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Abstract—This letter studies the meta distribution of the
secrecy rate for a legitimate link in the presence of eavesdroppers
(EDs) with locations modeled as a Poisson point process (PPP).
Both colluding and non-colluding EDs are considered. The meta
distribution of the secrecy rate can provide the fraction of the
realizations of EDs fulfilling a target secrecy rate. It can either
be formulated using the Gil-Pelaez theorem with the imaginary
moments of the conditional secrecy success probability (CSSP)
given the realization of eavesdroppers or approximated by the
beta distribution with the first two moments only. Hence, we first
derive the bth moment of the CSSP for the colluding scenario.
Then, we formulate the exact first moment and the approximated
second moment of the CSSP for the non-colluding scenario using
the Fortuin-Kasteleyn-Ginibre inequality. Finally, simulations are
used to validate the analytic results.

Index Terms—Meta distribution, conditional secrecy success
probability, Poisson point process, colluding and non-colluding
eavesdroppers, and beta approximation.

I. INTRODUCTION

Physical layer security (PLS) is the idea that channel coding
and signal processing techniques can be used to secure data
confidentiality between connected devices [1]. Compared with
the computationally secure encryption schemes, PLS promises
theoretically perfect secrecy in a wireless channel [2]. A
common performance metric used to analyze secrecy in fading
channels is the secrecy success probability. This metric charac-
terizes the probability that the instantaneous secrecy capacity
of a legitimate connection is above the target secrecy rate when
the system operates in the presence of randomly distributed
colluding and non-colluding eavesdroppers (EDs) [3], [4]. In
the colluding scenario, the EDs share their received signals
with each other [4], while in the non-colluding scenario, each
ED processes its received signal independently. To enhance the
secrecy success probability in cellular networks, techniques
such as antenna selection, user ordering, and artificial noise
injection have been used [5], [6].

In networks with randomly distributed EDs, the secrecy
success probability is typically defined to capture the aver-
age performance of a link. This definition loses the fine-
grained detail about the fraction of the realizations of EDs
fulfilling a target secrecy rate. To overcome this issue, the
meta distribution of the signal-to-interference ratio (SIR) was
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proposed in [7]. For a stationary and ergodic point process,
this distribution yields the fraction of links fulfilling the target
SIR in each realization of the point process. This basic theory
was extended in [8] to study networks that exploit interference
cancellation. In [9], the meta distribution of the SIR in the
cellular network uplink and downlink with fractional power
control was studied. The meta distribution in downlink D2D
underlaid cellular networks has been analyzed in [10]. To
the best of our knowledge, however, no progress has been
made to characterize the meta distribution of the secrecy rate
in networks with randomly located EDs. In this letter, we
address exactly this task. The contributions of our work can
be summarized as follows:

1) We characterize the bth moment of the conditional
secrecy success probability (CSSP) in a closed-form
expression for the colluding scenario so that the meta
distribution can be formulated as an exact expression
using the Gil-Pelaez inversion formula or as a beta
approximation in the usual way.

2) For the non-colluding scenario, we calculate the exact
first moment and an approximated second moment of the
CSSP by using the Fortuin-Kasteleyn-Ginibre inequality
so that a suitable beta approximation to the meta distri-
bution can be obtained.

II. SYSTEM MODEL

A. Network layout

We consider the scenario depicted in Fig. 1, where the
transmitter s located at the origin sends messages to a receiver
d located at a deterministic distance from the origin [4], [11],
[12]1. The EDs are assumed to be Poisson point process (PPP)
distributed in the plane R2 with density λ, which either collude
or work independently to decode the message received on their
Gaussian wire-tap links. Comparing with the Poisson bipolar
model in [7], the distribution of EDs in our system model is
similar to the distribution of interferers in the Poisson bipolar
model. In spite of this, our model studies the meta distribution
of the secrecy rate under an eavesdropping assumption rather
than SIR as is the case in the Poisson bipolar model. The
distance between s and d is ls,d. The path loss model is
c2(4πν)−2l−α

s,y , where c is the speed of light and ν is the
carrier frequency, ls,y is the distance between s and a terminal
(i.e. d or EDs) y, and α is the path loss exponent. The

1This letter considers the scenario where a carefully planned frequency
reuse pattern is assumed, and the transmitter can occupy some resource blocks
exclusively in a relatively large region. The co-channel interference for cellular
networks will be studied in the future work.
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Fig. 1: Communication in the presence of eavesdroppers,
where the dashed line and solid line denote wire-tap link and
legitimate link, respectively.

fading of the channel is assumed to be Rayleigh, and the
transmitting power is Pd. Hence, the received signal power
at terminal y is denoted as Ps,y = c2(4πν)−2l−α

s,y |hs,y|2Pd,
and the receiving signal to noise ratio (SNR) at terminal y is
given by SNRs,y = Ps,y/N0, where N0 is the the additive
white Gaussian noise (AWGN) power.

B. Secrecy capacity

The secrecy capacity of a link is the difference between the
capacity of the legitimate link and the capacity achieved via
a collection of wiretap links, which can be written as [4]

Cs = [log2 (1 + SNRs,d)− log2 (1 + F (SNRs,e))]
+

≃

[
log2

(
|hs,d|2l−α

s,d

F
(
|hs,e|2l−α

s,e

))]+ ,
(1)

where [x]+ denotes max(0, x), operator F (·) is either∑
e∈Φ(·) for the colluding scenario or maxe∈Φ(·) for the non-

colluding scenario, Φ denotes the PPP of the EDs, and the
symbol ’≃’ indicates that Cs asymptotically equals to the term
on the right side of the symbol in the high SNR range.

C. The meta distribution of the secrecy rate

The CSSP of the typical user achieving a target secrecy rate
Rt conditioning on the realization of Φ is given by

p(Rt) = P(Cs > Rt | Φ). (2)

With the link reliability threshold pt, the meta distribution is
defined as

F (Rt, pt) = P(p(Rt) > pt), (3)

which gives detailed information about the user experience
by providing the proportion of users achieving Rt with a
probability of pt or above. Since it is difficult to calculate this
meta distribution directly, the moments Mb = E

(
p(Rt)

b
)

are
investigated instead [7]. Let i2 = −1, Mit = E

(
p(Rt)

it
)
=

E
(
eit log p(Rt)

)
, the last term is denoted as the character-

istic function φX(t) and X = log p(Rt). The relationship
between the complementary cumulative distribution function
(CCDF) of a random variable X and its characteristic function
is given by the Gil-Pelaez theorem [13]: FX(x) = 1

2 +

1
π

∫∞
0

ℑ[e−itxφX(t)]
t dt, where ℑ[z] is the imaginary part of

a complex number z. Thus, the meta distribution is given by

F (Rt, pt) =
1

2
+

1

π

∫ ∞

0

ℑ(e−it log ptMit)

t
dt. (4)

D. Beta approximation of the meta distribution

Since p(Rt) is within [0,1], a simplistic function named beta
distribution can be used to approximate the meta distribution
[7]. The probability density function of a beta distributed
random variable Y is given by

fY (y | a, b) = ya−1(1− y)b−1

Beta(a, b)
, (5)

where Beta(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
, shape parameter a, b > 0, and

its first and second moments are given by

E[Y ] =
a

a+ b
and Var[Y ] =

ab

(a+ b)2(a+ b+ 1)
. (6)

Let M1 = E[Y ] and M2 −M2
1 = Var[Y ], the approximation

of the meta distribution of the secrecy rate is written as

F (Rt, pt) ≈ 1− Ipt

(
M1M2 −M2

1

M2
1 −M2

,
(1−M1)(M2 −M1)

M2
1 −M2

)
,

(7)

where Ipt(a, b) is the regularized incomplete beta function.

III. THE MOMENTS OF THE CSSP

A. Colluding EDs

Theorem 1. Letting θ = 2Rt , the bth moment of the CSSP
for the colluding scenario is given by

Mb = exp

(
−λπl2s,dΓ(1− 2/α)θ2/α

Γ(b+ 2/α)

Γ(b)

)
. (8)

Proof: The proof is similar to the derivation of Theorem
1 in [7] with transmit probability 1.

B. Non-colluding EDs

1) General formula for Mb: The bth moment of the CSSP
for the non-colluding scenario is given by

Mb = EΦ

[
P(Cs > Rt | Φ)b

]
= EΦ

[
P
(
max
e∈Φ

|hs,e|2l−α
s,e < |hs,d|2l−α

s,d /θ

)b
]

= EΦ

Ehs,d

[∏
e∈Φ

(
1− exp

(
−
|hs,d|2l−α

s,d

θl−α
s,e

))
| hs,d

]b
= EΦ

(∫ ∞

0

∏
e∈Φ

(
1− exp

(
−
xl−α

s,d

θl−α
s,e

))
e−x dx

)b
 .

(9)

This expression cannot be reduced to a simple analytic form
for all the moments. To make progress, we investigate the case
that can offer closed-form expressions for analysis based on
beta approximation below.
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2) Derivation of M1 and M2:

Theorem 2. The first moment of the CSSP for the non-
colluding scenario is given by

M1 =
2π

√
2pq

(2π)
p
2+q

G p+2q,0
0,0

(
−

0, 1
p , . . . ,

p−1
p , 1

2q ,
1
q , . . . , 1

∣∣∣∣ p−pAp
1

(2q)2q

)
,

(10)

where G p+2q,0
0,0 is the Meijer G-function, which is defined as

Gm,n
p,q

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣ x)
=

1

2πi

∫
L

∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)∏q

j=m+1 Γ(1− bj + s)
∏p

j=n+1 Γ(aj − s)
xs ds,

(11)

A1 = λ2πΓ
(
2
α

)
1
α

(
l2s,d

θ−2/α

)
, the path loss exponent α = p/q,

with p, q ∈ Z+ so that α must be a rational number2, and the
second moment can be approximated as

M2 ≈M2
1

2
+

π
√
2pq

(2π)
p
2+q

×G p+2q,0
0,0

(
−

0, 1
p , . . . ,

p−1
p , 1

2q ,
1
q , . . . , 1

∣∣∣∣ p−pAp
2

(2q)2q

)
,

(12)

where A2 = (2− 2−2/α)A1.

Proof: The first moment is derived as follows:

M1 = Ehs,d

[
EΦ

[∏
e∈Φ

(
1− exp

(
−
|hs,d|2l−α

s,d

θl−α
s,e

))]
| hs,d

]
(a)
=

∫ ∞

0

e−A1x
−2/α

xe−x dx

x

(b)
=

1

2πi

∫ δ+i∞

δ−i∞

A
− w

2/α

1 Γ
(

w
2/α

)
2/α

Γ(w + 1) dw

(c)
=

1

2πi

∫ δ
2q+i∞

δ
2q−i∞

A−ps
1 Γ (ps)

2q/p
Γ(2qs+ 1)2q ds

(d)
=

√
2pq

i(2π)
p+2q

2

∫ δ
2q+i∞

δ
2q−i∞

p−1∏
k=0

Γ

(
s+

k

p

) 2q−1∏
k=0

Γ

(
s+

1 + k

2q

)
×
(
Ap

1p
−p(2q)−2q

)−s
ds

=
2π

√
2pq

(2π)
p
2+q

G p+2q,0
0,0

(
−

0, 1
p , . . . ,

p−1
p , 1

2q ,
1
q , . . . , 1

∣∣∣∣ p−pAp
1

(2q)2q

)
,

(13)

where (a) is the result of the probability generating functional
of the PPP [14]; (b) is the Mellin convolution given by [15]

(f ∗ g)(z) =
∫ ∞

0

f
( z
u

)
g(u)

du

u
=

∫ δ+i∞

δ−i∞

f̃(w)g̃(w) dwz

2πiz
,

(14)

where f̃(w) denotes the Mellin transform of a function f(x),
which is written as

f̃(w) =

∫ ∞

0

xw−1f(x) dx; (15)

2A non-rational α can be approximated by a suitable rational value.

(c) is the result of a change of variables, i.e. w = 2qs, and δ
is within the overlapped strip of analyticity of both f̃(w) and
g̃(w); and (d) is obtained by the multiplication theorem

Γ(pz) =
1

(2π)
p−1
2 p

1
2−pz

p−1∏
k=0

Γ

(
z +

k

p

)
. (16)

The second moment is defined as

M2 = EΦ

[
Ehs,d

[f(Φ, hs,d)]
2
]
, (17)

where f(Φ, hs,d) =
∏

e∈Φ

(
1− exp

(
− |hs,d|2l−α

s,d

θl−α
s,e

))
. By

using the Fortuin-Kasteleyn-Ginibre inequality, namely,
EΦ

[
Ehs,d

[f(Φ, hs,d)]
]2 ≤ M2 ≤ EΦ

[
Ehs,d

[f(Φ, hs,d)
2]
]

[16], an approximation of M2 can be given by

M2 ≈
M2

1 + EΦ

[
Ehs,d

[f(Φ, hs,d)
2]
]

2
, (18)

where

EΦ

[
Ehs,d

[f(Φ, hs,d)
2]
]

= Ehs,d

EΦ

∏
e∈Φ

(
1− exp

(
−
|hs,d|2l−α

s,d

θl−α
s,e

))2

| hs,d


= Ehs,d

[exp (−F2) | hs,d] ,

and

F2 =λ2π

∫ ∞

0

1−(1− exp

(
−
|hs,d|2l−α

s,d

θx−α

))2
x dx

=λ2π

∫ ∞

0

2∑
k=1

(
2

k

)
(−1)k+1 exp

(
−
k|hs,d|2l−α

s,d

θx−α

)
xdx

=A2|hs,d|−4/α.
(19)

Following this, the derivation of M2 can be achieved by going
through similar steps that used to obtain M1.

IV. SIMULATIONS AND DISCUSSION

In this section, we provide simulation results to validate the
analysis detailed above. During each Monte Carlo trial in the
simulation, one realization of the PPP distributed EDs with
density λ is considered in a 12× 12 km2 plane. A transmitter
is located in the origin, while the intended receiver d is ls,d =
80 m away from it. Meanwhile, N0 = −92 dBm, Pd = 0 dBm,
Rt = 0 and θ = 1. The simulation results are obtained by
averaging over 104 independent trials.

Fig. 2 gives the meta distribution of the secrecy rate vs.
pt for the colluding scenario with different values of α and
λ. The simulation matches well with the numerical results,
while the beta approximation shows slightly less accuracy
when α = 4, λ = 80 km−2. The figure illustrates how the
meta distribution varies with α and λ. The fundamental trends
observed here, such as the benefits inherent in high path loss
environments (i.e., increasing α), but it is interesting to note
the severe penalty that λ induces through the sharp decay of
F̄ in the λ = 100 km−2 curves.
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Fig. 2: The meta distribution of the secrecy rate vs. pt for the
colluding scenario.
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Fig. 3: The meta distribution of the secrecy rate vs. pt for the
non-colluding scenario.

Fig. 3 presents the meta distribution of the secrecy rate
vs. pt for the non-colluding scenario. It shows that the beta
approximations from Theorem 2 work well in characterizing
the meta distribution. It also shows that as α increases, F
does not necessarily increase at all threshold pt, which is
different from the trend in Fig. 2. Meanwhile, compared with
the colluding scenario, the increasing of α from 3 to 4 has less
of an effect on F for the non-colluding scenario. Besides, for a
given link reliability threshold pt = 0.6, there are 4% satisfied
spatial configurations of EDs for α = 4 and λ = 100 km−2,
while 8% of configurations yield acceptable performance for
α = 4 and λ = 80 km−2. Compared with the results of the
colluding scenario in Fig. 2, the non-colluding scenario shows
that a higher meta distribution has been achieved. It once again
[17] shows that colluding among the EDs will decrease the
probability of achieving a target secrecy rate of the legitimate
link. In addition, F of the non-colluding scenario is lower
bounded by the colluding scenario with the same parameters
since the legitimate link of the non-colluding scenario will
achieve a similar or even higher probability than its colluding

counterpart for the same realization.

V. CONCLUSION

In this letter, we studied the meta distribution of the secrecy
rate for both colluding and non-colluding EDs scenarios. For
the colluding scenario, the corresponding bth moments of
the CSSP have been formulated in closed-form expressions.
For the non-colluding scenario, the first two moments of the
CSSP have been formulated. Simulation studies showed a good
match between analytic and approximate results for both EDs
scenarios. The results also showed that, unlike the colluding
scenario, a larger path loss exponent does not necessarily
yield more favorable performance at all the pt for the non-
colluding scenario. Meanwhile, the meta distribution for the
non-colluding scenario is lower bounded by its colluding
counterpart. The methods and analysis detailed in this letter
can offer insight and design guidelines in PLS systems.
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