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Abstract

In the ruin theory, premium income and outgoing claims play an important role.

We introduce several ruin type mathematical models and apply various math-

ematical methods to find optimal premium price for the insurance companies.

Quantum theory is one of the significant novel approaches to compute the finite

time non-ruin probability. More exactly, we apply the discrete space Quantum

mechanics formalism

〈x| exp(−tH)|x′〉 =
∑
i

〈x| exp(−tH)|i〉〈i|x′〉

and continuous space Quantum mechanics formalism

〈x| exp(−τH)|x′〉 =

∞∫
−∞

dp

2π
〈x| exp(−τH)|p〉〈p|x′〉

with the appropriately chosen Hamiltonians.

Several particular examples are treated via the traditional basis and quantum me-

chanics formalism with the different eigenvector basis. The numerical results are

also obtained using the path calculation method and compared with the stochastic

modeling results.

In addition, we also construct various models with interest rate. For these models,

optimal premium prices are stochastically calculated for independent and depen-

dent claims with different dependence levels by using the Frank copula method.
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Chapter 1

Introduction

1.1 Classical Ruin Theory

Financial companies’ main aim of risk-hedging is to gain high profits. Thus, they

must avoid negative displays of their financial situation because this is unfavorable

for them. An important model, called ruin theory, operates in the actuarial world

to determine the companies’ situation against ruin.

Ruin theory has always been the most significant theory in actuarial mathematics

[59] and this necessary tool was developed by Lundberg [4] [51]. The theory gives

a useful information about how much premium must be charged continuously

to customers by insurance companies to protect their financial situation from

bankruptcy.

There are two main assumptions in the classical ruin theory:

1. Independent claim occurrences

2. No interest rate

1



1.2. General Ruin Model 2

Define a classical surplus process by [3] [13] [33] [34] [45] [51]

Rt = u+ ct−
Nt∑
i=1

Xi

where u is initial capital, c is premium amount, Xi are iid claims and independent

of a Poisson process Nt (claim occurrences process). The goal is to compute the

infinite time ruin probability Pu(T < ∞) = ψ(u) where T = inf{t > 0 :

Rt ≤ 0} [45] [51]. In our definition it is more useful to use ≤ instead of <. The

main objective is to find optimal premium that is under which the ruin probability

smaller than or equal a fixed small barrier, chosen as 5%.

1.2 General Ruin Model

To make ruin model realistic, we construct a variety of models both with interest

rate and dependent claim occurrences [3] [52]. We also consider finite time non-

ruin probability.

Firstly, we concentrate on Markovian structures and treat several examples of ruin

type models. Models considered are both with and without interest rate. Also

they may incorporate claim occurrences dependence.

Secondly, we apply the discrete space Quantum mechanics formalism [6] [16] [62]

〈x| exp(−tH)|x′〉 =
∑
i

〈x| exp(−tH)|i〉〈i|x′〉

and continuous space Quantum mechanics formalism [6] [16] [62]

〈x| exp(−τH)|x′〉 =

∞∫
−∞

dp

2π
〈x| exp(−τH)|p〉〈p|x′〉

with the appropriately chosen Hamiltonians, to compute the finite time non-ruin
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probability and thus to find the optimal premium.

Thirdly, by using the Quantum mechanics approach and via stochastic method we

define and compute the non-ruin operator

Atf(x) = E[f(ξt)I(T > t)|ξ0 = x]

where ξt is a generalize surplus process, I is an indicator function and T is the

ruin time.

Fourthly, we apply stochastic modeling and the Frank copula [20] [29] [55] [74]

Cη(u) = − 1

logη

(
1 +

n∏
i=1

(exp(ηui − 1))

(η − 1)n−1

)

to find the optimal premium price where u is the uniform variable U(0, 1) and η

is the dependence parameter.

1.3 Results

• Results have been presented and well received with the oral presentation

entitled "Quantum mechanism approach for ruin probability" at ICCMSA

2016: 18th International conference on computational modeling, simulation

and analysis in Amsterdam. I have been awarded with the best presentation

certificate.

• An abstract entitled "Hamiltonian approach and path integral method in

ruin theory" has been accepted for oral presentation at EAJ 2016 conference

and IA summer school in Lyon.

• The joint paper with S. Utev is under preparation. The paper includes

Hamiltonian technique for three-state system with change basis and tensor
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product of three-state system with change basis. Also, we use path calcula-

tion and regression for Quantum Binomial market. We treat ruin probability

as a Binomial market with Maxwell-Boltzmann statistics.

1.3.1 Theoretical Results

• Finite time non-ruin operator for Gambler’s ruin is calculated in the 4.1.1

in page 50.

• Finite time non-ruin operator for claimXj = 1 and infinite claim is computed

in the Lemma 4.1.2 and for claims Xj = 0 , 1 and infinite claim is calculated

in the Lemma 4.1.3.

• Hamiltonian technique is used to compute semigroup for two-state system

in Lemma 6.2.1 with change and without change basis.

• Hamiltonian technique is applied to compute semigroup for three-state sys-

tem in Lemma 6.3.1.

• Hamiltonian technique is used to compute tensor product of two-state system

in Lemma 6.4.4 with change basis.

• Several models with interest rate are constructed.

1.3.2 Numerical Results

• Path calculation for non-ruin probability is implemented for several exam-

ples.

• Optimal premium price for various models of interest rate are found by using

the Copula claim occurrences via stochastic modeling.
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1.4 Structure of the Dissertation

• Chapter 2 contains terminology which comes from various fields such as

Quantum physics in section 2.1, Hamiltonian system in section 2.2, path

integral for Quantum theory in section 2.3, tensor product in section 2.4,

stochastic process in section 2.5, ruin theory in section 2.6, Markovian struc-

ture and modeling construction in sections 2.7 and 2.8, reflection in section

2.9 and copula in section 2.10.

• Chapter 3 contains methods and techniques for transform of transition op-

erator in discrete and continuous time in sections 3.1 and 3.2, for Hamilto-

nians and probability calculations in section 3.3. Also, path calculation and

preservation under linear transform is introduced in sections 3.4 and 3.5.

• Chapter 4 contains several examples of non-ruin operator in discrete time.

• Chapter 5 contains several examples of non-ruin operator in continuous time.

• Chapter 6 contains advanced examples via Hamiltonian technique such as

two-state system examples in section 6.1, Hamiltonian method with eigen-

vector basis for two-state and three-state system examples in sections 6.2

and 6.3, example of tensor product of 2× 2 Hamiltonian in section 6.4, ex-

amples of surplus process different claim sizes in sections 6.5, 6.6 and 6.7,

example of Brownian motion in section 6.8.

• Chapter 7 contains various models of interest rate with using Copula method.

• Chapter 8 contains ruin probability via comparison in section 8.1, operator

method to compute finite and infinite time non-ruin probability for exponen-

tial claims with infinite jumps in section 8.2 and Riemann-Liouville integral

operator in section 8.3.

• Chapter 9 contains conclusion and future research.
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• I will be a lecturer after my PhD. So, a couple of obvious examples are

treated in this thesis to show my ability to teach.

1.5 Overview

The classical collective risk theory has introduced by Lundberg in 1903. The

surplus process with ruin probability has been studied in several literature such as

Buhlmann [13], Gerber [32], Bowers, et al. [12], Rolski, et al. [59] and Asmussen

[4].

The usual assumption in risk theory is that the claim sizes are independent, when

claims occur [74]. The dependence structure known as Sklar’s theorem and copula

has firstly appeared in Sklar [65] [74]. The dependence between claim occurrences

and effect of dependence in the individual risk process has been initiated by Denuit,

et al [19] [74]. They also introduced two type of dependence: global dependence

and local dependence.

Various types of dependence in the individual risk theory has been studied by

Marceau, et al. [48] [74]. Also, Cossette and Marceau have studied on ruin

probability in discrete time with dependence on the claim number process [74].

The joint distribution of the claims as a copula and its Archimedean form is

introduced by this paper and later work Genest, et al. [31] [74]. Marshall and

Olkin [49] has constructed the algorithm of Frank copula from a frailty framework

[74]. In this thesis, we use this algorithm to find optimal premium.

Furthermore, effect of dependence of consecutive claims on the probability of ruin

according to a Markov-type risk process has been simulated by Albrecher and

Kantor [1] [74].



Chapter 2

Terminology

One can see that ruin probability analysis requires broad knowledge of mathemat-

ics. In this chapter, terminology of various fields are implemented.

2.1 Quantum Physics

Quantum mechanics is one of the most significant theory in science and gives more

accurate experimentally results as explained by Baaquie [6]. Calculus and linear

algebra are commonly used in mathematical formalism of Quantum mechanics

[6]. To define a necessary notation in physics, variety of mathematical tools are

required. For the quantum mechanics, characteristics such as inner product and

vector space are necessary and Hilbert space play a special role [6] [16] [42]

[62]

A Hilbert space, denoted by H, is a complete, separable, vector space equipped

with the norm generated by the inner product (x, y) : H ×H → C [16]

‖u‖ :=
√

(u, u) , u ∈ H

7
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An inner product is a map (x, y) : H ×H → C satisfying [6] [16] [62]

1. (α, β) = (β, α) for α, β ∈ H,

2. (α + β, γ) = (α, γ) + (β, γ) for α, β and γ ∈ H,

3. (cα, β) = c(α, β), for α, β ∈ H and c ∈ C

4. (α, α) ≥ 0, where equality holds if and only if α = 0.

A normed vector space is complete if every Cauchy sequence converges. In other

words, if (αn)n∈N is such that [16] [62]

‖αn − αm‖ → 0 as m, n→∞

there exist an α ∈ H such that αn → α , n→∞.

A space H is separable if there exists a countable dense subset {α1, α2, . . .} ⊂ H.

In other words for any β ∈ H there exists a subsequence (αij)j∈N such that [16]

[62]

lim
j→∞

∥∥αij − β∥∥ = 0

A vector |α〉 in Hilbert space H is called ket vector. Similarly, a vector 〈β| in

the adjoint conjugate dual space H∗ is called bra vector [16] [27] [62]. Dirac

has introduced these two vectors to deal with the difficulty resulting from infinite

dimensional systems. To construct the inner product in Dirac notation, we put

adjoint conjugate of 〈α| as bra vector in front of the |β〉, written as [16] [62]

〈α||β〉 ≡ 〈α|β〉
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In addition, the sum of two ket (or bra) vectors is another ket (or bra) vector [62]

|α〉+ |β〉 = |δ〉

The multiplication of a ket (or bra) vector and a constant number c 6= 0 is given

by [62]

c|α〉 = |α〉c

There is no difference where the constant c stands on the right or left of the ket

vector. Particularly, the result is null ket (bra) where c = 0.

Vectors |α〉 and |β〉 are orthogonal if 〈α|β〉 = 0. It also implies that 〈β|α〉 = 0

[62].

A normalized ket |∼α〉 is denoted by [62]

|∼α〉 =

(
1√
〈α|α〉

)
|α〉

where |α〉 is not a null ket and 〈∼α|∼α〉 = 1.

A linear operator A transforms a ket vector to another one, i.e [6] [16] [62]

A|α〉 = |α′〉

In addition, operator A is a null operator if [62]

A|α〉 = 0

for any |α〉.

Let A, B and C be three operators. Multiplication operation is said to be non-
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commutative but associative [62]

AB 6= BA

A(BC) = (AB)C = ABC

Then, we have [62]

A(B|α〉) = (AB)|α〉 = AB|α〉 , (〈β|X)Y = 〈β|(XY ) = 〈β|XY

Furthermore, the inner product of vector |α〉 and an acted operator A|β〉 = |β′〉 is

written as [6] [16] [62]

〈α|β′〉 = 〈α|(A|β〉) = 〈α|A|β〉

where the vector |β〉 is transformed by an operator A. On the other hand, if the

operator is acting on the ket vector, the inner product will be as follows [16] [62]

〈α′|β〉 = (〈α|A+)|β〉 = 〈α|A+|β〉

where the vector |α〉 is converted by an operator A+ which is adjoint of the linear

operator A.

The set of eigenvector µ = {|a1〉, |a2〉, · · · , |ai〉, · · · } forms the orthonormal basis

of Hilbert space H. Any vector |α〉 is a linear combination of its basis as follows

[6] [16] [62]

|α〉 =
∑
j

αj|aj〉

where the coefficient αj is obtained by the inner product is written as follows [16]
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[62]

〈ai|α〉 = 〈ai|
∑
j

αj|aj〉 =
∑
j

αjδji = αi

and corresponding decomposition of identity in discrete basis is [7]

I =
∑
j

|aj〉〈aj|

Decomposition of identity operator in continuous basis is denoted by [7]

I =

∞∫
−∞

|α〉〈α| dα

Additionally, the projection operator onto the subspace |α〉 is formed and called

dyad projector, i.e [6] [16] [62]

Pα = |α〉〈α|

Pµ =
∑
i

|αi〉〈αi|

where µ = {|a1〉, |a2〉, · · · , |ai〉, · · · } is the set of eigenvectors.

2.2 Hamiltonian System

A general dynamical theory was established by Newton as laws of motion. Then

significant developments were made by Lagrange and Hamilton. In the Hamilto-

nian method [7] [26] [27], a pair, a dynamical coordinate and time is transformed

to a new dynamical state and time. A system of ordinary differential equations,
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is called Hamiltonian system, which forms [7] [26] [50]

.
q = Hp ,

.
p = −Hq

.
qi =

∂H

∂pi
(t, q, p) ,

.
pi = −∂H

∂qi
(t, q, p)

for i = 1, . . . , n, where Hamiltonian H = H(t, q, p) depends on the position vectors

q = (q1, . . . , qn) and p = (p1, . . . , pn) and time t. These vector p and q are conjugate

vectors such as p is conjugate to q.

2.3 Path Integrals in Quantum Physics

Consider a moving from a position q at time t = 0 to another position q′ at a later

time t = T with some probability by using the form of Hamiltonian such as [7]

[16] [62]

H =
p2

2m
+ V (q)

where p is the momentum and V(q) is the potential.

Let the initial state |ψ(0)〉 = |q〉. We get the amplitude [7] [16] [62]

A = K(q, 0; q′, t) = 〈q| exp(−Ht)|q′〉

and also it is known as propagator which is independent of the origin of time [5]

[7] [16] [62]

K(q, t; q′, T + t) = K(q, 0; q′, T )

The amplitude can be derived in the form of integral summation over all possible

paths from beginning to end point so path integral is derived. In the first studies
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Figure 2.1: Amplitude as a sum over all N-legged paths [47].

in path integral, Feynman has explained equivalence of path integral on the for-

mulation of quantum theory. Then, if we split up the time evolution as two small

parts, the amplitude is derived by [5] [7] [16] [57] [62]

A = 〈q| exp(−Ht1) exp(−H(T − t1))|q′〉

Inserting factor
∫
dq1|q1〉〈q1| = 1 to the amplitude, it can be reached that

A =〈q| exp(−Ht1)

∫
dq1|q1〉〈q1| exp(−H(T − t1))|q′〉

=

∫
dq1K(q, 0; q1, t1)K(q1, t1; q′, T )

Now, if we divide the time evolution with a large number N , the time interval

between the each paths are δ = T
N
. Afterwards amplitude becomes [7] [16] [46]

[62]

K(q′, T |q, t) := lim
N 7→∞

∞∫
−∞

· · ·
∞∫

−∞

exp

(
− 1

2σ2Nδ

N−1∑
i=0

(q′ − q)2

)
dq1√
2πσ2δ

· · · dqN−1√
2πσ2δ

where V (q) = 0.
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2.4 Tensor Product

Let V and W be two vector spaces with different degrees of freedom. Tensor

product space is denoted by V ⊗W [6] [26]. For ket vector |x〉 ∈ V and |y〉 ∈ W ,

tensor product is defined by [6] [26]

|x〉 ⊗ |y〉 = |x〉|y〉

If ket vector |x〉 ∈ VN is N-dimensional and and |y〉 ∈ WM is M-dimensional,

tensor product space VN ⊗WM is MN-dimensional vector.[6] [26]

General information and several examples are given in the Chapter 6.

2.5 Stochastic Processes

Let T ∈ [0,∞) be an index set and t be a parameter running over this set. A

family of random variables Xt or X(t) is called stochastic process [61] [70]. If

index t corresponds to discrete unit time, and the index set T = N , it is called

a discrete-time process, and if index t corresponds to continuous unit time, and

index set T = [0,∞), it is said to be a continuous-time process which is particularly

important in applications [61] [70].

Stochastic processes are split up by their state space, or the range of possible

values for the random variables Xt, by their index set T , and by the dependence

relations among the random variables Xt.
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2.5.1 Compound Poisson Processes

Let X1, X2, . . . be a sequence of independent and identically distributed (iid) pos-

itive random variables. Then [51] [61]

N(t) = #{i ≥ 1 : Ti ≤ t} , t ≥ 0

is said to be corresponding renewal (counting) process where Ti are inter-arrival

times and also the random walk is called a renewal sequence [32] [51] [61]

St = X1 +X2 + · · ·+XN(t) , N(t) ≥ 1

with St = 0 if N(t) = 0.

If N(t) is a Poisson process with parameter λ > 0, St is called a compound Poisson

process with this specific parameter λ [32] [45] [51] [61] [70].

2.5.2 Brownian Motion Stochastic Processes

Brownian motion process is a continuous time continuous state space stochastic

process [36]. Modern mathematical method and mathematical aspect of Brownian

motion is constructed by Norbert Wiener [36]. A standard Wiener Process is

a random stochastic process W = Wt : t ∈ [0,∞) with state space R satisfies the

following properties: [36] [70]

• W0 = 0 with probability 1.

• For s < t ∈ [0,∞), the distribution of Wt −Ws is equal to distribution of

Wt−s that is W has stationary increments.

• Wt is normally distributed with mean zero and variance t − s for every
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increment Wt −Ws.

Wt −Ws ∼ N(0, t− s)

• For every pair of disjoint intervals (t1, t2], (t3, t4] with 0 ≤ t1 < t2 ≥ t3 < t4,

the increments Wt4 −Wt3 and Wt2 −Wt1 are independent random variables.

Similarly, the increments are independent for any n disjoint time intervals,

0 ≤ t0 < t1 < · · · < tn, where n is an arbitrary positive integer.

• Wt is continuous as a function of t (continuous sample path).

The definition says that if we know W0 = 0 and Ws = x0, knowledge of values of

Wτ for past times τ < s don’t have any effect on the future movement Wt −Ws.

The statement of the Markov property of the Wiener Process is defined by [70]

P [Wt ≥ x|W (t0) = x0,W (t1) = x1, . . . ,W (tn) = xn] = P [Wt ≥ x|W (tn) = xn]

if 0 ≤ t0 < t1 < . . . < tn < t.

2.5.3 Levy Processes

Levy processes are stochastic processes with stationary and independent incre-

ments [36]. The Levy processes include Poisson processes and Brownian motion

[36]. They used for modeling in various area such as physics, biology, option pric-

ing and finance [36].

A process L = {Lt : 0 ≤ t ≤ T} on a probability space (Ω,F , P ) is called a Levy

process if it has the following properties: [36] [43] [58]

• Independent increments: Lt − Ls is independent of Fs for any 0 ≤ s ≤

t ≤ T .
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• Stationary increments: The distribution of Lt+s−Lt does not depend on

t for any 0 ≤ s ≤ t ≤ T .

• Stochastically continuous: lim
s 7→t

P (|Lt−Ls| > ε) = 0 for every 0 ≤ s, t ≤ T

and ε > 0.

2.6 Ruin Theory

The insurance companies like to take a certain amount of risk in a branch of

insurance [59]. If the claim surplus exceeds the fixed beginning value, the company

will have to take a rigid response (attitude). Thus, the company begins to make an

investment with specified amount as a level R0 = u which is called initial capital.

The vital criterion to optimize the insurance policy is minimizing the probability

that the claim surplus exceeds the initial capital u [59]. At this point, actuaries

have to determine the amount of premium C in a certain period and which type

of insurance will be taken by policyholders [59]. This determination is reached

depending on company policy and tariffs of rivals. In addition to this, Ct is total

premium amount in the interval (0, t) [32]. St is aggregate claims in this time

interval and policyholders receive claims according to the Poisson Process with

rate λ [32].

Total claim amount process [13] [15] [22] [45] [51]

St =

N(t)∑
i=1

Xi, t ≥ 0

in the renewal model and the claim sizes sequence (Xi) is independent and iden-

tically distributed (iid) with distribution function F [51]. Claim arrival sequence

(Tn) is defined as follows: [15] [45] [51]

T0 = 0 , Tn = W1 + · · ·+Wn , n ≥ 1
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where Wi are iid interarrival times. In that case, Tn is referred to as a renewal

sequence. The arrival process is Poisson process if and only if W1 has a negative

exponential distribution.

One of the most important cases at this point is that renewal process and claim

arrival sequence (Tn) are individually independent of (Xi).

In a discrete time, the surplus process is defined by [3] [13] [15] [33] [34] [45] [51]

Rt =R0 + Ct−
t∑
i=1

Xi

=R0 +
t∑
i=1

(Xi − C)

Assume a continuous premium income p(t) = Ct in the homogenous portfolio

where p is a deterministic function and linear [51]. The risk process (or surplus)

of the portfolio is described by [4] [51]

Rt = R0 + p(t)− St, t ≥ 0

At the time t, if Rt is positive, the insurance companies make profit and they gain

capital; if it is not (negative) companies have lost their capital [51].

Define a random variable τ = inf{t ≥ 0 : Rt < 0}. Ruin time of the portfolio is

given instant time τ and is the main characteristic of ruin event [32] [34] [45] [51]

[59]. The target of ruin theory is to define the probability of ruin where τ refers to

specific time period (It can be unbounded for ultimate ruin). Additionally, there

is possibility that ruin time τ is dependent on all stochastic elements in the risk

process Rt.

Idealized path of the process Rt is seen in the Figure 2.2 [51]. The ruin process

Rt begins with initial capital R0 = u at the beginning of the contract and then

when the first claim occurs, an increase is observed in the path with premium C

until a first event occurs at T1 = W1. Besides, the process moves downward by the



2.6. Ruin Theory 19

Figure 2.2: Idealized path of the process of capital Rt.

claim size of X1. In the next step, the process is again increasing with premium

C in the interval [T1, T2] and also it decreases by the amount of X2. Then, the

process keeps its behaviour as the above structure [51]. As a result, if the claim

sizes Xi are large, capital Rt may take negative values. When Rt values fall under

the limit zero, this situation is called ruin [51].

2.6.1 Infinite Time Ruin Probability

A claim surplus process {Kt}t≥0 is defined by

Kt = u−Rt =
Nt∑
t=1

Xt − ct

where the time to ruin is τ(u) = inf{t ≥ 0 : Rt ≤ 0} = inf{t ≥ 0 : Kt > u}, u

is the initial capital, c is the premium amount and Rt is the capital [15].

Let L = sup0<t<∞{Kt} and LT = sup0<t<T{Kt}. The ruin probability in infinite

time is written as [15] [24] [25]

ψ(u) = P (τ(u) <∞) = P (L > u)
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Also, the ruin probability in finite time T is defined by [15] [24]

ψ(u, T ) = P (τ(u) < T ) = P (LT > u)

Hence, it can be said that ψ(u, T ) < ψ(u) and infinite time ruin probability may

be relevant to finite time ruin probability. [15]

2.7 Markovian Structure

2.7.1 Introduction to Markov Chains

Simple structure of Markov Chains gives much knowledge about their behaviour.

They are the most significant type of random processes since their richness and

practicability are sufficient to serve a diverse range of applications [37] [56] [61]

[67].

Memory-less property refers to a Markov Process for stochastic processes. Numer-

ous phenomena can be modeled and identified with a most effective probability

law that the future state of this stochastic process depends only on its current

state, without its previous state. In other words, no subsequent state is affected

by probability distribution of earlier states. Its past states only contribute to

reach its current state and play no role in the probability of its future states. This

characteristic is called the Markov Property [36] [56] [61] [70].

The Markov Processes are classified thus: characteristic of state space being mea-

sured and observation of discrete and continuous intervals [40].

General definition: Mathematically, the Markov Property is written as [35] [61]

[70]

P [Xt ∈ A|XS1 = x1, XS2 = x2, · · · , XSn = xn, XS = x] = P [Xt ∈ A|XS = x]
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for all s1 < s2 < · · · < sn < s < t in the time set; all states x1, x2, · · · , xn, x in the

state space S and all subsets A of S.

2.7.2 Disrete Time Markov Chains

Consider a sequence of random variable (Xn)n≥0 that takes on a finite number of

possible values on a countable state space S, the process is in state i at time n if

Xn = i [60] [61]. Then, the state is changed from state i to the next state j with

a fixed probability Pij. This stochastic process is called a Markov Chain, if it has

a Markov Property [14] [36] [60] [61] [66] [70]

P [Xn+1 = j|Xn = i;Xn−1 = in−1, · · · , X1 = i,X0 = i0] = P (Xn+1 = j|Xn = i) = Pij

for all states i0, i1, · · · , in−1, i, j and all n ≥ 0.

2.7.3 Chapman-Kolmogorov Equation for DTMCs

Based on Markov Property, one-step transition probabilities Pij have already been

defined and n-step transition probabilities P (n)
ij can easily be proved. After n

additional transitions, process will pass to state j from state i. That is, [14] [61]

[66]

P n
ij = P [Xn+m = j|Xm = i]n ≥ 0, i, j ≥ 0

A method is satisfied by the Chapman-Kolmogorov Equation with regards to n-

step transition probabilities for P ′ij = Pij , i.e, [61]

Pij
n+m =

∞∑
k=0

Pik
nPkj

m
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for all n,m ≥ 0 and all i, j. If P (n) is defined as a matrix for n-step transition

probabilities, the following equation is derived (e.g. [14] [61] [66])

P (n+m) = P (n) · P (m)

P (n) = P (n−1) · P = P (n−2) ·P · P︸ ︷︷ ︸
P 2

= P (1) ·P · P · · ·P︸ ︷︷ ︸
Pn−1

= · · · = P n

Hence, n times matrix multiplication of matrix P by itself gives n-step transition

matrix [14] [61].

2.7.4 Continuous Time Markov Chains

Continuous Time Markov Chains (CTMCs), which are applied in different ap-

plications and fields in the real world, behave with the same characteristics as

Discrete Time Markov Chains (DTMCs) in terms of the Markov Property that

future state is affected by current state and independent of past states [41] [61].

In other words, CTMCs are analogous to DTMCs, but there is such an important

difference between them that the times between transitions of states are exponen-

tially distributed, not deterministic [71] [72].

CTMCs, which are stochastic processes, draw a model that enters a state i at

time t ≥ 0 and remains in this state for a while; that is, it keeps its situation for

a random period of time, after which it jumps into the next state j (j 6= i) with

a known rule. [14]

Formally, a continuous time stochastic process [x(t), t ≥ 0] with a discrete state

space S is CTMCs if [14] [36] [61] [69] [71] [72]

P [X(t+ s) = j|X(s) = i,X(u) = x(u), 0 ≤ u < s] = Pij(t)
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Figure 2.3: The total probability of all paths leading from i to j in time t.

for all s, t ≥ 0 and all states i and j. Pij(t) is the probability of being in state j

from current state i in t times unit. Figure 2.3 shows that total probability of all

paths leading from i to j in time t in terms of trajectory [69].

The conditional distribution of future depends only on the present due to the fact

that CTMCs have the Markov Property [61].

The conditional probabilities of process P [X(t + s) = j|X(s) = i] are called

the transition probabilities. The CTMCs have stationary transition probabilities

(sometimes called homogenous transition probabilities), when [14]

P [X(t+ s) = j|X(s) = i] = P [X(t) = j|X(0) = i] = Pij(t)

for all s, t ≥ 0 and all states i and j.

2.7.5 Chapman-Kolmogorov Equation for CTMCs

Chapman-Kolmogorov Equation (C-K Equation) describes change of transition

probabilities in a similar way in discrete time, although the form is different in

continuous time [14] .
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For all s ≥ 0 and t ≥ 0,

Pij(t+ s) =
∞∑
k=0

Pik(t)Pkj(s)

is called Chapman-Kolmogorov Equation for CTMCs [14] [66].

A square matrix P (t) is called a transition function and is written for transition

probabilities (Pij(t)) with using matrix notation. The following matrix multipli-

cation is obtained by C-K Equation [14] [66]:

P (t+ s) = P (t) · P (s)

2.8 Stochastic Modeling Construction

2.8.1 Modeling of Discrete Time Markov Chains

Let Xk, k = 0, 1, 2, . . . be a discrete time Markov chain with transition matrix

P = Pij for any i, j ∈ Z. To model it, we create a path between states. Our

subprogram is defined by

∆xy =

y∑
j=1

Pxj

• Fix X0 = x

• ∆xy = Pi1 + . . .+ Pij

• Generate U ∼ U [0, 1]

If ∆xj−1 < U ≤ ∆xj take Xn+1 = y. Then loop it.

Example: Let transition matrix P =


1 2

1 0.3 0.7

2 0.4 0.6

.
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For X0 = 1 7−→ ∆xy = ∆1y =

y∑
j=1

P1j

7−→ ∆10 = 0 , ∆11 = P11 = 0.3 , ∆12 = P11 + P12 = 1

If generated random number U1 is in the interval of [0,∆11], we jump the another

state. If not, it stays at the same state. We assume the generated random number

U1 = 0.53. So, it jumps to the other state X1 = 2.

Similarly, for X1 = 2, we assume generated random number is U2 = 0.37 which is

in the interval (0,∆21 = 0.4). So, it jumps to the other state as well.

2.8.2 Modeling of Continuous Time Markov Chains

Let Xt, t < T be a continuous time Markov chain with

Xt = i 7→


i+ 1 , λij∆t + o(∆t)

i , 1− λii∆t + o(∆t)

where λii =
∑
j 6=i

λij. From state i to j, probability is defined by

Pij(∆t) = P (Xt+∆t = j |Xt = i) = λij∆t + o(∆t)

• Fix initial state x = X0 = i

• Take random exponential number NE(λii) = T

• Move time 0⇒ 0 + T

• Jump from i to j 6= i with probability λij
λii

= Pij

• To do it, generate a random number U ∼ U [0, 1]

If ∆xj−1 < U ≤ ∆xj take Xn+1 = y. Then loop it.
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2.9 Combinatorial Approach and Reflection

Consider there is a path from (t0, k0) to (tn, kn) for tn > t0 where k0 is the position

at time t0 and kn is the position at time tn. Then, we say that (tn, kn) is reachable

from (t0, k0) [11]. A possible path from (t0, k0) to (tn, kn) is the set (Xt0 · · · , Xtn)

such that [11] [73]

Xt0 = k0 , Xtn = kn

where Xt+1 −Xt = 1 or −1 in Z.

Reachability

Let m be the total number of moves up and n be the total number of moves down.

In order to reach (tn, kn) from origin, we say that [11] [73]

m+ n = tn and m− n = kn

and so

m =
tn + kn

2
and n =

tn − kn
2

Here tn+kn and tn−kn must be even and they must have the same parity because

m and n must be integer numbers. [11] [73]

Definition: The number of possible path to reach the reachable point (t, k) is

denoted by [11] [73]

Nt,k
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If (t, k) is not reachable, then Nt,k = 0.

Also, the number of possible path from (0, k0) to (tn, kn) is defined by [11] [73]

Ntn(k0, kn)

Proposition: Number of path to reach (t,k)

If (tn, kn) is a reachable point, then

Ntn(k0, kn) =

(
tn
m

)
=

(
tn
n

)
=

(
tn

(tn + kn − k0)/2

)
=

(
tn

(tn − kn + k0)/2

)

where (tn + kn − k0) is even number [11] [73].

The Reflection Principal

Let Ntn(k0, kn) be the number of all possible path from (t0, k0) to (tn, kn). If the

path touch x-axis in any point 0 < t < tn, then [11] [73]

Ntn(k0, kn) = Ntn(−k0, kn)

The Ballot Theorem

Let Ntn(0, kn) be the number of all possible paths from (0, 0) to (tn, kn). The

number of paths from (1, 1) to (tn, kn) which do not cross the x-axis is identified

by [11]

Ntn−1(0, kn − 1)−Ntn−1(−1, kn)

Let m be the integer number of plus ones and n be the integer number of minus

ones. As we defined before m+ n = tn, m− n = kn and tn + kn = 2m. By doing
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the algebraic calculations [11]

Ntn−1(0, kn − 1)−Ntn−1(−1, kn) =

(
tn − 1

(tn + kn − 2)/2

)
−
(

tn − 1

(tn + kn)/2

)
=

(
m+ n− 1

m− 1

)
−
(
m+ n− 1

m

)
=
kn
tn
Ntn(0, kn)

Combinatorial Approach and Probability

Assume that

k 7→


k + 1 with probability p

k − 1 with probability q

for each integer k. Each path in set (X0, . . . , Xn) has an equal probability

p(tn+kn−k0)/2q(tn−kn+k0)/2

where X0 = k0 and Xn = kn [11] [73].

For symmetric random walk (same probability p = q = 1/2), each path of length

tn has probability 2−tn [11] [73].

2.10 Copulas

Model dependence beyond multivariate normality has become more important in

recent years [20]. The importance of dependencies among risks is well define in

actuarial theory [19]. Kaas illustrated disastrous effect of dependencies on stop-loss

premiums [19] [38]. Then, Dhaene and Goovaerts have increased the attention for

dependence among risks [19] [23]. Albrecher et al. [3] have used the Archimedean

survival copulas to compute ruin probabilities [17]. Then Albrecher and Boxma
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[2] considered inter-arrival time depend on the previous claim size [17]. Also,

broad class of examples are also presented by Marceau et al. [48] and Genest at

al. [31], separately [19]. Effect of dependence in the individual risk model has

been analysed and separated two different types: global dependence and local

dependence [19]. Another study shows that the probability of ruin is increased

and adjustment coefficient is decreased under the dependence structure in claim

number process [48].

Assume that an N-dimensional random vector X = (X1, X2, . . . , XN) has the

cumulative distribution function as below

F (x1, x2, . . . , xN) = Pr[X1 ≤ x1, X2 ≤ x2, . . . , XN ≤ xN ]

The copula method is based on the decomposition of the cumulative distribution

function F via the univariate marginals of Xk for k = 1, 2, . . . , N and another

distribution function called a copula as stated below in (∗) [20] [74].

Copula, which provides a connection amongst the several univariate marginal dis-

tributions to their multivariate distribution, is a function [20] [74]. It constructs

a structure amongst the marginals for dependence. In other words, a copula is a

multivariate distribution function with specified uniform marginals [20] [74].

Conversely, for any multivariate distribution, there exists a copula function to

link it with its marginals. Furthermore, Sklar illustrates that the copula is called

unique if that marginal distribution is continuous.

Suppose a portfolio weights for the N assets whose returns are univariate marginal

distribution functions F1(x1), F2(x2), . . . , FN(xN). The copula function C gives the

joint density as follows [20] [55]

C(F1(x1), F2(x2), . . . , FN(xN)) = F (x1, x2, . . . , xN) (∗)



2.10. Copulas 30

Also, pseudo inverse function is defined [20] [55]

x = F−1(u) ≡ sup{x|F (x) ≤ u}

Consider the distribution [20] [55]

F (x, y) = exp(−(exp(−x) + exp(−y)− (exp(−δx) + exp(−δy))−
1
δ ))

for δ > 0,−∞ < x and y < ∞. Its univariate marginals are F1(x) =

exp(− exp(−x)) and F1(y) = exp(− exp(−y)) where x 7→ ∞ and y 7→ ∞. By

substituting u = F1(x) and v = F1(y), the copula is found

C(u, v) = uv exp(((−logu)−δ + (−logv)−δ)−
1
δ )

Joint distribution of the claim occurrence has stated as copula in the individual

risk model as a form of Archimedean copula as follows [2] [3] [20] [30] [31] [55] [74]

C(FI1(i1), . . . , FIn(in)) = ψ−1[ψ(FI1(i1)) + · · ·+ ψ(FIn(in))]

where FI1···In is the multivariate distribution function and Archimedean generator

ψ is decreasing, convex and ψ(1) = 0.

Also, the multivariate Frank copula is defined by [15] [20] [29] [55] [74]

Cθ(u) = −1

θ

(
1 +

n∏
i=1

(exp(−θui − 1))

(exp(−θui)− 1)n−1

)

where θ > 0. For η = exp(−θ), this notation is written as [20] [29] [55] [74]

Cη(u) = − 1

logη

(
1 +

n∏
i=1

(exp(ηui − 1))

(η − 1)n−1

)



Chapter 3

Methods and Techniques

In this chapter, methods and techniques for transform of transition operator in

discrete and continuous time process, probability calculation and path calculation

are implemented. Also, preservation under linear transform is introduced.

3.1 Transform of Transition Operator in Discrete

Time

Let ξt be an abstract surplus process ξt = ξ0 + Ct−
Nt∑
i=1

Xi where C is a premium

rate, Xi are claim sizes and T is a ruin time defined by T = inf{t > 0 s.t ξt ≤ 0}.

We emphasize that it is more convenient to us to include 0 to a ruin region. The

non-ruin operator in discrete time for t = {0, 1, 2, · · · } is defined by

Atf(x) = E[f(ξt)I(T > t)|ξ0 = x]

where At is a semi-group. Then, finite time non-ruin probability is found by using

this definition.

31
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Lemma 3.1.1. Fix a function H : R→ R. Define a family of operators {At; t ≥

0} by

Atf(x) = E[H(ξ1, . . . , ξt)f(ξt)|ξ0 = x]

where function H(ξ1, . . . , ξt) = H(ξ1) · · ·H(ξt).

Then, {At; t ≥ 0} is a semigroup and At = At where A = A1.

Corollary:

Atf(x) = E[I(T > t)f(ξt)|ξ0 = x] = At1f(x)

where A1f(x) = E[I(T > 1)f(ξ1)|ξ0 = x].

This corollary establishes an important semigroup property which allows to com-

pute the ruin operator in a simpler way.

Proof: When we fix H, it admits

Atf(ξ0) =E(H(ξ1) . . . H(ξt)f(ξt)|ξ0)(ξ0 = x)

=E[E{[H(ξ1) . . . H(ξt−1)](H(ξt)f(ξt)|Ft−1)}|F0]

Using the tower lemma, we get

Atf(ξ0) = E(H(ξ1) · · ·H(ξt−1)E(H(ξt)f(ξt)|Ft−1)|F0)

Applying the Markov property, we find

Atf(ξ0) = E(H(ξ1) · · ·H(ξt−1)E(H(ξt)f(ξt)|f(ξt−1))|ξ0)

By definition of the operator

A1f(ξt−1) =E(H(ξt)f(ξt)|ξt−1)

=g(ξt−1)
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and so

Atf(x) =E[H(ξ1) . . . H(ξt−1)g(ξt−1)|ξ0 = x]

=At−1g(x)

Afterwards,if we substitute f(x) for g(x)

Atf(x) = (At−1A1f)(x)

Hence, the proof is completed as follows

Atf(x) = Atf(x)

3.2 Transform of Transition Operator in Continu-

ous Time

Lemma 3.2.1. (Continuous time general transformation lemma)

The generator of the non-ruin semi-group At is the following matrix

Q =



0 0 0 · · · · · · 0 0 0 · · · · · ·

0 −λ11 λ12 · · · · · · λ1i−1 λ1i λ0i+1 · · · · · ·
...

...
... · · · · · · ...

...
... · · · · · ·

0 λi1 λi2 · · · · · · λii−1 −λii λii+1 · · · · · ·
... · · · · · · · · · · · · · · · · · · · · · · · · · · ·


where λij is a transition rate from state i to j.

Proof: Now, consider the time interval is divided by N + 1 steps, then the non-

ruin probability is found via the discretization technique. The discrete transition
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matrix is defined by

P
(N+1)
ij = P (XN+1 = m|X0 = x)

By conditioning on the one step, the non-ruin operator is obtained by

AN+1f(x) =
∑
k

E[f(XN+1)I(T > N + 1)I(Xj = k)|X0 = x]

=
∑
k

E[f(XN+1)I(T > N + 1)|X1 = k]P (X1 = k|X0 = x)

From the definition of the operator, we have

AN+1f(x) =
∑
k

ANf(k)P (X1 = k|X0 = x)

On the step N + 1, the value at time t+ ∆t is obtained as follows

At+∆tf(x) =
∑
k

Atf(k)P (ξ∆t = k|ξ0 = x)

By using SDL (subtract-divide-limit) as ∆t 7→ 0

(Atf(x))′ = −Atf(x)λii +
∑

k 6=i,k 6=0

Atf(k)λik

Then the pseudo Q−matrix is referred to the non-ruin generator as

Q =


−λii , if i = j > 0

λij , if j 6= i , i, j > 0

where λij is a transition rate from state i to j.

Here, Q is not a q-matrix in general, that is, it does not generate a semigroup of

transition matrices.
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3.3 Hamiltonians and Probability Calculations

Let (x, y) be an inner product in coordinate if basis are given as

x = (x1, · · · , xk) and y = (y1, · · · , yk)

and identity operator is defined by [16] [62]

I =
k∑
i=1

|i〉〈i|

If identity operator is acting a ket vector, it can be obtained as follows [16] [62]

∑
i

|i〉〈i|x〉 =
∑
i

〈i|x〉|i〉

=
∑
i

xiei

In particular, an arbitrary matrix operator A is decomposed in the following way

〈x|A|x′〉 =〈x|AI|x′〉 (applying A = AI)

=〈x|A
k∑
i

|i〉〈i||x′〉 (since I =
∑
|i〉〈i|)

By linearity and Dirac convention 〈i||x′〉 = 〈i|x′〉

〈x|A|x′〉 =
∑
i

〈x|A|i〉〈i|x′〉

for any bra vector 〈x| and ket vector |x′〉.

Let H : H 7→ H be a Hamiltonian matrix operator and At := exp(−tH) be a

semigroup for the previous statement, then

〈x| exp(−tH)|x′〉 =
∑
i

〈x| exp(−tH)|i〉〈i|x′〉
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where the notation on the left side, the "pinching" with the operator between bra

and ket vectors, is called standard Dirac notation [16] [62].

Assume that the basis |i〉 is the set of eigenvectors of H. Then

H|i〉 = δi|i〉

where δi is a corresponding eigenvalue.

Semigroup At is applied to a ket vector |i〉 as follows

At|i〉 =
∞∑
k=0

(−t)k

k!
Hk|i〉

=
∞∑
k=0

(−t)k

k!
δki |i〉

= exp(−tδi)|i〉

where δi are eigenvalues of H. Hence, it is concluded as follows for this unique

operator

〈x| exp(−tH)|x′〉 =
∑
i

〈x|i〉〈i|x′〉 exp(−tδi)

We start by treating obvious example.

Example: Let H =

a 0

0 b

 be a real matrix and At = exp(−tH) is a semigroup.

Identity operator will be
∑
|i〉〈i| = |1〉〈1|+ |2〉〈2| for this matrix.
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Then, applying H to a ket vector |1〉 =

1

0

 and |2〉 =

0

1

 such that

H|1〉 =

a 0

0 b


1

0

 =

a
0

 = a

1

0

 = a|1〉

H|2〉 =

a 0

0 b


0

1

 =

0

b

 = b

0

1

 = b|2〉

Afterwards, applying semigroup At to a ket vectors |1〉 and |2〉, it can be obtained

as follows

exp(−τH)|1〉 = exp(−τa) and exp(−τH)|2〉 = exp(−τb)

Using this statements for standard Dirac notation

〈x| exp(−τH)|x′〉 =〈x|i〉 exp(−τδi)〈i|x′〉

=〈x|1〉〈1|x′〉 exp(−aτ) + 〈x|2〉〈2|x′〉 exp(−bτ)

Hence, transition probabilities can be obtained as

For 1→ 1

P11(τ) = 〈1|Aτ |1〉 = 〈1|1〉〈1|1〉 exp(−aτ) + 〈1|2〉〈2|1〉 exp(−bτ) = exp(−aτ)

For 1→ 2

P12(τ) = 〈1|Aτ |2〉 = 〈1|1〉〈1|2〉 exp(−aτ) + 〈1|2〉〈2|2〉 exp(−bτ) = 0

For 2→ 1

P21(τ) = 〈2|Aτ |1〉 = 〈2|1〉〈1|1〉 exp(−aτ) + 〈2|2〉〈2|1〉 exp(−bτ) = 0
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For 2→ 2

P22(τ) = 〈2|Aτ |2〉 = 〈2|1〉〈1|2〉 exp(−aτ) + 〈2|2〉〈2|2〉 exp(−bτ) = exp(−bτ)

Notice that p11(τ)+p12(τ) = exp(−aτ) < 1 in general and so Aτ is not a stochastic

semigroup of transition probabilities.

3.4 Path Calculation

Let P =



P11 P12 · · · · · · P1N

P21 P22 · · · · · · P2N

...
... · · · · · · ...

PN1 P12 · · · · · · P1N


is a real matrix for states x1 , . . . , xN ∈ Z.

The non-ruin probability from state x1 to xN with k steps is defined by

P (k)
x1xN

= P (x1 7→ xN in k steps)

=
∑

x1=i0,...,ik=xN

Pi0i1 · · ·Pik−1k

for arbitrary integer ij ∈ Z.

Obvious Example: Let P =

0.4 0.6

0.5 0.5

 is a probability matrix for states x and

y ∈ {1, 2}. For k = 2 steps, the non-ruin probability from any state to another

one is calculated as follows:

For 1 7→ 1 in 2 steps

P
(2)
11 = P11P11 + P12P21

= 0.46

Similarly, from any point to another one can be calculated.
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3.5 Preservation Under Linear Transform and

Convolution

Stochastic ordering was not applied explicitly in our study. It motivated construc-

tion of comparison in future research in Chapter 8 and application of copula in

Chapter 7.

3.5.1 Usual Stochastic Order (Stochastic Dominance)

Suppose given two random variable X and Y such that [64]

P (X > k) ≤ P (Y > k) for all k ∈ R

X is said to be smaller than Y . This is called usual stochastic order and

denoted by X ≤st Y .

We say that if all the above are valid [64]

P (X ≤ k) ≥ P (Y ≤ k) for all k ∈ R

then again X ≤st Y .

The equivalent common definition is X ≤st Y if and only if E[f(X)] ≤ E[f(Y )]

for all increasing function f with finite expectations [54] [64].

Remark 1. If for two random variables X and Y we have E[f(X)] ≤ E[f(Y )]

for ALL functions f , then X =d Y , i.e. equal in distribution, then E[f(X)] =

E[f(Y )].

Proof of remark 1: For f̃ = −f ,

E[f̃(X)] = E[−f(X)] = −E[f(X)] ≤ E[f̃(Y )] = −E[f(Y )]
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⇒ E[f(Y )] ≤ E[f(X)]

and also we know that E[f(X)] ≤ E[f(Y )]. Combining them, we prove E[f(X)] =

E[f(Y )] for any function f .

Remark 2. In addition, it can be shown that if the expected values of two

stochastically ordered random variables are equal, then they must have the same

distribution, more exactly if X ≤st Y and E[X] = E[Y ] then X =d Y .

3.5.2 Stochastic Ordering of Convex/Concave Function

Stochastic ordering are used in several different areas of probability, statistic, etc.

Variety of discrete stochastic orderings are defined to compare random variables.

Large number of applications are made by Shantikumar, Fishburn, etc [18] [28]

[63].

Integral Stochastic Ordering: We follow [18] See also Muller [53] for a general

study for integral stochastic orderings. Let X and Y be two random variables

which take on values in R and F be a class of measurable functions u. For some

specific sense, X is smaller than Y if

E[u(x)] ≤ E[u(y)] for all function u ∈ F

where expectations exist and F is associated classes of convex/concave type con-

tinuous functions [18].

Suppose a function u is s-convex for some s ∈ N, u is s-increasing convex if

u(k) ≥ 0 for all k = 1, . . . , s
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where y(s) is the s-th derivative of u [18].

For s = 2, u is non-decreasing function if

det

 1 1

u(x) u(y)

 ≥ 0

= u(y)− u(x) ≥ 0

for all x < y.

Also u is convex if [18]

det


1 1 1

x y z

u(x) u(y) u(z)

 ≥ 0

=
y − x
z − x

u(z) +
z − y
z − x

u(x) ≥ u(y)

If we substitute u(x) for x and u(z) for z, we get u(y) = y.

Moreover, u is increasing convex if u′′ exists and u′′ ≥ 0.

Preliminaries: Let X and Y be two random variables. Shantikumar and Stoyan

refer that X is smaller than Y if [44] [63] [68]

E(X − u)+

EX
≤ E(Y − u)+

EY
for all u ≥ 0

where expectations exist.

Assume Fk ≤ Gk for k = 1, . . . ,m. The order ≤ satisfies the mixture property

[44]

m∑
k=1

Fkpk ≤
m∑
k=1

Gkpk
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where p1 + · · ·+ pm = 1 for non-negative pi, . . . , pm.

The order ≤ also satisfies convolution property if [44]

F1 ∗ · · · ∗ Fm ≤ G1 ∗ · · · ∗Gm

Additionally, scaling property is satisfied by ≤ [44]

aX ≤ aY if X ≤ Y

for any a ≥ 0.

3.5.3 Preservation Under Convolution

Let X be any random variable and Y1 and Y2 be independent random variables

with Y1 ≤st Y2. Convolution property is satisfied by stochastic order ≤ if and only

if [44]

X + Y1 ≤ X + Y2

Linear Perturbation

Perturbation theory combined with the stochastic comparison is a powerful math-

ematical method. It makes comparison amongst the mathematical methods to

find an approximate solution for a problem [18] [19].

We say that X approximately satisfies property P , if perturbed X, say Xδ, satis-

fies P .

We say that a random variable A is linearly perturbed by a random variable B if

Aε = (1− Vδ)A+ VδB
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where Vδ is independent of A and B and P (Vδ = 1) = δ, P (Vδ = 0) = 1−δ. Then,

Figure 3.1: Sample path for linear perturbation.

the distribution function of Aδ is

P (Aδ > t) = P (A ≥ t)(1− δ) + δ

where P (Vδ = 1) = δ and P (B) = 1.

Example 1: Let X = Ua and Y = Ub be two uniform random variables such on

intervals [0,a] and [0,b], respectively and from the definition of stochastic ordering

P (X ≥ t) ≤ P (Y ≥ t)) if X ≤st Y . Now, there are two significant properties for

perturbation

1. a ≥ b → X ≥st Y and a < b → X <st Y

2. a < b → Xδ ≥ Y

The probability density function of the continuous uniform distribution on interval

[a, b] is [44]

f(x) =


1
b−a for a ≤ x ≤ b

0 for x ≤ a or x ≥ b
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Figure 3.2: Perturbation for uniform distribution.

on the interval [a, b]. Assume perturbed X is

Xδ = (1− Vδ)X + VδZ

where P (Vδ = 1) = δ = 1 − P (Vδ = 0) and Z 7→ ∞. The probability function is

defined as [44]

P (X ≥ t) =
(a− t)+

a
=


0, t ≥ a

a−t
a
, 0 < a ≤ t

and after applying it for random variables X and Y with stochastic ordering, we

get

(a− t)+

a
≤ (b− t)+

b
−→ 1− t

a
≤ 1− t

b

if a < b. Afterwards, the probability for perturbation function has to be found by

using the definition of probability function as follows

P (Xδ ≥ t) =P (X ≥ t)(1− δ) + P (Z ≥ t)δ

=P (X ≥ t)(1− δ) + δ

where Z 7→ ∞.
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After applying probability function for random variables Xδ and Y with stochastic

ordering, we find that

(a− t)+

a
(1− δ) + δ ≥ (b− t)+

b
→ (1− t

a
)+(1− δ) + δ ≥ (1− t

b
)

where P (Xδ ≥ t) ≥ P (Y ≥ t). Then, it is concluded as

δ ≥ 1− a

b

and so

min{δ > 0 : Xδ ≥ Y } = 1− a

b

Example 2: Let X = Ua and Y = Ub be two uniform random variables such on

intervals [0,a] and [0,b], respectively and from the definition of stochastic ordering

P (X ≥ t) ≤ P (Y ≥ t)) if X ≤st Y . Now, perturbation is defined for a new tale

defined by P (T ≥ u) = min{P (X ≥ u) + t, 1)} and we need to find the optimal

δ. We want to find t and delta such that

P (Tδ > u) ≥ P (Y ≥ u)

Notice that

P (Tδ ≥ u) = P (T ≥ u)(1− δ) + δ = min{(P (X ≥ u) + t, 1)}(1− δ) + δ

Clearly if P (T > u) = 1 then P (Tδ > u) = 1 > P (Y > u). By using the

probability function in previous example, we get

P (Y ≥ u) =
(b− u)+

b

=(1− u

b
)+
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and

P (X ≥ u) + t =
(a− u)+

a
+ t

=(1− u

a
)+ + t

where a > u and b > u. For probability to be less than 1, we need ta < u. So

by making simple calculation, we obtain that ta ≤ u if a > u. If P (X ≥ t) ≤

P (Y ≥ t)), the intersection is found for case of equation as follows

1− u

a
+ t = 1− u

b

so t = b−a
b

if u = a.

Then we get

P (Xδ ≥ u) = (
(a− u)+

a
+ t)(1− δ) + δ ≥st P (Y ≥ u) =

(b− u)+

b

(1− u

a
+ t)(1− δ) + δ ≥ 1− u

b

Hence, for t = u
a
− 1, δ is found as δ ≥ 1− a(t+1)

b
.

Example 3: Let X and Y be exponential variables denoted by EX(a) and EX(b)

with parameters a and b, respectively, that is P (X ≥ u) = e−au and P (Y ≥

u) = e−bu. Now, perturbation is defined for a new tale defined by P (T ≥ u) =

min{P (X ≥ u) + t, 1)} and we need to find the optimal δ. We want to find t and

delta such that

P (Tδ > u) ≥ P (Y ≥ u)

Notice that

P (Tδ ≥ u) = P (T ≥ u)(1− δ) + δ = min{(P (X ≥ u) + t, 1)}(1− δ) + δ
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Clearly if P (T ≥ u) = 1 then P (Tδ ≥ u) = 1 > P (Y > u).

By making simple calculation, we find that

ln(t− 1)

a
≤ u

If P (X ≥ t) ≤ P (Y ≥ t)), we get

e−au + t = e−bu ⇒ t = e−bu − e−au

Then t is obtained as follows

t = e−ba − e−a2 ⇒ t = e−a(eb − ea)

So

P (Xδ ≥ u) = (e−au + t)(1− δ) + δ ≥st P (Y > u) = e−bu

Hence, δ is found as

δ ≥ e−bu − e−au − t
1− e−au − t

Example 4: Using notation in Examples 2 and 3, let X = Xa = Ua + EX(λ)

and Y = Xb = Ub + EX(µ) be two random variables where Ua,Ub, EX(λ) and

EX(µ) are all independent. From the definition of stochastic ordering P (X ≥

t) ≤ P (Y ≥ t)) if X ≤st Y . By using the probability, we get

P (Y ≥ u) = (1− ε)(b− t)+

b
+ εe−µt
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and

P (X ≥ u) + t = (1− ε)(a− t)+

a
+ εe−λt

where a > u and b > u. Then, assume perturbation is defined by

(1− δ)((1− ε)P (Ua ≥ t) + εP (E(λ) ≥ t)) + δ ≥ (1− ε)P (Ub ≥ 0) + εP (E(µ) ≥ t)

(1− δ)((1− ε)(a− t)+

a
+ εe−λt) + δ ≥ (1− ε)(b− t)+

b
+ εe−µt

where P (Z) 7→ 1. For ε = 0, we get

δ ≥ b− a
b

= 1− a

b

where a ≥ u and b ≥ u. For ε = 1, the similar result of exponential variable

example is found as follows

e−λu + δ(1− e−λu) ≥ e−µu

Hence, after making some simple calculations, δ is found as δ ≥ (eλt−µt−1)
eλt−1

.



Chapter 4

Examples for Non-Ruin Operator in

Discrete Time

In this chapter, several examples of non-ruin operator in discrete time are treated

and most common technique path integral and combinatorics are used to treat

them.

4.1 General Non-Ruin Operator in Discrete Time

Let {ξk , k = 0, 1, 2, . . .} be a discrete time Markov chain and transition probabil-

ities be P = (Pij) where i, j ∈ Z. We apply the discrete time general transforma-

tion Lemma 3.1.1. We emphasize that jumps to non-positive integer values occur

(otherwise there is no ruin). Then, the non-ruin operator matrix is defined by

aij =


0, if i = 0 or j = 0

Pij, if i, j ≥ 1

49
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In the matrix form

A =



0 1 2 3 · · · · · ·

0 0 0 0 0 0 · · · · · ·

1 0 P11 P12 P13 P14 · · · · · ·

2 0 P21 P22 P23 P24 · · · · · ·

3 0 P31 P32 P33 P34 · · · · · ·
...

... · · · · · · · · · · · · · · · . . .


In general, A is not a transition matrix. Roughly, in this case jumps to non-

positive values are not allowed.

Path Calculation: Assume the probability of being in state y from state x in k

steps is defined by

P (k)
xy = P (x 7→ y in k steps)

=
∑

x=i0,...,ik=y

Pi0i1 · · ·Pik−1k

for arbitrary integer ij ∈ Z.

Then, non-ruin probability from state x to y in k steps is also defined by

A(k)
xy = P (x 7→ y in k steps without ruin)

=
∑

x=i0>0,i1>0,...,ik=y>0

Pi0i1 · · ·Pik−1k

for arbitrary integer ij ∈ Z+ and ij > 0.

Now, variety of examples are calculated for ruin operator in discrete time.
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4.1.1 Examples of Non-Ruin Operator in Discrete Time

without Interest Rate

Example 1: In this example, we make a new proof for a well-known Gambler’s

ruin model [51].

Let the surplus process be

Rk = u+
k∑
j=1

(C −Xj)

where u is the initial capital, C is the premium price, Xj are the claims defined

by

C −Xj =


1, with probability p

−1, with probability q

(i.e P (Xj = C − 1) = p , P (Xj = C + 1) = q). This process is called Gambler’s

ruin. The transform of transition operator is defined by

Atf(x) =E[f(Rt)I(T > t)|Rt−1 = u]

where A1 = A, T is a ruin time defined by T = inf{t > 0 s.t Rt ≤ 0}.

Figure: Sample path for Gambler’s ruin
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For the initial capital u = 0, it is convenient to assume that the zero income is

ruin, that is Af(0) = 0. Notice that we also assume that f(x) = 0 for x ≤ 0.

For the initial capital u = 1, there is just one way to avoid ruin

Af(u) =E[f(R1)I(T > 1)|R0 = 1]

=pf(2)

For the initial capital u ≥ 2, there is no ruin and the operator is calculated by

Af(u) =E[f(R1)I(T > 1)|R0 = 2]

=pf(u+ 1)− qf(u− 1)

Then, the operator matrix is defined as follows

Af =



0 1 2 3 · · · · · ·

0 0 0 0 · · · · · · · · · · · ·

1 0 0 p 0 · · · · · · · · ·

2 0 q 0 p 0 · · · · · ·

3 0 0 q 0 p 0 · · ·
...

... · · · · · · · · · · · · · · · . . .





f(0)

f(1)

f(2)

f(3)

...


The finite time non-ruin probability Pu(T > 1) = P (T > 1|u) is then computed

by applying operator A to the unit function 1(u)

A1(u) =


0, u = 0

p, u = 1

1, u ≥ 2
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(a) The case of u=1. (b) The case of u=2.

(c) The case of u=3. (d) The case of u=4.

Figure 4.1: Sample path for initial capital u=1,2,3 and 4 (Example 1).

Example 1: Proof by reflection approach

Consider that there is a path from (0, u) to (t, j) where u is the initial capital at

time t = 0 and j is the final value at time t. The number of possible paths are

denoted by

Nt(u, j) =Nt(0, j − u)

=

(
t

t+(j−u)
2

)

The probability is also defined by the reflection approach as follows

P (Nt(0, j − u)) =p#upsq#downs

=p
t+(j−u)

2 q
t−(j−u)

2



4.1. General Non-Ruin Operator in Discrete Time 54

Notice that the set of paths without crossing x-axis is equal to the set of all paths

− the set of paths with crossing x-axis. In particular, the number of paths from

(0, u) to (t, j) is equal to

Nt(u, j)−Nt(−u, j)

We calculate this subtraction because crossing x-axis means ruin.

Theorem 4.1.1. By using the definition of non-ruin operator, we derive

Atf(u) =Eu[f(Rt)I(T > t)]

=
∑
j

f(j)Pu(Rt = j|no ruin up to time t)

Hence, we derive

Af(u) =
∑
j

f(j){Nt(u, j)−Nt(−u, j)}p
t+(j−u)

2 q
t−(j−u)

2

In the example, there is just up and down cases. The capital at time t = 1 is

defined by

j = R1 =


u+ 1 , with p

u− 1 , with q

By making simple algebraic calculation, we find

t+ (j − u)

2
= 1 ∨ 0

t− (j − u)

2
= 1 ∨ 0
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Hence, we conclude that

A1f(u) = Af(u) =
∑
j

f(j){N1(u, j)−N1(−u, j)}p
1+(j−u)

2 q
1−(j−u)

2

=f(u− 1)


1

0

−
1

u


 q + f(u+ 1)


1

1

−
 1

u+ 1


 p

So, we get

Af(u) =


0 , if u = 0

f(2)p , if u = 1

f(u− 1)q + f(u+ 1)p , if u ≥ 2

where

1

u

 = 0 for any u ≥ 2.

Example 2: In this example, we construct a new case of the well-known model.

The result is included in [39]. Let the surplus process be

Rk = u+
k∑
j=1

(C −Xj)

where u is the initial capital, C is the premium price, Xj are defined by

C −Xj =


1, with probability p

−∞, with probability q

( i.e P (Xj = C − 1) = p , P (Xj = ∞) = q). In a similar way as example 1, the
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operator matrix is now defined by

Af(x) =



0 1 2 3 4 5 · · ·

0 0 0 0 · · · · · · · · · · · · · · ·

1 0 0 p 0 · · · · · · · · · · · ·

2 0 0 0 p 0 · · · · · · · · ·

3 0 0 0 0 p 0 · · · · · ·

4 0 0 0 0 0 p 0 · · ·
...

... · · · · · · · · · · · · · · · · · · . . .





f(0)

f(1)

f(2)

f(3)

...

...


The finite time non-ruin probability Px(T > 1) = P (T > 1|R0 = u) is now

calculated by applying operator A to the unit function

Af(u) =


0, u = 0

p, u ≥ 1

where T is a ruin time defined by T = inf{t > 0 s.t Rt ≤ 0}.

Lemma 4.1.2. Ak+1 = (a
(k+1)
ij ) with


a

(k+1)
i,j = pk+1, for j = i+ k + 1

a
(k+1)
i,j = 0, else

Proof: From definition, we know that a(k)
i,m = pk where m = i + k and am,j = p

where j = m+ 1. By induction, operator matrix is defined as

A(k+1) = (AkA)i,j = a
(k+1)
i,j =

∑
m

(a
(k)
i,m)am,j

where j = i+ k + 1.
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In particular, the non-ruin probability is found by

P (T > k|x) = Ak1(x)

=


0, for x = 0

pk, for x ≥ 1

Example 3: In this example, we construct a new case of the well-known model.

The result is included in [39]. Let the surplus process be

Rk = u+
k∑
j=1

(C −Xj)

where u is initial capital, C is the premium price, Xj are defined

C −Xj =


1, with probability p1

0, with probability p0

−∞, with probability p−∞

( i.e P (Xj = C − 1) = p1 , P (Xj = C) = p0 , P (Xj =∞) = p−∞).

The operator matrix is defined by

A =



0 1 2 3 4 · · ·

0 0 0 0 0 · · · · · · · · ·

1 0 p0 p1 0 · · · · · · · · ·

2 0 0 p0 p1 0 · · · · · ·

3 0 0 0 p0 p1 0 · · ·
...

... · · · · · · · · · · · · · · · . . .
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Lemma 4.1.3. The general formula for Ak is found as follows


a

(k)
ij = pk0, for i = j ≥ 1

a
(k)
ij =

(
k
j−i

)
pj−i1 p

k−(j−i)
0 , for j > i ≥ 1

a
(k)
i,j = 0, else

Proof: From definition, we know that

(A)sj =


p0 for s = j ≥ 1

p1 for j = s+ 1 ≥ 2

0 else

By induction, operator matrix is defined as

(A(k+1))ij = (Ak)i,s(A)s,j

For s = j, it is equal to (A(k+1))ij = (Ak)ij(A)jj and for s = j − 1, it equals

(A(k+1))ij−1 = (Ak)ij−1(A)j−1j. So

(A(k+1))ij = (Ak)ijp0I(j ≥ 1) + (Ak)ij−1p1I(j ≥ 2)

Hence, for case i = j ≥ 1,

(A(k+1))jj = (Ak)j,jp0I(j ≥ 1) + (Ak)jj−1p1I(j ≥ 2)

By induction assumption,

(A(k+1))jj =pk0p0I(j ≥ 1)

=pk+1
0
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Similarly, for case j > i ≥ 1,

(A(k+1))ij = (Ak)i,jp0I(j ≥ 1) + (Ak)ij−1p1I(j ≥ 2)

By induction assumption,

(A(k+1))ij =

(
k

j − i

)
pj−i1 p

k−(j−i)
0 p0I(j ≥ 1)

=

(
k + 1

j − i

)
pj−i1 p

k+1−(j−i)
0 I(j ≥ 1)

In particular, the non-ruin probability is defined by

P (T > k|u) = Ak1(u) =


0, for u = 0

(p0 + p1)k, for u ≥ 1

where T is a ruin time defined by T = inf{t > 0 s.t Rt ≤ 0}.

Example 4: In this example, we construct a new case of the well-known model.

The result is included in [39]. Let the surplus process be

Rk = u+
k∑
j=1

(C −Xj)

where u is initial capital, C is the premium price, Xj are defined by

C −Xj =



1, with probability p1

0, with probability p0

−1, with probability p−1

−∞, with probability p−∞

( i.e P (Xj = C − 1) = p1 , P (Xj = C) = p0 , P (Xj = C + 1) = p−1 , P (Xj =
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∞) = p−∞).

Similar as in the previous examples, the operator matrix for t = 1 is defined by

A =



0 1 2 3 4 · · ·

0 0 0 0 0 · · · · · · · · ·

1 0 p0 p1 0 · · · · · · · · ·

2 0 p−1 p0 p1 0 · · · · · ·

3 0 0 p−1 p0 p1 0 · · ·
...

... · · · · · · · · · · · · · · · . . .


The finite time non-ruin probability Pu(T > 1) = P (T > 1|R0 = u) is then

calculated by applying operator A to the unit function

Af(u) =


0, u = 0

p0 + p1, u = 1

p−1 + p0 + p1, u ≥ 2

where T is a ruin time defined by T = inf{t > 0 s.t Rt ≤ 0}.

Another Approach:

Consider there is no infinite claim before the specific time t. The non-probability

is defined by

P (T > t|u) =P (u1 <∞, . . . , ut <∞;T > t|u)

=P (T > t|u, x1 <∞, . . . , ut <∞)P (u1 <∞, . . . , ut <∞)

Hence, we get

P (T > t|u) = P (
∼
T > t|u)P (x1 <∞)t
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By using the operator notation and this result, we find that

E[f(Rt)I(T > t)|R0 = u] =E[f(Rt)I(u1 <∞, . . . , ut <∞)I(T > t)|R0 = u]

=P (u1 <∞, . . . , ut <∞)E[f(
∼
Rt)I(

∼
T > t)|R0 = u]

So

E[f(Rt)I(T > t)|R0 = u] = pt
∼
Atf(u)

where P (u1 <∞) = p.

Another Approach for Example 2: In this example, we construct new case of

the well-known model.

Let claims Xj be

C −Xj =


1 with probability p

∞ with probability q

The new operator matrix is defined by

∼
A =



0 1 2 3 4 · · ·

0 0 0 0 · · · · · · · · · · · ·

1 0 0 1 0 · · · · · · · · ·

2 0 0 0 1 0 · · · · · ·

3 0 0 0 0 1 0 · · ·
...

... · · · · · · · · · · · · · · · . . .
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The finite time non-ruin probability is calculated as

∼
A1(x) = P (

∼
T > t|x) = 1

Then, we get the same result

P (T > t|x) =ptP (
∼
T > t|x)

=pt

4.1.2 Examples of Non-Ruin Operator in Discrete Time

with Interest Rate

Example 1: Here, we construct a new example in discrete time with interest rate.

The result is included in [39].

Let the surplus process be

Rk+1 = 2Rk + C −Xk

where R0 is initial capital, C is the premium price, Xj are the claims on condition

with

Xk =


K + 1, with probability q

0, with probability p

Then using the non-ruin operator notation, we get

Af(n) =E[f(R1)I(T > 1)|R0 = u]

=f(2u+ 1)P (T > 1, R1 = 2u+ 1|R0 = u) + f(2u−K)P (T > 1, R1 = 2u−K|R0 = u)
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Hence, for the initial capital u = 0, it is not possible to gain some income, so

Af(0) = 0. For the initial capital 2u ≤ K, there is just one way to avoid ruin

Af(u) = pf(2u+ 1)

For the initial capital 2u > K, there is no ruin and the operator is calculated by

Af(u) = pf(2u+ 1) + qf(2u−K)

where T is a ruin time defined by T = inf{t > 0 s.t Rt ≤ 0}.

Let C = 1 be the premium price and K = 2 be the constant value for the claim.

Then, the matrix form of operator is represented by

A =



0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 p 0 0 0 0 0 0

2 0 q 0 0 0 p 0 0 0 0

3 0 0 0 q 0 0 0 p 0 0


Example 2: Here, we construct a new example in discrete time with interest rate.

The result is included in [39].

Let the surplus process be

Rk+1 = YjRk + C −Xk
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where R0 is initial capital, C is the premium price,

Yj =


2, with probability p2

1, with probability p1

0, with probability p0

, Xj are the claims on condition with

Xk =


K + 1, with probability q

0, with probability p

So the surplus process Rk+1 will be as follows

u−→



2u+ 1 , p2p (no claim with gain)

u+ 1 , p1p (no claim and no gain)

1 , p0p (no claim but ruin)

2u−K , p2q (claim and gain)

u−K , p1q (claim and no gain)

−K , p0q (claim but ruin)

where Rk = u. Then using the non-ruin operator notation, we have

Af(u) =E[f(R1)I(T > 1)|R0 = u]

=f(2u+ 1)P (T > 1 , R1 = 2u+ 1|R0 = u) + f(u+ 1)P (T > 1 , R1 = u+ 1|R0 = u))

+f(1)P (T > 1 , R1 = 1|R0 = u) + f(2u−K)P (T > 1 , R1 = 2u−K|R0 = u)

+f(u−K)P (T > 1 , R1 = u−K|R0 = u)
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Hence

Af(u) = f(2u+ 1)p2p+ f(u+ 1)p1p+ f(1)p0p+ f(2u−K)p2q + f(u−K)p1q

where T is a ruin time defined by T = inf{t > 0 s.t Rt ≤ 0}.

Let C = 1 be the premium price and K = 2 be the constant value for the claim.

Then, the matrix form of operator is represented by

A =



0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 p0p p1p p2p 0 0 0 0 0 0

2 0 p0p+ p2q 0 p1p 0 p2p 0 0 0 0

3 0 p0p 0 p2q p1p 0 0 p2p 0 0

4 p0p+ p1q 0 0 0 p1p+ p1q 0 0 0 0 p2p


If the capitals are same, we add probabilities. (e.g 2u−K = u+ 1)

For each example, non-ruin probability from state i1 to ik+1 with k steps are calcu-

lated by using the path calculation method. Table 4.1 shows the path calculation

results for i1 = 2 and ik+1 = 3 in k = 3 steps where p−∞ = 0.1 , p−1 = 0.3 , p0 =

0.2 , p1 = 0.4.

No Interest i1 ik+1 Probability (P
(k)
i1ik

)

Example 1 2 3 P
(3)
23 = 0.1440

Example 2 2 3 P
(3)
23 = 0

Example 3 2 3 P
(3)
23 = 0.0480

Example 4 2 3 P
(3)
23 = 0.1920

Table 4.1: Table shows the path calculation results from i1 = 2 to ik+1 = 3 in
k = 3 steps for each examples without interest.
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Table 4.2 shows the path calculation results for i1 = 2 and ik+1 = 3 in k = 3 steps

where q = 0.4 , p = 0.6 , p0 = 0.1 , p1 = 0.5 , p1 = 0.4.

With Interest i1 ik+1 Probability (P
(k)
i1ik

)

Example 1 2 3 P
(3)
23 = 0.0960

Example 2 2 3 P
(3)
23 = 0.0434

Table 4.2: Table shows the path calculation results from i1 = 2 to ik+1 = 3 in
k = 3 steps for each examples with interest.



Chapter 5

Examples for Non-Ruin Operator in

Continuous Time

In this chapter, several examples of non-ruin operator in continuous time are

treated.

5.1 General Non-Ruin Operator in Continuous

Time

Let {ξt , t ≥ 0} be a continuous time discrete space Markov chain with state space

Z and transition rate λij for i 6= j and i, j ∈ Z. We apply the continuous time

general transformation Lemma 3.2.1, the non-ruin generator is defined by

Q = (qij) =



0 0 0 · · · · · · 0 0 0 · · · · · ·

0 −λ11 λ12 · · · · · · λ1i−1 λ1i λ0i+1 · · · · · ·
...

...
... · · · · · · ...

...
... · · · · · ·

0 λi1 λi2 · · · · · · λii−1 −λii λii+1 · · · · · ·
... · · · · · · · · · · · · · · · · · · · · · · · · · · ·


67



5.2. Non-Ruin Operator in Continuous Time for Two State Case 68

Now, variety of examples are calculated for non-ruin operator in discrete time.

5.2 Non-Ruin Operator in Continuous Time for

Two State Case

Example 1: Using particular matrix H =

 0 0

0 −µ

, it can be showed that

lim
h7→0

Ah−A0

h
= H where At = exp(−tH). From this equation, operator matrix is

defined

At =

 0 0

0 exp(−µt)

 and At+∆t =

 0 0

0 exp(−µ(t+ ∆t))


From expansion of exponential function for a small time period ∆t,

At+∆t =

 0 0

0 exp(−µt)− µ exp(−µt)∆t + o(∆t)


and after splitting the matrix, we get

At+∆t = At − µ∆tA
t + o(∆t)

Example 2: In this example, obvious example is done for well-known Markov

chains process [4].

Consider the transition operator P = Pij(t) with parameters λ01 = λ and λ10 =
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µ. Then, assume Q =

−λ λ

µ −µ

. The eigenvalues are k1 = 0 and k2 =

−(λ + µ). So diagonal form of the matrix is D =

−(λ+ µ) 0

0 0

 and f(D) =

f(−(λ+ µ)) 0

0 f(0)

. Then eigenvectors are calculated as

 λ

−µ

 and

1

1

. So

the matrix T and its inverse are defined as

T =

 λ 1

−µ 1

 , T−1 =
1

∆

1 −1

µ λ


where ∆ = λ + µ. By using the formula Q = TDT−1, we derive the probability

transition matrix as follows

P (t) = TetDT−1 =

 λ 1

−µ 1


exp(−(λ+ µ)t) 0

0 1

 1

λ+ µ

1 −1

µ λ



=
1

∆

 λ exp(−∆t) + µ −λ exp(−∆t) + λ

−µ exp(−∆t) + µ µ exp(−∆t) + λ


where ∆ = λ+ µ. On the other hand, by using the formula P (t) = etQ, the same

result is found by

exp(tQ) =
∞∑
k=0

tkQk

k!

=I +
∞∑
k=1

tk(−(∆))k−1Q

k!

=I +
Q

−∆
(exp(−t∆)− 1)

where ∆ = λ+ µ.
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5.3 Non-Ruin Operator in Continuous Time With

Interest Rate

Let the surplus process be

Rk+1 = Y Rk + C −Xk

where Y is a random gain, R0 is initial capital, C is the premium price and Xj

are the claims

Xk =


K, with probability q

0, with probability p

for any K ∈ Z.

The forward equation and pseudo Q-matrix are found with the transition proba-

bilities.

Example 1: Here, we construct a new example and the result is included in [39].

Let Xt be the continuous time Markov chain on the state space Zt = {0, 1, 2, . . .}

where premium rate is 1, claim size is K + 1 and random gain is u 7→ 2u + 1 or

u 7→ 1 from time t to t+ ∆t as seen in the transition scheme

u 7−→



2u+ 1 λ2∆t (investment in)

1 λ0∆t (ruin, no gain) ( if u 6= 1)

u− (K + 1) λq∆t (claim)

u+ 1 λ∆t (premium)

u 1− (λ2 + λ0 + λq + λ)∆t (nothing)
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The transition matrix P (t) is defined by

Puv(t+ ∆t) = P (Xt+∆t = v|X0 = u)

Lemma 5.3.1. The limit of non-ruin probability is found by

(Puv(t))
′ = λ2P2u+1,v + λ0P1,v + λqPu−(K+1),v + λPu+1,v − λuuPuv(t)

where λuu = λ2 + λ0 + λq + λ.

Proof: Using the diagram and the backward argument (Chapman-Kolmogoroff

equation), we derive

Pij(t+ ∆t) =
∑
k

P (Xt+∆t = v,X∆t = k|X0 = u)

=
∑
k

P (Xt+∆t = v|X∆t = k)P (X∆t = k|X0 = u)

=
∑
k

Pkv(t)Puk(∆t)

If we separate the cases for jumps and stay

Puv(t+ ∆t) =
∑
k

Pkv(t)λuk∆t + Puv(t)(1− λuu)∆t

=λ2∆tP2u+1,v + λ0∆tP1,v + λq∆tPu−(K+1),v + λ∆tPu+1,v

+ (1− (λ2 + λ0 + λq + λ))∆tPu,v=u + o(∆t)
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In a limit

(Puv(t))
′ = lim

∆t 7→0

Puv(t+ ∆t)− Puv(t)
∆t

= lim
∆t 7→0

λ2∆tP2u+1,v + λ0∆tP1,v + λq∆tPu−(K+1),v + λ∆tPu+1,v − λuuPuv(t)∆t + o(∆t)

∆t

= λ2P2u+1,v + λ0P1,v + λqPu−(K+1),v + λPu+1,v − λuuPuv(t)

where λuu = λ2 + λ0 + λq + λ.

Continuing Example 1: The pseudo Q−matrix, which is referred to the non-

ruin generator, is derived by

Q =



λ2 , if v = 2u+ 1 , u > 0

λ , if v = u+ 1 , u > 0

λ0 , if v = 1 , v > 0

λq , if v = u− (K + 1) , v > 0

1− λuu , if u = v > 0

where λuu = λ2 + λ+ λ0 + λq.

For example, in the matrix form for K = 2

Q =



0 1 2 3 4 5 6 7 8 · · · · · ·

0 0 0 0 0 0 0 0 0 0 · · · · · ·

1 0 −λ11 λ λ2 0 0 0 0 0 · · · · · ·

2 0 λ0 −λ22 λ λ2 0 0 0 0 · · · · · ·

3 0 λ0 0 −λ33 λ λ2 0 0 0 · · · · · ·

4 0 λ0 + λq 0 0 −λ44 λ λ2 0 0 · · · · · ·
...

...
...

...
...

...
...

...
...

...
...

...
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If numbers are same, rates usually sum up.

Notice that non-ruin generators are not generators of transition matrices, in gen-

eral. For this reason, we refer to them as pseudo Q-matrices.

Example 2: Here, we construct a new example and the result is included in [39].

Now, let the transition probability scheme be as follows

u−→



2u , λ2∆t (no claim with gain)

u+ 1 , λ∆t (no claim and no gain)

u−K , λq∆t (claim and no gain)

0 , λ0∆t (ruin)

u , 1− (λ2 + λ+ λq + λ0)∆t (ruin) (nothing)

where premium rate is 1, claim size is K and random gain is u 7→ 2u (twice) or

u 7→ 0 (nothing). As explained in the theory, the pseudo Q−matrix is referred to

the non-ruin generator as

Q =



λ2 , if v = 2u , u > 0

λ , if v = u+ 1 , u > 0

λq , if v = u−K , v > 0

λ0 , if v = 0

1− λuu , if u = v > 0

where λuu = λ2 + λ+ λ0 + λq.

For example, in the matrix form for K = 2
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Q =



0 1 2 3 4 5 6 7 8 · · · · · ·

0 0 0 0 0 0 0 0 0 0 · · · · · ·

1 0 −λ11 λ+ λ2 0 0 0 0 0 0 · · · · · ·

2 0 0 −λ22 λ λ2 0 0 0 0 · · · · · ·

3 0 λq 0 −λ33 λ 0 λ2 0 0 · · · · · ·
...

...
...

...
...

...
...

...
...

...
...

...


Example 3: Consider the transition probabilities scheme

u−→


u+ 1 , with λ1∆t

0 , with λ0∆t

u , with 1− (λ1 + λ0)∆t

After making similar calculations, the non-ruin generator is derived as follows

Q =


λuu = −(λ0 + λ1) , if u = v > 0

λuv = λuu+1 = λ1 , if v 6= u , v 6= 0 , u, v > 0

0 , else

For example, in the matrix form for K = 2

Q =



0 1 2 3 4 · · · · · ·

0 0 0 0 0 0 · · · · · ·

1 0 −λ11 λ1 0 0 · · · · · ·

2 0 0 −λ22 λ1 0 · · · · · ·
...

...
...

...
...

...
...

...





Chapter 6

Advanced Examples via

Hamiltonian Technique

In this chapter, lengthy algebraic arguments for Hamiltonian technique are calcu-

lated and several advanced examples are treated.

6.1 Two State Examples

6.1.1 Hamiltonian Method with Traditional Basis

Example: Here, we construct Hamiltonian method with traditional basis and the

result is included in [39].

Let H =

 λ −λ

−µ µ

 be a real matrix, Aτ = exp(−τH) be a semigroup. Assume

that the basis is represented by vectors |i〉.

We start with the decomposition

〈x|At|x′〉 =
∑
i

〈x|At|i〉〈i|x′〉
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Notice that

H|1〉 =

 λ

−µ

 = |a〉 and H|2〉 = −|a〉

Hence

H2|1〉 = H|a〉 = (λ+ µ)|a〉

By computing kth power, we get

Hk|1〉 = Hk−1|a〉 = (λ+ µ)k−1|a〉

So

Aτ = exp(−τH) =
∑∞

k=0(−τ)k H
k

k!
= I +

∑∞
k=1(−τ)k H

k

k!

In particular,

Aτ |1〉 = |1〉+ (
∑∞

k=1(−τ)k H
k

k!
)|1〉

= |1〉+ (
∑∞

k=1(−τ)k (λ+µ)k−1

k!
)|a〉

= |1〉+
1

λ+ µ
(exp(−τ(λ+ µ))− 1)|a〉

Similarly,

Aτ |2〉 =|2〉 − 1

λ+ µ
(exp(−τ(λ+ µ))− 1)|a〉

Aτ |1〉 =|1〉+K|a〉 and Aτ |2〉 = |2〉 −K|a〉

where K = 1
λ+µ

(exp(−τ(λ+ µ))− 1).
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Then, the operator defined by

〈x| exp(−τH)|x′〉 = [〈x|1〉+K〈x|a〉]〈x′|1〉+ [〈x|2〉 −K〈x|a〉]〈x′|2〉

Overall, for 1→ 1

P11(τ) = 〈1|Aτ |1〉 = 1 +Kλ = 1 +
λ

λ+ µ
(exp(−τ(λ+ µ))− 1)

For 1→ 2

P12(τ) = 〈1|Aτ |2〉 = −Kλ = − λ

λ+ µ
(exp(−τ(λ+ µ))− 1) =

λ

λ+ µ
(1− exp(−τ(λ+ µ)))

For 2→ 1

P21(τ) = 〈2|Aτ |1〉 = −Kµ = − µ

λ+ µ
(exp(−τ(λ+ µ))− 1) =

µ

λ+ µ
(1− exp(−τ(λ+ µ)))

For 2→ 2

P22(τ) = 〈2|Aτ |2〉 = 1 +Kµ = 1 +
µ

λ+ µ
(exp(−τ(λ+ µ))− 1)

6.2 Hamiltonian Method with Eigenvector Basis

Changing the Coordinates: In this part, we work with the different bases. Let

|i〉 and |i∗〉 be two different bases.

Assume that 〈i|j〉 = 〈i∗|Σj∗〉 where i∗ and j∗ are new coordinates. If we also

assume |1∗〉 =



m11

m21

...

mN1


, |2∗〉 =



m12

m22

...

mN2


and similarly |N∗〉 =



m1N

m2N

...

mNN


. Then
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the matrix Σ = MTM where M =



m11 m12 · · · m1N

m21 m22 · · · m2N

...
... . . . ...

mN1 mN2 · · · mNN


and MT is the

transpose of the matrix M .

Example 1: We construct an obvious example for change of basis.

Let |1∗〉 =

A
0

 , |2∗〉 =

 0

B

 be the ket vectors. So,

1

0

 = |1〉 =
1

A
|1∗〉 =

 1
A

0


∗

and

0

1

 = |2〉 =
1

B
|2∗〉 =

0

1
B


∗

To simplify notation we skip ∗ whenever it is possible.

By changing the coordinates

〈1∗|Σ1∗〉 =

(
1
A

0

)A2 0

0 B2


 1

A

0


and

〈2∗|Σ2∗〉 =

(
0 1

B

)A2 0

0 B2


0

1
B


Then, the same result is found by making simple calculations

〈1|1〉 = 〈1∗|Σ1∗〉 = 1 and 〈2|2〉 = 〈2∗|Σ2∗〉 = 1
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Example 2: Let |1∗〉 =

1

1

 , |2∗〉 =

−λ
µ

 be the ket vectors. By definition,

vector
(
x1 x2

)
is the representation of |1〉 in new coordinates. Then, we get

|1〉 =

(
x1 x2

)T
= x1|1∗〉+ x2|2∗〉 = x1

1

1

+ x2

−λ
µ


By algebraic calculation,

|1〉 =

(
1 0

)T
=
µ

∆
|1∗〉 − 1

∆
|2∗〉 ,

|2〉 =

(
0 1

)T
=
λ

∆
|1∗〉+

1

∆
|2∗〉

where ∆ = λ+ µ. To change the coordinates of vectors, we take matrix Σ

Σ = MTM =

 1 1

−λ µ


1 −λ

1 µ

 =

 2 µ− λ

µ− λ λ2 + µ2


Note that

〈1∗|Σ1∗〉 =

(
µ
∆
−1

) 2 µ− λ

µ− λ λ2 + µ2


 µ

∆

−1


Hence, it is proved that

〈1|1〉 = 〈1∗|Σ1∗〉 = 1

and by making similar calculation, we get

〈2|2〉 = 〈2∗|Σ2∗〉 = 1
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Lemma 6.2.1. Let H =

 λ −λ

−µ µ

 be a real matrix and Aτ = exp(−τH) be

generated semigroup. Then

Aτ =

P11(τ) P12(τ)

P21(τ) P22(τ)

 =

1 + λ
∆

(exp(−τ∆)− 1) λ
∆

(1− exp(−τ∆))

µ
∆

(1− exp(−τ∆)) 1 + µ
∆

(exp(−τ∆)− 1)



Here, we construct a new lemma and the result is included in [39].

Proof: Let |1∗〉 =

1

1

 and |2∗〉 =

−λ
µ

 be ket vectors. Statements are defined

similar to example 2.

|1〉 =
µ

∆
|1∗〉 − 1

∆
|2∗〉 and |2〉 =

λ

∆
|1∗〉+

1

∆
|2∗〉

where ∆ = λ+ µ. To change the coordinates of vectors, we take matrix Σ

Σ = MTM =

 1 1

−λ µ


1 −λ

1 µ

 =

 2 µ− λ

µ− λ λ2 + µ2


Hence

Σ1 =
1

∆

 2 µ− λ

µ− λ λ2 + µ2


 µ

−1


= |1∗〉 − λ|2∗〉

and similarly

Σ1 =
1

∆

 2 µ− λ

µ− λ λ2 + µ2


λ

1


= |1∗〉+ µ|2∗〉
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Notice that a vector can have different representations in different bases. However,

the different bases generate different inner products, in general.

In particular, the starting Dirac formalism can be written in two different forms

as follows

〈x| exp(−τH)|x′〉 = 〈x| exp(−τH)|Σx′〉∗

= 〈Σx| exp(−τH)|1∗〉∗〈1
∗|x′〉∗ + 〈Σx| exp(−τH)|2∗〉∗〈2

∗|x′〉∗

Here, the second representation is in eigen-bases of operator H.

By applying ket vectors |1〉 and |2〉 to the matrix H, we find that

H|1∗〉 = 0|1∗〉 and H|2∗〉 = ∆|2∗〉

where ∆ = λ+ µ. The operator is derived by

〈x| exp(−τH)|x′〉 = 〈Σx|1∗〉∗〈1
∗|x′〉∗ + exp(−τ∆)〈Σx|2∗〉∗〈2

∗|x′〉∗

So the probabilities are calculated as follows:

For 1→ 1

P11(τ) = 〈1|Aτ |1〉[〈1∗|1∗〉 − λ〈2∗|1∗〉][
µ

∆
〈1∗|1∗〉 − 1

∆
〈1∗|2∗〉]

+ [〈1∗|2∗〉 − λ〈2∗|2∗〉][ µ
∆
〈2∗|1∗〉 − 1

∆
〈2∗|2∗〉]

=1 +
λ

∆
(exp(−τ∆)− 1)

For 1→ 2

P12(τ) = 〈1|Aτ |2〉[〈1∗|1∗〉 − λ〈2∗|1∗〉][
λ

∆
〈1∗|1∗〉+

1

∆
〈1∗|2∗〉]

+ [〈1∗|2∗〉 − λ〈2∗|2∗〉][ λ
∆
〈2∗|1∗〉+

1

∆
〈2∗|2∗〉]

=
λ

∆
(1− exp(−τ∆))
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For 2→ 1

P21(τ) = 〈2|Aτ |1〉[〈1∗|1∗〉+ µ〈2∗|1∗〉][ µ
∆
〈1∗|1∗〉 − 1

∆
〈1∗|2∗〉]

+ [〈1∗|2∗〉+ µ〈2∗|2∗〉][ µ
∆
〈2∗|1∗〉 − 1

∆
〈2∗|2∗〉]

=
µ

∆
(1− exp(−τ∆))

Finally, for 2→ 2

P22(τ) = 〈2|Aτ |2〉[〈1∗|1∗〉+ µ〈2∗|1∗〉][ λ
∆
〈1∗|1∗〉+

1

∆
〈1∗|2∗〉]

+ [〈1∗|2∗〉+ µ〈2∗|2∗〉][ λ
∆
〈2∗|1∗〉+

1

∆
〈2∗|2∗〉]

=1 +
µ

∆
(exp(−τ∆)− 1)

Notice that the answers of course match the answers in the previous calculations.

However, the arguments here are different. The argument is then applied in the

three-state case.

6.3 Hamiltonian Method with the Eigenvector

Basis for Three-State Case

Lemma 6.3.1. Let H =


0 0 0

0 −(λ+ µ) λ

0 µ −2µ

 be a real matrix and Aτ =

exp(−τH) be generated semigroup. Then

Aτ =


1 0 0

0 exp(τµ)
∆

(µ+ λ exp(τ∆)) λ exp(τµ)
∆

(1− exp(τ∆))

0 µ exp(τµ)
∆

(1− exp(τ∆)) exp(τµ)
∆

(λ+ µ exp(τ∆))


where ∆ = λ+ µ.
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Here, we construct a new lemma and the result is included in [39].

Proof: Let |1∗〉 =


1

0

0

 , |2∗〉 =


0

1

1

 and |3∗〉 =


0

λ

−µ

 be ket vectors. State-

ments are defined similar to the Lemma 1.

(
1 0 0

)T
= |1〉 =|1∗〉 ,(

0 1 0

)T
= |2〉 =

µ

∆
|2∗〉+

1

∆
|3∗〉 ,(

0 0 1

)T
= |3〉 =

λ

∆
|2∗〉+

−1

∆
|3∗〉

where ∆ = λ+ µ. To change the coordinates of vectors, we take matrix Σ

Σ = MTM =


1 0 0

0 1 1

0 λ −µ




1 0 0

0 1 λ

0 1 −µ

 =


1 0 0

0 2 λ− µ

0 λ− µ λ2 + µ2


Hence

Σ1 =
1

∆


1 0 0

0 2 λ− µ

0 λ− µ λ2 + µ2




1

0

0

 = |1∗〉 ,

Σ2 =
1

∆


1 0 0

0 2 λ− µ

0 λ− µ λ2 + µ2




0

µ

1

 = |2∗〉+ λ|3∗〉 ,

Σ3 =
1

∆


1 0 0

0 2 λ− µ

0 λ− µ λ2 + µ2




0

λ

−1

 = |2∗〉 − µ|3∗〉
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Then, the operator in the new coordinates is defined by

〈x| exp(−τH)|x′〉 =〈x| exp(−τH)|Σx′〉∗

=〈Σx| exp(−τH)|1∗〉∗〈1
∗|x′〉∗ + 〈Σx| exp(−τH)|2∗〉∗〈2

∗|x′〉∗

+ 〈Σx| exp(−τH)|3∗〉∗〈3
∗|x′〉∗

By applying ket vectors |1〉, |2〉 and |3〉 to the matrix H, we find that

H|1∗〉 = 0|1∗〉 ⇒ exp(−τH)|1∗〉 = |1∗〉

H|2∗〉 = −µ|2∗〉 ⇒ exp(−τH)|2∗〉 = exp(−τµ)|2∗〉

H|3∗〉 = −(λ+ 2µ)|3∗〉 ⇒ exp(−τH)|3∗〉 = exp(−τ(λ+ 2µ))|3∗〉

where ∆ = λ+ µ. The operator now derived by

〈x| exp(−τH)|x′〉 =〈Σx|1∗〉∗〈1
∗|x′〉∗ + exp(τµ)〈Σx|2∗〉∗〈2

∗|x′〉∗

+ exp(τ(2µ+ λ))〈Σx|3∗〉∗〈3
∗|x′〉∗

So the probabilities are calculated as follows:

For 1→ 1

P11(τ) = 〈1|Aτ |1〉 =[〈1∗|1∗〉〈1∗|1∗〉] + [〈1∗|2∗〉〈2∗|1∗〉] + [〈1∗|3∗〉〈3∗|1∗〉] = 1

For 1→ 2

P12(τ) = 〈1|Aτ |2〉 =[〈1∗|1∗〉〈1∗|2∗〉] + [〈1∗|2∗〉〈2∗|2∗〉] + [〈1∗|3∗〉〈3∗|2∗〉] = 0

For 1→ 3

P13(τ) = 〈1|Aτ |3〉 =[〈1∗|1∗〉〈1∗|3∗〉] + [〈1∗|2∗〉〈2∗|3∗〉] + [〈1∗|3∗〉〈3∗|3∗〉] = 0
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For 2→ 1

P21(τ) = 〈2|Aτ |1〉 =[〈2∗|1∗〉+ λ〈3∗|1∗〉]〈1∗|1∗〉+ [〈2∗|2∗〉+ λ〈3∗|2∗〉]〈2∗|1∗〉

+ [〈2∗|3∗〉+ λ〈3∗|3∗〉]〈3∗|1∗〉 = 0

For 2→ 2

P22(τ) = 〈2|Aτ |2〉 =
1

∆
[〈2∗|1∗〉+ λ〈3∗|1∗〉][µ〈1∗|2∗〉+ 〈1∗|3∗〉]

+
1

∆
[〈2∗|2∗〉+ λ〈3∗|2∗〉][µ〈2∗|2∗〉+ 〈2∗|3∗〉]

+
1

∆
[〈2∗|3∗〉+ λ〈3∗|3∗〉][µ〈3∗|2∗〉+ 〈3∗|3∗〉]

=
1

∆
µ exp(τµ) +

1

∆
λ exp(τ(2µ+ λ)) =

exp(τµ)

∆
(µ+ λ exp(τ∆))

For 2→ 3

P23(τ) = 〈2|Aτ |3〉 =
1

∆
[〈2∗|1∗〉+ λ〈3∗|1∗〉][λ〈1∗|2∗〉 − 〈1∗|3∗〉]

+
1

∆
[〈2∗|2∗〉+ λ〈3∗|2∗〉][λ〈2∗|2∗〉 − 〈2∗|3∗〉]

+
1

∆
[〈2∗|3∗〉+ λ〈3∗|3∗〉][λ〈3∗|2∗〉 − 〈3∗|3∗〉]

=
1

∆
λ exp(τµ)− 1

∆
λ exp(τ(2µ+ λ)) =

λ exp(τµ)

∆
(1− exp(τ∆))

For 3→ 1

P31(τ) = 〈3|Aτ |1〉 =[〈2∗|1∗〉 − µ〈3∗|1∗〉]〈1∗|1∗〉+ [〈2∗|2∗〉 − µ〈3∗|2∗〉]〈2∗|1∗〉

+ [〈2∗|3∗〉 − µ〈3∗|3∗〉]〈3∗|1∗〉

=0
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For 3→ 2

P32(τ) = 〈3|Aτ |2〉 =
1

∆
[〈2∗|1∗〉 − µ〈3∗|1∗〉][µ〈1∗|2∗〉+ 〈1∗|3∗〉]

+
1

∆
[〈2∗|2∗〉 − µ〈3∗|2∗〉][µ〈2∗|2∗〉+ 〈2∗|3∗〉]

+
1

∆
[〈2∗|3∗〉 − µ〈3∗|3∗〉][µ〈3∗|2∗〉+ 〈3∗|3∗〉]

=
1

∆
µ exp(τµ)− 1

∆
µ exp(τ(2µ+ λ)) =

µ exp(τµ)

∆
(1− exp(τ∆))

For 3→ 3

P33(τ) = 〈3|Aτ |3〉 =
1

∆
[〈2∗|1∗〉 − µ〈3∗|1∗〉][λ〈1∗|2∗〉 − 〈1∗|3∗〉]

+
1

∆
[〈2∗|2∗〉 − µ〈3∗|2∗〉][λ〈2∗|2∗〉 − 〈2∗|3∗〉]

+
1

∆
[〈2∗|3∗〉 − µ〈3∗|3∗〉][λ〈3∗|2∗〉 − 〈3∗|3∗〉]

=
1

∆
λ exp(τµ) +

1

∆
µ exp(τ(2µ+ λ)) =

exp(τµ)

∆
(λ+ µ exp(τ∆))

6.4 Tensor Product

Let V and W be two vector spaces with different degrees of freedom. Tensor

product space is denoted by V ⊗W [6] [26]. For ket vector |x〉 ∈ V and |y〉 ∈ W ,

tensor product is defined by [6] [26]

|x〉 ⊗ |y〉 = |x〉|y〉

If ket vector |x〉 ∈ VN is N-dimensional and and |y〉 ∈ WM is M-dimensional,

tensor product space VN ⊗WM is MN-dimensional vector.[6] [26]
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Let

|x〉 =



x1

x2

...

xN


, |y〉 =



y1

y2

...

yN


be two ket vectors. Tensor product of ket vectors |x〉 and |y〉 is defined by multi-

plying of each elements in ket vector |x〉 into all elements in ket vector |y〉. Tensor

product vector is denoted by [6] [26]

|x〉 ⊗ |y〉 = |x〉|y〉 =



x1

x2

...

xN


N

⊗



y1

y2

...

yN


M

=



x1y1

x1y2

...

x1yM
...

xNy1

xNy2

...

xNyM


NxM

6.4.1 Tensor Product of a Matrix

Let

A =



x11 x12 · · · x1N

x21 x22 · · · x2N

...
... . . . ...

xN1 xN2 · · · xNN


NxN

and B =



x11 x12 · · · x1M

x21 x22 · · · x2M

...
... . . . ...

xM1 xM2 · · · xMM


MxM
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be two matrices on spaces V and W , respectively. The tensor product of the

matrix A and B is denoted by [6] [9] [26]

A⊗B = 〈x′|〈y′|A⊗B|y〉|x〉 = 〈x′|A|x〉 ⊗ 〈y′|B|y〉

The matrix elements of tensor product matrix A ⊗ B are defined as follows: [6]

[9] [26]

A⊗B =



x11


y11 · · · y1M

... . . . ...

yM1 · · · yMM

 · · · · · · x1N


y11 · · · y1M

... . . . ...

yM1 · · · yMM


... . . . ...
... . . . ...

xN1


y11 · · · y1M

... . . . ...

yM1 · · · yMM

 · · · · · · xNN


y11 · · · y1M

... . . . ...

yM1 · · · yMM




(NxM)x(NxM)

=



x11y11 · · · x11y1M · · · · · · x1Ny11 · · · x1Ny1M

... . . . ... . . . . . . ... . . . ...

x11yM1 · · · x11yMM · · · · · · x1NyM1 · · · x1NyMM

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

xN1y11 · · · xN1y1M · · · · · · xNNy11 · · · xNNy1M

... . . . ... . . . . . . ... . . . ...

xN1yM1 · · · xN1yMM · · · · · · xNNyM1 · · · xNNyMM


(NxM)x(NxM)
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6.4.2 Tensor Product of Operators

Let x and y be two initial state and x′ and y′ be the final points respectively. The

operator is denoted by [6]

〈x⊗ y|A⊗B|x′ ⊗ y′〉 =(x⊗ y)T (A⊗B)(x′ ⊗ y′)

=(xT ⊗ yT )(A⊗B)(x′ ⊗ y′)

By the property of tensor product [6]

〈x⊗ y|A⊗B|x′ ⊗ y′〉 =[(xTA⊗ yTB)](x′ ⊗ y′)

=(xTAx′ ⊗ yTBy′)

Then, we get [6]

〈x⊗ y|A⊗B|x′ ⊗ y′〉 = 〈x|A|x′〉 ⊗ 〈y|B|y′〉

We know that 〈x|A|x′〉 and 〈y|B|y′〉 are numbers.

Hence, the operator is derived by [6]

〈x⊗ y|A⊗B|x′ ⊗ y′〉 = 〈x|A|x′〉〈y|B|y′〉

Fact 1: Let A,B,C and D be matrix. Multiplication of tensor products A ⊗ B

and C ⊗D is denoted by

(A⊗B)(C ⊗D) = (AC)⊗ (BD)

Proof of fact 1: From the definition of tensor product, we know that

(Aij)⊗ (Bkm) = (A⊗B)(ik)(jm) = AijBkm
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In the new labels (ik) and (km), the first index is taken from matrix A and the

second one is taken from matrix B. By definition of matrix multiplication, we get

((A⊗B)(C ⊗D)) =
∑

(A⊗B)(ik)(jm)(C ⊗D)(jm)(st)

=
∑
jm

AijBkmCjsDmt

Then, we separate them as follows

((A⊗B)(C ⊗D)) =(
∑
j

AijCjs)(
∑
m

BkmDmt)

=(AC)is(BD)kt = (AC ⊗BD)(ik)(st)

Fact 2: If the notation Ax = A|x〉, then

(A⊗B)|C ⊗D〉 = (A|C〉)⊗ (B|D〉)

Now, if we generalize our system for initial states {x1, . . . , xn}, final points

{x1
′, . . . , xn

′} and set of matrix {A1, . . . , An}, the operator is defined by

〈x1 ⊗ · · · ⊗ xn|A1 ⊗ · · · ⊗ An|x1
′ ⊗ · · · ⊗ xn′〉 =〈x1|A|x1

′〉 ⊗ · · · ⊗ 〈xn|A|xn′〉

=
n∏
i=1

〈xi|A|xi′〉

Example 1: Let

A =

a11 a12

a21 a22

 and B =

b11 b12

b21 b22



be two matrix, vectors x = y = |1〉 =

1

0

 be the initial states and vectors
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x′ = y′ = |2〉 =

0

1

 be the final points. To calculate the tensor product argument

of operator, we apply the tensor product for the matrix and vectors.

(x⊗ y)T =


1

0

⊗
1

0


 =



1

0

0

0


, (x′ ⊗ y′)T =


0

1

⊗
0

1


 =



0

0

0

1


and

A⊗B =

a11 a12

a21 a22

⊗
b11 b12

b21 b22

 =



a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b22 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22


Then, by simple algebraic calculations

〈x⊗ y|A⊗B|x′ ⊗ y′〉 = (x⊗ y)T (A⊗B)(x′ ⊗ y′) = a12b12

and by making matrix calculations, we get

〈x|A|x′〉 = a12 and 〈y|B|y′〉 = b12

So

〈x|A|x′〉〈y|B|y′〉 = a12b12

Hence, the notations are equal

〈x⊗ y|A⊗B|x′ ⊗ y′〉 = 〈x|A|x′〉〈y|B|y′〉
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Probability Argument: Let xi be initial states, xi′ be the final states and Ai is

a semi-group. Probability argument is denoted by

〈xi|Ai|xi′〉 = P (Zi
′ = xi

′|Zi = xi)

where Zi are independent.

〈xi ⊗ · · · ⊗ xn|Ai ⊗ · · · ⊗ An|xi′ ⊗ · · · ⊗ xn′〉 =P (Z1
′ = x1

′, . . . , Zn
′ = xn

′|Z1 = x1, . . . , Zn = xn)

=
P (∩{Zi′ = xi

′} , ∩{Zi = xi})
P (∩{Zi = xi})

From independence

〈xi ⊗ · · · ⊗ xn|Ai ⊗ · · · ⊗ An|xi′ ⊗ · · · ⊗ xn′〉 =
n∏
i=1

P (Zi
′ = xi

′, Zi = xi)

=
n∏
i=1

〈xi|Ai|xi′〉

Lemma 6.4.1. Let KA
i and KB

i be the eigenvalues for matrix A and B, respec-

tively. If HA⊗B = IA ⊗HB +HA ⊗ IB

HA⊗B|i⊗ j〉 = Kσ|σ〉

where Kσ = KB
j +KA

i and σ = |i⊗ j〉 = |i〉 ⊗ |j〉.

Proof: If KA
i and KB

j are eigenvalues, we say that

HA|i〉 = KA
i |i〉 and HB|j〉 = KB

j |j〉
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Using the notation HA⊗B = IA ⊗HB +HA ⊗ IB, we get

HA⊗B|i⊗ j〉 = IA ⊗HB|i⊗ j〉+HA ⊗ IB|i⊗ j〉

From the properties of tensor product

HA⊗B|i⊗ j〉 =IA|i〉 ⊗HB|j〉+HA|i〉 ⊗ IB|j〉

=|i〉 ⊗KB
j |j〉+KA

i |i〉 ⊗ |j〉

Hence

HA⊗B|i⊗ j〉 = (KB
j +KA

i )|i⊗ j〉 = Kσ|σ〉

Lemma 6.4.2. Let KA
i , KB

j and KC
k be the eigenvalues for matrix A, B and C,

respectively. If HA⊗B⊗C = HA ⊗ IB ⊗ IC + IA ⊗HB ⊗ IC + IA ⊗ IB ⊗HC

HA⊗B⊗C |i⊗ j ⊗ k〉 = Kσ|σ〉

where Kσ = KA
i +KB

j +KC
k and σ = |i⊗ j ⊗ k〉 = |i〉 ⊗ |j〉 ⊗ |k〉.

This lemma is similar to Lemma 6.4.1. We prove it here for better understanding.

Proof: If KA
i , KB

j and KC
k are eigenvalues, we say that

HA|i〉 = KA
i |i〉 , HB|j〉 = KB

j |j〉 , HC |k〉 = KC
k |k〉

Using the notation HA⊗B⊗C = HA ⊗ IB ⊗ IC + IA ⊗HB ⊗ IC + IA ⊗ IB ⊗HC , we

get

HA⊗B⊗C |i⊗ j ⊗ k〉 =HA ⊗ IB ⊗ IC |i⊗ j ⊗ k〉+ IA ⊗HB ⊗ IC |i⊗ j ⊗ k〉

+ IA ⊗ IB ⊗HC |i⊗ j ⊗ k〉
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From the properties of tensor product

HA⊗B⊗C |i⊗ j ⊗ k〉 =HA|i〉 ⊗ IB|j〉 ⊗ IC |k〉+ IA|i〉 ⊗HB|j〉 ⊗ IC |k〉+ IA|i〉 ⊗ IB|j〉 ⊗HC |k〉

=HA|i〉 ⊗ |j〉 ⊗ |k〉+ |i〉 ⊗HB|j〉 ⊗ |k〉+ |i〉 ⊗ |j〉 ⊗HC |k〉

Hence

HA⊗B⊗C |i⊗ j ⊗ k〉 = (KA
i +KB

j +KC
k )|i⊗ j ⊗ k〉 = Kσ|σ〉

Lemma 6.4.3. By induction, we generalize it as follows

HA|i1 ⊗ · · · ⊗ in〉 =(
n∑
j=1

K
Aj
ij

)|i1 ⊗ · · · ⊗ in〉

=Kσ|σ〉

where HAj |ij〉 = K
Aj
ij
|ij〉 and

HA = H(A1⊗···⊗An) =
n∑
j=1

IA1 ⊗ · · · ⊗ IAj−1
HAjIAj+1

⊗ · · · ⊗ IAn

Then, the operator notation is derived by

〈x| exp(−τH)|x′〉 =
∑
σ

〈x| exp(−τH)|σ〉〈σ|x′〉

where x = x1 ⊗ · · · ⊗ xn are initial states, x = x1
′ ⊗ · · · ⊗ xn′ are final points and

H|σ〉 = K|σ〉. So

〈x| exp(−τH)|x′〉 =
∑
σ

exp(−τKσ)〈x|σ〉〈σ|x′〉

=
∑ n∏

j=1

exp(−τKAj
ij

)〈xj|ij〉〈ij|xj ′〉
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From properties of sum and product function, we derive

〈x| exp(−τH)|x′〉 =
n∏
j=1

∑
j

exp(−τKAj
ij

)〈xj|ij〉〈ij|xj ′〉

=
n∏
j=1

〈xj| exp(−τHj)|xj ′〉

Lemma 6.4.4. Let H1 =

 λ1 −λ1

−µ1 µ1

 and H2 =

 λ2 −λ2

−µ2 µ2

 be two real

matrices and

At = exp(−tH) = exp(−tH1)⊗ exp(−tH2)

= exp(−t(H1 ⊗ I2 + I1 ⊗H2))

be generated semigroup. Then the elements of non-ruin probability matrix are

computed by algebraic calculation as seen in the proof.

Here, we construct a new lemma for tensor product approach of Hamiltonian

method and the result is included in [39].

Proof: By using the notation H = H1 ⊗ I2 + I1 ⊗H2, the matrix H is found by

H =



λ1 + λ2 −λ2 −λ1 0

−µ2 λ1 + µ2 0 −λ1

−µ1 0 µ1 + λ2 −λ2

0 −µ1 −µ2 µ1 + µ2



Let |1∗〉 =



1

1

1

1


, |2∗〉 =



λ1

λ1

−µ1

−µ1


, |3∗〉 =



λ2

−µ2

λ2

−µ2


and |4∗〉 =



−λ1λ2

λ1µ2

λ2µ1

−µ1µ2


be eigen-

vectors of matrix H for corresponding eigenvalues K1 = 0, K2 = λ1 + µ1, K3 =
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λ2+µ2 andK4 = λ1+µ1+λ2+µ2, respectively. For simplicity, we use ∆1 = λ1+µ1

and ∆2 = λ2 + µ2 in our calculations.

Ket vectors |1〉, |2〉, |3〉 and |4〉 are calculated in the new coordinates as follows

|1〉 =

(
1 0 0 0

)T
=

µ1µ2

∆1∆2

|1∗〉+
µ2

∆1∆2

|2∗〉+
µ1

∆1∆2

|3∗〉 − 1

∆1∆2

|4∗〉

|2〉 =

(
0 1 0 0

)T
=

µ1λ2

∆1∆2

|1∗〉+
λ2

∆1∆2

|2∗〉+− µ1

∆1∆2

|3∗〉+
1

∆1∆2

|4∗〉

|3〉 =

(
0 0 1 0

)T
=

λ1µ2

∆1∆2

|1∗〉 − µ2

∆1∆2

|2∗〉+
λ1

∆1∆2

|3∗〉+
1

∆1∆2

|4∗〉

|4〉 =

(
0 0 0 1

)T
=

λ1λ2

∆1∆2

|1∗〉 − λ2

∆1∆2

|2∗〉 − − λ1

∆1∆2

|3∗〉 − 1

∆1∆2

|4∗〉

To change the coordinates of vectors, we take matrix

Σ =



1 1 1 1

λ1 λ1 −µ1 −µ1

λ2 −µ2 λ2 −µ2

−λ1λ2 λ1µ2 λ2µ1 −µ1µ2





1 λ1 λ2 −λ1λ2

1 λ1 −µ2 λ1µ2

1 −µ1 λ2 λ2µ1

1 −µ1 −µ2 −µ1µ2


Then, if we apply the matrix to our ket vector |1〉, |2〉, |3〉, and |4〉, we get

Σ1 = |1∗〉+ λ1|2∗〉+ λ2|3∗〉 − λ1λ2|4∗〉

Σ2 = |1∗〉+ λ1|2∗〉+ λ2|3∗〉 − λ1λ2|4∗〉

Σ3 = |1∗〉 − µ1|2∗〉+ λ2|3∗〉λ2µ1|4∗〉

Σ4 = |1∗〉 − µ1|2∗〉 − µ2|3∗〉 − µ1µ2|4∗〉

Then, the operator in the new coordinates is defined by

〈x| exp(−τH)|x′〉 = 〈x| exp(−τH)|Σx′〉∗
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So

〈x| exp(−τH)|x′〉 =〈Σx| exp(−τH)|1∗〉∗〈1
∗|x′〉∗ + 〈Σx| exp(−τH)|2∗〉∗〈2

∗|x′〉∗

+ 〈Σx| exp(−τH)|3∗〉∗〈3
∗|x′〉∗ + 〈Σx| exp(−τH)|4∗〉∗〈4

∗|x′〉∗

By applying eigenvectors to the matrix H, we find

H|1∗〉 = 0|1∗〉 , H|2∗〉 = ∆1|2∗〉 , H|3∗〉 = ∆2|3∗〉 , H|4∗〉 = (∆1 + ∆2)|4∗〉

then, the operator is derived by

〈x| exp(−τH)|x′〉 =〈Σx|1∗〉∗〈1
∗|x′〉∗ + exp(−τ∆1)〈Σx|2∗〉∗〈2

∗|x′〉∗

+ exp(−τ∆2)〈Σx|3∗〉∗〈3
∗|x′〉∗ + exp(−τ(∆1 + ∆2))〈Σx|4∗〉∗〈4

∗|x′〉∗

Hence, the probabilities are calculated as follows:

For 1 7→ 1

P11(τ) =
µ1µ2

∆1∆2

+ exp(−τ∆1)
λ1µ2

∆1∆2

+ exp(−τ∆2)
λ2µ1

∆1∆2

+ exp(−τ(∆1 + ∆2))
λ1λ2

∆1∆2

For 1 7→ 2

P12(τ) =
µ1λ2

∆1∆2

+ exp(−τ∆1)
λ1λ2

∆1∆2

− exp(−τ∆2)
λ2µ1

∆1∆2

− exp(−τ(∆1 + ∆2))
λ1λ2

∆1∆2

For 1 7→ 3

P13(τ) =
λ1µ2

∆1∆2

− exp(−τ∆1)
λ1µ2

∆1∆2

+ exp(−τ∆2)
λ1λ2

∆1∆2

− exp(−τ(∆1 + ∆2))
λ1λ2

∆1∆2

For 1 7→ 4

P14(τ) =
λ1λ2

∆1∆2

− exp(−τ∆1)
λ1λ2

∆1∆2

− exp(−τ∆2)
λ1λ2

∆1∆2

− exp(−τ(∆1 + ∆2))
λ1λ2

∆1∆2
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For 2 7→ 1

P21(τ) =
µ1µ2

∆1∆2

+ exp(−τ∆1)
λ1µ2

∆1∆2

+ exp(−τ∆2)
λ2µ1

∆1∆2

+ exp(−τ(∆1 + ∆2))
λ1λ2

∆1∆2

For 2 7→ 2

P22(τ) =
µ1λ2

∆1∆2

+ exp(−τ∆1)
λ1λ2

∆1∆2

− exp(−τ∆2)
λ2µ1

∆1∆2

− exp(−τ(∆1 + ∆2))
λ1λ2

∆1∆2

For 2 7→ 3

P23(τ) =
λ1µ2

∆1∆2

− exp(−τ∆1)
λ1µ2

∆1∆2

+ exp(−τ∆2)
λ1λ2

∆1∆2

− exp(−τ(∆1 + ∆2))
λ1λ2

∆1∆2

For 2 7→ 4

P24(τ) =
λ1λ2

∆1∆2

− exp(−τ∆1)
λ1λ2

∆1∆2

− exp(−τ∆2)
λ1λ2

∆1∆2

− exp(−τ(∆1 + ∆2))
λ1λ2

∆1∆2

For 3 7→ 1

P31(τ) =
µ1µ2

∆1∆2

− exp(−τ∆1)
µ1µ2

∆1∆2

+ exp(−τ∆2)
λ2µ1

∆1∆2

− exp(−τ(∆1 + ∆2))
λ2µ1

∆1∆2

For 3 7→ 2

P32(τ) =
λ2µ1

∆1∆2

− exp(−τ∆1)
λ2µ1

∆1∆2

− exp(−τ∆2)
λ2µ1

∆1∆2

+ exp(−τ(∆1 + ∆2))
λ2µ1

∆1∆2

For 3 7→ 3

P33(τ) =
λ1µ2

∆1∆2

+ exp(−τ∆1)
µ1µ2

∆1∆2

+ exp(−τ∆2)
λ1λ2

∆1∆2

+ exp(−τ(∆1 + ∆2))
λ2µ1

∆1∆2

For 3 7→ 4

P34(τ) =
λ1λ2

∆1∆2

+ exp(−τ∆1)
λ2µ1

∆1∆2

− exp(−τ∆2)
λ1λ2

∆1∆2

− exp(−τ(∆1 + ∆2))
λ2µ1

∆1∆2



6.5. Rt = u+ bNt 99

For 4 7→ 1

P41(τ) =
µ1µ2

∆1∆2

− exp(−τ∆1)
µ1µ2

∆1∆2

− exp(−τ∆2)
µ1µ2

∆1∆2

+ exp(−τ(∆1 + ∆2))
µ1µ2

∆1∆2

For 4 7→ 2

P42(τ) =
λ2µ1

∆1∆2

− exp(−τ∆1)
λ2µ1

∆1∆2

+ exp(−τ∆2)
µ1µ2

∆1∆2

− exp(−τ(∆1 + ∆2))
µ1µ2

∆1∆2

For 4 7→ 3

P43(τ) =
λ1µ2

∆1∆2

+ exp(−τ∆1)
µ1µ2

∆1∆2

− exp(−τ∆2)
λ1µ2

∆1∆2

− exp(−τ(∆1 + ∆2))
µ1µ2

∆1∆2

For 4 7→ 4

P44(τ) =
λ1λ2

∆1∆2

+ exp(−τ∆1)
λ2µ1

∆1∆2

+ exp(−τ∆2)
λ1µ2

∆1∆2

+ exp(−τ(∆1 + ∆2))
µ1µ2

∆1∆2

The sum of rows are 1.

6.5 Rt = u + bNt

Let Rt = u + bNt be a surplus process with initial capital u and premium rate

C = 0 where N0 = 0. Consider the semigroup At = exp(−tH) which satisfies the

semigroup property lim
t7→0

A0−At
t

= H where H is a Hamiltonian matrix. By using

the operator statement Atf(u) = E[f(Rt)|R0 = u], Hf is found by
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lim
t7→0

f(u)− Ef(u+ bNt)

t
=

lim
t7→0

[
f(u)− [f(u)P (Nt = 0) + f(u+ b)P (Nt = 1)]

t
+
o(P (Nt ≥ 2))

t
+
O(t2)

t

]
= lim

t7→0

f(u)− [f(u) exp(−λt)− f(u+ b) exp(−λt)λt]
t

= λf(u)− λf(u+ b) = Hf(u)

Hence, the acted operator is defined by Hf = λ∆bf where ∆ is a backward

equation.

Now, assume f(k) = |p〉 = exp(ipk) where variable k is an integer. Then, for

b = −1, we follow the four steps:

Step 1: As calculated in the previous statement

Hf(y) = λ∆y−1f = λ[f(y)− f(y − 1)]

and by using the assumption f(k) = exp(ipk), we get

Hf(y) = λ(exp(ipy)− exp(ip(y − 1))) = λ exp(ipy)(1− exp(−ip)) = Kp|p〉

where Kp = λ(1− exp(−ip)).

Step 2: Applying ket vector |p〉 to the matrix H, we find that

H|p〉 = K|p〉 ⇒ Hj|p〉 = Kj|p〉

and so

exp(−tH)|p〉 = exp(−tKp)|p〉
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Step 3: Let x = u be the initial capital and x′ = m be the capital value at maturity

time and assume that 〈u|p〉 = exp(ipu) and 〈p|x′〉 = 〈m|p〉 = exp(−ipm). The

transition probabilities are

〈x| exp(−tH)|x′〉 =〈u| exp(−tH)|m〉

=

2π∫
0

dp

2π
〈x| exp(−tH)|p〉〈p|x′〉

=

2π∫
0

dp

2π
exp(−tKp + ip(u−m))

=P (t)
um

Step 4: For a specific Kp = λ(1− exp(−ip)), the statement is found by

2π∫
0

dp

2π
exp(−tλ(1− exp(−ip)) + ip(u−m))

=
exp(−tλ)

2πi

∫
Γ

dp

2π
exp(−tλ(1− exp(−ip)) + ip(u−m))

where we integrate over terms Γ =
(
z : z = exp(−ip)

)
and by using the Cauchy-

integral in complex analysis, the result is found by

= exp(−tλ)
(tλ)u−m

(u−m)!

For t = 1, we get

P (Nt = u−m) = P (Rt = m)
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6.6 Rt = u + at + bNt

Let Rt = u+at+ bNt be a surplus process with initial capital u and premium rate

C = 0 where N0 = 0. Consider the semigroup At = exp(−tH) which satisfies the

semigroup property lim
t7→0

A0−At
t

= H where H is a Hamiltonian matrix. By using

the operator statement Atf(u) = E[f(Rt)|R0 = u], Hf is found by

lim
t7→0

f(x)− Ef(x+ at+ bNt)

t
=

lim
t7→0

[
f(x)− [f(x+ at)P (Nt = 0) + f(x+ at+ b)P (Nt = 1)]

t
+
o(P (Nt ≥ 2))

t
+
O(t2)

t

]
= lim

t7→0

f(x)− [f(x+ at) exp(−λt)− f(x+ at+ b) exp(−λt)λt]
t

= lim
t7→0

f(x)− (atf ′(x) + f(x)) exp(−λt)− (atf ′(x+ b) + f(x+ b)) exp(−λt)λt
t

= λf(x)− af ′(x)− λf(x+ b) = Hf(x)

Hence, our operator can be obtained as Hf = −af ′−λ∆bf where ∆ is a backward

equation. For a = 1 and b = −2, we get

H = −[λ∆−2f + f ′]

6.7 Up and Down Example

Consider pseudo Q−matrix is defined by



1 2 3 4 5 6 · · · · · ·

0 0 0 0 0 0 0 · · · · · ·

1 0 −(λ+ µ) λ 0 0 0 · · · · · ·

2 0 µ −(λ+ µ) λ 0 0 · · · · · ·

3 0 0 µ −(λ+ µ) λ 0 · · · · · ·
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as seen in figure. Then, acted operator is defined by Hf = λ∆yf −µ∆y−1f where

∆ is a backward equation.

Now, assume f(k) = |p〉 = exp(ipk) where variable k ∈ Z and operator H|p〉 =

Kp|p〉. Then, we follow next four steps:

Step 1: By using the previous statement for backward equation, we derived

Hf(y) =λ∆yf − µ∆y−1f = λ[f(y)− f(y − 1)]

=λf(y + 1) + µf(y − 1)− (λ+ µ)f(y)

and using the assumption f(k) = exp(ipk), we found that

Hf(y) = λ(exp(ip(y + 1))− exp(ip(y)))− µ(exp(ip(y))− exp(ip(y − 1)))

=λ exp(ipy)(1− exp(−ip)) = Kp|p〉

where Kp = λ(exp(ip)− 1)− µ(1− exp(−ip)).

Step 2: Applying ket vector |p〉 to the matrix H, we get

H|p〉 = K|p〉 ⇒ Hj|p〉 = Kj|p〉

and so

exp(−τH)|p〉 = exp(−τKp)|p〉

Step 3: Let x = u be the initial capital and x′ = m be the capital value at maturity

time and assume that 〈u|p〉 = exp(ipu) and 〈p|x′〉 = 〈m|p〉 = exp(−ipm). Then,
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transition probabilities are

〈x| exp(−τH)|x′〉 =〈u| exp(−τH)|m〉

=

2π∫
0

dp

2π
〈x| exp(−τH)|p〉〈p|x′〉

=

2π∫
0

dp

2π
exp(−τKp + ip(u−m))

Step 4: For a specific Kp = λ(exp(ip) − 1) − µ(1 − exp(−ip)), the statement is

derived by

P =

2π∫
0

dp

2π
λ(exp(ip)− 1)− µ(1− exp(−ip)) + ip(u−m))

If we substitute exp(−ip) by z, we get

〈x| exp(−τH)|x′〉 =〈x| exp(−τH)|x′〉

=− exp(τ(λ+ µ))

2πi

2π∫
0

dp

2π

g(z)

zu−m+1
dz = P (τ)

um

where g(z) = exp(−τλZ−1 − τµZ). So, there is no ready simple formula to

calculate the final statement.
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6.8 Brownian Motions

Gaussian

(I) In this part, we compute the so-called solvency probability Pu(Rt < 0) where

Rt = u+ σBt is the capital.

Pu(Rt < 0) =P (u+ σBt < 0)

=P
(
Bt < −

u

σ

)
=P
(√

τN(0, 1) < −u
σ

)
=P
(
N(0, 1) < − u

σ
√
τ

)
=ψ
(
− u

σ
√
τ

)
(II)−Computation : Let H be an operator on a Hilbert space L2(R), x ∈ R and

|p〉 = exp(ipx).

P
(τ)
xx′ = 〈x| exp(−τH)|x′〉H|p〉 = Kp|p〉 7→ exp(−τKp)|p〉

Then

〈x| exp(−τH)|x′〉 =

∞∫
−∞

dp

2π
〈x| exp(−τH)|p〉〈p|x′〉

=

∞∫
−∞

dp

2π
〈x|p〉〈p|x′〉 exp(−τKp)

=

∞∫
−∞

dp

2π
exp(−τKp + ip(x− x′))

where 〈x|p〉 = exp(ipx) and 〈p|x′〉 = 〈x′|p〉 = exp(−ipx′).
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(III) Let At = exp(−tH) be a semigroup. Then

I − At
t

f(x) =
1

t
[f(x)− E[f(Rt)|R0 = x]]

=
1

t
[f(x)− E[f(x+ σBt)]]

If we assume f(x+ σBt) = G(Bt) and using Ito Calculus

dG(Bt) =GBdBt +
1

2
G′′BBdt

G(Bt) =G(0) +

t∫
0

G′B(Bu)dBu +

t∫
0

1

2
G′′BB(Bu)du

E[G(Bt)] =G(0) + E(

t∫
0

G′B(Bu)dBu)

E(Ito)=0

+ E(

t∫
0

1

2
G′′BB(Bu)du)

E[f(x+ σBt)] =f(x) +
1

2

t∫
0

E(G′′BB(Bu))du

Afterwards we return the previous equation and put this result there, we get

1

t
[f(x)− f(x)− 1

2

t∫
0

E(G′′BB(Bu))du]

=− 1

2
· 1

t

t∫
0

E(G′′BB(Bu))du

=− 1

2
G′′(0) = −1

2
σ2f ′′(x)

where t 7→ 0 , Bu 7→ 0 and G′′(y) = σ2f ′′(x+ σy). Hence,

Hf(x) = −σ
2

2
f ′′(x)

H|p〉 = −σ
2

2
(exp(ipx))′′

=
σ2p2

2
|p〉 = Kp
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where Kp = σ2p2/2.

(IV ) For this specific Kp, we get

〈x| exp(−τH)|x′〉 = P τ
x,x′

I1 =

∞∫
−∞

dp

2π
exp(−τ(

σ2p2

2
)) + ip(x− x′))

If we substitute y = pσ
√
τ , we found

I1 =
1

2π

1

σ
√
τ

∞∫
−∞

exp(−y
2

2
− iyu)dy

= exp(
(iu)2

2
)

1

2π

1

σ
√
τ

∞∫
−∞

exp(−1

2
(y + iu)2)dy

By substitution z = y + iu, the next term is derived by

I1 = exp

(
− (x′ − x)2

2(σ
√
τ)2

)
1

2π

1

σ
√
τ

∫
exp(−z

2

2
)dz

= exp

(
− (x′ − x)2

2(σ
√
τ)

) √
2π

2πσ
√
τ

=
1√

2πσ2τ
exp

(
− (x′ − x)2

√
2σ2τ

)

from the integral
∞∫
−∞

exp(−x
2

2
)dx =

√
2π.



Chapter 7

Models

In this chapter, our aim is to find optimal premium which guarantees that the

ruin probability is smaller than or equal to 5%. In simulations, this means that

the frequency of sample paths with ruin does not surpass 5%.

We get the data from the real situation of four happened accidents in 2012 with

the claim arrival times Tk = [3/12 , 5/12 , 8/12 , 11/12] in one year time period.

Because of that we study the finite non-ruin probability for one year time period

in this chapter. By using these data, the time of occurrence is modeled as a

Poisson process with parameter λ = 4 and claims are modeled as exponential with

parameter µ which is estimated by maximum likelihood estimation. Then, the

ruin probability is calculated by the surplus process Rk+1 = Rk + C −Xk where

C is the premium price, Xt are claims and ∆t = Tk+1 − Tk is the iid inter-arrival

time. Our objectives is to minimize the premium C. To find optimal premium,

we assume C = 1 is a fixed premium price at the beginning and initial capital is

R0 = u = 5. The surplus process is computed a hundred times to find how many

of Rk are in ruin at the stopping time. When the frequency of ruin is over 5%,

premium C will be increased by 0.1. This process is done until frequency of ruin

is smaller than or equal to 5%. When the premium C is 1.3, the frequency of ruin

does not surpass 5% in the simulation.
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All the insurance models constructed in this chapter are relatively new up to our

knowledge.

See the introduction for the related literature.

7.1 Ruin Probability with Dependent Claims

Now, our main objective is finding the ruin probability with using the various level

of dependence under the condition that frequency of ruin is smaller than or equal

5%. In this chapter, modeling of dependence structure is constructed and copulas

are used to make a dependence amongst the claims.

7.1.1 Numerical Simulations

To generate multivariate outcomes for Frank copula, frailty model for discrete

logarithmic random variables with parameter 1 − η was constructed by Marshall

and Olkin [49] [74]. Also, an algorithm is introduced by Devroye [21] to generate

r from the frailty distribution as follows [74]

• For Frank copula, take the parameter as 1− η.

• Generate x = (x1, x2, . . . , xn)T where xi ∈ U [0, 1] are iid for i = 1, . . . , n

• The new x∗ is defined by [74]

x∗ = MZ(r−1logx)

where logx = (logx1, . . . , logxn)T and

MZ(t) =
log(1− (1− η) exp(t))

log(η)
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is the moment generating function.

• Then z = (F−1
1 (x∗1), . . . , F−1

n (x∗n)) where F−1
i are the inverses of the marginal

distribution function.

As a starting point, initial surplus and premium price are introduced as u and

C, respectively. Claims Xi are generated as exponential random variables. To

construct the model, we specifically used Frank copula method with regards to

chosen parameter η = 0.3, 0.5, 0.8. To find optimal premium, simulation processes

repeated 100 times by using the Matlab program.

In our study, we show the effect of copula on the ruin probability and time of ruin.

Firstly, we illustrate the effect of different initial capitals for ruin probability with

various dependence level as presented in the Figure 7.1.

Figure 7.1 shows that being at ruin decreases and reaches to almost zero at some
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Figure 7.1: Plot of ruin probability against initial capital for some different
dependence levels of claims with Frank copula.

point when we increase the initial capital. In other words, being at ruin is inverse

proportional to how large initial capital gained from customer [74]. In addition,

dependence structure also effects the being at ruin for different size of initial
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capitals. As illustrated in the Figure 7.1, it can be said that when a dependence

structure placed on the claim occurrence, the probability of ruin increases. Hence,

it can be reached that, the probability of ruin and level of dependence increases

proportionally [74].

Secondly, effect of dependence structure on the time to ruin is investigated over

different sets of initial capital. Time of ruin tends to decrease as the initial capital

decreases and it tends to increases when dependency level decreases. Also, time

to ruin is gradually growing where initial capital is increasing as presented in the

Figure 7.2. The time of ruin limited to 1 in the this figure. Because we study the

finite non-ruin probability for one year time period in this chapter.
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Figure 7.2: Plot of time to ruin against initial capital for independent claims in
one year time period.

7.2 Modeling with Interest Rate

We start by plotting a typical sample path behaviour of the modified surplus

process where the capital is increasing with the interest rate during the time

between jumps (claim payments).

Assume money in at time t is Cδt and money out at time Tk is claim Xk where δ

is an interest rate. The profit between starting point t = 0 and any point t = m
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Figure 7.3: Surplus process with interest rate.

is integrated by

∫ t=m

t=0

C exp(ρ(m− t))dt = C
exp(ρ(m− t))

−ρ

∫ t=m

t=0

=
C(exp(ρm)− 1)

ρ

Let R0 = u be the initial capital. When the first claim occurs, our capital is

defined by

R1 = u exp(ρ(T1 − T0)) + C
(exp(ρ(T1 − T0))− 1)

ρ
−X1

In general, the capital is calculated by

Rk = Rk−1 exp(ρ(Tk − Tk−1)) + C
(exp(ρ(Tk − Tk−1))− 1)

ρ
−Xk

Now, we introduce four different models for interest rate.

7.2.1 Invest once at the beginning

Here, we construct a well-known model to find optimal premium and the result is

included in [39].

In this model, we divide our capital into a two different amount: invested (u1)

and not invested(u0). We assume that there is no possibility to access invested

money at any time till its maturity date. Then we define the surplus process for
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accessible and non-accessible parts as follows:

Accessible amount (u0):

R
(1)
k = (R

(1)
k−1 + C(Tk − Tk−1))−Xk

where u0 = R0 is the not invested part of initial capital, C is the premium price,

Xt are the claims and Tk are the inter-arrival times.

NON-Accessible amount:

R(t) = u1 exp(ρt)

where u1 is the invested part of initial capital and ρ is the interest rate. At the

end of first year (t = 1), invested part is found

R(1) = u1 exp(ρ)

Oveerall, the capital is found by

Rk = R
(1)
k +R(1)

7.2.2 Accessible invested money with penalty

Here, we construct a new model to find optimal premium and the result is included

in [39].

Let R0 = u be the initial capital, C be the premium price, Xk be claims and Tk

be the inter-arrival time. We invest all our money with interest rate ρ but now

money can be out by investor by applying the penalty. The surplus process is
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calculated by

Rk = Rk−1 + C(Tk − Tk−1)−Xk

Then, we apply the interest rate to the smallest amount of capital as a penalty at

the end of the maturity time. Hence, the capital is found by

Rk +min(Rj)+(exp(ρ)− 1) 1 ≤ j ≤ k

7.2.3 Accessible invested money with paying interest

penalty

Here, we construct a new model to find optimal premium and the result is included

in [39].

Let R0 = u be the initial capital, C be the premium rate, Xt be the claims and Tk

be the inter-arrival times. We invest all the capital money with the interest rate

ρ. If we withdraw any amount from our invested capital when the claim occurs

at any time Tk, we pay interest penalty with parameter ε. Consider first claim

happens at time T1. Before payment, the surplus process is computed by

R
(1)
1 = R0(exp(ρ(T1 − 0))) + C

(
exp(ρ(T1 − 0))

ρ

)

Then, after the payment for claim, we get

R1 = (R
(1)
1 −X1)− ε(R(1)

1 −X1)+(eρ − eρT1)

So, by making similar calculations until time Tk, the capital is found by

R
(1)
k = Rk−1(exp(ρ(Tk − Tk−1))) + C

(
exp(ρ(Tk − Tk−1))

ρ

)
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7.2.4 Accessible invested money with paying interest

penalty for splitting amount

Here, we construct a new model to find optimal premium and the result is included

in [39].

Now, at time T0 = t, we again split up initial capital to two different part: invested

in u1 and not invested in u0. Overall capital is found by

R0 = u0 + u1

When the first claim occurs at time T1, we subtract claim from the not invested

part R(1)
2 = u0. If the claim is bigger than u0, we get extra amount from the

invested part u1 with interest penalty. So

∼
X1 = (X1 ∧ u0) + (X1 − (x1 ∧ u0)) + ε(x1 − (x1 ∧ u0))(exp(ρ)− exp(ρT1))

where X1 is the first claim and ∧ is meaning the minimum of a pair. Also, we get

interest for the invested part of the capital as follows

R
(1)
1 = u1(exp(ρ(T1 − T0))) + C(

exp(T1 − T0)

ρ
)

Then, the overall claim is found by

R1 = R
(1)
1 +R

(2)
1 −

∼
X1

The similar process is done until time Tk = 1. The not invested part is calculated

by

R
(2)
k = R

(2)
k−1 − (Xk ∧R(1)

k−1)
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and invested part is computed by

R
(1)
k =

(
R

(1)
k−1 − Yk−1)− εYk−1(exp(ρ(Tk − Tk−1)))

)
(exp(ρ(Tk − Tk−1)))

+ C

(
exp(ρ(Tk − Tk−1))

ρ

)

where Yk−1 = Xk−1 − (Xk−1 ∧R(2)
k−1). So, overall capital is found by

Rk = R
(1)
k +R

(2)
k

We apply the Frank copula to incorporate the dependence between time occur-

rences. This is done as in Section 7.1.1.

Then, optimal premium amounts are found for different dependence levels η in

the interval (0, 1). When η approaches 0, dependence increases; and it goes to 1,

dependence decreases. Also, η = 1 shows the independent claims.

Results are stated in Table 7.1 for four specific dependence levels η =

0.3, 0.5, 0.8, 1.

η = 1 (Independent) η = 0.8 η = 0.5 η = 0.3
Case 0 1.3112 1.3347 1.3614 1.4327
Case 1 1.2644 1.2941 1.3347 1.3921
Case 2 1.2921 1.3228 1.3564 1.4139
Case 3 1.1278 1.1422 1.1687 1.2108
Case 4 1.1348 1.1456 1.1802 1.2208

Table 7.1: Table shows the optimal premiums for dependence levels η =
0.3 , 0.5 , 0.8 and independent claims for each models.



Chapter 8

Miscellaneous

In this chapter, we present overall preliminary results on the finite time non-ruin

probabilities.

• Section 8.1 is dealing with comparison technique.

• In Section 8.2, we apply integral operator technique to the modified surplus

process.

• Section 8.3 is dealing with the Riemann Liouville operator.

8.1 Ruin Probability via Comparison

The insurance example in this part is modelled by a continuous time Markov

chains (CTMC) {Xt : t ≥ 0} on the state space S = {0, 1, 2, . . .}.

We assume that Xt is defined by the following rules

• Premium is coming in with rate λ.

• Claim of size is coming out with rate µij.
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Then, we construct the matrix as



0 1 2 3 4 5 · · ·

0 −λ λ 0 0 · · · · · · · · ·

1 µ10 −(µ10 + λ) λ 0 · · · · · · · · ·

2 µ20 µ21 −(µ20 + µ21 + λ) λ 0 · · · · · ·

3 µ30 µ31 µ32 −(µ30 + µ31 + µ32 + λ) λ 0 · · ·
...

...
...

...
...

...
... . . .


Example: Claim size k − j occurs with intensity. As a realistic example we can

consider the case

sup
k

k−1∑
j=0

exp(−θ(k − j)δ) = µ

The further comparison is motivated by the Schur-convexity.

For two vectors x, y ∈ Rn , the vector x majorizes vector y (denoted x >sc y) if

[8] [10]

k∑
i=1

x(i) ≥
k∑
i=1

y(i) for k = 1, 2, · · · , n− 1

and

n∑
i=1

xi =
k∑
i=1

yi

Then, a function f : Rn → R is called Schur-convex if [8] [10]

x >sc y ⇒ f(x) ≥ f(y)
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If we compare Q− and Q+ by the general comparison arguments, we get

Q− =



−λ λ 0 · · · · · · · · ·

µ −∆ λ 0 · · · · · ·

0 µ −∆ λ 0 · · ·

0 0 µ −∆ λ 0

· · · · · · · · · · · · · · · · · ·


≤ Q ≤



−λ λ 0 · · · · · · · · ·

µ −∆ λ 0 · · ·

µ 0 −∆ λ 0 · · ·

µ 0 0 −∆ λ 0

· · · · · · · · · · · · · · · · · ·


= Q+

The comparison is also intuitive since we have smaller claims in Q− and we have

larger claim in Q+ with the same intensity. Notice that Q− = −H− and Q+ =

−H+ and further we work with the operators H− and H+.

Q− ≤ Q ≤ Q+

−H− ≤ Q ≤ −H+

Then, we get

−H+ =



−λ λ 0 · · · · · · · · ·

µ −∆ λ 0 · · ·

µ 0 −∆ λ 0 · · ·

µ 0 0 −∆ λ 0

· · · · · · · · · · · · · · · · · ·


So, H+|p〉 = Kp|p〉 where Kp = (−∆ + λ exp(ip)) and |p〉 = exp(ipx). If we apply

f(x) = |p〉 to our statement, we find that

H+f(x) = f(x)(−∆) + f(x+ 1)λ
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By applying the Hamiltonian to |p〉, we obtain that

H|p〉 = K|p〉 ⇒ H2|p〉 = K2|p〉 ⇒ Hj|p〉 = Kj|p〉

exp(−τH)|p〉 =
∑ (−τ)jHj

j!
= exp(−τKp)|p〉

Let x = u be the initial capital and x′ = m be the last capital value. It can be

said that 〈u|p〉 = exp(ipu) and 〈p|x′〉 = 〈m|p〉 = exp(−ipm). Then, transition

probabilities are

〈x| exp(−τH)|x′〉 =〈u| exp(−τH)|m〉

=

2π∫
0

dp

2π
〈x| exp(−τH)|p〉〈p|x′〉

=

2π∫
0

dp

2π
exp(−τKp + ip(u−m))

For a specific Kp = (−∆ + λ exp(ip)), the statement is derived by

I =

2π∫
0

dp

2π
exp(−τ(−∆ + λ exp(ip))) + ip(u−m)) = I

If we substitute z by exp(ip), we get

I =
exp(τ∆)

2πi

2π∫
0

exp(−τλz)
zm−u

dz

From Cauchy-integral in complex analysis, we find that

I = exp(τλ)
(−τλz)m−u

(m− u)!
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If we do the same for H−

H−|p〉 = |p〉(−∆ + λ exp(ip) + µ exp(−ip))− I(x = 1) exp(ip(−∆ + λ exp(ip)))

= Kp|p〉+ CpI(x = 1)

where Kp = (−∆ + λ exp(ip) + µ exp(−ip)) and Cp = − exp(ip(−∆ + λ exp(ip)))

Aei = λiei + cie0 ⇒ Aei − λiei = cie0

Hence

H−I(x = 1) = −∆I(x = 1) + µI(x = 2)

Unfortunately, we were unable to do the same calculation for H− as for H+.

It is interesting to continue the research.

8.2 Finite and Infinite Time Non-Ruin Probability

for Exponential Claims with Infinite Jumps

In this part, we consider a modified version of the classical surplus process

Rt = R0 + Ct− St

in a continuous time where R0 is initial capital, C is premium and St are com-

pound Poisson process.

We assume that the claim size distribution is the mixture of the exponential dis-

tribution and infinite claim. More exactly, the probability of having any finite

claim be P [X = NE(λ)] = p and the probability of having infinite claim be
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P [X =∞] = q. Then, obviously

P (T =∞) ≥Pu(at least one infinite claim occurs over infinite time period )

=1− Pu(no claim on (0,∞))

=1− lim
M 7→∞

Pu(no claim on (0,M)

when q is positive. Notice that infinite claim occurs according to Poisson process

with rate λq.

P (T =∞) ≥1− lim
M 7→∞

P (N∞M = 0)

= lim
M 7→∞

Pu(NE(λq) ≥M)

=1− lim exp(−λqM) = 1

So

P (T =∞) = 1.

Finite time non-ruin probability

By conditioning on the first claim, ruin probability is obtained as follows (we use

the abbreviation ex = exp(x))

Pu(T > t) =Pu(T1 ≥ t) +

t∫
0

Pu(T > t|T1 = y)dFT1(y)

=e−λt +

t∫
0

λe−λyPu(T > t|T1 = y)dy

=e−λt +

y=t∫
y=0

λe−λy
( x=∞∫
x=0

Pu(T > t|T1 = y, ξ = x)dFξ

)
dy
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= e−λt +

y=t∫
y=0

λe−λy
( x=u+cy∫

x=0

Pµe−λxPu+cy−x(T > t− y)dx

)
dy

Then, we find that

Pu(T > t) = ϕ(u, t) = e−λt + λµP

y=t∫
y=0

e−λy
x=u+cy∫
x=0

e−λxPu+cy−x(T > t− y)dxdy

By substitution θ = u+ cy − x and z = t− y

ϕ(u, t) =e−λt + λµP

z=t∫
z=0

θ=u+c(t−z)∫
θ=0

ϕ(θ, z)e−λ(t−z)eµ(θ−u−c(t−z))dθdz

=e−λt + e−λte−µ(ct+u)λµP

z=t∫
z=0

θ=u+c(t−z)∫
θ=0

ϕ(θ, z)eλzeµ(θ+cz)dθdz

If we simply the equation as the region

ϕ(u, t) = e−λt + e−λte−µ(ct+u)D

∫
K(t,u)

ϕ(θ, z)dθdz

multiply by g(u, t) = e−λte−µ(ct+u) on both sides of the equation,

ϕ(u, t)e−λte−µ(ct+u) =ϕ(u, t)g(u, t)

=H(u, t) +D

∫
K(t,u)

W (θ, z)dθdz

where W (θ, z) = ϕ(θ, z)eµθ+µcz and H(u, t) = eµct+µu. Taking the derivation by u

with using Leibniz integration formula

∂ϕg

∂u
=
∂H

∂u
+D

z=t∫
z=0

W (u+ c(t− z), z)dz

=
∂H

∂u
+D

z=t∫
z=0

W (r, z)dz
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where r = u+ c(t− z). Then, if we take the partial derivation by t with using the

Leibniz integration formula

∂2ϕg

∂t∂u
=
∂2H

∂t∂u
+DEW (u+ ct, z) (8.2.1)

Unfortunately, we were unable to find the theoretical solution to this equation.

Numerical operator approach

In this part, we find the Taylor type expansion for the solution of 8.2.1.

ϕ(u, t) =e−λt + e−λte−µ(ct+u)λµP

z=t∫
z=0

θ=u+c(t−z)∫
θ=0

ϕ(θ, z)eλzeµ(θ+cz)dθdz

=H(x) +G(x)D

∫
∆

I(v ∈ Kx)ϕ(v)e<a,v>dv

where x = (u, t) ∈ R2, v = (θ, z) ∈ R2, H(x) = e−λt, G(x) = e−λte−µ(ct+u) and

D = λµP . If we divide by G(x) through on both side of the equation

Q(x) =
ϕ(x)

G(x)
=
H(x)

G(x)
+D

∫
∆

I(v ∈ Kx)
ϕ(v)

G(v)
e<a,v>dv

=q(x) +D

∫
∆

I(v ∈ Kx)Q(v)dv

where q(x) = H(x)
G(x)

, G(v) = e−λz−µcz−µθ and < a, v >= eλz+µcz+µθ. Then using the

operator

Af(x) =

∫
∆

I(v ∈ Kx)DQ(v)dv
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and then the solution found from the integral equation (operator equation)

Q = q + AQ ⇒ Q(I − AD) = q

⇒ Q =
∞∑
j=0

Ajq

ϕ = QG = G
∞∑
j=0

Ajq

Observe that

A1 =λµP

∫
∆

I(y ∈ Kx)dy = λµP (Kx)

=λµP
(u+ u+ ct)

2

Hence, one A1 < 1 we can write the expansion on t

ϕ(u, t) =e−λt + e−λte−µ(ct+u)λµP

z=t∫
z=0

θ=u+c(t−z)∫
θ=0

ϕ(θ, z)eλzeµ(θ+cz)dθdz

=ϕ(u, 0) +
∂ϕ

∂t
(u, 0)t+ · · ·

=1 +
∂ϕ

∂t
(u, 0)t+ · · ·

where t 7→ 0.

It is an interesting problem to solve partial differential equations and relative

integral equations in this chapter.

8.3 Riemann-Liouville Integral Operator

Riemann-Liouville is the most frequently used fractional integration method al-

though integral operator can be formed by many different type of methods. Rie-
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mann’s form of integral operator is defined as follows

Af(x) =

x∫
t=0

f(t)dt

By applying the operator again

A2f(x) =

x∫
t=0

(

t∫
y=0

f(y)dy)dt

=

x∫
t=0

x∫
y=0

[f(y)I(y ≤ t)]dydt

=

x∫
y=0

f(y)(x− y)dy

By induction, Cauchy formula is generalized by Riemann’s form of integral oper-

ator

Anf(x) =

x∫
0

dx1

x1∫
0

dx2 · · ·
xn−1∫
0

f(xn)dxn

=
1

(n− 1)!

x∫
0

f(y)(x− y)n−1dy

=
1

Γ(n)

x∫
0

f(y)(x− y)n−1dy

where (n− 1)! = Γ(n). If we apply another operator, we derived that

Au(Avf)(x) =
1

Γ(u)

x∫
y=0

(x− y)u−1 1

Γ(v)
[

y∫
t=0

f(t)(y − t)v−1dt]dy

=
1

Γ(u+ v)

x∫
t=0

f(t)(x− t)v+u−1dt

=Au+vf(x)
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This proves the semigroup At = At property for the discrete time family , for

t = 1, 2, 3....

Now, we consider continuous time.

Let f(x) = xk be a function. Riemann integral is defined by

Atx
k =

1

Γ(t)

x∫
y=0

yk(x− y)t−1dy

By substitution u = y
x
,

Atx
k =

xk+t

Γ(t)
B(k + 1, t)

=xk + k(xklnx+ xkCk) + · · ·

where Beta function B(u, v) = Γ(v)Γ(u)
Γ(u+v)

. Furthermore,

[I − At]f(x)

t
=

1

t
[f(x)− 1

Γ(t)

x∫
0

f(y)(x− y)t−1dy]

By substitution u = x−y
x
,

[I − At]f(x)

t
=xt

1∫
0

f(x− ux)ut−1du

=
f(x)

t
(1− xt

Γ(t+ 1)
) +

xt

Γ(t+ 1)

1∫
0

(f(x)− f(x− ux))ut−1du

By expanding xt and Gamma function Γ(t+ 1) at t = 0; we derive

[I − At]f(x)

t
→f(x)(lnx− Γ′(1)) +

1∫
0

[
(f(x)− f(x− ux))

ux
]du

Hf =f(x)(lnx− Γ′(1)) +

x∫
0

[
(f(x)− f(x− z))

z
]dz
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where z = ux.

It is interesting to continue the study on the Riemann-Liouville integral operator.
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Conclusion and Future Research

Premium income and outgoing claims play an important role to determine the

companies’ profit or loss. In this matter, finite time non-ruin probability provides

to determine the companies’ situation against ruin.

We discovered Quantum mechanics is one of the significant approaches to compute

the finite time non-ruin probability.

To make the ruin model realistic, we construct variety of models both with in-

terest rate and dependent claim occurrences. There are many ways to extend

this research for example dependent renewal processes i.e claim occurrences in a

stationary sequence.

We treated several particular examples. We also applied the path calculation

method to find the numerical results. More research should be done in this area

such as example in Section 6.7.

Optimal premium price for various models of interest rate are found by using the

Copula claim occurrences via stochastic modeling. It is a challenging question to

find a theoretical result for the model with dependent claim occurrences.

It is also interesting to continue the study on the Riemann-Lioville integral oper-
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ator and to solve partial differential equations and relative integral equations in

Chapter 8.
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Appendix

The main body of Matlab code for ruin probability and finding the optimal pre-

mium without interest rate is shown as follows.

1 % Given claim amounts to generate new ones

2 X=[2.5 1.1 1.7 2.1];

3 %u is initial capital, C is premium and \mu is found by maximum

likelihood estimation

4 u=5;lambda=4;C=1;mu=lambda/sum(X);

5 % Generating uniform variable for inter−arrival times

6 while TA(i) < 1

7 T(i+1)=random('Exponential',1/lambda);

8 TA(i+1)=T(i+1)+TA(i);

9 i=i+1;

10 end

11 Y=zeros(1,i−1); R=zeros(1,i);

12 % Generating claim amounts with parameter \mu

13 for k=2:(i−1)

14 Y(k)=random('Exponential',1/mu);

15 while Y(k)>u

16 Y(k)=random('Exponential',1/mu);

17 end

18 end

19 % Ruin probability calculation

20 R(1)=u;

21 for k=2:i−1

22 R(k)=R(k−1)+C−Y(k);

23 end

24 R(i)=R(i−1);
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Also, the ruin probability calculation part of Matlab code for our four different

models with interest rate are shown as:

Model 1

1 rho=0.05; % Interest rate

2 % Ruin probability calculation

3 R(1)=u/2;

4 for k=2:i−1

5 R(k)=R(k−1)+C−Y(k);

6 end

7 P=(u−R(1))*exp(rho);

8 R(i)=R(i−1)+P;

Model 2

1 rho=0.05; % Interest rate

2 % Ruin probability calculation

3 R(1)=u;

4 for k=2:i−1

5 R(k)=R(k−1)+C−Y(k);

6 end

7 R(i)=R(i−1);

8 R(i)=R(i)+(min(R)*exp(rho)−min(R));
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Model 3

1 % Interest rate rate rho and interest penalty rate F

2 rho=0.05; F=0.005;

3 % Ruin probability calculation

4 R(1)=u;

5 for k=2:i−1

6 R(k)=R(k−1)*exp(rho*(PA(k)−PA(k−1)))+C*(exp(rho)−1)/rho;

7 R(k)=(R(k)−Y(k))−F*(R(k)−Y(k))*(exp(rho)−exp(rho*(PA(k))));

8 end

9 R(i)=R(i−1)*exp(rho*(PA(i)−PA(i−1)))+C*(exp(rho)−1)/rho;

10 if R(i)<0

Model 4

1 % Introducing interest rate rho and interest penalty rate F

2 rho=0.05; F=0.005;

3 % Ruin probability calculation by splitting up the initial capital (R

(1)=u/2 and S(1)=u/2)

4 R(1)=u/2; S(1)=(u−R(1)); P(1)=0;

5 RSUM(1)=R(1)+S(1)−P(1);

6 for k=2:i−1

7 R(k)=( R(k−1)−( Y(k−1) − min(Y(k−1),S(k−1)) ) − F*( Y(k−1) −

min(Y(k−1),S(k−1)) )* (exp(rho)−exp(rho*PA(k−1))) )*(exp(rho

*(PA(k)−PA(k−1))))+C*(exp(rho)−1)/rho;

8 S(k)=S(k−1)− min(Y(k−1),S(k−1));

9 P(k)=min(Y(k−1),S(k−1))+(Y(k−1)−min(Y(k−1),S(k−1)))+F*(Y(k−1)−min

(Y(k−1),S(k−1)))*(exp(rho)−exp(rho*PA(2)));

10 RSUM(k)=R(k−1)+S(k−1)−P(k−1);

11 end

12 R(i)=( R(i−1)−( Y(i−1) − min(Y(i−1),S(i−1)) ) − F*( Y(i−1) −
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min(Y(i−1),S(i−1)) )* (exp(rho)−exp(rho*PA(i−1))) )*(exp(rho

*(PA(i)−PA(i−1))))+C*(exp(rho)−1)/rho;

13 S(i)=S(i−1)− min(Y(i−1),S(i−1));

14 RSUM(i)=R(i−1)+S(i−1)−P(i−1);

The following Matlab code has written to make path calculation for any matrix

P . The initial state x1 , final state xn and step size are given by the user.

1 function pathcalculation(P,steps,x1,xn)

2 l=length(P); n=steps+1;

3 t=0; k=0;sum=0;

4 while t<n

5 k=k+(l*(10^t));

6 t=t+1;

7 end

8 display(k);

9 A=ones(k);

10 % Paths from any state x_1 to x_n in k steps is written as vector

elements (e.g from 1 to 1 in 2 steps A(111)=P(11)*P(11) , A(121)=P

(12)*P(21) )

11 for i=1:(k+1)

12 for j=1:l

13 if rem (i,10) < l+1

14 if rem (i,10) > 0

15 A(i*10+j)=A(i)*P(rem (i,10),j);

16 end

17 else

18 A(i*10+j)=1;

19 end

20 end

21 end

22 % The sum of all paths for initial state $x_1$ and final state $x_n$
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23 for i=(10^(n−1)):(10^n)

24 if floor(i/(10^(n−1))) == x1

25 if rem(i,10) == xn

26 sum=sum+A(i);

27 end

28 end

29 end

30 display(sum−(10^(steps−1))+l^(steps−1));

31 end
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