ)0. Gradually, we can describe the connection between

them as a chain automorphism between inclusion linear transformations. They

are invertible matrices F = (F2, F1, F0) which must satisfy the chain automor-

phism conditions

F0.γ1 = γ1.F1 and F1.γ2 = γ2.F2
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To describe them let us suppose that

F = (F2, F1, F0) = (F2,

F2 a

b c

 ,

F2 a d

b c e

f g h

),

where a ∈ GLm(K), b ∈ Km,p, c ∈ Km,s, d ∈ Kp,m, e ∈ GLp(k), f ∈ Kp,s,

g ∈ Ks,m, h ∈ Ks,p, i ∈ GLs(k) and they must satisfy the commutativity condi-

tion F0.γ2 = γ2.F1.

F0.γ2 =


F2 a d

b c e

f g h

 .


0 0

0 Ip

0 0

 =


0 a

0 c

0 g


and

γ2.F1 =


0 0

0 Ip

0 0

 .
F2 a

b c

 =


0 0

b c

0 0


So 

0 a

0 c

0 g

 =


0 0

b c

0 0


that means, b = 0, a = 0 and g = 0.

Also

F1.γ1 =

F2 a

b c

 .
Im

0

 =

F2

b



γ1F2 =

Im
0

 . [F2

]
=

F2

0


So F2

b

 =

F2

0
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that means, b = 0 and we can describe

F = (F2, F1, F0) = (
[
F2

]
,

F2 0

0 c

 ,

F2 0 d

0 c 0

f 0 h

)

as an element of Aut(γ)1. Now to consider the elements of Aut(γ)2 we have to

use another element of Aut(γ)1 which is

G = (G2, G1, G0) = (
[
G2

]
,

G2 0

0 c′

 ,

G2 0 d′

0 c′ 0

f ′ 0 h′

)

the product of G and F is F#0G, it is also a chain automorphism with

(F#0G)2 =
[
F2.G2

]
,

(F#0G)1 =

F2 0

0 c

 .
G2 0

0 c′

 =

F2G2 0

0 cc′

 ,

(F#0G)0 =


F2 0 d

0 c 0

f 0 h

 .

G2 0 d′

0 c′ 0

f ′ 0 h′

 =


F2G2 + df ′ 0 F2d

′ + dh′

0 cc′ 0

fG2 + hf ′ 0 fd′ + hh′

 .

Here, we describe the homotopy H = F ' G which is an element of Aut(γ)2 and

it consists of a pair of matrices (h1, h2), where

h1 : Kn → Km a m× n matrix

and

h2 : Kr → Kn a n× r matrix
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as the following diagram explains:

Km

γ1

��

//

F2

G2

// Km

γ1

��

Kn

γ2

��

//

F1

G1

//

h2

<<

Kn

γ2

��

Kr //

F0

G0

//

h1

<<

Kr

The homotopy should satisfy the homotopy conditions which are

γ2.h1 = G0 − F0 and h1.γ2 = G1 − F1.

Also,

γ1.h2 = G1 − F1 and h2.γ1 = G2 − F2.

Let us now suppose that

H = (h1, h2) = (

x y z

l q w

 , [x y
]
),

where x ∈ GLm(K), y ∈ Km,p, z ∈ Km,s, l ∈ Kp,m, q ∈ GLp(K) and w ∈ Kp,s.

Therefore,

γ2.h1 =


0 0

0 Ip

0 0

 .
x y z

l q w

 =


0 0 0

l q w

0 0 0


and

G0 − F0 =


G2 − F2 0 d′ − d

0 c′ − c 0

f ′ − f 0 h′ − h


So, G2 − F2 = 0, d′ − d = 0, f ′ − f = 0, h′ − h = 0, l = 0 and w = 0 that means,

G2 = F2, f ′ = f , h′ = h and c′ = c .

Turning to check the second part of the first condition
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h1.γ2 =

x y z

l q w

 .


0 0

0 Ip

0 0

 =

0 y

0 q


and

G1 − F1 =

G2 − F2 0

0 c′ − c

 .
So, G2 − F2 = 0, y = 0 and c′ − c = q, then G2 = F2.

Checking the other condition as the following:

γ1.h2 =

Im
0

 . [x y
]

=

x y

0 0


and

G1 − F1 =

G2 − F2 0

0 c′ − c


so, G2 − F2 = x, c′ − c = 0 and y = 0.

The other part to check is

h2.γ1 =
[
x y

]
.

Im
0

 =
[
x
]

and

G2 − F2 =
[
G2 − F2

]
.

So, G2 − F2 = x.

We can describe it as follows:

H = (h1, h2) = (

0 0 z

0 0 e′ − e

 , [0 0
]
).

Moving up to higher dimensions to describe 2-homotopies which are chain au-

tomorphisms between homotopies, let us suppose that we have another chain
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automorphism

J = (J2, J1, J0) = (
[
J2

]
,

J2 0

0 c′′

 ,

J2 0 d′′

0 c′′ 0

f ′′ 0 h′′

)

and there is another homotopy K = G ' J between G and J therefore we can

describe K as a pair of matrices

(k1, k2) = (

0 0 z′

0 0 e′′ − e′

 , [0 0
]
),

at this point we can consider a 2-homotopy α : Kr → Km as a r ×m matrix

[
λ β σ

]
between two homotopies H and K with a vertical composition such that α =

H ' K such as αγ2 = k2 − h2 and γ1α = k1 − h1.

Checking the above condition, we have to work out the following:

α.γ2 =
[
λ β σ

]
.


0 0

0 Ip

0 0

 =
[
0 β

]

and

k2 − h2 =
[
0 0

]
−
[
0 0

]
=

[
0 0

]
so β = 0 .

Also

γ1.α =

Im
0

 . [λ β σ
]

=

λ β σ

0 0 0


and

k1 − h1 =

0 0 z′

0 0 e′′ − e′

−
0 0 z

0 0 e′ − e

 =

0 0 z′ − z

0 0 e′′ + e
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so λ = 0, σ = z′ − z and e′′ + e = 0.

After that we can consider the form of 2-homotopy as a matrix

α =
[
0 0 z′ − z

]
6.3.3 Projection example

Suppose

γ : Kn ⊕Km ⊕Ks → Kn ⊕Km → Kn

be a linear transformation such that

γ1 : Kn ⊕Km ⊕Ks → Kn ⊕Km

is the projection of Kn ⊕ Km on its direct summands, Kn ⊕ Km is a quotient

space of Kn ⊕Km ⊕Ks and also

γ2 : Kn ⊕Km → Kn

is the projection ofKn on its direct summands, Kn is a quotient space ofKn⊕Km.

So, we can choose a basis

V = {v1, v2, v3, ..., vn, vn+1, ..., vn+m+s}

for Kn ⊕Km ⊕Ks and a basis

V ∗ = {v∗1, v∗2, v∗3, ..., v∗n+m}

for Kn ⊕Km and a basis

V̄ = {v̄1, v̄2, v̄3, ..., v̄n}

for Kn, where v∗i = vi + Ks, where i ≤ n and v̄ = v∗i + Km = vi + Km + Ks,

where i ≤ n.
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We can describe how γ works:

γ(
n+m+s∑
i=1

αivi) =
n+m∑
i=1

αiv
∗
i =

n∑
i=1

αiv̄i

Turning to the matrix formulation, we can describe γ as a pair of matrices γ =

(γ1, γ2), where

γ1 =

0 0 0

0 Im 0

 ∈ Kn+m+s,n+m and γ2 =
[
In 0

]
∈ Kn,n+m

Moving up the dimension, the maps between the above matrices can be consid-

ered, which are chain automorphisms F = (F2, F1, F0). These automorphisms

must satisfy the commutativity conditions of chain automorphisms.

Let us suppose that F = (F2, F1, F0) such that F0 ∈ GLn(K), F1 ∈ Kn+m,n+m

and F2 ∈ Kn+m+s,n+m+s has the following form:

F = (F2, F1, F0) = F = (


F0 L A

C D B

E P J

 ,
F0 L

C D

 , F0),

where A ∈ Kn,s,C ∈ Km,n, D ∈ GLm(K), B ∈ Km,s, E ∈ Ks,n, S ∈ Ks,m and

J ∈ GLs(K).

The commutativity conditions should be satisfied according to the following:

• F0.γ2 = γ2.F1 F0.γ2 = F0.
[
In 0

]
=

[
F0 L

]
,

γ2.F1 =
[
In 0

]
.

F0 L

C D

 =
[
F0 L

]
so, L = 0

• F1.γ1 = γ1.F2 F1.γ1 =

F0 L

C D

 .
0 0 0

0 Im 0

 =

0 L 0

0 D 0

,

γ1.F2 =

0 0 0

0 Im 0

 .

F0 L A

C D B

E P J

 =

0 0 0

C D B





Automorphisms of Linear Transformations 108

So L = 0, B = 0 and C = 0.

Now, we can rewrite

F = (F2, F1, F0) =


F0 0 A

0 D 0

E 0 J

 ,
F0 0

0 D

 , F0).

All the elements of Aut(γ)1 have the same form, so suppose

G = (G2, G1, G0) = (


G0 0 A′

0 D′ 0

E ′ 0 J ′

 ,
G0 0

0 D′

 , G0).

Then the composition of the elements G and F in Aut(γ)1 is F#0G which con-

sists of

(F#0G)0 = F0G0

(F#0G)1 =

F0G0 0

0 DD′



(F#0G)2 =


F0G0 + AE ′ 0 F0A

′ + AJ ′

0 DD′ 0

EG0 + JE ′ 0 EA′ + JJ ′

 .
The homotopy consists of a pair (H,F ) where H = (h1, h2) such that h1 : Kn →

Kn+m and h2 : Kn+m → Kn+m+s.

Assuming that

H = (

X
Y

 ,

X M

Y N

Z S

),
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as the following diagram explains

Km+n+s

γ1

��

//

F2

G2

// Km+n+s

γ1

��

Km+n

γ2

��

//

F1

G1

//

h2

88

Km+n

γ2

��

Kn //

F0

G0

//

h1

88

Kn

Homotopy should satisfy the homotopy conditions, which are

γ2h1 = G0 − F0 and h1γ2 = G1 − F1.

Also,

γ1h2 = G1 − F1 and h2γ1 = G2 − F2.

This can be proven as follows:

γ2h1 =
[
In 0

]
.

X
Y

 =
[
X
]

= G0 − F0

and

h1γ2 =

X
Y

 . [In 0
]

=

X 0

Y 0

 = G1 − F1 =

G0 − F0 0

0 D′ −D

 .
Also

γ1h2 =

0 0 0

0 Im 0

 .

X M

Y N

Z S

 =

 0 0

Y N



= G1 − F1 =

G0 − F0 0

0 D′ −D


and

h2.γ1 =


X M

Y N

Z S

 .
0 0 0

0 Im 0

 =


0 M 0

0 N 0

0 S 0
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= G2 − F2 =


G0 − F0 0 A′ − A

0 D′ −D 0

E ′ − E 0 J ′ − J

 .
This means, X = G0 − F0 = 0, Y = 0, N = D′ −D and M = S = 0.

So

H = (h1, h2) = (

0

0

 ,


0 0

0 0

Z 0

)

Moving on to 2-homotopy, another homotopy is needed. To obtain this, it is

necessary to find another chain automorphism. Suppose S is another chain au-

tomorphism such that

Q = (Q2, Q1, Q0) = (


Q0 0 A′′

0 D′′ 0

E ′′ 0 J ′′

 ,
Q0 0

C ′′ D′′

 , Q0),

and assume another homotopy Ĥ = (ĥ1, ĥ2) between two chain automorphisms

G and Q such that

Ĥ = (ĥ1, ĥ2) = (

0

0

 ,


0 0

0 0

Z ′ 0

).

Here, the 2- homotopy α between H and Ĥ is given as:

(α,H, F ) : Kn → Kn+m+s

where

α =


λ

β

σ


and it must satisfy the 2-homotopy conditions which are

γ1α = ĥ1 − h1 and αγ2 = ĥ2 − h2.
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So

γ1α =

0 0 0

0 Im 0

 .

λ

β

σ

 =

0

β


and since

ĥ1 − h1 =

0

0


then 0

β

 =

0

0

 .
To apply the second part of the condition:

αγ2 =


λ

β

σ

 . [In 0
]

=


λ 0

β 0

σ 0

 .

Also

ĥ2 − h2 =


0 0

0 0

Z ′ − Z 0

 .
By the above condition that means

λ 0

β 0

σ 0

 =


0 0

0 0

Z ′ − Z 0

 .

So the 2-homotopy will be

α =


0

0

Z ′ − Z

 .

6.4 General form of Aut(γ)

The automorphism Aut(γ) of a linear transformation of a vector space has been

defined in section 5.0.1. In this section, we aim to describe a general form of
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the automorphism Aut(γ), starting with arbitrary linear transformation γ, chain

automorphisms F , then homotopies H and 2-homotopies α as matrices with a

specific form. It is necessary to generalise all the aforementioned examples and

apply a specific form to the 3-categories of automorphisms Aut(γ) over a vector

space.

We can now assume that we have a linear transformation

γ : Ka → Kb → Kc

and it can be described as

Ka γ1
// Kb γ2

// Kc

with ker(γ1) = Km and ker(γ2) = Ks so that

Kn ⊕Km ⊕Ks γ1
// Kn ⊕Kp ⊕Ks ,

where n+ s = a−m and p = b− (n+ s) such that γ1(n,m, s) = (n′, 0, s′), where

n′ ∈ Kn, s′ ∈ Ks and

Kn ⊕Kp ⊕Ks γ2
// Kn ⊕Kp ⊕Kp′

where n+ p = b− s and p′ = c− (n+ p) such that γ2(n′, 0, s′) = (n′′, 0, 0), where

n′′ ∈ Kn.

Now turning to matrix language, we can convert γ1 to γ1 and γ2 to γ2, such that

γ1 =


In 0 0

0 0 0

0 0 0

 ∈ Kn ⊕Kp ⊕Ks, Kn ⊕Km ⊕Ks

and

γ2 =


0 0 0

0 Ip 0

0 0 0

 ∈ Kn ⊕Kp ⊕Kp′ , Kn ⊕Kp ⊕Ks.
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Suppose F is a chain map between linear transformations, it consists of three

matrices F2, F1 and F0 where

F2 ∈ GLn+m+s, F1 ∈ GLn+p+s and F0 ∈ GLn+p+p′ .

Assume

F2 =


a2 b2 c2

d2 e2 f2

g2 h2 i2

 , F1 =


a1 b1 c1

d1 e1 f1

g1 h1 i1

 , F0 =


a0 b0 c0

d0 e0 f0

g0 h0 i0


satisfying the commutativity conditions which are

γ2F1 = F0.γ2 and γ1.F2 = F1.γ1.

We prove that

γ2F1 =


0 0 0

0 Ip 0

0 0 0



a1 b1 c1

d1 e1 f1

g1 h1 i1

 =


0 0 0

d1 e1 f1

0 0 0


and

F0γ2 =


a0 b0 c0

d0 e0 f0

g0 h0 i0




0 0 0

0 Ip 0

0 0 0

 =


0 b0 0

0 e0 0

0 h0 0

 .
Here we get b0 = 0, h0 = 0, d1 = 0, f1 = 0 and e1 = e0. Also

γ1F2 =


In 0 0

0 0 0

0 0 0



a2 b2 c2

d2 e2 f2

g2 h2 i2

 =


a2 b2 c2

0 0 0

0 0 0


and

F1γ1 =


a1 b1 c1

d1 e1 f1

g1 h1 i1



In 0 0

0 0 0

0 0 0

 =


a1 0 0

d1 0 0

g1 0 0

 .
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For both of these we get a1 = a2, b2 = 0, c2 = c1, d0 = 0, h2 = 0 and g2 = g1,

therefore the last form to the chain automorphism F will be as follows:

F = (F2, F1, F0) = (


a2 0 0

d2 e2 f2

g2 h2 i2

 ,

a2 b1 c1

0 e1 0

0 h1 i1

 ,

a0 0 c0

d0 e1 f0

g0 0 i0

),

where F is an element in Aut(γ)1.

To moving up to the elements of Aut(γ)2, we must have another element of G in

Aut(γ)1 such that

G = (G2, G1, G0) = (


a′2 0 0

d′2 e′2 f ′2

g′2 h′2 i′2

 ,

a′2 b′1 c′1

0 e′1 0

0 h′1 i′1

 ,

a′0 0 c′0

d′0 e′1 f ′0

g′0 0 i′0

).

The elements of chain automorphisms can be composed as follows:

(F#0G)2 =


a2 0 0

d2 e2 f2

g2 h2 i2

 .

a′2 0 0

d′2 e′2 f ′2

g′2 h′2 i′2



=


a2a

′
2 0 0

d2a
′
2 + e2d

′
2 + f2g

′
2 e2e

′
2 + f2h

′
2 e2f

′
2 + f2i

′
2

g2a
′
2 + h2d

′
2 + i2g

′
2 h2e

′
2 + i2h

′
2 h2f

′
2 + i2i

′
2



(F#0G)1 =


a2 b1 c1

0 e1 0

0 h1 i1



a′2 b′1 c′1

0 e′1 0

0 h′1 i′1
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=


a2a

′
2 a2b

′
1 + b1e

′
1 + c1h

′
1 a2c

′
1 + c1i

′
1

0 e1e
′
1 0

0 h1e
′
1 + i1h

′
1 i1i

′
1



(F#0G)0 =


a0 0 c0

d0 e1 f0

g0 0 i0



a′0 0 c′0

d′0 e′1 f ′0

g′0 0 i′0



=


a0a

′
0 + c0g

′
0 0 a0c

′
0 + c0i

′
0

d0a
′
0 + e1d

′
0 + f0g

′
0 e1e

′
1 d0c

′
0 + e1f

′
0 + f0i

′
0

g0a
′
0 + i0g

′
0 0 g0c

′
0 + i0i

′
0

 .
Now consider H, the homotopy between two chain automorphisms F and G,

H = F ' G, which consists of a pair of matrices, h1 and h2, H = (h1, h2), where

h1 ∈ Kn+p+p′,n+p+s and h2 ∈ Kn+p+s,n+m+s.

Let us assume now the form of the homotopy as H = (h1, h2)

h1 =


X1 Y1 Z1

W1 Q1 R1

S1 M1 N1

 , h2 =


X2 Y2 Z2

W2 Q2 R2

S2 M2 N2

 .

At this point, the chain homotopy must satisfy the following conditions:

1. γ2.h1 = G0 − F0 and h1.γ2 = G1 − F1

γ2.h1 =


0 0 0

0 Ip 0

0 0 0



X1 Y1 Z1

W1 Q1 R1

S1 M1 N1

 =


0 0 0

W1 Q1 R1

0 0 0



G0 − F0 =


a′0 − a0 0 c′0 − c0

d′0 − d0 e′1 − e1 f ′0 − f0

g′0 − g0 0 i′0 − i0

 ,
which gives us W1 = d′0 − d0, Q1 = e′1 − e1, R1 = f ′0 − f0.
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Also,

h1.γ2 =


X1 Y1 Z1

W1 Q1 R1

S1 M1 N1




0 0 0

0 Ip 0

0 0 0

 =


0 Y1 0

0 Q1 0

0 M1 0



G1 − F1 =


a′2 b′1 c′1

0 e′1 0

0 h′1 i′1

−

a2 b1 c1

0 e1 0

0 h1 i1

 =


a′2 − a2 b′1 − b1 c′1 − c1

0 e′1 − e1 0

0 h′1 − h1 i′1 − i1

 ,
which means Y1 = b′1 − b1 and M1 = h′1 − h1

2. γ1.h2 = G1 − F1 and h2.γ1 = G2 − F2

γ1h2 =


In 0 0

0 0 0

0 0 0

 .

X2 Y2 Z2

W2 Q2 R2

S2 M2 N2

 =


X2 Y2 Z2

0 0 0

0 0 0

 .
Since

G1 − F1 =


a′2 − a2 b′1 − b1 c′1 − c1

0 e′1 − e1 0

0 h′1 − h1 i′1 − i1

 .
For the above we get

X2 Y2 Z2

0 0 0

0 0 0

 =


a′2 − a2 b′1 − b1 c′1 − c1

0 e′1 − e1 0

0 h′1 − h1 i′1 − i1

 .

Therefore X2 = a′2 − a2, Y2 = b′1 − b1 and Z2 = c′2 − c2

Also h2.γ1 = G2 − F2
X2 Y2 Z2

W2 Q2 R2

S2 M2 N2

 .

In 0 0

0 0 0

0 0 0

 =


X2 0 0

W2 0 0

S2 0 0

 .
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Since

G2 − F2 =


a′2 0 0

d′2 e′2 f ′2

g′2 h′2 i′2

−

a2 0 0

d2 e2 f2

g2 h2 i2



=


a′2 − a2 0 0

d′2 − d2 e′2 − e2 f ′2 − f2

g′2 − g2 h′2 − h2 i′2 − i2

 ,
which gives us 

X2 0 0

W2 0 0

S2 0 0

 =


a′2 − a2 0 0

d′2 − d2 e′2 − e2 f ′2 − f2

g′2 − g2 h′2 − h2 i′2 − i2

 .

Therefore W2 = d′2 − d2 and S2 = g′2 − g2.

Form the above information, we get:

F ' G or (F2, F1, F0) ' (G2, G1, G0).

The chain homotopy can therefore be reformulated as follows:

H = (h1, h2) = (


X1 b′1 − b1 Z1

d′0 − d0 0 f ′0 − f0

S1 0 N1

 ,


0 b′1 − b1 0

d′2 − d2 Q2 R2

0 M2 N2

).

Sequentially, moving to a higher dimension to describe the elements of Aut(γ)3,

another homotopy is needed which can compose with them either horizontally or

vertically depending on the source and target of the chain homotopy.

Suppose that T is another chain automorphism such that Ĥ : G ' T where

F ' G ' T . Consequently, H and Ĥ can be joined to a vertical composition

because, the target of H is itself a source of Ĥ as follows

S = (T2, T1, T0) = (


a′′2 0 0

d′′2 e′′2 f ′′2

g′′2 h′′2 i′′2

 ,

a′′2 b′′1 c′′1

0 e′′1 0

0 h′′1 i′′1

 ,

a′′0 0 c′′0

d′′0 e′′1 f ′′0

g′′0 0 i′′0

),
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and the homotopy Ĥ as follows

Ĥ = (ĥ1, ĥ2) = (


X ′1 b′′1 − b′1 Z ′1

d′′0 − d′0 0 f ′′0 − f ′0
S ′1 0 N ′1

 ,


0 b′′1 − b′1 0

d′′2 − d′2 Q′2 R′2

0 M ′
2 N ′2

).

Here, we consider another homotopy H̄ : F̄ ' Ḡ. The horizontal composition

between H and H̄ is (H,F )#0(H̄, F̄ ) having F#0F̄ as a source and the chain

homotopy are G1.h̄1 + h1.F0 and G2.h̄2 + h2.F1.

Assume that α is a 2-homotopy α : H ' Ĥ, which is an element in Aut(γ)3, we

get:

α =


A B C

D E F

G H I

 ,
the 2-homotopy condition should satisfy the following:

γ1.α = ĥ1 − h1 and α.γ2 = ĥ2 − h2.

Hence, this gives:

γ1.α =


In 0 0

0 0 0

0 0 0



A B C

D E F

G H I

 =


A B C

0 0 0

0 0 0



ĥ1 − h1 =


X ′1 b′′1 − b′1 Z ′1

d′′0 − d′0 0 f ′′0 − f ′0
S ′1 0 N ′1

−


X1 b′1 − b1 Z1

d′0 − d0 0 f ′0 − f0

S1 0 N1



=


X ′1 −X1 b′′1 + b1 Z ′1 − Z1

d′′0 + d0 0 f ′′0 + f0

S ′1 − S1 0 N ′1 −N1

 .
Therefore A = X ′1 −X1, B = b′′1 + b1 and C = Z ′1 − Z1.
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Also

αγ =


A B C

D E F

G H I




0 0 0

0 Ip 0

0 0 0

 =


0 B 0

0 E 0

0 H 0



ĥ2 − h2 =


0 b′′1 − b′1 0

d′′2 − d′2 Q′2 R′2

0 M ′
2 N ′2

−


0 b′1 − b1 0

d′2 − d2 Q2 R2

0 M2 N2



=


0 b′′1 + b1 0

d′′2 + d2 Q′2 −Q2 R′2 −R2

0 M ′
2 −M2 N ′2 −N2

 .
Therefore 

0 B 0

0 E 0

0 H 0

 =


0 b′′1 + b1 0

d′′2 + d2 Q′2 −Q2 R′2 −R2

0 M ′
2 −M2 N ′2 −N2

 .
Therefore B = b′′1 + b1, E = Q′2 −Q2 and H = M ′

2 −M2.

The final form of the 2-homotopy is

α =


X ′1 −X1 b′′1 + b1 Z ′1 − Z1

D Q′2 −Q2 F

G M ′
2 −M2 I

 .

To summarize, we have obtain the following theorem. Here we will use the same

notations in this section:

Theorem 6.4.1. The general form of the automorphism Aut(γ) of a linear trans-

formation of a vector space as a matrices with the following forms:

Suppose that γ1 and γ2 are the differentials of linear transformation γ.

γ1 =


In 0 0

0 0 0

0 0 0

 and γ2 =


0 0 0

0 Ip 0

0 0 0
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A chain map F between linear transformations is as follows:

F = (F2, F1, F0) = (


a2 0 0

d2 e2 f2

g2 h2 i2

 ,

a2 b1 c1

0 e1 0

0 h1 i1

 ,

a0 0 c0

d0 e1 f0

g0 0 i0

),

where F is an element in Aut(γ)1.

The chain homotopy H between chain maps formulates as the following:

H = (h1, h2) = (


X1 b′1 − b1 Z1

d′0 − d0 0 f ′0 − f0

S1 0 N1

 ,


0 b′1 − b1 0

d′2 − d2 Q2 R2

0 M2 N2

).

where H is an element in Aut(γ)2.

The form of 2-homotopy between chain homotopies is

α =


X ′1 −X1 b′′1 + b1 Z ′1 − Z1

D Q′2 −Q2 F

G M ′
2 −M2 I

 .

where α is an element in Aut(γ)3.

Proof : This follows from the explicit construction of a general form of Aut(γ)

in section 6.4 starting with a linear transformation γ, then chain automorphisms,

then homotopies and finally 2-homotopies.
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algébrique. In Algebraic K-Theory Evanston 1980, pages 179–216. Springer,

1981.

[22] N. Gurski. Coherence in three-dimensional category theory. Cambridge

Tracts in Mathematics, 201, 2013.

[23] B. T. Hummon. Surface diagrams for Gray-categories. PhD thesis, UC San

Diego, 2012.



Bibliography 123

[24] K. Kamps and T. Porter. 2-groupoid enrichments in homotopy theory and

algebra. K-theory, 25(4):373–409, 2002.

[25] M. Kelly. Basic concepts of enriched category theory, Lecture Notes in Math.,

volume 64. Cambridge University Press, 1982.

[26] T. Leinster. Basic category theory, Cambridge Studies in Adv. Math., volume

143. Cambridge University Press, 2014.

[27] J.-L. Loday. Spaces with finitely many non-trivial homotopy groups. Journal

of Pure and Applied Algebra, 24(2):179–202, 1982.

[28] S. Mac Lane. Categories for the working mathematician, GTM, volume 5.

Springer Science & Business Media, 2013.

[29] J. F. Martins and R. Picken. The fundamental Gray 3-groupoid of a smooth

manifold and local 3-dimensional holonomy based on a 2-crossed module.

Differential Geometry and its Applications, 29(2):179–206, 2011.

[30] A. Mutlu and T. Porter. Crossed squares and 2-crossed modules. arXiv

preprint math/0210462, 2002.

[31] T. B. A. Osorno and N. B. C. Kapulkin. Algebraic models of homotopy

types, preprint.

[32] S. Paoli. Semistrict models of connected 3-types and tamsamanis weak 3-

groupoids. Journal of Pure and Applied Algebra, 211(3):801–820, 2007.

[33] B. Pareigis. Categories and Functors, Pure and Applied Mathematics Series,

volume 39. Academic Press, 1970.

[34] L. Pizzamiglio. Cohomologies and crossed modules. PhD thesis, Università
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