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ABSTRACT: MODELLING NEONATAL CARE PATHWAYS FOR 

BABIES BORN VERY PRETERM. 

SARAH E SEATON. 

 

Predicting length of stay in neonatal care is important for resource planning and the 
counselling of parents. However, it has received limited attention and two issues are:  

1. Babies who die in neonatal care are not included appropriately and research 
should consider all babies simultaneously, irrespective of whether they live or 
die 

2. The different levels of neonatal care (intensive, high dependency and special 
care) and how they contribute towards overall length of stay have not been 
considered 

This thesis contains four inter-connected studies to investigate how statistical 
approaches can help to address these issues.  

Firstly, a systematic review was conducted to identify factors commonly used to 
predict length of stay and mortality. Factors measurable at or around birth, such as 
gestational age and birthweight, were found to be important. 

Secondly, competing risks methods were used to predict median length of stay in 
neonatal care for two competing events: babies who survive to discharge and babies 
who die before discharge. These estimates can be used by clinicians, with their clinical 
judgement, to counsel parents about the risk of mortality and about potential length 
of stay. 

The third study develops this approach to account for the different levels of care 
received by the baby, using multistate modelling as a natural extension of the more 
limited competing risks approach. Mean lengths of stay at each level of care were 
estimated in order to facilitate commissioning of neonatal services. 

Finally, the differences in length of stay between Operational Delivery Networks, 
(groups of neonatal units that work together) were investigated to determine if 
differences existed. These were examined to understand whether differences were 
due to varying levels of intensity of specific levels of care within a network or a 
difference in total length of stay. 
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1 INTRODUCTION 

1.1 PREDICTING LENGTH OF STAY IN NEONATAL CARE 

Neonatal care is a highly technical and expensive speciality of medicine, with neonatal 

care costing approximately £420 million in England in 2006/07 (1). The total cost of 

very preterm birth and associated public sector costs, including education services, 

was estimated in 2009 to be £989 million in England and Wales (2). Babies born very 

preterm, defined as less than 32 weeks gestational age, and others requiring in-patient 

neonatal care are admitted to a neonatal unit following their birth. Around one in eight 

babies are admitted to neonatal care (3) and almost all babies born at less than 32 

weeks gestational age who survive the initial period after birth receive care in a 

neonatal unit (4).  

The length of stay of babies admitted to a neonatal unit can vary dramatically. Babies 

born at term, near their due date, form a heterogeneous group in terms of their care 

needs (5). Some may need a small amount of time in the neonatal unit, such as a few 

hours of monitoring. Others may have profound issues such as needing cardiac surgery 

for a heart defect. Babies born very preterm who survive often require respiratory 

support and their hospital stay is overwhelmingly driven by their prematurity. These 

babies will often need weeks to several months of specialist neonatal care (6).  

There is currently little published research investigating how to estimate length of stay 

in neonatal care and this would be valuable to individual neonatal units and the 

healthcare service to aid the commissioning and allocation of resources. This has 

become increasingly important in recent years with major budget restrictions as 

healthcare services struggle more than ever to plan limited resources including staffing 

and availability of cots whilst also ensuring appropriate funding and provision of 

services (7).  

Investigation of neonatal length of stay would also provide detail about the natural 

history of neonatal care provision which could be used to evaluate new service 

configurations and technologies. However, for commissioning and funding, 
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information about length of stay in neonatal care alone does not provide enough 

detail. Different levels of care exist within neonatal medicine, each with very different 

costs, staffing and resource needs. Estimates of length of stay would be more 

informative if they could be broken down to provide information about the levels of 

care required.  

Beyond the benefit that estimating length of stay would have for the commissioning of 

services, the use of estimates would help parents and families to understand the 

potential care pathway for their baby. The impact of having a baby requiring specialist 

neonatal care on parents and families should not be underestimated, with parents 

frequently asking healthcare professionals, “When can my baby come home?” 

throughout their baby’s stay in neonatal care. Currently, answering this question can 

be difficult. Anecdotally, rough estimates are given such as “They’ll be home by their 

due date” or “They’ll go home once they can keep themselves warm and feed.” This 

may be a good estimate, with many surviving babies probably being discharged home 

around the date they were due to be born. However, it is unclear if this is true and 

estimates of length of stay would provide more accurate information for counselling 

parents and preparing them for the possibility that their baby may be in hospital for a 

long time.  

The estimation of length of stay in neonatal care is not straightforward for two 

reasons: 1) babies who die in neonatal care are often excluded or included without 

appropriate adjustment and it is unclear how to account for this; 2) current estimates 

of length of stay do not consider the levels of care a baby requires whilst in the 

neonatal unit. To date the limited research which has been undertaken to provide 

current estimates is not clinically informative. Without consideration of these issues, it 

is impossible to fully understand the needs of these babies and the impact their stay in 

neonatal care has on both the healthcare service and their families. 
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1.2 ADMISSION TO THE NEONATAL UNIT 

1.2.1 NEONATAL CARE ADMISSION AND PRETERM BIRTH 

The World Health Organisation refers to a birth before 28 weeks of gestation as 

extremely preterm; from 28 to 31 weeks as very preterm; from 32 to 36 weeks as 

moderate to late preterm and births after 37 weeks as being term (Table 1-1) (8). 

Gestational age is conventionally reported in weeks+days, although the days are often 

not denoted when completed weeks are used, as is the case in this thesis. There are 

known to be minor inaccuracies in the calculation of the expected date of delivery due 

to biological variability in the timing of the fertilisation of the egg and implantation of 

the blastocyst (the inner layer of the blastocyst forms the embryo, whilst the outer 

layer forms the placenta) (9). Therefore, gestational age is measured in completed 

weeks in this thesis as the measurement of weeks and days is likely to be inaccurate. 

Around 60 percent of babies admitted to neonatal units are born at term (3) and there 

are a variety of reasons that these babies are admitted, such as: 

 Respiratory problems including: pneumonia, chronic lung disease and 

respiratory distress syndrome. 

 Infections including: sepsis, meningitis and group B streptococcus. 

 Hypoglycaemia (low blood sugar). 

 Jaundice (build-up of the waste product bilirubin in the blood). 

 Asphyxia (deprived of oxygen at birth). 

Another group of babies admitted for neonatal care are those born preterm which is 

defined as any birth which occurs before 37 weeks of pregnancy and many admissions 

born before 32 weeks gestational age. These babies are generally admitted to neonatal 

care for reasons of prematurity and predominantly need respiratory support, 

assistance maintaining their body temperature and help with feeding. Very preterm 

babies who survive have the longest length of stay and as such are the focus of this 

thesis. The phrase “very preterm” will be used to describe all babies born at 24 to 31 

weeks gestational age throughout this thesis.  
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The term “post-menstrual age” (PMA) refers to the gestational age that the baby 

would now be if the pregnancy had continued (9). For example, a baby born at 31 

completed weeks of gestational age who is now two weeks old is now 33 weeks PMA. 

Table 1-1: Definitions of preterm birth according to the World Health Organisation. 

Weeks of gestational age Category 

Less than 28 weeks  Extremely preterm 

28 to 31 weeks Very preterm 

32 to 36 weeks Moderate to late preterm 

37 weeks and above  Term 

 

Wide variation exists in the survival and management of babies born at 22 to 24 weeks 

gestational age between countries (10) and individual centres (11). There are 

suggestions that for babies born at less than 25 weeks, birthweight should also be 

considered alongside gestational age for making decisions about intensive treatment 

(10). 

In the United Kingdom, there is no legal requirement to register fetal deaths (i.e. 

babies that die before birth) that occur before 24 weeks of pregnancy and there are 

regional differences in whether births are reported as live born (12). Active 

resuscitation of babies born at 24 weeks is recommended (13). Therefore, this thesis 

investigates babies born at and after 24 weeks gestational age, where legal registration 

of all births is required. 

Survival of preterm babies has improved, particularly over the last 20 years, as seen in 

Table 1-2 which is reproduced from Manktelow, Seaton et al (14). This decline in 

mortality has been seen following the introduction of routine use of surfactant (15) 

and the development and improvement of neonatal intensive care services (16, 17). 

1.2.2 DEATHS IN NEONATAL CARE AND THE CALCULATION OF LENGTH OF STAY 

Historically there has been limited research that has investigated length of stay within 

neonatal care. Research that has been undertaken has focussed on babies who survive 

to discharge from neonatal care, i.e. excluding those who die during their stay (18). 

This focus is likely to be because babies who survive to discharge account for the 
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majority of neonatal care workload and because parents are interested in time to 

discharge home.  

Babies who die often only live for a short time, which is very different from the 

surviving babies who can require many months of care in hospital. Very preterm 

babies can have a high rate of in-unit mortality, particularly for those born at less than 

28 weeks gestational age (14) and any analysis which is only based on survivors does 

not fully describe neonatal care requirements particularly when considering workload. 

Often it is statistically easier to exclude deaths as the distributions of the time spent in 

neonatal care are very different for babies who die compared to babies who survive, 

and combining these groups creates a distribution which is complex to model. 

Alternatively, treating all babies the same, irrespective of whether they live or die, in 

an analysis can introduce bias to the estimate of length of stay due to the different 

distributions of their lengths of stay (19). 

Table 1-2: Observed percentage of singleton White babies admitted to neonatal care 

surviving in 1994 to 1997 and 2008 to 2010 in the East Midlands and Yorkshire 

(reproduced from Manktelow, Seaton et al (14)). 

Gestational 
age 
(weeks) 

1994-1997 2008-2010 

 Survival % 
(male) 

Survival % 
(female) 

Survival % 
(male) 

Survival % 
(female) 

23 18.7 13.0 28.6 34.8 

24 20.0 17.9 48.1 55.6 

25 45.1 43.6 73.4 67.2 

26 55.7 65.1 77.4 83.6 

27 75.8 82.3 83.3 90.0 

28 80.4 82.1 88.7 93.1 

29 89.5 94.8 93.0 96.1 

30 95.0 95.5 95.3 98.9 

31 97.6 98.4 98.8 98.6 

32 97.8 98.5 98.8 98.6 

Overall 85.5 86.9 91.2 92.6 
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1.2.3 OUTCOMES AFTER PRETERM BIRTH 

Preterm birth has both short and long-term complications and consequences. Whilst 

survival has increased for babies born at extremely preterm gestational ages (Table 

1-2), the occurrence of morbidities has remained the same with only around 41% 

being discharged from hospital with no major morbidity (20). Of babies born at 22 to 

26 weeks gestational age in the EPICure study (a study based in England to measure 

survival and morbidity after extremely preterm birth) who survived to 36 weeks PMA, 

22% had treatment for retinopathy of prematurity, 61% had severe bronchopulmonary 

dysplasia and 13% had a severe abnormality recorded on a cerebral ultrasonography. 

At three years of age the surviving children had increased risk of developmental or 

cognitive impairment (21).  

1.3 LEVELS OF NEONATAL CARE 

1.3.1 LEVEL OF CARE GIVEN TO THE BABY 

Whilst the overall estimation of length of stay in the neonatal unit is of interest it does 

not provide a full picture of care, even if babies who die and babies who survive are 

both considered. Within neonatal medicine there are different levels of care that a 

baby might require. Each level of care has its own associated costs and impact for both 

families and the NHS. For example, very preterm babies are at the highest risk of 

needing intensive care and these babies are also at the highest risk of mortality.  

The current definitions of the levels of care within neonatal medicine were defined by 

the British Association of Perinatal Medicine (BAPM) in 2011 (22). Broadly, there are 

currently three levels of care provision on a neonatal unit: intensive care; high 

dependency care and special care. Currently these are defined by the type of 

treatment required by a baby which differs from older definitions that related to their 

physical location or demographic characteristics (23). For each calendar day of care, 

each baby is classified to the highest level of care they received, even if they receive a 

lower level of care for part of the day. Staffing levels for each level of care are specified 

by NHS England (23) to ensure that the provision of neonatal care relies “on having an 

adequate and appropriate workforce.” 
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Intensive care is given to the sickest or most unstable babies. Typically it involves the 

highest demands from staff and NHS England recommends a nurse to baby ratio of 1:1 

(24). Interventions classified as intensive care include: 

 Mechanical ventilation via a tracheal tube. 

 Dialysis of any kind. 

 Presence of a chest drain. 

 Presence of a silo for gastroschisis (covering of exposed abdominal organs).  

 Presence of replogle tube (a tube used to drain saliva). 

 Epidural catheter (pain relief placed in around the spinal cord). 

 Exchange transfusion (removal of blood replaced with donated blood). 

 Therapeutic hypothermia (lowering of temperature to reduce tissue injury from 

lack of blood flow). 

 Receiving non-invasive ventilation (e.g. nasal continuous positive airways 

pressure (CPAP) therapy or oxygen) and parenteral nutrition (intravenous 

feeding that bypasses the process of eating and digestion). 

The next level of care is high dependency care, which still requires highly skilled staff, 

but at a lower recommended ratio of one nurse to two babies. Examples of high 

dependency care include: 

 Receiving non-invasive ventilation without parenteral nutrition.  

 Parenteral nutrition (intravenous feeding that bypasses the process of eating and 

digestion). 

 Tracheostomy (an opening in the neck to insert a tube to assist with breathing). 

 Continuous infusion of drugs. 

 Barrier nursing (infection control used to protect staff and the baby from 

infection). 

Babies who require additional care that is not considered intensive care or high 

dependency care will generally receive special care, for which a nurse to baby ratio of 

1:4 is recommended. Examples include: 



Introduction 

8 
 

 Nasal oxygen. 

 Phototherapy (light therapy typically used to treat jaundice). 

 Four hourly observations. 

 Stoma in situ (an artificial opening into the surface of the abdomen).  

In addition to the three levels of neonatal care some neonatal units also offer 

transitional care, where the mother provides the majority of the care within hospital 

with support from a healthcare professional such as a midwife. Examples of babies 

who may be offered transitional care include: 

 Babies requiring antibiotics. 

 Low birthweight babies who are otherwise healthy. 

This level of care is offered in different physical locations, with some hospitals 

requiring an admission to the neonatal unit and others offering it on the postnatal 

ward. A recent survey in England highlighted the inconsistency of provision of this care 

with only 50% of units having clarity around the funding of this care (25). Throughout 

this thesis recorded transitional care is amalgamated with special care, which 

accommodates similar needs of a baby.  

During their time in the neonatal unit, a baby can receive different levels of care until 

discharge from the unit or dying whilst in hospital. In this thesis this series of 

movements between the different levels of care is defined as the neonatal care 

pathway. In this work, the data related to neonatal care is manipulated so that the 

neonatal care pathway occurs hierarchically, i.e. all intensive care is considered first, 

followed by all high dependency care and then all special care. 

1.3.2 NEONATAL UNIT LEVELS OF CARE 

In addition to the levels of care provided to the individual baby, which do not depend 

on a physical location, neonatal units are designated at different levels. The different 

types of unit are defined as:  

 Special Care Baby Unit: Level 1, a unit which can provide only special care.  
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 Local Neonatal Unit: Level 2, a unit that can provide high dependency care and 

short periods of intensive care, generally to babies born after 27 weeks of 

gestation.  

 Network Neonatal Unit: Level 3, also known as Neonatal Intensive Care Unit, a 

unit able to provide all levels of care. 

Neonatal units are organised into Operational Delivery Networks (ODNs), which are 

groups of units within a geographical region that work together to provide the full 

range of neonatal services (26). Every ODN will have at least one Neonatal Intensive 

Care Unit, and can therefore provide intensive care to any individual baby in a given 

geographical region. All neonatal units in England that provided data to this study are 

presented in Figure 1-1, with the designated level of the unit and the ODN they belong 

to represented. 

1.4 AIMS OF THIS THESIS 

This thesis has four proposed aims: 

1. To identify the factors that predict mortality and length of stay in the neonatal 

unit, focussing on babies born very preterm (less than 32 weeks gestational age). 

2. To investigate the length of stay of very preterm babies (24 to 31 weeks 

gestational age) admitted for neonatal care to inform parental counselling 

regarding the risk of mortality and length of stay for a baby of given 

characteristics.  

3. To examine the different levels of care, the neonatal care pathway, required 

whilst a very preterm baby (24 to 31 weeks gestational age) is in neonatal care 

to inform commissioning of specialist neonatal services by providing estimates 

of the number of days of levels of care required. 

4. To compare the levels of care provided by different Operational Delivery 

Networks to babies born at 24 to 31 weeks gestational age in order to identify 

and investigate differences in care provision. 



Introduction 

10 
 

1.5 OVERVIEW OF PHD THESIS 

This chapter has provided an overview of the background to the risk of mortality and 

the estimation of length of stay within neonatal care. The issues with current research 

have been identified and the aims of this thesis have been outlined. 

Chapter 2 will provide a systematic review of the literature for the prediction of 

mortality and length of stay for very preterm babies in neonatal care. This systematic 

review was undertaken to identify the factors that are important to include in an 

analysis that involves prediction of mortality or length of stay. This review focusses on 

length of stay and addresses the first aim of this thesis. This work was subsequently 

published in BMJ Open (18) and a copy of the article can be found in Appendix 2. 

Chapter 3 introduces the National Neonatal Research Database (NNRD) from which 

data were extracted for use throughout this thesis. Data from all babies born at 24 to 

31 weeks gestational age and admitted to neonatal units in England were selected. 

These data are used throughout the thesis to illustrate the methods and to investigate 

length of stay and levels of neonatal care required. The NNRD has approval to be used 

for service evaluation and its use for research requires new approvals. In addition to 

those approvals, agreement was also required from all 162 neonatal units in England 

that contributed data to the NNRD. The process of obtaining ethical approval, R&D and 

neonatal unit agreement is described in Chapter 3.  

Survival analysis, the foundation of all methodologies used in this thesis, is introduced 

in Chapter 4. This approach allows the measurement of time until an event of interest 

occurs. The Cox proportional hazards model is introduced and a preliminary analysis is 

undertaken. Although this method allows for the estimation of length of stay in a 

neonatal unit, it only allows consideration of one endpoint and is therefore unable to 

distinguish between babies who die in neonatal care and those who survive to 

discharge. To model these two endpoints simultaneously an extension of survival 

analysis known as competing risks is introduced in Chapter 5. Competing risks 

methodology, which is already well established, allows for two or more endpoints 

where the occurrence of one prevents the other(s) from happening. In this thesis the 

competing events are death in neonatal care and discharge. The methodology for 
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competing risks is introduced by extending the Cox model outlined in Chapter 4. An 

alternative approach of the flexible parametric modelling is explored in Chapter 5. The 

strengths and limitations of these approaches are discussed before a final model is 

presented to address the second aim of this thesis. 

The extension from survival analysis to competing risks analysis allows the modelling 

of length of stay for all babies irrespective of their outcome. However, this still 

provides little detail on the time spent in hospital, which is often a prolonged period of 

time for very preterm babies who survive their neonatal stay. To investigate this 

further, an extension of competing risks known as multistate modelling is introduced 

in Chapter 6. This approach allows the modelling of ‘intermediate’ events before death 

or discharge. For example, the different levels of care: intensive care; high dependency 

care and special care could be included as the intermediate events. The strengths and 

limitations of this approach are discussed before a final model is proposed to address 

the third aim of this thesis. 

Details of the observed data related to levels of care required by very preterm babies 

has never been investigated before and therefore an article was written for clinicians 

and published in Infant (27). Results from Chapter 6 have also been published in PLOS 

ONE (28). Copies of both these articles can be found in Appendix 6.  

Chapter 7 provides a comparison of two ODNs to the rest of England to demonstrate 

the use of multistate modelling to aid investigation of both expected length of stay in 

neonatal care and the differences in the provision of the different levels of care. This 

analysis addresses the fourth and final aim of the thesis. Results can be used by 

clinicians and commissioners to consider how care in one ODN differs, and whether 

this difference is meaningful or important. 

A critical discussion of the methods and results in this thesis is provided in Chapter 8. 

The strengths and limitations are discussed and the results are critiqued. The clinical 

impact of the results from this thesis are presented, along with plans for future 

research before final conclusions are then drawn. 
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Throughout the undertaking of this thesis, a variety of dissemination and public 

involvement activities have been undertaken. These activities and the impact of this 

thesis are presented in the Appendix 8. 
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Figure 1-1: Map of neonatal units in England with the Operational Delivery Network 

indicated by the colour and the level of unit by the shape of the marker. 
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2 SYSTEMATIC REVIEW: FACTORS THAT PREDICT NEONATAL 

MORTALITY AND LENGTH OF STAY 

2.1 CHAPTER OVERVIEW 

The ability to predict length of stay and mortality in neonatal care is important for 

healthcare resource planning and to aid counselling parents. Whilst some research has 

investigated the prediction of mortality in this population, limited research has 

investigated what predicts length of stay in the neonatal unit. It is likely that factors 

that predict length of stay may also predict the risk of mortality for some groups of 

babies. This chapter presents a systematic review of the research which has been 

undertaken to predict mortality and/or length of stay. The analyses undertaken by 

individual studies will be investigated and details of the factors included within the 

analyses of those studies will be extracted and discussed. Factors that are considered 

important, defined as those included by multiple research studies, will be used to 

inform the analyses in later chapters of this thesis. 

The length of stay element of this review was published in BMJ Open (18) and a copy 

of the article is provided in Appendix 2. 

2.2 INTRODUCTION 

Modelling the neonatal care pathway, including the need for different levels of care 

and the risk of mortality, is a complex issue. All analyses require appropriate 

adjustments to be made to account for all factors which may impact on the outcome, 

such as characteristics of the baby, to ensure appropriate estimation of survival and 

length of stay. It is also important to balance this with the analyses needing to be 

medically relevant and useful with the need for simplicity if used in a clinical setting. 

Statistical models that account for a small number of factors, which can be objectively 

and routinely measured, potentially offer a more informative use in a clinical setting 

(29). This also reflects the concept of statistical parsimony (using the simplest 

statistical model with the least variables to explain the outcome). In some areas, such 
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as the prediction of mortality, complex risk scores such as the Score for Neonatal Acute 

Physiology (SNAP) which contained 34 items have been simplified to allow ease of use 

(30, 31). This indicates the importance of conducting the simplest appropriate analysis 

and adjustments to allow a score to be clinically relevant and useful. The findings of 

this review will be used to make appropriate adjustments throughout this thesis. 

2.2.1 AIMS AND OBJECTIVES OF THIS REVIEW 

The aim of this systematic review was to investigate the factors used in previous 

research, usually within a multivariable statistical model, to predict neonatal length of 

stay or mortality. This review was registered with PROSPERO (32), the international 

prospective register of systematic reviews (registration number: CRD42013006020). 

The objectives of this review were to: 

1. Undertake a systematic search strategy to identify all literature investigating 

the prediction of neonatal mortality and/or length of stay in the neonatal unit. 

2. Extract details related to the variables included in the final multivariable 

analysis of each of these studies to identify important factors. 

3. Critically appraise the studies to identify potential sources of bias and poor 

study quality. 

4. Select variables to be used for the analysis in this thesis. 

2.3 METHODOLOGY OF THE SYSTEMATIC REVIEW 

2.3.1 SEARCH STRATEGY 

Medline, Embase and Scopus were searched systematically for peer-reviewed articles 

published from 1 January 1994 to 31 Dec 2013, with a subsequent update to 31 May 

2016. Small variations of the same search strategy were used for each database, 

depending on the subject headings of that database. The search was focussed on four 

issues: consideration of the patient (i.e. the preterm baby); the setting (neonatal unit); 

the outcome (mortality or length of stay) and the type of analysis of interest 

(prediction model). This is similar to the PICO (P: population; I: intervention; C: 

comparison; O: outcome) approach recommended for formulating research questions 
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(33). The full search strategy is provided in Table 2-1. Reference lists of articles 

included in the review were scrutinised to identify other potentially relevant articles 

and these were added to the review (‘hand searching’) as appropriate. 

2.3.2 INCLUSION CRITERIA 

Studies were included that reported risk factors for length of stay in the neonatal unit 

or mortality, using a multivariable model (for example: logistic regression, linear 

regression). The statistical significance of the risk factors included in the model by 

study authors was not considered. The population of interest was very preterm babies 

or very low birthweight babies (often used by American studies in lieu of a measure of 

gestational age) as these had the highest risk of mortality and were likely to have 

longer lengths of stay.  However, if the study population included both very preterm 

births and term births then they were also included in the research.  

Survival of preterm babies improved dramatically from the 1980s to the early 1990s 

with the increasing use of antenatal steroids and surfactant and therefore 1994 was 

chosen for the start of the search period (15). Prior to 1994, predictors were likely to 

be different, or their effect would have now changed due to improvements in medical 

intervention. Studies using data from prior to 1994 were excluded whilst those with 

data that encompassed the time period (i.e. included data from pre-1994 and later) 

were included. Finally, to be included studies needed to have been undertaken in a 

human population and have been published in English.  

2.3.3 EXCLUSION CRITERIA 

Exclusion criteria were determined in advance and comprised:  

 Non peer-reviewed conference proceedings, although efforts were made to 

investigate if the work was subsequently written into a peer reviewed 

publication. 

 Articles not containing original research: reviews, letters and editorials.  

 Countries which were not members of the Organisation for Economic Co-

operation and Development in 1994 (34), as these countries were likely to have 

very different healthcare systems to those of developed nations.  
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 Clinical trials, as the selection of the trial population would be unlikely to be 

representative of all babies in neonatal care. 

 Inappropriate study population, for example investigation of a paediatric or 

maternal population, or inappropriate outcome, for example predicting 

readmission to hospital. 

 Specific disease areas (for example: E-Coli outbreaks or infections) as these 

babies have very different risk profiles to other babies in neonatal care.   

 Work that was subsequently updated or validation studies. 

 

Titles, abstracts and full articles were assessed to see if the study met the 

inclusion/exclusion criteria. Data related to the overall study and variables included in 

author’s statistical analyses were extracted using a pre-designed form (Appendix 2). A 

random 10% subset of this review, focussing on the length of stay aspects, was 

screened by a second reviewer (David Jenkins, a statistician in the Department of 

Health Sciences, University of Leicester) to ensure papers were selected systematically. 

2.3.4 DATA EXTRACTION 

Each article was screened and, for those in scope, the data were extracted related to 

which factors had been accounted for in the final multivariable analyses predicting 

length of stay or mortality. Identified factors were grouped together to form similarly 

themed groups which were defined as: 

 Inherent factors: details about the baby, typically known at birth, which are 

fixed, for example, gestational age and birthweight. 

 Antenatal treatment or maternal factors: details about the baby or the mother 

known prior to birth, for example, whether antenatal steroids were 

administered. 

 Conditions of the baby: medical concerns or symptoms being experienced by 

the baby including their blood pressure and body temperature. 

 Treatment of the baby: the care or treatment which the baby was given 

including surgery. 
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 Organisational factors: the hospital of care and organisational issues, such as 

any transfer between units experienced by the baby. 

The categories were defined a priori and where it was unclear which category a risk 

factor belonged to, a discussion was held with the supervisors of this thesis until 

consensus was reached.  

2.3.5 ASSESSMENT OF STUDY QUALITY 

Prognostic studies and observational research are often considered to be poor quality, 

and prone to bias, mainly due to the study design rather than systematic issues 

introduced by the research team within the study set-up (35). No studies were 

excluded for poor study quality although quality was considered using the areas of: 

study participation; study attrition; measurement of predictors; outcome 

measurement and statistical analysis and reporting. This is a framework based on the 

Quality in Prognostic Studies (QUIPS) tool although no formal scoring was undertaken 

(36). 

2.4 RESULTS OF SYSTEMATIC REVIEW: OVERVIEW 

A total of 7,996 studies were identified from Medline, Embase and Scopus. Figure 2-1 

details the exclusions in a flow chart as recommended by the Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses (PRISMA) (37). A total of 64 articles 

were fully screened by reading the full article and 24 articles were ultimately included 

in the review. Of the 24 articles, 16 investigated the prediction of mortality and nine 

investigated predicting length of stay. One study investigated both mortality and 

length of stay. Whilst this systematic review investigated the factors that predict 

mortality and/or length of stay, the discussion here focusses more on length of stay, 

where the evidence has been more limited. 
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Table 2-1: Search strategy for the systematic review in each of the three databases: 

Medline, Embase and Scopus. 

Medline Embase Scopus 

1 exp Intensive Care 
Units, Neonatal/ or 
exp Intensive Care, 
Neonatal/ or 
neonatal care.mp 

1 "intensive care 
unit".mp. or exp 
intensive care/ or 
exp intensive care 
unit 

1 (TITLE-ABS-
KEY("intensive care" 
OR "special care" OR 
"NICU" OR "high 
dependency" OR 
"standard care" OR 
"nursery care") 

2 ("intensive care" or 
"special care" or 
"NICU" or "high 
dependency" or 
"standard care" or 
"nursery care").mp 

2 "neonatal care".mp. 
or exp newborn care 

2 TITLE-ABS-
KEY("gestational age" 
OR "infant" OR 
"premature" OR 
"preterm" OR "baby") 

3 exp Gestational Age/ 
or exp Infant, 
Newborn/ or exp 
Premature Birth/ or 
exp Infant, 
Premature/ or 
preterm.mp. or 
baby.mp. or exp 
Infant, Premature, 
Diseases 

3 ("intensive care" or 
"special care" or 
"NICU" or "high 
dependency" or 
"standard care" or 
"nursery care").mp 

3 TITLE-ABS-
KEY("determinant$" 
OR "risk factor$" OR 
"clinical predictor$" 
OR "predictor$" OR 
"prognostic" OR 
"indicator$" OR 
"prediction" OR 
"probability") 

4 exp Infant, Low Birth 
Weight/ or very low 
birthweight.mp. or 
exp Infant, Very Low 
Birth Weight 

4 exp prematurity/ or 
"preterm".mp. or 
exp gestational age 

4 TITLE-ABS-KEY("length 
of stay" OR "mortality" 
OR "survival")) 

5 ("determinant$" or 
"risk factor$" or 
"clinical predictor$" 
or "predictor$" or 
"prognostic" or 
"indicator$" or 
"prediction" or 
"probability").mp 

5 "low 
birthweight".mp. or 
exp low birth weight 

5 1 and 2 and 3 and 4 

6 exp Risk Factors 6 "very low 
birthweight".mp. or 
exp very low birth 
weight 

6 5 and PUBYEAR > 1993 
AND NOT ALL(animal$ 
OR rat OR rats OR cat 
OR cats OR bovine OR 
sheep) 
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Medline Embase Scopus 

7 "length of stay".mp. 
or exp "Length of 
Stay" 

7 "risk factor".mp. or 
exp risk factor 

7 LIMIT 5 -
TO(LANGUAGE, 
"English") 

8 exp Infant Mortality/ 
or exp Perinatal 
Mortality/ or 
mortality.mp. or exp 
Hospital Mortality/ 
or exp Mortality/ or 
"neonatal 
mortality".mp 

8 ("determinant$" or 
"risk factor$" or " 
clinical predictor$" 
or "predictor$" or 
"prognostic" or 
"indicator$" or 
"prediction" or 
"probability").mp 

8 - 

9 exp Survival/ or 
survival.mp 

9 "length of stay".mp. 
or exp "length of 
stay" 

9 - 

10 1 or 2 10 "infant 
mortality".mp. or 
exp infant mortality 

10 - 

11 3 or 4 11 "perinatal 
mortality".mp. or 
exp perinatal 
mortality 

11 - 

12 5 or 6 12 "hospital 
mortality".mp. or 
exp mortality 

12 - 

13 7 or 8 or 9 13 "neonatal 
mortality".mp. or 
exp newborn 
mortality 

13 - 

14 10 and 11 and 12 
and 13 

14 1 or 2 or 3 14 - 

15 limit 14 to (english 
language and 
humans) 

15 4 or 5 or 6 15 - 

16 limit 15 to yr="1994 
-Current" 

16 7 or 8 16 - 

17 - 17 9 or 10 or 11 or 12 or 
13 

17 - 

18 - 18 14 and 15 and 16 
and 17 

18 - 

19 - 19 limit 18 to (human 
and english 
language) 

19 - 

20 - 20 limit 19 to yr="1994 -
Current" 

20 - 
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Figure 2-1: Flow chart of search results and the screening process for the systematic 

review. 

FINAL 
Original research: 14 

Papers identified from hand 
searching reference lists and 

other sources 
Original research: 10 

 

Initially identified: 
 

Medline: 2,340 
Embase: 2,068 
Scopus: 3,588 
Total: 7,996 

Abstracts and titles screened 
of 5,042 papers 

Full article screened: 64 

Duplicates identified 
between databases: 2,954 

Exclusions: 
Abstract etc.: 380 

Clinical trial: 68 
Country not in OECD: 712 
Wrong population: 1,401 

Specific disease area: 1,560 
Wrong outcome: 854 

Work updated/validation: 3 

Exclusions: 
Abstract etc.: 1 
Clinical trial: 0 

Country not in OECD: 2 
Wrong population: 10 
Specific disease area: 0 

Wrong outcome: 24 
Work updated/validation: 13 

FINAL 
Original research: 24 

(one study investigated both) 
 

LOS: 9 Mortality: 16 
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2.5 RESULTS OF THE SYSTEMATIC REVIEW FOR MORTALITY 

Sixteen studies (14, 30, 38-51) investigated the prediction of mortality, one of which 

also investigated length of stay (40). A variety of patient populations were included, 

and this diversity demonstrates the lack of a clear definition of a high-risk population 

that would potentially benefit most from mortality prediction (Table 2-2). All studies 

included preterm populations or babies born with a low birthweight and whilst there 

was heterogeneity in the selection of the study populations, most studies were based 

in neonatal intensive care units. Although definitions of intensive care will differ 

between countries, babies treated in intensive care units will generally be the sickest 

in the population. However, it is impossible to assess if an individual baby within an 

intensive care unit required intensive care. For example, in the United Kingdom care is 

defined according to treatment rather than physical location (22). Whilst there were 

differences in study populations, research was focussed on the group of babies most 

likely to benefit from a mortality prediction because they were at the highest risk of 

adverse outcomes. 

Within individual studies, exclusions comprised: deaths in the delivery room (30, 38); 

major/lethal congenital anomalies (14, 41-44, 47, 48, 50, 51); higher order multiple 

births (three or more) (50); implausible birthweight or gestational age (14, 47, 48); 

received palliative or comfort care (30, 43, 47); released to a nursery in less than 24 

hours (30); admitted to intensive care more than 48 hours after birth (30); 

indeterminate sex (14, 43); deaths not attributed to care (for example: complex 

cardiac cases) (46); step down care (40); missing data (mentioned specifically by study 

(43) but likely to have been used by more studies); hydrops fetalis (accumulation of 

fluid) (42) and deaths before labour (41). Many of these exclusions represent the 

babies with unusual or different survival rates compared to their peers. However, 

some exclusions such as major/lethal congenital anomalies are subjective, as no clear 

internationally accepted definition exists.  

Most studies aimed to predict survival or mortality using data that was available at or 

around the time of birth (14, 41, 42, 44, 47, 48, 50, 51). Others predicted survival or 

mortality using data available very soon after birth, typically in less than 24 hours (38, 
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39, 46, 49). Four studies did not indicate the time frame within which data were 

available (30, 40, 43, 45). Therefore, the most common approach was to be able to 

make a prediction of mortality either around the time of birth or within 24 hours. This 

provides an informative, and accessible estimate early in the neonatal care pathway. 

Factors used in the analyses of the sixteen studies can be found in Table 2-2. 

2.6 SELECTED CLINICAL FACTORS: MORTALITY 

2.6.1 INHERENT FACTORS OF THE BABY 

All studies accounted for inherent information about the baby, particularly gestational 

age at delivery (87.5%, 14/16 of studies) and birthweight (75%, 12/16) (Table 2-3). All 

identified inherent conditions were easily measurable except for congenital anomalies 

and SNAPPE-II (a mortality risk score: Score for Neonatal Acute Physiology – Perinatal 

Extension II).  

There is no internationally agreed definition of major congenital anomaly (52), with 

some research defining major anomalies as incompatible with long-term survival (e.g. 

anencephaly, the absence of major parts of the brain) whereas others class major 

anomalies as anything that has functional or cosmetic consequences (e.g. cleft lip). No 

studies in this review defined what conditions were considered congenital anomalies 

and seven studies (43.8%) used this as part of their exclusion criteria.  

SNAPPE-II was considered as both an inherent characteristic and a characteristic 

related to the condition of the baby as the score comprises a mixture of several 

components including birthweight (inherent), blood pressure, temperature and 

presence of seizures (conditions). As SNAPPE-II requires information related to the 

baby’s condition it cannot be measured as quickly or objectively as other inherent 

factors.  

Ethnicity is often considered predictive of mortality (53) and was included by three 

studies (38, 39, 51), although most of these studies were based in predominantly 

White populations and therefore it is unsurprising that few accounted for ethnicity. 

One study acknowledged that maternal ethnicity was highly predictive, but that the 



Systematic review: factors that predict neonatal mortality and length of stay 

24 
 

level of missing data they encountered caused it to be excluded from the final analyses 

(42).  

Inherent factors were also used in various studies’ inclusion and exclusion criteria, 

particularly birthweight and gestational age, indicating their importance when defining 

a population at risk of mortality. 

2.6.2 CLINICAL CONDITIONS OF THE BABY 

Nine studies (56.3%) (Table 2-3) accounted for clinical conditions and details related to 

the baby including body temperature and blood pressure. However, the choice of 

these conditions varied widely, with some occurring early and others potentially a long 

time after birth.  

In total, 17 different clinical conditions were considered, indicating a lack of consensus 

over which conditions were most predictive of mortality. The only factors measured by 

more than one study were Apgar score (31.3%, 5/16. Apgar score is a measure of the 

physical condition of a baby at birth (54)) and temperature of the baby on admission to 

the neonatal unit (12.5%, 2/16). Several of the conditions that were accounted for 

occur early in the clinical pathway, for example: condition on admission to the 

neonatal unit. Other conditions could occur at any point throughout a baby’s stay, for 

example Necrotising Enterocolitis (NEC: a complication where a portion of the bowel 

experiences tissue death). Therefore a mortality risk score which could be revised in 

light of later occurring conditions could be helpful. 

One study commented that, particularly in the very low birthweight babies, diagnosis 

of a medical condition was unlikely to improve prediction as they were already a 

homogeneous group in terms of their prematurity, and that diagnosis of specific 

conditions was likely to be more useful in the larger more mature babies (30). 

2.6.3 ANTENATAL OR MATERNAL FACTORS 

Nine studies (56.3%, 9/16) accounted for antenatal treatment or maternal factors. 

However, again there was a wide range of factors considered by the studies, with 

many only being considered by one study (Table 2-3).  
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The most common characteristic accounted for in analyses was the provision of 

antenatal steroids (50% of studies, 8/16), which are known to significantly improve 

survival, particularly in the preterm population (55). All factors identified and used 

could be measured during or before labour, and were therefore known at the birth of 

the baby, allowing for a quick prediction of the risk of mortality if these were 

considered important enough for inclusion. However, one study highlighted that it did 

not account for antenatal events because “this may obscure the ill effects of improper 

treatment” (30). 

2.6.4 ORGANISATIONAL FACTORS AND TREATMENT OF THE BABY 

Less than half of the studies accounted for organisational factors (Table 2-3: 31.3%, 

5/16), or factors related to the treatment of the baby (12.5%, 2/16). This indicates that 

the general consensus was that the majority of a baby’s risk of mortality could be 

explained by factors specifically related to the baby, inherent or otherwise. Care 

should be taken when accounting for organisational or treatment factors as this may 

obscure improper treatment. 

2.7 DISCUSSION: MORTALITY 

2.7.1 OTHER PUBLISHED RESEARCH 

A recent systematic review conducted to identify the factors which predict neonatal 

mortality (56) found similar conclusions to this one. However, the restriction in this 

review to OECD countries has potentially provided a more representative sample of 

populations to be compared. Birthweight and gestational age predict survival well, and 

generally other factors only provide a small improvement in model prediction (30). 

Nevertheless, Medlock et al noted that the differences between the sexes and ethnic 

groups are of interest to clinical decision makers (56). 

2.7.2 CONCLUSIONS 

There has been interest in the area of predicting neonatal mortality, with 19 studies 

published over the time period investigated. Studies generally focussed on providing 

predictions of mortality risk based on the state of the baby at birth, or within 24 hours. 
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A minimal number of factors are required to make a prediction quick and simple to 

use. A measure of the early condition of the baby should also potentially be included 

such as Apgar score (54). Mortality scores have been used to provide a risk adjustment 

when comparing hospitals and therefore it is important to not include variables that 

can be affected by differences in the provision of neonatal care. Care should be taken 

when accounting for treatment of the baby to ensure that improper treatment effects 

are not obscured (30, 57). 
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Table 2-2: Summary characteristics of the studies identified for inclusion in the systematic review of mortality prediction. 

 Country Population 
investigated 

Study Setting Model 
selection 

Statistical 
methods 

Model fit 
methods 

Ambalavan 
(2001) (38) 

USA Birthweight <1000g Tertiary care 
centre (likely to 
be intensive care 
due to 
birthweight) 

Literature and 
then forward 
selection used 
to shorten the 
list 

Logistic model 
and Artificial 
Neural Network 
(ANN) 

Area under the 
curve (AUC)  

Ambalavan 
(2005) (39) 

USA Birthweight 401 to 
1000g 

Network of 
intensive care 
units  

Previous 
literature 

Logistic model 
and ANN 

AUC (with t-tests 
to compare 
between ANN and 
Logistic 
approaches) 

Berry (40) Canada All births Neonatal 
intensive care 

Previous 
literature and 
clinical 
knowledge 

Logistic model None 

Bolisetty (51)  Australia 23 to 31 weeks 
gestation 

All tertiary and 
specialist 
nurseries in New 
South Wales 

Backwards 
stepwise 
elimination 

Logistic model None 

Cole (41) UK 22 to 31 weeks 
gestation 

Probably 
intensive care (all 
births <32 weeks 
in UK usually 
admitted to 
NICU) 

Previous 
knowledge 

Logistic model AUC 
Hosmer 
Lemeshow (HL) 
test 
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 Country Population 
investigated 

Study Setting Model 
selection 

Statistical 
methods 

Model fit 
methods 

Evans (42) Australia and 
New Zealand  

Birthweight<1500g 
or <32 weeks 
gestation 

Network of 29 
intensive care 
units 

Univariate 
analysis. If 
significant, 
entered into 
multivariable 
and removed 
sequentially 
using 
Likelihood 
Ratio tests 

Logistic model AUC 
HL Test 

Ge (43) Canada 23 to 30 weeks 
gestational age 

Level III intensive 
care units 

Preselected 
clinically 
important 
factors entered 
into stepwise 
model  

Multinomial 
model 

Briers Score 
HL Test 
(extension) 
Calibration plots 

King (50) Canada 23 to 28 weeks 
gestational age 

Tertiary centre Unclear Logistic model None discussed 

Locatelli (44) Italy Birthweight <750g Neonatal 
intensive care 
unit 

Forward 
selection from 
a long list of 
variables 

Logistic model Adapted R2 

Manktelow (14) UK <33 weeks 
gestational age 

Neonatal 
intensive care 
unit 

Selected in 
advance from 
previous 
knowledge 

Logistic model AUC 
Coxs Calibration 
Briers Score 
Farringtons Test 
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 Country Population 
investigated 

Study Setting Model 
selection 

Statistical 
methods 

Model fit 
methods 

Moro (45) Spain Birthweight <1500g Neonatal unit 
(likely to be 
intensive care) 

Not explicit but 
appears that 
variables 
significant in 
univariate are 
put into 
multivariable. 

Cox model Proportional 
hazards assessed 

Parry (46) UK <33 weeks 
gestational age 

Neonatal 
intensive care 

List of variables 
selected by 
experts and 
then AIC to 
select best 
model 

Logistic model AUC 
HL Test 
Coxs Calibration 

Richardson (30) Canada All births Neonatal 
intensive care 
unit 

Variables from 
previous work, 
removed if 
unreliable 
(feedback from 
experts) or no 
association 
with mortality 

Logistic model AUC 
Goodness of fit 

Shah (47) Canada 22 to 32 weeks 
gestational age 

Neonatal 
intensive care 
unit 

Stepwise 
procedure 

Logistic model AUC 
HL Test 

Tyson (48) USA 22 to 25 weeks 
gestational age 

Neonatal 
intensive care 
unit 

Variables 
selected in 
advance 

Logistic mixed 
model 

Bootstrapped 
coefficients 
AUC 
HL Test 
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 Country Population 
investigated 

Study Setting Model 
selection 

Statistical 
methods 

Model fit 
methods 

Zernikow (49) Germany Birthweight <1500g 
or <32 weeks 
gestational age 

Neonatal 
intensive care 
unit 

Forward 
selection 
model 

Logistic model 
and ANN 

AUC 
Predicted versus 
observed 



Systematic review: factors that predict neonatal mortality and length of stay 

31 
 

Table 2-3: Factors identified by the statistical analyses within each study when predicting mortality. Factors are presented by individual 

study and overall.1 
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Inherent factors                  

Birthweight  
(including z score, 
weight for gestational 
age, small for 
gestational age) 

                12 

Congenital anomalies                 4 

Ethnicity/nationality                 3 

Gestational age                 14 

Multiplicity                 4 

Sex                 11 

SNAPPE-II*7                 1 

Any inherent factor                 16 

                  

Antenatal treatment 
and maternal factors 

                 

Antepartum 
haemorrhage  

                1 

Antenatal steroids                 8 

Attended prenatal care                 1 

Breech birth                 1 
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Emergency delivery                 1 

Gravida                 1 

Hypertension/pre-
eclampsia 

                2 

Marital status of 
mother 

                1 

Parity                 1 

Prenatal antibiotics                  1 

Prepartum 
haemorrhage 

                1 

Presence of labour                 1 

Surfactant                 2 

Tocolytic agents given                 1 

Any antenatal or 
maternal factor 

                9 

                  

Conditions of the baby                  

Apgar score                 5 

Base excess                 1 

Capillary pH                 1 

Condition on admission                 1 

Intraventricular 
Haemorrhage (IVH) 

                1 

Lowest temperature                 1 

Lowest serum pH                 1 
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Mean blood pressure                 1 

Necrotising 
enterocolitis (NEC) 

                1 

PaO2/FIO2 (fraction of 
inspired oxygen) 

                1 

Pneumothorax                 1 

Respiratory Distress 
Syndrome 

                1 

Seizures                 1 

SNAP II*8                 1 

SNAPPE-II                  1 

Temperature on 
admission to unit 

                2 

Urine output                 1 

Any condition of the 
baby 

                9 

                  

Treatment of the baby                  

Mechanical ventilation                 1 

Surgery whilst in 
hospital 

                1 

Any treatment of the 
baby 

                2 

                  

Organisational factors                  
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Centre (random effect)                 1 

Mortality rate of centre                 1 

Outborn/inborn                 2 

Transferred                 1 

Any organisational 
factor 

                5 

 

 

 

 

1: *1 This is known as the PREM (prematurity risk evaluation score) score. The “birth model” is presented which was described as being “almost as reliable before 
delivery as after.” 
*2 Also known as the ‘Draper grid’, named after one of the co-authors. 
*3 Also known as the Clinical Risk Score for Babies (CRIB) score. 
*4 This is the Score for Neonatal Acute Physiology (Perinatal Extension): SNAP II/SNAPPE II. Presented here is SNAPPE II, which was designed as a measure of 
mortality risk. SNAP is made of the same components, minus birthweight, small for gestational age and Apgar score and measures illness severity. 
*5 This is the model presented in Table 4 of the paper. The more complicated model offered little improvement in model performance (0.35% improvement in AUC). 
*6 This is the ANN model, which performed better but is unsuitable for individual treatment decisions. However, this is a weakness of all population based 
estimation. ANN model had 13 items compared to logistic models which had six. 
*7 SNAPPE II comprised: mean blood pressure; lowest temperature; PaO2/FIO2 ratio (a measure of lung function); lowest serum pH; multiple seizures; urine output; 
birthweight; SGA; Apgar score. This was counted as both the condition of the baby and inherent factors as the score combines both. 
*8 SNAP II was comprised of: mean blood pressure; lowest temperature; PaO2/FIO2 ratio; lowest serum pH; multiple seizures and urine output. SNAP II is comprised 
solely from conditions of the baby.
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2.8 RESULTS OF THE SYSTEMATIC REVIEW FOR LENGTH OF STAY 

Nine studies (5, 6, 19, 29, 40, 58-61) were identified that investigated length of stay 

including one that also investigated mortality (19). Characteristics of the studies are 

presented in Table 2-4. 

Studies were based in the USA (5, 19, 29, 59); Sweden (58); Canada (40); the UK (6, 60) 

and Germany (61). A variety of patient populations were included: all gestational ages 

(19, 40); 23 to 36 weeks gestational age (61); 23 to 32 weeks (60); 24 to 28 weeks 

gestational age (6); 401 to 1000g birthweight (59); less than 27 weeks gestational age 

(29); 22 to 29 weeks gestational age or 401g to 1500g birthweight or larger babies 

meeting a specific criteria (5), and 30 to 34 weeks gestational age (58) (Table 2-4). 

Although the search was for papers from 1994, little research was identified until the 

late 2000s indicating the recent increased interest in this area, potentially correlating 

with improvements in neonatal survival leading to more babies with long lengths of 

stay in the neonatal unit and thus an increased pressure on neonatal services. 

Six studies (66.7%) were based within intensive care (5, 6, 19, 40, 59, 60) and it was 

unclear where the other studies were based, although in two studies it was likely to be 

intensive care given the prematurity of the population (29, 61). Therefore, although 

there were differences with regards to gestational age, these babies were likely to be 

the sickest of the population and have the longest length of stay, if they survived.  

Exclusions within specific studies included: (major) congenital anomalies (5, 19, 29, 58, 

59); deaths in hospital (5, 58-60) or before admission to intensive care (19); previously 

discharged babies subsequently readmitted (5); babies that were admitted for 

comfort/terminal (palliative) care (19); step down care (40); surgery (5, 58, 59); 

ambiguous sex (6); implausible birthweight (6); unusual care pathways (60); in hospital 

longer than one year (29) and transfers to facilities not considered neonatal care (29). 

Some of these exclusions may be subjective and therefore not consistently measured 

between studies. 

 



Systematic review: factors that predict neonatal mortality and length of stay 

36 
 

Table 2-4: Summary characteristics of the studies identified for inclusion in the length of stay systematic review. 

 Country 
of study 

Year of 
publication 
(data) 

Number of 
patients in 
study 

Population 
investigated 

Physical 
location of 
study 

Model 
selection 

Statistical 
methods 

Model fit 
methods 

Altman (58) Sweden 2009  
(2004-2005) 

2388 30 to 34 weeks 
gestational age 

Neonatal 
units of 
varying 
levels of 
care 

Univariate 
analysis 
then 
significant 
(p<0.2) 
entered 
into 
stepwise 

Linear 
regression 

R2 

Bender (19) USA 2013  
(1999 and 
2002) 

293 
(validated 
on 615) 

All gestations Neonatal 
intensive 
care unit 

Prior 
knowledge 

Accelerated 
failure time 
parametric 
models 

Cross 
validation 
R2 

Berry (40) Canada 2008  
(2002) 

604 All gestations Neonatal 
intensive 
care unit 

Prior 
knowledge 

Logistic 
regression 

None, but 
validation in 
other centres 
recommended 

Hinchliffe (6) UK 2013  
(2006-2010) 

2723 24 to 28 weeks 
gestational age 

Neonatal 
intensive 
care unit 

Prior 
knowledge 

Competing 
risks 

None 
(acknowledged 
as weakness) 

Hintz (29) USA 2010  
(2002-2005) 

2254 <27 weeks 
gestational age 

Unclear but 
likely to be 
neonatal 
intensive 
care due to 

Prior 
knowledge 

Logistic 
regression 

R2 
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 Country 
of study 

Year of 
publication 
(data) 

Number of 
patients in 
study 

Population 
investigated 

Physical 
location of 
study 

Model 
selection 

Statistical 
methods 

Model fit 
methods 

gestational 
age 

Lee (2013) 
(59) 

USA 2013  
(2008-2010) 

2012 401 to 1000g 
birthweight 

Neonatal 
intensive 
care unit 

Stepwise 
selection 

Linear mixed 
model 

R2 

Lee (2016) 
(5) 

USA 2016  
(2008-2011) 

23,551 All babies 401g 
to 1500g or 22 
to 29 weeks 
gestational age 
plus larger 
babies meeting 
specified 
criteria 

Neonatal 
Intensive 
Care Units 

Prior 
knowledge 
then 
minimum 
AIC 

Negative 
binomial 
model with 
hospital as 
random 
effect 

Root Mean-
Square Error 
(RMSE) 

Manktelow 
(60) 

UK 2010  
(2005-2007) 

4702 23 to 32 weeks 
gestational age 

Neonatal 
unit 

Prior 
knowledge 
and then 
change in 
deviance to 
decide how 
to model 
variables 

Quantile 
regression 

Observed 
versus 
predicted 
comparison 

Zernikow 
(61) 

Germany 1999  
(1989-1996) 

2144 23 to 36 weeks 
gestational age 

Unclear but 
single centre 

Forward 
stepwise 

Artificial 
neural 
networks 
Multiple 
linear 
regression 

Observed 
versus 
predicted 
comparison 
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Table 2-5: Factors included by the statistical analyses within each study when predicting length of stay. Factors are presented by individual 

study and overall.2 
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Inherent factors            

Birthweight (modelled in multiple ways 
including categorised, small for gestational 
age, z score) 

           8 

Congenital anomalies          3 

Date/year of birth          2 

Ethnicity/race/nationality           3 

Gestational age          5 

Head circumference           1 

Length of baby at birth          1 

Multiplicity           2 

Sex          5 

SNAPPE-II *1          2 

Any inherent factor          9 

           

Antenatal treatment and maternal 
factors 

          

Antenatal steroids          2 

Diabetes           1 

Emergency delivery          1 

Fetal distress          2 
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Hypertension          2 

Maternal age          2 

Mode of delivery          1 

Other maternal/obstetric condition          1 

Received prenatal care          1 

Any antenatal treatment or maternal 
factor 

         4 

           

Conditions of the baby           

Admission reason          1 

Apgar score          2 

Bronchopulmonary Dysplasia (BPD)          1 

Hyperbilirubinaemia          1 

Hypoglycaemia          1 

Infection          1 

Respiratory Distress Syndrome          1 

Retinopathy of Prematurity (stage 3 or 
higher) 

         1 

Sepsis episode or NEC          1 

Severe morbidity*2          1 

SNAP*3          1 

SNAPPE-II           2 

Any condition of the baby          7 

           

Treatment of the baby           
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Surgery whilst in hospital          1 

Surgery for Patent Ductus Arteriosus, 
Necrotising Enterocolitis, or Retinopathy 
of Prematurity 

         1 

Umbilical vein catheter           1 

Ventilation          1 

Any treatment of the baby          3 

           

Organisational factors           

Centre (random effect)          3 

Domiciliary care           1 

Fixed discharge criteria          1 

Level 3 centre          1 

Transferred/Outborn status          2 

Any organisational factor          5 

 

2 *1: The calculation of the SNAPPE-II score includes: mean blood pressure; lowest temperature; PaO2/FiO2 ratio; lowest serum pH; multiple seizures; urine output; 

birthweight; small for gestational age and Apgar score. These are a combination of inherent and conditions of baby factors and so SNAPPE II appears in both 
categories. 
*2: Severe morbidity is defined as: any of: Intraventricular Haemorrhage (IVH) Grade three or four; Retinopathy of Prematurity (ROP) greater than or equal to Stage 
three; Bronchopulmonary Dysplasia (BPD) 
*3: This is the original SNAP score, devised in 1993, and comprised of 34 items, largely related to the condition of the baby. Examples of items belonging to the score 
include: heart rate, blood pressure and platelet count.  
*a The final model is taken to be the SNAP one as this model was validated. 
*b This study stratified analyses by birthweight, and different variables were used for each stratification. All variables from all models are listed here. 
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Table 2-6: Quality assessment of the included studies investigating length of stay. These are assessed using a modified version of the 

QUIPS tool. 

 Domains of quality 

 Study participation Study 
exclusion/attrition 

Outcome 
measurement 
(for example: 
definition and 
measurement) 

Risk adjustment and 
clinical predictors* 
(for example: 
missing data)  

Statistical analyses 
and reporting 
(for example: was 
validation 
considered) 

Altman et al Study is population 
based (and included 
21/34 units in 
Sweden) but babies 
were excluded if 
moved to a hospital 
not included in 
study.  

Babies discharged to 
other clinics were 
excluded. 

Continuous post-
menstrual age at 
discharge. 

Detailed information 
about how factors 
were measured. 

None mentioned 

Bender et al Single centre study. Transfers were 
included in the 
analysis and their 
length of stay in 
other facilities was 
included in the total 
length of stay. 
Sensitivity analyses 
excluded them. 

Continuous length of 
stay (days). 

Made use of 
mortality scores with 
large number of 
elements included. 
Potential issues if 
there was missing 
data. 

Split sample. 

Berry et al Study based in two 
hospitals. Data 
extracted from ward 

Length of stay days 
after transfer to 
another centre were 
not included.  

Length of stay 
categorised into: <21 
days or ≥21 days. No 

Made use of 
mortality scores with 
large number of 
elements included. 

Acknowledgement 
that future validation 
required. 
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 Domains of quality 

 Study participation Study 
exclusion/attrition 

Outcome 
measurement 
(for example: 
definition and 
measurement) 

Risk adjustment and 
clinical predictors* 
(for example: 
missing data)  

Statistical analyses 
and reporting 
(for example: was 
validation 
considered) 

registers, charts and 
patient records. 

justification for 
these cut points. 

Potential issues if 
there was missing 
data. 

Hinchliffe et al Population based 
study covering a 
region of hospitals.  
 
Data is extracted 
from medical 
records and stored 
in a routine 
database used for 
research purposes. 

Minimal loss to 
follow up when 
discharged out of 
region covered by 
study. Included in 
analysis as censored 
observations. 

Proportion of deaths 
and discharges - 
continuous length of 
stay (days). 

Detailed information 
about how factors 
were measured. 

Acknowledged that 
further work 
required to assess 
model. 

Hintz et al Population based 
study within a large 
network containing 
multiple hospitals. 
Data extracted from 
a routine database 
set up for research. 

Attrition of babies 
transferred out of 
the region covered 
by study. 

Early (lowest quartile 
of age at discharge) 
or late discharge 
(high quartile of age 
at discharge). No 
justification for 
these cut points. 

Variables clearly 
defined. Some 
factors subjective in 
measurement 
including Bells 
staging for NEC. 

Split sample 

Lee et al (2013) Population based 
study of a large 
number of intensive 
care units.  

Attrition from 
transfers to lower 
levels of care 

Continuous length of 
stay in days (log 
transformed). 

Limited details about 
variables but most 
could be measured 
objectively. 

Split sample 
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 Domains of quality 

 Study participation Study 
exclusion/attrition 

Outcome 
measurement 
(for example: 
definition and 
measurement) 

Risk adjustment and 
clinical predictors* 
(for example: 
missing data)  

Statistical analyses 
and reporting 
(for example: was 
validation 
considered) 

(acknowledged as 
causing bias). 

 

Lee at al (2016) Population based 
study in 90% of 
intensive care units 
in large American 
state 

Only babies inborn or 
transferred to unit in 
study within one day 
of life. 

Continuous length of 
stay (days). 

Variables clearly 
defined and 
objectively 
measured. Missing 
data not discussed. 

Split sample 

Manktelow et al Population based 
study covering a 
region of hospitals. 
 
Data is extracted 
from medical 
records and stored 
in a routine 
database used for 
research purposes. 

Minimal attrition: 
when discharged out 
of region covered by 
study. 

Continuous length of 
stay (days). 

Some factors 
subjectively 
measured including 
reason for admission 
to intensive care. 

Acknowledged that 
future validation 
needed. 

Zernikow et al Single centre study Transfers excluded 
from the study. 

Continuous length of 
stay (days). 

Limited information 
about variables but 
most objective to 
measure.  

Split sample 
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2.9 SELECTED CLINICAL FACTORS: LENGTH OF STAY  

The nine studies investigating length of stay in neonatal care presented a total of 39 

factors which were accounted for in analyses. Details of prognostic factors selected 

and included in the final analysis by each study are given in Table 2-4. 

2.9.1 INHERENT FACTORS OF THE BABY 

All nine studies accounted for some form of inherent factor, with the most common 

being birthweight (88.9%, 8/9), gestational age (55.5%, 5/9) and sex (55.5%, 5/9) 

(Table 2-5). Birthweight was accounted for by most studies but there were differences 

in the approaches to measuring it including use of z-scores or birthweight centiles (62). 

Birthweight z-score is a measurement of how many standard deviations a given 

birthweight is from the average for certain characteristics, usually gestational age and 

sex.  

All inherent factors were available shortly after birth and were simple and objective to 

measure. A first day of life prediction for length of stay can be made using these 

factors, although this estimate may change over time depending on the clinical 

progress of the baby during their stay. 

Other factors, identified at or before birth, such as congenital anomalies were only 

accounted for by three studies (Table 2-5: 33.3%, 3/9) but often comprised part of the 

exclusion criteria (55.5%, 5/9). As stated in the previous section, congenital anomalies 

are hard to account for in any analysis as there is no internationally recognised list of 

what constitutes a major anomaly. Some congenital anomalies are unlikely to impact 

on length of stay at all, whereas more severe anomalies or those that can require 

surgery, for example gastroschisis (baby born with their intestines outside the 

abdomen), may have a substantial impact on length of stay. Consequently, even when 

studies exclude or adjust for major anomalies it can never be guaranteed that it is a 

comparison of “like with like”. Thus, while congenital anomalies may have an impact 

on length of stay, it is likely too broad a term to include in a prediction model. 
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2.9.2 CLINICAL CONDITIONS OF THE BABY 

Whilst information from the first day of life was useful (61), prediction was improved 

when perinatal factors (29) or severity of illness (19) were considered and it may be 

appropriate to amend an initial length of stay prediction with the changing clinical 

condition of the baby. Seven studies attempted to capture this by adjusting for some 

clinical condition of the baby, but there was little consensus on what this factor should 

be, with included factors ranging from early occurring conditions (for example: reason 

for admission to intensive care), to those that occurred potentially much later in the 

care pathway (for example: Bronchopulmonary Dysplasia, BPD, which is not diagnosed 

until at least 36 weeks PMA). Therefore, whilst it is potentially important to account 

for the condition of the baby in some way, there was little agreement over what form 

this should take. It seems fair that the choice should probably be an early occurring 

condition, independent of quality of care. However, it is difficult to account for specific 

clinical conditions when not all babies will survive long enough to potentially 

experience it. 

For the very preterm baby, medical conditions may be experienced prior to discharge 

(for example: retinopathy of prematurity, ROP), but prematurity may well still be the 

main factor that determines the overall time in the neonatal unit. Lee et al alluded to 

this stating that normal birthweight babies and those born closer to term are likely to 

have varied reasons for their length of stay, making predictions complex (5). 

2.9.3 ANTENATAL OR MATERNAL FACTORS 

Four studies accounted for antenatal or maternal factors but there was little 

agreement between studies over what factors should be included. Three factors were 

accounted for by more than one study: use of antenatal steroids (Table 2-5: 2/9); 

hypertension in pregnancy (2/9) and maternal age (2/9). 

2.9.4 ORGANISATIONAL FACTORS AND TREATMENT OF THE BABY 

Organisational factors were considered in five studies (55.5%, 5/9), with most relating 

to the setting of the care including transfers between units (40). This demonstrates the 

potential importance of considering the varying levels of care, and how length of stay 
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can potentially be strongly influenced by organisational factors. However, 

organisational factors are likely to vary between countries. Similarly, even within a 

country, the designated level of the unit may not indicate the type of care given to the 

baby. In spite of this, organisational factors were seen by some authors to be equally 

or even more important than perinatal risk factors (58). 

2.10 OTHER ISSUES IN ESTIMATING LENGTH OF STAY 

2.10.1 DEATHS IN NEONATAL CARE 

Whilst most papers excluded babies who died in hospital, two papers included deaths 

in the calculation of length of stay. One paper undertaken by Hinchliffe, Seaton et al 

accounted for this in the methodology implemented (6) and another acknowledged 

“mortality rates may have introduced bias, since non-survival truncates observed 

length of stay” (19). A third study that excluded deaths acknowledged that: 

“accounting for deaths in length of stay measurement may be particularly complex…” 

and that the “length of stay of deaths could vary widely depending on the clinical 

trajectory…” (5). No other study incorporated deaths in neonatal care into the analysis 

and exclusion of this group overlooks the workload and care required by these babies. 

2.10.2 THRESHOLDS FOR DISCHARGE 

Thresholds for determining the timing of discharge exist informally within neonatal 

medicine in the UK. Clinicians regularly state that a baby will be discharged at or 

around the date they were due to be born. Babies are rarely discharged before they 

gain the ability to suck and feed at around 34 to 35 weeks PMA. Irrespective of the 

clinical conditions experienced by the baby, it is thought that many preterm babies, 

particularly those born at less than 32 weeks of gestation, are likely to have matured 

and recovered enough to be discharged at or near term, their prematurity having been 

the overwhelming reason for their long length of stay (18). For some babies, later 

occurring conditions such as late occurring sepsis may cause an increase in their stay 

which had not been initially anticipated. However, these clinical conditions may not be 

identifiable until a long time after birth. Therefore, estimates of length of stay should 

be adapted in light of these conditions where appropriate using clinical judgement. 
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Whilst the stay in hospital of preterm babies is largely determined by their 

prematurity, normal birthweight babies (5) and those born closer to term are likely to 

have varied reasons for their length of stay, making predictions complex. These babies 

should be considered separately or an adjustment or stratification made in any 

prediction model (5).  

2.11 STUDY QUALITY: LENGTH OF STAY 

The adapted form of the QUIPS tool (36) was used to investigate the quality of the 

studies. A summary is presented in Table 2-6.  

2.11.1 STUDY QUALITY: STUDY PARTICIPATION 

All studies included in this review made use of data from routine sources, for example 

medical records, and none actively recruited participants. As such there were no issues 

related to recruitment of study participants. Six of the studies (5, 6, 29, 58-60) were 

population based covering large geographical areas, in one instance 90% of an 

American state (5), and therefore these covered a range of hospital services. Three 

studies were based in one (19, 61) or two (40) centres with length of stay in other 

facilities not being included in two studies (58, 61), potentially leading to 

underestimation of length of stay as the number of transfers between units in 

neonatal care can be high. 

2.11.2 STUDY QUALITY: EXCLUSION AND ATTRITION 

Attrition due to babies being transferred out of the area covered by the hospital or 

study was a potential issue in all studies except one (19) which included other facilities 

in their length of stay calculations. However this study (19) was based in a single 

centre, and although they lost no babies to attrition, the specific details about the 

population they recruited only included care received whilst within that hospital site. 

Studies acknowledged attrition as a potential source of bias (59), although for the 

population based studies this issue was likely to be minimal as these collected data 

from most hospitals within a geographical region. 
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2.11.3 STUDY QUALITY: OUTCOME MEASUREMENT 

Seven studies estimated continuous length of stay or PMA at discharge (5, 6, 19, 58-

61) whilst two studies categorised length of stay, one by dichotomising into <21 days 

and ≥21 days (40) and the other by classifying discharge as early or late (defined as the 

lowest and highest quartile of PMA) (29). The decision of how to model length of stay 

was often based on the statistical analysis being implemented. It was likely that there 

were minimal issues with the measuring of length of stay as it is an objective measure, 

although it is of course possible to incorrectly record a date. The decision to 

dichotomise a continuous variable into a categorical variable is often considered a 

poor choice in statistics as it potentially leads to a loss of data and power (63). 

However, the use of continuous length of stay is difficult to model statistically, and this 

is also often a limitation of the methods implemented. 

2.11.4 STUDY QUALITY: RISK ADJUSTMENT 

The variables used for risk adjustment are identified here as being the factors which 

are considered predictive of length of stay and are detailed in Table 2-5. Several 

studies chose objective measures, which were easily measured and defined, to include 

as important factors when predicting length of stay (5, 6, 58, 59, 61). Two studies 

made use of mortality scores including MAIN (morbidity assessment index for 

newborns) and SNAPPE II (19, 40). These scores contained a large number of factors, 

leading to potential issues if one or more data items were missing, although this was 

not discussed for either study. Some factors were subjectively measured, for example 

reason for admission to the neonatal unit (60) and Bells staging (the severity scoring) 

for NEC (29). 

2.11.5 STUDY QUALITY: STATISTICAL ANALYSES AND REPORTING 

Five studies had validated their results by splitting the sample during the initial analysis 

and reserving data for validation purposes (5, 19, 29, 59, 61). Two studies 

acknowledged that further validation was needed before results could be generalised 

(40, 60) and one acknowledged that further work was needed to assess their modelling 

techniques (6). One study, as part of their analyses, had conducted a pre-planned 
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external validation but subsequently concluded that the non-validated model was 

statistically superior (19). However, here the variables used in the validated model are 

presented in Table 2-5. Only one study made no mention of the validation of the 

results (58). Therefore, a strength of these studies was that most addressed the issue 

of validation in some way, either by implementation or discussion. 

Whilst no formal scoring of study quality has been undertaken here, all studies had a 

level of quality which appeared good given the constraints of the study design. 

2.12 STRENGTHS AND LIMITATIONS OF THIS REVIEW: LENGTH OF 

STAY 

There is a paucity of evidence investigating the prediction of neonatal length of stay 

and this review has investigated the limited evidence for the first time (18). Clinical 

judgment is an important and potentially informative factor for predicting length of 

stay, although this was not possible to investigate here. However, well-developed 

prediction models, such as those identified here, are useful because they can provide 

estimates that can be used to inform the knowledge which clinicians have from their 

own diagnostic abilities and are more accurate than clinical judgement and assessment 

alone. Clinicians would like to be able to predict outcomes perfectly, but using 

statistical models to aid clinical judgement introduces error and uncertainty to better 

represent a real-world scenario. Prediction models should be developed with the help 

of clinicians who are able to help distinguish between relevant and irrelevant factors 

(64).   

2.12.1 SYSTEMATIC NATURE OF THIS REVIEW 

To ensure that the search was conducted using a truly systematic approach, a random 

10% of articles, which included the identified articles, were extracted and provided to 

a second reviewer. This second review was undertaken independently and eight of the 

nine articles were identified by both reviewers independently. The ninth article was 

discussed between both reviewers who subsequently agreed it should be included. 
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2.12.2 CHOICE OF POPULATION 

A weakness of this review was that a variety of settings and gestational groups were 

considered in the studies in this review. It is likely that different gestational ages will 

require different prediction models, incorporating very different factors. Creating a 

prediction model for babies of all gestations, such as that proposed and attempted by 

Bender (19) or Berry (40), is unlikely to perform well. Babies born near term may have 

very different reasons for being in the neonatal unit to those born preterm, who have 

mainly been admitted due to their prematurity and underdevelopment. This was 

discussed by Lee et al (5) who stratified their analyses by different birthweight groups 

to group babies of a similar clinical condition together and acknowledged that babies 

born at a normal birthweight, or near term, may need further stratification by the 

reason for their admission, for example: sepsis or respiratory disease (5). This 

approach has potential, and future length of stay predictions should focus on groups of 

babies that are clinically similar, for example those born very preterm or with a very 

low birthweight, or analyses should be stratified by clinical condition or disease. 

This review focussed on countries that were members of the OECD from 1994, as 

these countries were likely to be similar in terms of their healthcare services, 

populations and survival rates of preterm babies. Research has been conducted into 

the prediction of length of stay in other contexts and countries but not included in this 

review, for example work by Pepler et al in South Africa (65) and Shah et al in Eritrea, 

Africa (66). Whilst these studies were in different contexts similar variables were 

accounted for in their analyses. In the study by Pepler et al, the prediction of length of 

stay was adjusted for birthweight, Apgar score and maternal ethnicity (65). Similarly, 

Shah et al accounted for gestational age, birthweight (including small for gestational 

age), Apgar score, sex, caesarean section birth, maternal age and the baby acquiring 

pneumonia or hypothermia (66). 

2.12.3 INDIVIDUAL PATIENT META-ANALYSIS 

A meta-analysis of the data presented in this review was not undertaken, due to the 

varying analyses and adjustments made in each study. Theoretically, an individual 

patient data meta-analysis could have been undertaken in order to overcome these 
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issues, however this is known to be problematic, particularly acquiring the necessary 

data (67), so this was not conducted. Similarly, it was not possible to investigate 

publication bias due to the varying analyses and this could be an issue.  

2.13 DISCUSSION: LENGTH OF STAY 

This chapter provides a systematic review investigating the factors that predict 

mortality and length of stay in neonatal care. Factors were identified if they were 

included by study authors in a multivariable analysis which aimed to predict mortality 

or length of stay. A total of 24 studies were identified, of which 16 investigated the 

prediction of mortality and nine articles investigated the estimation of length of stay 

(one investigated both). 

The prediction of mortality is well established and has received attention over the 

years including a systematic review of the factors that predict mortality published in 

2011 (56). Although differences existed between study populations, most research 

focussed on babies born preterm, or with a low birthweight, indicating the attempt to 

identify a group most likely to benefit from risk prediction. Models generally 

comprised factors known about immediately at birth or within 24 hours. Twelve 

studies accounted for birthweight and 14 accounted for gestational age, agreeing 

other published research which has identified these as the most important factors for 

predicting mortality and other neonatal outcomes (56). Other factors are thought to 

offer minimal improvement in prediction models, although sex of the baby and 

whether antenatal steroids were given are likely to also be clinically important.  

The prediction of length of stay had received little attention in the literature, with the 

earliest study having been published in 1999 (61), and the other eight from 2008 

onwards despite this search extending to 1994. This increase in research probably 

correlated with improvements in neonatal survival, increasing the importance of the 

prediction of length of stay in the neonatal unit. Eight studies included birthweight, 

five studies included gestational age and five studies included the sex the baby. It was 

apparent that inherent factors (those known about at the time of birth) were most 

useful for predicting length of stay and allowed for an early prediction to be made. 

There was evidence that use of an early measure of the sickness of the baby might also 
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be useful, although the ability to revise this estimate over time using clinical 

knowledge, as a baby developed other medical complications, would probably be more 

informative. 

From this review gestational age, birthweight and sex were identified as being 

important factors to consider when modelling the prediction of length of stay and 

mortality and these will be considered throughout the thesis. Gestational age was the 

factor most often accounted for in the prediction of mortality and the second most 

popular when predicting length of stay. Gestational age can be objectively measured 

and has a consistent meaning, whereas birthweight has different meanings at different 

gestational ages. Additionally, gestational age is considered more fundamental to the 

physiology of the baby and more valid for populations (30). Therefore, this thesis will 

consider gestational age initially in analyses. 

This review identified the lack of research which has been undertaken in predicting 

length of stay, indicating the need for this research project. A limitation identified in 

one study was that their approach of including deaths in the estimation of length of 

stay caused a truncation of observed length of stay (19). This thesis aims to address 

this issue. 

The ability to predict length of stay would be useful for clinicians and service providers, 

as well as aiding clinical discussions with parents. Inherent factors appear to be the 

most important to account for, particularly gestational age, birthweight and sex. This 

information from the first day of life is informative for predicting length of stay in a 

simple model and estimates from these models could provide a useful early indicator 

of likely length of stay in neonatal care. Inclusion of additional factors may be useful, 

although there is a lack of consensus on what this should be. An early predictor of 

morbidity may be useful, for example, Apgar score or the reason for admission to 

neonatal care. However, in the data source for this thesis (Chapter 3) Apgar score was 

poorly recorded with 20% missing data at one and five minutes. Similarly, for 85% of 

babies in this thesis the reason for their admission to neonatal care was “need for 

intensive care” which was not sufficiently detailed for use in this thesis. 
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Whilst inclusion of another appropriate factor may have improved prediction, models 

with a small number of factors offered easier clinical use in practice (29) and this 

review indicates they should include a small number of inherent factors which are easy 

to measure. The model should potentially also include an early occurring factor as a 

proxy of the baby’s morbidity or clinical condition, although there is no clear 

agreement over what this factor should be. Alternatively, future models could be 

dynamic and account for later occurring factors. An appropriate compromise may be 

to use length of stay estimates alongside clinical judgement to revise them accordingly.  

2.14 CHAPTER CONCLUSION 

In this chapter, a systematic review was performed to investigate the variables that are 

considered important when predicting mortality and/or length of stay in neonatal care. 

It was anticipated that the prediction of these outcomes would share many common 

factors. Indeed, for both prediction of mortality and length of stay, inherent factors, 

which were simple to measure on the first day of life were identified as being the most 

important, with a high proportion of studies accounting for gestational age, 

birthweight and sex. There was a lack of consensus on what other variables would be 

useful for adjustments, although it seems that it would help to include a measurement 

of morbidity.  

Gestational age was used in 19 studies and birthweight in 20 studies in this review. The 

use of gestational age was identified as being more important for physiology (30) and 

therefore will be used for initial adjustments in this thesis. Additional work in this 

thesis will also incorporate birthweight and sex.
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3 THE NATIONAL NEONATAL RESEARCH DATABASE 

3.1 CHAPTER OVERVIEW 

Data for this thesis were obtained from the National Neonatal Research Database 

(NNRD). This chapter provides a brief overview of the process of obtaining permission 

to access the data including ethics, R&D approval and gaining agreement from 

neonatal units. A brief introduction to the NNRD and summary statistics will be 

presented. 

3.2 DATA SOURCE 

Neonatal units in Great Britain (England, Wales and Scotland) routinely provide data 

regarding day-to-day care of babies admitted to their unit via a system known as 

‘Badger.net’ or ‘Neonatal.net’. The collective group of neonatal units which contribute 

data is known as the Neonatal Collaborative. The data collected include information 

about maternal and baby demographics, clinical interventions, diagnoses and the 

outcomes. Badger.net has existed since 2004 and is used to plan services and record 

neonatal care activity for use in the calculation of payments by NHS England (68). It is 

also used by clinicians to facilitate aspects of clinical care including the writing of 

discharge letters. Badger.net is managed by Clevermed Ltd.  

Key variables are extracted from the Badger.net system and these data are transferred 

to the Neonatal Data Analysis Unit (NDAU, collaborators in this work) who perform 

data quality checks, clean and anonymise the data, and produce the National Neonatal 

Research Database (NNRD). The NNRD is managed and maintained at Imperial College 

London and Chelsea and Westminster NHS Trust. The NNRD is available for a fee for 

local, regional and national research projects and service evaluations. As of 2015, all 

neonatal units in England, Wales and Scotland, provide data to the NNRD. No neonatal 

units in Northern Ireland provide data. This thesis focuses on data from England as 

data from the other countries were not available for all years of this analysis (2011 to 

2014) (69). 
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The NNRD has ethical approval for the establishment of the database and the 

collection of data (Research Ethics Committee, REC Reference: 10/H0803/151) and 

submits an annual review to the National Information Governance Board (NIGB), now 

the Confidentiality Advisory Group (CAG), under the Health Service (Control of Patient 

Information) Regulations 2002 (Reference: ECC 8-05(f)/2010). The Caldicott Guardians 

and Lead Clinicians (dedicated member of staff involved in the data collection) of all 

Trusts have approved the use of the NNRD data for health service evaluation, but new 

research projects, such as this PhD, require separate ethical approval and agreement 

from all participating neonatal units.  

Key variables were identified from the NNRD and a data extraction was completed for 

this study by NDAU. Subsequent updates to the data were provided as and when data 

downloads became available. 

3.3 ETHICS AND RESEARCH & DEVELOPMENT (R&D) APPROVALS 

Approvals were required to use the data held within the NNRD for the secondary 

analysis of this research project. As this was a secondary analysis of previously 

collected data, this project was deemed to represent minimal risk to participants and 

the National Research Ethics Service (NRES) recommended a proportionate review was 

required. Details regarding the study including a protocol, agreement form and study 

information leaflets were produced. These were submitted to NRES and reviewed 

within 14 days (standard for proportionate review). Approval was granted on 22 May 

2014 from Lancaster, North West Committee (REC Reference: 14/NW/0349). A copy of 

the ethical approval letter is in Appendix 3. 

For this secondary analysis, R&D approval was only required from the NHS Trust that 

physically held these data: Chelsea and Westminster NHS Foundation Trust. R&D 

approval was granted on 17 June 2014 (R&D Reference: C&W14/043) and a copy of 

the R&D approval letter is in Appendix 3. The University of Leicester provided 

professional indemnity insurance for this study (Appendix 3). 
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3.3.1 WRITING TO ALL NEONATAL UNITS 

All neonatal units that contribute data to the NNRD have granted permission for their 

data to be used for service evaluation. However, as this study was research, explicit 

agreement to use each unit’s data was required from all units contributing to the 

NNRD. As of July 1st 2016 the NNRD began using an ‘opt-out’ approach, where units 

are informed about studies and given the opportunity to not participate. However, 

when this study started a full ‘opt-in’ approach was required. 

All 162 neonatal units in England as of June 2014 were written to in order to seek 

agreement to use their data. A study information leaflet, approved by the REC, was 

provided alongside a letter and form for completion (Appendix 3) to each neonatal 

unit. It was required that the form be signed by the Lead Clinician (the named contact 

for the NNRD) at each neonatal unit, or equivalent, indicating their agreement to take 

part in this study. Initially all units were contacted on 30 June 2014 with a request for 

response by 1 August 2014. This was followed up with a second email with an 

extended deadline, before attempts to personally contact units began in September 

2014. The personal direct contact improved response rates, although a variety of 

issues continued to cause slow response rates, which are outlined with their resolution 

in Chapter 3.3.2. Ultimately, by December 2014, 100% of units in England had provided 

agreement for their unit’s data to be used in this research. A list of all participating 

neonatal units and their corresponding Lead Clinician can be found in Appendix 3. 

3.3.2 ISSUES AND RESOLUTIONS EXPERIENCED WHILST GAINING STUDY 

AGREEMENT 

The process of obtaining agreement from the 162 neonatal units took approximately 

six months. Whilst this did ultimately result in agreement from 100% of units, there 

were issues throughout this six month period which required resolution. A brief outline 

of the main issues and resolutions is provided in this section.  

Whether local R&D required (communication with R&D departments) 

Issue: The favourable opinion letter from the REC stated that “management 

permission (“R&D approval”) should be sought from all NHS organisations involved in 
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the study in accordance with NHS research governance arrangements…” This 

permission was granted when R&D approval was granted from Chelsea and 

Westminster and no further approvals were required. However, many Trusts did not 

understand that it was not necessary to obtain local R&D approval for their 

organisation.  

Resolution: This problem required direct communication with clinicians and Trust R&D 

offices. An email template was drafted, using details from the Standard Operating 

Procedures for Research Ethics Committees, to send when the query was raised. 

Subsequent emails were amended to explain this issue briefly, and all units were 

provided with copies of the ethical approval and R&D approval letters. 

Trust management governance or internal review required  

Issue: Some Trusts required an internal management review to be undertaken. 

Resolution: These were generally straightforward and all information was provided to 

R&D departments to facilitate this. Trusts that required this were: Northampton 

General Hospital NHS Trust; Royal Berkshire NHS Foundation Trust; Surrey and Sussex 

Healthcare NHS Trust; Sandwell and West Birmingham Hospitals NHS Trust; The 

Shrewsbury and Telford Hospital NHS Trust; Northern Lincolnshire and Goole NHS 

Foundation Trust and Southend University Hospital NHS Foundation Trust. 

Confusion over the favourable opinion letter from the REC  

Issue: Even after providing clarification, the (standard) wording on the REC letter still 

created confusion, with some Trusts remaining unconvinced this was the final ethical 

approval.  

Resolution: North-West Lancaster REC were approached to seek advice over the 

wording of the favourable opinion letter. Whilst they were unable to change the letter, 

which was standard, they did provide an email which stated that “the site concerned 

[for R&D] is the one where the study is being conducted, not where the data was 

obtained” (personal communication with Lancaster REC) and another which stated 

clearly: “this is the final opinion. You need to ensure the conditions mentioned are met 
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[i.e. that R&D approval should be obtained from Chelsea and Westminster]… but you 

don’t need to inform us of this.” 

3.4 DATA INCLUSION AND EXCLUSION 

Data were obtained from the NNRD and included in this thesis on singleton babies 

born at 24 to 31 weeks gestational age who were admitted to neonatal units in 

England on the first day of life and discharged between 2011 and 2014.  

The selection of the population by year of discharge means that babies who die 

towards the end of 2014 are more likely to be included than babies that survive as 

their care will have continued into 2015. However, this issue is counter-balanced by 

the babies included from the start of 2011 who are more likely to be those remaining 

in hospital from care which commenced in late 2010. The selection of this population 

may have created issues if temporal trends were to be investigated, but this was not of 

interest within this thesis. 

A total of 21,631 babies met the inclusion criteria. Key predictors of length of stay 

were identified from the systematic review in Chapter 2 as: gestational age, sex and 

birthweight and initial analyses were undertaken considering gestational age alone. In 

analyses which only make use of gestational age, babies are retained regardless of 

their value of birthweight or sex.  

3.4.1 EXCLUSIONS DUE TO IMPLAUSIBLE LENGTH OF STAY 

The NNRD collects daily data related to each baby and therefore total length of stay 

was calculated by summing each individual day of care for each baby. Duplicated days 

of care recorded due to transfers were removed. Those babies who were discharged 

home before 34 weeks PMA were removed (n=205) as this was felt to be clinically 

unlikely to have occurred with 34 weeks considered the earliest point at which babies 

learn to suck and feed (70). Similarly, an upper limit for total length of stay of six 

months was applied, leading to 199 babies being excluded. Although some babies do 

stay in neonatal care beyond six months, the numbers are small. A total of 21,227 

babies remained in the analysis at this stage.  
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3.4.2 EXCLUSIONS DUE TO UNUSUAL PATTERNS OF CARE 

It is difficult to define a typical care pathway within neonatal medicine. Babies are 

stepped up and down levels of care according to their clinical needs. Throughout this 

thesis, care is amalgamated and assumed to occur in a step down fashion (i.e. 

intensive care followed by high dependency followed by special care) irrespective of 

the actual order in which the care was received. Although this assumption is 

acceptable when considering the care received as a whole, it should not be used as a 

day-by-day prediction of what level of care is needed for an individual baby.  

Babies with unusual patterns of care were excluded. This is defined as babies 

discharged from neonatal care after receiving intensive care but no other lower levels 

of care (n=57) and babies discharged from neonatal care immediately after receiving 

high dependency care (n=132) having never received any lower level of care. Although 

these care pathways are possible, they are likely to represent babies being discharged 

for palliative care which represents a different care pathway to that under 

investigation. After exclusion the total number of babies included in analyses was 

21,038. Summary information of the included babies is provided in Table 3-1.  

3.4.3 UNOBSERVED AND MISSING DATA 

Daily data were available for babies throughout their time in neonatal care, indicating 

the level of care they received on each day of life. Occasionally a baby would be 

transferred from neonatal care for other specialist care which did not provide data to 

the NNRD, for example a specialist surgical centre, and then subsequently be 

transferred back into a neonatal care unit covered by the NNRD. It is not possible to 

know what happened on the days not reported to the NNRD, but it is likely that these 

babies were undergoing and recovering from surgery or other specialist treatment, 

and therefore intensive care days were imputed for the missing days of care. Babies 

who were discharged to specialist care or a hospital outside of the geographical area 

covered by the NNRD who subsequently did not return to an NNRD hospital were 

considered to have been discharged alive from neonatal care, as long as they were not 

excluded due to a very short length of stay, and no days were imputed for the care 

after transfer. This assumption forms a sensitivity analysis throughout this thesis. 
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On a small number of days the level of care was not recorded. For these days special 

care was imputed as the assumed level of care (n=151 days of care, <0.01% of the total 

days of care). This assumption was not tested further as the small number of days on 

which this occurred means this will not have impacted on results but the imputed data 

prevents potential needless exclusion due to an incorrect length of stay. 

3.5 SUMMARY STATISTICS 

3.5.1 SUMMARY STATISTICS FOR BABIES INCLUDED IN THIS THESIS 

Table 3-1 provides summary statistics for all babies (n=21,038) included in this thesis. 

Broadly similar numbers of singleton babies were discharged from neonatal care 

across the four year period. The population had similar case-mix with regards to 

gestational age and birthweight over the four years. Around 40% of babies were born 

at 30 and 31 weeks gestational age and more males were admitted for neonatal care 

than females.  

Details about some of the interventions and treatments received by the very preterm 

babies in this study are given in Table 3-2 and the percentage indicates the percentage 

of days on which that care was given. For example, in 2011 8.5% of all care days given 

to preterm babies included some ventilation support. Non-invasive respiratory 

support, ventilation support, total parenteral nutrition (TPN) and phototherapy are the 

treatments given most frequently to very preterm babies.  

The level of care received by an individual baby is determined by the treatment they 

receive. When a baby receives several treatments in a single day of varying levels of 

care, the level is the highest provided that day. However, an individual baby may be 

receiving more than one type of intervention and therefore the total days of 

treatments or interventions each year could equal more than the total number of days 

of care provided in a year.
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Table 3-1: Summary statistics of singleton babies born at 24 to 31 weeks gestational 

age included in this thesis. 

 Year of discharge/death from neonatal care 

 2011 2012 2013 2014 

Total babies 
admitted, n 

5,368 5,343 5,228 5,099 

Gestational age 
(weeks), n (%) 

    

24 284 (5.3) 287 (5.4) 276 (5.3) 268 (5.3) 

25 327 (6.1) 336 (6.3) 316 (6.0) 325 (6.4) 

26 464 (8.6) 465 (8.7) 417 (8.0) 437 (8.6) 

27 537 (10.0) 579 (10.8) 480 (9.2) 468 (9.2) 

28 690 (12.9) 707 (13.2) 702 (13.4) 685 (13.4) 

29 758 (14.1) 791 (14.9) 807 (15.4) 748 (14.7) 

30 983 (18.3) 937 (17.5) 976 (18.7) 944 (18.5) 

31 1,325 (24.7) 1,241 (23.2) 1,254 (24.0) 1,224 (24.0) 

Sex of baby,  
n (%) 

    

Male 2,953 (55.0) 2951 (55.2) 2937 (56.2) 2756 (54.1) 

Female 2,411 (44.9) 2389 (44.7) 2287 (43.7) 2334 (45.8) 

Indeterminate 4 (0.01) 3 (0.01) 4 (0.01) 9 (0.01) 

Birthweight (g) 
Mean (SD) 

1224.3 (375.4) 1213.8 (369.3) 1232.1 (372.2) 1215.9 (367.8) 

Died in neonatal 
care, n (%) 

492 (9.2) 487 (9.1) 416 (8.0) 367 (7.2) 

Total days of 
care, n 

305,150 306,267 295,828 298,177 

Days of intensive 
care 

60,995 63,040 60,348 62,058 

Days of high 
dependency care 

77,707 83,726 81,346 86,789 

Days of special 
care 

166,448 159,501 154,134 149,330 
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Table 3-2: The number of days of care (%) provided for selected treatments for the 

babies included in this thesis. 

 Year of discharge/death from neonatal care 

 2011 2012 2013 2014 

Intensive care,  
n (%) 

    

Ventilation 25,836 (8.5) 26,749 (8.7) 23,828 (8.1) 23,123 (7.8) 

Chest drain present 1,074 (0.4)  931 (0.3) 845 (0.3) 891 (0.3) 

Full exchange 
transfusion 

87 (0.03) 141 (0.1) 115 (0.04) 130 (0.04) 

Day of major 
surgery  

693 (0.2) 505 (0.2) 672 (0.2) 606 (0.2) 

Presence of 
replogle tube 

221 (0.1) 230 (0.1) 283 (0.1) 176 (0.1) 

     

High dependency, 
n (%) 

    

Tracheostomy 352 (0.1) 130 (0.04) 135 (0.1) 267 (0.1) 

Non-invasive 
respiratory support 

70,104 
(23.0) 

80,426 (26.3) 79,828 (26.9) 87,930 (29.5) 

Total parenteral 
nutrition (TPN) 

57,044 
(18.7) 

58,289 (19.0) 56,513 (19.1) 57,892 (19.4) 

     

Special care, n (%)     

Stoma in situ 5,233 (1.7) 4,668 (1.5) 4,687 (1.6) 5,033 (1.7) 

Phototherapy 12,855 (4.2) 14,414 (4.7) 14,856 (5.0) 13,805 (4.6) 
 

Common medical conditions experienced by the very preterm babies admitted for 

neonatal care are shown in Table 3-3. Sepsis and jaundice are highly prevalent 

amongst preterm populations, with more than half of these babies experiencing them 

at some stage during their care. An individual baby can experience a number of clinical 

diagnoses whilst in hospital.  

The final discharge destinations of the 21,038 babies in this thesis is described in Table 

3-4. In this analysis, all babies who did not die within neonatal care are considered to 

have been discharged alive from neonatal care including those discharged to other 

locations for continuing care. Sensitivity analyses will be used to examine those 

discharged to other services in more detail (Chapters 5.7.5 and 6.6.4). 
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Table 3-3: The number (%) of diagnoses recorded within the NNRD for the babies 

included in this thesis.  

Clinical condition or diagnosis Number of cases (%) 

Sepsis suspect 14,889 (70.8) 

Prematurity (28 to 31 weeks) 12,733 (60.5) 

Jaundice 11,159 (53.0) 

Respiratory Distress Syndrome 10,050 (47.8) 

Respiratory Distress (newborn) 13,710 (65.2) 

Patent Dutus Arteriosus 4,834 (23.0) 

Prematurity (24 to 27 weeks) 4,091 (19.4) 

Early risk of infection 3,865 (18.4) 

Gastro-oesophageal reflux 3,143 (14.9) 

Anaemia of prematurity/Anaemia 4,618 (22.0) 

Intrauterine Growth Restriction (IUGR) 2,582 (12.3) 

Apnoea 2,565 (12.2) 

Necrotising Enterocolitis (NEC) 2,497 (11.9) 
 

Table 3-4: The number (%) of the final discharge destinations for the babies included in 

this thesis. 

Discharge destination Number of babies (%) 

Died 1,762 (8.4) 

Home/Foster care 18,542 (88.1) 

Ward 267 (1.3) 

Another hospital 219 (1.0) 

Another specialist hospital 74 (0.4) 

Surgery 141 (0.7) 

Cardiac care 24 (0.1) 

Unknown location 9 (0.04) 
 

3.5.2 SUMMARY STATISTICS FOR BABIES WITH UNUSUAL CARE PATHWAYS 

Summary statistics are provided for babies excluded from this thesis (n=189) in Table 

3-5. The demographics of this group changed across the years of the study 

demonstrating the heterogeneity of this group. However, the number of babies within 

this group was small.  
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Table 3-5: Summary statistics of babies born at 24 to 31 weeks gestational age 

excluded from this thesis. 

 Year of discharge/death from neonatal care 

 2011 2012 2013 2014 

Total babies 
admitted, n 

50 45 52 42 

Gestational age 
(weeks), n (%) 

    

24 4 (8.0) 5 (11.1) 9 (17.3) 13 (31.0) 

25 10 (20.0) 6 (13.3) 8 (15.4) 5 (11.9) 

26 8 (16.0) 7 (15.6) 3 (5.8) 7 (16.7) 

27 6 (12.0) 6 (13.3) 4 (7.7) 3 (731) 

28 5 (10.0) 6 (13.3) 7 (13.5) 1 (2.4) 

29 5 (10.0) 10 (20.2) 5 (9.6) 5 (11.9) 

30 4 (8.0) 1 (2.2) 5 (9.6) 2 (4.8) 

31 8 (16.0) 4 (8.9) 11 (21.2) 6 (14.3) 

Sex of baby, 
n (%) 

    

Male 38 (76.0) 22 (48.9) 38 (73.1) 29 (69.1) 

Female 12 (24.0) 23 (51.1) 14 (26.9) 13 (30.9) 

Indeterminate 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 

Birthweight (g) 
Mean (SD) 

1088.8 (425.8) 944.5 (295.1) 1061.3 (462.9) 1062.1 (673.4) 

Died in 
neonatal care, 
n (%) 

0 0 0 0 

Days of care, n 2,746 2,730 4,053 2,574 

Days of 
intensive care 

1,626 1,697 2,261 1,525 

Days of high 
dependency 

care 

1,120 1,033 1,792 1,049 

Days of special 
care 

0 0 0 0 

 

The final discharge destinations of the babies with unusual care pathways is provided 

in Table 3-6. For those babies discharged to other care facilities the final outcome is 

not known. A small number of babies are recorded as being discharged home. These 

may be incorrectly recorded data, or they may have been sent home for palliative care. 

A report by the charity Together for Short Lives suggests that a small number of 

palliative neonatal cases die in children’s hospices or at home (71). However, there are 
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limited guidelines produced by Neonatal Networks (72) and most refer to life-limiting 

conditions, for example Edwards Syndrome (73), that are likely to require 

management beyond the neonatal period. 

Table 3-6: The number (%) of the final discharge destinations for the babies excluded 

from this thesis. 

Discharge destination Number of babies (%) 

Home/Foster care 28 (14.8) 

Ward 23 (12.1) 

Another hospital 50 (26.5) 

Another specialist hospital 26 (13.8) 

Surgery 55 (29.1) 

Cardiac care 7 (3.7) 
 

The babies with unusual care pathways were excluded from the work in this thesis as it 

is impossible to determine if their unusual care was due to missing data due to 

discharge outside the NNRD area or potential palliative care cases. The number of 

these cases was too small to warrant a sub-analysis and so they were not investigated 

further. 

3.5.3 OPERATIONAL DELIVERY NETWORKS 

Neonatal units are grouped together to form regional Operational Delivery Networks 

(ODNs) and work together to provide the full range of neonatal services. The ODNs 

used in this thesis are those that existed in 2013. The North West was the largest ODN 

in terms of the number of admissions, with 13.9% of the total in England. As of 2016, 

this ODN had divided into three separate ODNs: Cheshire and Merseyside, Greater 

Manchester and Lancaster and South Cumbria. The ODN of first admission for each 

baby is described in Table 3-7. 
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Table 3-7: The number (%) of babies admitted to neonatal units within each ODN: 

England 2011 to 2014. 

Operational Delivery Network Number of admissions (%) 

East of England 1,647 (7.8) 

Midlands South West 1,200 (5.7) 

North Central and North East London 1,968 (9.4) 

North West London 1,060 (5.0) 

North West 2,928 (13.9) 

Northern 1,083 (5.2) 

Peninsula and Western 1,400 (6.7) 

South East Coast 1,482 (7.0) 

South London 1,392 (6.6) 

Staffordshire, Shropshire and Black County 972 (4.6) 

Thames Valley and Wessex 1,744 (8.3) 

Trent 1,764 (8.4) 

Yorkshire and Humber 2,252 (10.7) 

Home or in Transit3 36 (0.2) 

Out of area (including non-NHS ) and 
unknown location3 

110 (0.5) 

Total 21,038 

 

3.6 LENGTH OF STAY IN NEONATAL CARE 

3.6.1 OBSERVED LENGTH OF STAY OF SURVIVORS AND DEATHS 

The total length of stay was calculated for each baby. A baby was analysed as having 

died if a death was recorded in neonatal care and otherwise they were considered to 

have been discharged alive from neonatal care, although this may not have been a 

discharge home. A small proportion of discharges were to specialist services including 

surgical centres (n=141, 0.7%); cardiac centres (n=24, 0.1%) and other hospitals 

(n=219, 1%) and there was no subsequent re-admission to a neonatal unit providing 

data to the NNRD (Table 3-4). These babies were not excluded as they had data 

recorded until they reached at least 34 weeks PMA and received at least one day of 

special care. However, the total length of stay, and potentially the proportion of 

                                                      
3 These babies are included in this thesis as they were admitted to a neonatal unit within the NNRD area 
of this study (i.e. one of the 162 units in England) on the first day of life, although they were born 
elsewhere. 
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deaths, is underestimated for these babies. Sensitivity analyses are used to investigate 

the robustness of this assumption throughout this thesis. In this study 8.4% of babies 

died during their neonatal stay which is similar to estimates from other UK studies (14) 

for this population (Table 1-2). 

Figure 3-1 provides the observed length of stay for those babies who died or survived 

to discharge from neonatal care. The length of stay for the babies who died was 

shorter, with most deaths occurring in the initial days of life, and nearly all having 

occurred by 50 days after birth. Conversely, babies who survive were rarely discharged 

from neonatal care in the early days of life. The babies discharged earliest are those 

born at later gestational ages, at 30 and 31 weeks gestational age.  

The observed median length of stay is provided in Table 3-8 for all babies and by the 

outcome of the baby. For the earlier gestational ages, particularly less than 28 weeks 

gestation, where the risk of mortality is highest, the median length of stay and the 

median length of stay for those who survive are different. For those babies born after 

28 weeks gestational age, where the risk of mortality is lower, the median length of 

stay for those who survive is similar to the overall median length of stay.
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Figure 3-1: Observed length of stay for babies who survive to discharge and those who 

die in neonatal care. 

 

Table 3-8: Observed median length of stay overall and by babies who survived to 

discharge and babies who died. 

Gestational 
age (weeks) 

Median length of stay 
(died) (25th, 75th) 

Median length of stay 
(survived) (25th, 75th) 

Median length of 
stay (overall) (25th, 
75th) 

24 8 (2, 23) 119 (105, 135) 102 (16, 125) 

25 11 (3, 31) 104 (91, 120) 97 (76, 115) 

26 8 (2, 29) 89 (77, 105) 85 (71, 102) 

27 3 (10, 32) 77 (66, 91) 74 (62, 89) 

28 6 (2, 26) 65 (55, 78) 63 (53, 77) 

29 3 (1, 17.5) 52 (44, 64) 51 (44, 64) 

30 3 (1, 13) 42 (35, 51) 41 (35, 50) 

31 5 (2, 17) 32 (27, 40) 32 (26, 40) 
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It is possible to separate the cohort of babies who survive into those who were 

discharged home and those discharged to another hospital (Figure 3-2). These groups 

are combined together here to form a ‘discharge from neonatal services’ group. Babies 

are discharged to other hospitals not captured by the NNRD throughout the days after 

birth and there appears to be no time points where this is more likely. 

Length of stay and the proportion of babies who die varies according to gestational age 

with babies born earlier having a higher proportion of deaths and longer lengths of 

stay (Figure 3-3). For all babies, most deaths occurred in the first 50 days of life, with 

the majority occurring in the first week. Early discharges began to occur for babies 

born at 24 weeks at around 80 days, for babies born at 28 weeks discharges began to 

occur at around 40 days and for babies born at 31 weeks, discharges occurred from 

around 20 days after birth. 

Figure 3-2: Observed length of stay for all babies separated by their final discharge 

destination: home, death or another hospital. 
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Figure 3-3: Observed length of stay in neonatal care, by babies who survived to discharge or who died in neonatal care, by week of 

gestational age. 
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3.7 DATA QUALITY 

The NNRD is a data source created from routine medical sources via the Badger.net 

system. Data are entered by clinical staff and the NNRD contains approximately 400 

data items making it one of the most detailed population level neonatal datasets 

available (68). However, as it was never created for research purposes, it may 

potentially suffer from data quality and completeness issues.  

3.7.1 MISSING DATA AND PLAUSIBLE VALUES 

In this thesis babies born at 24 to 31 weeks gestational age were considered. Overall 

data completeness for key demographic variables was good with no missing data 

related to the sex of the baby (n=20 babies were of unknown or ambiguous sex), less 

than 0.5% missing information related to days of care and only one case of missing 

data for birthweight.  

Data quality checks and assurances are imposed on the NNRD data to ensure that 

results are not only complete but also reliable (68). This is facilitated by identification 

of missing and inconsistent values which are fed back to neonatal units for correction. 

However, even following these checks, certain variables may have extreme values 

which may be due to incorrect data entry, or because they are a correct and valid 

results which happens to be extreme or unusual. For example, Figure 3-4 provides a 

scatter plot of birthweight against gestational age for males and females. When 

birthweight is considered in this thesis those babies with missing data (n=1) or a 

birthweight more than three standard deviations from the observed median for a 

given week of gestational age (n=117) by sex are excluded (74). Similarly, the 20 babies 

with ambiguous sex are excluded when sex is considered in the analyses.  
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Figure 3-4: Birthweight for gestational age (plotted in weeks and days to aid reading of 

the graph) with three standard deviations highlighted (upper/lower). 

 

3.8 CHAPTER CONCLUSION 

This chapter has provided an overview of the NNRD dataset used throughout this 

thesis. A brief overview of the ethical and R&D approvals obtained to use the NNRD 

data for this research project was provided. Agreement was obtained from 100% of 

neonatal units in England by December 2014 to allow subsequent transfer of the data 

in early 2015, followed by a data update in summer 2015. Summaries of the data used 

throughout this work and explanations for the relevant exclusions were also provided.
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4 SURVIVAL ANALYSIS FOR THE ESTIMATION OF NEONATAL 

LENGTH OF STAY 

4.1  CHAPTER OVERVIEW 

Survival analysis considers the modelling of time until an event of interest, often 

death, occurs. In this chapter, the theory and concepts of survival analysis will be 

introduced, notably the survival and hazard functions. The most commonly used 

statistical method, the Cox proportional hazards model, will be described in detail and 

a preliminary analysis investigating the time babies spend in the neonatal unit will be 

undertaken. Alternative approaches to undertaking survival analysis, including use of 

flexible parametric models, will be explored. The strengths and limitations of these 

approaches to measure length of stay in neonatal care will be discussed before 

potential extensions are investigated in subsequent chapters.  

4.2  INTRODUCTION  

Survival analysis is a branch of statistics that describes a range of statistical methods 

concerned with the measurement of time until an event occurs. As this form of 

analysis is frequently used to investigate mortality it is known as ‘survival’ analysis 

although it is also known as time-to-event analysis, reliability analysis (engineering) 

and event history analysis (social sciences). The occurrence of a particular event of 

interest is often described as a ‘failure’ although there is no requirement for the event 

to be a negative outcome. Survival analysis can be applied to outcomes other than 

mortality, for example time to reoccurrence of an infection or time to discharge from 

hospital.  

In a conventional survival analysis time is measured between two events. One example 

which relates to neonatal care would be to set the time origin (start of the analysis 

time period) as the time point when a baby is born (Figure 4-1) and measure time until 

a potential event occurs, such as death. If the participant does not experience the 

event during the follow up time then their observation is censored (see Chapter 4.3). 
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Survival analysis offers advantages over other methods as these approaches can 

handle time-to-event data which are usually skewed distributions, often with many 

early events and few late ones. If there is no censoring, then other statistical 

approaches, for example using a logistic regression to predict survival to certain time 

points (e.g. survived to 30 days: yes/no), could be used although these may still not 

answer the question of interest. The probability of experiencing the event as a function 

of time is often of more interest than simply whether an event occurs or not and 

survival analysis allows this investigation of time.  

Survival analysis methods can be used to investigate the time that passes before a 

baby leaves neonatal care. Leaving neonatal care could be via a discharge home or 

dying in neonatal care, or a combined outcome of both. These approaches can be used 

to help answer questions including: “How long will a preterm baby spend in neonatal 

care?” or, if death is considered in the analysis: “What is the probability a preterm 

baby will die during their time in neonatal care?” 

Figure 4-1: A pictorial representation of a standard survival analysis measuring time to 

event: death or discharge.  

 

4.3 CENSORING 

Not all subjects will necessarily experience the event of interest during the time 

window observed by the study. Alternatively, they may experience the event at a time 

not observed by the research team. The approach to handle this issue is known as 

censoring. 

Overall, there are three types of censoring: left-, right- and interval-censoring. Left-

censoring is when the event occurs before follow-up time has begun (Patient A in 

Figure 4-2). Right-censoring occurs when the event of interest happens after the 

conclusion of the study’s data collection. For example, if the final event was discharge 
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from the neonatal unit, and a baby still remained in hospital when the data collection 

was concluded, the observation would be right-censored (Patient B in Figure 4-2). This 

is also known as administrative censoring. 

Interval-censoring occurs when the event happens between two points in time (Patient 

C in Figure 4-2), but it is unclear exactly when it has occurred. For example, in a study 

of infection rates a patient may experience reinfection between two appointments and 

it is unclear when this has happened. Patient D in Figure 4-2 is an example of a person 

who is part of the study and experienced their event during the study and therefore is 

not censored.  

The censoring mechanisms are usually unknown and therefore assumptions are made 

about censoring (75). Censoring is assumed to be non-informative in this thesis, i.e. the 

survival times provide no information about the distribution of the censoring times 

and vice versa. An alternative way of considering this is that an individual who is 

censored is no healthier or sicker than those who remain in follow up and they have 

not dropped out of the study because of any impact on them because of the study. 

The assumption of non-informative censoring is usually considered valid for instances 

of right-censoring, but not if participants in a study are lost to follow up (76) as this 

may be an indicator of a different population, for example if all losses to follow up are 

patients who are discharged to hospices. 
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Figure 4-2: Pictorial representation of left- (A), right- (B) and interval- censoring (C) and 

no censoring (D). 

 

4.4 SURVIVAL AND HAZARD FUNCTIONS 

The two main components of interest in a survival analysis are the survival function 

and hazard function. The survival function 𝑆(𝑡) measures the proportion of subjects 

who have not experienced the event as a function of time, i.e. the proportion still alive 

over time if the outcome is mortality. The rate of the decline of the survival function 

depends on the risk of experiencing the event and this is known as the hazard function.  

4.4.1 SURVIVAL FUNCTION 

The time point 𝑇 is a non-negative random variable that denotes the time when the 

event will occur and 𝑡 is some specified time such that 𝑇 occurs at a point in time after 

𝑡. The survival function 𝑆(𝑡) represents the probability that a patient has not had an 

event at time 𝑡 and is defined as: 

𝑆(𝑡) = 𝑃(𝑇 ≥ 𝑡) 

Equation 4-1 
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At time 0, no subjects will have experienced the event and therefore 𝑆(0) = 1 (i.e. 

everyone is event-free at the start of follow up).  

The probability density function 𝑓(𝑡), which is the probability of experiencing an event 

at time 𝑡 is: 

𝑓(𝑡) = lim
𝛿→0

𝑃(𝑡 ≤ 𝑇 ≤ 𝑡 + 𝛿)

𝛿
 

Equation 4-2 

where 𝛿 is a small increase in time and the distribution of event times 𝐹(𝑡) can be 

written as: 

𝐹(𝑡) = 𝑃(𝑇 < 𝑡) = ∫ 𝑓(𝑢)𝑑𝑢
𝑡

0

 

Equation 4-3 

The survival function, and the event times relate by: 

𝑆(𝑡) = 𝑃(𝑇 ≥ 𝑡) = 1 − 𝑃(𝑇 < 𝑡) 

or alternatively 

𝑆(𝑡) = ∫ 𝑓(𝑢)𝑑𝑢
∞

𝑡

 

Equation 4-4 

It is generally most informative to produce a plot of the survival function against time 

to aid interpretation. 

4.4.2 HAZARD FUNCTION AND RATIO 

The rate at which the survival function decreases depends on the risk of experiencing 

the event at time 𝑡 and this is known as the hazard function: 𝛼(𝑡). The hazard function 

is the instantaneous rate of failure at time 𝑡, given that the participant has not 
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experienced the event so far. The hazard function is an estimate of the incidence rate 

and the unit is the number of events per unit of time. This can be written as: 

𝛼(𝑡) = lim
𝛿→0

𝑃(𝑡 ≤ 𝑇 ≤ 𝑡 + 𝛿|𝑇 ≥ 𝑡)

𝛿
 

Equation 4-5 

It is possible to relate the hazard and survival function to each other mathematically. 

The hazard is the probability of experiencing the event in the next instant given that it 

has not been experienced so far: 

𝛼(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
 

Groups can be compared using hazard ratios in a survival analysis, which is the ratio of 

the hazard rates between different levels of an explanatory variable. The hazard ratio 

𝐻𝑅(𝑡) between two groups A and B is denoted: 

𝐻𝑅(𝑡) =
𝛼𝐴(𝑡)

𝛼𝐵(𝑡)
 

Equation 4-6 

The ratio indicates if the hazard is higher (hazard ratio > 1) or lower (hazard ratio < 1) 

in one group than the other. For example, a hazard ratio of two can be interpreted as 

that at any time point, twice as many participants in group A compared to group B 

experience the event. The hazard ratio between the groups is reported as one number 

and is assumed to be constant over time. This is known as the proportional hazards 

assumption (see Chapter 4.7.1). However, even when the proportional hazards 

assumption is relaxed it is possible to estimate hazard ratios, but as these will vary 

over time the values should be presented graphically against time. 
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4.4.3 CUMULATIVE HAZARD FUNCTION 

A final useful statistic is the cumulative hazard function A(𝑡) which is defined as: 

A(𝑡) = ∫ 𝛼(𝑢)𝑑𝑢
𝑡

0

 

Equation 4-7 

This is a measurement of how much ‘hazard’ a person has been exposed to by time 𝑡, 

or how much hazard they have accumulated. Statistical approaches that model on the 

cumulative hazard scale will be introduced in Chapter 5. The survival function and the 

cumulative hazard are related by: 

𝑆(𝑡) = exp (−𝐴(𝑡)) 

Equation 4-8 

4.5 APPROACHES FOR MODELLING TIME-TO-EVENT DATA 

There are several statistical approaches that can be used in survival analysis. Broadly, 

these fall into four groups: non-parametric, semi-parametric, parametric and flexible 

parametric analyses.  

The Kaplan-Meier estimator (77) is a non-parametric statistic used to estimate the 

survival function. The estimator can be plotted and this appears as series of steps 

which decrease each time there is an event. With a large sample size, or minimal 

censoring, the Kaplan-Meier estimator approaches the observed survival. This will be 

introduced in Chapter 4.6. 

The use of semi-parametric models makes no assumption about the shape of the 

baseline hazard function. The baseline hazard function is the value of the hazard 

function when all covariates are set to zero. This approach is known as Cox 

proportional hazards modelling and this is the most common survival model used in 

medical statistics (78). The estimation of the Cox model does not directly model the 

baseline hazard, although it is possibly to subsequently estimate it if required, and 

therefore it is only possible to estimate the survival function at the times when events 
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are observed. This leads to a step function for the survival function. The Cox model will 

be discussed further in Chapter 4.7. 

Parametric methods assume a functional form for the shape of the baseline hazard, for 

example a Weibull distribution. Whilst this approach can be flexible, it forces the 

hazard to be monotonic (increasing or decreasing with no turning points) leading to a 

lack of flexibility in the shape of the baseline hazard which may not be sensible to 

assume (79). However, parametric methods have advantages over semi-parametric 

approaches as the modelling of the hazard means it is possible to model time points 

where no events occurred, and extrapolation beyond the final time point is also 

possible. This approach is discussed further in Chapter 4.8. 

Finally, flexible parametric models are an extension of parametric models, and 

overcome the limitation imposed by the modelling of the baseline hazard using a 

parametric shape (80). There are a range of flexible parametric models available and 

one approach extends Weibull (parametric) modelling via use of restricted cubic spline 

functions to model the baseline cumulative hazard. Models are estimated on the log 

cumulative hazard scale as this is generally a stable function. A further discussion is 

found in Chapter 4.8. 

4.6 NON-PARAMETRIC ESTIMATION 

The Nelson-Aalen estimator (81) is the non-parametric estimate of the cumulative 

hazard rate and is denoted: 

�̂�(𝑡) =  ∑
𝑁𝑖

𝑌𝑖

𝑛

𝑖=1

 

Equation 4-9 

where 𝑁𝑖 is the number of events and 𝑌𝑖 is the number of participants at risk at time 𝑡𝑖. 

The shape of the Nelson-Aalen estimator provides an indication of the shape of the 

hazard rate. 

 

 



Survival analysis for the estimation of neonatal length of stay 

81 
 

 

The Kaplan-Meier estimator (77) is the non-parametric estimate of the survival 

function. The estimator of the survival function �̂�(𝑡) is denoted: 

�̂�(𝑡) =  ∏ (1 −
𝑁𝑖

𝑌𝑖
)

𝑛

𝑖=1

 

Equation 4-10 

where 𝑡 is the duration of the study, 𝑁𝑖 is the number of events up to 𝑡𝑖 and 𝑌𝑖 is the 

number of participants at risk just prior to 𝑡𝑖. 

4.7  COX PROPORTIONAL HAZARDS MODEL 

One approach for modelling survival data is the Cox proportional hazards model (78). A 

Cox model can be considered as two components: the hazard function and the effects 

of the covariates. The hazard rate can be estimated, given the covariates, as: 

𝛼(𝑡|𝐙) = 𝛼0(𝑡)exp (𝜷′𝐙) 

Equation 4-11 

Written in this form, 𝛼0(𝑡) is the baseline hazard and 𝜷′𝐙 is the linear predictor (𝜷′is 

the regression coefficients and 𝐙 is the value of the covariates) which describes how 

the hazard varies in response to the values of the covariates. The baseline hazard 

function is found when all covariates have been set to zero and the estimates of the 

regression coefficients are obtained by maximising the partial likelihood (78) which can 

be written as: 

∏ (
exp (𝜷′𝐙𝒊)

∑ exp (𝜷′𝐙𝒊)𝑖𝜖𝑅(𝑡𝑖)
)

𝑑𝑖
𝑛

𝑖=1

 

Equation 4-12 

where 𝑖 represents the individuals still at risk of event 𝑑, 𝑡𝑖 are the events times and 

𝑅(𝑡𝑖) is the risk-set, the group of individuals still alive and uncensored, prior to time 𝑡𝑖. 

The partial likelihood is independent of the baseline hazard, as can be seen from 
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Equation 4-12 which does not rely on 𝛼0(𝑡). Therefore the regression coefficients can 

be estimated with no information about the baseline hazard. If the baseline hazard is 

required then estimators developed by Breslow or Kalbfleisch and Prentice can used 

(82, 83). The Breslow estimator maximises the baseline hazard by substituting the 

estimates of the regression coefficients into the full likelihood function. Full details can 

be found in the references: (82, 83). 

The survival function and cumulative hazard for the Cox model, given covariates, are 

defined as: 

𝑆(𝑡|𝒁) = 𝑆0(𝑡)exp (𝜷′𝐙) 

Equation 4-13 

𝐴(𝑡|𝒁) = 𝐴0(𝑡)exp (𝜷′𝐙) 

Equation 4-14 

The Cox model is a semi-parametric model as no assumption is made about the shape 

of the baseline hazard as this is not directly estimated (84). This property can be useful 

when hazards are likely to have an unusual shape not easily captured by other 

distributions. However, a consequence of this is that proportional hazards, that the 

hazard ratio is constant over time, must be assumed. This is not a property isolated to 

the Cox model, and can be seen when considering the calculation of the hazard ratio. If 

the model only contains a binary variable 𝑥1which takes values 0 or 1 then the hazard 

rate when 𝑥1 = 0 is 𝛼0(𝑡) and when 𝑥1 = 1 the hazard rate is 𝛼0(𝑡)exp (𝛽). Therefore, 

the hazard ratio, comparing one group to the other, is: 

𝛼0(𝑡)exp (𝛽)

𝛼0(𝑡)
 

The baseline hazards 𝛼0(𝑡) cancel out and 𝛽 is the log hazard ratio which can be 

exponentiated to give the hazard ratio, which does not depend on time. This approach 

and many other survival analysis methods are modelled on the log hazard scale. 

There are situations when there can be ties in the time that events occur, particularly 

when multiple events can occur at the same time. This is often the case in neonatal 

care as the measurement of time for the commissioning of care is in whole days. This is 
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not because these data are interval-censored (see Chapter 4.3), but because 

commissioning occurs on a day-to-day basis and therefore irrespective of how much of 

a day occurs, a whole day is counted for cost purposes. Additionally, the deaths in 

neonatal care often occur in the early days of life, adding more ties to the data. Ties in 

the data can create issues with the calculation of the partial likelihood and to 

accommodate this methods are proposed to break the tie, although most software 

uses a default of the Breslow method (85). The Breslow approximation to the partial 

likelihood sums the covariate patterns for each subject experiencing the event at the 

same time point and raises the result to a power equal to the number of events (𝑑𝑗) 

which have tied at that time point (84, 86). This can be applied to Equation 4-12 to give 

an adjusted partial likelihood for participant 𝑖 at the 𝑗th failure time: 

∏ exp (𝜷′𝐙𝒊)𝑖∈𝑅𝑗

{∑ exp (𝜷′𝐙𝒊)𝑖∈𝑅𝑗
}

𝑑𝑗
 

Equation 4-15 

Other approaches to handle tied event times are the Efron approximation, the 

Kalbfleisch and Prentice exact expression or by subtracting a tiny random amount from 

each tied survival time (86). In this thesis, I use the Breslow estimator to correct for 

tied times in the data. 

4.7.1 PROPORTIONAL HAZARDS ASSUMPTION FOR THE COX MODEL 

If proportional hazards are assumed then this can be formally tested using Schoenfeld 

residuals and the Therneau-Grambsch test. Schoenfeld residuals are the observed 

covariate values for an individual minus the expected value, and there is a residual for 

every individual who experienced an event, for every covariate in the model. These 

residuals can be plotted against a function of time (87) and investigated for time 

trends. To aid examination of whether there is a trend a smoothed line is usually fitted. 

If there are no issues of proportional hazards then the residuals will be randomly 

scattered and the smoothed line will be relatively straight (see example in Figure 6-12, 

babies born at 24 weeks). If this line is increasing, decreasing or changing substantially 
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over time this indicates that the hazard may not be constant over time (see example in 

Figure 6-14). Thus, the proportional hazards assumption may be violated. 

A formal significance test of the smoothed line used with the Schoenfeld residuals is 

the Therneau-Grambsch test (85). This test fits a generalised linear model to the 

residuals and tests if the slope is non-zero. A significant result, here taken to be 

p<0.001, indicates the slope is not flat and that there are potential issues with 

proportionality. It is not unusual with large datasets to detect very small departures 

from proportional hazards, or with uncommon events, to over-fit the test. Therefore, 

the Therneau-Grambsch test should be used alongside the Schoenfeld residual plots 

and a lower threshold for significance is used in this thesis. 

The relaxation of the proportional hazards assumption can be implemented by 

incorporating time-dependent effects into the statistical model. These are 

computationally intensive and can be time consuming with standard software in large 

datasets (88), although they have become much more accessible in standard survival 

analysis in recent years. This will be discussed further in Chapter 5. 

4.7.2 PRELIMINARY SURVIVAL ANALYSIS USING THE COX MODEL 

I undertook a preliminary analysis using the Cox model, fitted via the stcox command 

in Stata v 14 to investigate the uses of survival analysis to investigate length of stay. 

Standard survival analyses such as that introduced here can only consider one 

outcome, and therefore all babies will be analysed together with a combined end point 

of having left hospital for any reason, i.e. the analysis measures the time spent in 

hospital. The 21,038 babies included in this analysis were described in Chapter 3. The 

distributions of length of stay for babies that survived and babies that died were seen 

to be very different in Figure 3-1, although in this section of the thesis they are 

combined. 

Kaplan-Meier plots for the proportion of babies remaining in hospital over time are 

presented in Figure 4-3 by week of gestational age at birth. At the earlier weeks of 

gestational age at birth, the Kaplan-Meier curves initially decrease, then plateau and 

then decrease again. The initial decrease in the curve is created by the occurrence 
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deaths in the initial days after birth. The curve then plateaus at the approximate death 

proportion for that gestational age, although some deaths do occur later as seen in 

Figure 3-1. The curve then decreases again as the discharges from the neonatal unit 

start to occur. All curves eventually end at around zero when all babies will have either 

died or been discharged from neonatal care.  
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Figure 4-3: Kaplan-Meier plots to denote the proportion of babies remaining in neonatal care over time by week of gestational age.  
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A Cox proportional hazards model was fitted including gestational age at birth, 

modelled categorically with 27 weeks as the baseline group. Babies born at the 

extremes of gestational age in this cohort (24 weeks and 31 weeks) are very different 

from the other babies and therefore 27 weeks of gestational age was chosen to 

provide a more meaningful comparison. The hazard ratios, with their 95% confidence 

intervals and p-values, are presented in Table 4-1. These are the hazard ratios for 

leaving hospital for each week of gestational age at birth.  

The combined endpoint of time to death or discharge results in hazard ratios which 

relate to the hazard of leaving hospital. At any point in time the babies born at 31 

weeks leave hospital at 6.4 times the rate of those born at 27 weeks (95% CI: 6.07 to 

6.76, p<0.001). Conversely, the babies born at 24 weeks are at a 41% reduced hazard 

of leaving hospital at all time points compared to those born at 27 weeks (95% CI: 0.54 

to 0.63, p<0.001). 

Table 4-1: Hazard ratios with 95% confidence interval for the hazard of leaving 

hospital. 

Gestational age 
(weeks) 

Hazard ratio 95% Confidence 
Interval 

p-value 

24 0.59 0.54, 0.63 <0.001 

25 0.61 0.57, 0.66 <0.001 

26 0.77 0.73, 0.83 <0.001 

27 Baseline Baseline Baseline 

28 1.34 1.27, 1.42 <0.001 

29 2.07 1.96, 2.19 <0.001 

30 3.48 3.30, 3.68 <0.001 

31 6.40 6.07, 6.76 <0.001 
 

The survival probability, here the probability of remaining in hospital, can be estimated 

using Equation 4-13. These probabilities are presented in Figure 4-4 by week of 

gestational age. These probabilities are a step function as the survival probability is 

only estimated at observed event times. However, as this is a large dataset, with many 

events, the curves appear reasonably smooth. 
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Figure 4-4: The predicted probability of remaining in hospital over time estimated from the Cox model by week of gestational age. 
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Figure 4-5: The predicted probability of remaining in hospital estimated from the Cox model overlaying the Kaplan-Meier estimates, by 

week of gestational age. 
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The model fit seen here was poor which can be seen when comparing the Kaplan-

Meier estimates (Figure 4-3) with the probabilities predicted from the Cox model 

(Figure 4-4) which should broadly follow similar shapes. These have been overlaid 

together in Figure 4-5 to demonstrate the differences. This poor fit is due to two inter-

related reasons: 1) the assumption of proportional hazards is likely to not hold and 2) 

the model fit is driven by the babies born at 30 and 31 weeks gestational age who have 

a different shaped ‘survival’ as seen in Figure 4-3.  

The predicted median length of stay in hospital for all babies can be identified from 

Figure 4-4 and these are also provided by week of gestational age with range in Table 

4-2. For example, 50% of babies born at 24 weeks remain in hospital at least 87 days 

after birth (Table 4-2). For babies born at 31 weeks gestational age, 50% still remained 

in hospital 34 days after birth. Other percentiles could be identified and these could be 

used as estimates of length of stay.  

The predictions of median length of stay are different to the observed median length 

of stay (Table 4-2), particularly for babies born at less than 28 weeks gestational age 

where mortality is high. However, the length of stay is estimated well when the 

mortality rate is lower. 

Table 4-2: Predicted (from the Cox model) and observed median length of stay for all 

babies by week of gestational age, with 10th and 90th centile. 

Gestational age 
(weeks) 

Predicted median length of 
stay (days)  

Observed median length of 
stay (days)  

24 87 (40, 151) 102 (2, 145) 

25 85 (39, 148) 97 (8, 135) 

26 77 (36, 129) 85 (16, 119) 

27 69 (33, 118) 74 (42, 108) 

28 61 (30, 104) 63 (44, 94) 

29 51 (25, 86) 51 (38, 78) 

30 42 (16, 69) 41 (29, 63) 

31 34 (11, 54) 32 (22, 50) 

 

One approach to improve the model fit is the introduction of time-dependent 

covariates, thereby relaxing the assumption of proportional hazards, allowing the 

estimated hazards for the different weeks of gestational age to not be proportional 
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with each other. This will be discussed in more detail in Chapter 5. An alternative 

approach is by stratifying the analysis to babies who are similar to each other.  

4.7.3 STRATIFICATION OF THE COX MODEL 

The model fit seen before was poor, particularly when comparing the Kaplan-Meier 

estimates with the probabilities predicted from the Cox model (Figure 4-5). The Cox 

model is a flexible approach which makes no assumption about the shape of the 

hazard, and could therefore capture a shape with two or more turning points. 

However, as the babies born at 30 and 31 weeks contribute nearly 40% of all births 

(Table 3-1) the model fit is largely driven by this group, who have a low mortality rate 

and shorter length of stay compared to those born at less than 28 weeks gestational 

age.  

In Figure 4-6 the analysis is stratified by babies born at a gestational age of 24 to 25 

weeks; 26 to 27 weeks; 28 to 29 weeks and 30 to 31 weeks. The predicted probabilities 

are again overlaid with the Kaplan-Meier curves. There is now greater agreement 

between the model predictions and observed data, indicating the model has been 

improved. However, some issues remain with the prediction of probabilities for babies 

born at 24 and 25 weeks gestational age.  

Following stratification, the estimated median length of stay in hospital (Table 4-3) is 

now closer to the observed median time across all gestational ages. Even for babies 

born at 24 and 25 weeks the median length of stay is close to the observed data 

indicating the model performs well for estimating length of stay. Therefore, the Cox 

model can potentially be flexible enough to capture this complex shape which varies 

between weeks of gestational ages, if proportional hazards can be relaxed in some way 

such as via stratification.
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Table 4-3: Predicted (from the stratified Cox model) and observed median length of 

stay for all babies by week of gestational age, with 10th and 90th centile. 

Gestational age 
(weeks) 

Predicted length of stay 
(days) (10th, 90th) 

Observed median length of 
stay (days) (10th, 90th) 

24 102 (7, 147) 102 (2, 145) 

25 97 (5, 139) 97 (8, 135) 

26 83 (33, 125) 85 (16, 119) 

27 76 (27, 109) 74 (42, 108) 

28 61 (40, 103) 63 (44, 94) 

29 53 (30, 79) 51 (38, 78) 

30 39 (25, 71) 41 (29, 63) 

31 34 (22, 50) 32 (22, 50) 
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Figure 4-6: Predicted probabilities (from the stratified Cox model) of remaining in hospital by week of gestational age overlaid with the 

Kaplan-Meier plots. 
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4.8 EXTENDING THE COX MODEL  

An alternative approach to the Cox proportional hazards model is use of a parametric 

model. This approach replaces the baseline hazard 𝛼𝑜(𝑡) with a specified function. 

Various distributions can be used to specify the analytical form of the baseline hazard 

including the Exponential; Gompertz and Log-Normal (81). The Weibull distribution is 

commonly used. If the survival times are assumed to have a Weibull distribution 

𝑊(𝛿, 𝛾) then the survival and hazard functions are defined as: 

𝑆(𝑡) = exp (−𝛿𝑡𝛾) 

𝛼(𝑡) = 𝛿𝛾𝑡𝛾−1 

Equation 4-16 

where the values of 𝛿 and 𝛾 relate to the scale and shape parameters of the Weibull 

distribution and can provide a range of different shapes for the hazard and survival 

function (Figure 4-7). If the value of 𝛾 > 1 then the hazard is increasing, constant if 

𝛾 = 1 (this is also the exponential model) and if 𝛾 < 1 then the hazard is decreasing. 

Whilst a variety of hazard shapes can be obtained, these are restricted to be 

monotonic, i.e. have no turning points, whereas the Cox model does not impose this 

condition. Therefore parametric models may be unable to capture the shape of the 

hazard (89). 

The cumulative hazard is defined as: 

𝐴(𝑡) =  𝛿𝑡𝛾 

Equation 4-17 
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Figure 4-7: Different shapes of hazard and survival functions obtained from the Weibull 

distributions with values of 𝛾=0.5, 1, 2 or 3 and 𝛿 = 1. 

 

 

4.8.1 EXTENDING THE WEIBULL MODEL TO THE FLEXIBLE PARAMETRIC 

APPROACH  

The Weibull model can be extended further to increase the flexibility. One approach 

(89) considers the Weibull cumulative hazard (Equation 4-17) written in logarithmic 

form as a constant term and a linear function of log time: 

ln 𝐴(𝑡) = ln (𝛿) + 𝜸1 ln(𝑡) 

Equation 4-18 

This function of time may not have adequate flexibility to capture the shape of the 

cumulative hazard and extensions were proposed by Royston and Parmar (80) and 

subsequently extended by Lambert and Royston (79). The revised approach uses 

restricted cubic splines (90), piecewise polynomial functions joined at pre-specified 

time-points known as knots, to model the baseline cumulative hazard.  
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A visual demonstration of splines is presented in Figure 4-8 where knots, denoted by 

the red dashed lines, are placed throughout a random function. To create the 

restricted cubic splines, firstly separate cubic polynomials are fitted between the knots 

which assume nothing about the polynomials between the other knots (a). The first 

constraint is that the separate curves must meet at the knots to form a continuous, 

but not necessarily smooth, function (b). The second constraint forces the function to 

have continuous first derivatives, which smooths the function at the knots (c). Finally, 

the second derivatives are forced to be continuous and, with restricted cubic splines, 

the function is forced to be linear before the first knot and after the final knot (d). The 

use of these constraints aids the creation of a smooth, non-linear function, known as 

restricted cubic splines which can be used to model complex shapes. The production of 

Figure 4-8 uses Stata code provided by Paul Lambert as part of the MSc Medical 

Statistics (University of Leicester). 

Figure 4-8: Constraints placed on non-linear functions to create restricted cubic splines. 

 

Use of restricted cubic splines extends this methodology to flexible parametric 

modelling. With this approach it is possible to assume proportional hazards providing 
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similar results to that from the Cox model. When assuming proportional hazards, 

similarly to Equation 4-14, the cumulative hazard including covariates can be written 

as: 

ln{𝐴(𝑡|𝒁)} = ln{𝐴0(𝑡)} + 𝜷′𝒁 

Equation 4-19 

A restricted cubic spline with 𝒏𝟎 knots can be denoted as 𝑠{ln (𝑡)|𝜸, 𝒏𝟎} and used to 

re-estimate the baseline log cumulative hazard as: 

ln{𝐴(𝑡|𝒁)} = 𝛈 = 𝑠{ln(𝑡) |𝜸, 𝒏𝟎} + 𝜷′𝒁 

Equation 4-20 

This can be transformed to the survival and hazard functions as: 

𝑆(𝑡|𝒁) = exp{− exp(𝜼)}   and    𝛼(𝑡|𝒁) =
𝑑𝑠{ln (𝑡)|𝜸, 𝒌0}

𝑑𝑡
exp (𝛈) 

Equation 4-21 

In this section the flexible parametric modelling still assumes proportional hazards, 

although an advantage of this approach is that it is possible to model complex time-

dependent effects with relative ease, and relax the proportional hazards assumption, 

and this will be explored in Chapter 5. Other advantages of flexible parametric 

modelling are that the survival and hazard function are smooth, there is interpretation 

of the hazard and survival even at time points when events have not been observed 

and the baseline hazard is directly estimated (79). 

4.8.2 PRELIMINARY SURVIVAL ANALYSIS USING THE FLEXIBLE PARAMETRIC 

MODEL 

I fitted a flexible parametric model with four knots using stpm2 in Stata v 14 which 

included a covariate for gestational age at birth, modelled categorically with 27 weeks 

as the baseline group. The hazard ratios, with their 95% confidence intervals and p-

values, are presented in Table 4-4. As before with the Cox model (Table 4-1), these are 

the hazard ratios for leaving hospital for each week of gestational age at birth. This 

flexible parametric model assumes proportional hazards and therefore the results are 
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equivalent to that seen in Table 4-1. The probabilities are not presented but these 

would be equivalent to that seen in Chapter 4.7.2 (Figure 4-4). However, the predicted 

median length of stay is provided in  

Table 4-5 and the estimates are seen to be similar to those in Table 4-2, with only small 

differences in the range. 

Table 4-4: Hazard ratios from the flexible parametric model, with 95% confidence 

interval, for the hazard of leaving hospital. 

Gestational age 
(weeks) 

Hazard ratio 95% Confidence 
Interval 

p-value 

24 0.58 0.54, 0.63 <0.001 

25 0.61 0.57, 0.65 <0.001 

26 0.78 0.73, 0.83 <0.001 

27 Baseline Baseline Baseline 

28 1.34 1.27, 1.42 <0.001 

29 2.10 1.98, 2.22 <0.001 

30 3.54 3.35, 3.74 <0.001 

31 6.40 6.03, 6.72 <0.001 

 

Table 4-5: Predicted (from the flexible parametric model) and observed median length 

of stay for all babies by week of gestational age, with 10th and 90th centile. 

Gestational age 
(weeks) 

Predicted median length of 
stay (days) (10th, 90th) 

Observed length of stay 
(days) (10th, 90th) 

24 87 (41, 148) 102 (2, 145) 

25 85 (40, 145) 97 (8, 135) 

26 77 (37, 130) 85 (16, 119) 

27 69 (33, 117) 74 (42, 108) 

28 61 (30, 103) 63 (44, 94) 

29 51 (24, 85) 51 (38, 78) 

30 42 (19, 68) 41 (29, 63) 

31 34 (13, 54) 32 (22, 50) 

4.9 DISCUSSION  

In this preliminary analysis, I combined the outcomes of death and discharge to 

calculate estimates of length of stay using Cox proportional hazards modelling and 

flexible parametric modelling. For the Cox model, the probability of remaining in the 
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neonatal unit was calculated by week of gestational age at birth, and the median 

length of stay was predicted. The purpose of this chapter was to introduce the 

concepts of survival analysis which will be extended in later chapters. 

4.9.1 PROPORTIONAL HAZARDS 

The journal article which introduced the Cox proportional hazards model is one of the 

most cited papers in medicine, having received over 43,000 citations as of February 

2017 (78). The wide use of this methodology is due to the ease of implementation and 

interpretation, and because there is no need to investigate the shape of the baseline 

hazard. In some circumstances alternative methods, including those that impose 

parametric assumptions, may lead to inaccurate results (91) and therefore there are 

advantages to using the Cox model which makes no assumption about the baseline 

hazard shape (78). However, a criticism by many is that the Cox model is often 

overused particularly in situations where it may not be appropriate and indeed even 

Sir David Cox who devised the method has agreed this is true in certain circumstances 

(92).  

The assumption of proportional hazards is often not tested, with a review of cancer 

studies from 1995 indicating that only 5% of studies investigated the assumption at 

that time (93). It is possible to assess this assumption after fitting the model using the 

Therneau-Grambsch test (85, 94) and by plotting Schoenfeld residuals (87). The 

proportional hazards assumption can be relaxed by incorporating time-dependent 

effects, that is, an interaction between covariates and time. However, this can be 

problematic with the Cox model, due to the computational power required (88). An 

alternative presented here was to stratify the model by groups of babies who share 

similar characteristics where proportionality within each stratum may be more likely to 

hold. 

Proportional hazards are unlikely to hold in this analysis and the shape of the baseline 

hazard was driven by the babies born at 30 and 31 weeks gestational age. Most of 

these babies survive to discharge and therefore the shape of the hazard will be heavily 

influenced by this group leading to poorly estimated probabilities, particularly for 

babies born at 24 and 25 weeks gestational age who are very different to the rest of 



Survival analysis for the estimation of neonatal length of stay 

100 
 

the cohort. To overcome this, the analysis was stratified so that babies born at similar 

weeks of gestational age were grouped together.  

Whilst stratification overcame some of the issues caused by proportional hazards, the 

combined endpoint was not informative for use by clinicians in parental counselling. 

The combining of these two groups makes the estimates of length of stay difficult to 

interpret as babies who die generally spend less time in hospital than those who 

survive to discharge. The assumption of proportional hazards was not tested here as 

this analysis is for illustration as it is fundamentally flawed from a clinical perspective. 

The flexible parametric analysis which was undertaken in this chapter also assumed 

proportional hazards and therefore had the same limitations as the Cox model. 

However, time-dependent covariates could have been incorporated and this will be 

discussed further in Chapter 5. 

4.9.2 PREDICTION OF LENGTH OF STAY 

As the Cox model does not impose a distribution on the shape of the hazard, it is only 

possible to model events at observed time points, and prediction beyond the range of 

the data (extrapolation) or where events did not occur within the data (interpolation) 

is not possible. In these data there are generally events on every day and this potential 

limitation can be overcome further by using the flexible parametric model which 

provides a functional form for the hazard. 

For babies born at the earliest weeks of gestational age the predicted median length of 

stay will be much lower than the actual length of stay for surviving babies. An 

alternative approach to allow consideration of the outcomes of death and discharge 

from neonatal care is to model these as two outcomes with different event time 

distributions. These would be considered ‘competing’ events (76, 95, 96), as the 

occurrence of one prevents the other from ever occurring. The most appropriate 

methodology to analyse these data is an extension of survival analysis known as 

competing risks analysis and this will be introduced and investigated in Chapter 5.  

For commissioning purposes, it may not be important to separate the two groups of 

babies as irrespective of their outcome, care was required. However, estimates of 
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length of stay, as provided here are not informative for commissioning of neonatal 

specialist services as they provide no detail about the specific types of care required. 

To include more detailed information on the length of stay for commissioning 

purposes, such as the care required by a baby, a further extension of this analysis 

known as multistate modelling is required and this will be introduced in Chapter 6. 

4.10 CHAPTER CONCLUSION 

This chapter has introduced the concept of survival analysis and provided an 

introduction of the methods of the Cox proportional hazards model and flexible 

parametric modelling. A preliminary analysis was undertaken using the Cox model, the 

basis of much of the advanced work in this thesis. An equivalent analysis was provided 

using a flexible parametric model. The probability of remaining in the neonatal unit 

and the median length of stay were estimated. 

The combination of outcomes here means that it is difficult to provide a useful 

interpretation of the hazard ratios. The methods here are also not appropriate for 

understanding two different outcomes simultaneously, such as being able to estimate 

length of stay for babies who survive and those who die. In an area of medicine with 

high levels of mortality it is important to consider deaths and discharges from the 

neonatal unit as separate outcomes, both of which are important in their own right.
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5 COMPETING RISKS ANALYSIS FOR THE ESTIMATION OF 

MORTALITY AND LENGTH OF STAY 

5.1 CHAPTER OVERVIEW 

Survival analysis, introduced in the preceding chapter, is used to model the time until 

an event occurs. However, time to one of multiple events may be of interest. For 

example, there may be interest in the specific cause of death, where there are multiple 

causes from which a person can potentially die. These endpoints need not be 

mortality, but as they are considered simultaneously, the occurrence of one must 

prevent the others from occurring. These events compete with each other to occur 

first, and the statistical approach to model this is known as a competing risks analysis.  

In this chapter, competing risks methodology is introduced as an alternative approach 

for investigating length of stay, which considers death or discharge from neonatal care 

as competing events. The probability of survival is considered along with estimates of 

length of stay for babies of different gestational ages. The results are then adjusted for 

babies of differing characteristics.  

5.2 INTRODUCTION 

The history of competing risks analyses extends back to the 18th century when 

Bernoulli studied the consequences of eradicating smallpox on mortality rates (97, 98). 

More recently, competing risks methods gained popularity in the 1970s (95, 99), and 

recent advances in statistical software have made implementation less 

computationally intensive (76, 100, 101).  

Competing risks methods have often been used when there is interest in different 

causes of death, for example: death from respiratory distress, infection or prematurity. 

The occurrence of one of these events prevents the other events from occurring and 

can be considered in a single analysis known as a competing risks analysis.  
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In this thesis two competing events are considered: death or discharge from neonatal 

care (Figure 5-1). All babies experience an event in this study and when a baby 

experiences one outcome (e.g. death in the neonatal unit) they are censored from 

receiving the other outcome (e.g. discharge from the neonatal unit).  

The final endpoints in a competing risks analysis are known as absorbing states 

because upon entry it is not possible to exit them again. The movement into an 

absorbing state is known as a transition. A standard survival analysis can be considered 

as a competing risks model with one initial state and one final absorbing state. 

Similarly, the approach to competing risks analysis is a special case of multistate 

modelling, to be introduced in Chapter 6. Although only two endpoints are considered 

here, a competing risks analysis can be used for more outcomes. 

5.2.1 DATA SET-UP FOR COMPETING RISKS 

Most medical research data are collected and stored in wide format, i.e. each study 

participant has one row of data as seen in Table 5-1. In this example, the first baby dies 

after five days whilst the second survives to discharge from the neonatal unit after 37 

days. To use competing risks analysis the data need to be manipulated into long 

format, with a row of data for each possible event as in Table 5-2. The status variable 

takes the value of one if the event occurred and zero otherwise. Use of data in this 

format allows implementation of a competing risk analysis to consider multiple events 

simultaneously. 

Table 5-1: Details for two hypothetical babies in wide format.  

Baby ID Gestational age Time Event 

1 24 5 Died 

2 30 37 Discharged home 
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Table 5-2: Details for the same two hypothetical babies presented in long format.  

Baby ID Gestational age Time Event Status 

1 24 5 Died 1 

1 24 5 Discharged home 0 

2 30 37 Died 0 

2 30 37 Discharged home 1 

 

A statistical model, such as the Cox proportional hazards model, can be fitted to these 

two events simultaneously by stratifying the analysis on the event. Different covariates 

can be considered for the different events (event-specific covariates) or the covariate 

effect can be shared across the events (shared covariates). 

Figure 5-1: An example of a competing risks model with two outcomes: death or 

discharge. 

 

5.3 CAUSE-SPECIFIC HAZARD AND CUMULATIVE INCIDENCE 

FUNCTION 

There are two main statistics of interest in a competing risks analysis: the cause-

specific hazard and the cumulative incidence function. Whilst in the literature the term 

used is cause-specific hazard here this will be renamed as the event-specific hazard as 

the term cause-specific can create confusion when the outcomes are not causes of 
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death. The cumulative incidence function provides the proportion of individuals that 

have experienced a specific event over the follow up-time.  

5.3.1 EVENT-SPECIFIC HAZARD 

If an individual is at risk of experiencing 𝐷 potential events, then the event-specific 

hazard 𝛼𝑘(𝑡) is the rate of failure from 𝑘 at time 𝑡, given that the patient has not 

already experienced an event, where 𝑇 is the time of failure from any event. The 

event-specific hazard function (95) is denoted: 

𝛼𝑘(𝑡) = lim
𝛿→0

𝑃(𝑡 ≤ 𝑇 ≤ 𝑡 + 𝛿, 𝐷 = 𝑘|𝑇 ≥ 𝑡)

𝛿
 

Equation 5-1 

The event-specific hazard is calculated conditionally, i.e. for the patient to experience 

one event they cannot have experienced any other event and are censored from 

experiencing them. There is an event-specific hazard for every event and from all 𝐷 of 

these it is possible to estimate the cumulative incidence function.  

The event-specific cumulative hazard is obtained by integrating the overall hazard as: 

𝐴𝑘(𝑡) = ∫ 𝛼𝑘(𝑠)𝑑𝑠
𝑡

0

 

Equation 5-2 
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5.3.2 SURVIVAL FUNCTION AND CUMULATIVE INCIDENCE FUNCTION 

From the event-specific hazard functions it is possible to obtain a survival function: 

𝑆𝑘(𝑡) = exp (−𝐴𝑘(𝑡)) 

Equation 5-3 

which is the survival from event 𝑘, the marginal survival function, and the complement 

can be interpreted as the probability of experiencing event 𝑘 in a hypothetical world 

where it is not possible to experience any other event. However, this assumption is 

unlikely to hold and therefore a more appropriate overall survival function is: 

𝑆(𝑡) = exp (− ∑ 𝐴𝑘(𝑡)

𝐷

𝑘=1

) 

Equation 5-4 

which is the probability of not having experienced any event at time 𝑡. This is used to 

define the cumulative incidence function of event 𝑘, defined as I𝑘(t) which is the 

probability of experiencing event 𝑘 before time t: 

I𝑘(t) = ∫ α𝑘(s)S(s)ds
t

0

 

Equation 5-5 

or with covariates: 

I𝑘(t|𝐙𝑘) = ∫ α𝑘(s|𝐙𝑘)S(s|𝐙)ds
t

0

 

Equation 5-6 

There are two main approaches to modelling competing risks: 1) model the event-

specific hazards and transform to the cumulative incidence function and 2) model the 

cumulative incidence function directly (102). The first approach is often advocated as 

both the event-specific hazard and the cumulative incidence function are useful for 

communication of risk and provide an absolute measure that prognosis and clinical 
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decision making can use (103, 104). Therefore, this is the approach used throughout 

the competing risks analysis in this thesis. 

5.4 COX PROPORTIONAL HAZARDS MODELLING 

In a similar approach to that of a standard survival analysis, the concepts of the hazard 

and survival functions can be extended to a competing risks analysis framework using 

Cox proportional hazards modelling. To fit the model, the data are arranged in the 

format seen in Table 5-2. 

5.4.1 EVENT-SPECIFIC HAZARD RATE 

As was seen for the Cox model in Chapter 4 it is possible to estimate the event-specific 

hazard rate, here written on the log scale, for event 𝑘 with covariates 𝒁 and regression 

coefficients 𝜷. The model can be fitted by stratifying for all events simultaneously: 

ln(𝛼𝑘(𝑡|𝒁𝑘)) = ln (𝛼𝑘,0(𝑡)) + 𝜷𝑘
′ 𝒁𝑘 + 𝜷′𝒁 

Equation 5-7 

where 𝜷𝑘
′ 𝒁𝑘are interaction terms between event 𝑘 and the covariates, therefore 

allowing the covariates to differ between events. These are known as event-specific 

covariates, and different covariates can be considered for different events if 

appropriate. The term 𝜷′𝒁 refers to covariates where the values are shared across all 

the events and these are referred to as shared covariates. The baseline event-specific 

hazard for event 𝑘 is defined as: 𝛼𝑘,0(𝑡). When someone experiences an event they 

are censored from experiencing the other events at the time the transition occurs (76).  
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5.4.2 CUMULATIVE INCIDENCE FUNCTION 

In Equation 5-5, the event-specific cumulative incidence function were derived from 

the event-specific hazards via the cumulative hazard (101). The cumulative incidence 

function can be written in terms of the cause-specific cumulative hazard: 

𝐼𝑘(𝑡|𝐙) = 𝐴𝑘(𝑡|𝒁)exp (∑ 𝐴𝑘(𝑡|𝒁)

𝐷

𝑘=1

) 

Equation 5-8 

where 

𝐴𝑘(𝑡|𝒁) = 𝐴0(𝑡)exp (𝜷′𝒁) 

Equation 5-9 

and the event-specific cumulative baseline hazard is estimated using the Breslow 

estimator (101): 

�̂�0(𝑡) = ∑
1

∑ exp (�̂�′𝒁𝑙)𝑙∈𝑅𝑗𝑗:𝑡𝑗≤𝑡

 

Equation 5-10 

where 𝑅𝑗is the risk set at time 𝑡𝑗 and 𝑙 represents each individual at risk (82). 

5.4.3 ASSUMPTIONS OF THE COX MODEL 

As with the standard survival analysis, one assumption of the Cox competing risks 

model is that the hazards are proportional over time. This assumption is extended so 

that for each event, the effects of the event-specific covariates are modelled to be 

proportional over time. Stratification of the variables which are non-proportional is 

one approach to overcome some of the limitations, as seen in Chapter 4. An 

alternative method such as the use of flexible parametric modelling may provide 

advantages if relaxation of the proportional hazards assumption is required and this 

will be discussed in Chapter 5.7.  
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5.5 COX PROPORTIONAL HAZARDS COMPETING RISKS ANALYSIS  

I undertook an analysis using the Cox competing risks model to estimate the length of 

stay and survival for babies born very preterm. The 21,038 babies introduced and 

summarised in Chapter 3 and modelled in Chapter 4 were used. All data manipulation 

was undertaken in Stata v 14 and I fitted a Cox proportional hazards competing risks 

model using the mstate command in R 3.0.2 which was stratified for the events of 

interest: death or discharge from the neonatal unit. Gestational age was modelled as 

an event-specific covariate. Event-specific hazard ratios were estimated and are 

compared to the baseline group selected as 27 weeks of gestational age at birth (Table 

5-3). Equivalent results to those estimated by mstate were obtained using the stpm2 

command in Stata v 14 (results not shown).  

The probability of death at any time, i.e. the hazard of death, for babies born at 24 

weeks was 3.44 times higher than in the babies born at 27 weeks gestational age (95% 

CI: 2.93 to 4.04, p<0.001, Table 5-3). For babies born at 31 weeks, the hazard of being 

discharged home alive was 8.79 times higher than babies born at 27 weeks gestational 

age at all time points (95% CI: 8.31 to 9.29, p<0.001, Table 5-3). 
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Table 5-3: Event-specific hazard ratios and 95% confidence intervals for death or 

discharge, by week of gestational age (Cox model).  

Gestational age 
(weeks) 

Hazard ratio 95% Confidence Interval p-value 

Died    

24 3.44 2.93, 4.04 <0.001 

25 1.80 1.51, 2.14 <0.001 

26 1.34 1.13, 1.59 <0.001 

27 Baseline Baseline Baseline 

28 0.65 0.54, 0.78 <0.001 

29 0.34 0.28, 0.43 <0.001 

30 0.27 0.22, 0.34 <0.001 

31 0.23 0.22, 0.34 <0.001 

Discharged    

24 0.39 0.36, 0.42 <0.001 

25 0.52 0.48, 0.56 <0.001 

26 0.73 0.68, 0.78 <0.001 

27 Baseline Baseline Baseline 

28 1.44 1.36, 1.53 <0.001 

29 2.42 2.28, 2.57 <0.001 

30 4.35 4.10, 4.60 <0.001 

31 8.79 8.31, 9.29 <0.001 
 

From the event-specific hazards the cumulative incidence functions were estimated for 

each week of gestational age using Equation 5-8. These are interpreted as the 

predicted proportion of babies that have died or been discharged, or the probability of 

an event occurring, from the neonatal unit over time. These estimates are often 

considered more clinically useful as it is possible to visually inspect the proportion of 

babies having experienced an event over time.  

The stacked cumulative incidence functions are presented graphically for each week of 

gestational age in Figure 5-2. The different shaded regions represent the proportions 

of babies who have died or been discharged from neonatal care over time. The 

unshaded area represents the babies who remain in the neonatal unit, having not yet 

experienced either event. For most weeks of gestational age no unshaded area 

remains at 150 days, i.e. most babies have been discharged or died.  
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The proportion of babies who were predicted to die was highest for those born most 

preterm. The area representing death plateaued at the total proportion of deaths for 

each week of gestational age and the proportion of babies that died corresponded 

with other published evidence for this population (14). Discharge from the neonatal 

unit occurred earlier for babies born at the later weeks of gestational age. From Figure 

5-2 the proportion of babies who died or were discharged home by certain points in 

time can be identified. Selected time points are provided in Table 5-4: one day, ten 

days and 30 days after birth. 

Table 5-4: Proportion of babies who have died or been discharged home one day, ten 

days and 30 days after birth (Cox model). 

Gestational 
age 
(weeks) 

1 day 10 days 30 days 

 Died Discharged Died Discharged Died Discharged 

24 0.064 0.000 0.206 0.000 0.283 0.010 

25 0.034 0.000 0.112 0.000 0.158 0.017 

26 0.025 0.000 0.085 0.000 0.120 0.024 

27 0.019 0.000 0.064 0.000 0.091 0.034 

28 0.012 0.000 0.042 0.000 0.060 0.050 

29 0.006 0.000 0.022 0.000 0.032 0.085 

30 0.005 0.000 0.018 0.001 0.025 0.149 

31 0.004 0.000 0.015 0.003 0.022 0.281 
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Figure 5-2: Stacked cumulative incidence functions over time to estimate the proportion of deaths or discharges by week of gestational 

age (Cox model). 
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5.5.1 TESTING MODEL ASSUMPTION: PROPORTIONAL HAZARDS 

The Therneau-Grambsch test was undertaken to investigate the assumption of 

proportional hazards. Significant results, indicating the assumption of proportional 

hazards does not hold, were seen for all weeks of gestational age who were discharged 

except 28 weeks (Table 5-5). This issue was seen in Figure 5-2 where discharge from 

neonatal care begins to occur at the same point in time for all weeks of gestational 

age, although at different rates. For babies born at the earliest gestational ages, 

discharge from neonatal care is unlikely to occur at this early time point. There are no 

issues of proportional hazards for the hazard of death except for babies born at 24 

weeks. Further investigation of this will be undertaken in Chapter 5.7. 

Table 5-5: Therneau-Grambsch test for proportional hazards (Cox model). 

Gestational age (weeks) p-value 

Discharged  

24 <0.001 

25 <0.001 

26 <0.001 

27 Baseline 

28 0.275 

29 <0.001 

30 <0.001 

31 <0.001 

Died  

24 <0.001 

25 0.851 

26 0.035 

27 Baseline 

28 0.287 

29 0.196 

30 0.845 

31 0.057 

5.6 FLEXIBLE PARAMETRIC MODELLING 

The Cox model can be extended to a flexible parametric setting and this aids the 

relaxation of the proportional hazards assumption. The flexible parametric approach 

was extended to include competing risks methods in 2013 by Hinchliffe and Lambert 

(101, 103), and is used here. An example of the potential use of this approach for 
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modelling length of stay in neonatal care was published in Paediatric and Perinatal 

Epidemiology by Hinchliffe, Seaton et al (6).  

The use of a flexible parametric approach to competing risks analysis provides 

equivalent results to those from the Cox model when proportional hazards are 

assumed. The advantage of this approach is that time-dependent effects can be 

incorporated and this will be explored in Chapter 5.6.2. 

5.6.1 EXTENDING TO A FLEXIBLE PARAMETRIC MODEL 

The Cox model approach required the dataset to be in long format and then the model 

was stratified by the event. A flexible parametric proportional hazards model can be 

fitted in a similar way using the expanded dataset: 

ln(𝐴𝑘(𝑡|𝒁)) = 𝑠{ln(𝑡) |𝜸0,𝑘, 𝒏0,𝑘} + 𝜷𝑘
′ 𝒁𝑘 + 𝜷′𝒁 

Equation 5-11 

where 𝑠{ln(𝑡) |𝜸0,𝑘 , 𝒏0,𝑘} is the log cumulative hazard function for the event 𝑘 

modelled using restricted cubic splines with knots 𝒏0,𝑘. Using the event-specific 

hazards, the cumulative incidence function can be obtained using Equation 5-5 via 

numerical integration (103). 

It is possible to obtain equivalent results from the Cox proportional hazards model and 

the flexible parametric proportional hazards model within the competing risks setting, 

as seen in Chapter 4 for the standard survival analysis.  
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5.6.2 INCORPORATION OF TIME-DEPENDENT EFFECTS 

All analyses undertaken so far have relied on the proportional hazards assumption (see 

Chapter 4) and as seen in Table 5-5 this is not always appropriate. To relax the 

proportional hazards assumption, time-dependent effects  are created by introducing 

interactions between the spline terms for the hazard and the parameters of interest 

(79). Equation 5-11 can be extended to incorporate time-dependent covariates: 

ln(𝐴𝑘(𝑡|𝒁)) = 𝑠{ln(𝑡) |𝜸0,𝑘, 𝒏0,𝑘} + ∑ 𝑠{ln(𝑡) |𝜸0,𝑘, 𝒏0,𝑘}

𝑇𝐷𝑘

𝑗=1

𝑧𝑗 + 𝜷𝑘
′ 𝒁𝑘 + 𝜷′𝒁 

Equation 5-12 

where 𝑇𝐷𝑘 is the number of time-dependent effects and 𝑠{ln(𝑡) |𝜸0,𝑘, 𝒏0,𝑘}𝑧𝑗is the 

spline function for the 𝑗th time-dependent effect for event 𝑘 (101). This allows for the 

introduction of non-proportional effects and the difference between covariates does 

not have to be constant over time. Although the model estimates can no longer be 

expressed as a single hazard ratio estimates of the cumulative incidence function are 

still informative and may be more biologically plausible than those obtained from 

assuming proportional hazards. 

5.7 FLEXIBLE PARAMETRIC MODEL WITH TIME-DEPENDENT 

COVARIATE  

I fitted a flexible parametric competing risks model using the stpm2 command in Stata 

v 14, including a categorical term for gestational age. The mstate command does not 

support the inclusion of time-dependent covariates. The incorporation of a time-

dependent effect for gestational age lowered the Akaike Information Criterion (AIC) 

from 29974 to 23929 indicating that use of time-dependent effects improved the 

model fit (Table 5-6) (105). The AIC measures goodness of fit (assessed by the 

likelihood function) which is penalised for an increasing number of parameters. A 

lower AIC indicates a better model fit (105). 
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To select the number of knots required to provide the best model fit, I fitted models 

with different numbers of knots in the baseline hazard and selected the model with 

the lowest AIC. The final model had four knots giving an AIC of 23811 (Table 5-6). 

Table 5-6: Comparison of the number of knots to model gestational age as a time-

dependent effect and corresponding AIC. 

Approach for modelling gestational age AIC 

Gestational age (not time-dependent). 
Three knots. 

29974 

Gestational age (time-dependent). Three 
knots. 

23929 

Gestational age (time-dependent). Four 
knots. 

23811 

Gestational age (time-dependent). Five 
knots. 

23826 

Gestational age (time-dependent). Six 
knots. 

24049 (model failed to converge) 

 

5.7.1 EVENT-SPECIFIC HAZARDS 

The inclusion of a time-dependent effect for gestational age prevents interpretation of 

hazard ratios that can describe whether one group is consistently at an increased (or 

decreased) hazard than another group at every time point. However, it is possible to 

plot the event-specific hazard rates to see how these vary over time and these are 

provided in Figure 5-3 and Figure 5-4.  

Between the different gestational ages, the relaxation of proportional hazards allows 

the difference between the hazards to vary over time. The hazard of death for babies 

born at 24 weeks gestational age decreases over time (Figure 5-3). For babies born at 

25 to 28 weeks gestational age the hazard of death reduces until around 30 days when 

it increases again briefly, then reduces before increasing after day 60 (Figure 5-3). 

Although in this analysis babies born at 24 weeks may have a different shaped hazard, 

this is potentially due to the small number of babies in this group and so should not be 

over-interpreted. These babies may be more similar to the group of babies born at 25 

weeks gestational age than seen here. For babies born at 29 to 31 weeks the hazard of 
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death increases after 30 days. This is likely to reflect the level of sickness of those 

babies in this group who remain in hospital at this point in time. 

The differences between babies born at 24 to 28 weeks gestational age and those born 

at 29 to 31 weeks were apparent when investigating the hazard of discharge (Figure 

5-4). For babies born at 24 to 28 weeks the hazard of discharge increases over time. 

However, for babies born at 30 and 31 weeks gestational age the hazard of discharge 

increases and then decreases after approximately 50 days. This corresponds with the 

increase in the hazard of mortality for this group of babies. This may reflect a higher 

level of sickness in this group of babies compared to their peers who have been 

discharged. However, towards the end of follow up time, data are limited and so these 

results may also be related to lack of data. 
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Figure 5-3: Predicted event-specific hazards of death over time by week of gestational age after allowing for time-dependent effects. 
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Figure 5-4: Predicted event-specific hazards of discharge by week of gestational age after allowing for time-dependent effects. 
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5.7.2 CUMULATIVE INCIDENCE FUNCTIONS 

The cumulative incidence functions are estimated using the stpm2cif post-estimation 

command in Stata v 14 and presented as stacked plots in Figure 5-5. The proportion of 

babies estimated to have died or been discharged are provided for one, ten and 30 

days after birth (Table 5-7). As expected, as gestational age increased, the proportion 

of babies estimated to die reduced, and the proportion discharged from neonatal care 

increased. No babies born at 24 and 25 weeks gestational age were discharged in the 

first 30 days of life. 

Table 5-7: Proportion of babies who have died or been discharged home one, ten and 

30 days after birth estimated from the flexible parametric model with time-dependent 

covariate. 

Gestational 
age 
(weeks) 

1 day 10 days 30 days 

 Died Discharged Died Discharged Died Discharged 

24 0.059 0.000 0.213 0.000 0.313 0.000 

25 0.024 0.000 0.108 0.000 0.159 0.000 

26 0.023 0.000 0.084 0.000 0.117 0.001 

27 0.014 0.000 0.056 0.000 0.084 0.004 

28 0.011 0.000 0.041 0.000 0.057 0.013 

29 0.008 0.000 0.023 0.000 0.031 0.042 

30 0.006 0.000 0.019 0.001 0.025 0.141 

31 0.004 0.000 0.014 0.005 0.019 0.357 
 

5.7.3 UNCERTAINTY ESTIMATES FOR THE CUMULATIVE INCIDENCE FUNCTION 

Confidence intervals for the estimate of the cumulative incidence functions are 

estimated using the delta method (103). Estimates of the cumulative incidence 

functions for death and discharge, with 95% confidence intervals are provided for 

babies born at 24 weeks (Figure 5-6) and those born at 31 weeks (Figure 5-7). 

Confidence interval estimates for other weeks of gestational age can be found in 

Appendix 5. The proportion of babies who have died or been discharged at selected 

time points is reproduced in Table 5-8 with the 95% confidence intervals.
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Figure 5-5: Predicted cumulative incidence function stacked plots from the flexible parametric model with a time-dependent effect for 

gestational age.  
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Table 5-8: Estimated proportion of babies, with 95% confidence interval, who have died or been discharged from neonatal care at one, ten 

and 30 days. Estimated from the flexible parametric model with time-dependent effect for gestational age. 

Gestational 
age (weeks) 

1 day 10 days 30 days 

 Died Discharged Died Discharged Died Discharged 

24 0.059  
(0.049, 0.069) 

0.0000  
(0.000, 0.000) 

0.213 
(0.191, 0.236) 

0.000 
(0.000, 0.000) 

0.313 
(0.286, 0.339) 

0.000 
(0.000, 0.000) 

25 0.024 
(0.017, 0.030) 

0.000 
(0.000, 0.000) 

0.108 
(0.092, 0.123) 

0.000 
(0.000, 0.000) 

0.159 
(0.139, 0.178) 

0.000 
(0.000, 0.000) 

26 0.023 
(0.018, 0.028) 

0.000 
(0.000, 0.000) 

0.084 
(0.072, 0.095) 

0.000 
(0.000, 0.000) 

0.117 
(0.102, 0.132) 

0.001 
(0.000, 0.001) 

27 0.014 
(0.010, 0.018) 

0.000 
(0.000, 0.000) 

0.056 
(0.047, 0.065) 

0.000 
(0.000, 0.000) 

0.084 
(0.072, 0.096) 

0.004 
(0.003, 0.004) 

28 0.011 
(0.008, 0.014) 

0.000 
(0.000, 0.000) 

0.041 
(0.035, 0.048) 

0.000 
(0.000, 0.000) 

0.057 
(0.048, 0.065) 

0.013 
(0.011, 0.014) 

29 0.008 
(0.005, 0.010) 

0.000 
(0.000, 0.000) 

0.023 
(0.019, 0.028) 

0.000 
(0.000, 0.000) 

0.031 
(0.025, 0.037) 

0.042 
(0.039, 0.045) 

30 0.006 
(0.004, 0.008) 

0.000 
(0.000, 0.000) 

0.019 
(0.015, 0.023) 

0.001 
(0.001, 0.001) 

0.025 
(0.020, 0.030) 

0.141 
(0.133, 0.148) 

31 0.004 
(0.003, 0.005) 

0.000 
(0.000, 0.000) 

0.014 
(0.011, 0.017) 

0.005 
(0.004, 0.006) 

0.019 
(0.015, 0.022) 

0.357 
(0.346, 0.368) 
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Figure 5-6: Cumulative incidence functions with 95% confidence intervals for death or 

discharge for babies born at 24 weeks gestational age (note: different scales). 

 

 

Figure 5-7: Cumulative incidence functions with 95% confidence intervals of death or 

discharge for babies born at 31 weeks gestational age (note: different scales). 
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5.7.4 ESTIMATING LENGTH OF STAY  

Median length of stay was estimated by outcome (Table 5-9). Results should be 

interpreted with care when the events are rare, for example the 10th and 90th centiles 

for length of stay for babies who died who were born at 30 and 31 weeks could be 

heavily influenced by one event. The time to the estimated date of delivery (commonly 

known as the EDD) is provided in Table 5-9 assuming that all births are measured in 

completed weeks and that term delivery is taken as 40 weeks gestational age. Babies 

born at 24 to 26 weeks gestational age are discharged from neonatal care around their 

due date. Babies born at 27 to 29 weeks are discharged a few weeks before their due 

date. Babies born at 30 to 31 weeks seem to be discharged around a month before 

their due date, i.e. at the point they are around 35 to 36 weeks corrected age.  

As around half of deaths appear to occur in the first seven to ten days, it would appear 

clinically appropriate to use this as an estimate of the length of stay for babies who 

die. At around ten days after birth it may be appropriate to consider if a baby is 

clinically stable and likely to survive to discharge, what their potential length of stay 

may be. 

Table 5-9: Estimated median length of stay (10th, 90th centile) for babies who survive or 

who die from the flexible parametric model with time-dependent effects. 

Gestational 
age (weeks) 

Length of stay (days) 
of discharges 

Length of stay (days) 
of deaths 

Time to 
estimated due 
date 

24 122 (86, 152) 8 (1, 49) 112 

25 107 (73, 139) 9 (1, 62) 105 

26 91 (60, 124) 9 (1, 66) 98 

27 78 (51, 110) 8 (1, 61) 91 

28 66 (42, 99) 10 (1, 49) 84 

29 53 (35, 79) 8 (1, 131) 77 

30 42 (28, 62) 3 (1, 106) 70 

31 33 (23, 47) 7 (1, 97) 63 

 

5.7.5 SENSITIVITY ANALYSIS 

The outcome of discharge from neonatal care was an amalgamation of several 

outcomes including: discharge home; discharge to another hospital and discharge for 
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surgery (Table 3-6). For the babies discharged to another hospital it is possible that 

they may have received ongoing neonatal care in a hospital outside the area covered 

by the NNRD and therefore their true stay in neonatal care may be longer than that 

observed. This could have been considered as an additional outcome in the competing 

risks analysis (Figure 5-8) although the number of babies experiencing this was small. 

Therefore, as a sensitivity analysis, the observations for the babies discharged to 

another hospital were censored (81) (n=219). The hazard ratios were not reported 

previously in this analysis as they have no immediate interpretation as use of a time-

dependent covariate for gestational age means they will vary over time. However, the 

hazard ratios are provided to aid comparison of the standard analysis and the 

sensitivity analysis to investigate model fit (Table 5-10). The sensitivity analysis 

resulted in small changes to the hazard ratios for babies discharged at 30 and 31 weeks 

gestational age (Table 5-10) but other results remained consistent. 

Table 5-10: Hazard ratios (95% confidence intervals) from the non-censored analysis 

and the sensitivity analysis investigating babies discharged to another hospital. 

Gestational age 
(weeks) 

Hazard ratio (95% 
confidence interval) 

Hazard ratio (95% 
confidence interval) 
censored analysis 

Died 0.10 (0.09, 0.11) 0.10 (0.09, 0.11) 

24 3.92 (3.33, 4.62) 3.92 (3.33, 4.62) 

25 1.86 (1.55, 2.23) 1.86 (1.55, 2.23) 

26 1.39 (1.16, 1.66) 1.39 (1.16, 1.66) 

27 Baseline Baseline 

28 0.67 (0.55, 0.81) 0.67 (0.55, 0.81) 

29 0.38 (0.30, 0.48) 0.38 (0.30, 0.48) 

30 0.30 (0.24, 0.38) 0.30 (0.24, 0.38) 

31 0.35 (0.27, 0.45) 0.35 (0.27, 0.45) 

Discharged 0.03 (0.02, 0.04) 0.03 (0.02, 0.03) 

24 0.02 (0.01, 0.03) 0.02 (0.01, 0.03) 

25 0.10 (0.08, 0.13) 0.10 (0.08, 0.13) 

26 0.35 (0.30, 0.42) 0.37 (0.31, 0.44) 

27 Baseline Baseline 

28 2.65 (2.33, 3.01) 2.73 (2.41, 3.11) 

29 6.79 (6.04, 7.64) 6.93 (6.16, 7.81) 

30 17.02 (15.21, 19.06) 17.56 (15.67, 19.68) 

31 37.04 (33.15, 41.39) 38.15 (34.11, 42.68) 
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Figure 5-8: An alternative competing risks model with three outcomes: death, discharge 

or discharge to another hospital. 

 

An additional sensitivity analysis was undertaken for the 141 babies who were 

discharged to receive surgery (Table 3-4) as there is no information about their later 

care. These babies may have been discharged home; discharged to paediatric services 

or died following surgery. The robustness of the analysis was investigated in a 

sensitivity analysis by assuming these babies died and re-estimating the hazard ratios 

(Table 5-11). Again, this did not substantially alter the results, with only small changes 

seen in the estimated hazard ratios for discharge for babies born at 30 and 31 weeks.  

This sensitivity analysis indicates that the results presented here are robust to the 

assumption that all these babies can be considered to have been discharged from 

neonatal care without this having an impact on the overall estimates. 
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Table 5-11: Hazard ratios (95% confidence intervals) from the non-censored and the 

sensitivity analysis assuming all babies discharged to surgery died. 

Gestational age 
(weeks) 

Hazard ratio (95% 
confidence interval) 

Hazard ratio (95% 
confidence interval) 
sensitivity analysis 

Died 0.10 (0.09, 0.11) 0.10 (0.09, 0.11) 

24 3.92 (3.33, 4.62) 3.82 (3.25, 4.49) 

25 1.86 (1.55, 2.23) 1.83 (1.53, 2.20) 

26 1.39 (1.16, 1.66) 1.37 (1.15, 1.64) 

27 Baseline Baseline 

28 0.67 (0.55, 0.81) 0.69 (0.57, 0.83) 

29 0.38 (0.30, 0.48) 0.42 (0.34, 0.52) 

30 0.30 (0.24, 0.38) 0.41 (0.33, 0.51) 

31 0.35 (0.27, 0.45) 0.43 (0.34, 0.53) 

Discharged 0.03 (0.02, 0.04) 0.03 (0.02, 0.03) 

24 0.02 (0.01, 0.03) 0.02 (0.01, 0.03) 

25 0.10 (0.08, 0.13) 0.10 (0.08, 0.13) 

26 0.35 (0.30, 0.42) 0.35 (0.30, 0.42) 

27 Baseline Baseline 

28 2.65 (2.33, 3.01) 2.64 (2.33, 3.00) 

29 6.79 (6.04, 7.64) 6.80 (6.05, 7.66) 

30 17.02 (15.21, 19.06) 17.07 (15.25, 19.12) 

31 37.04 (33.15, 41.39) 37.21 (33.28, 41.58) 
 

5.7.6 MODEL FIT AND PERFORMANCE 

An acknowledged limitation of competing risks methodology is the difficulty in 

assessing model fit and future work is needed to develop approaches to improve this 

(6). However, research indicates that these methods are robust to selection of the 

number and location of knots (80, 89). 

To assess the model fit when using the time-dependent covariate for gestational age, 

comparisons were made between the observed median length of stay and that 

estimated from the model for babies surviving to discharge (Table 5-12) and those who 

died in neonatal care (Table 5-13). Median length of stay of babies who survived was 

estimated well, with the maximum difference between estimated and observed being 

three days for the most preterm babies. For babies born at 27 to 31 weeks the 
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estimated median length of stay was within one day of the observed median length of 

stay. 

The estimated length of stay for babies who died varied more than for those who 

survived, with the largest difference being an under-estimation of 5 days for babies 

born at 29 weeks. This result was less precise as there was less power to estimate it.  

Table 5-12: Predicted and observed median length of stay for babies who survived 

(competing risks model with time-dependent covariate for gestational age). 

Gestational 
age (weeks) 

Observed median 
length of stay (days) 

Predicted median 
length of stay (days) 

Difference 
(Estimated - 
Observed) 

24 119 122 +3 days 

25 104 107 +3 days 

26 89 91 +2 days 

27 77 78 +1 day 

28 65 66 +1 day 

29 52 53 +1 day 

30 42 42 -1 day 

31 32 33 +1 day 

 

Table 5-13: Predicted and observed median length of stay for babies who died 

(competing risks model with time-dependent covariate for gestational age). 

Gestational 
age (weeks) 

Observed median 
survival time (days) 

Estimated median 
survival time (days) 

Difference 
(Estimated - 
Observed) 

24 8 8 0 days 

25 9 11 +2 days 

26 9 8 -1 day 

27 8 10 +2 days 

28 10 6 -4 days 

29 8 3 -5 days 

30 3 3 0 days 

31 7 5 -2 days 
 

The cumulative incidence functions shown in Figure 5-5 provided the proportion of 

babies who have died or been discharged over time. The final observed proportion of 

babies who died is compared with that estimated from the model and provided in 
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Table 5-14. The observed versus estimated proportion of deaths matched each other 

well at the end of the time period. 

Table 5-14: Estimated proportion of babies who have died versus the observed 

proportion. 

Gestational 
age (weeks) 

Estimated 
proportion died 

Observed 
proportion died 

Difference  
 

24 0.377 0.380 -0.003 

25 0.212 0.213 -0.001 

26 0.155 0.156 -0.001 

27 0.114 0.115 -0.001 

28 0.071 0.073 -0.002 

29 0.036 0.038 -0.002 

30 0.027 0.028 -0.001 

31 0.022 0.023 -0.001 

 

Plots comparing the observed and estimated proportions of discharge and death over 

the time since birth are found in Figure 5-9 and Figure 5-10 respectively. Whilst there is 

a small amount of over- and under-estimation in the babies born at the earliest 

gestational ages, particularly for the probability of discharge, on the whole the model 

is robust. 
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Figure 5-9: Predicted and observed proportions of discharge (competing risks model with time-dependent term for gestational age) over 

time. 
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Figure 5-10: Predicted and observed proportions of death (competing risks model with time-dependent term for gestational age) over 

time. 
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5.7.7 COMPARISON OF FLEXIBLE PARAMETRIC MODEL WITH THE COX MODEL 

This analysis has provided clinically informative estimates of length of stay for babies 

who survive and those who die, by week of gestational age. A time-dependent 

covariate was used to model gestational age.  

Although time-dependent effects were introduced for gestational age for both events, 

the proportion of babies who were estimated to die in the proportional hazards model 

and the non-proportional hazards model was similar. For example, for babies born at 

26 weeks the proportion who were estimated to die by one, ten and 30 days from the 

Cox proportional hazards model was 0.025, 0.085 and 0.120 (Table 5-4) compared to 

0.023, 0.084 and 0.117 (Table 5-7) from the flexible parametric model with non-

proportional hazards. Similarly, for babies born at 31 weeks gestational age the 

proportion who were estimated to have died by one, ten and 30 days was 0.004, 0.015 

and 0.022 (Table 5-4) respectively from the proportional hazards model. This was 

similar to the flexible parametric model, with non-proportional hazards which 

estimated 0.004, 0.014 and 0.019 (Table 5-7). This corroborates with the Therneau-

Grambsch test (Table 5-5) which indicated that the hazard of death was modelled 

adequately by the proportional hazards model.  

However, this was not the case with the predicted proportion of babies who were 

discharged over time. At 30 days after birth the Cox proportional hazards model 

estimated that 0.022 and 0.034 of babies born at 26 and 27 weeks had been 

discharged from the neonatal unit (Table 5-4) whilst the non-proportional hazards 

model estimated this as 0.001 and 0.004 (Table 5-7). The proportional hazards 

competing risks model poorly estimated the proportion of babies discharged from the 

neonatal unit, especially in early days after birth, and this may relate to the two 

different shapes of hazards of discharge seen in Figure 5-3 for babies born at 24 to 28 

weeks and for babies born at 29 to 31 weeks gestational age, or that most of the data 

related to babies born at the later gestational ages. The flexible parametric model with 

a time-dependent term for gestational age estimated the time at which discharge 

occurred well. 
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5.8 FLEXIBLE PARAMETRIC COMPETING RISKS MODEL INCLUDING: 

GESTATIONAL AGE, SEX AND BIRTHWEIGHT Z-SCORE 

The systematic review undertaken in Chapter 2 identified that birthweight, sex and 

gestational age were the variables most often included in analyses which aimed to 

predict length of stay and mortality in neonatal care. Therefore, the analysis 

undertaken earlier in Chapter 5.7 was extended to also include birthweight and sex. 

Birthweight was modelled as a z-score which provides a measurement of the distance 

an individual baby’s birthweight is from the average birthweight for their gestational 

age and sex (106). Results are presented as birthweight centiles, i.e. a z-score of 0 is 

the 50th centile. 

Babies with indeterminate sex (n=20) or missing or implausible birthweight (n=118) 

were excluded from the analysis leaving 20,900 babies included. Only babies with 

complete data for all these variables were considered in this analysis to allow 

comparison between the different models. 

Variables were considered for inclusion in the model as both fixed effects and time-

dependent effects. Table 5-15 describes the model building process and the model 

with the lowest AIC, highlighted in bold was ultimately selected. This model contained: 

gestational age (modelled as a time-dependent covariate), sex and birthweight z-score 

(modelled using splines). 

5.8.1 EVENT-SPECIFIC HAZARDS 

As before, a single value for the event-specific hazard ratio cannot be estimated. 

Event-specific hazards of discharge are presented in Figure 5-11 for male and female 

babies born at 24 and 31 weeks with a birthweight at the 10th, 50th or 90th centile.  
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Table 5-15: Model building process with the corresponding AIC values. A minus/plus 

sign indicates a decrease/increase in the AIC from the previous lowest value. 

Covariates (how they were modelled) AIC 

Gestational age (categorical: time-dependent) 230534 

Gestational age (categorical: time-dependent) 
Sex (categorical) 

23013 (-) 

Gestational age (categorical: time-dependent) 
Sex (categorical: time-dependent) 

23018 (+) 

Gestational age (categorical: time-dependent) 
Sex (categorical) 
Birthweight z-score (linear) 

20429 (-) 

Gestational age (categorical: time-dependent) 
Sex (categorical) 
Birthweight z-score (linear, time-dependent) 

22787 (+) 

Gestational age (categorical: time-dependent) 
Sex (categorical) 
Birthweight z-score (splines: 3 degrees of freedom) 

20031 (-) 

Gestational age (categorical: time-dependent) 
Sex (categorical) 
Birthweight z-score (splines: 3 degrees of freedom: time-
dependent) 

23323 (+) 

 

                                                      
4 This is different to the previous AIC due to the exclusion of observations with missing data. 
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Figure 5-11: Event-specific hazards of discharge for selected covariate patterns. 

 

For both sexes, the hazards of discharge for babies born at 24 weeks gestational age 

compared to babies born at 31 weeks are very different shapes (Figure 5-11). For 

babies born at 31 weeks gestational age, the hazard of discharge initially increases and 

peaks at around 50 days before decreasing again. This mirrors that seen in Figure 5-4 

where the model was only adjusted for gestational age. Babies born at 24 weeks have 

a low hazard of discharge which begins to increase after 50 days and continues to 

increase over time. 

Event-specific hazards of death are provided in Figure 5-12 for male and female babies 

born at 24 and 31 weeks gestational age and a birthweight at the 10th, 50th and 90th 

centile. The hazard rate for babies born at 24 weeks is initially high and reduces over 

time (Figure 5-12). Conversely, for babies born at 31 weeks the hazard is initially very 

low, and it increases steadily after 50 days. This indicates that babies born at this 

gestational age, who remain in hospital for an extended period, are at an increased 

hazard of death. This is clinically valid as these babies are likely to be those who are 

sicker than other 31 week babies, whereas for the very preterm babies most deaths 

occur earlier. However, the hazard always remains much lower than the initial hazard 
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for babies born at 24 weeks gestational age. Again, this is similar to that seen from the 

model with only gestational age (Figure 5-3) although here the results are on the same 

scale so the shape of the hazard for babies born at 31 weeks gestational age is not as 

pronounced.  

Figure 5-12: Event-specific hazards of death for selected covariate patterns. 

 

5.8.2 CUMULATIVE INCIDENCE FUNCTIONS 

Cumulative incidence plots are estimated for combinations of clinically meaningful 

covariate patterns. Birthweight was estimated at the 10th, 50th and 90th centile for 

males by week of gestational age to demonstrate the cumulative incidence functions in 

Figure 5-13 and Figure 5-14. Results for female babies can be found in Appendix 5. 

As gestational age increased the proportion of babies that died decreased and the 

point at which discharge began to occur was earlier. For the most preterm babies born 

at 24 weeks, there was still a small proportion remaining in hospital even after 160 

days, when this axis was cut off. The lowest risk of mortality was in the babies born at 

31 weeks with a birthweight at the 50th or 90th centile, where a proportion of 0.018 

and 0.020 died respectively. These plots should be interpreted with caution, 
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particularly where numbers are small. For example, for babies born at 24 weeks 

gestational age the proportion of deaths is higher in those with a birthweight at the 

90th centile than those with a birthweight at the 50th centile. This is potentially due to 

the small number of babies in this group, causing even one death to contribute a large 

difference to the total. Figure 5-15 presents the cumulative incidence functions with 

95% confidence intervals to demonstrate uncertainty in the estimates for babies born 

at 24 weeks.
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Figure 5-13: Cumulative incidence function plots for males by week of gestational age 

with a birthweight at the 10th, 50th and 90th centile. 
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Figure 5-14: Cumulative incidence function plots for males by week of gestational age 

with a birthweight at the 10th, 50th and 90th centile. 
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Figure 5-15: Cumulative incidence function for death or discharge with 95% confidence 

intervals for male babies born at 24 weeks gestational age. 

 

The proportions of babies who have died or been discharged at certain time points for 

a given set of characteristics are provided in Table 5-16 to facilitate reading of the 

cumulative incidence function plots. These results are similar to those found in Table 

5-7, where birthweight and sex was not adjusted for, because Table 5-16 represents an 

‘average’ baby.
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Table 5-16: Predicted proportion of male babies with a birthweight at the 50th centile 

who have died or been discharged home one, ten and 30 days after birth. 

Gestational 
age 
(weeks) 

1 day 10 days 30 days 

 Died Discharged Died Discharged Died Discharged 

24 0.059 0.000 0.216 0.000 0.317 0.000 

25 0.023 0.000 0.106 0.000 0.156 0.0001 

26 0.022 0.000 0.080 0.000 0.112 0.001 

27 0.013 0.000 0.051 0.000 0.076 0.003 

28 0.009 0.000 0.035 0.000 0.048 0.011 

29 0.007 0.000 0.020 0.000 0.026 0.039 

30 0.005 0.000 0.016 0.000 0.021 0.145 

31 0.004 0.000 0.012 0.003 0.016 0.389 
 

5.8.3 ESTIMATING LENGTH OF STAY  

To inform clinical counselling of parents, estimates of length of stay can be calculated 

(Table 5-17 and Table 5-18). Table 5-17 presents median length of stay for babies who 

die by specific characteristics. Approximately half of all deaths occur in around the first 

ten days of life. Therefore, ten days of life may be an appropriate time point to prompt 

clinicians to consider discussing the possibility of a long length of stay, particularly for 

the early gestational ages, as the risk of mortality reduces. These estimates can be 

used alongside information from the cumulative incidence function and clinical 

judgement to counsel parents. For example, for a male baby born at 27 weeks 

gestational age with a birthweight at the 50th centile around half of deaths (total 

proportion of deaths around 0.10 from Figure 5-13) have occurred in the first ten days 

(Table 5-7). At around ten days of life, and using their clinical judgement, a clinician 

could explain to a parent that the risk of mortality has reduced, but that their baby 

could be in hospital for a long time. The estimate of median length of stay for a baby of 

these characteristics is 76 days (66 days by day ten) but I would suggest that clinicians 

use a more general description, e.g. “around two months” to reflect the uncertainty in 

this estimate. Future qualitative research could focus on the issues of how to 

communicate the risk of mortality and length of stay to parents.
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Table 5-17: Estimated median length of stay of babies who die in neonatal care, by sex, 

birthweight and gestational age. 

Gestational 
age 
(weeks) 

Males Females 

 Birthweight Birthweight 

 10th 
centile 

50th 
centile 

90th 
centile 

10th 
centile 

50th 
centile 

90th 
centile 

24 8 8 8 8 9 8 

25 10 9 10 11 12 9 

26 9 9 10 9 9 7 

27 10 10 8 9 10 12 

28 11 8 11 12 6 12 

29 5 3 2 3 2 4 

30 3 5 3 4 9 6 

31 5 10 6 8 1 19 

 

The median length of stay for babies who survive is provided in Table 5-18. For 

example, half of male babies born at 24 weeks with a birthweight at the 50th centile, 

will have been discharged by 123 days after birth (Table 5-18). For male babies born at 

31 weeks with a birthweight at the 50th centile, the median length of stay is 32 days.  

Babies born at 24 to 26 weeks gestational age were discharged home at approximately 

their due date. Babies born at 27 and 28 weeks seem to be generally discharged a few 

days before their due date, whilst those born at 29 to 31 weeks gestational age, are 

discharged home much earlier than their due date, sometimes at around 35 weeks 

PMA. 

The differences between the lengths of stay for males and females are very small. 

Babies born at the 90th centile of birthweight have a similar length of stay to babies 

born a week later but with a birthweight at the 10th centile. Birthweight for gestational 

age does impact on length of stay, with the babies born at the 10th centile staying 

around two weeks longer than those at the 90th centile, particularly at the early 

gestational ages. These differences reduce for the babies born at 30 and 31 weeks with 

the length of stay between the smallest and largest babies in those gestational week 

varying by around one week. These birthweight differences may potentially reflect 
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clinical practice in not discharging a baby until they reach a certain weight, and those 

smaller babies have more to gain to achieve this, or it may reflect that birthweight is a 

proxy for the sickness of the baby. Alternatively these may be errors in the estimation 

of gestational age and a larger baby may actually be a week older in terms of their 

gestational age than estimated. 

It is not suggested that estimates of these results should be produced for every 

potential birthweight centile. These estimates of the 10th, 50th and 90th centile could 

represent a small, average and large baby by gestational age.
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Table 5-18: Estimated median length of stay (10th, 90th centile) of discharges for males and females with birthweights at the 10th, 50th and 

90th centile.  

Gestational age 
(weeks) 

Males Females Days to 
EDD 

 Birthweight Birthweight  

 10th centile 50th centile 90th centile 10th centile 50th centile 90th centile  

24 134 
(96, 164) 

123 
(88, 152) 

117 
(86, 145) 

131 
(95, 161) 

121 
(88, 149) 

116 
(83, 145) 

112 

25 117 
(80, 153) 

106 
(73, 137) 

101 
(71, 130) 

115 
(80, 150) 

104 
(71.5, 135) 

100 
(69, 129) 

105 

26 102 
(67, 136) 

91 
(62, 121) 

85 
(58, 114) 

99 
(66, 134) 

88 
(60, 117) 

84 
(58, 112) 

98 
 

27 86 
(57, 121) 

76 
(51, 104) 

72 
(49, 98) 

71 
(55, 118) 

62 
(50, 102) 

58 
(48, 96) 

91 

28 73 
(46, 107) 

63 
(42, 90) 

60 
(40, 83) 

84 
(45, 104) 

74 
(41, 87) 

71 
(40, 82) 

84 

29 58 
(38, 90) 

51 
(35, 73) 

48.5 
(34, 67) 

57.5 
(38, 87) 

50 
(35, 71) 

48 
(33, 65) 

77 

30 46 
(31, 71.5) 

41 
(28, 58) 

39 
(27, 53) 

45 
(30, 69) 

40 
(28, 56) 

38 
(27, 52) 

70 
 

31 36 
(25, 52) 

32 
(22, 43.5) 

30.5 
(22, 41) 

36 
(24, 51) 

32 
(22, 43) 

30 
(21, 40) 

63 



Competing risks analysis for the estimation of mortality and length of stay 

145 
 

5.8.4 MODEL FIT AND PERFORMANCE 

It is not possible to investigate model fit of this analysis as birthweight z-score has 

been modelled continuously using splines alongside further adjustments. The 

cumulative incidence function was estimated for babies born at the 10th, 50th and 90th 

centile, but in reality there are likely to be few or no babies in this dataset that have a 

birthweight at exactly this point. As such it is not possible to plot the observed and the 

estimated cumulative incidence function as done previously (Figure 5-9 and Figure 

5-10). However, the median length of stay for babies born at the 50th centile by 

gestational age (Table 5-17) approximates that estimated from the previous model 

containing only gestational age (Table 5-8). Since that model performed well, it seems 

logical that this model with further adjustments also performs well. 

The poor availability of model fit measures is a limitation of these methods and a 

potential compromise would be to categorise all included variables to aid comparison 

with the observed data. For example, birthweight could be grouped into less than the 

10th centile, 10th to 90th centile and greater than the 90th centile. However, this is likely 

to create other issues as this would lead to loss of data and statistical power and 

therefore this approach was not applied. Future methodological work is required to 

identify appropriate methods of assessing model fit. 

5.9 DISCUSSION 

The second aim of this thesis was to consider methods for estimating length of stay for 

babies irrespective of whether they survive to discharge or die during their time in 

neonatal care. Whilst the use of competing risks analysis to model death and discharge 

from neonatal care is relatively novel, it has been used in other clinical areas including 

investigating the risk factors for pneumonia and the impact this has on length of stay in 

adult intensive care units (107). Researchers within the area of pneumonia have 

advocated the use of competing risks methods to appropriately model death and 

discharge as competing events when investigating length of stay (108). One study 

undertaken before this thesis by Hinchliffe, Seaton et al considered use of competing 

risks methods within the context of neonatal care (6).  
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This chapter has investigated two different approaches to model competing risks: Cox 

proportional hazards modelling and flexible parametric modelling. Competing risks 

methods have been well developed in statistical software (96, 103, 109) with Stata 

(examples include: stcrreg and stpm2cif) and R commands (examples include: mstate 

and cmprsk) which allow for the use of the Cox model and the flexible parametric 

model. Software in Stata allows the inclusion of time-dependent covariates (110) 

within competing risks methods (Stata commands: stpm2 and stpm2cif). In this chapter 

I used the stpm2cif post-estimation command in Stata v 14 and mstate in R 3.0.2. 

In its simplest form, the flexible parametric model provides the same results as the Cox 

model, which was demonstrated in Chapter 4 (Table 4-1 and Table 4-4). Whilst it is 

possible to relax proportional hazards in the Cox model, the main advantage of flexible 

parametric modelling is that time-dependent effects can incorporated easily in routine 

software. This allows differences in the hazard between groups to vary over time. 

A flexible parametric model with a time-dependent effect for gestational age reduced 

the AIC substantially, indicating that model fit was improved by modelling gestational 

age in this way. When comparing the cumulative incidence functions with that 

estimated from the proportional hazards model, results were most different when 

comparing the proportion of babies who had been discharged over time. This 

introduction of a time-dependent effect allowed the time to discharge to vary between 

the different gestational ages over time.  

A flexible parametric model was then built using variables identified as being clinically 

informative for estimating length of stay and the risk of mortality from the systematic 

review (Chapter 2). This model included gestational age; birthweight z-score and sex of 

the baby. Cumulative incidence plots and estimates of length of stay were calculated 

for this model. From this it was possible to provide estimates of median length of stay 

for babies who survived and those who died. Broadly, babies born extremely preterm 

who survived to discharge remained in the neonatal unit until around their due date. 

However, babies born later were discharged home earlier, and those born at 30 and 31 

weeks gestational age were often discharged within four to six weeks of birth. 

Clinicians can use these length of stay estimates when counselling families. But they 

should also use their judgement and not provide specific estimates of estimated 
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discharge dates without explanation that these are not definite dates. For example, if a 

baby’s predicted length of stay is 60 days the clinicians may wish to say “around two 

months” rather than providing a specific estimated discharge date. Alternatively, if a 

‘target’ discharge date is wanted, then the clinician may wish to provide a date 

calculated from the 75th centile for length of stay for a baby of given characteristics, 

and this can be revised down to the median length of stay if a baby appears to be 

doing well. These estimates are useful to prepare parents for the likely length of stay 

of their baby.  

Plots of the cumulative incidence function can be produced for combinations of 

covariates as appropriate. These provide useful information about the risk of mortality 

and alongside the median length of stay these can aid communication of the results in 

this work. These results should not be produced for every birthweight centile, as there 

is likely to be little difference to results between specific centiles. Instead cut points 

such as those provided for the 10th, 50th and 90th centile could be used to describe 

small, average and large babies. 

5.9.1 USE OF THIS RESEARCH FOR INFORMING CONVERSATIONS WITH PARENTS 

OF PRETERM BABIES 

The cumulative incidence functions produced provide an estimated proportion of 

deaths for babies of given characteristics who are admitted to the neonatal unit. The 

plots can also be used to identify a time point when the risk of mortality has 

plateaued, providing a potentially appropriate time to discuss length of stay with 

parents. Generally, this point was at around ten days of life.  

A parent panel meeting to discuss how to communicate these results to parents of 

very preterm babies suggested that parents should not be shown these plots or 

results. Similarly, this group did not want parent-friendly versions of these results 

produced in leaflets. This group recommended that the results should be used by 

clinicians to form the basis of a conversation which was also informed by clinician 

experience and expertise. For example, for the parents of a male singleton baby born 

at 24 weeks these results could be used to say the following:  
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 Around the time of admission, using clinician judgement: “around 70% of 

babies like your baby will survive”  

 After approximately ten days, and with use of clinician judgement: “it is quite 

likely now that your baby will survive, but he is likely to stay in hospital until 

around the day he should have been born” 

For a baby boy born at 31 weeks the conversations are likely to use the results here to 

frame the conversation differently. For example: 

 Around the time of admission, using clinician judgement: “most babies like 

your baby will survive”  

 After approximately ten days, and with use of clinician judgement: “it is likely 

that your baby will need to be in hospital for a few more weeks” 

Parent panel meetings have been held to discuss communication of these results. 

Ongoing work with Bliss (charity to support families of preterm and sick babies) and 

other stakeholders is identifying appropriate methods of communication of these 

results with clinicians.  

5.9.2 COMPARISON WITH OTHER PUBLISHED RESEARCH  

There has been little published research that has investigated length of stay in the 

neonatal unit, and the work that has been undertaken generally excludes babies that 

die. The published systematic review from this thesis identified nine papers published 

which met the eligibility criteria within this area (18) although other studies were also 

published in areas of the world not covered by this review (65, 66).  

One paper investigated how birthweight impacted on length of stay and found similar 

results to those presented here. The analysis by Lee et al (5) suggested birthweight for 

gestational age had the largest impact on length of stay from all the variables included 

in the analysis. Whilst gestational age was not included in the analysis by Lee et al, 

they found that birthweight impacted on length of stay by around two weeks for the 

smallest babies (<1000g) but only a few days for the bigger babies, which is similar to 

the results from this analysis. Lee et al also noted that sex of the baby had a minimal 

impact on length of stay, with a difference of one to four days on overall length of stay 
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between the sexes, and this result has been replicated in this thesis (5). Research by 

Altman et al (58) also found that the sex of the baby did not have an impact on the 

PMA at which they were discharged. 

The paper by Hinchliffe, Seaton et al undertaken prior to this thesis (6) focused on all 

births at 24 to 28 weeks whilst in this analysis only singletons were considered. 

Therefore, the results presented in this chapter have a higher survival rate as multiple 

births represent a large proportion of preterm births and have a higher risk of 

mortality in the preterm population, particularly at 24 to 27 weeks gestational age 

(111).  

5.9.3 ALTERNATIVE STATISTICAL APPROACHES 

An event-specific hazard approach (commonly referred to as a cause-specific approach 

elsewhere) was used for this analysis. An alternative would have been to use an 

approach such as the Fine and Gray method (102), which models the sub-distribution 

hazard. The difference between the event-specific hazard and the sub-distribution 

hazard is the risk-set. For the event-specific approach the risk-set decreases each time 

there is an event due to any reason, i.e. there is censoring. However, when the sub-

distribution approach is used the individuals remain in the risk-set. This alternative 

approach of using sub-distribution hazards can also provide a cumulative incidence 

function.  

The disadvantage of the event-specific hazard approach is that the cumulative 

incidence is a function of all the event-specific hazards and the probability of each 

event occurring. Therefore, there is no one-to-one relationship between the event-

specific hazard and the probability of that specific outcome (101). Whilst the Fine and 

Gray approach could overcome this, it has other disadvantages. As participants who 

fail from one event remain in the risk-set for the other causes they theoretically 

remain in the risk-set forever. Therefore, the hazard function from this approach does 

not represent an epidemiological rate (112) and potentially the probability of all the 

competing events can sum to more than one (113). 

Event-specific hazard approaches have been advocated when there is interest in all of 

the competing events as the event-specific hazard rates and cumulative incidence 
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functions can provide useful information for clinical discussion (101, 112). The total 

probability can be broken down into the different competing events and, as discussed, 

this can provide a useful measure to aid clinical decision making (104). 

5.9.4 STRENGTHS AND LIMITATIONS 

A strength of this work is that it is the first time estimates of length of stay have been 

produced for all singleton very preterm babies which also account for the outcome of 

the baby. A large, national database has been used to provide these estimates which 

can be used by clinicians in the counselling of parents throughout the neonatal period. 

A limitation of this work is that a small number of babies are discharged to facilities not 

captured by the NNRD, and because they do not return to an NNRD unit it is unclear 

what their final length of stay was. However, a sensitivity analysis was undertaken 

which indicated that the impact this assumption had on the results was minimal, and 

therefore including them rather than excluding them and losing statistical power 

appears appropriate. Also, inspection of these data indicated that most of these babies 

were discharged to postnatal wards based in other English hospitals. Some of these 

babies could have been considered as an additional outcome, for example discharge to 

other specialist services. However, the small number of babies experiencing this 

outcome would have resulted in unreliable estimates. 

A final limitation of this analysis is the difficulty in assessing model fit. The observed 

and estimated probabilities and lengths of stay were compared where possible. The 

results appeared robust, although as additional covariates were included it was not 

possible to assess this further.  

5.10 CHAPTER CONCLUSION 

This chapter used competing risks analyses to estimate the length of stay for both 

babies who survive to leave neonatal care and those who die in neonatal care. A Cox 

proportional hazards model was used before the approach was extended to the 

flexible parametric model approach, which allowed the introduction of time-

dependent covariates. A model adjusted for gestational age, birthweight z-score and 
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sex was used to estimate the cumulative incidence functions, the proportion of babies 

experiencing each of the events, over time.  

The median length of stay for babies who died was generally around ten days. 

Therefore, using clinical judgement, this time point may be appropriate to discuss 

length of stay, if it has not already been discussed, as the risk of mortality begins to 

reduce. Median length of stay was estimated for babies of specified characteristics 

who survived to discharge, for example for babies born at 24 weeks gestational age 

the median length of stay was 122 days. These estimates can be used by clinicians in 

discussion with parents about length of stay.
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6 MULTISTATE MODELLING FOR THE ESTIMATION OF 

MORTALITY AND LENGTH OF STAY AT EACH LEVEL OF CARE 

6.1 OVERVIEW OF CHAPTER 

In this chapter the theory of survival analysis and competing risks is extended to a 

multistate analysis framework. This allows events which occur before the final 

endpoint to be considered as transient or intermediate states. The levels of neonatal 

care will be considered as transient states within the analysis, and an unadjusted and 

adjusted multistate model will be undertaken to describe the neonatal care pathway 

and provide estimates of mean length of stay at each level of care. 

6.2 INTRODUCTION 

In Chapter 5, competing risks methodology was introduced where one initial state and 

several mutually exclusive competing endpoints (absorbing states) were considered, 

for example, death and discharge. To extend this further, intermediate states known 

as transient states can be introduced and this then becomes a multistate model. These 

transient states can represent any event that occurs before the final absorbing state. 

For example, a state could represent relapse from a disease. In this analysis, the 

transient states are the different levels of care (Chapter 1.3) required by a baby before 

they either die or are discharged from the neonatal unit (Figure 6-1).  

A standard survival analysis can be considered as being a multistate model that has 

one initial state and one final absorbing state. A competing risks model, such as that 

presented in Chapter 5, is a special case of a multistate model where there is one 

initial state and multiple absorbing states. A multistate model can be considered as a 

series of nested competing risks models. For example, for a baby in the intensive care 

state the competing events are: having their care stepped down to high dependency 

care; having their care stepped down to special care or dying (Figure 6-1). If the baby’s 

care was stepped down to high dependency care then they would be censored from 

being at risk of death (along the transition from intensive care) and of stepping down 
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from intensive care to special care. A new competing risks model would be formed 

with the competing events of: death (following high dependency care) or stepping 

down to special care. A multistate model contains a finite number of states 𝑆 =

{1,2,3,4 … 𝐽}. In Figure 6-1 there are six states. One is an initial starting state: birth and 

two are absorbing states: death and discharge. The other three states are intermediate 

or transient states, meaning that upon entering these states it is possible to exit them 

again.  

Figure 6-1: An example of a multistate model with birth as the initial state and 

absorbing states of death or discharge. All other states are transient.  

 

6.2.1 DATA PREPARATION FOR MULTISTATE MODELLING 

The approach for data preparation for a multistate model is similar to that used for the 

competing risks methods in Chapter 5. This is extended to provide one row of data for 

each potential transition that an individual is at risk of experiencing, up to a maximum 

number of rows equal to the maximum number of transitions in the model. If an 

absorbing state is reached before becoming at risk of another transition, then they will 
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not have a row of data for that transition. In this chapter I undertook data 

manipulation in Stata v 14 and the analysis in R 3.0.2 using the mstate command. 

An example of two hypothetical patients is provided in Table 6-1 in wide format. The 

status variables indicate whether the transition occurred (0: no, 1: yes) whilst the entry 

time variables indicate when the event was experienced, or when the transition was 

censored. This data can be manipulated into long format as in Table 6-2 where the 

start and stop times indicate when the patient started and stopped being at risk of a 

transition. 

Baby 1 spends time receiving intensive care, high dependency care, and special care 

before being discharged home alive after 163 days. Therefore, in the long dataset they 

have ten rows of data (Table 6-2) as they have been at risk of experiencing all ten 

potential transitions (Figure 6-1). Baby 2 receives 52 days of intensive care before 

dying. Therefore, they only have six rows of data (Table 6-2) as they are only ever at 

risk of experiencing six transitions. These six transitions are the three from the birth 

state and the three from the intensive care state (two to lower levels of care, one to 

death). 

Throughout this chapter the neonatal care pathway refers to the hierarchically 

collapsed total days at each level of care which a baby receives, rather than the 

individual movements between levels of care received on a day-by-day basis for an 

individual baby. This approach to considering care means that the results are 

informative for commissioning, and provide information about the neonatal care 

service as a whole, but cannot be used to inform the day-to-day clinical management 

of individual babies.
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Table 6-1: The standard format of datasets in wide format with one row per baby.5  

ID IC 
entry 
time 

IC 
status 

HD 
entry 
time 

HD 
status 

SC 
entry 
time 

SC 
status 

Died 
entry 
time 

Died 
status 

Home 
entry 
time 

Home 
status 

1 1 1 56 1 88 1 163 0 163 1 

2 1 1 52 0 52 0 52 1 52 0 
 

Table 6-2: The data following modification into long format, with one row for each 

potential transition in the model.5  

ID Start Stop Status From To 

1 0 1 1 Birth IC 

1 0 1 0 Birth HD 

1 0 1 0 Birth SC 

1 1 56 1 IC HD 

1 1 56 0 IC SC 

1 1 56 0 IC Death 

1 56 88 1 HD SC 

1 56 88 0 HD Death 

1 88 163 1 SC Home 

1 88 163 0 SC Death 

2 0 1 1 Birth IC 

2 0 1 0 Birth HD 

2 0 1 0 Birth SC 

2 1 52 0 IC HD 

2 1 52 0 IC SC 

2 1 52 1 IC Death 

                                                      
5 In this table the following acronyms apply: IC intensive care; HD high dependency; SC special care. 
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6.2.2 TIMESCALES AND THE MARKOV ASSUMPTION 

In the context of multistate modelling there are two different time scales which the 

time 𝑡 can refer to known as: clock forward or clock reset. 

Figure 6-2: Example of the two time scales in multistate modelling: clock forward and 

clock reset. 

 

The time scale in a clock forward analysis refers to the time since the participant 

entered the initial starting state. The clock continues moving forward for the 

participant as intermediate events occur, until the final event occurs. In a clock reset 

analysis, the time 𝑡 of the hazard rate depends on the time since entry into a given 

state 𝑗 and the clock is reset to 0 each time the patient enters a new state.  

A natural choice of time scale when considering neonatal care is birth denoting time 

zero and time since birth being measured, i.e. a clock forward approach. However, in 

reality there is thought to be very little difference in the parameter estimates from use 

of either clock forward or clock reset (76). A preliminary investigation of the clock reset 

approach in this thesis found similar results for most transitions (results not 

presented). Throughout this thesis the clock forward approach is used.  

Many multistate models rely on the Markov assumption. This assumption is often 

described as being ‘memoryless’ as the state that a participant occupies at time 𝑡 only 
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depends on the current time 𝑠, 𝑠 ≤ 𝑡, and on the current state which they occupy. It 

does not depend on the history of the participant until that point.  

If the Markov assumption is strictly applied then only clock forward models can be 

defined as Markov models and a clock reset model, which forces a slight relaxation of 

the Markov assumption, is often referred to as semi-Markov (76). This is because a 

clock reset approach does not depend on the current time, but on the duration spent 

in the current state (114). Although the Markov assumption can appear restrictive, it is 

convenient as the calculation required to estimate the probabilities would otherwise 

become very complex. In this thesis, all care is assumed to occur hierarchically and 

therefore the Markov assumption is likely to be reasonable as stepping up or a 

subsequent step down between the same levels of care is not considered in the 

analysis. This allows for interpretation and analysis which is meaningful for 

commissioning, but not for clinical decision making which will be interested in the 

movements between levels of care which a baby may take. If this was considered then 

the Markov assumption would need to be relaxed as information about the movement 

between levels of care would need to be considered, thus requiring a non-Markov 

model approach. 

It is possible to assess the validity of the Markov assumption by including the entry 

time into a state in the model as a covariate to assess whether the hazard ratio is 

different from one, indicating a potential violation of the Markov assumption (115). If 

the hazard ratio is greater than one this indicates that as entry time into a given state 

increases the hazard of making the next transition increases. Similarly, if the hazard 

ratio is less than one, this indicates that as entry time increases, the hazard of making 

the next transition decreases. Both of these situations indicate a potential violation of 

the Markov assumption. Competing risks methods, introduced in Chapter 5, are always 

Markov models as there is no event history (76). 

Relaxing the Markov assumption via a change of timescale is a possibility, although 

some researchers do not recommend it as changing the timescale in this way 

introduces confusion (100). Generally, the choice of the timescale is a question of how 

to best answer the question of interest (76, 116) although more formal procedures 

have been suggested to identify the appropriate timescale (117). Limited research has 
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investigated non-Markov models (118) and future work is needed in this area. 

Throughout this chapter, Markov multistate models will be used, to allow for use of 

the clock forward timescale, but in keeping with convention, the word ‘Markov’ will be 

dropped. 

6.3 CALCULATION OF THE HAZARD RATE AND TRANSITION 

PROBABILITIES 

There are two statistics of interest within multistate modelling: the transition hazards 

and the transition probabilities. The transition hazards can be interpreted in a similar 

way to those from a standard survival analysis (the hazard) or a competing risks 

approach (referred to in this thesis as the event-specific hazard). The hazard ratio for a 

specific transition can provide a comparison between two or more groups and indicate 

whether a group is at an increased hazard of that specific transition. The probabilities 

of being in any state over time can be presented and used in a similar way to the 

cumulative incidence functions from a competing risks analysis. 

6.3.1 EXTENDING THE HAZARD RATE TO MULTISTATE MODELLING 

In Figure 6-1 each potential state is represented by a box with transitions denoted by 

arrows between the states. The transition between state 𝑙 and state 𝑗 can be 

represented by 𝑙𝑗. If 𝑇 denotes the time that 𝑗 is reached from 𝑙 then the transition 

hazard rate (also known as the transition intensity) is: 

𝛼𝑙𝑗(𝑡) = 𝑙𝑖𝑚
𝛿→0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + 𝛿|𝑇 ≥ 𝑡)

𝛿
  

Equation 6-1 

 

 

 



Multistate modelling for the estimation of mortality and length of stay at each level of care 

159 
 

Comparison of the transition hazard rate with the hazard for a standard survival 

analysis (Equation 4-5) and the event-specific hazard for the competing risks approach 

(Equation 5-1) demonstrates the similarity between all these approaches. The 

cumulative hazard for the 𝑙𝑗 transition is: 

𝐴𝑙𝑗(𝑡) = ∫ 𝛼𝑙𝑗(𝑢)𝑑𝑢
𝑡

0

 

Equation 6-2 

As in Equation 4-9, the Nelson-Aalen estimator of the cumulative hazard can be used 

and is extended to multistate modelling by being considered for each separate 

transition. Further details can be found in the references: (100, 119).  

The hazards can be described in a matrix, and from Figure 6-1 this can be expressed as: 

𝐓𝐎 BIRTH INTENSIVE HDU SPECIAL DEATH DISCHARGE
𝐅𝐑𝐎𝐌
BIRTH − 𝛼12(𝑡) 𝛼13(𝑡) 𝛼14(𝑡)

INTENSIVE − 𝛼23(𝑡) 𝛼24(𝑡) 𝛼25(𝑡) −

HDU − − 𝛼34(𝑡) 𝛼35(𝑡) −

SPECIAL − − − 𝛼45(𝑡) 𝛼46(𝑡)

DEATH − − − − −
DISCHARGE − − − − −

 

 

The time between birth and the next state is artificially produced as a random number 

between zero and one to allow prediction of all babies from the same initial state. 

Therefore this hazard should not be interpreted. 
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6.3.2 CALCULATION OF TRANSITION PROBABILITIES 

Transition probabilities are calculated as the probability that a random participant will 

be in state 𝑗 at time 𝑡 conditional on them having previously been in 𝑙. The 

probabilities are estimated using the Aalen-Johansen estimator, which is the matrix 

version of the Kaplan-Meier estimator.  The Aalen-Johansen estimator is also known as 

the empirical transition matrix and full details can be found in references: (100, 120). 

In Markov models, given the cumulative hazard, the transition probability matrix can 

be calculated via use of a product integral (119, 121). When the transition probabilities 

are stacked in a plot the distance between them represents the probability of being in 

the corresponding state (96).  

Multistate analyses can be undertaken using the mstate command (assuming Cox 

proportional hazards) or flexsurv (parametric models) in R 3.0.2. In this thesis I use the 

mstate command throughout.  

6.3.3 CALCULATION OF EXPECTED LENGTH OF STAY 

The expected length of stay (122) in any given state 𝑘 is calculated by integrating the 

probability of being in that state: 

𝐸𝑘
𝜏 = ∫ 𝑃(𝑋𝑢 = 𝑘) 𝑑𝑢

𝜏

0

 

Equation 6-3 

where 𝜏 is a fixed value, usually representing the end of follow up time. For 𝜏 < ∞ this 

is known as the restricted expected length of stay. In this work, expected length of stay 

is reported in completed days as for commissioning purposes only whole days are 

measured. It is currently not possible to calculate asymptotic confidence intervals for 

the expected length of stay (personal communication with developers of mstate 

command). Therefore, where possible measures of uncertainty for expected length of 

stay are provided from 1,000 bootstrap samples to create percentile confidence 

intervals (123). In this thesis, I formed a bootstrap sample from random data which were 

selected from the original sample with replacement to create a new sample the same 

size as the original dataset. The analysis is replicated on this newly created dataset, and 
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this is repeated multiple times, with the results stored each time, and the 2.5th and 97.5th 

centiles used to provide measures of uncertainty. 

6.4 OBSERVED DATA 

The 21,038 singleton very preterm babies required 1,205,422 days of care. The 

majority of this care (approximately 52%) was at the lowest level: special care, with a 

total of 629,413 days provided. High dependency care accounted for 329,568 days 

(27%) and intensive care accounted for 246,411 days (21%) (Table 3-1).  

Care was assumed to occur hierarchically, that is, all intensive care was received 

before high dependency care, and all high dependency care before special care to form 

the model presented in Figure 6-1. Figure 6-3 presents examples of the observed care 

and from this all intensive care was collected together to form the time spent in state 

two of the multistate model, all high dependency care was amalgamated to form the 

time spent in state three, and all special care was amalgamated to form the time spent 

in state four. Whilst this assumption, that care occurs hierarchically, is an over-

simplification, for commissioning purposes it is irrelevant what order the care is 

received in as the number of days and costs remain the same. However, this is a 

limitation if interest lies in the clinical care pathways of an individual baby. 
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Figure 6-3: Patterns of observed levels of care for a random selection of babies who 

survive to discharge from neonatal care and who die in neonatal care. 

 

The observed hazard of each transition was estimated (Figure 6-1) (89) with 95% 

confidence interval (Figure 6-4). The hazard can be interpreted as a rate of the 

transition although the shape of the hazard is of more interest to investigate. For 

example, the hazard of dying following only intensive care sharply decreases over time 

until around day seven and thereafter it continues to decrease more slowly over time. 

This indicates that if a baby survives to day seven then the hazard of experiencing 

death immediately after only intensive care is low. 

Several of the observed hazards (Figure 6-4) have turning points and use of a 

parametric approach would be unlikely to capture the shape adequately and a Cox 

model may help as no assumptions are imposed on the shape of the hazard. 
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Figure 6-4: The observed hazard with 95% confidence intervals for each transition in the multistate model.6  

 

                                                      
6 In this figure the following acronyms are used: IC intensive care; HD high dependency and SC special care 
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A matrix of transitions with the number of babies making the identified transition is: 

𝐓𝐎 BIRTH INTENSIVE HDU SPECIAL DEATH DISCHARGE TOTAL
𝐅𝐑𝐎𝐌
BIRTH − 17,269 2,796 973 21,038

INTENSIVE − 15,129 824 1,316 − 17,269
HDU − − 17,665 260 − 17,925

SPECIAL − − − 186 19,276 19,462
DEATH − − − − − −

DISCHARGE − − − − − −
TOTAL 17,269 17,925 19,462 1,762 19,276 75,694

 

 

As babies can experience multiple transitions some babies contribute to the total for 

several transitions. The sum of the deaths and discharges will total 21,038 as these are 

final events (absorbing states). 

A stacked plot providing the observed proportion of babies in that category over time 

is provided in Figure 6-5. It is possible to read the proportion in any category at any 

point in time. For example, seven days after birth the proportion of babies receiving 

intensive care was 0.525; receiving high dependency was 0.227; receiving special care 

was 0.207 and 0.04 had died. No babies had been discharged home at seven days after 

birth. The proportion of babies in each of the different states is also provided in Table 

6-3 on selected days following birth. 

Table 6-3 provides an estimate for all babies together, and to investigate this further, 

important factors such as gestational age need to be considered. Figure 6-6 and Figure 

6-7 provides the observed data again for babies grouped into two gestational age 

brackets: 24 to 28 weeks (extremely preterm) and 29 to 31 weeks (very preterm). 

These plots demonstrate that the mortality is higher in the earlier gestational ages, 

and that, as expected, the need for higher levels of neonatal care, including intensive 

care, is increased in the babies born at 24 to 28 weeks gestational age. This will be 

explored further later in the chapter when the analysis will be adjusted for gestational 

age. 

A plot of the observed care and of having died or been discharged for every week of 

gestational age is provided in Figure 6-8. 
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Figure 6-5: Observed proportion of babies in each of the different categories of levels of 

care or who have been discharged or died over time. 
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Table 6-3: Observed proportion (95% confidence interval) of babies in each of the different states on specific days following birth. 

Day after birth Intensive care High dependency Special care Discharged Died 

1 0.821 
(0.815, 0.827) 

0.133 
(0.129, 0.137) 

0.046 
(0.044, 0.048) 

0.000 
(0.000, 0.000) 

0.000 
(0.000, 0.000) 

2 0.751 
(0.745, 0.757) 

0.162 
(0.156, 0.168) 

0.073 
(0.069, 0.077) 

0.000 
(0.000, 0.000) 

0.014 
(0.012, 0.016) 

3 0.694 
(0.688, 0.700) 

0.169 
(0.163, 0.175) 

0.112 
(0.108, 0.116) 

0.000 
(0.000, 0.000) 

0.025 
(0.023, 0.027) 

4 0.620 
(0.614, 0.626) 

0.183 
(0.177, 0.189) 

0.136 
(0.132, 0.140) 

0.000 
(0.000, 0.000) 

0.031 
(0.029, 0.033) 

5 0.609 
(0.603, 0.615) 

0.200 
(0.194, 0.206) 

0.157 
(0.151, 0.163) 

0.000 
(0.000, 0.000) 

0.034 
(0.032, 0.036) 

6 0.568 
(0.562, 0.574) 

0.214 
(0.208, 0.220) 

0.180 
(0.174, 0.186) 

0.000 
(0.000, 0.000) 

0.037 
(0.035, 0.039) 

7 0.525 
(0.519, 0.531) 

0.227 
(0.221, 0.233) 

0.207 
(0.201, 0.213) 

0.000 
(0.000, 0.000) 

0.040 
(0.038, 0.042) 

10 0.402 
(0.396, 0.408) 

0.247 
(0.241, 0.253) 

0.306 
(0.300, 0.312) 

0.001 
(0.001, 0.001) 

0.045 
(0.043, 0.047) 

14 0.282 
(0.276, 0.288) 

0.248 
(0.242, 0.254) 

0.416 
(0.410, 0.422) 

0.002 
(0.002, 0.002) 

0.051 
(0.049, 0.053) 

30 0.104 
(0.100, 0.108) 

0.229 
(0.223, 0.235) 

0.499 
(0.493, 0.505) 

0.102 
(0.098, 0.106) 

0.066 
(0.062, 0.070) 

50 0.034 
(0.032, 0.036) 

0.162 
(0.156, 0.168) 

0.313 
(0.307, 0.319) 

0.417 
(0.411, 0.423) 

0.074 
(0.070, 0.078) 

150 0.000 
(0.000, 0.000) 

0.003 
(0.000, 0.000) 

0.010 
(0.010, 0.010) 

0.904 
(0.900, 0.908) 

0.083 
(0.079, 0.087) 
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Figure 6-6: Observed proportion of babies born at 24 to 28 weeks gestational age 

receiving each of the levels of care or who have been discharged or died. 

 

Figure 6-7: Observed proportion of babies born at 29 to 31 weeks gestational age 

receiving each of the levels of care or who have been discharged or died. 
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Figure 6-8: Observed proportion of babies requiring each level of care and those who have died or been discharged over time by 

gestational age. 
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6.5 COX PROPORTIONAL HAZARDS MULTISTATE MODELLING 

Several approaches can be used to estimate multistate models and one approach is an 

extension of the Cox model (76, 96, 121). This approach estimates the probability of 

being in any state over time via use of a Aalen-Johansen-type estimator (101) as 

outlined in Chapter 6.3.2. As described previously in Chapter 4 and Chapter 5, in its 

simplest form the Cox model assumes proportional hazards. In this multistate model 

each transition is a separate stratum and so proportional hazards are assumed to hold 

within each transition. Therefore when proportional hazards are assessed, this should 

be investigated within each transition (85). 

The transition-specific Cox model is defined as: 

𝛼𝑙𝑗(𝑡|𝐙) = 𝛼𝑙,𝑗,0(𝑡)exp (𝜷𝑙𝑗
′ 𝐙𝒍𝒋) 

Equation 6-4 

where 𝜷𝑙𝑗is the vector of regression coefficients and 𝐙𝑙𝑗 are the transition-specific 

covariates that impact on the transition 𝑙 → 𝑗 (76, 78).  

If all the regression coefficients are allowed to differ between transitions then this 

model is equivalent to fitting a separate model to each stratum (in this analysis each 

transition) with respect to the estimation of the hazards. However, there are 

advantages in the use of one model, for example post-estimation of transition 

probabilities as multiple models would give probabilities totalling more than one (96). 

It is possible to allow the covariates to be different for each transition, or only adjust 

certain transitions for certain covariates; these are known as transition-specific 

covariates (76). If covariates are assumed to have the same effect on all transitions 

then they are known as shared covariates. 

6.6 COX MULTISTATE MODEL ADJUSTED FOR GESTATIONAL AGE 

In order to estimate the levels of care required over time, and the outcomes of death 

or discharge from neonatal care, I fitted a Cox multistate model as described in Figure 



Multistate modelling for the estimation of mortality and length of stay at each level of care 

170 
 

6-1 with an adjustment for gestational age. All analysis in this chapter was conducted 

using the mstate command in R 3.0.2.  

Hazard ratios are presented comparing each week of gestational age for each 

transition to the baseline group of 27 weeks gestational age (Table 6-4). The hazard of 

dying following intensive care is 3.03 times higher in the 24 week group compared to 

the 27 week group (p<0.001,Table 6-4). However, the hazard of dying after intensive 

care for babies born at 28 weeks is 30% lower than for those born at 27 weeks 

(p<0.001,Table 6-4). 

Certain hazard ratios are poorly estimated due to a lack of data, for example the 

transition directly from intensive care to special care as seen by the large hazard ratios 

for 30 and 31 weeks, which are 26.7 and 53.6 respectively. This is because very few 

babies experience this transition and even fewer in those gestational age groups, 

mainly because these babies are likely to have received little or no intensive care. 

Therefore, these hazard ratios should not be over-interpreted. This can be seen in all 

gestational age groups for this transition, indicated by the wide confidence intervals, 

and thus most uncertainty. Similar levels of uncertainty can be seen in other 

transitions which are also uncommon, for example special care to death.
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Table 6-4: Hazard ratios of each transition compared to 27 weeks gestational age with 

95% confidence interval and p-value.7  

Gestational age 
(weeks) 

Transition 

Hazard ratio 95% Confidence Interval p-value 

24 weeks    

IC -> HD 0.38 0.35, 0.41 <0.001 

IC -> SC 0.65 0.26, 1.62 0.36 

IC -> Death 3.03 2.51, 3.65 <0.001 

HD -> SC 0.51 0.47, 0.56 <0.001 

HD -> Death 1.85 1.21, 2.82 0.005 

SC -> Home 0.58 0.53, 0.64 <0.001 

SC -> Death 4.51 2.15, 9.45 <0.001 

25 weeks    

IC -> HD 0.52 0.48, 0.56 <0.001 

IC -> SC 0.25 0.07, 0.88 0.03 

IC -> Death 1.63 1.33, 1.99 <0.001 

HD -> SC 0.61 0.57, 0.66  <0.001 

HD -> Death 1.05 0.68, 1.61 0.84 

SC -> Home 0.69 0.64, 0.75 <0.001 

SC -> Death 3.40 1.73, 6.71 <0.001 

26 weeks    

IC -> HD 0.75 0.70, 0.80 <0.001 

IC -> SC 0.52 0.23, 1.32 0.18 

IC -> Death 1.25 1.02, 1.53 0.033 

HD -> SC 0.80 0.75, 0.86 <0.001 

HD -> Death 0.88 0.58, 1.34 0.55 

SC -> Home 0.80 0.75, 0.86 <0.001 

SC -> Death 2.96 1.68, 5.21 <0.001 

27 weeks    

IC -> HD Reference Reference Reference 

IC -> SC Reference Reference Reference 

IC -> Death Reference Reference Reference 

HD -> SC Reference Reference Reference 

HD -> Death Reference Reference Reference 

SC -> Home Reference Reference Reference 

SC -> Death Reference Reference Reference 

28 weeks    

IC -> HD 1.38 1.30, 1.47 <0.001 

IC -> SC 3.95 2.21, 7.07 <0.001 

IC -> Death 0.71 0.57, 0.87 0.003 

HD -> SC 1.40 1.32, 1.48 <0.001 

                                                      
7 In this table the following acronyms apply: IC intensive care; HD high dependency; SC special care. 
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Gestational age 
(weeks) 

Transition 

Hazard ratio 95% Confidence Interval p-value 

HD -> Death 0.79 0.51, 1.22 0.29 

SC -> Home 1.25 1.18, 1.33 <0.001 

SC -> Death 0.59 0.31, 1.04 0.07 

29 weeks    

IC -> HD 2.04 1.92, 2.17 <0.001 

IC -> SC 9.93 5.71, 17.3 <0.001 

IC -> Death 0.44 0.34, 0.57 <0.001 

HD -> SC 1.97 1.85, 2.09 <0.001 

HD -> Death 0.49 0.28, 0.86 0.012 

SC -> Home 1.87 1.76, 1.98 <0.001 

SC -> Death 0.27 0.15, 0.52 <0.001 

30 weeks    

IC -> HD 2.86 2.69, 3.04 <0.001 

IC -> SC 26.7 15.6, 45.9 <0.001 

IC -> Death 0.55 0.42, 0.72  <0.001 

HD -> SC 2.44 2.30, 2.60 <0.001 

HD -> Death 0.26 0.12, 0.55 <0.001 

SC -> Home 3.17 2.99, 3.36 <0.001 

SC -> Death 0.16 0.08, 0.30 <0.001 

31 weeks    

IC -> HD 3.48 3.27, 3.70 <0.001 

IC -> SC 53.6 31.4, 91.6 <0.001 

IC -> Death 0.64 0.49, 0.84 0.001 

HD -> SC 3.10 2.91, 3.30 <0.001 

HD -> Death 0.48 0.25, 0.95  0.034 

SC -> Home 6.26 5.90, 6.63 <0.001 

SC -> Death 0.10 0.05, 0.20 <0.001 
 

6.6.1 PREDICTION OF PROBABILITIES  

The estimates of the probability of being in each state over time are provided by week 

of gestational age in Figure 6-9. This may be more informative for the commissioning 

of care than the hazard ratios produced in Table 6-4. However, these probabilities are 

an over-simplification of the clinical care provided, where the ordering of care and past 

clinical experience of the baby will also be relevant. This will be discussed in Chapter 

8.3.6. The stacked probability plots can be interpreted by considering the distance 

between the lines which represents the probability of being in that given state at that 

time. For example, for babies born at 24 weeks, the probability of needing intensive 
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care on the first day of life is one, and this reduces to 0.939 and then 0.897 on the 

second and third days of life. For these same babies, over the same period of time the 

probability of death increases from 0.061 (day two of life) to 0.103 (day three of life). 

For the babies born at 24 weeks the risk of mortality is high with the probability of 

having died by 150 days of 0.38 (95% confidence interval: 0.345 to 0.415, Table 6-5). 

This compares to a probability of 0.024 (95% confidence interval: 0.020 to 0.028, Table 

6-6) at the same time point for babies born at 31 weeks. The babies born at 24 weeks 

gestational age required higher levels of care, with the estimated probability needing 

intensive care at ten days being 0.706 (95% confidence interval: 0.688 to 0.724, Table 

6-5) compared to 0.089 (95% confidence interval: 0.083 to 0.095, Table 6-6) for babies 

born at 31 weeks gestational age. 

The predicted and observed proportions are similar for babies born at later gestational 

ages, indicating good model fit. However, the estimates show less agreement for 

babies born at 24 to 26 weeks (comparing Figure 6-8 with Figure 6-9). This is 

particularly apparent in the estimation of when babies are discharged from the 

neonatal unit, which is predicted to be earlier than would be expected for the 

extremely preterm babies. This is because the model is overwhelmed with data related 

to babies born at 30 and 31 weeks gestational age, and proportional hazards are 

assumed to hold across the weeks of gestational age. Alternative approaches will be 

discussed in Chapter 6.8 and Chapter 6.9 to overcome this issue.  

When the transition probabilities are stacked, as in Figure 6-9, it is difficult to present 

the uncertainty around the estimates. Figure 6-10 and Figure 6-11 provide the 

probabilities again, with 95% confidence intervals to represent the uncertainty. The 

uncertainty in the babies born at 31 weeks is less than the uncertainty for those born 

at 24 weeks because there is more data available for babies born at 31 weeks of 

gestational age. 
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Figure 6-9: Stacked estimated proportions of babies receiving each level of care, or who have died or been discharged, over time.  
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Table 6-5: Estimated proportions (95% confidence interval) of babies born at 24 week gestational age receiving each level of care or who 

have died or been discharged. 

Day after birth Intensive care High 
dependency 

Special care Discharged Died 

1 1.000 
(1.00, 1.00) 

0.000 
(0.000, 0.00) 

0.000 
(0.000, 0.000) 

0.000 
(0.000, 0.000) 

0.000 
(0.000, 0.000) 

2 0.932 
(0.924, 0.940) 

0.012 
(0.010, 0.014) 

0.000 
(0.000, 0.000) 

0.000 
(0.000, 0.000) 

0.055 
(0.047, 0.063) 

3 0.879 
(0.867, 0.891) 

0.023 
(0.021, 0.025) 

0.001 
(0.001, 0.001) 

0.000 
(0.000, 0.000) 

0.096 
(0.084, 0.108) 

4 0.845 
(0.831, 0.859) 

0.032 
(0.030, 0.034) 

0.002 
(0.002, 0.002) 

0.000 
(0.000, 0.000) 

0.120 
(0.106, 0.134) 

5 0.821 
(0.805, 0.837) 

0.043 
(0.039, 0.047) 

0.003 
(0.003, 0.003) 

0.000 
(0.000, 0.000) 

0.133 
(0.117, 0.149) 

6 0.797 
(0.781, 0.813) 

0.054 
(0.050, 0.058) 

0.004 
(0.002, 0.006) 

0.000 
(0.000, 0.000) 

0.145 
(0.129, 0.161) 

7 0.775 
(0.759, 0.791) 

0.066 
(0.060, 0.072) 

0.005 
(0.005, 0.005) 

0.000 
(0.000, 0.000) 

0.154 
(0.138, 0.170) 

10 0.706 
(0.688, 0.724) 

0.105 
(0.097, 0.113) 

0.013 
(0.011, 0.015) 

0.000 
(0.000, 0.000) 

0.176 
(0.158, 0.194) 

30 0.380 
(0.360, 0.400) 

0.276 
(0.256, 0.296) 

0.077 
(0.063, 0.091) 

0.002 
(0.002, 0.002) 

0.265 
(0.241, 0.289) 

50 0.218 
(0.198, 0.238) 

0.310 
(0.286, 0.334) 

0.146 
(0.126, 0.166) 

0.023 
(0.019, 0.027) 

0.303 
(0.276, 0.330) 

150 0.015 
(0.005, 0.025) 

0.044 
(0.032, 0.056) 

0.082 
(0.066, 0.098) 

0.477 
(0.444, 0.510) 

0.380 
(0.345, 0.415) 
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Table 6-6: Estimated proportions (95% confidence interval) of babies born at 31 weeks gestational age receiving each level of care or who 

have died or been discharged.  

Day after birth Intensive care High dependency Special care Discharged  Died 

1 0.533 
(0.521, 0.545) 

0.324 
(0.314, 0.334) 

0.144 
(0.136, 0.152) 

0.000 
(0.000, 0.000) 

0.000 
(0.000, 0.000) 

2 0.449 
(0.439, 0.459) 

0.330 
(0.320, 0.400) 

0.216 
(0.206, 0.226) 

0.000 
(0.000, 0.000) 

0.006 
(0.004, 0.008) 

3 0.383 
(0.373, 0.393) 

0.300 
(0.290, 0.310) 

0.306 
(0.296, 0.316) 

0.001 
(0.000, 0.003) 

0.011 
(0.009, 0.013) 

4 0.334 
(0.324, 0.344) 

0.296 
(0.286, 0.306) 

0.356 
(0.344, 0.368) 

0.001 
(0.000, 0.003) 

0.014 
(0.012, 0.016) 

5 0.288 
(0.278, 0.298) 

0.298 
(0.288, 0.308) 

0.398 
(0.386, 0.410) 

0.002 
(0.000, 0.004) 

0.015 
(0.013, 0.017) 

6 0.244 
(0.234, 0.254) 

0.296 
(0.286, 0.306) 

0.443 
(0.431, 0.455) 

0.002 
(0.000, 0.004) 

0.016 
(0.014, 0.018) 

7 0.200 
(0.192, 0.208) 

0.290 
(0.280, 0.300) 

0.493 
(0.481, 0.505) 

0.002 
(0.000, 0.004) 

0.017 
(0.015, 0.019) 

10 0.089 
(0.083, 0.095) 

0.236 
(0.226, 0.246) 

0.654 
(0.642, 0.666) 

0.003 
(0.001, 0.005) 

0.019 
(0.015, 0.023) 

30 0.000 
(0.000, 0.000) 

0.038 
(0.034, 0.042) 

0.671 
(0.659, 0.683) 

0.269 
(0.259, 0.279) 

0.023 
(0.019, 0.027) 

50 0.000 
(0.000, 0.000) 

0.005 
(0.003, 0.007) 

0.094 
(0.088, 0.100) 

0.878 
(0.870, 0.886) 

0.024 
(0.020, 0.028) 

150 0.000 
(0.000, 0.000) 

0.000 
(0.000, 0.000) 

0.000 
(0.000, 0.000) 

0.977 
(0.973, 0.980) 

0.024 
(0.020, 0.028) 
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6.6.2 EXPECTED LENGTH OF STAY IN EACH LEVEL OF CARE 

The expected length of stay in each of the transient states, i.e. the time spent receiving 

each level of care is calculated as described in Chapter 6.3.3 and provided for all babies 

in Table 6-7. The percentile confidence interval is estimated from 1000 bootstrap 

samples. It is not possible to estimate expected length of stay by outcome as the 

probability of being in a state is an amalgamation of all babies irrespective of their 

future transition.  

The observed mean length of stay receiving each level of care is provided in Table 6-8 

to allow a comparison between the observed length of stay and that estimated from 

the model (Table 6-7). The difference in the observed and predicted length of stay is a 

maximum of two days, and overall the predictions from the model reflect the observed 

data. Therefore, whilst there was concern over the estimation of the probabilities in 

Chapter 6.6.1, the length of stay estimates appear unaffected. 

An alternative approach for considering the care needs of this population of babies is 

presented in Table 6-9 where an estimation is provided of the total number of days of 

care which may be required by these babies using a total number of babies similar to 

that seen in this population (see Chapter 3). 

Table 6-7: Expected time (days) spent receiving each level of care with 95% confidence 

interval. 

Gestational 
age (weeks) 

Intensive care  High 
dependency  

Special care  Total  
 

24 33 (30, 34) 29 (27, 31) 22 (19, 23) 84 (80, 87) 

25 30 (28, 31) 33 (31, 34) 27 (25, 28) 90 (87, 92) 

26 23 (21, 24) 29 (27, 30) 30 (28, 31) 82 (81, 84) 

27 18 (17, 19) 25 (23, 26) 31 (29, 32) 74 (73, 76) 

28 14 (12, 14) 19 (17, 19) 33 (33, 34) 66 (65, 67) 

29 10 (9, 10) 13 (11, 13) 33 (32, 34) 56 (55, 57) 

30 6 (5, 6) 9 (7, 9) 31 (30, 32) 46 (45, 47) 

31 4 (3, 4) 6 (5, 6) 28 (27, 28) 38 (37, 38) 
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Table 6-8: Observed mean length of stay (days) at each level of care and overall. 

Gestational 
age (weeks) 

Intensive care  High 
dependency 
care  

Special care  Total  

24 32 31 20 83 

25 29 35 26 90 

26 22 31 30 83 

27 18 26 32 76 

28 14 18 35 67 

29 9 12 35 56 

30 6 8 32 46 

31 4 6 27 37 

 

Table 6-9: Estimated days of care in one year for each level of care using a hypothetical 

number of babies similar to the observed data. 

Gestational 
age 
(weeks) 

Hypothetical 
number of 
babies  

Intensive 
care  

High 
dependency  

Special 
care  

Total  

24 280 9,240 8,120 6,160 23,520 

25 320 9,600 10,560 8,640 28,800 

26 440 10,120 12,760 13,200 36,080 

27 540 9,720 13,500 16,740 39,960 

28 700 9,800 13,300 23,100 46,200 

29 800 8,000 10,400 26,400 44,800 

30 1,000 6,000 9,000 31,000 46,000 

31 1,300 5,200 7,800 36,400 49,400 

Total     315,640 
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Figure 6-10: Proportion of babies in each state over time with 95% confidence interval for a baby born at 24 weeks gestational age. 
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Figure 6-11: Proportion of babies in each state over time with 95% confidence interval for a baby born at 31 weeks gestational age. 
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6.6.3 TESTING MODEL ASSUMPTIONS 

As proportional hazards were assumed within each transition the Therneau-Grambsch 

test was performed on each covariate within each transition. A p-value of <0.001 

indicates a potential violation of the proportional hazards assumption (Table 6-10). 

The transition identified as potentially breaching proportional hazards for most weeks 

of gestational age was the transition from intensive to high dependency care (Table 

6-10). This was investigated more fully via use of Schoenfeld residuals (Figure 6-12) for 

those with p<0.001. Babies born at 30 and 31 weeks appeared to violate the 

proportional hazards assumption the most, indicated by a non-horizontal lines on the 

plots. The non-horizontal lines indicates that the hazards are changing over time. 

Potential issues were also noted for the transitions of high dependency to special care 

and special care to home for the babies born at 30 and 31 weeks gestational age and 

Schoenfeld residual plots are provided in Figure 6-13 and Figure 6-14. The non-

horizontal line on these plots indicates violation of the proportional hazards 

assumption. The transitions identified as breaching the proportional hazards 

assumption were also the transitions with the most data in the analyses. Stratification 

will be discussed in Chapter 6.8 to investigate these issues further as seen in Chapter 

4.7.3. 
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Table 6-10: Therneau-Grambsch test for proportional hazards for each transition by 

week of gestational age.8  

Gestational age (weeks) 
Transition 

Chi-squared value P-value 

24 weeks   

IC -> HD 27.82 <0.001 

IC -> SC 0.10 0.747 

IC -> Death 5.24 0.02 

HD -> SC 6.21 0.013 

HD -> Death 3.04 0.081 

SC -> Home 0.31 0.579 

SC -> Death 10.25 0.001 

25 weeks   

IC -> HD 14.30 <0.001 

IC -> SC 1.30 0.255 

IC -> Death 0.39 0.532 

HD -> SC 6.80 0.009 

HD -> Death 1.52 0.217 

SC -> Home 0.25 0.618 

SC -> Death 5.07 0.024 

26 weeks   

IC -> HD 4.42 0.036 

IC -> SC 0.00 0.983 

IC -> Death 1.89 0.170 

HD -> SC 4.72 0.030 

HD -> Death 0.59 0.444 

SC -> Home 0.11 0.737 

SC -> Death 1.89 0.170 

27 weeks   

IC -> HD Baseline Baseline 

IC -> SC Baseline Baseline 

IC -> Death Baseline Baseline 

HD -> SC Baseline Baseline 

HD -> Death Baseline Baseline 

SC -> Home Baseline Baseline 

SC -> Death Baseline Baseline 

28 weeks   

IC -> HD 8.29 0.004 

IC -> SC 1.70 0.193 

IC -> Death 0.56 0.456 

HD -> SC 4.53 0.033 

HD -> Death 0.54 0.463 

                                                      
8 In this table the following acronyms apply: IC intensive care; HD high dependency; SC special care. 
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Gestational age (weeks) 
Transition 

Chi-squared value P-value 

SC -> Home 0.90 0.342 

SC -> Death 0.47 0.491 

29 weeks   

IC -> HD 23.92 <0.001 

IC -> SC 2.52 0.113 

IC -> Death 1.36 0.243 

HD -> SC 10.22 0.001 

HD -> Death 0.16 0.690 

SC -> Home 4.43 0.035 

SC -> Death 0.73 0.392 

30 weeks   

IC -> HD 66.64 <0.001 

IC -> SC 3.50 0.061 

IC -> Death 0.08 0.781 

HD -> SC 18.95 <0.001 

HD -> Death 0.21 0.643 

SC -> Home 16.95 <0.001 

SC -> Death 1.34 0.245 

31 weeks   

IC -> HD 104.19 <0.001 

IC -> SC 4.82 0.028 

IC -> Death 0.43 0.510 

HD -> SC 26.22 <0.001 

HD -> Death 2.73 0.10 

SC -> Home 43.87 <0.001 

SC -> Death 2.82 0.093 
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Figure 6-12: Schoenfeld residual plots for the transition of intensive care to high dependency for the weeks of gestational age indicated as 

potentially breaching the proportional hazards assumption. 
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Figure 6-13: Schoenfeld residual plots for the transition of high dependency to special 

care for the weeks of gestational age indicated as potentially breaching the 

proportional hazards assumption.  

 

Figure 6-14: Schoenfeld residual plots for the transition of special care to home for the 

weeks of gestational age indicated as potentially breaching the proportional hazards 

assumption.  
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In addition to proportional hazards the Markov assumption was required to allow 

computation of the probabilities. To test if the assumption holds, Table 6-11 provides 

the hazard ratios for the entry times into a new state where a hazard ratio of 

approximately one indicates that the Markov assumption holds. A hazard ratio of more 

than one indicates that as entry time into the state increases, the hazard of making the 

next transition increases, whilst a hazard ratio of less than one indicates that as entry 

time into the state increases, the hazard of making the transition decreases. Two 

transitions had significant departures from a hazard ratio of one: special care after high 

dependency and discharged after special care although the hazard ratios remained 

close to one. Whilst the hazard ratios were still close to one, future work should 

consider relaxation of the Markov assumption for these transitions. The entry times 

with a hazard ratio that differed from one more substantially were the occurrence of 

death after special care and the occurrence of special care after intensive care. 

However, these transitions have the least events and therefore the hazard ratios 

slightly different from one do not provide evidence of a departure from the Markov 

assumption and use of the Markov assumption is therefore appropriate.  

Table 6-11: Inclusion of entry time into the multistate model to test the Markov 

assumption. 

Entry time into state Hazard ratio 95% confidence interval 

High dependency  
(after intensive care) 

1.01 0.96, 1.09 

Special care  
(after intensive care) 

1.23 0.91, 1.65 

Died 
(after intensive care) 

1.04 0.82, 1.31 

Special care 
(after high dependency) 

0.97 0.96, 0.97 

Died  
(after high dependency) 

1.08 1.06, 1.09 

Discharged 
(after special care) 

0.97 0.96, 0.97 

Died 
(after special care) 

1.34 1.11, 1.16 
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6.6.4 SENSITIVITY ANALYSIS 

The endpoint of discharge was an amalgamation of several outcomes as described in 

Chapter 3. To investigate the robustness of this assumption all babies discharged to 

another location (Table 3-4, n=734) were censored by the analysis. This provided a 

new transition matrix: 

𝐓𝐎 INTENSIVE HDU SPECIAL DEATH DISCHARGE NO EVENT TOTAL
𝐅𝐑𝐎𝐌
BIRTH 17,269 2,796 973 21,038

INTENSIVE − 15,129 824 1,316 − − 17,269
HDU − − 17,665 260 − − 17,925

SPECIAL − − − 186 18,542 734 19,462
DEATH − − − − − − −

DISCHARGE − − − − − − −
TOTAL 17,269 17,925 19,462 1,762 18,542 734 75,694

 

 

After censoring these observations, the hazard ratios (Table 6-12) and transition 

probabilities (Figure 6-15) were re-estimated. There were no differences in the results 

when compared with Table 6-4 and Figure 6-9 which indicated that amalgamating all 

of the outcomes together did not bias the results. 

Table 6-12: Hazard ratios from sensitivity analysis with outcomes to other care 

locations censored.9 

Gestational age 
(weeks) 

Transition 

Hazard ratio 95% Confidence Interval p-value 

24 weeks    

IC -> HD 0.38 0.35, 0.41 <0.001 

IC -> SC 0.65 0.26, 1.62 0.36 

IC -> Death 3.03 2.51, 3.65 <0.001 

HD -> SC 0.51 0.47, 0.56 <0.001 

HD -> Death 1.85 1.21, 2.82 0.005 

SC -> Home 0.59 0.54, 0.66 <0.001 

SC -> Death 4.51 2.15, 9.45 <0.001 

25 weeks    

IC -> HD 0.52 0.48, 0.56 <0.001 

IC -> SC 0.25 0.07, 0.88 0.03 

IC -> Death 1.63 1.33, 1.99 <0.001 

                                                      
9 In this table the following acronyms apply: IC intensive care; HD high dependency; SC special care. 
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Gestational age 
(weeks) 

Transition 

Hazard ratio 95% Confidence Interval p-value 

HD -> SC 0.61 0.57, 0.63  <0.001 

HD -> Death 1.05 0.68, 1.61 0.84 

SC -> Home 0.69 0.64, 0.75 <0.001 

SC -> Death 3.40 1.73, 6.71 <0.001 

26 weeks    

IC -> HD 0.75 0.70, 0.80 <0.001 

IC -> SC 0.55 0.23, 1.32 0.18 

IC -> Death 1.25 1.02, 1.53 0.036 

HD -> SC 0.80 0.75, 0.86 <0.001 

HD -> Death 0.88 0.58, 1.34 0.57 

SC -> Home 0.80 0.75, 0.86 <0.001 

SC -> Death 2.96 1.68, 5.21 <0.001 

27 weeks    

IC -> HD Reference Reference Reference 

IC -> SC Reference Reference Reference 

IC -> Death Reference Reference Reference 

HD -> SC Reference Reference Reference 

HD -> Death Reference Reference Reference 

SC -> Home Reference Reference Reference 

SC -> Death Reference Reference Reference 

28 weeks    

IC -> HD 1.38 1.30, 1.47 <0.001 

IC -> SC 3.95 2.21, 7.07 <0.001 

IC -> Death 0.71 0.57, 0.86 0.003 

HD -> SC 1.40 1.32, 1.48 <0.001 

HD -> Death 0.79 0.51, 1.22 0.29 

SC -> Home 1.26 1.18, 1.34 <0.001 

SC -> Death 0.59 0.33, 1.04 0.07 

29 weeks    

IC -> HD 2.04 1.92, 2.17 <0.001 

IC -> SC 9.93 5.71, 17.3 <0.001 

IC -> Death 0.44 0.34, 0.57 <0.001 

HD -> SC 1.97 1.85, 2.09 <0.001 

HD -> Death 0.49 0.28, 0.86 0.012 

SC -> Home 1.87 1.76, 1.99 <0.001 

SC -> Death 0.28 0.15, 0.52 <0.001 

30 weeks    

IC -> HD 2.86 2.69, 3.04 <0.001 

IC -> SC 26.7 15.6, 45.9 <0.001 

IC -> Death 0.55 0.42, 0.72  <0.001 

HD -> SC 2.45 2.30, 2.60 <0.001 

HD -> Death 0.26 0.12, 0.55 <0.001 

SC -> Home 3.19 3.00, 3.38 <0.001 
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Gestational age 
(weeks) 

Transition 

Hazard ratio 95% Confidence Interval p-value 

SC -> Death 0.16 0.08, 0.30 <0.001 

31 weeks    

IC -> HD 3.48 3.27, 3.70 <0.001 

IC -> SC 53.6 31.4, 91.6 <0.001 

IC -> Death 0.65 0.49, 0.84 0.001 

HD -> SC 3.10 2.91, 3.30 <0.001 

HD -> Death 0.48 0.25, 0.95  0.034 

SC -> Home 6.29 5.90, 6.68 <0.001 

SC -> Death 0.10 0.05, 0.20 <0.001 
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Figure 6-15: Proportion of babies receiving each level of care, or of having died or been discharged over time, estimated from the censored 

sensitivity analysis. 
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6.7 INVESTIGATING THE PROPORTIONAL HAZARDS ASSUMPTION 

To investigate the impact of assuming proportional hazards on the results in Chapter 

6.6, a sensitivity analysis was undertaken. One approach for handling non-proportional 

hazards, and to relax the assumption (89), is to perform an analysis that is stratified by 

groups that are more likely to be similar to each other, and therefore more likely to 

share proportional hazards. This was seen in the standard survival analysis in Chapter 

4.7.3. However, at the time of writing this thesis it is not currently possible in 

multistate modelling software to stratify by more than one variable and the analysis 

has already been stratified for the different transitions. Therefore, separate models 

were fitted to the groups of babies that were similar to each other, according to the 

different length of stay groupings seen in Chapter 5.7.4. Gestational age was 

categorised into three groups of: 24 to 26 weeks (babies discharged around their due 

date); 27 to 29 weeks (babies discharged shortly before their due date) and 30 to 31 

weeks (babies discharged in advance of their due date).  

6.7.1 PREDICTION OF PROBABILITIES  

The stacked probabilities presented in Figure 6-9 provided a poor fit when the 

probability of discharge was considered. This was a particular issue for babies born 

extremely preterm, noticeable for those born at 24 to 26 weeks gestational age when 

compared with the observed data (Figure 6-8). This is unsurprising as the extremely 

preterm babies were clearly different in their lengths of stay in the competing risks 

analysis (see Chapter 5).  

Separate models were fitted and the predicted proportion of babies in each state over 

time was re-estimated (Figure 6-16). This improved the prediction of the proportions 

and these now reflected the observed data closer when comparing with Figure 6-8.  

The predicted proportion of babies in each state is provided at certain time points for 

babies born at 24 weeks (Table 6-13) and 31 weeks (Table 6-14). These can be 

compared to the estimates from the single model (Table 6-5 and Table 6-6). In the 

separate analyses, there was a lower proportion of babies being discharged early in 

the time period after birth and this reflects the observed data more effectively than 
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seen previously. However, both approaches have a similar proportion of events by the 

latest time points. For example, of the babies born at 24 weeks who died, the single 

proportional hazards model estimated a proportion of 0.380 would die (Table 6-5) 

whilst the separate models estimated 0.384 (Table 6-13). Similarly, for babies born at 

31 weeks, the estimated proportions of babies who survived to discharge from the two 

models were 0.977 (Table 6-6) and 0.978 (Table 6-14).
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Table 6-13: Estimated proportions (95% confidence interval) for babies born at 24 weeks of receiving each level of care or who have died 

or been discharged from the three separate models. 

Day after birth Intensive care High 
dependency 

Special care Discharged  Died 

1 1.000 
(1.00, 1.00) 

0.000 
(0.000, 0.000) 

0.000 
(0.000, 0.000) 

0.000 
(0.000, 0.000) 

0.000 
(0.000, 0.000) 

2 0.939 
(0.925, 0.953) 

0.000 
(0.000, 0.000) 

0.000 
(0.000, 0.000) 

0.000 
(0.000, 0.000) 

0.061 
(0.051, 0.071) 

3 0.897 
(0.883, 0.912) 

0.000 
(0.000, 0.000) 

0.000 
(0.000, 0.000) 

0.000 
(0.000, 0.000) 

0.103 
(0.089, 0.117) 

4 0.868 
(0.852, 0.884) 

0.000 
(0.000, 0.000) 

0.000 
(0.000, 0.000) 

0.000 
(0.000, 0.000) 

0.131 
(0.115, 0.147) 

5 0.853 
(0.835, 0.871) 

0.000 
(0.000, 0.000) 

0.000 
(0.000, 0.000) 

0.000 
(0.000, 0.000) 

0.146 
(0.128, 0.164) 

6 0.836 
(0.818, 0.854) 

0.000 
(0.000, 0.000) 

0.000 
(0.000, 0.000) 

0.000 
(0.000, 0.000) 

0.157 
(0.139, 0.175) 

7 0.827 
(0.809, 0.845) 

0.006 
(0.004, 0.008) 

0.000 
(0.000, 0.000) 

0.000 
(0.000, 0.000) 

0.168 
(0.148, 0.188) 

10 0.776 
(0.756, 0.796) 

0.029 
(0.023, 0.035) 

0.000 
(0.000, 0.000) 

0.000 
(0.000, 0.000) 

0.194 
(0.172, 0.216) 

30 0.431 
(0.407, 0.455) 

0.265 
(0.241, 0.289) 

0.012 
(0.004, 0.020) 

0.000 
(0.000, 0.000) 

0.292 
(0.263, 0.321) 

50 0.204 
(0.184, 0.224) 

0.392 
(0.359, 0.425) 

0.073 
(0.038, 0.108) 

0.000 
(0.000, 0.000) 

0.330 
(0.281, 0.379) 

150 0.002 
(0.000, 0.006) 

0.032 
(0.022, 0.042) 

0.083 
(0.056, 0.110) 

0.499 
(0.407, 0.591) 

0.384 
(0.258, 0.470) 
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Table 6-14: Estimated proportions (95% confidence interval) for babies born at 31 week babies of receiving each level of care or who have 

died or been discharged from the three separate models. 

Day after birth Intensive care High 
dependency 

Special care Discharged  Died 

1 0.533 
(0.521, 0.545) 

0.323 
(0.311, 0.335) 

0.144 
(0.136,0.152) 

0.000 
(0.000, 0.000) 

0.000 
(0.000, 0.000) 

2 0.424 
(0.414, 0.434) 

0.353 
(0.343, 0.363) 

0.218 
(0.206, 0.230) 

0.000 
(0.000, 0.000) 

0.005 
(0.003, 0.007) 

3 0.345 
(0.335, 0.355) 

0.328 
(0.316, 0.340) 

0.318 
(0.306, 330) 

0.000 
(0.000, 0.000) 

0.010 
(0.008, 0.012) 

4 0.287 
(0.277, 0.297) 

0.326 
(0.314, 0.338) 

0.375 
(0.363, 0.387) 

0.001 
(0.000, 0.003) 

0.011 
(0.009, 0.013) 

5 0.240 
(0.230, 0.250) 

0.325 
(0.313, 0.337) 

0.422 
(0.410, 0.434) 

0.002 
(0.000, 0.004) 

0.012 
(0.010, 0.014) 

6 0.195 
(0.185, 0.205) 

0.318 
(0.306, 0.330) 

0.473 
(0.461, 0.485) 

0.002 
(0.000, 0.004) 

0.013 
(0.011, 0.015) 

7 0.155 
(0.147, 0.163) 

0.304 
(0.292, 0.316) 

0.525 
(0.513, 0.537) 

0.002 
(0.000, 0.004) 

0.014 
(0.012, 0.016) 

10 0.070 
(0.064, 0.076) 

0.231 
(0.221, 0.241) 

0.680 
(0.668, 0.692) 

0.003 
(0.001, 0.005) 

0.016 
(0.014, 0.018) 

30 0.006 
(0.004, 0.008) 

0.027 
(0.023, 0.031) 

0.642 
(0.630, 0.654) 

0.305 
(0.293, 0.317) 

0.020 
(0.016, 0.024) 

50 0.020 
(0.018, 0.022) 

0.007 
(0.005, 0.009) 

0.074 
(0.068, 0.080) 

0.896 
(0.888, 0.904) 

0.021 
(0.017, 0.025) 

150 0.000 
(0.000, 0.000) 

0.000 
(0.000, 0.000) 

0.000 
(0.000, 0.000) 

0.978 
(0.974, 0.982) 

0.022 
(0.018, 0.026) 
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6.7.2 EXPECTED LENGTH OF STAY  

The expected length of stay was calculated for each level of care from the three 

separate models (Table 6-15). There was little difference in the estimated expected 

lengths of stay in each state between the two different approaches. This indicated that 

although the probabilities of discharge occurred early in the extreme preterm 

gestational ages in the analysis presented in Chapter 6.6, the calculation of the overall 

expected length of stay was unaffected.  

Similarly, the estimated number of days in each state (Table 6-16) from the 

hypothetical total only differs by 1% from that calculated by the single model with 

gestational age in Table 6-9.  

Table 6-15: Expected time (days) receiving each level of care, and total length of stay 

from the three separate models.  

Gestational 
age (weeks) 

Intensive care  High 
dependency  

Special care  Total  

24 32 (30, 34) 31 (28, 33) 21 (19, 22) 84 (81, 88) 

25 29 (27, 31) 35 (24, 27) 26 (24, 27) 90 (88, 93) 

26 23 (22, 24) 31 (29, 32) 29 (27, 30) 83 (82, 85) 

27 19 (17, 20) 25 (23, 26) 33 (31, 34) 77 (75, 78) 

28 14 (13, 14) 18 (17, 19) 35 (33, 35) 67 (66, 68) 

29 10 (9, 10) 12 (11, 13) 35 (33, 35) 57 (56, 58) 

30 6 (5, 6) 9 (7, 9) 32 (30, 32) 47 (45, 47) 

31 4 (3, 4) 6 (5, 6) 27 (26, 28) 37 (37, 38) 
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Table 6-16: Estimated days of care for each level of care using a hypothetical number of 

babies similar to that observed in one year. 

Gestational 
age 
(weeks) 

Hypothetical 
total  

Intensive 
care (days) 

High 
dependency 
(days) 

Special 
care (days) 

Number of 
care days 
(total) 

24 280 8,960 8,680 5,880 23,520 

25 320 9,280 11,200 8,320 28,800 

26 440 10,120 13,640 12,760 36,520 

27 540 10,260 13,500 17,820 41,580 

28 700 9,800 12,600 24,500 46,900 

29 800 8,000 9,600 28,000 45,600 

30 1,000 6,000 9,000 32,000 47,000 

31 1,300 5,200 7,800 35,100 48,100 

Total     318,020 
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Figure 6-16: Estimated proportion of babies in each state over time (separate models). 
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6.8 MULTISTATE COX MODEL ADJUSTED FOR GESTATIONAL AGE, 

BIRTHWEIGHT AND SEX 

Whilst proportional hazards were indicated to be a problem in Chapter 6.6, a separate 

analysis in Chapter 6.7 indicated that the estimates of length of stay were largely 

unaffected. Additionally, fitting three separate models and adjusting them further 

would have led to sparse data relative to the number of parameters. Therefore, an 

analysis of all babies together assuming proportional hazards was undertaken with 

adjustments for gestational age, birthweight z-score and sex was fitted. 

Birthweight z-score was modelled linearly and whilst it is unlikely that birthweight has 

a linear effect, a more complex approach was likely to result in overfitting. Overfitting 

would be a particular issue when the transitions were uncommon (e.g. special care to 

death) or the number of babies was small. This analysis included 20,900 babies.  

6.8.1 PREDICTION OF PROBABILITIES 

The probability of being in each state over time was estimated and is provided in 

Figure 6-17 for male babies, by week of gestational age with birthweights at the 10th, 

50th and 90th centile. These plots can be interpreted as before, where the distance 

between two lines represents the probability of being in that given state at that time.  

As in Chapter 6.6, the probability of discharge in Figure 6-17 occurred too early in the 

days after birth for the most preterm babies. Whilst previously this impacted on the 

appearance of the probability plots, it did not appear to bias the estimation of the 

expected time babies received each level of care.  
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Figure 6-17: Stacked probabilities for male babies by week of gestational age for those 

with a birthweight at the 10th, 50th and 90th centiles.
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6.8.2 EXPECTED LENGTH OF STAY 

The expected time spent receiving each level of care was estimated for babies of 

selected characteristics: female or male babies by week of gestational age and with a 

birthweight at the 10th, 50 and 90th centile (Table 6-17 and Table 6-18).  

The expected times receiving each level of care for male babies born with a 

birthweight at the 50th centile were similar to that from the model that only accounted 

for gestational age (Table 6-7). This is because male babies comprise the largest 

proportion of neonatal admissions (Table 3-1: 55% versus 45%). Therefore, the 

estimates from the entire neonatal population are heavily influenced by the male 

babies and makes these estimates comparable with the estimates of the male babies.  

As with the competing risks analysis (Chapter 5.8), the impact of sex on time receiving 

care was limited with similar results seen for babies of the opposite sex at the same 

birthweight. There was a larger difference in the expected time receiving each level of 

care between the different birthweight centiles. The difference in the total length of 

stay between the smallest (10th centile) and largest (90th centile) female babies ranged 

from 21 days (25 weeks, Table 6-17) to six days (31 weeks, Table 6-17). Confidence 

intervals are not provided for the expected length of stay as the number of babies at 

the extremes of birthweight is very small, and on individual bootstraps it is possible to 

select no data with the desired characteristics, leading to imprecise estimates, or 

models which fail to converge. 
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Table 6-17: Estimated expected time receiving each level of care for female babies by week of gestational age and with a birthweight at 

the 10th, 50th or 90th centile.10 

Gestational age  
(weeks) 

Birthweight 

 10th centile 50th centile 90th centile 

 IC HD SC Total IC HD SC Total IC HD SC Total 

24 38 32 23 93 32 31 24 87 27 29 23 79 

25 34 37 30 101 28 34 29 91 23 30 27 80 

26 25 33 34 92 21 29 32 82 18 25 29 72 

27 19 28 35 82 16 24 32 72 14 20 30 64 

28 15 21 36 72 12 17 34 63 10 14 32 56 

29 11 15 36 62 9 12 34 55 7 9 32 48 

30 7 11 33 51 5 8 32 45 4 6 30 40 

31 5 7 28 40 3 5 28 36 3 4 27 34 

                                                      
10 In this table the following acronyms apply: IC intensive care; HD high dependency; SC special care. 
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Table 6-18: Estimated expected length of stay for male babies by week of gestational age and with a birthweight at the 10th, 50th or 90th 

centile.11 

Gestational age 
(weeks)  

Birthweight 

 10th centile 50th centile 90th centile 

 IC HD SC Total IC HD SC Total IC HD SC Total 

24 39 29 19 87 34 29 21 84 29 27 21 77 

25 37 36 26 99 31 33 26 90 26 30 25 81 

26 28 33 31 92 23 29 29 81 20 25 27 72 

27 22 28 32 82 18 25 30 73 15 21 29 65 

28 16 22 34 72 14 18 32 64 11 15 31 57 

29 12 16 34 62 10 13 33 56 8 10 31 49 

30 8 12 32 52 6 9 31 46 5 7 30 42 

31 5 8 27 40 4 6 27 37 3 4 27 34 

                                                      
11 In this table the following acronyms apply: IC intensive care; HD high dependency; SC special care. 
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6.8.3 TESTING MODEL ASSUMPTIONS: PROPORTIONAL HAZARDS 

Issues of proportional hazards were identified earlier in this chapter from the 

Therneau-Grambsch test and examination of Schoenfeld residuals (Chapter 6.6.3). To 

investigate these issues previously, three separate models were fitted to groups of 

babies believed to be similar to each other (Chapter 6.7). However, it was not possible 

to do this in this analysis as further adjustment would have resulted in overfitting due 

to the small number of observations compared to the number of parameters in the 

model.  

The Therneau-Grambsch test indicated that some issues of proportional hazard 

remained in this adjusted model (results in Appendix 6). These issues remained 

noticeable between different gestational ages, particularly for the transition from 

intensive care to high dependency and high dependency to special care. There were no 

issues of proportional hazards between the two sexes.  

Previously the impact of assuming proportional hazards seemed to affect the 

estimation of the probabilities and not the expected length of stay. However, future 

work should investigate the robustness of the results presented from this fully 

adjusted analysis.  

6.9 DISCUSSION 

This chapter has introduced an extension to competing risks methods which allowed 

consideration of intermediate events before the final outcomes of death or discharge. 

This approach is known as multistate modelling and allowed the time at each level of 

care to be estimated to address the third aim of this thesis.  

A Cox proportional hazards multistate model was used to describe the probability of 

needing each level of care over time, and the expected number of days receiving each 

level of care, by gestational age. 

Proportional hazards were assumed to hold between the different gestational age 

groups within each transition. Proportional hazards were investigated by the 

Therneau-Grambsch test and Schoenfeld residuals and was identified as an issue in 
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nine transitions. When comparing the obtained probabilities with the observed 

outcomes the shaded area in the stacked plot for the probability of discharge occurred 

too soon after birth, particularly for babies born at 24 and 25 weeks gestational age, as 

the model was heavily influenced by babies born at 30 and 31 weeks. To investigate 

and relax the impact of proportional hazards, three separate models were fitted 

dividing gestational age into: 24 to 26 weeks; 27 to 29 weeks and 30 to 31 weeks. 

When these separate models were fitted, the probability plots reflected those 

observed more accurately, although the expected length of stay did not seem to be 

substantially affected. The result of most interest from this work is the expected length 

of stay and this provides assurance that the results are robust to the proportional 

hazards assumption. 

A final multistate model was presented, which was adjusted for key predictors of 

length of stay and mortality: gestational age; sex and birthweight z-score. It was not 

possible to relax the proportional hazards assumption in this model and future work 

should investigate this. However, as proportional hazards did not previously impact on 

the expected length of stay estimates, these results are likely to be unbiased. 

The calculation of the expected length of time receiving each level of care is an 

average for all babies and it is not possible to separate the estimates by the future 

outcome of death or discharge. For babies where the proportion of deaths is small, 

particularly from 28 weeks onwards, the estimates of the total expected length of stay 

will be similar to the average length of stay for babies who survive.  

6.9.1 IMPLICATIONS FOR PRACTICE: INVESTIGATING LEVELS OF CARE IN 

NEONATAL CARE 

The length of stay in neonatal care was considered as the number of days spent 

receiving each level of care. This estimate was obtained by integrating the area under 

the curve and provided an average for all babies. For example, babies born at 24 weeks 

gestational age will require approximately 32 days receiving intensive care; 31 days 

receiving high dependency care and 21 days of special care. The expected total length 

of stay was 84 days which is lower than the predicted median length of stay of 122 

days for 24 week babies who survive to discharge from the competing risks analysis in 
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Chapter 5. This difference occurs because the multistate analysis estimates an average 

of all babies, and because approximately 40% of babies born at 24 weeks will die, 

mostly in a short period of time, this will reduce the expected time. These results 

reflected that seen in the observed data (Table 6-8). 

Whilst it is not possible to provide a breakdown of these results by final outcome, 

these estimates are informative for the commissioning of specialist neonatal services 

and the allocation of resources, as it is possible to estimate the number days of care 

needed for an average baby of certain characteristics. 

The estimates of the expected (average) time receiving each level of care are useful for 

policy makers (124). A median time as presented previously in Chapter 5 is ideal for 

parental counselling. However, for commissioning and consideration of costs it 

disregards the effect of the extreme cases of length of stay and the impact these have 

on total resource use. Mean length of stay is more relevant for an economic decision 

maker in a budgeting situation as the total time in hospital can be estimated as the 

average time multiplied by the number of babies (125).  

6.9.2 COMPARISON OF THIS RESEARCH WITH OTHER PUBLISHED RESEARCH 

The British Association for Perinatal Medicine revised the standards for the levels of 

neonatal care in 2011 (22). Since 2011, there has been limited research which has 

investigated the levels of care with regards to length of stay. One study by Battersby et 

al reported observed length of stay by level of care in the term population (126). A 

simulation based study investigated the levels of care in the Peninsula network (Devon 

and Cornwall) (127). However, no study has investigated length of stay and levels of 

care for the very preterm population using multistate modelling. 

6.9.3 STRENGTHS AND LIMITATIONS OF THIS ANALYSIS 

This chapter has investigated how the different levels of care contribute towards time 

spent in neonatal care by very preterm babies using a multistate modelling approach. 

No previous research has investigated the levels of neonatal care within the context of 

estimating and understanding length of stay and these results provide a foundation for 

future work.  
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Proportional hazards were identified as a potential problem in this analysis, and whilst 

it was not possible to incorporate time-dependent effects into the analysis separate 

models were fitted to groups of babies who were similar in terms of their gestational 

age. Results from this approach indicated that the estimates of the expected time 

receiving each level of care were robust to issues introduced by assuming proportional 

hazards. Whilst fitting separate models is one approach for handling non-proportional 

hazards, it introduces a non-smooth function between the weeks of gestational age. A 

flexible parametric approach would allow a smooth function, which would allow for 

borrowing of strength between weeks of gestational age. 

There are no formal tests to investigate the fit of the models presented in this chapter. 

However, efforts to investigate performance of the methods by comparing the 

observed and the predicted probabilities, and the observed and estimated time 

receiving each level of care were undertaken. These indicated that the results were 

robust, however future work should investigate formal approaches to investigate 

model fit. 

6.10 CHAPTER CONCLUSION 

This chapter has extended the methods of competing risks to consider intermediate 

events via use of multistate modelling. The intermediate events were the different 

levels of care which a baby may need whilst in the neonatal unit. A model which only 

accounted for gestational age was presented and the probability of being in each state 

over time and the expected time receiving each level of care was estimated. For 

example, for babies born at 24 weeks gestational age, the expected number of days 

spent receiving intensive care; high dependency care and special care was 33, 29 and 

22 respectively.  To investigate the impact of assuming proportional hazards, separate 

models were fitted to group similar gestational ages together. Whilst this had the 

potential to improve the estimation of the probabilities, the estimates of expected 

time receiving each level of care remained similar.  

Finally, an analysis was undertaken which accounted for gestational age, birthweight z-

score and sex of the baby and estimates of expected time receiving each level of care 

were produced for babies according to their gestational age; sex and birthweight. 
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7 MULTISTATE MODELLING TO COMPARE CARE BETWEEN 

OPERATIONAL DELIVERY NETWORKS 

7.1 CHAPTER OVERVIEW 

Differences in healthcare provision, or inequalities in care, across the country have 

become the focus of increased attention. Previous chapters have investigated 

approaches for estimating length of stay and the expected need for different levels of 

care nationally across England. In this chapter the differences that may exist between 

Operational Delivery Networks (ODNs) in England are considered. Firstly, the observed 

differences in the lengths of stay between ODNs are investigated. Secondly, the 

differences will be investigated formally, using a multistate model with an indicator 

term for the ODN, to examine how the expected length of stay differs and in which 

levels of care the differences occur. 

7.2 INTRODUCTION 

Specific units are equipped to provide focussed care to babies of particular 

characteristics. Babies born at less than 27 weeks gestational age should be cared for 

in Neonatal Network Units (intensive care units), with the equipment and staff to 

provide their clinical needs. No babies with these characteristics should be found in 

the lower level units immediately after birth, or they should be transferred soon after 

birth (128).  

Babies are often transferred between neonatal units during their time in neonatal care  

and recent reports from the National Neonatal Audit Programme (NNAP) and Bliss 

suggest that at least 10% of babies are transferred whilst in neonatal care (3, 129). A 

comparison of units would not be appropriate due to the different populations, the 

impact of transfers and that the number of extremely preterm babies admitted to 

most units would be small, even on an annual basis. 

The thirteen neonatal ODNs, which existed in 2013 in England, were used for this 

analysis. These ODNs cover large geographical regions and were established in April 
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2013 following recommendations by NHS England to sustain and develop clinical 

networks (130). Prior to this, managed clinical networks had existed as neonatal 

networks (26). ODNs were developed to focus patient pathways between different 

neonatal units over a potentially wide geographical area, allowing access to all the 

specialist resources which might be required by an individual baby.  

The large geographical area covered by ODNs provides a population diverse in term of 

babies cared for, and care provided by neonatal units. Babies generally receive all their 

care within one ODN where practical (1) and so the ODN selected for analysis is the 

ODN of first admission. When considering an analysis at ODN level, the sample size in 

certain ODNs can be quite small and some transitions, for example intensive care to 

special care, may be poorly estimated. In an attempt to mitigate this somewhat, 

gestational age is modelled linearly, rather than categorically, in this chapter. ODNs are 

anonymised in this chapter. 

7.2.1 INCLUSION AND EXCLUSION CRITERIA 

The 21,038 singleton babies born at 24 to 31 weeks gestational age as described in 

Chapter 3 were included in this analysis. However, in this chapter babies were 

excluded if their ODN of birth was recorded as: an unknown location (n=56); born at 

home (n=22); born in transit (n=14) or born in a non-NHS facility (n=54). 

These babies were included in other analyses in this thesis as they were all admitted to 

NNRD hospitals on the first day of life (Table 3-7). However, in this chapter they are 

excluded as their birth and initial care, including resuscitation and stabilisation if 

required, would have been managed in a location other than the ODN of first 

admission. No exclusions were made for missing data related to birthweight or sex as 

these variables were not used in this chapter and therefore 20,892 babies are included 

in this chapter. 

7.2.2 MORTALITY RATE IN EACH ODN 

The observed proportion of babies who died in each ODN, with 95% confidence 

intervals, are presented in Table 7-1 overall and for babies born at 24 weeks and 31 

weeks gestational age. There was a significant difference in the overall proportion of 
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deaths between the different ODNs (p<0.001). ODN 5 had the largest number of 

admissions, with 133 babies born at 24 weeks gestational age and 704 babies born at 

31 weeks gestational age. ODN 10 had the smallest number of babies born at 24 weeks 

(n=53) and 31 weeks gestational age (n=213). ODN 2 had a high proportion of deaths 

at 24 weeks but overall they were similar to the average (Table 7-1). ODN 10 had a 

high proportion of deaths overall and this is reflected in later analyses (Table 7-2). 

These ODNs are both smaller ODNs, so these results may reflect uncertainty in the 

estimation of death in the small ODNs. However, this chapter focusses on the hazard 

of discharge rather than the hazard of death. 

Table 7-1: Observed proportion of babies (95% confidence interval) who died overall 

and of those born at 24 weeks or 31 weeks gestational age in each by ODN. 

ODN Died overall Died  
(Born at 24 weeks) 

Died  
(Born at 31 weeks) 

ODN 1 0.08 (0.06, 0.09) 0.25 (0.17, 0.35) 0.03 (0.02, 0.06) 

ODN 2 0.08 (0.06, 0.09) 0.50 (0.37, 0.63) 0.01 (0.00, 0.03) 

ODN 3 0.07 (0.06, 0.07) 0.27 (0.20, 0.36) 0.04 (0.02, 0.06) 

ODN 4 0.09 (0.08, 0.11) 0.35 (0.24, 0.36) 0.01 (0.00, 0.03) 

ODN 5 0.08 (0.07, 0.09) 0.42 (0.34, 0.51) 0.02 (0.01, 0.03) 

ODN 6 0.08 (0.07, 0.10) 0.36 (0.25, 0.48) 0.02 (0.01, 0.05) 

ODN 7 0.08 (0.07, 0.10) 0.35 (0.25, 0.48) 0.02 (0.01, 0.05) 

ODN 8 0.08 (0.07, 0.09) 0.42 (0.32, 0.53) 0.01 (0.00, 0.03) 

ODN 9 0.07 (0.05, 0.08) 0.35 (0.24, 0.47) 0.01 (0.00, 0.03) 

ODN 10 0.13 (0.11, 0.15) 0.53 (0.40, 0.66) 0.04 (0.02, 0.08) 

ODN 11 0.08 (0.07, 0.09) 0.35 (0.26, 0.45) 0.02 (0.01, 0.04) 

ODN 12 0.10 (0.09, 0.12) 0.40 (0.30, 0.50) 0.03 (0.02, 0.05) 

ODN 13 0.09 (0.07, 0.10) 0.43 (0.34, 0.53) 0.03 (0.02, 0.04) 

Overall 0.082 (0.08, 0.09) 0.38 (0.35, 0.41) 0.02 (0.02, 0.03) 

Chi-squared  
p-value 

<0.001 0.02 0.04 

 

7.2.3 OBSERVED DIFFERENCES IN LENGTH OF STAY BETWEEN ODNS 

The observed mean length of stay for babies surviving to discharge ranged from 57 

days to 63 days between the ODNs (Figure 7-1). ODNs 2 and 12 had the lowest mean 

length of stay and ODNs 3 and 13 had the longest mean length of stay. The mean 

length of stay of babies who died varied more between the ODNs (Figure 7-2) with the 

mean varying from ten to 31 days. This was because the number of deaths is much 
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lower than the number of discharges, and therefore there is likely to be more 

variation. 

The estimates of average length of stay are presented by gestational age for each ODN 

for babies that survived to discharge (Figure 7-3) and those who died in neonatal care 

(Figure 7-4). For babies born at 24 weeks who survived to discharge their mean length 

of stay ranged from 115 days (Figure 7-3: ODN 11) to 131 days (Figure 7-3: ODN 3). For 

those babies born at 31 weeks, the median length of stay for those who survived 

ranged from 31 days (Figure 7-3: ODN 12) to 38 days (Figure 7-3: ODN 7). 

Figure 7-1: Observed mean length of stay (95% confidence interval) for the babies 

surviving to discharge from neonatal care for each of the 13 ODNs. 
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Figure 7-2: Observed mean length of stay (95% confidence interval) for the babies dying 

in neonatal care for each of the 13 ODNs. 
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Figure 7-3: Mean length of stay in days for babies who survive to discharge (95% confidence interval) by week of gestational age for births 

in each of the 13 ODNs. 
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Figure 7-4: Mean length of stay of babies dying in neonatal care (95% confidence interval) by week of gestational age for births in each of 

the 13 ODNs. 
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7.2.4 DIFFERENCES IN ODNS FROM COMPETING RISKS ANALYSIS 

To investigate differences in length of stay between the ODNs, I fitted a flexible 

parametric competing risks model with ODN as a covariate using stpm2 in Stata v 14 

using the methods described in Chapter 5 (110). The baseline group is the largest ODN: 

ODN 5. 

The hazard ratios were estimated (Table 7-2) and denote the hazard of death or 

discharge compared to the baseline. ODN 3 had a significantly reduced hazard of 

discharge at all times, leading to a longer length of stay compared to ODN 5. ODN 12 

had a significantly increased hazard of discharge, leading to a shorter length of stay at 

all times compared to ODN 5. These two ODNs and the reasons for these differences 

are investigated further in Chapter 7.3.1 and Chapter 7.3.2. 

Only ODN 10 had an increased hazard of death compared to the baseline group of 

ODN 5 (Table 7-2) and this corresponded with the observed data (Table 7-1). However, 

this was not investigated further as the hazard of discharge in this ODN was not 

significant (p=0.03, threshold for significance in this thesis: 0.001). 

7.3 CASE STUDIES OF DIFFERENCES IN LENGTH OF STAY 

The differences between ODN 3 and ODN 12 were investigated via two multistate 

models comparing them with the rest of England. I fitted these multistate models 

using the mstate command in R 3.0.2 including a term to indicate if a baby was from 

the ODN of interest (ODN 3 or ODN 12) or the rest of England excluding that ODN. A 

linear term was also included for gestational age. Hazard ratios were estimated for 

each transition (Table 7-3 and Table 7-5).  

The expected length of stay overall and for each of the levels of care was estimated 

(Table 7-4 and Table 7-6) with 95% confidence interval estimated from 1000 bootstrap 

samples. The probability plots of receiving each level of care or of having died or been 

discharged, were estimated for England excluding the ODN of interest and for ODN 3 

and 12 (Appendix 7). 
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Table 7-2: Hazard ratios with 95% confidence intervals for discharge and death for each 

ODN.  

 Hazard Ratio  95% confidence 
interval 

p-value 

Died    

ODN 1 0.91 0.73, 1.13 0.41 

ODN 2 0.95 0.74, 1.20 0.65 

ODN 3 0.78 0.63, 0.96 0.02 

ODN 4 1.12 0.88, 1.41 0.36 

ODN 5 Baseline Baseline Baseline 

ODN 6 0.99 0.77, 1.26 0.92 

ODN 7 1.00 0.80, 1.25 0.98 

ODN 8 0.96 0.77, 1.20 0.74 

ODN 9 0.78 0.61, 0.99 0.04 

ODN 10 1.61 1.29, 2.00 <0.001 

ODN 11 0.95 0.77, 1.17 0.63 

ODN 12 1.29 1.07, 1.57 0.01 

ODN 13 1.01 0.84, 1.22 0.92 

Discharged    

ODN 1 1.07 1.01, 1.14 0.03 

ODN 2 1.11 1.03, 1.19 0.003 

ODN 3 0.90 0.75, 0.95 <0.001 

ODN 4 1.03 0.95, 1.11 0.47 

ODN 5 Baseline Baseline Baseline 

ODN 6 1.07 1.00, 1.15 0.06 

ODN 7 0.99 0.92, 1.06 0.70 

ODN 8 1.07 1.00, 1.14 0.04 

ODN 9 0.97 0.91, 1.04 0.36 

ODN 10 1.09 1.01, 1.18 0.03 

ODN 11 1.03 0.97, 1.09 0.38 

ODN 12 1.12 1.05, 1.19 <0.001 

ODN 13 0.96 0.91, 1.02 0.20 
 

7.3.1 ODN 3: LONGER LENGTH OF STAY 

Two transitions were significantly different in ODN 3 compared to the rest of England 

(Table 7-3). Firstly, the hazard of stepping down from intensive care to special care was 

reduced in ODN 3 compared to the rest of England (Table 7-3, HR: 0.57, 95% 

confidence interval: 0.42 to 0.77, p<0.001). However, the number of babies 

experiencing this transition was small, so this result should not be overemphasised.  



Multistate modelling to compare care between Operational Delivery Networks 

217 
 

Secondly, the hazard of the transition from high dependency to special care was 

reduced in ODN 3 compared to the rest of England, indicating that the time spent 

receiving high dependency in ODN 3 was likely to be longer than in the rest of England 

(Table 7-3, HR: 0.84, 95% confidence interval: 0.79 to 0.88, p<0.001). 

Table 7-3: Hazard ratios for each of the transitions for those babies born in ODN 3 

compared to England with 95% confidence intervals and p-value.12  

Variable 
Transition 

Hazard Ratio 95% Confidence 
Interval 

p-value 

ODN 3    

IC -> HD 0.95 0.90, 1.01 0.088 

IC -> SC 0.57 0.42, 0.77 <0.001 

IC -> Death 0.73 0.60, 0.90 0.003 

HD -> SC 0.84 0.79, 0.88 <0.001 

HD -> Death 0.50 0.30, 0.83 0.007 

SC -> Home 0.96 0.91, 1.00 0.074 

SC -> Death 0.89 0.54, 1.48 0.658 

Gestational age 
(weeks) 

   

IC -> HD 1.38 1.37, 1.40 <0.001 

IC -> SC 2.41 2.27, 2.55 <0.001 

IC -> Death 0.76 0.74, 0.78 <0.001 

HD -> SC 1.31 1.30, 1.32 <0.001 

HD -> Death 0.82 0.75, 0.89 <0.001 

SC -> Home 1.46 1.45, 1.48 <0.001 

SC -> Death 0.55 0.49, 0.62 <0.001 
 

The total expected length of stay for ODN 3 and the rest of England excluding ODN 3 is 

provided in Table 7-4. Babies born at 24 weeks were estimated to stay 13 days longer 

in ODN 3 compared to the rest of England, although part of this may relate to ODN 3 

having a low mortality rate for babies born at 24 weeks gestational age (Table 7-1), 

which may increase the average length of stay. 

The expected time receiving intensive care and special care was similar between ODN 

3 and the rest of England for most gestational ages (Table 7-4). The largest differences 

were seen in the time spent receiving high dependency care where differences in 

                                                      
12 In this table the following acronyms are used: intensive care (IC); high dependency care (HD) and 
special care (SC). 



Multistate modelling to compare care between Operational Delivery Networks 

218 
 

expected time ranged from one day (31 weeks) to seven days longer in ODN 3 (24 and 

25 weeks) than the rest of England.  

Table 7-4: Expected number of days (95% confidence interval) receiving each level of 

care in ODN 3 and England excluding ODN 3 

Gestational 
age (weeks) 

Intensive care  High 
dependency 

Special care Total 

ODN 3     

24 38 (22, 49) 40 (22, 53) 31 (14, 45) 109 (61, 136) 

25 31 (22, 37) 38 (29, 47) 33 (20, 46) 102 (78, 118) 

26 24 (18, 29) 34 (29, 41) 32 (25, 44) 90 (78, 104) 

27 19 (14, 21) 28 (24, 36) 31 (27, 42) 78 (68, 89) 

28 14 (11, 15) 22 (19, 30) 30 (26, 39) 66 (59, 77) 

29 10 (8, 11) 17 (13, 25) 29 (25, 39) 56 (49, 65) 

30 7 (5, 8) 11 (8, 19) 29 (24, 39) 47 (41, 54) 

31 4 (3, 5) 7 (5, 13) 30 (23, 37) 41 (34, 46) 

England Intensive care 
(Difference 
from ODN 3)  

High 
dependency 
(Difference 
from ODN 3) 

Special care 
(Difference 
from ODN 3) 

Total  
(Difference from 
ODN 3) 

24 34 (26, 43) (-4) 33 (25, 40) (-7) 29 (14, 39) (-2) 96 (73, 113) (-13) 

25 28 (27, 35) (-3) 31 (23, 38) (-7) 32 (23, 38) (-1) 91 (80, 99) (-11) 

26 22 (20, 26) (-2) 28 (26, 30) (-6) 32 (30, 37) (0) 82 (77, 86) (-8) 

27 17 (16, 19) (-2) 23 (21, 25) (-5) 31 (30, 35) (0) 71 (69, 74) (-7) 

28 13 (12, 14) (-3) 18 (16, 20) (-4) 30 (29, 33) (0) 61 (59, 63) (-5) 

29 10 (8, 10) (0) 13 (12, 15) (-4) 30 (29, 32) (+1) 53 (50, 54) (-3) 

30 7 (5, 7) (0) 9 (7, 10) (-2) 30 (28, 31) (+1) 46 (42, 46) (-1) 

31 4 (3, 4) (0) 6 (4, 7) (-1) 30 (28, 32) (0) 40 (35, 40) (-1) 
 

7.3.2 ODN 12: SHORTER LENGTH OF STAY 

In the multistate model for ODN 12, three transitions were significantly different 

compared to the rest of England (Table 7-5). Two of these transitions, intensive care to 

special care and special care to death, were uncommon and results should not be 

overemphasised. However, the third transition, special care to home, indicated an 

increased hazard of discharge home occurring (HR: 1.16 95% CI: 1.11 to 1.23, p<0.001). 

Another result of borderline significance was the transition from high dependency to 

special care, indicating an increased hazard of care stepping down from high 

dependency to special care at all time points (HR: 1.08 95% CI: 1.02 to 1.16, p=0.002). 
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These increased hazard ratios indicate a shorter length of stay at those levels of care in 

this ODN. 

Table 7-5: Hazard ratio for each of the transitions for those in ODN 12 compared to the 

rest of England and gestational age with 95% confidence interval and p-value.13  

Variable 
Transition 

Hazard Ratio 95% Confidence 
Interval 

p-value 

ODN 12    

IC -> HD 1.00 0.94, 1.06 0.991 

IC -> SC 1.67 1.36, 2.05 <0.001 

IC -> Death 1.25 1.04, 1.49 0.02 

HD -> SC 1.08 1.02, 1.16 0.004 

HD -> Death 1.07 0.68, 1.69 0.769 

SC -> Home 1.16 1.11, 1.23 <0.001 

SC -> Death 2.30 1.55, 3.40 <0.001 

Gestational age 
(weeks) 

   

IC -> HD 1.38 1.37, 1.40 <0.001 

IC -> SC 2.42 2.28, 2.56 <0.001 

IC -> Death 0.76 0.74, 0.78 <0.001 

HD -> SC 1.31 1.30, 1.32 <0.001 

HD -> Death 0.81 0.75, 0.88 <0.001 

SC -> Home 1.47 1.45, 1.48 <0.001 

SC -> Death 0.55 0.49, 0.62 <0.001 

 

The total expected length of stay for ODN 12 and the rest of England is provided in 

Table 7-6. The expected time receiving intensive care was similar between ODN 12 and 

the rest of England. Larger differences existed between ODN 12 and England for the 

days spent receiving high dependency and special care. Babies born at 24 weeks 

gestational age received high dependency care and special for four and five less days 

respectively in ODN 12 then the rest of England. 

                                                      
13 In this table the following acronyms are used: intensive care (IC); high dependency care (HD) and 
special care (SC). 
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Table 7-6: Expected number of days (95% confidence interval) receiving each level of 

care in ODN 12 and England excluding ODN 12 

Gestational 
age (weeks) 

Intensive care  High 
dependency 

Special care Total 

ODN 12     

24 33 (7, 61) 30 (4, 45) 25 (8, 44) 88 (19, 128) 

25 27 (8, 46) 29 (7, 37) 28 (14, 41) 84 (29, 112) 

26 22 (14, 36) 26 (8, 32) 29 (19, 39) 77 (43, 95) 

27 17 (13, 27) 21 (9, 28) 28 (22, 37) 66 (53, 79) 

28 13 (10, 20) 17 (8, 22) 28 (22, 35) 58 (50, 66) 

29 10 (7, 15) 12 (6, 16) 28 (22, 33) 50 (44, 55) 

30 7 (4, 11) 8 (4, 11) 29 (22, 32) 44 (38, 46) 

31 4 (2, 7) 5 (2, 7) 30 (24, 32) 39 (32, 40) 

England Intensive care 
(Difference 
from ODN 12)  

High 
dependency 
(Difference 
from ODN 12) 

Special care 
(Difference 
from ODN 12) 

Total (Difference 
from ODN 12) 

24 35 (17, 42) (+2) 34 (22, 41) (+4) 30 (14, 39) (+5) 99 (61, 111) (+11) 

25 29 (24, 34) (+2) 32 (25, 36) (+3) 32 (24, 37) (+4) 93 (80, 99) (+9) 

26 23 (20, 26) (+1) 29 (25, 32) (+3) 32 (30, 36) (+3) 84 (77, 87) (+7) 

27 18 (16, 19) (+1) 24 (22, 26) (+3) 31 (31, 34) (+3) 73 (69, 75) (+7) 

28 13 (12, 14) (0) 19 (17, 20) (+2) 30 (30, 33) (+2) 62 (60, 64) (+4) 

29 10 (9, 10) (0) 14 (12, 15) (+2) 30 (28, 32) (+2) 54 (51, 54) (+4) 

30 7 (6, 7) (0) 9 (8, 11) (+1) 30 (28, 32) (+1) 46 (42, 46) (+2) 

31 4 (3, 4) (0) 6 (4, 7) (+1) 30 (28, 32) (0) 40 (35, 40) (+1) 

7.4 DISCUSSION  

The analysis provided here demonstrates how multistate models can be used to 

compare different ODNs and investigate which levels of care, if any, contribute to the 

differences in total length of stay. Differences could be as a result of different 

approaches to healthcare delivery or inequalities in the health of the populations. The 

Marmot review identified the need to reduce health inequalities as a matter of 

fairness and social justice (131). Analyses such as that undertaken in this chapter can 

aid the understanding of differences in the provision of care. 
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7.4.1 DIFFERENCES IN LENGTH OF STAY AND TIME RECEIVING EACH LEVEL OF 

CARE 

Overall, the observed mean length of stay varied from 57 to 63 days (Figure 7-1) 

although there was little variation between the ODNs. However, these estimates are 

heavily influenced by the babies who were born at 30 and 31 weeks gestational age.  

Two ODNs were identified to investigate further because they had significantly longer 

or shorter lengths of stay: ODN 3 and ODN 12. Multistate models were fitted with an 

indicator term comparing ODN 3 or ODN 12 to the rest of England and gestational age 

was accounted for as a linear term.  

ODN 3 and ODN 12 had a lower and higher mortality rate respectively than the rest of 

England (ODN 3: 0.067, ODN 12: 0.102 versus England: 0.083, Table 7-1). This may 

explain some of the differences seen as the estimation of expected length of stay is an 

average and an increased mortality rate would reduce the average length of stay as 

deaths often occur in the initial days after birth. A lower mortality rate as seen in ODN 

3 could increase length of stay as more surviving babies are staying for longer periods 

of time in the neonatal unit. However, if the differences could be explained by 

differences in mortality alone it would be expected that there would be an increase or 

decrease in the expected number of days across all levels of care, or potentially an 

altered time receiving intensive care, which cares for the sickest babies.  

In ODN 3 the increases in expected stay were not consistent across all the levels of 

care and were mainly seen in high dependency care. This indicates that this ODN had a 

different approach to the provision of high dependency care compared to the rest of 

England. Similarly, in ODN 12 less time was spent receiving special care, and this ODN 

may be different to the rest of England, for example they may have better community 

neonatal services and can discharge babies home earlier. 

7.4.2 IMPACT OF DIFFERENCES IN LENGTH OF STAY 

A shorter length of stay, such as in ODN 12, results in a reduced cost to neonatal 

services, but there is no evidence to suggest whether a shorter length of stay is 

beneficial or harmful in the longer term for a baby discharged from neonatal care (5). 
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Irrespective of this, if survival continues to improve in the future the average length of 

stay of all preterm babies and the workload required will increase (18, 132).  

Identification of ODNs with apparently short lengths of stay should not necessarily 

indicate that their approach is best practice. Other researchers have also noted this: 

“we presume a shorter LOS [length of stay] is a preferred outcome, this may not always 

be a true assumption as later outcomes are unknown…” (5) Even from a cost 

perspective a short length of stay may not ultimately be cheaper for the healthcare 

service as a whole, as other services such as domiciliary or community care are 

needed, leading to a cost to the healthcare service from another area. Similarly, it is 

unclear how many neonatal discharges result in a readmission to paediatric services in 

a short time frame. Work linking neonatal care with paediatric care would be needed 

to investigate the long term implications of the initial length of neonatal stay for 

babies surviving to discharge. 

However, what has been identified in this chapter is one ODN that potentially has a 

longer expected length of stay than the rest of England. This difference seems to be 

concentrated in their provision of high dependency care. The potential reasons for this 

increased length of stay could be investigated by that ODN and their commissioners. 

Similarly, an ODN has been identified with a potentially shorter length of stay, which 

appears to be explained by a difference in approach to the provision of special and 

high dependency care. 

7.4.3 CHOICE OF ODN FOR ANALYSIS 

Any analysis which involves consideration of a care provider needs to determine which 

provider to allocate the responsibility of the care. For example, when a baby is born in 

need of neonatal care they are generally admitted to the unit in the hospital of their 

birth. An antenatal transfer of the mother before birth may have taken place to ensure 

the unit is appropriate for the baby’s care needs. However, if their needs are more 

complex than that unit can provide, the baby may be transferred to a unit able to 

provide intensive care. Over time, if a baby survives and improves they may be 

transferred to a lower levelled unit closer to home in anticipation of discharge. 

Therefore, there are three healthcare providers in this situation which could be 
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considered in an analysis: the unit following birth; the unit where the majority of the 

care is received or the final unit before discharge from neonatal care. The same 

consideration could apply to ODNs, although due to the large geographical regions and 

the established network they cover, babies are less likely to be moved between 

different ODNs. In this dataset, approximately 96% of all days of care were provided 

within the ODN of birth. 

7.4.4 STRENGTHS AND LIMITATIONS OF THIS ANALYSIS 

This analysis has presented the first comparison of the different levels of care within 

ODNs in England. The differences in length of stay in terms of specific levels of care 

were described. Individual ODNs could use this approach to compare their provision of 

care to the rest of England and discuss how their approach differs and why this may 

have occurred.  

The effect of ODN was adjusted for by introducing a categorical term to indicate if a 

baby was from that particular ODN or the rest of England. In other areas of neonatal 

medicine, mortality rates of ODNs have been compared using multilevel modelling 

(133). Use of a random effects model, or a Cox model with a frailty term, would allow 

all ODNs to be compared at once, with the random term representing a given ODN. 

This would provide shrunken estimates of the effect sizes, which reduces the risk of 

identifying an ODN with a higher hazard of death or discharge spuriously. However, 

the use of random effects or frailty models to model the different ODNs (134) was not 

undertaken here as these approaches have not yet been extensively investigated in a 

multistate modelling context and routine software does not yet exist (135).  

Gestational age was adjusted for as a linear term due to the small number of babies, 

particularly those born at 24 and 25 weeks, within individual ODNs. The assumption of 

linearity may not be appropriate but more complex or categorical adjustment was 

likely to create issues of convergence or cause the model to over-fit and reduce 

statistical power.  
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7.5 CHAPTER CONCLUSION 

In this chapter the differences in length of stay between ODNs were investigated. Two 

ODNs were selected as case studies, one with a long length of stay and another with a 

shorter length of stay. Both were formally compared with the rest of England in two 

separate multistate models, with the ODN included as an indicator term, and the levels 

of care where the differences in length of stay occurred were explored. In the ODN 

with a long length of stay this was due to an increase in the expected days receiving 

high dependency care. In the ODN with the short length of stay this difference was 

potentially due to a shorter expected time receiving special care than the rest of 

England. As demonstrated here, these methods could be useful for an individual ODN 

to compare their care to the rest of England to see in what ways their delivery of care 

differs and to aid the discussions of whether these differences are important. 



Discussion and Conclusions 

225 
 

8 DISCUSSION AND CONCLUSIONS 

8.1 OVERVIEW OF CHAPTER 

Preceding chapters have each contained a brief discussion section and in this chapter a 

summary of the entire thesis and a discussion of the main findings of this work is 

provided. The strengths and limitations are discussed, before considering how this 

work can inform clinical practice, particularly facilitating conversations between 

parents and clinicians and the commissioning of neonatal services. Finally, the chapter 

concludes with an overview of future work to be undertaken in this area. 

8.2 SUMMARY OF KEY FINDINGS 

The four over-arching aims of this thesis were: 

1. To identify the factors that predict mortality and length of stay in the neonatal 

unit, focussing on babies born very preterm (less than 32 weeks gestational age). 

2. To investigate the length of stay of very preterm babies (24 to 31 weeks 

gestational age) admitted for neonatal care to inform parental counselling 

regarding the risk of mortality and length of stay for a baby of given 

characteristics.  

3. To examine the different levels of care, the neonatal care pathway, required 

whilst a very preterm baby (24 to 31 weeks gestational age) is in neonatal care 

to inform commissioning of specialist neonatal services by providing estimates 

of the number of days of levels of care required. 

4. To compare the levels of care provided by different Operational Delivery 

Networks to babies born at 24 to 31 weeks gestational age in order to identify 

and investigate differences in care provision. 

To answer the first aim of this thesis a systematic review was undertaken to identify 

the factors that have been used to predict mortality and length of stay in neonatal 

care. Research was well developed in the area of mortality prediction, with 19 studies 

identified over the time period of the review. Studies generally focussed on making 
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predictions of mortality based on the state of the baby at birth, or in the first 24 hours 

of life.  

Whilst a recent systematic review had collated the evidence on the prediction of 

neonatal mortality (56), before this thesis no research had systematically investigated 

the prediction of length of stay in neonatal care. Studies investigating neonatal length 

of stay were more limited in terms of both their number and focus. As in the prediction 

of mortality, information from the first day of life was considered important to predict 

length of stay, particularly: gestational age, birthweight and sex. The review 

highlighted the importance of using a small number of clinical factors to predict length 

of stay to allow for ease of use in a clinical setting. This review was published in BMJ 

Open (18) and a copy can be found in Appendix 2. 

To investigate the second aim of this thesis: the prediction of length of stay for very 

preterm babies, competing risks methods were explored. These methods allowed the 

measurement of time until discharge from neonatal care or death occurred. Both Cox 

proportional hazards models, and flexible parametric models for competing risks were 

introduced and compared and the advantages and disadvantages of each were 

discussed. The proportion of babies who survived to discharge and those who died in 

neonatal care over time were estimated initially from a model adjusted for gestational 

age and then developed further in a model adjusted for gestational age, birthweight 

and sex.  

The median length of stay for babies who died in neonatal care was estimated to be 

approximately ten days, whilst the length of stay of babies who survived varied, 

particularly according to gestational age and birthweight. The babies born the most 

preterm had a median length of stay equal to approximately the time remaining until 

their due date. On the other hand, babies born at 30 and 31 weeks gestational age had 

a median length of stay approximately a month shorter than the time remaining until 

their due date. The estimates of mortality and length of stay can be used alongside 

clinician judgement to aid parental counselling. This work is currently being written for 

peer reviewed publication.  
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The third aim of this thesis was to investigate the different levels of care required by 

very preterm babies whilst in the neonatal unit. The extension of competing risks 

methods to multistate modelling was explored to consider the different levels of 

neonatal care: intensive care, high dependency care and special care. A Cox multistate 

model adjusted for gestational age was presented and expected length of stay 

estimates at each level of care were provided. For example, babies born at 31 weeks, 

were estimated to require four, six and 28 days of intensive care; high dependency 

care and special care respectively. The strengths and limitations of this analysis were 

discussed. This analysis was extended to consider additional covariates as identified 

from the systematic review: gestational age, birthweight and sex. These estimates can 

be used to aid the commissioning of specialist neonatal services. Work from this 

chapter has been published in PLOS One (28) and Infant (27) and copies can be found 

in Appendix 6. 

Finally, the fourth aim of this thesis was to investigate whether differences exist in the 

length of stay of very preterm babies and the provision of the levels of care between 

different Operational Delivery Networks (ODNs). To investigate this, two ODNs were 

identified as case studies for further investigation due to having significantly longer or 

shorter lengths of stay. These case studies were investigated in two multistate models 

to identify how the provision of the different levels of care differed between networks. 

For the ODN with a longer than expected length of stay, this seemed to be explained 

by an increase in the expected time receiving high dependency care. This information 

could be used by the ODN to facilitate discussions about the care provision in their 

network. 

8.3 STRENGTHS AND LIMITATIONS OF THIS THESIS 

This study is the largest to date to consider the length of stay of all very preterm 

babies, and also consider the different levels of care that babies need whilst in 

hospital. The only similarly sized study (5), undertaken in the United States, highlighted 

the importance of future research including babies who die in length of stay research. 

The strengths and limitations of this work are considered in this section. 
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8.3.1 CHOICE OF STATISTICAL METHODS 

A strength of this work is that it uses statistical methods which allow for consideration 

of the entire neonatal population when considering length of stay. Around 8% of very 

preterm singleton babies admitted to neonatal care will not survive to discharge (14), 

so to exclude babies who die, as most research has previously done (18), overlooks an 

important proportion of the population and neonatal care workload. In this thesis, 

exclusion of babies who died would have removed 1762 babies from the analysis and 

provided biased results, as acknowledged in previous research (19). This issue is also 

relevant for analyses investigating length of stay in other critical care areas with 

potentially high mortality rates including paediatric and adult intensive care. 

The use of competing risks methods to investigate neonatal length of stay is relatively 

novel, although other researchers have used this approach to investigate length of stay 

whilst also considering survival in other clinical areas. Examples include investigation 

of: nosocomial pneumonia in adults (107), trauma patients (136) and burns injuries 

(137). Use of competing risks methods has been encouraged (108) and the 

appropriateness of these methods for modelling length of stay has been emphasised 

because “treating death as a competing risk gives estimators which address the clinical 

questions of interest and allows for the modelling of both in-hospital mortality and TCS 

[time to clinical stability]/LOS [length of stay]… (108).” Other researchers have also 

advocated competing risks methods as “analysis by survival groups restricts the 

interpretation to only what would occur if the competing risk were not a possibility” 

and this does not “reflect the reality or interrelation between the outcomes (137).”  

Similarly to competing risks methods, the use of multistate modelling to investigate 

length of stay in neonatal care is new. However, recently studies in other clinical areas 

have also begun using multistate models for investigating length of stay and aiding the 

understanding of intermediate events (138-140). For example, Clark et al used 

multistate modelling to investigate length of stay, readmission to hospital and death 

following elective general surgery (139). This study considered multistate modelling 

superior to separate analyses as it provided a “multi-dimensional” description of 

surgical outcomes (139).  
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Whilst the use of competing risks methods and multistate modelling approaches are 

still relatively new for the investigation of length of stay, this research joins other 

researchers in investigating their potential and advocating their use in this context. 

8.3.2 STATISTICAL MODELLING AND ASSUMPTIONS 

The analyses in this thesis built on the theory of the Cox proportional hazards model. 

The main criticism of the Cox model is the assumption of proportional hazards, i.e. that 

the difference in the hazard between two or more groups is assumed to be constant 

over time.  

In the competing risks analysis it was possible to relax the proportional hazards 

assumption by introducing a time-dependent covariate (110) for gestational age and 

this improved the model fit. Whilst it was not possible to relax proportional hazards in 

the multistate model, the results were re-estimated using groups of gestational age 

where proportional hazards were more likely to hold to investigate the robustness of 

the results. This improved the prediction of the probabilities and the appearance of 

the stacked plots (Chapter 6.7). However, it also provided reassurance that the 

estimation of the expected time receiving each level of care was estimated well 

despite the potential violation of the proportional hazards assumption. Therefore, 

whilst the assumption of proportional hazards is a limitation, a strength of this work is 

the thorough investigation of the impact of the assumption. 

One approach not investigated in this thesis was the use of parametric modelling. As 

explained in Chapter 6.9.3 this approach assumes a parametric form for the hazard, for 

example by using a Weibull or Gompertz distribution (141). This method has been 

extended to competing risks and recently, multistate modelling (142). One advantage 

of this approach is that the distribution is fully specified and can be described 

numerically. As such, it is possible to calculate estimates at time points when events 

are not observed and, if desired, it is possible to extrapolate beyond the time frame of 

follow-up to provide predictions into the future. However, a disadvantage of 

parametric modelling, and the reason this approach was not used here, is that the 

distributional assumptions require the hazard to increase or decrease monotonically. 
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Clinically, it was unlikely that this assumption would hold and to impose this 

distributional assumption incorrectly would have led to imprecise results.  

8.3.3 USE OF ROUTINE DATA 

This study made use of a national routine dataset: the National Neonatal Research 

Database (NNRD) which has collected data related to neonatal care and been managed 

by the Neonatal Data Analysis Unit since 2007. The advantage of the use of the NNRD 

is that these data encompass the entire population, and provided a large sample size 

and information about each day of care for all admissions to neonatal care. 

Additionally, implementation of the findings from this thesis will not require any 

additional data collection by neonatal units or healthcare providers. 

A limitation of the use of routine data is that it was created for clinical purposes, for 

example to aid with financial re-imbursement, rather than research, and this can 

potentially lead to reduced data quality. However, the NNRD has data quality systems 

in place (68) and variables related to the level of care are collected well, particularly 

those required by the Neonatal Critical Care Minimum Data Set (143), as they inform 

the commissioning and costing of care within a neonatal unit. Feedback loops have 

provided neonatal units with quarterly data quality checks since 2013 for variables 

used in the National Neonatal Audit Program (NNAP) to improve data completeness 

(3). Variables used in this thesis had high levels of completeness, with less than 0.5% of 

data missing for levels of care and 0.7% missing or implausible for birthweight or sex of 

the baby.  

8.3.4 SELECTION OF THE STUDY POPULATION 

A limitation of this research is that only singleton babies were considered and this 

excludes a proportion of very preterm births which are multiple births (144). The 

inclusion of multiple births born at 24 to 31 weeks of gestation could have increased 

the sample size by approximately 7,500 babies and increased the total number of care 

days by approximately 500,000 days. However, multiple births are known to have a 

have a higher risk of mortality, particularly for those born at 24 to 27 weeks of 

gestational age (144, 145). Multiple births comprise a different population in terms of 
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their demographic characteristics, with a different risk profile to singleton babies. 

These differences include that multiple births are often born to older mothers and a 

lower prevalence of some pregnancy complications including maternal hypertension 

(145). Therefore, the selection of the population in this research was appropriate, and 

future work can extend these findings to other populations. 

8.3.5 FINAL OUTCOME FOR AN INDIVIDUAL BABY 

A limitation of these data were that as the NNRD only covered England during the time 

period of this thesis and therefore transfers for neonatal care in units outside of 

England may have introduced an artificially short length of stay. However, a strength of 

this work is the robust sensitivity analysis which investigated babies discharged to 

other hospitals. The results of this sensitivity analysis (Chapter 5.7.5) indicated that the 

assumption that these babies had survived to discharge did not impact on the results. 

Inspection of the data also indicated that most discharges to other hospitals seemed to 

be admissions to postnatal care in England (i.e. discharges from specialist neonatal 

care), and less than 1% of discharges to other locations were to neonatal units in 

Wales or Scotland.  

The outcome of discharge from the neonatal unit also comprised other outcomes 

including discharge for surgery and cardiac care. For the commissioning of neonatal 

care services this outcome reflects the end of the need for specialist neonatal services 

if there was no subsequent readmission to neonatal care. Many of these babies may 

have been admitted to paediatric wards before discharge home. A sensitivity analyses 

indicated the results were not impacted on by the assumption that these babies 

survived. An additional endpoint of discharge to other services may have been 

possible, although the number of babies experiencing this was very small and the 

endpoint does not reflect the neonatal care pathway investigated in this work.  

In this analysis the outcomes of death or discharge from neonatal care were 

considered. Deaths can occur elsewhere including deaths at home and within a 

hospice. It is not possible to assess the impact of this on these results, however the 

number of deaths of babies outside of neonatal care is likely to be low with most 

anticipated neonatal deaths occurring in hospital (71). However, this is not a limitation 
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of this work as only the care received in neonatal services was considered in this 

thesis. For other applications, for example considering the longer term morbidity or 

care needs of a surviving baby throughout infancy and childhood, these endpoints may 

be important intermediate steps in an analysis (see Chapter 8.6.4). Similarly, when 

considering how to extend this section of the thesis to aid communication of levels of 

care to parents in the future these alternative discharge locations will need to be 

considered to counsel parents about their potential. 

8.3.6 ORDERING AND LEVELS OF CARE 

In this thesis, care was assumed to occur hierarchically, i.e. that if any intensive care 

was required it was all received first, followed by all high dependency care, and finally 

all special care. This hierarchical receipt of care was defined as the neonatal care 

pathway in this thesis. However, in day-to-day neonatal care, this may not be how care 

is actually received, particularly for intensive care and high dependency care when a 

baby may alternate between different levels of care as their clinical condition stabilises 

or deteriorates. It is clinically likely that for a baby a return to a higher level of care will 

alter the probability of death and discharge. Therefore the hierarchical assumption of 

this thesis is a limitation for the understanding of clinical care pathways. However, for 

commissioning purposes the important results are the totals, or expected, number of 

days of care required at each level rather than the detail of how and in what order the 

care was required. 

Individual clinicians may be interested in specific neonatal care pathways. For example, 

there may be interest in the probability of death for babies requiring a step up to 

intensive care after a period of step down to high dependency care. An example of this 

would be a baby requiring re-intubation after a day of managing on CPAP (continuous 

positive airways pressure). It is likely that a step up to receiving intensive care would 

alter the probability of death as well as the probability of being stepped down to high 

dependency care again. Information about these specific care pathways may be useful 

for clinical management and this could be modelled by the introduction of additional 

states, for example: ‘intensive care after high dependency care’ or by allowing the 

model to be bi-directional (146). This modelling would have led to a violation of the 
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Markov assumption and so alternative non-Markov models would need to be 

considered. However, this modelling approach would be problematic as it would lead 

to over-fitting of sparse data. It would also be important to determine the number of 

movements between levels of care which would be considered clinically meaningful. 

An alternative would be to produce separate models to investigate transitions of 

particular interest after identifying them using clinical knowledge a priori. This is a 

limitation of this thesis and future work should build on the foundation provided here 

to consider the neonatal care pathway further.  

8.4 CLINICAL IMPACT OF THESE FINDINGS 

The aim of this thesis was to provide information for two main audiences: 1) for 

clinicians to use in clinical discussions and in parental counselling and 2) for the 

commissioners and those responsible for the allocation of specialist neonatal 

resources and services. There has been interest in the results of this thesis including 

talks, poster presentations at conferences and peer-reviewed papers. Detailed 

information about the impact and dissemination of this thesis to date can be found in 

Appendix 8. 

8.4.1 CLINICAL AND PARENTAL DISCUSSIONS ABOUT LENGTH OF STAY 

The predicted median lengths of stay for babies who survive to discharge and those 

who die in neonatal care (Chapter 5) were provided for babies of selected clinical 

characteristics. These estimates can be used by clinicians in clinical pre-ward round 

discussions including consideration of likely discharge dates and care planning for an 

individual baby. 

These estimates can also be used by clinicians to inform conversations with parents 

about their baby’s progress throughout the neonatal care journey. In this work, 

approximately half of all deaths occurred in the first ten days and this may be a time 

point which clinicians use to discuss length of stay with parents.  

Work is underway in collaboration with parents, neonatal charities, clinicians and 

other stakeholders to disseminate findings from this section of the research. Evidence 

has suggested that if parents are involved in ongoing discussions about their baby’s 
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progress and care there may be the potential to reduce length of stay of the baby 

where appropriate (147) and improve parental wellbeing (148, 149). Additionally, 

discussions about length of stay may improve parental preparedness for discharge 

(148), with unpreparedness often believed to be a cause of parental distress (150). The 

information from this thesis will inform the discussions between clinicians and parents. 

It is essential that findings from this thesis are accessible. To facilitate this a parent 

panel meeting was held in June 2017 at Bliss (neonatal charity for babies born preterm 

and sick) in London, to discuss the most effective approach for disseminating these 

findings. This panel comprised a diverse group including: bereaved parents; parents of 

preterm born children with ongoing health concerns and parents of well preterm born 

children. This group of parents stated that they did not want ‘another information 

sheet’ and would prefer to access the information via conversations with their 

clinicians. Therefore, work will be undertaken to communicate the results of this study 

for clinicians to use in conjunction with their clinical judgement when counselling 

parents. For clinicians, dissemination of these results will be via leaflets summarising 

the main results, talks to Operational Delivery Network clinical meetings (I have 

presented to these in the past) and via appropriate professional publications including 

Infant and BAPM newsletters. I am consulting with clinicians about how to present this 

work in an accessible format. Whilst clinicians find the graphs produced in this thesis 

informative, it can be difficult to extract information from them quickly, and so a table 

(similar to Table 5-18) may be more accessible in clinical practice. 

Southampton neonatal unit have used results from this work to inform their length of 

stay estimates (personal communication with Fiona Lawson, neonatal intensive care 

matron). Other neonatal units are interested in using the results of this study to inform 

their clinical practice. 

8.4.2 CLINICAL AND PARENTAL DISCUSSIONS ABOUT LEVEL OF CARE 

Whilst overall length of stay could be considered separately for both babies who die 

and those who survive, it was not possible to estimate the time spent receiving each 

level of care for each group. Therefore, these estimates may be of less relevance for 

the counselling of parents, since the expected length of stay will never reflect a baby 
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who lives or a baby who dies, but rather an average baby of those characteristics (e.g. 

a specific week of gestational age). However, parents are interested in the levels of 

care provided for their baby. The parent panel involved in this research explained that 

often a stepping down of care was seen as ‘less support’ rather than their ‘baby getting 

better’ and that better counselling in this area was needed. This group also indicated 

that they were often excluded from discussions about the stepping down of their 

baby’s care and so they felt unprepared. 

8.4.3 SPECIALIST COMMISSIONING AND PLANNING OF LEVELS OF CARE 

Estimates of the expected number of days needed at each level of care (Chapter 6) are 

provided in this thesis by week of gestational age and other characteristics. These 

results can be used to provide an average number of days of care needed for babies of 

certain characteristics. Alternatively, these estimates can be multiplied by the number 

of babies anticipated in a given time period with those characteristics. This will provide 

an estimate of the number of days required for each level of care for the entire 

population of very preterm singleton babies admitted for neonatal care. An example of 

this was provided in Table 6-9.  

8.4.4 COMPARISON OF ODNS 

An analysis was undertaken to compare two ODNs to the rest of England in Chapter 7. 

This comparison may be of interest to ODN managers and commissioners who seek to 

understand differences in care. In the future, more detailed investigation of the care 

provided by different ODNs could allow consideration of how it differs from the rest of 

England and, alongside other parameters of interest, whether these differences are 

important and any possible modification.  

8.5 OTHER WORK 

In addition to work directly related to this thesis, whilst undertaking this research I 

have retained other research commitments in the broader area of neonatal care. This 

has included writing papers with colleagues, and alongside published work from this 

thesis I have published an additional eight papers and on four of these I am the second 
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author (list provided in Appendix 8). In 2016 I assisted the MBRRACE-UK (Mothers and 

Babies: Reducing Risk through Audits and Confidential Enquires across the UK) team 

with the statistical analyses for their annual report. 

I have been involved as a co-applicant in the OPTIPREM (optimising neonatal service 

provision for preterm babies born between 27 and 31 weeks of gestation) study. This 

research is funded by the NIHR Health Services and Delivery Research programme 

(2017-2020, value approximately £925,000). 

I have also worked with two charities during the writing of this thesis: Bliss and 

Together for Short Lives. I have assisted Bliss with the establishment of a funding 

application process for research. I worked together with them, and other stakeholders 

including parents, to identify research priorities for Bliss. My work with Together for 

Short Lives arose from the need to investigate neonatal palliative care. These babies 

were excluded from my thesis (Chapter 3) but I assisted this charity in the 

development of guidance for clinicians who assist in neonatal palliative care cases.  

8.6 FUTURE WORK  

Throughout this thesis areas for potential future research have been identified. These 

are outlined in this section. 

8.6.1 METHODOLOGICAL WORK 

Future development of multistate modelling may allow investigation of gestational age 

as a time-dependent covariate. Alternatively, instead of flexible parametric modelling, 

recent research has suggested that use of a parametric approach with mixture 

distributions, a mixture of density functions in different proportions (151), could have 

the potential to aid the modelling of length of stay (152). 

In this thesis, comparisons between ODNs and the rest of England were undertaken 

using an indicator term in a multistate model. Other approaches may have been 

preferable, for example in a standard survival analysis, with the measuring of time until 

one event occurred, a frailty term could be used to create a random effect term for the 

different networks. However, this approach has not, as yet, been routinely extended to 
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multistate modelling. Methodological work should consider the comparison of 

healthcare providers, specifically in time-to-event research, further. 

8.6.2 CONSIDERATION OF MULTIPLE BIRTHS AND BABIES BORN NEARER TERM 

This thesis has focussed on very preterm singleton babies, specifically those born at 24 

to 31 weeks of gestational age. These babies generally have the longest length of stay 

of all neonatal admissions and the primary reason for admission will be complications 

related to their prematurity such as the need for respiratory support.  

Whilst this thesis has focussed on very preterm babies, others born around term 

contribute more than half of neonatal unit admissions (7), and even if these babies 

only stay for a short period, they create a large demand on neonatal units due to the 

size of the population. In the data source used for this thesis, around 180,000 babies 

born at term (37 weeks gestational age and beyond) were admitted for neonatal care 

over the same time period. These babies required a total of approximately 1,000,000 

days of care (an average of 5.5 days each). Babies born nearer term are a 

heterogeneous group (5), and are admitted to neonatal care for various needs, for 

example babies experiencing congenital anomalies, surgery or complications following 

birth. These babies may require a long stay in the neonatal unit whilst other babies 

may only need to be admitted for a short period of care after birth. Examples of 

shorter lengths of stay may relate to needing phototherapy, antibiotics or a brief 

period of observation.  

Lee et al (5) suggested that length of stay in the population born nearer term should 

be stratified to take account of their clinical condition and future work should consider 

this group further because “there may not be one model that optimally fits all 

patients…..groups have different morbidities and developmental issues.” An example of 

this was seen in babies born near term with surgical issues where there was wide 

variation of length of stay even within one neonatal unit for the same condition. Some 

of these differences may be explained by different levels of severity of a condition and 

other acquired clinical factors including sepsis (153). To minimise the differences 

between groups of term babies, methods such as a cluster analysis could be used to 

identify similar groups of babies for whom to predict length of stay. It may be 
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appropriate in this population, with very specific health conditions, that the 

investigation of length of stay could be considered by the National Neonatal Audit 

Program (NNAP) (3). 

Multiple births make up a large proportion of preterm births, and future work should 

consider how to include these babies in length of stay analysis. This may require 

appropriate risk adjustment or stratification of the analysis or it may be that length of 

stay for multiple babies is similar to singletons. Additionally, consideration is needed to 

account for the similarities between siblings such as via the use of a hierarchical 

model. 

8.6.3 INCLUSION OF NEONATAL COMMUNITY CARE 

The National Institute for Health and Care Excellence (NICE) recommends that a 

measure of quality of neonatal care is the provision of a coordinated transition to 

community care (154). Neonatal outreach community teams allow for babies to be 

discharged home with minimal healthcare needs who would only need special or 

transitional care if they remained in hospital. For example, babies can be discharged 

home receiving oxygen or whilst being tube fed. Provision of neonatal community care 

is not consistently offered throughout the country. In a survey undertaken in 2011 

(155), only 45% of neonatal units had a dedicated community team, and of those only 

48% had weekend cover. However, 85% of units with community teams felt that the 

team facilitated the discharge of babies. Research from 2002 suggested that the 

provision of neonatal community services could reduce median length of stay by two 

days (156). In this thesis, it was not possible to consider the impact of neonatal 

community care. A full understanding of the mechanisms of community care is needed 

in the future to understand differences in care between units and networks, 

particularly when comparing healthcare providers. 

8.6.4 CHOICE OF OUTCOME AND TIME HORIZON 

This thesis has not considered whether a shorter length of stay is beneficial or harmful 

for a baby born very preterm throughout their early childhood and beyond. Whilst a 

short length of stay may seem beneficial, particularly for healthcare costs, this may 
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result in a later adverse outcome. This was also noted by Lee et al who stated that 

whilst a “shorter length of stay is a preferred outcome, this may not always be a true 

assumption as later outcomes are unknown…. Nor do we know the potential impact of 

length of stay (short or long) on longer term outcomes” (5). A simulation study by 

DeRienzo et al suggested that reducing length of stay does not result in reduced 

hospital resource use, and that initiatives to reduce length of stay should also consider  

the longer term clinical outcomes (157).  

Research linking length of stay and subsequent readmission to hospital has been 

undertaken in babies born nearer to term. However, evidence in this population is 

conflicting. The results from a Cochrane review investigating whether early discharge 

was harmful were inconclusive (158). Metcalfe et al reported that readmission rates 

were lowest following a one to two day stay after a vaginal birth for term births (159). 

However, other studies of late preterm babies found that a longer length of stay did 

not result in a reduced readmission rate (160) and that an early discharge, after less 

than two days in hospital, appeared to increase the risk of readmission, particularly for 

jaundice and infections (161).  

There is no recent research investigating the outcomes of very preterm babies after a 

short or long length of stay. Nevertheless, some neonatal units have actively 

attempted to minimise length of stay. For example, an intensive care unit in the 

California Perinatal Quality Care Collaborative reduced their average length of stay by 

adjusting their clinical management including assessing if the preterm baby was able to 

feed at 32 weeks PMA which is two weeks sooner than current policy (162). Future 

work should consider whether a shorter or longer length of stay is beneficial by 

considering readmission to the paediatric care or other specialist services as an 

additional state in this analysis.  

In this thesis time to discharge from neonatal services was considered. A small 

proportion of babies are known to spend additional time in specialist services including 

cardiac units or surgical centres. Future work should consider the care needs of these 

babies, which may be different from other very preterm babies. Data linkage may be 

required between data sources of different clinical services to undertake research into 

their needs. 
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8.7 FINAL CONCLUSION 

In conclusion, as survival has improved in neonatal care, particularly over the last 

twenty to thirty years, the need to accurately estimate length of stay has increased. 

Whilst neonatal survival has improved, in-unit mortality remains high for the babies 

born very preterm, particularly those born at less than 32 weeks gestational age. 

Anecdotally, the two largest concerns for parents are: the probability of survival and 

how long their baby will need to remain in the neonatal unit. At the same time, the 

healthcare service is under increased pressure to use the limited resources available 

efficiently. Therefore, research which combines these two concerns is both timely and 

necessary. Competing risks methods and multistate modelling, as presented in this 

thesis, offer two approaches which can be used to estimate length of stay whilst 

considering survival. The results provided in this thesis can be used by clinicians to 

inform conversations with parents, and by commissioners seeking to understand 

neonatal care provision. 
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9 APPENDICES



Appendices 

242 
 

APPENDIX 1 

There are no Appendices from Chapter One
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APPENDIX 2 

DATA EXTRACTION FORM FOR THE SYSTEMATIC REVIEW 

Data extraction form: Clinical predictors of the neonatal in-hospital mortality and 

length of stay 

 

General information 

Title: 
 
 
 

Author: 
 
 
 

Journal: 
 
 

Year published: 

Study design details: 
 
 

Second screen (if necessary) conducted 
by: 

Final status: 
 
 Include 
 Exclude 
 Further details required (second form 
to be filled out) 
 

Exclusion reason: 

 

Study characteristics 

Research aim: 
 
 
 
 
 

Country of study: 

Years of study: Setting: 
 Intensive care unit 
 Postnatal ward 
 Other, specify: 
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Study population 

Gestational age range: 
 
 

Birthweight range: 
 

Any exclusions: 
 Multiples 
 Specific ethnicities 
 Congenital anomalies 
 Other (specify) 
 

Specify exclusions other than those 
listed: 
 
 
 
 
 
 

 

Outcome 

What was investigated: 
 Mortality 
 Length of stay 
 Both 
 

Specify other outcomes considered: 

Study power for outcome: 
 Statistically powered 
 Not statistically powered 
 Not possible to assess 
 
Details: 
 
 

How were variables selected for model: 
 Statistically (e.g. stepwise) 
 Clinical judgement 
 Previous literature 
 Other, specify: 
 

Variables in model statistically 
significant: 
 Discussed 
 Not discussed 
 Other, specify: 
 
Details: 

Clinical significance: 
 Discussed 
 Not discussed 
 Not possible to assess 
 
Details: 
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Clinical predictors 

Statistical/clinical significance for 
mortality: 
 Gestational age 
 Birthweight 
 Gender 
 
Other baby characteristics. Specify: 
 
 
 
 
 Antenatal factors (e.g. antenatal 
steroids). Specify: 
 
 
 
 
 
 
 Demographic factors (e.g. maternal 
age). Specify: 
 
 
 
 
 
 
 Postnatal factor (e.g. surfactant 
therapy). Specify: 
 
 
 
 
 
 
 Other factor/s.  
 
 
 
 
 
Specify full adjusted model: 
 
 
 
 

Statistical/clinical significance for length 
of stay: 
 Gestational age 
 Birthweight 
 Gender 
 
Other baby characteristics. Specify: 
 
 
 
 
 Antenatal factors (e.g. antenatal 
steroids). Specify: 
 
 
 
 
 
 
 Demographic factors (e.g. maternal 
age). Specify: 
 
 
 
 
 
 
 Postnatal factor (e.g. surfactant 
therapy). Specify: 
 
 
 
 
 
 
 Other factor/s. Specify: 
 
 
 
 
 
Specify full adjusted model: 
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Study quality will be discussed, and the following domains will be measured on a scale 

of low, medium or high risk (L/M/H) of bias using the prompting items given (see paper 

for full description). This is based on the Quality in Prognosis Studies (QUIPS) tool. As 

prognostic studies are known to often be of poor quality, this is likely to form a 

discussion point more than a reason for exclusion. 

Study quality 

Domain Prompting items  

Study participation 
Whether the study 
population represents the 
population of interest 
 

(a) Adequate participation 
(b) Description of population 
(c) Description of baseline 
(d) Description of recruitment 
(e) Description of time period 
(f) Inclusion and exclusion criteria 

 
Note: for secondary analyses of routine datasets 
score low levels of bias here 

(g)  

Study attrition 
Whether the data available 
adequately represents the 
sample of interest 

(a) Adequate response rate 
(b) Attempts to collect information on drop 

out 
(c) Reasons for loss to follow up investigated 
(d) Description of patients lost to follow up 
(e) No difference between patients lost and 

those not 
 

Note: for secondary analyses of routine datasets 
score low levels of bias here 

(f)  

Prognostic factor 
measurement 
The factor is measured the 
same way for all 
participants 

(a) Clear definition of the factors 
(b) Method of measurement is valid and 

reliable 
(c) Appropriate cut points are used (if 

necessary) 
(d) Method for measurement is the same for 

all participants 
(e) Adequate proportion of study sample has 

complete data 
(f) Methods for imputation are used for 

missing data 

(g)  

Outcome measurement 
The outcome is measured 
in a similar way across all 
participants 

(a) Clear definition of outcome is given 
(b) Measurement is valid and reliable 
(c) Method and setting is the same for all 

participants 

(d)  

Study confounding 
Confounding is accounted 
for appropriately 

(a) All important confounders are measured 
(b) Definitions of how they are measured is 

included 

(h)  
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(c) Measurement is valid and reliable 
(d) Measurement is the same for all 

participants 
(e) Imputation is used for missing data 
(f) Potential confounding is accounted for in 

the study design 
(g) Confounding is accounted for in the 

analysis 

Statistical analysis and 
reporting 
Analysis is appropriate and 
all primary outcomes are 
reported 

(a) Sufficient data presented 
(b) Model building strategy is appropriate 
(c) Selected model is adequate for the study 

design 
(d) No selective reporting of results 

 
Addition from me 

(e) External or internal validation is discussed 

(f)  

 

Was reference list investigated for further references of interest? 

 Yes 
 No 
 
 
Reviewer comments: 
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WHAT FACTORS PREDICT LENGTH OF STAY IN A NEONATAL UNIT: A 

SYSTEMATIC REVIEW – PUBLISHED IN BMJ OPEN 
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APPENDIX 3 

ETHICAL APPROVAL FROM LANCASTER RESEARCH ETHICS 

COMMITTEE 
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RESEARCH & DEVELOPMENT (R&D) APPROVAL FROM CHELSEA 

AND WESTMINSTER HOSPITAL NHS FOUNDATION TRUST 
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INSURANCE LETTER PROVIDING PROFESSIONAL INDEMNITY 

INSURANCE FROM UNIVERSITY OF LEICESTER 
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STUDY INFORMATION LEAFLET PROVIDED TO NEONATAL UNITS 
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LETTER AND FORM OF AGREEMENT TO PARTICIPATE IN THIS STUDY 

Dear Colleagues, 

 

MODELLING NEONATAL CARE PATHWAYS: COSTS AND CONSEQUENCES FOR THE 
FUTURE 

(Research Ethics Committee Reference: 14/NW/0349) 

 

I am writing to all lead clinicians who are members of the UK Neonatal Collaborative to 
invite them to participate in this research study jointly undertaken between The Infant 
Mortality and Morbidity Studies (TIMMS) with Prof. Elizabeth Draper and Dr. Bradley 
Manktelow, and the Neonatal Data Analysis Unit.  

This research project aims to investigate the care pathways which babies take 
throughout their neonatal stay, considering the different levels of care they can 
receive along the way: intensive care, high dependency and standard care amongst 
others. It will investigate time spent at the different levels of care. Differences in care 
pathways will be investigated between neonatal networks. Finally, a preliminary health 
economics analysis will be undertaken. The research is funded by the National Institute 
for Health Research, and its findings will form part of my PhD in Medical Statistics. 

We are seeking your agreement to extract information from the National Neonatal 
Research Database on babies admitted to your neonatal unit from 1st January 2011 
until 31st December 2016. We will use data related to the baby, the care the baby 
received and demographic data about the parents. No identifiable data will be needed 
and you will not be required to provide any additional data or obtain R&D site approval 
for this project.  

For more information about this project please see the enclosed leaflet. Printed copies 
of the leaflet are available upon request and a copy of the Research Ethics approval is 
also included.  

Please sign and return the attached form to me by [INSERT DATE] at the latest. If you 
have queries, please contact me, contact details can be found overleaf. 

 

Yours sincerely, 

 

 

Sarah Seaton 
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AGREEMENT 

MODELLING NEONATAL CARE PATHWAYS: COSTS AND CONSEQUENCES FOR THE 
FUTURE 

(Research Ethics Committee Reference: 14/NW/0349) 

□ I am happy for data from the neonatal unit named below to be included in this 

study 

□ I DO NOT want data from the neonatal unit named below to be included in this 

study 

 

Name of neonatal unit: __________________________________________ 

Name of NHS Trust:  __________________________________________ 

Name of Lead Clinician: __________________________________________ 

Signature of Lead Clinician:  __________________________________________ 

Date:    __________________________________________ 

 

Authorship of publications arising from this study will be “[NAMED AUTHORS] and 
members of the UK Neonatal Collaborative”.  As this is a study using data held in an 
existing database, participation does not require NHS R&D permission from Trusts 
contributing data, but only from the NHS Trust holding the database, Chelsea & 
Westminster NHS Foundation Trust. 

 

Please return this form by post or scanned email to: 

Sarah Seaton 

Department of Health Sciences, University of Leicester, 22-28 Princess Road West, 
Leicester, LE1 6TP 

sarah.seaton@le.ac.uk 

0116 2525434 

 

mailto:sarah.seaton@le.ac.uk
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LIST OF PARTICIPATING NEONATAL UNITS AND THE LEAD CLINICIAN 

This thesis would not have been possible without the neonatal units who allowed their 

data to be used in this work.  

Thank you to the Lead Clinicians of the UK Neonatal Collaborative: Dr Matthew 

Babirecki (Airedale General Hospital), Dr Liza Harry (Alexandra Hospital), Dr Oliver 

Rackham (Arrowe Park Hospital), Dr Tim Wickham (Barnet Hospital), Dr Sanaa Hamdan 

(Barnsley District General Hospital), Dr Aashish Gupta (Basildon Hospital), Dr Ruth 

Wigfield (Basingstoke & North Hampshire Hospital), Dr L M Wong (Bassetlaw District 

General Hospital), Dr Anita Mittal (Bedford Hospital), Dr Julie Nycyk (Birmingham City 

Hospital), Dr Phil Simmons (Birmingham Heartlands Hospital), Dr Vishna Rasiah 

(Birmingham Women's Hospital), Dr Sunita Seal (Bradford Royal Infirmary), Dr Ahmed 

Hassan (Broomfield Hospital, Chelmsford), Dr Karin Schwarz (Calderdale Royal 

Hospital), Dr Mark Thomas (Chelsea & Westminster Hospital), Dr Ainyne Foo 

(Chesterfield & North Derbyshire Royal Hospital), Dr Aravind Shastri (Colchester 

General Hospital), Dr Graham Whincup (Conquest Hospital), Dr Stephen Brearey 

(Countess of Chester Hospital), Dr John Chang (Croydon University Hospital), Dr Khairy 

Gad (Cumberland Infirmary), Dr Abdul Hasib (Darent Valley Hospital), Dr Mehdi 

Garbash (Darlington Memorial Hospital), Dr Nicci Maxwell (Derriford Hospital), Dr 

David Gibson (Dewsbury & District Hospital), Dr Pauline Adiotomre (Diana Princess of 

Wales Hospital), Dr Jamal S Ahmed (Doncaster Royal Infirmary), Dr Abby Deketelaere 

(Dorset County Hospital), Dr Ramnik Mathur (Ealing Hospital), Dr K Abdul Khader (East 

Surrey Hospital), Dr Ruth Shephard (Epsom General Hospital), Dr Abdus Mallik (Frimley 

Park Hospital), Dr Belal Abuzgia (Furness General Hospital), Dr Mukta Jain (George Eliot 

Hospital), Dr Simon Pirie (Gloucester Royal Hospital), Dr Phil Simmons (Good Hope 

Hospital), Dr Stanley Zengeya (Great Western Hospital), Dr Timothy Watts (Guy's & St 

Thomas' Hospital), Dr C Jampala (Harrogate District Hospital), Dr Cath Seagrave 

(Hereford County Hospital), Dr Michele Cruwys (Hillingdon Hospital), Dr Hilary Dixon 

(Hinchingbrooke Hospital), Dr Narendra Aladangady (Homerton Hospital), Dr Hassan 

Gaili (Hull Royal Infirmary), Dr Matthew James (Ipswich Hospital), Dr M Lal (James Cook 

University Hospital), Dr Ambadkar (James Paget Hospital), Dr Patti Rao (Kettering 

General Hospital), Dr Khalid Mannan (King George Hospital), Dr Ann Hickey (King's 
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College Hospital), Dr Dhaval Dave (King's Mill Hospital), Dr Nader Elgharably (Kingston 

Hospital), Dr Meera Lama (Lancashire Women and Newborn Centre), Dr Lawrence 

Miall (Leeds Neonatal Service), Dr Jonathan Cusack (Leicester General Hospital), Dr 

Venkatesh Kairamkonda (Leicester Royal Infirmary), Dr Jayachandran (Leighton 

Hospital), Dr Kollipara (Lincoln County Hospital), Dr J Kefas (Lister Hospital), Dr Bill 

Yoxall (Liverpool Women's Hospital), Dr Jennifer Birch (Luton & Dunstable Hospital), Dr 

Gail Whitehead (Macclesfield District General Hospital), Dr Bashir Jan Muhammad 

(Manor Hospital), Dr Aung Soe (Medway Maritime Hospital), Dr I Misra (Milton Keynes 

General Hospital), Dr Tilly Pillay (New Cross Hospital), Dr Imdad Ali (Newham General 

Hospital), Dr Mark Dyke (Norfolk & Norwich University Hospital), Dr Michael Selter 

(North Devon District Hospital), Dr Nagesh Panasa (North Manchester General 

Hospital), Dr Lesley Alsford (North Middlesex University Hospital), Dr Alan Fenton 

(North Tyneside General Hospital), Dr Subodh Gupta (Northampton General Hospital), 

Dr Richard Nicholl (Northwick Park Hospital), Dr Steven Wardle (Nottingham Neonatal 

Service), Dr Tim McBride (Ormskirk District General Hospital), Dr Naveen Shettihalli 

(Oxford University Hospitals, Horton Hospital), Dr Eleri Adams (Oxford University 

Hospitals, John Radcliffe Hospital), Dr Seif Babiker (Peterborough City Hospital), Dr 

Margaret Crawford (Pilgrim Hospital), Dr David Gibson (Pinderfields General Hospital), 

Dr Minesh Khashu (Poole General Hospital), Dr Caitlin Toh (Princess Alexandra 

Hospital), Dr M Hall (Princess Anne Hospital), Dr P Amess (Princess Royal Hospital), Dr 

Elizabeth Sleight (Princess Royal University Hospital), Dr Charlotte Groves (Queen 

Alexandra Hospital), Dr Sunit Godambe (Queen Charlotte's Hospital), Dr Dennis 

Bosman (Queen Elizabeth Hospital, Gateshead), Dr Barbara Piel (Queen Elizabeth 

Hospital, King's Lynn), Dr Banjoko (Queen Elizabeth Hospital, Woolwich), Dr N Kumar 

(Queen Elizabeth the Queen Mother Hospital), Dr A Manzoor (Queen's Hospital, 

Burton on Trent), Dr Wilson Lopez (Queen's Hospital, Romford), Dr Angela D'Amore 

(Rosie Maternity Hospital, Addenbrookes), Dr Shameel Mattara (Rotherham District 

General Hospital), Dr Christos Zipitis (Royal Albert Edward Infirmary), Dr Peter De 

Halpert (Royal Berkshire Hospital), Dr Paul Settle (Royal Bolton Hospital), Dr Paul 

Munyard (Royal Cornwall Hospital), Dr Gitika Joshi (Royal Derby Hospital), Dr David 

Bartle (Royal Devon & Exeter Hospital), Dr D Schapira (Royal Hampshire County 

Hospital), Dr Joanne Fedee (Royal Lancaster Infirmary), Dr Natasha Maddock (Royal 
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Oldham Hospital), Dr Richa Gupta (Royal Preston Hospital), Dr Deshpande (Royal 

Shrewsbury Hospital), Dr Charles Godden (Royal Surrey County Hospital), Dr P Amess 

(Royal Sussex County Hospital), Dr Stephen Jones (Royal United Hospital), Dr Alan 

Fenton (Royal Victoria Infirmary), Dr Mahadevan (Russells Hall Hospital), Dr Nick 

Brown (Salisbury District Hospital), Dr Kirsten Mack (Scarborough General Hospital), Dr 

Pauline Adiotomre (Scunthorpe General Hospital), Dr Rob Bolton (South Tyneside 

District Hospital), Dr A Khan (Southend Hospital), Dr Paul Mannix (Southmead 

Hospital), Dr Charlotte Huddy (St George's Hospital), Dr Salim Yasin (St Helier Hospital), 

Dr Sian Butterworth (St Mary's Hospital, Isle of Wight), Dr Sunit Godambe (St Mary's 

Hospital, London), Dr Ngozi Edi-Osagie (St Mary's Hospital, Manchester), Dr Bala 

Thyagarajan (St Michael's Hospital), Dr Peter Reynolds (St Peter's Hospital), Dr Nick 

Brennan (St Richard's Hospital), Dr Carrie Heal (Stepping Hill Hospital), Dr Sanjay Salgia 

(Stoke Mandeville Hospital), Dr Majd Abu-Harb (Sunderland Royal Hospital), Dr 

Jacqeline Birch (Tameside General Hospital), Dr Chris Knight (Tameside General 

Hospital), Dr Simon Clark (The Jessop Wing, Sheffield), Dr V Van Sommen (The Royal 

Free Hospital), Dr Nandiran Ratnavel (The Royal London Hospital, Constance Green), Dr 

Mala Raman (Torbay Hospital), Dr Hamudi Kisat (Tunbridge Wells Hospital), Dr Sara 

Watkin (University College Hospital), Dr Kate Blake (University Hospital Coventry), Dr 

Jauro Kuna (University Hospital Lewisham), Dr Mehdi Garbash (University Hospital of 

North Durham), Dr Alison Moore (University Hospital of North Staffordshire), Dr Hari 

Kumar (University Hospital of North Tees), Dr Gopi Vemuri (University Hospital of 

South Manchester), Dr Chris Rawlingson (Victoria Hospital, Blackpool), Dr Delyth Webb 

(Warrington Hospital), Dr Bird (Warwick Hospital), Dr Sankara Narayanan (Watford 

General Hospital), Dr Jason Gane (West Cumberland Hospital), Dr Elizabeth Eyre (West 

Middlesex University Hospital), Dr Ian Evans (West Suffolk Hospital), Dr Rekha Sanghavi 

(Wexham Park Hospital), Dr Caroline Sullivan (Whipps Cross University Hospital), Dr 

Laweh Amegavie (Whiston Hospital), Dr Wynne Leith (Whittington Hospital), Dr Vimal 

Vasu (William Harvey Hospital), Dr Andrew Gallagher (Worcestershire Royal Hospital), 

Dr Katia Vamvakiti (Worthing Hospital), Dr Megan Eaton (Yeovil District Hospital), Dr 

Guy Millman (York District Hospital). 
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APPENDIX 4 

There are no Appendices for Chapter Four.
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APPENDIX 5 

CONFIDENCE INTERVALS FOR THE CUMULATIVE INCIDENCE FUNCTION 

FOR DEATHS AND DISCHARGE 
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STACKED CUMULATIVE INCIDENCE PLOTS FOR FEMALES 
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APPENDIX 6 

MODELLING NEONATAL CARE PATHWAYS: INVESTIGATING LENGTH 

OF STAY FOR PRETERM BABIES – PUBLISHED IN INFANT 
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MODELLING NEONATAL CARE PATHWAYS FOR BABIES BORN 

PRETERM: AN APPLICATION OF MULTISTATE MODELLING – 

PUBLISHED IN PLOS ONE 
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ADJUSTED STACKED PROBABILITY PLOTS FOR FEMALES 
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THERNEAU-GRAMBSCH TEST FOR ADJUSTED MODEL14 

Gestational age (weeks) 
Transition 

Chi-squared value p-value 

24 weeks   

IC -> HD 56.3 <0.001 

IC -> SC 0.31 0.576 

IC -> Death 4.47 0.035 

HD -> SC 24.9 <0.001 

HD -> Death 6.26 0.012 

SC -> Home 1.32 0.251 

SC -> Death 26.2 <0.001 

25 weeks   

IC -> HD 25.8 <0.001 

IC -> SC 1.59 0.207 

IC -> Death 0.17 0.684 

HD -> SC 24.9 <0.001 

HD -> Death 2.99 0.084 

SC -> Home 1.11 0.293 

SC -> Death 11.6 <0.001 

26 weeks   

IC -> HD 6.63 0.010 

IC -> SC 0.20 0.657 

IC -> Death 1.50 0.221 

HD -> SC 14.3 <0.001 

HD -> Death 1.02 0.314 

SC -> Home 0.59 0.442 

SC -> Death 4.44 0.035 

27 weeks   

IC -> HD Baseline Baseline 

IC -> SC Baseline Baseline 

IC -> Death Baseline Baseline 

HD -> SC Baseline Baseline 

HD -> Death Baseline Baseline 

SC -> Home Baseline Baseline 

SC -> Death Baseline Baseline 

28 weeks   

IC -> HD 11.0 <0.001 

IC -> SC 3.74 0.053 

IC -> Death 0.67 0.412 

HD -> SC 14.1 <0.001 

HD -> Death 2.00 0.158 

SC -> Home 4.29 0.038 

SC -> Death 1.29 0.256 

                                                      
14 In this table the following acronyms apply: IC intensive care; HD high dependency; SC special care. 
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Gestational age (weeks) 
Transition 

Chi-squared value p-value 

29 weeks   

IC -> HD 27.5 <0.001 

IC -> SC 4.92 0.026 

IC -> Death 1.18 0.278 

HD -> SC 31.7 <0.001 

HD -> Death 0.85 0.357 

SC -> Home 22.0 <0.001 

SC -> Death 2.09 0.149 

30 weeks   

IC -> HD 69.0 <0.001 

IC -> SC 2.89 0.015 

IC -> Death 0.06 0.804 

HD -> SC 57.6 <0.001 

HD -> Death 0.76 0.385 

SC -> Home 83.3 <0.001 

SC -> Death 2.62 0.106 

31 weeks   

IC -> HD 113.0 <0.001 

IC -> SC 7.87 0.005 

IC -> Death 0.37 0.545 

HD -> SC 70.1 <0.001 

HD -> Death 6.32 0.012 

SC -> Home 186.0 <0.001 

SC -> Death 4.70 0.03 

Sex   

IC -> HD 0.09 0.761 

IC -> SC 0.21 0.646 

IC -> Death 0.00 0.992 

HD -> SC 0.09 0.763 

HD -> Death 0.61 0.434 

SC -> Home 0.49 0.503 

SC -> Death 0.044 0.833 

Birthweight z-score   

IC -> HD 3.24 0.072 

IC -> SC 0.17 0.680 

IC -> Death 3.35 0.067 

HD -> SC 11.5 <0.001 

HD -> Death 0.42 0.516 

SC -> Home 69.4 <0.001 

SC -> Death 1.66 0.197 
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APPENDIX 7 
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STACKED PROBABILITY PLOT FOR ENGLAND EXCLUDING ODN 3 
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STACKED PROBABILITY PLOT FOR ODN 3 
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STACKED PROBABILITY PLOT FOR ENGLAND EXCLUDING ODN 12 
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STACKED PROBABILITY PLOTS FOR ODN 12 
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APPENDIX 8 

DISSEMINATION AND IMPACT OF THIS THESIS 

PEER REVIEWED PAPERS 

Two academic outputs in peer-reviewed journals and one magazine article have 

produced from this thesis: 

 Seaton SE, Barker L, Jenkins D, Draper ES, Abrams KR, Manktelow BN. What 

factors predict length of stay in a neonatal unit: a systematic review. BMJ Open 

2016; 6:e010466. 

 Seaton SE; Barker L. Modelling neonatal care pathways: investigating length of 

stay for preterm infants. Infant 2016, 12(3): 87-90. 

 Seaton SE, Barker L, Draper ES, Abrams KR, Modi N, Manktelow BN. Modelling 

neonatal care pathways for babies born preterm: an application of multistate 

modelling. PLOS ONE 2016; 11(10):e0165202 

PRESENTATION AT CONFERENCES 

This work has been presented at the following national and international conferences: 

 Prediction models for neonatal length of stay: a systematic review. Presented 

at the European Congress of Epidemiology, Maastricht (June 2015) as a poster 

presentation and part of a poster walk. 

 “He’ll be home by his due date.” Multistate modelling to investigate neonatal 

length of stay. Presented at Epidemiology Congress of the Americas; Society for 

Perinatal and Paediatric Research (Miami, June 2016) as a poster presentation. 

 When will my baby go home? Investigating neonatal care for preterm babies. 

Poster presentation (competitively selected) at the Postgraduate Festival of 

Research (University of Leicester, June 2016). 

 Modelling neonatal care for preterm babies: an application of multistate 

modelling for neonatal length of stay. Oral presentation at Survival Analysis for 

Junior Researchers (University of Leicester, April 2017) 
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TALKS AND PRESENTATIONS 

2014 

 Modelling neonatal care pathways. Invited talk at Yorkshire and Humber 

Network meeting (Wakefield, November 2014) 

 Modelling care pathways in neonatal care. Presentation at Health Sciences 

Departmental Conference (University of Leicester, November 2014) 

2015 

 Modelling neonatal care pathways. Probationary review presentation 

(University of Leicester, May 2015) 

2016 

 Modelling neonatal care pathways for preterm babies. Invited presentation to 

the National Neonatal Analysts Project (NNAP) Analysts meeting (London, 

February 2016) 

 He’ll be home by his due date: investigating neonatal care for preterm babies. 

Invited seminar at National Perinatal Epidemiology Unit (Oxford, February 

2016)  

 He’ll be home by his due date: investigating neonatal care for preterm babies. 

Invited talk at Bliss (London, April 2016) 

 Investigating care for preterm babies: an application of multistate modelling. 

Biostatistics seminar (University of Leicester, June 2016)  

 Applying for an NIHR fellowship (NIHR@10 event, East Midlands, October 2016) 

 

2017 

 Investigating the care and length of stay of babies born preterm (University of 

Exeter, January 2017) 

 When will my baby go home? Lunchtime lecture at Leicester Adult Education 

Centre (Leicester, May 2017) 
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PUBLICATIONS NOT RELATED TO THIS THESIS 

Alongside this thesis I have also written the following papers in collaboration with my 

colleagues: 

 Norris T, Seaton SE, Manktelow BN, Baker P, Kurinczuk JJ, Field DJ, Draper ES, 

Smith LK, on behalf of the MBRRACE-UK Collaboration. Updated birthweight 

centiles for England and Wales. Archives of Disease in Childhood: Fetal and 

Neonatal Edition (Online first) 

 Manktelow BN; Seaton SE; Evans TA. Funnel plot limits to identify poorly 

performing healthcare providers when there is uncertainty in the value of the 

benchmark. Statistical Methods in Medical Research 2016; 25(6): 2670-2684. 

 Boyle EM; Johnson S; Manktelow B; Seaton SE; Draper ES; Smith LK; Dorling J; 

Marlow N; Petrou S; Field DJ. Neonatal outcomes and delivery of care for infants 

born late preterm or moderately preterm: A prospective population-based 

study. Archives of Disease in Childhood Fetal & Neonatal Edition 2015; 100(6): 

F479-485. 

 Guy A; Seaton SE; Boyle EM; Draper ES; Field DJ; Manktelow BN; Marlow N; Smith 

LK; Johnson S. Infants born late/moderately preterm are at increased risk for a 

positive autism screen at 2 years of age. Journal of Pediatrics 2015; 166(2): 269-

275. 

 Johnson S; Evans TA; Draper ES; Field DJ; Manktelow BN; Marlow N; Matthews R; 

Petrou S; Seaton SE; Smith LK; Boyle EM. Neurodevelopmental outcomes following 

late and moderate prematurity: Population-based cohort study. Archives of 

Disease in Childhood Fetal & Neonatal Edition 2016; 100(4): F301-308. 

 Khan KA; Petrou S; Dritaki M; Johnson SJ; Manktelow B; Draper ES; Smith 

LK; Seaton SE; Marlow N; Dorling J; Field DJ; Boyle EM. Economic costs associated 

with moderate and late preterm birth: A prospective population-based 

study. BJOG: An International Journal Obstetrics and Gynaecology 2015; 122(11): 

1495-505. 

 Smith LK; Draper ES; Evans TA; Field DJ; Johnson SJ; Manktelow BN; Seaton SE; 

Marlow N; Petrou S; Boyle EM. Associations between late and moderately preterm 

birth and smoking, alcohol, drug use and diet: a population-based case-cohort. 
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Archives of Disease in Childhood: Fetal and Neonatal Edition 2015; 100(6): F486-

491. 

 

 Johnson S; Seaton SE; Manktelow BN; Smith LK; Field D; Draper ES; Marlow N; 

Boyle EM. Telephone interviews and online questionnaires can be used to improve 

neurodevelopmental follow-up rates. BMC Research Notes 2014; 7: 219. 

 

MISCELLANEOUS 

As a result of my work in this field I also undertook the following: 

 Attended the report launch of “Bliss baby report 2015: hanging in the balance” 

as an invited guest of Bliss at the House of Common. 

 Assisted the charity Together for Short Lives with the update of their guideline: 

“A perinatal pathway for babies with palliative care needs” 
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