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abstract

This thesis has two main parts. The first part is an application that focuses on
the identification of a statistical framework to model the biological heterogeneity
of asthma and COPD using sputum cytokines. Clustering subjects using the ac-
tual cytokines measurements may not be straightforward as these mediators have
strong correlations, which are currently ignored by standard clustering techniques.
Artificial data, which have similar patterns as the cytokines, but with known class
membership, are simulated. Several approaches, such as data reduction using factor
analysis, were performed on the simulated data to identify suitable representative of
the variables and to use as input into clustering algorithm. In the simulation study,
using ”factor-scores” (derived from factor analysis) as input variables into cluster-
ing outperformed the alternative approaches. Thus, this approach was applied to
model the biological heterogeneity of asthma and COPD, and identified three stable
and three exacerbation clusters, with different proportions of overlap between the
diseases.

The second part is a statistical methodology in which a new method for variable
selection in model-based clustering was proposed. This method generalizes the ap-
proach of Raftery and Dean (2006, JASA 101, 168-178). It relaxes the global prior
assumptions of linear-relationships between clustering relevant and irrelevant vari-
ables by searching for latent structures among the variables, and accounts for non-
linear relationships between these variables by splitting the data into sub-samples.
A Gaussian mixture model (unconstrained variance-covariance matrices fitted using
the EM-algorithm) is applied to identify the optimal clusters. The new method per-
formed considerably better than the Raftery and Dean technique when applied to
simulated and real datasets, and demonstrates that variable selection within cluster-
ing can substantially improve the identification of optimal clusters. However, at the
moment it perhaps does not perform adequately in uncovering the optimal clusters
in the dataset which have strong correlations such as sputum mediators.

i



Acknowledgment

I would like to express my deepest gratitude to my first supervisor, Prof Chris

Brightling, for his excellent supervision, encouragement, and guidance from the

initial to the final level, which enabled me to develop an understanding of the subject.

He immensely influenced my thinking and research. He is very kind, helpful, and

always available whenever needed.

I am very grateful to my second supervisor, Professor John Thompson, who fully

supervised the method part of my thesis, and for always being available for further

assistance and guidance. Without his great supervision this work would not have

been possible. I learned enormously from many enlightening discussions with him

and felt privileged to have had opportunities to be supervised by him.

I am also very grateful to my third supervisor, Dr Chris Newby, for his support

and encouragement. I am very lucky to have had him as an advisor and colleague

over the years. In addition, my thanks go to Prof Paul Burton for his supervision of

my first-year PhD till he moved to the University of Bristol, and Dr Richard May

(from Medimmune/AstraZeneca) for the enlightening discussions and productive

collaboration over the last four years. I would also like to thank Dr Mona Bafad-

hel, Dr Dhan Desai, Dr Kairabi Haldar and Dr Latifa Chachi, and all those who

supported me in any respect during the completion of my PhD.

Sincere thanks and love go to my family including my mum, siblings and friends

for their love and prayerful support. I would like to dedicate this thesis to my family

Rosi, Noah and Monary, and my mum Rishan Debesay and in memory of my dad

Abrha Ghebre who valued education above all.

ii



Contents

Contents iii

List of Figures ix

List of Tables xiii

Abbreviations 1

Thesis Structure and Contributions 2

Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Manuscripts from this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 5

I A Statistical Framework for Modeling the Biological

Heterogeneity of Asthma and COPD 6

1 Introduction 7

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Introduction to Asthma and COPD . . . . . . . . . . . . . . . 7

1.1.2 Diagnosis and Classification of Asthma and COPD . . . . . . 8

1.1.3 Risk Factors of Asthma and COPD . . . . . . . . . . . . . . . 9

1.1.4 Similarities and Differences between Asthma and COPD . . . 10

1.1.5 Profiling of Bacterial Communities in Asthma and COPD . . 11

1.1.6 Role of Cytokines in Asthma and COPD: In Relation to Cel-

lular Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.7 Future Cytokine-based Treatment Targeting Asthma and COPD

Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

iii



1.2 Application of Cluster Analysis to Model Asthma and COPD Het-

erogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Proposed Approach to Model the Biological Heterogeneity of Asthma

and COPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Asthma and COPD Heterogeneity at Stable State 29

2.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Asthma and COPD Study Population . . . . . . . . . . . . . 30

2.3.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Asthma and COPD Characteristics . . . . . . . . . . . . . . . . . . . 36

2.4.1 Demographic Characteristics . . . . . . . . . . . . . . . . . . . 36

2.4.2 Biological Mediators (Sputum Cytokines) . . . . . . . . . . . . 39

2.4.3 Descriptive Statistical Analysis . . . . . . . . . . . . . . . . . 42

2.5 Descriptive Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5.1 Demographic and Clinical Characteristics . . . . . . . . . . . . 43

2.5.2 Sputum Biological Mediators . . . . . . . . . . . . . . . . . . 45

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Modeling Population Heterogeneity: a Simulation Study 51

3.1 Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.1 Designing a Simulation Study . . . . . . . . . . . . . . . . . . 52

3.2.2 Descriptive Analysis of the Simulated Data . . . . . . . . . . . 53

3.3 Factor Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.1 Factor Loadings . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.2 Factor Scores or Latent Variables . . . . . . . . . . . . . . . . 57

3.3.3 Varimax Rotation in Factor Analysis . . . . . . . . . . . . . . 59

3.4 Cluster Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.1 K-means Clustering . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Proposed Input Variables to the Clustering Algorithm . . . . . . . . . 66

iv



3.5.1 Clustering on All Observed Variables . . . . . . . . . . . . . . 66

3.5.2 Clustering on Factor Scores (Latent Variables) . . . . . . . . . 67

3.5.3 Clustering on the Highest-loading Observed Variables . . . . . 68

3.5.4 Clustering on Observed Variables with Highest Error-terms . . 69

3.5.5 Noisy Observed Variables in Factor Analysis . . . . . . . . . . 70

3.5.6 Application of Factor Analysis on Uncorrelated Observed Vari-

ables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5.7 Application of Factor and Cluster Analyses in Gene Expression 73

3.5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Modeling Asthma and COPD Biological Heterogeneity at Stable

State 76

4.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Statistical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.1 Application of Factor and Cluster Analyses in Asthma and

COPD Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.2 Application of Linear Discriminant Analysis in Asthma and

COPD Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.3 Linear Discriminant Analysis . . . . . . . . . . . . . . . . . . 79

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.1 Asthma and COPD Biological Factors at Stable State . . . . . 80

4.3.2 Asthma and COPD Biological Clusters at Stable State . . . . 81

4.3.3 Linear Discriminant Analysis Results . . . . . . . . . . . . . . 84

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Asthma and COPD Validation at Stable State 91

5.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Descriptive Analysis of Validation Study . . . . . . . . . . . . . . . . 91

5.4 Validation using Linear Discriminant Analysis . . . . . . . . . . . . . 94

5.4.1 Linear Discriminant Functions . . . . . . . . . . . . . . . . . . 95

5.4.2 Validation in Simulation Study . . . . . . . . . . . . . . . . . 96

5.4.3 Validation in Asthma and COPD Study . . . . . . . . . . . . 97

v



5.5 Validation using IL-1β and Disease Status . . . . . . . . . . . . . . . 101

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 Modeling Asthma and COPD Biological Heterogeneity at Ex-

acerbation State 107

6.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3 Study Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4 Descriptive Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4.1 Patterns of Clinical Characteristics Across Asthma and COPD 109

6.4.2 Patterns of Sputum Mediators Across Asthma and COPD . . 109

6.4.3 Patterns of Microbiome Communities Across Asthma and COPD113

6.4.4 Alpha and Beta Diversity of Microbiome Communities . . . . 114

6.4.5 Patterns of the Most Abundant Microbiome Communities Across

Asthma and COPD . . . . . . . . . . . . . . . . . . . . . . . . 116

6.4.6 Descriptive Summaries . . . . . . . . . . . . . . . . . . . . . . 119

6.5 Statistical Methods for Biological Clustering . . . . . . . . . . . . . . 120

6.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.6.1 Asthma and COPD Factors at Exacerbation State . . . . . . . 120

6.6.2 Asthma and COPD Clusters at Exacerbation State . . . . . . 121

6.6.3 Patterns of Microbiome Communities Across the Biological

Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

II Developing a Novel Method for Variable Selection in

Model-based Clustering 136

7 Variable Selection in Model-based clustering: a Finite Gaussian

Mixture Model 137

7.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.3 Cluster Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.4 Model-based Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 140

vi



7.4.1 Gaussian Mixture Model . . . . . . . . . . . . . . . . . . . . . 140

7.4.2 Bivariate Gaussian Mixture Distribution . . . . . . . . . . . . 140

7.4.3 Maximum Likelihood Estimation for Gaussian Distribution . . 141

7.4.4 EM-algorithm for Gaussian Mixture Model . . . . . . . . . . . 143

7.4.5 Optimal Number of Clusters in Gaussian Mixture Model . . . 144

7.5 Variable Selection in Cluster Analysis . . . . . . . . . . . . . . . . . . 144

7.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.6 Variable Selection for Model-based Clustering . . . . . . . . . . . . . 145

7.6.1 Clustering Relevant and Irrelevant Variables . . . . . . . . . . 145

7.6.2 Univariate Clustering Variable Selection . . . . . . . . . . . . 147

7.6.3 Multivariate Clustering Variable Selection . . . . . . . . . . . 148

7.6.4 Regression-based Variable Selection . . . . . . . . . . . . . . . 151

7.7 Proposed Variable Selection Method for Model-based Clustering . . . 157

7.7.1 Initialization the Parameters in the EM-algorithm . . . . . . . 158

7.7.2 Covariance Matrix Singularity . . . . . . . . . . . . . . . . . . 158

7.7.3 Application of Factor Analysis to Split Variables into Inde-

pendent Subsets . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.7.4 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . 161

7.8 Performance of the Proposed Method . . . . . . . . . . . . . . . . . . 165

7.8.1 Instructions on How to Use the ”VarSel4GMM” Package of

the Proposed Method in R . . . . . . . . . . . . . . . . . . . . 165

7.8.2 Example 1: Simulated data . . . . . . . . . . . . . . . . . . . 167

7.8.3 Example 2: Seeds data . . . . . . . . . . . . . . . . . . . . . . 171

7.8.4 Example 3: Wine data . . . . . . . . . . . . . . . . . . . . . . 173

7.8.5 Example 4: Kim’s Simulated data . . . . . . . . . . . . . . . . 174

7.8.6 Example 5: Severe Refractory Asthma data . . . . . . . . . . 175

7.8.7 Example 6: Asthma and COPD Sputum Cytokines . . . . . . 177

7.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

8 Thesis Conclusion and Future Direction 180

8.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

8.2 Part One . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

8.2.1 Stable Biological Subgroups of Asthma and COPD . . . . . . 180

vii



8.2.2 Validation subgroups . . . . . . . . . . . . . . . . . . . . . . . 182

8.2.3 Exacerbation Biological Subgroups of Asthma and COPD . . 183

8.2.4 Similarities between the Stable and Exacerbation Subgroups . 183

8.2.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

8.2.6 Summary of Clinical Findings . . . . . . . . . . . . . . . . . . 186

8.2.7 Statistical Methods to Model the Biological Heterogeneity of

Asthma and COPD . . . . . . . . . . . . . . . . . . . . . . . . 187

8.2.8 Future Direction . . . . . . . . . . . . . . . . . . . . . . . . . 189

8.2.9 Benefit and Limitation of Cluster Analysis in Medical Research191

8.3 Part Two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

8.3.1 Proposed Variable Selection for Model-based Clustering . . . . 196

8.3.2 Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

8.3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

8.3.4 Future Direction . . . . . . . . . . . . . . . . . . . . . . . . . 197

Appendix A: R-code for the Proposed Variable Selection Method 201

Bibliography 225

viii



List of Figures

1.1 Cytokines involved in Asthma . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Cytokines involved in COPD . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Cytokine effects on various airway components with a TH1/TH2 im-

balance in mild and severe disease. . . . . . . . . . . . . . . . . . . . 19

2.1 Sputum induction protocol . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Clinical characteristics across asthma and COPD at stable state which

displayed on the first two principal components scores . . . . . . . . . 45

2.3 Pattern of sputum mediators across asthma and COPD at stable state 47

2.4 Sputum mediators across asthma and COPD at stable state presented

using the first two principal component scores . . . . . . . . . . . . . 48

2.5 Sputum mediators at stable state: (a) correlations matrix and (b)

subgroups. Heatmap colours: Dark red indicates strong positive cor-

relation; dark blue for strong negative correlation; light red for weak

positive correlation; light blue for weak negative correlation; and yel-

low represents no correlation. . . . . . . . . . . . . . . . . . . . . . . 49

3.1 Simulated variables: (a) correlation matrix and (b) subgroups. Heat-

map colours: dark-red represented for strong positive correlation;

dark-blue for strong negative correlation; yellow for no correlation;

light-red and light-blue for weak positive and negative correlation,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Patterns of simulated variables across the clusters . . . . . . . . . . . 54

3.3 Path-diagram of factor analysis. Y1 to Y5 are observed variables; F1

and F2 are factors; B11 to B51 represent factor loadings; e1 to e5 are

error terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 (A) Heterogeneous population; (B) Homogeneous subgroups . . . . . 63

ix



3.5 Graphical demonstration of k-means clustering algorithm . . . . . . . 65

3.6 Factor scores: (a) distributions and (b) scatterplot across the subgroups 67

3.7 Highest-loading variables: (a) distributions and (b) scatterplot across

the subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.8 Variables with highest error-terms (a) distributions and (b) scatter-

plot across the subgroups . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.9 Simulated variables: (a) correlation matrix and (b) subgroups. Heat-

map colors: dark-red represented for strong positive correlation; dark-

blue for strong negative correlation; yellow for no correlation; light-red

and light-blue for weak positive and negative correlation, respectively. 71

4.1 The three identified biological clusters presented using the subjects

discriminant scores. Hollow triangle indicates eosinophilic asthma

dominant (95% asthma, n=58); bold triangle and bold circle, neutro-

philic asthma and COPD (overlap) dominant (59.6% asthma, n=47);

hollow circle, COPD dominant (95% COPD, n=41); bold triangle,

overlapped asthma; bold circle, overlapped COPD. . . . . . . . . . . 85

4.2 Patterns of sputum mediators across the identified clusters . . . . . . 86

5.1 Validation asthma and COPD study presented using the first two

principal component scores: (a) Demographic and clinical character-

istics; (b) Sputum mediators (cytokines). . . . . . . . . . . . . . . . . 94

5.2 Patterns of mediators : (a) across test clusters and (b) across valida-

tion subgroups which validated using linear discriminant analysis . . 100

5.3 Absolute IL-1β concentrations on a log scale (base 10) across the 3

identified stable biological clusters. A= Asthma; C=COPD. P is the

p-value for geometric mean difference between cluster 1 or cluster 3

versus cluster 2 (overlap). . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Patterns of sputum mediators : (a) across test clusters and (b) across

validation subgroups using IL-1β cutoff and disease status . . . . . . 104

x



5.5 Absolute TNFα concentrations on a log scale (base 10) across the

three identified stable biological clusters. A = Asthma; C=COPD.

P is the p-value for geometric mean difference between cluster 1 or

cluster 3 versus cluster 2 (overlap). . . . . . . . . . . . . . . . . . . . 105

6.1 Sputum mediators at stable and exacerbation states: (a) Asthma and

(b) COPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2 Patterns of sputum mediators across asthma and COPD at exacer-

bation state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3 Sputum mediators across asthma and COPD at exacerbation state

presented using the first two principal component scores . . . . . . . 112

6.4 Sputum mediators at exacerbation state: (a) correlation matrix and

(b) subgroups. Heatmap colors: Dark-red indicates strong positive

correlation; dark-blue for strong negative correlation; light-red for

weak positive correlation; light-blue for weak negative correlation;

and yellow for no correlation. . . . . . . . . . . . . . . . . . . . . . . 113

6.5 Patterns of alpha diversity of microbiome communities at phylum and

genus levels across asthma and COPD at exacerbation state . . . . . 115

6.6 Patterns of microbiome communities at phylum level across asthma

and COPD at exacerbation . . . . . . . . . . . . . . . . . . . . . . . 117

6.7 Pattern of microbiome communities at genus level across asthma and

COPD at exacerbation . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.8 The 3 identified exacerbation biological clusters presented using sub-

jects’ discriminant scores. Hollow triangle indicates asthma and bold

circle indicates COPD. . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.9 Patterns of sputum mediators across the three clusters of asthma and

COPD at exacerbation . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.10 Patterns of sputum mediators across stable and exacerbation in cluster

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.11 Patterns of sputum mediators across stable and exacerbation states

in cluster 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.12 Pattern of sputum mediators across stable and exacerbation in cluster 3128

xi



6.13 Patterns of alpha diversity across the biological clusters at exacerba-

tion state: (a) at phylum level and (b) at genus level . . . . . . . . . 129

6.14 Patterns of the most abundant microbiome communities at phylum

level across the biological clusters at exacerbation state . . . . . . . . 130

6.15 Pattern of the microbiome communities across the biological clusters

at exacerbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.1 Bivariate Gaussian mixture density . . . . . . . . . . . . . . . . . . . 141

7.2 (a) Clustering relevant and (b) Clustering irrelevant . . . . . . . . . . 146

7.3 BIC for assessing clustering information . . . . . . . . . . . . . . . . . 148

7.4 (a) Scenario 1: Both clustering informative and dependent variables;

(b) Scenario 2: Clustering informative and uninformative but un-

correlated variables; (c) Scenario 3: Both clustering informative but

independent variables; (d) Scenario 4: Clustering informative and

uninformative but dependent variables . . . . . . . . . . . . . . . . . 150

7.5 Multivariate simulated data, the combination of colours (red, black

or blue) and symbols (circle or triangle) divided the data into six

subgroups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.6 (a) First subset and (b) Second subset. The combination of colors

(red, black or blue) and symbols (circle or triangle) divided the data

into six subgroups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.7 Additional clusters within a cluster . . . . . . . . . . . . . . . . . . . 157

7.8 Multivariate simulated data, the combination of colours (red, black

or blue) and symbols (circle or triangle) divided the data into six

subgroups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.9 Multivariate simulated data, the colours (red and blue) divided the

data into two subgroups. . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.10 Seed dataset, each colour represent three different varieties of wheat

(subgroup) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.11 Scatterplot matrix of wine data with points marked (coloured) ac-

cording to the known wine types (subgroup) . . . . . . . . . . . . . . 173

7.12 Kim’s simulated dataset . . . . . . . . . . . . . . . . . . . . . . . . . 174

xii



List of Tables

2.1 Sputum mediators lower limit of detection (LLD) and quantification

(LLQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2 Statistical summaries of demographic and clinical characteristics across

asthma and COPD at stable state that shows the similarities and dif-

ferences between the two diseases . . . . . . . . . . . . . . . . . . . . 44

2.3 Statistical summaries of sputum mediators across asthma and COPD

at stable state that represent the similarities and differences between

the two diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 Unrotated factor loadings of the simulated data . . . . . . . . . . . . 59

3.2 Varimax rotated factor loadings of the simulated data . . . . . . . . . 62

3.3 Varimax rotated factor loadings of the simulated data . . . . . . . . . 72

4.1 Varimax rotated factor loadings of sputum mediators at stable state . 81

4.2 Statistical summaries of demographic and clinical characteristics across

the three identified biological clusters at stable state that represent

the differences and similarities between the subgroups . . . . . . . . 82

4.4 Statistical summaries of sputum mediators across the three identified

biological clusters at stable state that represent the differences and

similarities between the subgroups . . . . . . . . . . . . . . . . . . . . 83

4.6 Statistical summaries of sputum mediators across the three identified

biological clusters at stable state that represent the differences and

similarities between the subgroups . . . . . . . . . . . . . . . . . . . . 84

5.1 Statistical summaries of demographic and clinical characteristics across

asthma and COPD in the validation study that represent the simil-

arities and differences between the two diseases . . . . . . . . . . . . 92

xiii



5.2 Statistical summaries of sputum mediators across asthma and COPD

in the validation study that represent the similarities and differences

between the two diseases . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Coefficients (βs) and class proportion (prior probabilities) in each

cluster in the test simulated study were used to predict class mem-

bership in the validation simulated study . . . . . . . . . . . . . . . . 97

5.4 Coefficients (βs) and class proportions (prior probabilities) in each

cluster in the test asthma and COPD study that were used to predict

class membership in the validation study . . . . . . . . . . . . . . . . 98

5.5 Statistical summaries of demographic and clinical characteristics across

the validation subgroups (which represent the differences and simil-

arities between the subgroups) that were predicted using linear dis-

criminant analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6 Statistical summaries of sputum mediators across the validation sub-

groups (which represent the differences and similarities between the

subgroups) that were predicted using linear discriminant analysis . . 99

5.7 Statistical summaries of demographic and clinical characteristics across

the validation subgroups (which represent the differences and simil-

arities between the subgroups) that were predicted using IL-1β and

disease status (asthma or COPD) . . . . . . . . . . . . . . . . . . . . 103

5.8 Statistical summaries of sputum mediators across the validation sub-

groups (which represent the differences and similarities between the

subgroups) that were predicted using IL−1β cutoff and disease status

(asthma or COPD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1 Statistical summaries of demographic and clinical characteristics across

asthma and COPD that represent the differences and similarities

between the two diseases at exacerbation state. . . . . . . . . . . . . 109

6.2 Varimax rotated factor loadings of sputum mediators at exacerbation 121

6.3 Statistical summaries of demographic and clinical characteristics across

the three identified biological clusters at exacerbation that represent

the differences and similarities between the clusters . . . . . . . . . . 122

xiv



6.4 Statistical summaries of sputum mediators across the three identified

biological clusters at exacerbation state that represent the differences

and similarities between the clusters . . . . . . . . . . . . . . . . . . . 122

6.5 Statistical summaries of the pairwise comparison (within subject)

of the clinical parameters between stable and exacerbation states in

cluster 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.6 Statistical summaries of the pairwise comparison (within subject)

of the clinical parameters between stable and exacerbation states in

cluster 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.7 Statistical summaries of the pairwise comparison (within subject)

of the clinical parameters between stable and exacerbation states in

cluster 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.1 Performance of the proposed method using simulated data . . . . . . 168

7.2 Performance of the proposed method using simulated data . . . . . . 169

7.3 Performance of the proposed method using simulated data . . . . . . 170

7.4 Performance of the proposed method using seeds real dataset . . . . . 172

7.5 Performace of the proposed method using wine real dataset . . . . . . 174

7.6 Varimax rotated factor loadings of sputum mediators at exacerbation 176

7.7 Statistical summaries of ”severe refractory asthma” clusters which

were identified using the new variable selection and clustering method 176

7.8 Statistical summaries of asthma and COPD biological clusters which

were identified using the new variable selection and clustering method 178

xv



Abbreviations

COPD Chronic obstructive pulmonary disease

GINA Global Initiative for Asthma

GOLD Global Initiative for Chronic Obstructive Lung Disease

FEV1 Forced expiratory volume in the 1st second

FVC Forced vital capacity

CFU Colony-forming unit

VAS Visual analogue scale

ICS Inhaled Corticosteroids

MSD Meso scale discovery platform

ELISA Enzyme linked immunosorbent assay

IL Interleukin

VEGF Vascular Endothelial Growth Factor

TNF Tumour Necrosis Factor

TH1 T Helper 1

TH2 T Helper 2

BMI Body mass index

FS Factor score

SEM Standard error of the mean

ANOVA Analysis of variance

PCA Principal component analysis

CART Classification and Regression Trees

LDA Linear discriminant analysis

LDF Linear discriminant function

BIC Bayesian information criterion

E-M algorithm Expectation maximization algorithm

R&D method Raftery and Dean method

1



Thesis Structure and Contributions

Structure of the Thesis

This thesis has two main parts. The first part is an application that focuses on

the identification of an appropriate statistical framework for modeling (clustering)

the biological heterogeneity of asthma and COPD jointly using sputum cytokines

(at both stable and exacerbation states). This part is divided into six interlinked

chapters. Chapter 1 covers the general introduction of asthma and COPD (such as

definitions, diagnoses, and differences and similarities between the diseases) and fu-

ture cytokine-based treatments, and application of cluster analysis to model the het-

erogeneity of the diseases in order to identify novel clusters/subgroups. In chapter

2, the study population and method were described, and explanatory data ana-

lysis at stable state was performed on all available demographic, clinical and biolo-

gical (sputum cytokines) characteristics, and these patterns were compared across

asthma and COPD at disease level. In addition, the internal patterns/structures

of the cytokines were investigated further (in order to get initial suggestions that

which approach could be suitable for modeling the biological heterogeneity of the

diseases). In chapter 3, a simulation study was performed in which multivariate

data having similar internal patterns/structures as the cytokines, but with known

class membership, was simulated. Thenceforth several representatives of the sim-

ulated variables were identified, and were independently used as input variables

into a clustering algorithm. The methodology for each approach is described, and

the corresponding performance and technical limitation/bias is also discussed. In

chapter 4, the method that performed best in the simulation study (chapter 3) was

applied to asthma and COPD cytokines study to identify stable biological clusters

of the diseases. Thereafter the available clinical and biological characteristics are

presented across the identified clusters. In chapter 5, the stable biological clusters

of asthma and COPD (which were identified in chapter 4) were validated on inde-
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pendent asthma and COPD studies using two approaches. However, prior to that

further simulation study was performed to investigate the robustness of the valida-

tion statistical techniques. Chapter 6 focused on the identification of independent

exacerbation biological clusters of asthma and COPD using robust statistical tech-

niques. In addition, the patterns of the microbiome communities at phylum and

genus levels were assessed across asthma and COPD, and across the identified ex-

acerbation biological clusters.

The second part is a methodology in which a new variable selection method for

model-based clustering is proposed, which generalizes the approach of Raftery and

Dean (2006, JASA 101,168-178). This part is presented in chapter 7, and categorised

into several sections instead of chapters. In brief, it started with the study objectives

and introduction. Then cluster analysis was introduced briefly, and the methodology

for model-based clustering (Gaussian mixture model) which is implemented using

EM-algorithm is also discussed in detail. In addition, variable selection in cluster

analysis is briefed, and variable selection in model-based clustering (how to assess

variables for clustering information) and a general overview of Raftery and Dean’s

method are described in detail. Furthermore, the detailed algorithm of the proposed

method is presented; and an instruction how to use the new software in R for the new

method is outlined and its performance was assessed using several simulated and

real datasets. This part concluded with discussion section in which the advantages

and limitations of the new method are discussed.

This thesis concludes in chapter 8, in which its overall contributions, limitations

and future direction are discussed. For instance, the biological heterogeneities of

asthma and COPD at stable and exacerbation states are described. In addition,

the statistical methods which were applied to model the biological heterogeneity of

asthma and COPD are briefed, and the future direction to develop into an algorithm

is outlined. Furthermore, the performance and future direction of the new method

for variable selection in model-based clustering is discussed.
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Thesis Contributions

This thesis has several contributions:

• It outlined how to assess the common and distinctive characteristics of asthma

and COPD, beyond the way they are categorized in clinic by physicians based

on the existing guidelines of the diseases.

• It provided a general statistical framework on how to model (cluster) asthma

and COPD subjects based on their correlated cytokines to identify the dis-

tinctive and common biological subgroups/clusters.

• It identified a robust statistical approach to validated clusters using new data-

sets, in a situation where all the variables which are used in the identification

of the original clusters may not measured in the new validation dataset.

• Three distinctive asthma and COPD biological subgroups were identified using

appropriate statistical techniques, independently at stable and exacerbation

states with different proportion of overlap between the two diseases. These

subgroups have clinical interpretation and may contribute to the prediction of

patient-specific response to therapies (treatments).

• A new method for variable selection in model-based clustering is developed,

which outperformed the existing technique.

• R package was written for the proposed variable selection method in model-

based clustering, and will be publicly available as an open-source.

4



Manuscripts from this Thesis

Five manuscripts are produced from this thesis; one is awarded at ERS conference,

and already published and cited more than 30 times so far, and the others are in

submission.

1. Biological clustering supports both ”Dutch” and ”British” hypotheses of asthma

and chronic obstructive pulmonary disease. Ghebre MA, Bafadhel M, Desai D, Co-

hen SE, Newbold P, Rapley L, Woods J, Rugman P, Pavord ID, Newby C, Burton

PR5, May RD, Brightling CE. JACI 2015[1].

2. Severe exacerbations in moderate-to-severe asthmatics are associated with de-

creased TH-2 and increased pro-inflammatory and TH-1 cytokine profiles in spu-

tum and serum. Michael A Ghebre, Dhananjay Desai, Beverley Hargadon, Amisha

Singapuri, Chris Newby, Joanne Woods, Laura Rapley, Suzanne Cohen, Athula

Herath, Erol Gaillard, Richard May, Chris Brightling. In submission.

3. Asthma and chronic obstructive pulmonary disease overlap: biological exacer-

bation clusters. Michael A Ghebre, Mona Bafadhel, Dhananjay Desai, Suzanne E

Cohen, Paul Newbold, Laura Rapley, Jo Woods, Paul Rugman, Chris Newby, Ian

D Pavord, Richard D May, Chris E Brightling. In submission.

4. Sputum pro-inflammatory mediators are increased in Aspergillus fumigatus cul-

ture positive asthmatics. Michael A Ghebre, Dhananjay Desai, Amisha Singapuri,

Joanne Woods, Laura Rapley, Suzanne Cohen, Athula Herath, Andrew J Wardlaw,

Catherine H Pashley, Richard D May, Chris E Brightling. In press.

5. Variable selection in model-based clustering: a finite Gaussian mixture model.

Michael A Ghebre, Chris Newby, Chris E Brightling, John Thompson. In submis-

sion.

5



Part I

A Statistical Framework for

Modeling the Biological

Heterogeneity of Asthma and

COPD

6



Chapter 1

Introduction

1.1 Introduction

The main objective of this chapter is to provide a broad introduction of asthma and

chronic obstructive pulmonary disease (COPD); in which, the diagnosis, classifica-

tion, risk factors, similarities and differences between the diseases will be described.

In addition, the direct effect of cytokines or in relation to cellular profiles (such as

neutrophils and eosinophils) in causing or mediating the airways inflammation, and

the future cytokine-based treatment of asthma and COPD subpopulation will be dis-

cussed. Furthermore, the application of cluster analysis to identify novel subgroups

of asthma and COPD, and the current and future phenotypic (subgroups) treatment

of both diseases will be described. This chapter ends with the proposed statistical

framework how to model the biological heterogeneity (using sputum cytokines) of

asthma and COPD jointly in order to identify the common and distinctive biological

subgroups of the diseases.

1.1.1 Introduction to Asthma and COPD

Asthma and COPD are heterogeneous diseases [2], and among the top 10 leading

chronic diseases, and representing a major global causes of death, and consuming

substantial health-care resources [3]. Asthma is a disorder defined by its clinical,

physiological, and pathological characteristics [4], which is associated with episodic,

completely reversible airway obstruction and airway hyperresponsiveness (an excess-

ive airway narrowing in response to a variety of stimuli) [5], which leads to recurrent

episodes of wheezing, breathlessness, chest tightness, and coughing [3]. It is a ser-

ious public health problem throughout the world, affecting people of all ages, with

an estimated 300 million individuals affected globally, and remains the number one
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chronic disease of childhood with 12.8 million school days missed. It is the most

common occupational respiratory disorder in industrialized countries [6]. Whereas

COPD is characterized by tobacco-related, gradually progressive, fixed airflow ob-

struction that is associated with airway components inducing the loss of lung elastic

recoil, resting and dynamic lung hyperinflation, and abnormalities in gas diffusion

[5]. The airflow limitation in COPD is usually progressive and related to an abnor-

mal inflammatory response of the lung to noxious particles or gases. The chronic

airflow limitation characteristic is caused by a mixture of small airway disease (ob-

structive bronchiolitis) and parenchymal destruction (emphysema) [7]. COPD is a

major cause of chronic morbidity and mortality throughout the world [8]. It is the

fourth leading cause of death in the world [9] and is projected to rank 3rd in 2030

due to continued exposure to COPD risk factors, such as smoking, and the changing

age structure of the world population [7].

1.1.2 Diagnosis and Classification of Asthma and COPD

Asthma and COPD often clinically diagnosis by symptoms such as episodic breath-

lessness, wheezing, cough, dyspnea and chest tightness [4, 7]. For example, a patient

can be diagnosed for asthma or COPD based on the signs and symptoms, medical

and family history and spirometry test. The physician can check the patient for

smoking history, exposure to lung irritants (such as contact with smokers, chem-

ical fumes, dust and air pollution), ongoing coughing (production of sputum during

coughing), wheezing and other abnormal chest sounds. In addition, tests for lung

function using spirometry; how much air the patient able to breath in and out, and

how fast can breathe the air out. This involves taking a deep breath in and exhaling

as fast as the patient can do through a mouthpiece connected to a spirometer. The

spirometer takes two measurements: the volume of air the patient can breathe out

in the first second of exhalation known as forced expiratory volume in one second

(FEV1), and the total amount of air the patient breathe out that is called forced

vital capacity (FVC).

A patient may be given a reliever inhaler medicine (bronchodilator) that is used

to open up the airways, and then blow air into the spirometer tube again, which

is called post bronchodilator, to assess whether the medicine improves the breath-
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ing. Thereafter, the pre- and post- bronchodilator FEV1 results (before and after

taking the bronchodilator) can be compared, which is known as reversibility test-

ing. The term reversibility is usually applied to rapid improvements in post FEV1

(after administration of bronchodilator), which is commonly used in distinguishing

asthma from COPD, in which the reversibility and variability provides confirma-

tion of asthma diagnosis [4]. In contrast, the irreversible (fixed) airflow obstruction

confirmed COPD diagnosis [7].

In addition, using the spirometry test results, the severity of airflow limitation in

asthma and COPD can be defined for setting treatment goals. A useful assessment

of airflow limitation is the ratio of FEV1 to forced vital capacity (FVC), which is

normally greater than 0.75 to 0.8, and any values less than these suggest airflow limit-

ation [4, 7]. Asthma classified phenotypically as mild, moderate, or severe according

to Global Initiative for Asthma (GINA) guideline [10–12], which are largely determ-

ined by lung function measurements (percentage predicted FEV1 and FEV1/FVC

ratio) [13, 14]. Whereas COPD severity is classified into four stages according to

Global Initiative for Chronic Obstructive Lung Disease (GOLD) guideline using

spirometry [7]; in which, stage I: Mild; stage II: Moderate; stage III: Severe; stage

IV: Very severe. However, there is an imperfect relationship between the degree of

airflow obstruction and the presence of symptoms [7]. For example, a patient can be

diagnosed for COPD on the bases of lung function measurement using spirometry

before his/her symptoms develop.

1.1.3 Risk Factors of Asthma and COPD

Asthma and COPD are highly complex and heterogeneous diseases, which are still

not completely understood their risk factors. However, a number of factors that

influence a person’s risk of developing asthma or COPD have been determined.

These can be possibly classified as host factors (primarily genetic) and environmental

factors. The lack of clear definitions of asthma and COPD present a significant prob-

lem in examining the role of different risk factors. For example, the characteristics

that define asthma (e.g. hyperresponsiveness, atopy and allergic sensitization) are

themselves products of complex gene-environmental interaction, and are therefore

both features of asthma and risk factors for the development of the disease [4].
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However, in people with asthma tobacco smoking is associated with an accel-

erated decline in lung function [15]. In addition, environmental factors such as

domestic mites, furred animals (such as dogs, cats and mice), cockroach allergen,

fungi, molds, yeasts, pollens, infections (predominantly viral), occupational sensit-

izers, outdoor/indoor air pollution and diet play considerable role in causing asthma

[4]. Whereas COPD prevalence, morbidity, and mortality vary across countries and

across different subgroups within a country; however, these are directly related to the

prevalence of tobacco smoking [7]. Although cigarette smoking is a well-established

risk factor of COPD [16], others such as genetic factors, longstanding asthma, indoor

and outdoor air pollution, passive smoking exposure, biomass smoke, occupational

exposures, diet, and tuberculosis are identified as possible independent risk factors

of COPD [16]. There is also evidence that the risk of developing COPD is inversely

related to socioeconomic status [17].

1.1.4 Similarities and Differences between Asthma and COPD

Although the clinical symptoms of both diseases are caused by airway narrowing as a

result of inflammation in the airways [7], it is still not fully understood their sharing

and distinctive characteristics due to the complex and heterogeneous nature of the

diseases [2]. Over the last several decades, there has been a considerable discussion in

respiratory literature, largely after the Dutch and British hypotheses were reported.

The Dutch hypothesis suggested that all obstructive diseases (including asthma and

COPD) are manifestations of the same basic disease process; whereas the British

hypothesis suggested that asthma and COPD are two distinct entities generated by

different mechanisms [18].

Recently, PJ Barnes suggested that asthma and COPD have marked differences

in terms of cellular mechanisms, inflammatory mediators, and response to therapy,

but they also share a number of characteristics in which some patients with COPD

also had characteristics of asthma [19, 20]. Similarly, Welte & Groneberg reported

that these two diseases are distinctive along all stages of severity with some overlap

[21]. In addition, Bianchi et al, suggested that individuals with COPD may have

features of asthma such as a mixed inflammatory pattern with increased eosinophils

[22]. Furthermore, Kesten et al, reported that COPD can coexist in individuals
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with asthma (especially with severe asthma) who are exposed to noxious agents,

particularly cigarette smokers, and may develop a fixed airflow limitation and a

mixture of “asthma- like” and “COPD-like” inflammation [23, 24]. There is also

epidemiological evidence that long-standing asthma on its own can lead to fixed

airflow limitation [25].

Over the last five years a number of studies [2, 26–34] have performed a com-

prehensive review regarding asthma and COPD overlap, and fairly concluded that

there is overlap between the two diseases, but they did not categorically stated the

degree of overlap at different levels of the diseases.

1.1.5 Profiling of Bacterial Communities in Asthma and

COPD

The bacterial connection with asthma and COPD is well-documented. However,

the role of bacterial infection in the pathogenesis of asthma and COPD, and how

it should be treated has been an ongoing source of debate. Bacterial infections are

involved in almost 50% of COPD exacerbations. However, only a few of pathogens

have been consistently identified in the airways which were mainly using culture-

based approach, and the bacterial microbiota in acute exacerbations remains largely

unknown [35]. Previously, it has been suggested that infections (viral and bacterial)

may contribute to the pathogenesis and progression of COPD [36], and bacteria

may induce inflammation at both stable and exacerbation states [37]. Some COPD

studies also showed the relationship of COPD pathogenesis and exacerbations with

bacteria colonisation and infection [38], and an association between bacterial colon-

ization and airway inflammation [39], and airway bacteria load and decline in FEV1

[40]. Whereas in asthmatic studies, it has been suggested that bacterial organisms

may increase airway hyperresponsiveness and inflammation [41], and has been de-

scribed the role of bacteria colonization in perpetuating inflammation in the lower

airways [42–44]. In addition, asthmatic patients with neutrophilic inflammation are

commonly culture-positive for Haemophilus influenza [42, 43], which may suggest

the potential role of bacteria presence (especially H. influenza) in the lower airway

in the continuation of neutrophilic airway inflammation [44].

The accurate diagnosis and treatment of bacterial infection in individual patient
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remains a major challenge. Antibiotics have been used as standard management for

the treatment of exacerbations of COPD patients, but their impact remain unreli-

able [45]. The trials that have assessed the effect of antibiotics in COPD subjects

generally are not good quality and were not well controlled. A major challenge re-

mains how to define the potential role of bacteria in the inflammatory process and

how best can optimize the use of antibiotics without overutilize in order to avoid

drug resistance. Alternative strategies to treat infection in COPD remain very lim-

ited; however, recent trials of the long-term use of macrolides have shown promising

results [46], and found significant reduction in the rate of exacerbations.

Since the aforementioned data were predominantly derived from culture-based

approach, the presence of other important organisms involved in asthma or COPD

that were not easily cultured were not explored fully. Recent technological advances

in diagnostic techniques, particularly the use of 16S sequencing has demonstrated

that there are a large range of bacteria present in the lower respiratory tract, and

the secrets of the human microbiota are beginning to be unravelled, and reveal

the existence of a complex and diverse array of bacterial communities. The 16S

rDNA sequence approach do not rely on growing organisms in pure culture (it is a

culture-independent technique), in which bacterial community profiles were gener-

ated using the high-throughput sequencing that makes the detailed assessment of

airway bacterial colonisation possible. The microbiome is defined as the total col-

lection of microbiota that resides within humans or on their skin surface [47]. Thus,

the lung microbiome is the complete collection of microbiota living in the airways

and parenchymal tissues [47].

Recently, asthma and COPD studies started to perform culture-independent

microbial community profiling to characterise the lower airway microbiome which

generated from 16S rDNA based sequencing with the aim to assess a wide range of

microbial communities abundance at different taxa levels including bacteria phyla

(such as Firmicutes, Actinobacteria and Bacteroidetes and Proteobacteria) and gen-

era (such as Haemophilus, Streptococcus and Moraxella). In asthmatic study, it has

been found that Haemophilus appeared abundant in a younger atopic men subgroup

who have elevated level of neutrophils [44]. Despite the abundance, the functional

role of Haemophilus in causing/mediating the neutrophilic inflammation and po-
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tential implications for pathogenesis of the disease is still unknown. In addition,

the prevalence of other bacterial phyla and/or genera in other airway inflammations

such as eosinophilic are poorly understood although the prevalence of Firmicutes,

Actinobacteria, Bacteroidetes and Proteobacteria appeared to increase significantly

in non-neutrophlic asthmatics subgroup [44].

So far, no single study has compared the patterns of microbiome communities

(composition), at either phylum or genus level, across asthma and COPD neither

at stable nor at exacerbation states. Thus, the patterns of microbiome communities

profiling (which not represented by counting the bacterial loads) across both diseases

are largely unknown. Investigating the changes in the relative abundance of members

of the microbial communities across asthma and COPD with respect to the frequency

and severity of exacerbation due to cellular inflammation would be a step forward to

understand the role of bacteria in the airway diseases, and may unfold new insights

and approaches to the pathogenesis and treatment of lung infection in both diseases.

1.1.6 Role of Cytokines in Asthma and COPD: In Relation

to Cellular Profiles

Cytokines are extracellular signaling proteins expressed by different cell types in-

volved in cell-to-cell interactions [48]. Asthma and COPD are characterized by

chronic inflammation and remodeling of the airways [49, 50], and cytokines play a

significant role in orchestrating the chronic inflammation and structural changes of

the respiratory tract in both diseases [48]. Recently, cytokines have become import-

ant targets for the development of new therapeutic strategies for both asthma and

COPD [20].

For more than a decade, a considerable effort has been made to define asthma

and COPD at an inflammatory cellular level with the aim to understand the poten-

tial mechanisms in order to improve the diseases management and treatment. The

role of cellular profiles such as eosinophils and neutrophils in the airways inflamma-

tion are well documented, and it has been recognized that the airways inflammation

in asthma is characterized by an eosinophilic and in COPD predominantly by neut-

rophilic inflammation [19, 51–53].

Eosinophils are white blood cells that consist about 2 to 4% of the total leuk-
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ocytes (white blood cells), and they increase in response to allergies and parasitic

infections, and are infrequent in the blood, but many in the mucous membranes of

the respiratory tracts [54]. For example, in most asthma phenotypes, eosinophils

levels incremented in the tissues, blood and bone marrow, and are positively cor-

relate with the disease severity [55]. Whereas neutrophils are the most abundant

white blood cells, consists of about 60-70% of the circulating leukocytes [56], and

increased level of neutrophils were positively associated with the severity of COPD

[57]. Both eosinophils and neutrophils are essential in healthy lungs and important

component of innate immunity that protect individuals against infection. However,

elevated level of eosinophils in the airways may cause exacerbations and irreversible

damage to the airways [58]. Similarly, for example in COPD, increased level of

neutrophils in the inflammation sites could be harmful and may play a key role in

the destructive processes that could be responsible for potential damage of healthy

tissues [59].

Several cytokines (including IL-5, IL-6 and TNFα) [20, 60–62] and cellular pro-

files (such as eosinophils and neutrophils cell-counts) [19, 51–53] were associated

with asthma or/and COPD pathogenesis, but the direct role of the cytokines or in

relation to the cellular profiles in causing or mediating the inflammation were not

fully understood. However, TH2 derived cytokines (such as IL-4, IL-5 and IL-13)

were identified as critical inflammatory mediators in orchestrating the eosinophilic

inflammation [60, 63]. In addition, increased level of key proinflammatory cytokines

including IL-1β and tumor necrosis factor-a (TNFα) prolong eosinophil survival in

asthmatic airways [7]. Furthermore, cytokines such as TNFα, IL-1β and IL-6 amp-

lify the inflammatory process (involving neutrophils) and may contribute to some

of the systemic effects of COPD [8]. The identified cytokines which are expected to

involve in asthma and COPD, and their networks are displayed in figures 1.1 and

1.2, respectively.
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Figure 1.1: Cytokines involved in Asthma
(The figure is reproduced from Barnes PJ, J. Clin. Invest. 118:3546–3556 (2008). [20])

Figure 1.2: Cytokines involved in COPD
(The figure is reproduced from Barnes PJ, J. Clin. Invest. 118:3546–3556 (2008). [20])
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It is well established that asthma and COPD are heterogeneous diseases with

respect to clinical characteristics, cellular sources of inflammation, and response

to common therapies. However, understanding the entire heterogeneity remains

elusive, and the differences in cytokine-driven inflammation (such as eosinophilic

and neutrophilic) may underlie some of the heterogeneity. Thus, cytokine profiles

may serve as main targets for development of novel anti-inflammatory drugs to

reduce the inflammation and subsequent exacerbations. However, the patterns of the

mediators with respect to the cellular profiles and other outcomes (such as diseases

lung function severity and frequency of exacerbation) across different population

subgroups should have to be investigated for effective treatment.

1.1.7 Future Cytokine-based Treatment Targeting Asthma

and COPD Subgroups

Current guidelines outline the diagnostic and management strategies for both asthma

and COPD, and the standard treatment of subjects is predominantly a combination

of inhaled corticosteroids and long-acting beta2-agonists. However, the symptoms of

many patients remain poorly controlled as the treatment approach and management

strategies do not consider the heterogeneity of the diseases population. The pres-

ence of eosinophilic and neutrophilic inflammation, and reversibility of lung function

(based on spirometry measurements) were earlier viewed as distinguishing features

between asthma and COPD. However, this paradigm has been changed recently due

to the recognition of the heterogeneity of the diseases. For example, asthmatics and

COPD subjects appeared to share common physiologic abnormalities of airflow lim-

itation (obstruction on lung function); symptoms such as shortness of breath, chest

tightness, wheezing and coughing. In addition, several studies showed that fraction

of asthmatics do not have elevated level of sputum eosinophils, but those subjects

(with non-eosinophilic inflammation) have increased features of neutrophilic inflam-

mation [64]. Furthermore, eosinophilic inflammation (differential sputum eosinophil

cell count > 3%) was observed in up to 40% of COPD patients [65].

Currently, there are very limited therapies for both asthma and COPD. Thus

the development of novel treatment strategies is an urgent need, but it requires

a deeper understanding of the underlying inflammatory processes associated with
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the diseases pathogenesis that accounts the diseases heterogeneity. The current

treatment (therapeutic trials) has largely relied on the improvement of FEV1 as a

main outcome (the primary measure of disease severity), however FEV1 remains

a poor surrogate marker for disease activity [66–68]. Thus, effective alternative

surrogate biomarkers (beyond FEV1) that account the population heterogeneity

are needed to predict diseases outcomes such as inflammation, and frequency and

severity of exacerbation.

In recent years, increased understanding of the diseases heterogeneity in terms

of eosinophils and neutrophils cellular profiles has led to improved knowledge of

the pathogenesis of asthma and COPD and allowed new approach of treatments

to be investigated, and have already given clinicians an effective framework to use

the available treatments. For example, those asthmatics with elevated level of spu-

tum eosinophilia tend to have improved response to inhaled and systemic corticos-

teroid treatment [69]. Similarly, in COPD subjects, eosinophilic inflammation is

associated with favorable response to corticosteroid therapy [70], and reduction in

severe exacerbation rates [71]. In addition, eosinophilia (differential sputum eosino-

phils cell-count > 3%) was identified as a key mediator in differentiating the use of

new asthma targeted treatment known as mepolizumab (a humanized monoclonal

blocking antibody against IL-5) [58, 72, 73], and becomes effective in reducing the

inflammation in the airways for asthmatics who have elevated level of eosinophils.

This may provide a similar benefit for COPD patients, who have similar eosinophils

pattern, which is currently under investigation [74].

An early placebo-controlled trial study with mepolizumab (anti-IL-5) was not ef-

fective [75], but the outcome improved with patients’ classification based on sputum

eosinophils elevation (defined by sputum eosinophil percentage > 3%). Particularly

two trials showed the benefits of mepolizumab in subjects with severe asthma who

were selected based on elevated sputum eosinophilia [58, 72]. In the first trial, it has

been found a reduction in the frequency of exacerbations when the drug was given

to subjects with refractory eosinophilic asthma (despite they were on high-dose of

corticosteriod treatment) [72]. The second study was also performed in asthmatic

subjects with sputum eosinophilia and airway symptoms (despite continued treat-

ment with prednisone) and found a reduction in the number of blood and sputum
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eosinophils [58]. However, subjects who had taken the new anti-IL-5 drug did not

show consistent improvement on their lung function measurements (i.e. FEV1).

This pattern suggests that we need to consider other diseases outcomes that could

predict the inflammation and frequency of exacerbation. For instance, FEV1 ap-

peared as a poor marker to predict the exacerbations caused due to cellular profile

inflammation that is mediated by TH2 high cytokines [72].

These positive studies highlight the need to classify asthma and COPD popu-

lation into subgroup for better understanding of the diseases pathology and het-

erogeneity, and subsequently develop a new therapeutic or use existing standard

treatments targeting specific subpopulation. Whether other non-TH2 (such as TH1

or pro-inflammatory) cytokine pathways underlie airway inflammation in specific

subsets of asthma or/and COPD patients is an unresolved question. Some of the

cytokine effects on various airway components with a TH1/TH2 imbalance in mild

and severe diseases were identified and summarized in figure 1.3 on page 19. How-

ever, the potential mechanisms of these networks are not fully understood.
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Figure 1.3: Cytokine effects on various airway components with a TH1/TH2 imbalance in
mild and severe disease.

(The figure is adapted from ATS/ERS guidelines 2013 [76])

It has been observed that neutrophilia airways inflammations (sputum neutro-

phil differential cell counts above 61% [77]) was seen most often in subjects with

severe asthma and COPD, who are more likely on high doses of corticosteroids or

prednisone treatment. For example, neutrophilia has been observed in asthmatics

with acute and chronic infection [78], in subsets of severe asthmatics [79], and dur-

ing acute asthma exacerbations [80], and was associated with reduced lung function

independent of eosinophils [81, 82]. Mixed neutrophilia and eosinophilia inflamma-

tion was also reported in refractory asthma study, and found that these subjects

had lowest lung function, highest frequency of daily wheeze, and highest health care

utilization [83]. Thus, further classification of subjects with asthma and COPD ac-

cording to cellular profiles may lead to four distinctive subgroups, which are: (I) pure

eosinophilic (eosinophil > 3% and neutrophil < 61%), (II) pure neutrophilic (eosino-

phil < 3% and neutrophil > 61%); (IV) mixed granulocytic (eosinophil > 3% and
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neutrophil > 61%); (IV) and paucigranulocytic (eosinophil < 3% and neutrophil <

61%). The importance of this classification approach may provide an understand-

ing of the disease pathology in each group and facilitate the development of new

therapeutic approach targeting each subgroup. In addition, it may help to assess

whether the strategies for patients’ selection based on this classification will improve

the outcomes of the clinical trials, or adjustment of the standard treatment based

on the threshold of a particular predictive biomarker in each group. For instance,

understanding or predicting the above possible subgroups based on the patterns

of cytokine profiles may help to develop cytokine-based therapeutic targeting each

group similar to the mepolizumab (TH2 cytokines-based anti-inflammatory drug)

that appeared to be effective in reducing the eosinophilic inflammation and sub-

sequent exacerbation. The effectiveness of mepolizumab was clearly related to how

precise the patients were classified in terms of sputum eosinophilia.

There is a major advantage of using modern mathematical/statistical techniques

to characterize asthma and COPD biological heterogeneity based on cytokine pro-

files. Creating subgroups based on the activity (or lack thereof) of specific cytokine

profiles may identify mechanisms underlying each group, a new potential biomarker

that could predict treatment response or/and useful for patients’ selection in clinical

trial (to maximize the chances of success). For example, the pathophysiologic con-

nection of cytokine profiles with cellular profiles and/or other diseases outcomes in

each group may aid in the development of new cytokine-targeted therapies and may

identify biomarker that have the potential to inform clinical trial investigators as to

which subjects may respond to the therapies under study and why. In conventional

clinical trials, the efficacy of the drug under study is based on the average response

compared to placebo or a standard treatment (control group); the problem with this

approach is that the presence of a difference in average response can be driven by a

few outliers that may lead to the acceptance of the new treatment that only helps a

specific subpopulation. On the other hand, the lack of a significant difference in the

average response (primary outcome) across treatment and control groups may lead

to the rejection of the new drug even though it may be beneficial for a particular

subgroup as it has been observed in early study of mepolizumab [75]. In addition,

the identified biomarkers may also provide guidance to physicians to reduce or in-
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crease standard existing treatment as it might be cheaper compared to the new

drug (cost-effective). For example, knowledge of the state (threshold) of airway in-

flammation would allow for the adjustment of anti-inflammatory medication such as

inhaled corticosteroids, with the possibility of preventing subsequent exacerbations.

For example, three randomized controlled trials have studied the utility of following

induced sputum eosinophil counts in moderate-to-severe asthmatics to adjust the

dose of inhaled corticosteroids, and found a reduction in the frequency and severity

of asthma exacerbations when the inhaled corticosteroid dose was adjusted based

on induced sputum eosinophil counts compared to the standard-of-care method of

dose adjustment by symptoms, lung function, or rescue medication use [84–86]. The

association between sputum eosinophils and a favorable response to inhaled cor-

ticosteroids suggests a potential role for this signature as a biomarker to guide the

decision to start, continue, or change the dose of inhaled corticosteroids.

The anti-IL-5 drug emerged as effective for reducing eosinophilic inflammation

that is mediated by TH2-high cytokine. However, whether other inflammations such

as pure neutrophilic or mixed (eosinophilic and neutrophilic) are mediated by non-

TH2 mediators such as high in TH1 or pro-inflammatory is unknown and unstudied.

Therefore, the possibility of a larger degree of airway inflammation needs investiga-

tion. It is possible that other subset of patients with TH2-low may have the disease

on the basis of TH1 or pro-inflammatory mediators in which these cytokine pathways

underlie the airway inflammation. For example, understanding and distinguishing

the non-TH2 cytokine pathways underlie these and other airway inflammation in

TH2-low subpopulation may help to develop non-TH2 cytokine-based therapeutic

approach targets these pathways in specific subsets of patients, and identify new

biomarker that play a fundamental role in the clinical manifestations of a subset of

patients. Therefore, the mechanisms underlying these subgroups can be uncovered

with improved stratification of the population on the bases of a panel of cytokine

profiles patterns using appropriate statistical techniques (such as cluster analysis).

Cluster analysis has the potential to dissect the population heterogeneity based on

the patterns of input variables (cytokines) and identifies distinctive subgroups that

may have similar disease pathology (underlying pathway).
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1.2 Application of Cluster Analysis to Model Asthma and

COPD Heterogeneity

Cluster analysis is an unsupervised statistical technique that uses to uncover un-

known/hidden structures among heterogeneous individuals (subjects) by seeking

partition of the subjects into distinct subgroups based on the input variables. The

observations within each cluster are more similar (homogeneous) to each other than

between clusters. It is a useful technique to understand the variation and explore

hidden structures of complex data, and generating hypothesis for supervised studies

such as linear regression and discriminant analyses.

The application of cluster analysis to model population heterogeneity in medical

and social science studies is widespread in order to identify novel subgroups/clusters

with specific characteristics. Recently, several studies provide a view of asthma and

COPD heterogeneity through multivariate clustering approach. For example, Haldar

and colleagues [87] performed k-means cluster analysis on three asthmatic popula-

tions (predominantly mild-to-moderate asthmatics from primary care, a refractory

asthmatic from secondary care, and predominantly refractory asthmatics from ran-

domized trial in standard care) and identified five distinctive clusters. Which were

best represented by varying symptom control with the degree of eosinophilic inflam-

mation (sputum differential cell count), in which the first two clusters (early-onset,

atopic and obese non-eosinophilic) were common to both primary care and the

refractory asthmatics. The second two clusters were characterized by marked dis-

cordance between symptom expression and eosinophilic airway inflammations (early-

onset symptom predominant and late-onset inflammation predominant) were unique

to refractory asthmatics. The fifth cluster was labeled benign asthma as the subjects

within this group had little evidence of active disease.

Likewise, Moore et al. [14] also identified five asthmatic clusters using hierarch-

ical cluster analysis using only spirometric measurements and clinical characteristics;

in which subjects in cluster 1 have early onset atopic asthma with normal lung func-

tion (who were treated with two or less controller medications and minimal health

care utilization). Cluster 2 consists of subjects with early-onset atopic asthma and

preserved lung function but increased medication requirements and health care util-
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ization. Cluster 3 characterized predominantly by older obese women with late-

onset non-atopic asthma (who showed moderate reductions in FEV1 and frequent

oral corticosteroid). Subjects in clusters 4 and 5 have severe airflow obstruction with

bronchodilator responsiveness, but they are different with respect to their ability to

achieve normal lung function, age of disease onset, use of oral corticosteroids and

atopic status. Siroux et al. [88] also identified four asthmatic clusters using latent

class analysis (clustering approach). The subgroups were discriminated based on the

quality of life, and blood neutrophil counts. The first two clusters were character-

ized as active treated allergic childhood-onset asthma and active treated adult-onset

asthma. The last two subgroups consists of subjects with inactive or mild untreated

asthma (who differed by atopy status and age of asthma onset). Similarly, Just and

colleagues (2012) [89] applied cluster analysis to identify subgroups of childhood

asthma, and identified three distinctive clusters. Cluster 1 consists subjects with

severe exacerbations and multiple allergies; cluster 2 represents subjects with severe

asthma and bronchial obstruction; and cluster 3 consists subjects with mild asthma.

Cluster analysis was also applied to model COPD heterogeneity to identify dis-

tinctive subgroups. For example, Bafadhel and colleagues [90] applied the combin-

ation of factor and cluster analyses to identify exacerbations biological subgroups

in COPD. They identified four distinctive clusters, in which cluster 1 has high pro-

portion of bacterial colonization; cluster 2 consists of subjects with high proportion

of viral; cluster 3 comprises of subjects with elevated level of sputum eosinophils;

and cluster 4 consists of subjects with limited changes in the inflammatory pro-

file. These clusters were labeled as bacterial, viral, eosinophilic-predominant, and

pauci-inflammatory subgroups, respectively. Similarly, Burgel et al. [91] applied

the combination of principal component and cluster analyses to identify COPD sub-

groups using multiple clinical variables, and identified four clinical clusters beyond

the GOLD standard classification; in which subjects with varying airflow obstruc-

tion (FEV1) were assigned to different subgroups and had noticeable differences in

age, comorbidities, symptoms and predicted mortality.

Although cluster analysis has been applied separately in asthma and COPD

studies, to my knowledge (particularity at biological or cytokines level) this tech-

nique was not yet implemented to the combination of asthma and COPD studies
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in order to identify the common and distinctive subgroups of the diseases. So far,

the diseases similarities and differences were predominantly identified by comparing

the subjects characteristics across asthma and COPD at disease level as defined in

the clinic. This simple separation approach may not reflect the phenotypic hetero-

geneity of the diseases, and the crude comparison of the characteristics at higher

level may not capture the hidden subpopulation of the diseases. In clinic, a subject

is diagnosed for asthma or COPD based on the current guidelines that includes

patient perception of symptoms (that vary hugely from one patient to another and

from time to time within a patient) by incorporates the physicians perception from

their monitoring of the individuals condition. This approach is subject to consid-

erable bias and variability and shortfall of providing insight the multidimensional

characteristics and heterogeneity of the diseases population.

However, cluster analysis can uncover the common and distinctive new subgroups

of both asthma and COPD based on the entire patterns of measured variables (char-

acteristics); and comparisons can be implemented across the subgroups rather than

the diseases. In cluster analysis, the disease status (whether a subject was diagnosed

as asthmatic or COPD by a physician) is avoided whilst modeling the heterogeneity

of the population.

1.3 Proposed Approach to Model the Biological Heterogeneity

of Asthma and COPD

The characterization of asthma and COPD subgroups based on cytokine profiles

and the recognition that these subgroups are associated with significant variab-

ility in responses to the established and/or emerging therapies has motivated this

study. The need to refocus efforts to define the similarities and differences of asthma

and COPD in terms of cytokine profiles [92] is underscored by the development of

highly specific anti-inflammatory therapies because response is more likely to be

subgroup related instead of disease-specific [93]. This is perhaps best characterized

by anti–IL-5 approaches, which have demonstrated clinical responses related to un-

derlying eosinophilic lung inflammation in asthma which is mediated by TH2 high

cytokines [58, 72] and similar strategies are currently being tested in COPD [74].
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Whether other non-TH2 cytokine pathways underlie neutrophilic or other airway

inflammations in specific subsets of asthma or/and COPD patients is an unresolved

question. To enable these and further analogous developments, there is an urgent

need to define the airway cytokine profiles in both diseases. Modeling (clustering)

the biological heterogeneity of asthma and COPD jointly using sputum cytokines

may identify subpopulation who could benefit from targeted approaches that en-

hance the efficacy of the current and/or future cytokine-based treatments. Although

the existing guidelines are valuable, a better appreciation of diseases heterogeneity

and application of the emerging cytokine-based treatment targeting specific sub-

population will be important as currently there are very limited therapies for both

diseases.

In this study, we will apply cluster analysis on the panel of sputum cytokine

profiles to identify asthma and COPD common and distinctive biological subgroups

(distinguishable based on the differences in the composition of the cytokine profiles)

without taking into account the demographic, lung function and cellular markers

and disease status. However, the identified subgroups’ clinical relevance/utility will

be assessed based on the clinical outcomes such as cellular inflammations (eosino-

philic or/and neutrophilic), frequency of exacerbation, bacterial colorizations or/and

disease severity (lung function measurements).

However, clustering using the actual cytokines measurements may not be straight-

forward as these mediators have strong correlations (hidden structures) that are

currently ignored by the standard clustering techniques. To my knowledge, there is

no previous robust statistical framework (which was applied or proposed to model

the biological heterogeneity of asthma and COPD using cytokine profiles), except

the machine learning approach that was used in asthmatic study [94] and a 2-mode

graphical approach with Kamada-Kawai algorithm was applied to identify the pat-

terns of the mediators and subjects’ subgroups. However, this study did not report

the summary statistics of the mediators or other clinical characteristics across the

identified subgroups, except the graphical visualization of the cytokines and clusters.

In addition, the algorithm they have applied (i.e. Kamada-Kawai algorithm) has

serious drawbacks as many links crossings appear producing a lot of nodes overlap,

and making the reading of the graph harder in which edges can go backwards to
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the center of the map and placing close two nodes linked by long path that this can

give a false impression of closeness because of the spatial distribution of the nodes.

Thus, this approach may not be an appropriate for identifying and visualization of

the clusters using cytokine profiles, and their graph should have to be interpreted

cautiously.

Although the application of cluster analysis in respiratory research has been

widely used to discover new subgroups, the corresponding statistical issues in plan-

ning to use the right inputs variables (which account the internal patterns/correla-

tions of the variables) in clustering algorithm receive rather less emphasis. This part

of the study will emphasis in identifying the right input variables (which represent

the measured sputum cytokines) into a clustering algorithm to model the biological

heterogeneity of asthma and COPD, and subsequently to identify the common and

distinctive subgroups of the diseases. To identify an appropriate approach, an artifi-

cial data will be simulated, which has similar internal patterns as the cytokines, but

with known class membership. The artificial variables will be represented by several

variables, such as latent variables or highest loading variables (deriving from factor

analysis), and will be independently used as input into a clustering algorithm. The

statistical issues/bias of each approach in identifying the optimal clusters will be

discussed. Then the method that performs best in identifying the optimal clusters

in the artificial data will be applied to asthma and COPD cytokines study.

This study expected to provide a general guideline material for researchers that

may suggest which statistical approach could be appropriate to model the population

heterogeneity using correlated variables (such as sputum cytokines). In addition, it

will show the consequences of hidden patterns/structures of the input variables in

concealing the optimal clusters. Furthermore, this project may enhance our under-

standing of asthma and COPD heterogeneity, with respect to sputum mediators at

biological level, and may provide new insights that acknowledge the overlap and

highlights the differences between the two diseases beyond the current guidelines.
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Hypothesis

The diseases dimension is so complex and heterogeneous but the available treatment

is very limited. Therefore, I hypothesis that the mechanisms underlying asthma

and COPD can be uncovered with improved stratification by identifying specific

subgroups with distinct characteristics. Statistical techniques can identify these

subgroups and characteristics, and hence will enable a personalised or stratified

medicine approach to therapy and direct future mechanistic studies.

1.4 Objectives

• To identify a robust statistical framework to model the biological heterogeneity

and uncover hidden patterns in the data of asthma and COPD population.

• To investigate the common and distinctive biological subgroups of asthma and

COPD at stable state.

• To develop a classifier model for further subject assignments to the identified

biological subgroups.

• To investigate the common and distinctive biological subgroups of asthma and

COPD at exacerbation state.

• To assess the patterns of microbiome communities across the exacerbated asth-

matic and COPD subjects, and across the identified exacerbation biological

subgroups.
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Main Structure of the First Part of the Thesis

The goal of this part of the thesis is to identify a robust statistical approach to

model the biological heterogeneity of asthma and COPD, using sputum cytokines.

Thereafter to identify the common and distinctive subgroups of the diseases at both

stable and exacerbation states. The subsequent chapters, in this part of the thesis,

cover the following:

1. In chapter 2, an exploratory analysis was preformed in order to understand the

similarities and differences between asthma and COPD at different levels, and

the underlying structures/patterns of the inflammatory mediators (sputum

cytokines) were investigated.

2. In chapter 3, artificial data (with known class membership) that have similar

internal patterns/structures as the cytokines were simulated. Several sets of

variables that represent the artificial variables were identified, and were inde-

pendently used as input variables into a clustering algorithm. The performance

of each method was assessed.

3. In chapter 4, the method which performed best in the simulation study was

applied to identify common and distinctive biological subgroups of asthma and

COPD at stable state.

4. In chapter 5, the stable clusters (which were identified in chapter 4) were

validated on independent asthma and COPD studies using two approaches.

5. In chapter 6, the common and distinctive exacerbation subgroups of asthma

and COPD were identified using a robust statistical technique, and the pat-

terns of microbiome communities were assessed across the identified subgroups.
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Chapter 2

Asthma and COPD Heterogeneity at

Stable State

2.1 Objectives

The objective of this chapter is to build a background understanding of asthma

and COPD characteristics at stable state using descriptive and graphical techniques

at different levels (clinical and biological). This may deepen our understanding of

both diseases, and may also facilitate the ability to identify the right statistical

technique in order to model (cluster) the biological heterogeneity of the diseases in

the subsequent chapters.

2.2 Introduction

Asthma and COPD are complex and heterogeneous diseases. Thus far, our under-

standing on these diseases is limited, which partially could be due to the limitation

of an application of appropriate statistical techniques to model the heterogeneity

and uncover the hidden patterns or/and lack of relevant datasets. In this study,

subjects from prospective asthma and COPD were participated with comprehensive

demographic, clinical and biological characteristics.

In this chapter, asthma and COPD study population and their inclusion and ex-

clusion criteria, and the methods that were applied for measuring the characteristics

in laboratory or clinic will be briefed. The established cutoff of the characteristics

will be described, and the similarities and differences between the two diseases at

different levels (such as at demographic, clinical and biological) will be assessed. The

internal patterns of the sputum mediators will also be investigated using graphical

techniques.
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2.3 Methods

2.3.1 Asthma and COPD Study Population

Subjects at stable visit (eight weeks free from an exacerbation) with moderate to

severe asthma and COPD were included. They were recruited from the general

respiratory and severe asthma clinic at the Glenfield Hospital, Leicester, UK, to

enter two independent prospective observational biomarker studies [1, 90]. Asthma

was defined according to Global Initiative for Asthma (GINA) guidelines or based

on a physician’s diagnosis and severity stratified according to the GINA treatment

steps [4]. COPD patients, with a physician diagnosis, were defined according to

GOLD guidelines [7].

In brief, subjects with history of severe asthma according to GINA guidelines

and aged 18 were included in the asthmatic study, but subject who have evidence

of non-asthma respiratory diseases such as COPD were excluded from the study.

Whereas COPD subjects aged above 40 years, and their post 400mcg salbutamol

bronchodilator FEV1/FVC ratio < 0.7 who had at least had one exacerbation in the

previous year which requires corticosteroids and/or antibiotic therapy, or hospital-

ized for an exacerbation were included in the COPD study. COPD subjects who

unable to produce sputum following the induced sputum procedure and/or current

or previous history of asthma were excluded from the study. However, the presence

of co-morbidities, reported atopy to common aeroallergens, or significant reversibil-

ity on lung function testing was not an exclusion criteria in the COPD subjects. All

patients recruited provided written informed consent and could voluntarily withdraw

from the study at any time. The study was approved by the local (Leicestershire,

Northamptonshire and Rutland) research ethics committee. Details of the study

recruitment and examination process have been described elsewhere [1, 90].

2.3.2 Measurements

Information such as demographics, lung-function tests was collected. This included

a medical history, smoking history and a detailed prescription history; pre- and

post-bronchodilator FEV1, FVC and symptoms recorded using the visual analogue
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scale (VAS) for the domains of cough, dyspnea. In addition, spontaneous or induced

sputum was collected for sputum total cell and differential counts (neutrophil and

eosinophil), cytokine profiling and 16S rDNA based microbiome communities. In

addition, blood were collected for full blood count and differential cell count. Here,

the protocol for sputum induction, the collection and processing of sputum and

blood, and process of extraction the microbiome communities will be described

briefly.

Sputum and Blood Collection and Processing

Sputum Induction Protocol

Spontaneous or induced sputum was collected from subjects during visits throughout

the study. Both methods of sample collection have been shown to be similar for the

differential cell counts [95]. The subjects who were unable to spontaneously produce

sputum, the following sputum induction protocol was carried out.

1. Guidance on position: sit upright during the nebulisation procedure and lean

forward during expectoration.

2. Guidance on effective expectoration: instructions for coughing and moving

sputum successfully into specimen container

3. Guidance on contamination reduction: instructions to blow nose and to rinse

mouth prior to expectoration.

The procedure requires all subjects to have FEV1 measured before and after

pre- treatment with 400µg inhaled salbutamol to minimize bronchoconstriction.

Nebulised saline (5mL at 3, 4, and 5%) was given in sequence via an ultra-sonic

nebuliser (Ul- traNeb, DeVilbiss, Sunrise Medical, USA) for 5 minutes. After each

inhalation, subjects were asked to blow their nose and rinse their mouth prior to

coughing and expectoration of sputum. FEV1 was measured after each inhalation

to assess for bronchoconstriction and to assess safety for procedure continuation.

The process was terminated if there was more than 20% drop in FEV1, significant

symptoms or successful sputum expectoration. The sputum induction protocol used
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is depicted in figure 2.1 on page 32. All sputum samples were processed within two

hours of collection in a Class II biological safety cabinet.

Figure 2.1: Sputum induction protocol

Sputum Collection and Processing

The collected sputum sample was emptied into a petri dish and placed on a dark

background to aid visualization of sputum plugs. Sputum plugs were selected from

the saliva and were then gathered into a large condensed mass in small circular move-

ments. Sputum plugs were then removed for analysis of bacteria. The remainder of

the selected sputum was weighed and incubated with 8 times the volume/weight of

Dulbecco’s phosphate buffered saline (D-PBS) (Sigma, Poole, Dorset). The sputum

sample was dispersed by gentle aspiration into a Pasteur pipette and placed onto a

bench rocker for 15 minutes on ice and then centrifuged at 790g for 10 minutes at

4oC. This was followed by removal of 4 times the volume/- weight of this D-PBS su-

pernatant with storage in 300µL aliquots at -80 oC for further mediator (cytokines)
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analysis. The remainder of the D-PBS sputum suspension was incubated with 0.2%

dithiothreitol (DTT) (sigma, Poole, Dorset), placed on a bench rocker on ice for

15 minutes and filtered through pre-wet 48 µm gauze. 100 µL of this filtrate was

removed for quantification of colony forming units and an additional 500 µL was

removed for bacteria quantitative real time PCR (qPCR) analysis. A further 10 µL

of the filtrate was removed to assess the total cell count and cell viability using a

Neubauer haemocytometer. The haemocytometer was flooded with 10 µL of the

filtrate mixed with 10 µL of 0.4% trypan blue (Sigma, Poole, Dorset) and all cells

were counted in the four corner squares of the haemocytometer to include viable,

non-viable and squamous cells. The remainder of the filtrate was then further cent-

rifuged for 10 minutes at 790g at 4oC. The DTT supernatant was removed into

300µL aliquots and stored at -80oC for further mediator analysis. Following DTT

supernatant removal, the cell pellet was re-suspended in a small volume of D-PBS

and adjusted to make a cell suspension of 0.50 – 0.75 x106 cell/mL with D-PBS for

cytospin preparation. 75 µL of cell suspension was placed in cytocentrifuge cups

and spun at 450 rpm for 6 minutes. The slides were then air dried for 15 minutes

at room temperature and stained with Rowanowski stain (0.5g Eosin, 1.5g Azure-

B-thiocyanate, 10nM HEPES buffer pH7.2, DMSO). A differential cell count was

obtained by counting > 400 non-squamous cells on the prepared slide.

16S rDNA Based Microbiome Community

DNA Extraction From Sputum Samples: Total genomic DNA for all sputum

samples was extracted using the QIAamp DNA Mini Kit assay (Qiagen, California,

USA). DNA isolation from the Gram positive bacteria extraction method was fol-

lowed as per the manufacturer’s protocol, which involved hydrolysis of peptidoglycan

cell wall layer with 20mg/ml lysozyme and incubated at 37oC for 30 minutes. Fur-

ther lysis was performed with Proteinase K digestion of contaminating proteins and

nucleases released from the cells at 55oC for 30 minutes and 95oC for 15 minutes.

The remainder of the extraction was done according to the ”DNA Extraction from

Tissue” of the manufacturer’s protocol. This involved adding the cell lysate formed

from the above step with 200µl absolute ethanol to the QIAamp spin column and

centrifuging briefly to adsorb the DNA optimally to the column’s silica gel mem-
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brane. This was followed by wash steps with buffer AW1 and AW2 to remove the

impurities. Finally DNA was eluted in 200µL of DNAse, RNAse free distilled water

and stored at -20oC.

Production of 16S rDNA bacterial amplicon library: For 454 sequen-

cing of the bacterial community one way/unidirectional reads amplicon sequencing

method was chosen, and Lib-L based method for amplicon library production was

followed according to ”Amplicon Library Preparation Method Manual, GS FLX

Titanium Series (October 2009)”.

Primer design and sequence: Primers for 454 sequencing called as fusion

primers consisted of following four parts Adaptor sequence - Both forward and re-

verse primer have an adaptor sequence starting at the 5’ prime end of the primers

called as Lib-L/A and Lib-L/B respectively. These sequences allow binding of single

stranded (ss) DNA to Lib-L capture beads and subsequent annealing to emulsion

PCR (emPCR) and sequencing primers. Key sequence- This is a 4 base sequence

”TCAG” present in both forward and reverse primer in the 5’-3’ orientation down-

stream of the adaptor sequence. It is used as calibrator for the signal intensity pro-

duced during the sequencing flowgram cycle. Multiplex identifier (MID) sequence-

For each 454 run all the samples were tagged with a unique 10 bp sequence acting

as a barcode for sample identifying in downstream sequence analysis. These unique

MIDs are introduced in the primer sequence immediately downstream to the key

sequence. Since the 454 run performed was unidirectional sequencing only the for-

ward primer had a MID sequence. These MIDs were chosen from the Roche’s 454

set of designed MIDs for Genome Sequencer FLX titanium series (Using Multiplex

Identifier (MID) Adaptors for the GS FLX Titanium Chemistry - Extended MID

Set, April 2009).

Template specific primer sequence - Primers targeting the eubacterial 16S rDNA

were chosen based on the following criteria:

1. The 16S oligonucleotides (oligo) were conserved amongst most eubacterial

groups and at the same time non-specific to eukaryotic DNA.

2. Aim was also to include as many 16S hypervariable region for bacterial com-

munity discrimination within the optimal size PCR product for 454 sequencing.
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For all 454 sequencing universal 16S primers 926F (Muyzer et al., 1995) and

1391R (Lane et al., 1985) were utilised for amplification of hypervariable regions V6

toV8.The 16S oligo sequence are given below in Table 4.2. In total 31 fusion primers

consisting of 30 MID tagged 454 forward primers and a single 454 reverse primer

were designed and were sourced from Sigma-Aldrich (Dorset, UK).

PCR conditions, Gel run and purification: After optimisations of PCR

components yielding PCR product from most samples and the different barcoded

primers, final PCR reactions were done in 50µl volume containing 1x High-Fidelity

PCR buffer, 0.8µM of each forward and reverse primer, 2.5mM MgCl2, 0.25mM of

each deoxyribonucleotide triphosphate (dNTP) (Promega, WI, USA), 0.8M Betaine

HCl (Sigma-Aldrich, Dorset, UK), 0.08mg/ml BSA (NEB ,UK) and 0.5µl(1U) Phu-

sion High-Fidelity DNA Polymerase (Finnzymes, Finland). 1µl DNA template was

used for PCR reaction. Each PCR batch had a negative control with DNA replaced

by 1µl molecular grade water. PCR cycle was performed in Dyad DNA engine in-

volving an initial denaturation at 98oC for 5 minutes and 28 cycles of 98oC for 40s,

58oC for 40s, 72oC for 20s with a final extension at 72oC for 4 minutes producing

approximately 570bp long amplicon. PCR product size and purity were checked

by performing gel electrophoresis as described in section (2.4.3). Most samples

produced a single specific product with exception of few samples that had some

non-specific products amplified as well. This might be due to the broad range of the

primers utilised, producing extraneous products in presence of low amount of target

gene and/or high host DNA contamination. For these samples gel purification was

performed on the gel cut of the amplicon of interest using QIAquick Gel Extraction

kit (Qiagen) following manufacturer’s protocol. Rest of the PCR reactions were

cleaned of PCR constituents and primer dimers using the Agencourt R© AMPure R©

XP magnetic bead purification system (Beckman Coulter, USA) according to man-

ufacturer’s instructions.

DNA quantification, standardization and pooling: Subsequent quantifica-

tion was via the Quant-iTTM PicoGreen R© (Molecular Probes Inc., Invitrogen, USA)

assay technique as per the manufacturer’s instructions. Fluorescence of samples was

assessed in duplicate along with 2 fold serially diluted standard DNA ranging from

100ng/µl to 1.56ng/µl, at 480 nm excitation and 520 nm emission detection, using a
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FluoStar Omega Spectrophotometer (BMG Labtech, UK). Concentration (ng/µl) of

dsDNA in samples was extrapolated from the standard curve and used to determine

the concentration in molecules/µl. Each sample was then standardized with 1 x TE

buffer to 109 molecules/µl. Pooled amplicon libraries were prepared using 5 µl of

the standardized amplicons from each sample allocated in a 454 quarter run. Pur-

ity of the pooled amplicon library was verified using the Agilent 2100 Bioanalyzer

(Agilent Technologies, UK) high-sensitivity dsDNA kit before they were dispatched

for sequencing utilising the Genome Sequencer FLX Instrument titanium series (454

Life Sciences, Roche Diagnostics, UK) to Liverpool (Center for Genomic Reasearch,

Liverpool, UK).

Blood Collection and Processing

A volume of 10mL of venous blood was collected by venepuncture and collected

into serum gel activator (coated with silica particles to enable clotting) and EDTA

plasma (coated with K2 to prevent clotting) prepared containers. These were left

to stand upright for 1 hour and then centrifuged at 1700rpm for 10mins at room

temperature. Venous blood was taken to measure full blood count, differential cell

count.

2.4 Asthma and COPD Characteristics

Here the recoded demographic, clinical characteristic and cellular profiles, and their

established clinically relevant cutoff were described. In which, the diseases severity is

defined according to the lung function measurements, cellular airway inflammations

based on eosinophil and neutrophil cell-counts, and bacterial colonization according

to colony-forming unit (CFU) cutoff or positive culture.

2.4.1 Demographic Characteristics

Information such as age, height, weight, gender, smoking status (never smokers,

ex-smokers and current-smokers) and duration of disease were recorded. Pack-year

history (the amount a subject has smoked over a long time) is calculated by mul-

tiplying the number of packs of cigarettes smoked per day by the number of years
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the person has smoked. In addition, body mass index (BMI) was calculated as

(weight(kg)/height2(m)).

Lung-function Measurements

Spirometry lung function measurements were carried out in accordance with the joint

American Thoracic Society/European Respiratory Society (ATS/ERS) guidelines

[96]. In which pre and post 400 µg salbutamol bronchodilatation forced expiratory

volume in the first second (FEV1) (which is the volume exhaled during the first

second of a forced expiratory maneuver started from the level of total lung capacity),

and forced vital capacity (FVC) (which is the total amount of air exhaled during

the FEV test) were recorded. The best out of three consecutive blows to record

the FEV1 and the FVC was then used. The corresponding FEV1/FVC ratio was

calculated. In addition, pre and post FEV1 percentage predicted were calculated

for each subject using corresponding pre or post- FEV1, age, height and gender as

reported here [96][97]. Formulated as follows;

• Predicted FEV1% = { FEV1

(0.0430∗height−0.029∗age−2.49)
}∗100, for male

• Predicted FEV1% = { FEV1

(0.0395∗height−0.025∗age−2.60)
}∗100, for female

Diseases Severity Based on Lung-function Measurements

The severities of the diseases were categorized using (preFEV1/FVC) ratio and

postFEV1PercentagePredicted (postFEV1%) cut-off according to GINA and GOLD

guidelines.

1. Stage I: Mild: preFEV1/FV C < 0.70 and postFEV1% ≥ 80

2. Stage II: Moderate: preFEV1/FV C < 0.70 and postFEV1% = [50 - 79]

3. Stage III: Severe: preFEV1/FV C < 0.70 and postFEV1% = [30 - 49]

4. Stage IV: Very Severe: preFEV1/FV C < 0.70 and postFEV1% < 30
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Bacterial Colonization

Semi-quantitative bacterial analysis was performed by colony forming units (CFU)

estimation in accordance to previously described methods [97] [98]. In which 900 µL

of sterile D-PBS solution was placed in 5 sterile eppendorfs labelled as 101, 102, 103,

104, 105 and serial dilutions of the 100µL DTT filtrate removed during the sputum

processing procedure were made. Three 20µL drops were placed from each serial

dilution onto chocolate and blood agar media. Each plate was then incubated for

24 hours in 5% CO2 at 37oC. After incubation, counts were made from the dilution

with <100 CFU and averaged for each of the droplets to determine a total CFU load.

Positive bacterial colonization was defined as CFU greater than 107/ml sputum or

positive culture [90, 98].

Visual Analogue Scale

The visual analogue scale (VAS) for the domains of i) cough ii) breathlessness (dys-

pnea) and iii) wheeze was used to record symptoms [99] [100]. Each subject was

asked to draw on a 100mm line with ‘no symptoms’ at one end (0 mm) and ‘the

worst symptoms ever’ (100 mm) at the other for each symptom domain.

Cellular Profiles

In this study, cellular profiles (such as eosinophils and neutrophils) are collected

from both sputum and blood. Subjects with sputum eosinophil and neutrophil dif-

ferential cell counts above 3% [64, 100] and 61% [77] were defined as eosinophilic or

neutrophilic, respectively. Further stratification of the subjects into four subgroups

on the basis of their sputum cell counts was also performed: pure eosinophilic (eos-

inophil > 3% and neutrophil ≤ 61%), pure neutrophilic (eosinophil ≤ 3% and neut-

rophil > 61%), mixed granulocytic (eosinophil > 3% and neutrophil > 61%), and

paucigranulocytic (eosinophil ≤ 3% and neutrophil ≤ 61%). Then the proportions

of asthmatics and COPD subjects in each subgroup were assessed.
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2.4.2 Biological Mediators (Sputum Cytokines)

There are little direct comparisons between asthma and COPD on the cytokine

profiles. In this study a number of sputum cytokines (mediators) from patients

with severe asthma and COPD were measured from sputum cell-free supernatant

using the Meso Scale Discovery Platform (MSDQR Gaithersburg, MD, USA) as

previously described [92]. The mediators that have detectable range in over 50% of

the samples in both asthma and COPD subjects were used for analysis in this study.

The mediators which satisfy this criteria are: IL-1β, IL-5, IL-6, IL-6R, IL-8, IL-10,

IL-13, CCL-2, CCL-3, CCL-4, CCL-5, CCL-13, CCL-17, CCL-26, CXCL-10, CXCL-

11, TNFα, VEGF. These mediators can biologically be classified as TH 1 derived,

TH 2 derived, and proinflammatory cytokines [48]. In which IL-5, IL-13, CCL-13,

CCL-17 and CCL-26 as TH2 derived; CXCL-10 and CXCL-11 as TH1 derived; and

IL-β, IL-6, IL-6R, IL-8, CCL-2, CCL-3, CCL-4, CCL-5, TNFα and VEGF as pro-

inflammatory mediators. These mediators will be used to explore the biological

heterogeneity of asthma and COPD in the subsequent chapters. However, in this

section, how the cytokines were extract from sputum, their lower limit of detection

and quantification, and the platform used to measure these cytokines (Meso Scale

Discovery) will be briefed.

Laboratory Measurement of Sputum Cytokines

A wide panel of cytokines was measured using the MSD platform from the sputum

of the patients according to the manufacturer’s instructions. In brief, 25µL of the

cytokine assay diluents was added to the plate and incubated for 30 minutes. This

was followed by the addition of 25µL of sputum D-PBS supernatant and incubated

for 2 hours. The plate was then washed three times with diluted wash buffer and

25µL of detection antibody was added. After a further incubation period of one

hour and a repeated wash step, 150µL of read buffer was added and the plate was

read.
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Meso Scale Discovery Platform: an Analytes measurement

Meso Scale Discovery is analyte measurement of assays that provides a rapid and

convenient method for measuring the levels of profiling cytokines within a single or

small-volume sample. Although it is similar to a traditional ELISA, Meso Scale Dis-

covery Electrochemiluminsence (MSD-ECLU) uses non-radioactive electrochemilu-

minescent (ECL) labels for ultra-sensitive detection. The Meso Scale Discovery MSD

assay platform utilizes Ruthenium (II) trisbipyridine (4-methylsulfone) [Ru(bpy)3]

that, once conjugated to the analyte, serves as the tracer in competitive assays. ECL

labels generate light when stimulated by electricity in the appropriate chemical en-

vironment. High binding carbon electrodes in the bottom of microplates allow for

easy attachment of biological reagents. MSD assays use ECL labels that are con-

jugated to detection antibodies. Electricity is applied to the plate electrodes by an

MSD instrument leading to light emission by labels. MSD’s assays improve sens-

itivity, expand the dynamic range, enable measurement of multiple analytes from

a single sample (i.e. multiplexing), and work well in difficult sample types. Light

intensity is then measured to quantify analytes in the sample [www.mesoscale.com].

Lower Limit of Quantification and Detection of the Cytokines

The lower limit of quantification (LLOQ) and detection (LLOD) for each kit were

determined from the respective standard curves for each cytokine. The LLOQ was

defined as the lowest concentration on the standard curve that satisfies the following

criteria [101]:

• A measured concentration within 25% of the nominal value

• And a coefficient of variation (%CV) less than 25%

The LLOD was defined as the lowest concentration on the standard curve whose

readout was greater than 2.5 standard deviations above that of the blank. In this

analysis, for the samples that were below the LLQ, a value of the (LLQ/2) was

assigned. The LLD and LLQ for the mediators which used in this analysis are

depicted in table 2.1.
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Table 2.1: Sputum mediators lower limit of detection (LLD) and quantification (LLQ)

Variable LLQ LLD

IL-1β (pg/ml) 2.56 1.58

IL-5 (pg/ml) 0.64 0.476

IL-6 (pg/ml) 0.64 0.516

IL-6R (pg/ml) 0.64 0.443

IL-8 (pg/ml) 2.56 0.617

IL-10 (pg/ml) 3.2 2.17

IL-13 (pg/ml) 16 6.75

CXCL-10 (pg/ml) 12.8 3.2

CXCL-11 (pg/ml) 3.2 1.24

CCL-2 (pg/ml) 3.2 2.5

CCL-3 (pg/ml) 16 13.2

CCL-4 (pg/ml) 16 6.05

CCL-5 (pg/ml) 3.2 1.21

CCL-13 (pg/ml) 16 13.4

CCL-17 (pg/ml) 0.64 8.93

CCL-26 (pg/ml) 3.2 0.932

TNFα (pg/ml) 0.64 0.31

VEGF (pg/ml) 400 125
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2.4.3 Descriptive Statistical Analysis

Subjects from severe asthma (according to GINA) and COPD (according to GOLD)

were combined based on the common measurements that exist in both studies at

stable visit. However, prior to merging, consistencies of all common measurements

across the two studies were thoroughly checked using appropriate statistical and

graphical techniques. Distributions of continuous variables were assessed, and nat-

ural logarithm transformations of positive skewed variables were used in subsequent

analyses, as appropriate. As distributions of all sputum cytokines were positively

skewed, analysis was carried out on their logarithmic values throughout. Thus,

descriptive data analysis was performed separate on the demographic, clinical and

biological characteristics across asthma and COPD.

Discovering and understanding the entire relationship in dimensional data is

quite problematic, particularly when the underlying structures are largely unknown.

Therefore, to understand the overall patterns of the data across asthma and COPD,

principal component analysis (PCA) was performed separately on demographic and

clinical characteristics, and then on sputum mediators, and are presented graph-

ically across their first two principal components. PCA is a linear combination of

observed variables to form new independent latent variables called components. In

addition, correlation matrices of the cytokines are reported graphically as a heat-

map. Furthermore, the variables (cytokines) subgroups (based on their correlation

matrices) were investigated whether the cytokines were arranged into homogeneous

and biologically meaningful subgroups using the Clustofvar [101] R package proced-

ure. This procedure organises the set of variables into hierarchical clusters, and the

results are presented graphically as dendrogram showing cytokines in each subgroup,

and the distance between the subgroups.
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2.5 Descriptive Results

2.5.1 Demographic and Clinical Characteristics

Preliminary descriptive analysis (group comparisons using analysis of variance, and

chi-square test for continuous and categorical variables, respectively) on the demo-

graphic and clinical characteristics was performed across asthma and COPD subjects

at disease level. Normal data were presented as arithmetic mean with standard er-

ror of the mean (SEM), log-transformed data as geometric mean with corresponding

95% confidence interval (CI). The χ2 test or Fisher exact test was used to compare

proportions, and 1-way ANOVA was used to compare means across multiple groups.

Non-normal data as median with 1st and 3rd interquartile range, and Kruskal-Wallis

test was used to compare subgroups. The results are depicted in table 2.2 on page

44.
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Table 2.2: Statistical summaries of demographic and clinical characteristics across asthma
and COPD at stable state that shows the similarities and differences between the two
diseases

Variable Asthma COPD P-value

Male (%) 43 (50) 53 (70.7) 0.008

Current or Ex- smokers [n (%)] 32 (37.2) 72 (96.0) < 0.0001

Pack -year historys 4.6 (2.98 - 7.26) 40 (34.46 - 46.39) <0.0001

Age (years)+ 54 (1.3) 69 (1.1) <0.0001

Duration of Disease (years) 21 (16.4 - 26.5) 5 (4.12 - 6.55) <0.0001

BMI (kg/m2)+ 30.4 (0.8) 25.7 (0.5) <0.0001

Exacerbation number of steroidsδ 3 (0.23) 4 (0.31) 0.007

Maintenance prednisolone dose use [n (%)] 52 (60.5) 8 (10.7) <0.0001

Daily Prednisolone dose (mg)∗ 10 (7.5 - 15) 5 (5 - 5) 0.002

Daily Inhaled Corticosteroid dose (mcg/day)∗
a

1600 (100 - 2000) 1200 (800 - 2000) 0.05

Pre FEV1 (L)+ 2.15 (0.1) 1.28 (0.1) <0.0001

Pre FEV1/FVC ratio (%)+ 67.6 (1.5) 49.8 (1.6) <0.0001

Pre FEV1 Predicted (%)+ 74.6 (2.4) 45.4 (2.1) <0.0001

Post FEV1 (L)+ 2.32 (0.09) 1.32 (0.06) <0.0001

Post FEV1 Predicted (%)+ 79.8 (2.4) 47.1 (2.1) <0.0001

Sputum Neutrophil count (%)+ 63.2 (2.5) 69.7 (2.5) 0.07

Sputum Eosinophil count (%) 2.1 (1.38 - 3.1) 1.4(0.98 - 1.93) 0.14

Sputum Macrophage count (%) 16.7 (13.41 - 20.78) 16.2 (13.3 - 19.8) 0.84

TCC (x106cells/gsputum) 1.64 (1.28 - 2.11) 3.34 (2.53 - 4.41) <0.0001

Blood Eosinophil x109/L 0.23 (0.19 - 0.29) 0.22 (0.19 - 0.26) 0.63

Blood Neutrophil x109/L+ 5.81 (0.2) 5.59 (0.2) 0.5

CFU >107/ml or positive culture (n[%]) 16 (18.6) 30 (40) 0.003

VAS-cough (mm)+ 34 (2.7) 44 (3.4) 0.021

VAS-dyspnoea (mm) + 34 (2.8) 46 (3.0) 0.004

Definition of abbreviations: VAS= Visual Analogue Score; BMI= Body Mass Index; FEV1=Forced Expiratory
Volume in the First Second; FVC=Forced Vital Capacity; TCC=Total sputum cell count CFU= colony forming
units. Data presented as geometric mean (95% CI) unless stated;+Mean (standard error of mean (SEM)); *median
(1st and 3rd quartile); Dose for only those subjects prescribed daily prednisolone; sPack-year history of current
and ex-smokers; abeclomethasonedipropionate equivalent; δ= Total number of times a patient exacerbated and took
high dose of steroids for at least three days in the last 12 months.

As we observe in the table above, there are significant differences between asthma

and COPD in many characteristics. For example, COPD subjects are more likely

to be men and older, lower in BMI, high in symptom visual analogue scores, have

low lung function measurements, and with high proportion of bacterial colonisation

compared to the asthmatic subjects. However, there are no significant differences

between the two diseases in sputum and blood eosinophil and neutrophil cell-counts.

In addition, the subjects in each disease were categorized according to their lung

severities (airflow obstruction) based on lung function measurements. Therefore,

23.3% of asthmatic and 2.8% of COPD subjects have mild, 24.4% of asthmatic and

31.9% of COPD have moderate, 7.0% of asthmatic and 37.5% of COPD have severe,

and 2.3% of asthmatic and 18% of COPD have very severe airflow obstruction.
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Furthermore, the subjects in both diseases were separately assessed their inflam-

mation based on their cell-counts. In which 25.9% of asthmatic and 13.7% of COPD

subjects are pure eosinophils; and 37.6% of asthmatic and 52.0% of COPD are pure

neutrophils; 15.3% of asthmatic and 17.8% of COPD are pausi, and 21.2% asthmatic

and 16.4% of COPD are mixed granulocytic.

Moreover, principal component analysis was performed on the above continuous

demographic and clinical characteristics to understand the overall patterns of the

asthma and COPD overlap, and graphically presented across their first two principal

component scores in figure 2.2 on page 45.

Figure 2.2: Clinical characteristics across asthma and COPD at stable state which dis-
played on the first two principal components scores

As shown in the figure above, asthma and COPD are quite distinctive on their

demographic and clinical characteristics. This means that the two diseases can be

easily distinguished using the combination of demographic and clinical characterist-

ics.

2.5.2 Sputum Biological Mediators

To understand patterns of the sputum cytokines across asthma and COPD, descript-

ive analysis was preformed and results are presented as summary statistics in table

2.3 on page 46.
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Table 2.3: Statistical summaries of sputum mediators across asthma and COPD at stable
state that represent the similarities and differences between the two diseases

Variable Asthma COPD P-value

IL-1β (pg/ml) 70.3 (53 - 93.1) 73.5 (47.1 - 114.6) 0.86

IL-5 (pg/ml) 2.7 (1.9 - 4.0) 1.1 (0.8 - 1.5) 0.001

IL-6 (pg/ml) 42.8 (30.5 - 60.1) 439.2 (320.5 - 601.8) <0.0001

IL-6R (pg/ml) 243.4 (195.1 - 303.7) 147.8 (119.3 - 183.1) 0.002

IL-8 (pg/ml) 3118 (2314 - 4201) 4390 (3372 - 5715) 0.098

IL-10 (pg/ml) 0.73 (0.5 - 1.1) 1.0 (0.6 - 1.7) 0.27

IL-13 (pg/ml) 8.1 (6.4 - 10.3) 3.4 (2.5 - 4.6) <0.0001

CCL-2 (pg/ml) 284.3 (226.6 - 356.7) 573.1 (455.3 - 721.4) <0.0001

CCL-3 (pg/ml) 30.6 (22.9 - 40.7) 67.1 (53.2 - 84.7) <0.0001

CCL-4 (pg/ml) 359.5 (247.0 - 523.3) 958.3 (778.5 - 1179.7) <0.0001

CCL-5 (pg/ml) 8.7 (6.9 - 11.0) 3.3 (2.6 - 4.1) <0.0001

CCL-13 (pg/ml) 19.2 (14.7 - 25.0) 28.1 (21.3 - 37.0) 0.052

CCL-17 (pg/ml) 25.9 (19.5 - 34.6) 20.3 (15.1 - 27.2) 0.24

CCL-26 (pg/ml) 9.9 (6.8 - 14.3) 2.9 (2.0 - 4.1) <0.0001

CXCL-10 (pg/ml) 726.9 (526 - 1004.7) 277.9 (205.3 - 376.3) <0.0001

CXCL-11 (pg/ml) 57.2 (39.7 - 82.5) 11.6 (7.6 - 17.9) <0.0001

TNFα (pg/ml) 3.2 (2.3 - 4.5) 5.4 (3.3 - 8.9) 0.093

VEGF (pg/ml) 1427 (1214 - 1678) 1284 (1129 - 1461) 0.33

Data presented as geometric mean with corresponding 95% confidence interval (CI).

As depicted in the table above, IL-5, IL-6R, IL-13, CCL-2, CCL-5, CCL-26,

CXCL-10, and CXCL-11 are significantly higher in asthmatic compare to COPD

subjects. In contrast, IL-6, CCL-3 and CCL-4 are significantly higher in COPD

subjects compare to asthmatic. However, there are no significant differences between

the two diseases in IL-1β, IL-8, IL-10, CCL-13, CCL-17, TNFα and VEGF. To

understand the overall patterns of the mediators across asthma and COPD, their

z-scores (standardized value) are plotted in figure 2.3 on page 47.
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Figure 2.3: Pattern of sputum mediators across asthma and COPD at stable state

In addition, to understand the overlap and distinction between asthma and

COPD at biological level, principal component analysis was performed to the spu-

tum mediators, and graphically displayed in figure 2.4 on page 48 across the first

two PCA scores.
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Figure 2.4: Sputum mediators across asthma and COPD at stable state presented using
the first two principal component scores

In figure 2.4 above, there is an evident overlap between asthma and COPD sub-

jects along the first two principal components direction of the cytokines, which is

in contrast to the patterns observed across the diseases with respect to the demo-

graphic and clinical characteristics in figure 2.2 on page 45. From this descriptive

analysis, it is difficult to quantify the proportion of overlap between the two diseases

with respect to the biological mediators. Therefore, it requires further investigation

using appropriate statistical method in order to identify the common and distinctive

biological subgroups of asthma and COPD.

Furthermore, correlations among the mediators were displayed as heatmap in

figure 2.5(a); and further variables’ subgroups, using Clustofvar version 0.8 R pack-

age [101], were assessed to investigate for hidden structures/patterns among the

mediators. Thus, based on the patterns of their correlations, the mediators were

partitioned into distinctive subgroups, and depicted in figure 2.5(b). Correlation

is the normalization of the covariance by the square-root of their variance product

that range from -1 (strong negative correlation) to +1 (strong positive correlation).
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Covariance between two mediators shows the extent that the two mediators spread

together.

(a) (b)
Figure 2.5: Sputum mediators at stable state: (a) correlations matrix and (b) subgroups.
Heatmap colours: Dark red indicates strong positive correlation; dark blue for strong
negative correlation; light red for weak positive correlation; light blue for weak negative
correlation; and yellow represents no correlation.

As we observe in the figures above, there are strong correlations between the

mediators; and about three to four subgroups also exist among the mediators. For

example, IL-1β, IL-8, IL-10, TNFα and VEGF are aggregated together; IL-6, CCL-

2, CCL-3, CCL-4 and CCL-13 created a group; most of the TH2 mediators (IL-5,

IL-13, CCL-17 and CCL-26) formed another subgroup, and these TH1 mediators

(CXCL-10, CXCL-11 and CCL-5) were also grouped together. These patterns show

that there are hidden structures among the mediators, which should be accounted

in further analysis for better understanding of the two diseases.

2.6 Summary

In this chapter, an explanatory data analysis was performed on the available charac-

teristics across asthma and COPD at stable state. It was clearly shown that asthma

and COPD are distinctive with respect to clinical and demographic characteristics

except in their cell-counts (eosinophils and neutrophils). However, there is a con-

siderable overlap between the two diseases with respect to their sputum cytokines,
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which seeks further investigation using appropriate statistical techniques to identify

the common and distinctive biological subgroups. In addition, strong correlations

were observed among the cytokines, and appeared to create cytokines’ (variables’)

subgroups. Thus, these patterns need to be accounted whilst modeling (clustering)

the biological heterogeneity of the diseases.
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Chapter 3

Modeling Population Heterogeneity:

a Simulation Study

3.1 Objects

The objective of this chapter is to identify an appropriate statistical technique for

modeling the biological heterogeneity of asthma and COPD using simulation study.

An artificial data were simulated which have similar internal patterns as the asthma

and COPD cytokines, but with known class membership. The performance of several

approaches were assessed using the simulated data. The method which performed

best in the simulation study was applied to the real asthma and COPD cytokines

studies in the subsequent chapter, in order to identify the common and distinctive

biological clusters of the diseases.

3.2 Introduction

In the previous explanatory analysis (chapter 2) it has been shown that asthma

and COPD are clearly overlapped with respect to the biological mediators (sputum

cytokines), which requires further investigation. In addition, the mediators appeared

to be strongly correlated and created subgroups based on their correlation matrix.

Thus, the internal patterns (correlations) of these mediators need to be accounted

(integrated) whilst clustering the subjects, in order to identify the optimal biological

clusters of both diseases.

It’s not fully understood yet that whether a standard technique (i.e. using the

actual correlated sputum mediators as input into a clustering) may lead to the iden-

tification of the optimal clusters (although this approach ignores the correlation

between variables within a cluster). On the other hand, whether a dimensionality
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reduction using factor analysis (i.e. representing the actual cytokines by low dimen-

sional latent variables that capture the internal structures of the mediators, and use

as input into a clustering algorithm) may improve the clusters partitions.

Therefore, this chapter focused on a simulation study in which an artificial data

were simulated. The variables in the simulated data have similar patterns as the

sputum cytokines, but the observations have known class membership. The artificial

variables were represented using several variables such as latent or highest-loading

variables (derived from factor analysis), and were independently used as input vari-

ables into the k-means clustering algorithm. Factor analysis has been chosen versus

Principal component analysis for data reduction as the main aim of this study is on a

theoretical solution of the underlying structure of the cytokines which is uncontam-

inated by unique and error variability [102]. The performance of each method was

assessed in identifying the known simulated clusters. In addition, the consequence

(technical issues/bias) of using inappropriate input variables into the clustering al-

gorithm was discussed. The approach which led to the identification of the optimal

clusters is applied to asthma and COPD sputum cytokines in subsequent chapters.

Proposed Input Variables to Clustering

1. All observed variables (standard approach)

2. Factor scores (latent variables)

3. Highest-loading observed variables

4. Observed variables with highest error-terms

3.2.1 Designing a Simulation Study

Artificial data was simulated to compare the performance of the above approaches in

using as input variables into a clustering algorithm in order to identify the optimal

simulated clusters. In total 1000 observations were simulated from four known

clusters using mixture model. The observations have measurements on 20 variables

in which some of the variables are strongly correlated within a cluster.
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Modeling and Analysis Strategies of the Simulation Study

1. First descriptive analysis such as correlations among the variables, using heat-

map, and variables’ subgroups were assessed.

2. Factor analysis was performed, and unrotated and rotated (using varimax)

factor loadings were calculated.

3. Factor scores (latent variables) corresponding to each factor were estimated

for each subject (observation).

4. Highest-loading variables which represent each factor were identified.

5. Variables which have relatively high error-terms were identified.

6. K-means cluster analysis was performed separate to ”All simulate variables”;

”Factor scores”; ”Highest-loadings variables” and ”Variables with highest error-

terms”.

7. The performance of factor analysis for uncorrelated data was also assessed

3.2.2 Descriptive Analysis of the Simulated Data

The correlation matrix of the simulated variables is displayed as heatmap in figure

3.1(a). In addition, the variables subgroups based on their internal correlations

(patterns) are depicted in figure 3.1(b) on page 54. Variables which are strongly

correlated appeared to aggregate (grouped) together, and the entire variables created

four subgroups based on their internal structures (correlations); in which X4, X5,

X11, X12 and X15 are aggregated together; X2, X8, X10, X16 and X17 are grouped

together; X6, X7, X9 and X20 are clustered together; and X1, X3, X13, X14, X18

and X19 formed another subgroup.
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(a) (b)
Figure 3.1: Simulated variables: (a) correlation matrix and (b) subgroups. Heatmap
colours: dark-red represented for strong positive correlation; dark-blue for strong negat-
ive correlation; yellow for no correlation; light-red and light-blue for weak positive and
negative correlation, respectively.

In addition, the profile of the variables across the simulated clusters (subgroups)

is depicted in figure 3.2 on page 54; in which X1, X3, X13, X14, X18 and X19 are

elevated in cluster 1; X6, X7, X9 and X20 in cluster 2; X4, X5, X11, X12 and X15 in

cluster 3; and X2, X8, X10, X16 and X17 in cluster 4 compared to the other clusters.

Figure 3.2: Patterns of simulated variables across the clusters

54



3.3 Factor Analysis

The twenty simulated variables were reduced into four independent factors using

factor analysis. Factor analysis is a statistical technique which uses for investigating

whether p dimensional observed variables (Y1, Y2, . . . ,Yp) are linearly related to

(function of) a smaller number of k unobservable (latent) factors (F1, F2, . . . , Fk).

Mathematically it’s formulated as follows:

Y1 = β11F1 + β12F2 + · · ·+ β1kFk + ε1

Y2 = β21F1 + β22F2 + · · ·+ β2kFk + ε2
...

Yp = βp1F1 + βp2F2 + · · ·+ βpkFk + εp

(3.1)

Where: Yp are the observed variables; Fk are latent (unobserved) factors; and p > k.

The parameters βij are the factor loadings which represents the relationship between

the observed variables (Yp) and unobserved factors (Fk). For example, β11 is called

the loading of variable Y1 on factor F1, and so forth.

Assumptions of Factor Analysis

The unobservable factors (Fk) are independent of one another, and E(Fk) = 0 and

V ar(Fk) = 1; the error term (εp) are also independent of one another, and E(εp) =

0 and Var(εp) = σ2
p. Fk and εp are independent in which Cor(Fk, εp)=0.

Factor analysis can be represented graphically as path diagram. For example,

assuming that five observed variables (Y1, Y2, Y3, Y4 and Y5) are represented by two

independent factors, F1 and F2, and are depicted in figure 3.3 on page 56. The betas

(βij) represented the relationship (correlation) between the observed variables (Yi)

and latent factors (Fj), and ei are the error terms of the observed variables (Yi)

which not explained by the factors (Fj).
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Figure 3.3: Path-diagram of factor analysis. Y1 to Y5 are observed variables; F1 and F2

are factors; B11 to B51 represent factor loadings; e1 to e5 are error terms.

Communalities and Error-terms

Communality (shared variance) is the sum of squared loadings for a variable across

factors. Whereas, the error-terms (specific variance) is the part of the variance

of the observed variable (Yi) that is not explained by the common factors (1 −

communality), which is known as uniqueness.

The communalities and error terms of the observed variables (Yi) can be estim-

ated from the latent factors as follows:

Since Yi = βi0 +βi1F1 +βi2F2 + · · ·+βikFk + (1)ei. This equation consists of two

parts: {(β2)i1 + (β2)i2 + · · ·+ (β2)ik} is the communality (shared variance); and σ2
i

is the specific (unique) variance (i.e. the error-terms).
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3.3.1 Factor Loadings

Factor loadings are matrix of regression-like weights used to estimate the unique

contribution of each factor to the observed variables [102]. The sum of squared

loadings (Σp
iβ

2
ik) can be interpreted as the contribution of factor Fk in explaining

the sum of the observed variables (Yp) shared variances.

3.3.2 Factor Scores or Latent Variables

A factor score (latent variable) is a numerical value that indicates an observation’s

relative spacing or standing on a latent factor [102]. Factor scores (FS) are inde-

pendent to each other with mean of zero and standard deviation of one. The scores

can be calculated for each observation as follows:

FS = Z(S−1β) (3.2)

Where: Z is the standardised value (z-score) of the observed variables; S−1 is the

inverse correlation matrix of the observed variables; and β is factor loading matrix.

Example

Unrotated Factor Loadings of the Simulated Data

Factor analysis (principal factor) was applied to the twenty simulated variables, and

subsequently the variables were reduced to four independent factors.

Since determination of possible number of factors to extract using goodness of

fit was difficult to meet the assumptions required to the significance tests, therefore

heuristics methods were used. Factors were retained based on two criterion:- such

that eigenvalues (amount of original shared variance accounted) greater than one

(i.e. a factor variance should at least represent more than a single variable shared

variance), and based on screeplot (i.e. factors above the break in the curve) [102].

The retained factors of the simulated data are depicted in table 3.1 on page

59. The squared of the factor loading is the percentage of shared variance of the

observed variable, which is explained (accounted) by the factor. For example, β11
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is the loading of X1 on factor 1 (i.e. β11 = 0.78), and its squared value is 0.61 {

i.e. (β11)2 =(0.78)2 = 61%}, which means that 61% of the shared variance of X1 is

explained (accounted) by factor 1. The total variance of a single observed variable

which are explained by all the retained factors is calculated as the sum of the squared

factor loadings (row wise). For example, the total variance of X1 explained by these

retained four factors is calculated as (0.78)2 + (−0.28)2 + (0.44)2 + (0.17)2 = 0.91,

which is called the communality (C1). Whereas, the variance of X1 not explained by

these factors is one less than the communality (1 - 0.91 = 0.09), known as uniqueness

(error-term). The total shared variance explained by each factor is equivalent to the

eigenvalue which is calculated as the sum of the squared factor loadings (column

wise). For example, the total variance of all variables explained by factor 1 is

calculated as {(0.78)2 + (0.78)2 + (0.66)2 + (0.35)2 + (0.22)2 + (0.79)2 + (0.62)2 +

(0.61)2 + (0.75)2 + (0.81)2 + (0.58)2 + (0.77)2 + (0.61)2 + (0.74)2 + (0.28)2 + (0.81)2 +

(0.66)2 + (0.85)2 + (0.85)2 + (0.61)2 = 9.27}. The total shared variances of the

variables explained by the retained four factors is calculated as the summation of

column c1 (communalities) { i.e. (0.91+0.85+0.92+0.94+0.93+0.94+0.92+0.89+

0.87+0.85+0.93+0.91+0.92+0.92+0.96+0.92+0.90+0.83+0.86+0.91) = 18.8}.

Therefore, the percentage of the shared variances explained by the first factor is

9.27/18.8= 0.513. This means that about 51.3% of the total shared variance of the

observed variables is accounted by the first factor.
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Table 3.1: Unrotated factor loadings of the simulated data

Variable Factor1 Factor2 Factor3 Factor4 C1 U2

X1 0.78 -0.28 0.44 0.17 0.91 0.09

X2 0.78 -0.07 -0.38 -0.28 0.85 0.15

X3 0.66 -0.23 0.60 -0.27 0.92 0.08

X4 0.35 0.90 0.01 0.08 0.94 0.06

X5 0.22 0.93 0.10 0.09 0.93 0.07

X6 0.79 -0.19 -0.38 0.36 0.94 0.06

X7 0.62 -0.25 -0.30 0.61 0.92 0.08

X8 0.61 -0.06 -0.44 -0.56 0.89 0.11

X9 0.75 -0.27 -0.37 0.32 0.87 0.13

X10 0.81 -0.03 -0.13 -0.41 0.85 0.15

X11 0.58 0.75 0.16 -0.02 0.93 0.07

X12 0.77 0.56 -0.06 0.01 0.91 0.09

X13 0.61 -0.24 0.70 -0.03 0.92 0.08

X14 0.74 -0.10 0.59 -0.11 0.92 0.08

X15 0.28 0.91 -0.04 0.24 0.96 0.04

X16 0.81 0.03 -0.27 -0.45 0.92 0.08

X17 0.66 -0.12 -0.29 -0.60 0.90 0.10

X18 0.85 -0.14 0.25 0.17 0.83 0.17

X19 0.85 -0.13 0.16 0.30 0.86 0.14

X20 0.61 -0.24 -0.27 0.64 0.91 0.09

Eigenvalue 9.27 3.86 2.48 2.46

C1 = Proportion of total variation accounted by the common factors (common variance)
U2 = Proportion of total variation not accounted by the common factors (unique variance)

3.3.3 Varimax Rotation in Factor Analysis

After factor analysis was performed, the retained factors (e.g. table 3.1) can be

rotated using several approaches, the most common one is using varimax rotation.

Varimax is an orthogonal rotation of factors that maximise the variance of factor

loadings by making high-loadings higher and low-loadings lower in each factor [102,

103]. In other word, it encourages the detection of factors related to few variables and

discourages the detection of factors influencing all variables [104]. This procedure

improves interpretation of the factors as the first unrotated factors (e.g. table 3.1

on page 59) usually does not reveal a clear pattern of the loadings; in which some

variables’ loadings are very similar across the factors, and quite difficult to figure out
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which factor represents which observed variables. Despite the fact that the varimax

rotation improves interpretation, it does not use for improvement of model fitting

as all orthogonally rotated solutions are mathematically equivalent to one another

[102].

Varimax Rotation is formulated as follows:

Varimax rotation can be accomplished by maximising the variance of the loadings

on factors. The variance of the Kth factor can be computed as follows:

S2
k =

K
∑p

j=1

(
βjk/ω

2
j

)2

−
(∑p

j=1(β2
jk/ω

2
j )

)2

K2
(3.3)

Where, ω2
j =

∑k
i=1 βj is the communality of the jth variable; K is the number of

retained factors; p is the number of observed variables; βjk is the loading of variable

j on factor k. Using this expression of the variance of the loading on the kth factor,

it can be maximising the following:

V =
K∑
k=1

S2
k (3.4)

This is an iterative process where two factors rotate at a time, holding other

factors constant, until the increase in the overall variance V drops below the present

value.

The original unrotated factors (βun) can be rotated (βr) orthogonally as follows:

β
′
r = βun Γ

where

Γ =

 cos(θ) − sin(θ)

sin(θ) cos(θ)


Where θ is any angle in degree which maximizes the variance V .
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Example

Rotated Factor Loadings of the Simulated Data

The retained factors of the simulated data (table 3.1) are rotated using varimax

rotation and depicted in table 3.2 on page 62. As we observe in the simulated data,

the variables appeared to create patterns across the factors, in which a variable

loaded in a single factor rather than in multiple factors, which is in contrast to the

pattern shown in the unrotated factors (table 3.1 on page 59). For example, X3 in

the unrotated factors loaded similarly in factor 1 and factor 3; however, when the

factors rotated using varimax procedure, it is clearly loaded only in factor 1, table

3.2 on page 62. This means that most of the shared variance of X3 is explained

by factor 1 than the remaining factors. In addition, varimax rotation has an ad-

vantage to identify a representative observed variable (highest loading variable) for

each factor. For instance, X13 has the highest loading in factor 1; X8 in factor 2;

X7 in factor 3 and X15 in factor 4. This means that all the four factors could be

represented by these four observed variables. However, it is not always guaranteed

that the entire information exists in the factors are captured using only the highest

loading observed variables (X7, X8, X13, and X15).
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Table 3.2: Varimax rotated factor loadings of the simulated data

Variable Factor 1 Factor 2 Factor 3 Factor 4 C1 U2

X1 0.83 0.13 0.45 0.02 0.91 0.09

X2 0.16 0.81 0.39 0.12 0.85 0.15
X3 0.91 0.29 -0.01 -0.02 0.92 0.08

X4 0.00 0.09 0.01 0.96 0.94 0.06

X5 -0.01 -0.04 -0.09 0.96 0.93 0.07

X6 0.16 0.37 0.88 0.09 0.94 0.06

X7 0.12 0.07 0.95 0.02 0.92 0.08

X8 0.03 0.93 0.12 0.03 0.89 0.11

X9 0.15 0.38 0.84 0.00 0.87 0.13

X10 0.38 0.80 0.21 0.15 0.85 0.15
X11 0.29 0.22 0.05 0.89 0.93 0.07

X12 0.25 0.42 0.30 0.76 0.91 0.09

X13 0.95 0.06 0.10 0.00 0.92 0.08

X14 0.91 0.23 0.11 0.15 0.92 0.08

X15 -0.09 -0.05 0.11 0.97 0.96 0.04

X16 0.26 0.88 0.21 0.20 0.92 0.08

X17 0.20 0.92 0.07 -0.01 0.90 0.10

X18 0.69 0.25 0.52 0.17 0.83 0.17

X19 0.61 0.20 0.64 0.18 0.86 0.14
X20 0.13 0.03 0.94 0.03 0.91 0.09

Eigenvalue 4.63 4.56 4.53 4.33

C1 = Proportion of total variation accounted for by the common factors (common variance)
U2 = Proportion of total variation not accounted by the common factors (unique variance). These
bold loadings are for these highest loading variables in each factor; and these bold error-terms (U2)
are for these variables in which their shared variance was not relatively explained well by these
retained four factors.
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3.4 Cluster Analysis

Cluster analysis is an unsupervised statistical technique that uses to uncover un-

known structures among heterogeneous population (figure 3.4(A)). These hetero-

geneous population can be partitioned into distinctive subgroups based on the sim-

ilarities and differences of the characteristics of the population (figure 3.4(B)).

Figure 3.4: (A) Heterogeneous population; (B) Homogeneous subgroups

Cluster analysis is a useful technique to glean novel subgroups (clusters), and to

generate a new research hypothesis for supervised techniques such as linear regres-

sion, discriminant and pathway analyses. There are two common types of clustering

techniques; i.e. heuristic and model-based approaches. The heuristic approach is a

distance based, which comprises several clustering algorithms such as hierarchical

and k-means. The model-based clustering (probabilistic approach) is an alternative

approach in which the model fits to the distribution of the data (the common ones

are Gaussian mixture model and latent class analysis).

3.4.1 K-means Clustering

Throughout this part of the thesis, k-means clustering technique was used as a

clustering algorithm to split observations into distinctive subgroups. It is a mul-

tivariate heuristic clustering algorithm that uses to detect distinctive subgroups in
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heterogeneous population. The algorithm is originally developed by MacQueen in

1967 [105], and thereafter is modified considerably by a number of researchers. It

categorizes the observations into non-overlapping K subgroups, in which each ob-

servation is assigned to the subgroup whose mean (centroid) is closest; and based

on that categorization, a new group mean is determined. These steps continue un-

til no single observation changes subgroup (see figure 3.5 on page 65 for graphical

demonstration of the algorithm). In other word, the classification is based upon the

placing of observations into more or less homogeneous clusters, which attempts to

have more in common within a group than between subgroups (minimizing within

group variation and maximizing between groups variation) [106]. The algorithm

steps are summarized below.

K-means Clustering Algorithm

• Step 1: Randomly chooses K observation as representative of initial centroids

(clusters).

• Step 2: Measures the distance between each observation and each centroid

(e.g. using Euclidean distance), and assigns the observation into the centroid

(cluster) in which it has the shortest distance.

• Step 3: Computes K new centroids by averaging the observations in each

cluster.

• Step 4: Repeats steps 2 and 3 till non of the updated centroids differ from

the previous iteration, or no observation changes cluster.

• Step 5: Returns the current set of clusters.
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Figure 3.5: Graphical demonstration of k-means clustering algorithm

The k-means clustering algorithm is a robust, computationally feasible and rel-

atively easy to understand and implement compared to the alternative approaches.

It was the 3rd most algorithm that has been used in the last decade, in studies

which were applied statistical and machine learning clustering/classification tech-

niques [107]. The algorithm handles very large samples, and is not prone to model

over-fitting (when the number of parameters are greater than the number of obser-

vations). Its convergence is guaranteed [108] unlike to the model-based clustering

techniques. In addition, it is available in most open and commercial statistical

softwares, and any researcher could replicate this work without being a software

expert.
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Distance measure

In the k-means clustering algorithm, Squared Euclidean Distance was used to meas-

ure the relative (resultant) distance between the observations. It is formulated as

follows:

Dij =

√√√√ p∑
k=1

(Yik − Yjk)2 (3.5)

Where Dij is the Squared Euclidean distance between individual (observation) i

with variable values Yi1, Yi2, ..., Yik and individual j with variable values Yj1, Yj2, ...,

Yjk.

3.5 Proposed Input Variables to the Clustering Algorithm

The twenty artificial variables were presented into several formats, in the hope that

the right approach (input variables to the clustering algorithm) will be identified

to glean the right information (clusters) exist in the simulated data. We started

with the standard approach, which uses all the observed (simulated) variables as

input into clustering algorithm. In addition, data reduction using factor analysis

(principal factor with varimax rotation) was implemented, and several representat-

ive of the simulated variables were extracted, such as latent variables (factor scores),

highest-loading variables, and variables which have high-error terms, and were inde-

pendently used as input variables into the k-means clustering algorithm. Finally, the

corresponding clusters were identified using each input variables, and their perform-

ance were assessed by comparing the identified clusters against the known simulated

clusters.

3.5.1 Clustering on All Observed Variables

In the standard approach (i.e. using all the twenty simulated variables as input into

k-means clustering), four clusters were identified. About 62.8% of the 1000 observa-

tions were assigned into the true known clusters, and the rest 372 observations were

assigned to the wrong clusters (misclassified).
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3.5.2 Clustering on Factor Scores (Latent Variables)

The dimension of the twenty simulated variables was reduced into four independent

factors using factor analysis, and the retained factors were rotated using varimax

rotation (see section 3.3 for details). Then four corresponding independent factor

scores (latent variables) were generated for each observation. These four factor

scores were used as input variables into the k-means clustering algorithm, and four

clusters were identified with 0% misclassification (i.e. all the observations were

assigned correctly into the known simulated clusters).

The factor scores distributions (histograms) are displayed in figure 3.6(a) and

the scatterplot across the subgroups (each cluster is represented by distinct colour)

is depicted in figure 3.6(b) on page 67.

(a) (b)
Figure 3.6: Factor scores: (a) distributions and (b) scatterplot across the subgroups

In the histogram above, we observe that majority of the factor scores have a

bimodal distribution in which a factor can split the observations into at least two

distinctive subgroups. In addition, it is clearly observed in the above scatterplot

that each factor score has specific contribution in splitting the clusters. For ex-

ample, factors 1 and 2 split the black, green and blue clusters very well, but not the

green from the red cluster. In addition, factors 1 and 3 split the black, blue and

red clusters, but not the blue from the green cluster. Furthermore, factors 1 and 4

split the black, blue and green clusters, but not the red from the blue clusters. So

the combination of all the four factors able to split the four clusters extremely well

without any misclassification.
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3.5.3 Clustering on the Highest-loading Observed Variables

After factor analysis was implemented to the twenty simulated variables, and the

four retained factors were rotated with varimax rotation. Then four corresponding

observed variables which have the highest-loading in each factor were identified (see

table 3.2 on page 62). Thus, X13 has the highest-loading in factor 1, X8 in factor 2,

X7 in factor 3 and X15 in factor 4. Their distributions and scatterplots are depicted

in figure 3.7 on page 68.

Then these four highest-loading observed variables (X7, X8, X13 and X15) were

used as input variables into k-means clustering, and four optimal clusters were identi-

fied and 99.9% of the observations were correctly assigned to the true known clusters.

(a) (b)
Figure 3.7: Highest-loading variables: (a) distributions and (b) scatterplot across the
subgroups

In the histogram above, majority of the highest-loading variables have a bimodal

distribution which suggested a single observed variable could able to split the ob-

servations into at least two distinctive subgroups. In addition, in the above scatter-

plot the four highest-loading variables were displayed across the four clusters, and

each cluster is represented by distinct colour. The patterns of the four observed

highest-loading variables across the clusters are very similar to patterns observed

with respect to the factor scores across the clusters. Variables X7 and X8 split the

red, blue and the green clusters very well, but not the black from the green cluster.
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In addition, X7 and X13 split the red, blue and black clusters, but not the blue from

the green cluster. Furthermore, variables X7 and X15 separate the black, the blue

and the green clusters, but not the blue from the red cluster. Thus, the combina-

tion of all the four highest-loading variables (X7, X8, X13 &X15) able to classify the

entire clusters very well.

3.5.4 Clustering on Observed Variables with Highest Error-

terms

For illustration purpose after factor analysis was performed, four observed vari-

ables which have relatively highest error-terms (unexplained variance by the retained

factors) were identified, and reported in table 3.2 on page 62. These are X2, X10,

X18 and X19, and were used as input variables into k-means clustering algorithm.

As consequence, only 45.6% of the observations were classified correctly to the right

clusters. The distributions and scatterplots of these variables are depicted in figure

3.8 on page 69.

(a) (b)
Figure 3.8: Variables with highest error-terms (a) distributions and (b) scatterplot
across the subgroups

In the histogram above, we observe that these variables which have high error-

terms have very smooth bell-shaped normal distribution, in which do not show any

pattern of slitting the clusters into distinctive subgroups. In addition, we observed

in the above scatterplot that the clusters are entirely overlapped with respect to

these four observed variables which have high error-terms (X2, X10, X18 and X19),
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unlike to the pattern observed with respect to factor scores (latent variables), figure

3.6, and highest-loading observed variables, figure 3.7.

3.5.5 Noisy Observed Variables in Factor Analysis

To assess the influence of noisy variables in factor analysis, five random variables

that do not have clustering information (which are also uncorrelated within them-

selves and with the original 20 simulated variables) were simulated. Then factor

analysis was performed again to all the 25 simulated variables, and the optimal

number of factors were retained (data not shown). As a consequence, these partic-

ularly noisy variables appeared to have high error-terms than their corresponding

communalities (i.e. communality < 0.5). That means that these variables are not

represented well by these retained factors. Therefore, factor analysis can be used as

a screening approach for variable selection prior to generating the factor scores for

cluster analysis, by removing these variables which have high error-terms than their

corresponding communalities.

3.5.6 Application of Factor Analysis on Uncorrelated Ob-

served Variables

In this section, a new data with 1000 observations which have measurements on

15 uncorrelated variables (correlation < 0.28) were simulated to investigated the

robustness of factor analysis for this type of data. Prior to factor analysis, correla-

tions of the variables are graphically presented as heatmap in figure 3.9 (a), and the

variables subgroups were also assessed and illustrated in figure 3.9 (b) on page 71 .
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(a) (b)
Figure 3.9: Simulated variables: (a) correlation matrix and (b) subgroups. Heatmap
colors: dark-red represented for strong positive correlation; dark-blue for strong negat-
ive correlation; yellow for no correlation; light-red and light-blue for weak positive and
negative correlation, respectively.

As illustrated in the heatmap above (figure 3.9 (a)), the correlations among the

variables are very weak. In addition, the variables did not create any clear subgroups

based on their correlation matrix (figure 3.9 (b)). This observation is in contrast

to the pattern observed in the highly correlated variables which displayed in figures

3.1 (a) and (b) on page 54.

In addition, factor analysis (with varimax rotation) was applied to this data, and

reduced to low dimensional factors. The factor loadings of the first four factors are

displayed in table 3.3 on page 72.
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Table 3.3: Varimax rotated factor loadings of the simulated data

Variable Factor1 Factor2 Factor3 Factor4 C1 U2

X1 0.26 0.15 0.19 0.32 0.23 0.77

X2 0.31 0.21 0.18 0.1 0.19 0.81

X3 0.07 0.43 0.15 0.14 0.23 0.77

X4 0.42 0.18 0.09 0.18 0.24 0.76

X5 0.17 0.2 0.27 0.23 0.2 0.8

X6 0.39 0.12 0.21 0.07 0.21 0.79

X7 0.29 0.24 0.16 0.2 0.2 0.8

X8 0.31 0.28 0.11 0.17 0.22 0.78

X9 0.23 0.22 0.31 0.08 0.2 0.8

X10 0.43 0.00 0.18 0.27 0.29 0.71

X11 0.24 0.18 0.33 0.2 0.24 0.76

X12 0.21 0.2 0.09 0.39 0.25 0.75

X13 0.23 0.16 0.31 0.18 0.2 0.8

X14 0.17 0.16 0.25 0.26 0.19 0.81

X15 0.21 0.25 0.22 0.16 0.18 0.82

Eigenvalue 1.16 0.71 0.71 0.69

C1 = Proportion of total variation accounted for by the common factors (common variance)
U2 = Proportion of total variation not accounted by the common factors (unique variance)

As shown in the table above, the proportion of the shared variance which ex-

plained by the retained four factors is very small. For example, X1 shared variance

explained by the factors is only 0.23 (or interms of percentage is 23 %) and the rest

77% remained unexplained (as unique errors). This means that the variables do not

have a noticeable shared variance. This shows that most of the information exist

in the entire observed variables is not well represented by the retained factors (al-

though more factors were retained than commonly extracted based on ”screeplot”

or ”eigenvalue above one” criteria). For this type of data, it is highly unlikely that

common latent factors would exist that could capture reasonably well the internal

patterns of the observed variables. Thus, there is a real danger here in which re-

searchers need to be aware, in which not to use factor analysis for variable reduction

and extraction of the internal patterns when the observed variables are uncorrelated

(or weakly correlated). In such situation, it is more likely to end up with latent

factors which do not capture (represent) well most of the information exist in the
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data, and its consequence could be quite dangerous.

3.5.7 Application of Factor and Cluster Analyses in Gene

Expression

As we observed in the above simulation study, using factors scores as input into

k-means clustering algorithm able to identify all the simulated clusters without any

misclassification. Thus, for generalization, we applied these approach to gene ex-

pression data (which have similar patterns as the cytokines), to identify the existing

clusters. The gene expression data, with repeated measurement, was generated by

KY Yeung and colleagues, and were originally published here [109]. Several research-

ers had used these data to assess the performance of their new methods.

In this analysis, we used only the baseline measurements in which 20 columns

(gene expression) and 400 rows (observations) with six known clusters. First, factor

analysis (principal factor with varimax rotation) was preformed to this array data

and reduced to three low dimensional factors, and subsequently estimated the cor-

responding factor scores (latent variables) for each observation and were used to

identify the optimal clusters. As a consequence, all the six existing clusters were

identified with 0% misclassification. In contrast, using all the 20 observed variables

six clusters were identified with 18.5% misclassification. As the dimension of the

dataset is relatively large, it is not displayed in this analysis but readers can refer

to the original paper [109] for details.
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3.5.8 Summary

In this chapter, the performance of several formats of observed variables as input

into clustering algorithm were assessed on artificial data. The artificial data were

simulated in the same format as the correlated real asthma and COPD sputum

cytokines but with known class membership (see the sputum cytokines and simulated

explanatory analysis for details in chapters 2 and 3, respectively). As a consequence,

for this type of data using ”factor scores” (derived from factor analysis), rather than

the standard approach (using the actual measured variables as input into clustering

algorithm) able to identify the true (optimal) clusters existing in the dataset. In

addition, this approach was implemented in gene expression data (which are strongly

correlated as the sputum cytokines), and able to identify all the existing clusters

without any misclassification.

In addition, which worth mentioning that, using the highest-loading variables as

input into clustering, appeared to perform very well in identifying the true clusters

in the simulation study. However, this approach is not always guaranteed as some-

times multiple variables may have very close loadings in the same factor, and those

loadings may not be as close as to the optimal (i.e. one). Thus, choosing only

one representative variable for each factor may loss some information by under-

representing the entire information exist within that specific factor. For example, it

would be a dangerous practice to use the highest-loading variable as a representative

of a factor in a situation where the variable’s loading is relatively small (e.g. less

than 0.7). Therefore, such technical issues need to be accounted when using only

the highest-loading variables for further analysis such as cluster analysis. However,

it is still worthy to identify variables which have the highest loadings (after varimax

rotation) as they may give a general direction/suggestion which variables have sub-

stantial contribution in splitting the clusters, and fewer variables may be required

for future validation of the clusters (such as assigning new observations into the

existing clusters).

Furthermore, factor analysis can be used as screening technique for noisy vari-

ables in post analysis like cluster analysis, by removing variables in which their er-

ror terms are greater than their communalities (explained variance by the retained

factors). However, as it has been demonstrated in this study, factor analysis is not an
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appropriate approach to reduce the dimensionality and extract the internal patterns

of uncorrelated variables. Thus, to cluster data which have no strong correlation

among the variables, it is better to use all the observed variables or other alternative

approaches instead of factor-scores which are derived from factor analysis.

In conclusion, incorporating variable selection into clustering algorithm needs

many analytical decisions. For instance, decision should be made what type of vari-

ables to use as input into clustering algorithm, and whether dimensionality reduction

(using factor analysis) for the extraction of the underlying structure is needed. This

simulation study demonstrated how to assess those information (e.g. the underlying

structure of the observed variables) and incorporate into the clustering algorithm. In

the correlated artificial data, using factor scores as input into clustering performed

best in identifying the simulated clusters. However, readers should be cautioned

that by no means that we are claiming this approach as the optimal ones for any

type of data. Despite the fact that clustering using the standard approach (using

full-set of observed variables as input into clustering) could be easy to implement

and might reveal the optimal clusters, but this approach may only work better in

a situation where there is no hidden structure (no strong correlation) between the

variables.
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Chapter 4

Modeling Asthma and COPD

Biological Heterogeneity at Stable

State

4.1 Objectives

The objective of this chapter is to model the biological heterogeneity of asthma and

COPD using the combination of factor and cluster analyses (unsupervised statistical

techniques) using sputum cytokines (biological mediators) to identify the common

and distinctive biological subgroups of both diseases at stable state.

4.2 Statistical Methods

A range of sputum mediators (cytokines) were recoded from asthmatic and COPD

subjects at stable state. In the descriptive analysis, which was reported in chapter 2,

there are considerable overlap between asthma and COPD with respect to sputum

cytokines. In addition, the mediators appeared to correlated strongly and internal

patterns/structures among the cytokines were observed (see figure 2.5). Further-

more, based on their correlation the mediators were partitioned into several sub-

groups (see figure 2.5(b) on page 49 for details). As it has been demonstrated in

the simulation study (chapter 3) for this type of data using a two stage approach

(factor scores as input into clustering algorithms) is the best method in identify-

ing the optimal clusters. Therefore, this approach (factor and cluster analyses)

was hypothesized to model the biological heterogeneity (using sputum cytokines) of

asthma and COPD in order to identify the common and distinctive subgroups of the

diseases. Factor analysis will be used to capture the profiles (internal patterns) of
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the cytokines, and the k-means clustering to classify the individuals into distinctive

subgroups who have similar biological profiles.

4.2.1 Application of Factor and Cluster Analyses in Asthma

and COPD Study

Since the cytokines were negatively skewed, their natural logarithmic format were

used for subsequent analysis. First, unsupervised multivariate modeling using factor

analysis (principal factor with orthogonal varimax rotation) was performed on the

cytokines, and a set of low-dimensional independent factors was obtained. However,

prior to that data screening was performed using univariate descriptive statistics to

assess the accuracy of the input observed variables to the factor analysis algorithm.

Such as linearity and outliers were checked using matrix scatter plot (pairwise plots)

[data not shown], but since outlier in cytokines have clinical meaning [110], they

weren’t excluded, but totally minimised by transforming to natural logarithm. In

addition, variables were standardised to minimize the bias in weighting which may

result from different ranges.

The optimal factors were retained on the basis of screeplot (factors above the

break in the curve) and eigenvalue above one [102]. Mediators that have high collin-

earity [111] were excluded from factor analysis to avoid multicollinearity. As CXCL-

10 and CXCL-11 were highly correlated, and CXCL-11’s shared variance was better

explained by the retained factors than was CXCL-10’s variance, CXCL-10 was ex-

cluded from the model. Similarly, because IL-10 levels in more than one-third of

asthmatic subjects were below the limit of detection, but the concentrations were

not different between asthma and COPD then to avoid bias toward one disease, it

was excluded from the model. No similar bias was observed for other mediators.

Subjects who did not have a complete record of the cytokine panel were excluded

from the factor and cluster analysis. Factor scores were calculated for each subject

using standardized values of the cytokines, inverse of the correlation matrix of the

cytokines and factor loadings after varimax rotation (see the formula in equation 3.2

on page 57 for details). These scores represent the subjects predicted value for each

factor and retain the relationship between factors, and were used as input into k-

means clustering algorithm. Squared Euclidean distance (formulated in equation 3.5
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on page 66) was used as a measure of similarity in the k-means clustering algorithm.

The optimal number of clusters was chosen based on screeplot (clusters above the

break in the curve) by plotting within cluster sum of the squares against a series

of sequential number of clusters [112], and the pattern of the variables subgroups

observed in figure 2.5(b) on page 49. In addition, it was assessed on the bases of how

the clusters look on their clinical and biological implications and interpretability.

The logic behind the screeplot (“Elbow”) method (for chosen the optimal clusters)

is that, the within cluster sum of squares (WCSS) were calculated for each possible

(k) clusters and drawn against a series of sequential number of clusters. The WCSS

decrease as the number of clusters increases, and elbow point (inflation) on a Scree

plot suggests where to cut off the possible number of clusters, and the number of

clusters above that point is an appropriate number of groups [106].

All statistical analyses were performed using R version 3.2.1 [113], and STATA/SE

version 13 [114]. The patterns of the demographic, clinical and biological charac-

teristics (which described in chapter 2) were assessed further across the identified

biological subgroups, in which normally distributed data were presented as mean

(standard error of the mean), and log-transformed data as geometric mean with

corresponding 95% confidence interval. The χ2 test or Fisher exact test was used to

compare proportions, and 1-way ANOVA was used to compare means across multiple

groups. Non-normal data were presented as median with first and third quartiles,

and Kruskal-Wallis test was used to compare subgroups. A p-value (two-sided) less

than 0.05 was considered as statistically significant. The biological clustering res-

ults were interpreted with particular emphasis on biological profiles, demographic

characteristics and their clinical implications.

4.2.2 Application of Linear Discriminant Analysis in Asthma

and COPD Study

Linear discriminant analysis was performed to predict the identified biological clusters

from factor scores using the actual measured cytokines. This approach was used to

verify how well the clusters can be partitioned based on the measured cytokines, and

subsequently were used to identify the individual cytokine contribution in discrim-

inating the clusters. Then discriminant functions for each cytokine were calculated,
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and corresponding discriminant scores (one less the number of clusters) for each

subject was estimated (using the discriminant function or loadings of a cytokine

and the original cytokine values for each subject) and were used to illustrate the

subjects biological clusters graphically.

4.2.3 Linear Discriminant Analysis

Linear discriminant analysis is a supervised statistical technique of classification,

which emphasizes the prediction of existing subgroup membership using new vari-

ables. It also uses for validation of the existing clusters/subgroups using a new

dataset. More about its application for validation is described and discussed in the

subsequent chapter.

Linear discriminant analysis is equivalent to posterior probability and is formu-

lated as follows:

p(πi/x) =
πi f(x/πi)∑G
i=1 πi f(x/πi)

(4.1)

Where, G is the number of groups, and πi is the prior probability for group i;

f(x/πi) is group specific probability density function; and p(πi/x) is the posterior

probability of group i given observation x.

The group specific probability density function can be written as follows:

f(x/πi) =
1

(2π)p/2|Σ|1/2
exp

(
− 1

2
(x− µi)

TΣ−1(x− µi)

)
(4.2)

Where, vector µi is group specific mean, and Σ is the pooled variance-covariance

matrix which is common for all groups.

The parameters (mean and variance) can be estimated empirically from the

sample. Then, subject can be assigned to the group in which he/she has the highest

posterior probability.
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4.3 Results

4.3.1 Asthma and COPD Biological Factors at Stable State

Among the 161 (asthma=86 and COPD=75) eligible subjects, 146 subjects with

sixteen complete cytokines measurements were used to build factor analysis. The

factor loadings matrix (after orthogonal varimax rotation) is displayed in table, 4.1

on page 81. The sixteen observed cytokines are appearing to be well represented

and related to four independent unobservable (latent) factors. All factors were

internally consistent and well represented the variables (cytokines), and the lowest

communalities was 0.51. For example, the retained four factors explained 88%, 78%,

and 75% of the shared variances of IL-1β, IL-5 and IL-6, respectively.

The loadings on F1 are relatively higher for proinflammatory mediators (e.g.

IL-1β, IL-6R, IL-8 and TNFα), but very small for the TH2 derived cytokines (e.g.

IL-5, IL-13, CCL-17 and CCL-26). The loadings on F2 are very small for the TH1

derived (e.g. CCL-5 and CXCL-11) and proinflammatory cytokines but relatively

higher for these TH2 derived cytokines. Thus, F2 could be interpreted as a best

representative of these TH2 derived cytokines. The results from factor analysis

supports the patterns observed in the visual inspection of the variables subgroups

in figure 2.5(b) on page 49 in chapter 2, in which variables that grouped together,

appeared to load in the same factor (table 4.1 on page 81).
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Table 4.1: Varimax rotated factor loadings of sputum mediators at stable state

Variable Factor1 Factor2 Factor3 Factor4 C1 U2

IL-1β 0.94 -0.04 0.00 -0.05 0.88 0.12

IL-5 0.16 0.84 0.21 0.10 0.78 0.22

IL-6 0.28 -0.07 0.81 0.02 0.75 0.25

IL-6R 0.73 0.23 0.12 0.21 0.65 0.35

IL-8 0.73 0.15 0.51 0.06 0.82 0.18

IL-13 0.08 0.74 -0.10 0.07 0.56 0.44

CCL-2 0.15 0.10 0.70 0.10 0.54 0.46

CCL-3 0.49 0.36 0.56 -0.05 0.69 0.31

CCL-4 0.42 0.36 0.59 0.00 0.66 0.34

CCL-5 0.65 0.27 -0.04 0.54 0.79 0.21

CCL-13 -0.14 0.43 0.64 0.18 0.65 0.35

CCL-17 -0.04 0.74 0.40 0.13 0.72 0.28

CCL-26 0.06 0.75 -0.04 0.24 0.63 0.37

CXCL-11 0.04 0.25 0.14 0.74 0.64 0.36

TNFα 0.88 -0.05 0.23 0.02 0.82 0.18

VEGF 0.57 0.11 0.35 0.29 0.54 0.46

Eigenvalue 4.05 3.05 2.92 1.12

C1 = Proportion of total variation accounted for by the common factors (common variance)
U2 = Proportion of total variation not accounted by the common factors (unique variance)

4.3.2 Asthma and COPD Biological Clusters at Stable State

Using the combination of factor and cluster analyses (two stage approach), three dis-

tinct clinically relevant biological clusters (subgroups) of asthma and COPD subjects

were identified that could not be determined using the existing guidelines; in which

58, 47 and 41 subjects were classified into cluster 1, 2 and 3, respectively. These

clusters fairly represent Th-1, Th-2 and proinflammatory (PI), and PI dominant

subgroups as determined by their sputum cytokine expression profiles, respectively.

The clinical characteristics and the cytokines profiles across the subgroups are de-

picted in table 4.2 on page 82, and in table 4.6 on page 84, respectively.
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Table 4.2: Statistical summaries of demographic and clinical characteristics across the
three identified biological clusters at stable state that represent the differences and simil-
arities between the subgroups

P-value P-value P-value
Variable Cluster 1 Cluster 2 Cluster 3 C1 vs. C2 C1 vs. C3 C2 vs. C3

Male [n (%)] 32 (55.2) 26 (55.3) 28 (68.3) 0.99 0.19 0.21

Current or Ex-smokers [n (%)] 22 (37.9) 29 (61.7) 40 (97.6) 0.015 <0.0001 <0.0001

Pack -year history 6.6 (3.8 - 11.6) 11.0(6.1 - 19.9) 40.3 (33.6 - 48.3) 0.13 <0.0001 <0.0001

Age (years)+ 55 (1.5) 60 (2.1) 67 (1.8) 0.038 <0.0001 0.008

Duration of Disease (years) 23 (17.2 - 29.6) 9 (5.8 - 12.8) 6 (4.0 - 7.9) <0.0001 <0.0001 0.12

BMI (kg/m2)+ 30.2 (1.0) 28.8 (1.0) 25.3 (0.7) 0.28 <0.0001 0.005

Exacerbation number of steroidsδ 3 (0.3) 3 (0.3) 4 (0.4) 0.31 0.002 0.047

Prednisolone dose use [n (%)] 34 (58.6) 19 (40.4) 6 (14.6) 0.06 <0.0001 0.001

Daily Prednisolone dose (mg) 10 (10 - 15) 7.5 (5 - 10) 5 (5 - 7.5) 0.008 0.006 0.5

Daily ICS dose (mcg/day)*a 1800 (1000 - 2000) 1000 (800 - 2000) 1000 (800 - 2000) 0.024 0.28 0.4

Pre FEV1 (L)+ 2.19 (0.1) 1.74 (0.1) 1.3 (0.1) 0.002 <0.0001 0.006

Pre FEV1/FVC ratio (%)+ 69.0 (1.9) 58.5 (2.3) 49.7 (2.4) <0.0001 <0.0001 0.011

Pre FEV1 Predicted (%)+ 77.0 (2.7) 59.9 (3.7) 47.0 (3) <0.0001 <0.0001 0.01

Post FEV1 (L)+ 2.35 (0.1) 1.88 (0.13) 1.37 (0.09) 0.005 <0.0001 0.003

Post FEV1 Predicted (%)+ 81.7 (2.7) 63.9 (3.9) 49.1 (3) <0.0001 <0.0001 0.005

Sputum Eosinophil count (%) 3.9 (2.4 - 6.4) 0.7 (0.5 - 0.9) 2.0 (1.25 - 3.17) <0.0001 0.039 <0.0001

Sputum Neutrophil count (%)+ 58.8 (3.1) 77.18 (3) 59.1 (3.1) <0.0001 0.95 <0.0001

Sputum Macrophage count (%) 16.6 (12.5 - 21.9) 12.2 (9.2 - 16.1) 25.7 (21.24 - 31.07) 0.1 0.026 <0.0001

TCC (x106 cells/g sputum) 1.31 (1.0 - 1.8) 4.6 (3.3 - 6.4) 1.8 (1.3 - 2.6) <0.0001 0.15 <0.0001

Blood Eosinophil x109/L 0.24 (0.18 - 0.32) 0.25 (0.2 - 0.32) 0.21 (0.16 - 0.27) 0.73 0.54 0.28

Blood Neutrophil x109/L+ 5.74 (0.3) 5.82 (0.3) 5.77 (0.4) 0.85 0.94 0.92

Bacterial colonization (n[%]) 8 (13.8) 26 (55.3) 9 (21.9) <0.0001 0.29 0.001

VAS-cough (mm)+ 30 (3.0) 48 (4.0) 36 (4.4) 0.001 0.24 0.052

VAS-dyspnoea (mm)+ 31 (3.5) 46 (3.3) 46 (4.5) 0.003 0.006 0.93

Definition of abbreviations: VAS= Visual Analogue Score; BMI= Body Mass Index; ICS= Inhaled Corticoster-
oid; Daily Prednisolone dose = Daily Maintenance Prednisolone dose; FEV1 = Forced Expiratory Volume in the
First Second; FVC=Forced Vital Capacity; TCC=Total sputum cell count; C=cluster; Cluster 1= (Asthma=55;
COPD=3); Cluster 2 = (Asthma=28; COPD=19); Cluster 3= (Asthma=2; COPD=39); CFU= colony forming
units. Data presented as geometric mean (95% CI) unless stated;+Mean (standard error of mean (SEM)); ∗median
(1st and 3rd quartiles); Dose for only those subjects prescribed daily prednisolone; Pack-year history of current and
ex-smokers; abeclomethasonedipropionate equivalent; δ= Total number of times a patient exacerbated and took
high dose of steroids for at least three days in the last 12 months
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Table 4.4: Statistical summaries of sputum mediators across the three identified biological
clusters at stable state that represent the differences and similarities between the subgroups

P-value P-value P-value
Variable Cluster 1 Cluster 2 Cluster 3 C1 vs. C2 C1 vs. C3 C2 vs. C3

IL-1β (pg/ml) 39.5 (30.8 - 50.8) 379.5 (257.3 - 559.8) 23.5 (17.2 - 32.2) <0.0001 0.025 <0.0001

IL-5 (pg/ml) 2.6 (1.6 - 4.2) 2.2 (1.4 - 3.4) 1.4 (0.9 - 2.2) 0.56 0.083 0.22

IL-6 (pg/ml) 21.3 (15 - 30.4) 271.4 (192.2 - 383.3) 486.2 (327.7 - 721.4) <0.0001 <0.0001 0.031

IL-6R (pg/ml) 163.2 (126.0 - 211.6) 433.4 (344.2 - 545.6) 112.4 (88.6 - 142.6) <0.0001 0.04 <0.0001

IL-8 (pg/ml) 1658 (1205 - 2280) 10884 (8709 - 13603) 3059 (2209 - 4236) <0.0001 0.005 <0.0001

IL-10 (pg/ml) 0.33 (0.25 - 0.45) 5.5 (3.5 - 8.7) 0.34 (0.2 - 0.6) <0.0001 0.89 <0.0001

IL-13 (pg/ml) 10.4 (7.7 - 14.0) 4.8 (3.8 - 6.2) 3.5 (2.4 - 5.2) 0.001 <0.0001 0.18

CCL-2 (pg/ml) 209.8 (168.3 - 261.5) 495.4 (378.1 - 649.1) 764.5 (538.8 - 1084.7) <0.0001 <0.0001 0.055

CCL-3 (pg/ml) 20.2 (14.9 - 27.4) 97.4 (71.6 - 132.6) 47.9 (35.7 - 64.1) <0.0001 <0.0001 0.002

CCL-4 (pg/ml) 237.8 (147.1 - 384.3) 1138.3 (847.8 - 1528.3) 807 (614.1 - 1060.5) <0.0001 <0.0001 0.1

CCL-5 (pg/ml) 5.6 (4.5 - 7.0) 14.9 (11.1 - 20.1) 2.2 (1.8 - 2.8) <0.0001 <0.0001 <0.0001

CCL-13 (pg/ml) 18.1 (12.9 - 25.5) 18.9 (13.6 - 26.2) 43.2 (32.6 - 57.2) 0.86 <0.0001 <0.0001

CCL-17 (pg/ml) 27 (19.2 - 37.9) 20.5 (14.0 - 30.0) 30.8 (21.5 - 44.2) 0.28 0.61 0.13

CCL-26 (pg/ml) 12.4 (7.8 - 19.9) 5.0 (3.4 - 7.5) 2.9 (1.9 - 4.6) 0.004 <0.0001 0.081

CXCL-10 (pg/ml) 418.7 (286.9 - 611.1) 860.1 (534.1 - 1384.9) 381.8 (262.5 - 555.3) 0.014 0.76 0.012

CXCL-11 (pg/ml) 34.1 (22.8 - 51.0) 42.5 (20.1 - 89.6) 19.2 (12.3 - 30.0) 0.56 0.15 0.089

TNFα (pg/ml) 1.4 (1. 1 - 1.9) 29.9 (19.5 - 45.9) 1.7 (1.1 - 2.5) <0.0001 0.62 <0.0001

VEGF (pg/ml) 1020 (858 - 1213) 2199 (1871 - 2584) 1237 (1040 - 1471) <0.0001 0.12 <0.0001

Definition of abbreviations: C= cluster; Cluster 1= (Asthma=55; COPD=3); Cluster 2 = (Asthma=28; COPD=19);
Cluster 3= (Asthma=2; COPD=39). Data presented as geometric mean with corresponding 95% confidence interval
(CI)
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Table 4.6: Statistical summaries of sputum mediators across the three identified biological
clusters at stable state that represent the differences and similarities between the subgroups

P-value P-value P-value
Variable Cluster 1 Cluster 2 Cluster 3 C1 vs. C2 C1 vs. C3 C2 vs. C3

IL-1β (pg/ml) 39.5 (30.8 - 50.8) 379.5 (257.3 - 559.8) 23.5 (17.2 - 32.2) <0.0001 0.025 <0.0001

IL-5 (pg/ml) 2.6 (1.6 - 4.2) 2.2 (1.4 - 3.4) 1.4 (0.9 - 2.2) 0.56 0.083 0.22

IL-6 (pg/ml) 21.3 (15 - 30.4) 271.4 (192.2 - 383.3) 486.2 (327.7 - 721.4) <0.0001 <0.0001 0.031

IL-6R (pg/ml) 163.2 (126.0 - 211.6) 433.4 (344.2 - 545.6) 112.4 (88.6 - 142.6) <0.0001 0.04 <0.0001

IL-8 (pg/ml) 1658 (1205 - 2280) 10884 (8709 - 13603) 3059 (2209 - 4236) <0.0001 0.005 <0.0001

IL-10 (pg/ml) 0.33 (0.25 - 0.45) 5.5 (3.5 - 8.7) 0.34 (0.2 - 0.6) <0.0001 0.89 <0.0001

IL-13 (pg/ml) 10.4 (7.7 - 14.0) 4.8 (3.8 - 6.2) 3.5 (2.4 - 5.2) 0.001 <0.0001 0.18

CCL-2 (pg/ml) 209.8 (168.3 - 261.5) 495.4 (378.1 - 649.1) 764.5 (538.8 - 1084.7) <0.0001 <0.0001 0.055

CCL-3 (pg/ml) 20.2 (14.9 - 27.4) 97.4 (71.6 - 132.6) 47.9 (35.7 - 64.1) <0.0001 <0.0001 0.002

CCL-4 (pg/ml) 237.8 (147.1 - 384.3) 1138.3 (847.8 - 1528.3) 807 (614.1 - 1060.5) <0.0001 <0.0001 0.1

CCL-5 (pg/ml) 5.6 (4.5 - 7.0) 14.9 (11.1 - 20.1) 2.2 (1.8 - 2.8) <0.0001 <0.0001 <0.0001

CCL-13 (pg/ml) 18.1 (12.9 - 25.5) 18.9 (13.6 - 26.2) 43.2 (32.6 - 57.2) 0.86 <0.0001 <0.0001

CCL-17 (pg/ml) 27 (19.2 - 37.9) 20.5 (14.0 - 30.0) 30.8 (21.5 - 44.2) 0.28 0.61 0.13

CCL-26 (pg/ml) 12.4 (7.8 - 19.9) 5.0 (3.4 - 7.5) 2.9 (1.9 - 4.6) 0.004 <0.0001 0.081

CXCL-10 (pg/ml) 418.7 (286.9 - 611.1) 860.1 (534.1 - 1384.9) 381.8 (262.5 - 555.3) 0.014 0.76 0.012

CXCL-11 (pg/ml) 34.1 (22.8 - 51.0) 42.5 (20.1 - 89.6) 19.2 (12.3 - 30.0) 0.56 0.15 0.089

TNFα (pg/ml) 1.4 (1. 1 - 1.9) 29.9 (19.5 - 45.9) 1.7 (1.1 - 2.5) <0.0001 0.62 <0.0001

VEGF (pg/ml) 1020 (858 - 1213) 2199 (1871 - 2584) 1237 (1040 - 1471) <0.0001 0.12 <0.0001

Definition of abbreviations: C= cluster; Cluster 1= (Asthma=55; COPD=3); Cluster 2 = (Asthma=28; COPD=19);
Cluster 3= (Asthma=2; COPD=39). Data presented as geometric mean with corresponding 95% confidence interval
(CI)

4.3.3 Linear Discriminant Analysis Results

The measured cytokines were used to predict the three biological clusters (which

were identified using factor scores as input into k-means clustering) using linear dis-

criminant analysis. Subsequently, two (one less the number of clusters) discriminant

functions (scores) for each subject were extracted. Thereafter, based on these scores,

the subjects were presented graphically across the identified clusters in figure 4.1 on

page 85. As we observed in the scatterplot, the clusters are well separated, in which

the first discriminant function (x-axis) separates clusters 1 and 3 very well, but does

not separate clusters 1 and 2, and clusters 2 and 3. The second discriminant func-

tion (orthogonal to the first) achieves reasonably well in separating clusters 1 and

2, and clusters 2 and 3 on the basis of associations not used in the first discriminant

function. Therefore, the first and second discriminant functions together were used

to represent the clusters and achieved extremely well in discriminating the three

biological clusters/subgroups.
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Figure 4.1: The three identified biological clusters presented using the subjects discrimin-
ant scores. Hollow triangle indicates eosinophilic asthma dominant (95% asthma, n=58);
bold triangle and bold circle, neutrophilic asthma and COPD (overlap) dominant (59.6%
asthma, n=47); hollow circle, COPD dominant (95% COPD, n=41); bold triangle, over-
lapped asthma; bold circle, overlapped COPD.

In addition, the overall patterns of the cytokines (using z-scores of the mediators)

across the three clusters are illustrated graphically in figure 4.2 on page 86.
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Figure 4.2: Patterns of sputum mediators across the identified clusters

Cluster 1

Cluster 1 consisted about 40% of the subjects included in this analysis (n=58), 95%

were asthmatic, 55% were men and 38% were current or ex-smokers with average

age of 55 years. In this group the mean (SEM) were 69% (1.9) and 81.7% (2.7) for

FEV1/FV C ratio and post FEV1 percentage predicted, respectively (see table 4.2

on page 82 for details). Further stratification of cluster 1 by disease severity (airflow

obstruction) based on the lung-function spirometry measurements (FEV1/FV C ra-

tio and post FEV1 percentage predicted) showed that the subjects had 24.1% mild,

27.6% moderate, 5.2% severe and 0% very severe airflow obstruction.

In addition, the mean (95%CI) sputum eosinophil cell-counts was 3.9 (2.4 –

6.4)%, and the mean (SEM) sputum neutrophil cell-counts was 58.8% (3.1) (table

4.2 on page 82); in which 67% of subjects having a eosinophilia (differential sputum

eosinophils cell-count > 3%) and 48% a neutrophilia (differential sputum neutrophils

cell-count > 61%). Further stratification of cluster 1 by sputum cell counts showed

that the subjects were 40% pure eosinophilic, 21% pure neutrophilic, 27% mixed

granulocytic and 12% paucigranulocytic.
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Furthermore, subjects in this cluster have elevated sputum TH2 derived mediat-

ors (IL-5, IL-13 and CCL-26) compared to the other groups (see table 4.6 on page

84 and figure 4.2 on page 86).

Cluster 2

Cluster 2 consisted of an overlap of asthma and COPD (asthma=28, COPD=19),

in which the subjects were 55% men, 62% were current or ex-smokers with 11 av-

erage pack–year history. This subgroup characterized by 58.5% (2.3) mean (SEM)

FEV1/FV C ratio and 63.9% (3.9) mean (SEM) post FEV1 percentage predicted.

Further stratification of this cluster by disease severity based on the lung-function

spirometry measurements showed that 15.2% of the subjects had mild, 28.3% mod-

erate, 19.6% severe, and 10.9% very severe airflow obstruction.

In addition, subjects in this cluster have a lower level of sputum percentage

eosinophil in sputum {0.7% (95% CI: 0.5% – 0.9%; p-value <0.0001)} and higher

percentage sputum neutrophil {77.2% (SEM=3), p-value <0.0001)} compared to

cluster 1. In addition, in this cluster only 11% of asthmatic and 5% of COPD

subjects had a sputum eosinophilia, but 75% of asthmatics and 95% of COPD had

a sputum neutrophilia. Further stratification of this cluster with respect to sputum

eosinophils and neutrophils showed that the subjects were 0% pure eosinophilic, 74%

pure neutrophilic, 9% mixed granulocytic and 17% paucigranulocytic.

In general, subjects in this cluster characterized by high levels in total cell-counts,

VAS-cough, VAS-dyspnoea, bacterial colonisation and sputum neutrophils (all p-

values < 0·05), but lower in sputum eosinophil and FEV1/FV C ratio, pre-FEV1

predicted, post-FEV1 predicted, compared to subjects in cluster 1 (all p-values <

0·05). In addition, several proinflammatory and TH1 derived mediators ( such as

IL-1β, IL-6, IL-6R, IL-8, IL-10, CCL-2, CCL-3, CCL-4, CCL-5, CXCL-10, TNFα

and VEGF) were significantly elevated in this cluster compared to cluster 1 (all

p-value < 0.05).

Cluster 3

This cluster is a COPD predominantly group, in which 95% of the subjects were

diagnosed as COPD patients, and about 68% were men and 98% were current or
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ex-smokers with average 40 pack-year history. In addition, this subgroup character-

ized by 49.7% average FEV1/FV C ratio (SEM=2.4) and 49.1% average post FEV1

percentage predicted (SEM=3), which were significantly lower in this cluster com-

pared to clusters 1 and 2 (all p-value <0.05). Further stratification of cluster 3 by

disease severity on the basis of lung-function measurements revealed that 2.6% of

the subjects had mild, 33.3% moderate, 33.3% severe, and 17.9% had very severe

airflow obstruction.

In addition, subjects in this cluster have on average 2.0% sputum eosinophil (95%

CI: 1.25% – 3.17%), and 59.1% sputum neutrophil (SEM=3.1). Further stratification

of this cluster on cell-counts showed that the subjects were 21% pure eosinophilic,

28% pure neutrophilic, 23% mixed granulocytic and 28% paucigranulocytic.

Moreover, subjects in this cluster were substantially different from cluster 1

patients with respect to demographic and clinical characteristics (all p-values <

0·001), except in sputum neutrophil and total cell-counts (all p-values > 0·05).

In addition, there are considerable differences between this cluster and cluster 2

in terms of demographic, clinical and lung function characteristics (all p-values <

0·05), but not in VAS-cough and VAS-dyspnoea (all p-values > 0·05) (see table 4.2

for details).

Furthermore, with respect to biological mediators, IL-6, IL-8, CCL-2, CCL-3,

CCL-4 and CCL-13 are significantly higher, but IL-1β, IL-6R, IL-13, CCL-5 and

CCL-26 are significantly lower in this cluster compared to cluster 1 (all p-value <

0.05). However, IL-6 and CCL-13 are significantly increase, but IL-1β, IL-6R, IL-8,

IL-10, CCL-3, CCL-5, CXCL-10, TNFα and VEGF are significantly decrease in this

cluster compared to cluster 2 (all p-value < 0.05) (see table 4.6 for details).
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4.4 Discussion

In this study, the biological heterogeneity of asthma and COPD were modeled jointly

using the combination of factor and cluster analyses. Subsequently, identified three

distinctive biological subgroups of the diseases with different proportion of overlap.

These subgroups were asthma dominant (Cluster 1), asthma and COPD overlap

group (Cluster 2), and COPD predominant subgroup (Cluster 3). The findings have

further emphasized the complex heterogeneity of asthma and COPD and provided

support for the “British” hypothesis of airway disease pathogenesis as we identified

2 clusters that were predominately either asthma or COPD with distinct cytokine

profiles, while also supporting the “Dutch” hypothesis by identifying a third cluster

of overlapping subjects from both disease groups with similar cytokine profiles.

Cluster 1 was asthma predominant with evidence of eosinophilic inflammation

and increased TH2 inflammatory mediators. Cluster 2 contained an asthma and

COPD overlap group, with predominately neutrophilic airway inflammation and

elevated levels of IL-1β and TNF-α in addition to being assigned the highest pro-

portion of subjects with bacterial colonization. Cluster 3 was a COPD-predominant

group with mixed granulocytic airway inflammation and high sputum IL-6 and CCL-

13 levels.

The clusters we have identified have biological plausibility and they confirm and

extend our current understanding of the diseases beyond previous comparisons of

asthma versus COPD [92] or clustering approaches of cytokine profiles in asthma

[115] or COPD [90]. In addition, the clusters might represent groups with possible

stratified responses to specific anti-inflammatory treatment. Cluster 1 is consistent

with the TH2 predominant eosinophilic asthma paradigm. Indeed, this group was

predominately asthmatic but importantly also included about 5% of subjects with

COPD. It would seem likely that this group would respond to anti-TH2 cytokine

therapy such as anti–IL-5 [72, 73, 116, 117]. Whether subjects with COPD in this

cluster would respond to anti-TH2 cytokine therapy is currently under study here

www.clinicaltrials.gov NCT01227278 [74].

Cluster 2 included an overlap of subjects with asthma and COPD. This group

was predominately neutrophilic, consistent with previous observations [118], with
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increased bacterial colonization. In this cluster, increased bacterial colonization was

evident perhaps suggesting that in these subjects the neutrophilic inflammation is

more likely a consequence of bacterial colonization rather than the primary abnor-

mality; however, further studies are required for generalization.

Cluster 3 included mainly subjects with COPD in which bacterial colonization

was observed in fewer subjects in spite of consistently elevated proinflammatory

cytokines. Perhaps this group, in contrast to cluster 2, represents subjects in which

the proinflammatory environment plays a more causal role in the disease expression

rather than as a consequence of infection.

This study may bring new definitions that acknowledges the overlap and high-

lights the similarities and differences between the two diseases. In addition, it

may bring attention to the potential contributions of cytokines in the classifica-

tion asthma and COPD phenotypes, which might yield new insights that could

benefit future efforts in diagnosis, prevention and more personalised intervention

(treatment-specific anti-inflammatory therapies).

One possible limitation of this study is that only subjects with severe asthma

and COPD who attended a secondary care setting were included, and thus might

not be representative of a more generalized population. We acknowledge that our

findings cannot be extrapolated to mild to moderate asthma or mild COPD but

are confident that our populations are representative of our broader secondary care

patient population. Further studies are required to include healthy controls, larger

disease populations including a broader spectrum of subjects including those with

mild disease from multicenters.

In conclusion, we found here that sputum inflammatory mediator profiling

can determine distinct and overlapping groups of subjects with asthma and COPD.

We identified an asthma-predominant cluster with eosinophilic inflammation and

elevated TH2 inflammatory mediators, a COPD-predominant group with elevated

proinflammatory cytokines, and an asthma and COPD overlap group that clinically

had chronic bronchitis, increased bacterial colonization, elevated sputum IL-1β and

TNF-α levels, and a sputum neutrophilia. We predict that these groups might

contribute to improved patient classification to enable a stratified medicine approach

to airways disease.

90



Chapter 5

Asthma and COPD Validation at

Stable State

5.1 Objectives

This chapter will focus on the validation of the stable biological subgroups that were

identified in chapter 4, using new independent asthma and COPD study.

5.2 Introduction

Three distinctive asthma and COPD biological subgroups were identified at stable

state (see chapter 4 for details). To validate the patterns of these subgroups, in-

dependent 166 severe asthma and 58 COPD subjects (all at stable state) were in-

cluded in this study. In this validation study, a number of demographic and clinical

characteristics such as gender, smoking status, age, height, weight, age of disease

on-set, lung-function measurements and sputum cell-counts; and a range of sputum

cytokines mediators were recorded.

5.3 Descriptive Analysis of Validation Study

The patterns of the demographic and clinical characteristics were assessed across

asthma and COPD and depicted in table 5.1 on page 92.
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Table 5.1: Statistical summaries of demographic and clinical characteristics across asthma
and COPD in the validation study that represent the similarities and differences between
the two diseases

Asthma COPD
Variable N Mean (95% CI) N Mean (95% CI) P-value

Male (%) 166 98 (59) 58 41 (70.7) 0.11

Current or Ex- smokers [n (%)] 166 56 (33.7) 58 58 (100) < 0.0001

Pack -year historys 45 8 (5.53 - 11.65) 56 41 (34.45 - 48.88) < 0.0001

Age (years)+ 166 50.3 (1.07) 58 69.2 (1.24) < 0.0001

Duration of Disease (years) 164 18.5 (16.09 - 21.31) 55 3.9 (3.17 - 4.73) < 0.0001

BMI (kg/m2)+ 165 29.8 (0.52) 55 27.3 (0.82) 0.02

Exacerbation number of steroidsδ 166 3.3 (0.24) 56 2.8 (0.35) 0.21

Prednisolone dose use [n (%)] 166 89 (53.6) 58 3 (5.2) < 0.0001

Daily Prednisolone dose (mg)∗ 89 10 (7.5 - 15) 3 5 (5 – 7.5) 0.04

Daily ICS (mcg/day)*a 166 1600 (1000 - 2000) 58 1000 (200 - 2000) < 0.001

Pre FEV1/FVC ratio (%)+ 161 68.7 (1.01) 58 53.2 (1.76) < 0.0001

Pre FEV1 Predicted (%)+ 161 70.6 (1.73) 55 56 (2.86) < 0.0001

Sputum Neutrophil count (%)+ 148 62.6 (2.13) 58 66.7 (3.04) 0.3

Sputum Eosinophil count (%) 148 5.1 (4.2 - 6.2) 58 2.9 (2.21 - 3.83) 0.002

TCC (x106cells/gsputum) 151 1.4 (1.13 - 1.8) 56 3.8 (2.82 - 5.11) < 0.0001

Definition of abbreviations: BMI= Body Mass Index; FEV1=Forced Expiratory Volume in the First Second;
FVC=Forced Vital Capacity; TCC=Total sputum cell count; Inhaled Corticosteroid dose=ICS; Prednisolone dose
use = Maintenance prednisolone dose use. Data presented as geometric mean (95% CI) unless stated;+Mean (stand-
ard error of mean (SEM)); *median (1st and 3rd quartile); Dose for only those subjects prescribed daily prednisolone;
sPack-year history of current and ex-smokers; abeclomethasonedipropionate equivalent; δ= Total number of times
a patient exacerbated and took high dose of steroids for at least three days in the last 12 months.

As we observed in the above table, the two validation diseases have very distinct-

ive demographic and clinical characteristics, which is pretty similar to the patterns

observed in the test asthma and COPD study (see chapter 2 for details).

In addition, the patterns of sputum mediators were assessed across asthma and

COPD in the validation study, and depicted in table 5.2 on page 93.
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Table 5.2: Statistical summaries of sputum mediators across asthma and COPD in the
validation study that represent the similarities and differences between the two diseases

Asthma COPD

Variable N Mean (95% CI) N Mean (95% CI) P-value

IL-1β 156 104.7 (79.9 - 137.1) 58 138.8 (86.4 - 223) 0.3

IL-5 165 1.3 (1.1 - 1.6) 58 1 (0.6 - 1.6) 0.21

IL-6 165 60.6 (47.1 - 77.8) 58 222.6 (141.6 - 349.9) < 0.0001

IL-6R 156 294.8 (223.5 - 388.8) 58 149.1 (115.3 - 193) 0.006

IL-8 156 2683 (1869 - 3851 58 2418.5 (1811 - 3229) 0.74

IL-10 159 2.6 (2.2 - 3) 58 0.9 (0.5 - 1.5) <0.0001

CCL-2 165 248.3 (213.9 - 288.3) 58 551.9 (414.5 - 734.8) <0.0001

CCL-4 156 191.8 (140.5 - 261.7) 58 940 (597.8 - 1477.8) <0.0001

CCL-5 165 7.4 (6.1 - 9) 58 5.6 (4.1 - 7.5) 0.15

CCL-13 159 16.6 (14.3 - 19.3) 58 33.5 (24.2 - 46.3) <0.0001

CCL-17 165 22 (18.1 - 26.7) 58 30.1 (20.6 - 44.1) 0.12

CXCL-10 156 410.3 (301.7 - 557.9) 58 275.9 (186 - 409.2) 0.16

CXCL-11 165 22.3 (16.9 - 29.3) 58 14.1 (8.1 - 24.7) 0.12

TNFα 165 3.5 (2.7 - 4.5) 58 4.6 (2.5 - 8.2) 0.33

Data presented as geometric mean with correspoding 95% confidence interval (CI); unit of the
cytokines is pg/ml

As shown in the table above, the two diseases have distinctive mediators, but

majority of the mediators are similar across the two diseases (mediators with no

significant difference across the two diseases).

Furthermore, to investigate the overall patterns of the characteristics across the

validation asthma and COPD, principal component analysis (PCA) was performed

separately for the combination of demographic and clinical parameters, and for

sputum mediators (cytokines) and displayed graphically across the first two PCA

scores in figure 5.1 (a) and (b) on page 94, respectively.
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(a) (b)
Figure 5.1: Validation asthma and COPD study presented using the first two prin-
cipal component scores: (a) Demographic and clinical characteristics; (b) Sputum
mediators (cytokines).

As we observe in figure 5.1 above, the validation asthma and COPD subjects

are quite distinctive with respect to the demographic and clinical characteristics;

however, there is considerable overlap between the two diseases on their sputum

mediators (cytokines). These patterns are very similar to the patterns observed in

the test (original) study (see figure 2.2 on page 45 and figure 2.4 on page 48 in

chapter 4, respectively, for details).

5.4 Validation using Linear Discriminant Analysis

Linear discriminant analysis (LDA) was proposed as a validation technique for this

study. LDA (formulated in equations 4.1 and 4.2 on page 79) is a supervised stat-

istical technique which can be used to predict the known subgroups/clusters using a

new dataset. It implements by developing a linear discriminant function (classifica-

tion model) from the original dataset for each subgroup (as formulated in equation

5.1 on page 95). Then the new dataset is plugged-in into each subgroup’s classi-

fication model and corresponding discriminant score for each observation in each

cluster is calculated, and the observation is assigned into the subgroup in which the

individual has the highest discriminant score.
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5.4.1 Linear Discriminant Functions

Linear discriminant analysis is formulated in equation 4.1 and 4.2 on page 79, chapter

4. Then linear discriminant function (LDF) is derived for each subgroup and for-

mulated as follows:

LDFk(x) = xTΣ−1µk −
1

2
µT
k Σ−1µk + log (ωk) (5.1)

Where,
1

2
µT
k Σ−1µk + log (ωk) is the constant, and Σ−1µk are the coefficients in

each group, in which Σ−1 is the inverse of the pooled variance-covariance matrix;

and µk and ωk are the mean and the proportion of observations in each group, re-

spectively.

The parameters (ωk, µk & Σ) can be estimated empirically from the sample as

follows:

ωk =
Nk

N

µk =

∑Nk
i=1 xi
Nk

Σ =
K∑
k=1

(xi − µk)(xi − µk)T/(N −K)

(5.2)

Where, Nk is the number of samples in each group K, and
K∑
k=1

Nk = N is the

total sample size.

After some mathematical transformation, equation 5.1 (classification model) can

be rewritten as follows:

Dij = βj + βj1X1i + βj2X2i + ...+ βjkXki + log(Pj) (5.3)

Where Dij is the discriminant score for subject i in group j; βj is a constant for the jth group,

βjk is the weight (coefficient) for variable k in group j; Xki is the observed value of subject i on

the kth variable; log(Pj) is a logarithmic scale of prior probability of group j membership.
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5.4.2 Validation in Simulation Study

Although LDA was proposed to validate the identified subgroups of asthma and

COPD using independent study, unfortunately the number of cytokines which were

recorded in the validation studies were relatively smaller (i.e. 75%) compared to

the cytokines that used in the identification (construction) of the original sub-

groups/clusters in the test study in chapter 4. Therefore, this issue has been ap-

proached by proposing that the the original subgroups need to be predicted using

only cytokines that exist in the validation study. Thereafter, new classification

model for each cluster using the existing cytokines will be built, and subsequently

subjects will be assigned to the subgroup in which he/she has the highest discrim-

inant score. However, no previous studies applied this approach for validation using

fewer variables compared to the original variables that used in the identification

of the subgroups. Therefore, prior to applying this approach to real asthma and

COPD validation study, it will be applied to a simulation study to investigate its

robustness/validity.

A new artificial data which has the same patterns, number of observations and

variables as the one simulated in chapter 3 (simulation study) was simulated. Then

75% of these variables were randomly selected and matched with the original sim-

ulated variables (from chapter 3). The proportion of the selected new simulated

variables are compatible with the proportion of the cytokines that exist in asthma

and COPD validation study to the original cytokines which were used for the iden-

tification of the biological clusters of the diseases in chapter 4.

The simulated clusters (which were correctly identified using factor scores as

input into k-means clustering in chapter 3) were predicted using these selected vari-

ables using linear discriminant analysis. A classification model for each cluster was

developed, and the betas (classification functions) for each variable in each cluster

with prior class probabilities are depicted in table 5.3 on page 97. Subsequently, the

validation study was plugged-in into this model, and each observation was assigned

to the subgroup in which the individual has the highest discriminant score.
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Table 5.3: Coefficients (βs) and class proportion (prior probabilities) in each cluster in the
test simulated study were used to predict class membership in the validation simulated
study

Variable Group 1 (β1k) Group 2(β2k) Group 3 (β3k) Group 4 (β4k)

X1 20.0 5.3 7.7 -5.0

X2 31.9 5.4 -11.9 10.2

X3 49.7 1.0 -13.8 7.9

X4 1.7 0.1 0.2 9.6

X6 -24.8 20.7 -11.5 13.5

X8 3.4 -1.8 -31.1 32.6

X10 -30.9 -4.1 7.8 1.8

X11 -7.8 -10.1 31.1 -27.3

X12 -15.0 -5.6 10.5 -18.3

X13 100.8 19.2 -9.3 -20.0

X14 -62.4 -12.3 1.5 9.4

X15 -5.2 1.6 23.1 -10.0

X16 2.7 2.2 11.1 -36.8

X17 -48.1 -7.5 -5.8 41.0

X19 -14.6 -15.0 -9.5 -4.8

Constant -209.3 -24.3 -83.3 -68.5

Prior probability 0.25 0.25 0.25 0.25

Prior probabilities are equal across the subgroups in the test study.

Once the new simulated data was plugged-in into the above table 5.3, fortunately,

all the observations were assigned into the right simulated subgroups although par-

tial (75%) of the original simulated variables were used for observations assignment.

Thus, as the approach appeared more robust in the simulation study, it was applied

to asthma and COPD study to validate the biological clusters that were identified

in chapter 4.

5.4.3 Validation in Asthma and COPD Study

As described above, the mediators (cytokines) that were measured in the valida-

tion study are relatively small compared to the ones that were recorded in the test

(original) asthma and COPD study (which was used in the identification of the

biological clusters). Therefore, the identified asthma and COPD clusters were pre-

dicted only using the mediators that exist in the validation study. The classification

model for each cluster was developed, and the betas (classification functions) for

each mediator in each cluster with prior class probabilities are depicted in table 5.4

on page 98. Finally, the discriminant score of each validation subject in each group
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was calculated, and the subject was assigned into the subgroup in which he/she has

the highest discriminant score.

Table 5.4: Coefficients (βs) and class proportions (prior probabilities) in each cluster in
the test asthma and COPD study that were used to predict class membership in the
validation study

Variables Cluster 1 (β1k) Cluster 2 (β2k) Cluster 3 (β3k)

IL-1β 1.63 2.17 0.96

IL-5 -6.31 -6.5 -6.79

IL-6 -2.62 -1.17 0.14

IL-6R 6.28 5.58 4.72

IL-8 6.64 7.59 7.31

CCL-2 5.56 5.66 6.98

CCL-4 3.59 3.83 4.66

CCL-5 -1.36 -0.8 -2.83

CCL-13 -0.04 -0.49 -0.21

CCL-17 2.13 1.09 1.09

CXCL-11 0.48 0.51 0.29

TNFα -5.77 -5.28 -6.57

Constant -63.39 -75.75 -79.11

Prior Probability 0.33 0.33 0.33

Prior probabilities are equal across the subgroups in the test study.

The summary statistics of the clinical parameters and mediators of the validation

study of asthma and COPD across the subgroups are presented in tables 5.5 and

5.6 on page 99, respectively.
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Table 5.5: Statistical summaries of demographic and clinical characteristics across the val-
idation subgroups (which represent the differences and similarities between the subgroups)
that were predicted using linear discriminant analysis

P-value P-value P-value
Variable Group 1 Group 2 Group 3 G1 vs. G2 G1 vs. G3 G2 vs. G3

Male [n (%)] 65 (61.3) 40 (54.8) 25 (71.4) 0.38 0.28 0.1

Current or Ex-smokers 37 (34.9) 42 (57.5) 33 (94.3) 0.003 <0.0001 <0.0001

Pack-year history 13.2 (8.5 - 20.7) 16.0 (10.0 - 25.6) 39.6 (31.3 - 50.1) 0.52 <0.0001 0.002

Age (year)+ 53 (1.3) 56 (2.0) 66 (2.0) 0.15 <0.0001 0.002

Duration of Disease (year) 15 (12.9 - 18.7) 13 (9.8-16.8) 6 (4.2 - 8.5) 0.24 <0.0001 0.002

BMI (kg/m2)+ 30.2(0.7) 29.0 (0.8) 27.1 (0.9) 0.22 0.017 0.13

Prednisolone dose use [n (%)] 54 (50.9) 30 (41.1) 7 (20.0) 0.19 0.001 0.03

Daily Prednisolone dose (mg) 10 (10 - 15) 10 (5 - 15) 5 (5 - 10) 0.52 0.03 0.12

Daily ICS dose (mcg/day)*a 2000 (1000 - 2000) 1600 (1000 - 2000) 1000 (200 - 2000) 0.2 <0.001 0.008

Pre FEV1/FVC ratio (%)+ 68.2 (1.4) 61.8 (1.9) 57.3 (1.8) 0.004 <0.0001 0.14

Pre FEV1 Predicted (%)+ 67.6 (2.2) 64.7 (2.9) 65.5 (3.2) 0.4 0.65 0.85

Sputum Neutrophil count (%)+ 59.1(2.8) 72.3 (2.5) 58.4 (4.0) 0.001 0.88 0.003

Sputum Eosinophil count (%) 6.3 (4.9 - 8.2) 3.0 (2.4 - 3.8) 3.2 (2.3 - 4.4) <0.0001 0.003 0.79

TCC (x106 cells/g sputum) 1.2 (0.9 - 1.5) 3.5 (2.5 - 4.8) 2.99 (2.07 - 4.3) <0.0001 0.001 0.6

Definition of abbreviations: BMI= Body Mass Index; FEV1=Forced Expiratory Volume in the First Second;
FVC=Forced Vital Capacity; TCC=Total sputum cell count; G=Group; Group 1=(Asthma=94; COPD=12); Group
2= (Asthma=55; COPD=18); Group 3= (Asthma=7; COPD=28); CFU= colony forming units; ICS= Inhaled Cor-
ticosteroid dose; Prednisolone dose use = Maintenance prednisolone dose use. Data presented as geometric mean
(95% CI) unless stated;+Mean (standard error of mean (SEM)); *median (1st and 3rd quartiles); Dose for only those
subjects prescribed daily prednisolone; Pack-year history of current and ex-smokers; abeclomethasonedipropionate
equivalent.

Table 5.6: Statistical summaries of sputum mediators across the validation subgroups
(which represent the differences and similarities between the subgroups) that were pre-
dicted using linear discriminant analysis

P-value P-value P-value

Variable Group 1 Group 2 Group 3 G1 vs. G2 G1 vs. G3 G2 vs. G3

IL-1β (pg/ml) 54.1 (42.7 - 68.5) 526.6 (375.5 - 738.4) 42.4 (26 - 69.2) <0.0001 0.36 <0.0001

IL-5 (pg/ml) 1.4 (1.1 - 1.8) 1.2 (0.8 - 1.7) 0.9 (0.5 - 1.5) 0.43 0.085 0.34

IL-6 (pg/ml) 26.1 (19.9 - 34.3) 273.3 (210.6 - 354.6) 344.2 (237.2 - 499.3) <0.0001 <0.0001 0.32

IL-6R (pg/ml) 186.0 (135.5 - 255.3) 589.8 (476.6 - 729.8) 90.5 (50.3 - 162.8) <0.0001 0.013 <0.0001

IL-8 (pg/ml) 1210 (822 - 1783) 10771 (8846 - 13115) 1387 (643 - 2989) <0.0001 0.7 <0.0001

IL-10 (pg/ml) 1.9 (1.5 - 2.4) 3.9 (2.8 - 5.4) 0.5 (0.3 - 0.9) 0.001 <0.0001 <0.0001

CCL-2 (pg/ml) 191.9 (161.7 - 227.8) 425.6 (338.6 - 535.0) 680.1 (486.9 - 949.8) <0.0001 <0.0001 0.025

CCL-4 (pg/ml) 119.6 (80.3 - 178.1) 848.1 (646.8 - 1111.9) 502.5 (248 - 1018.2) <0.0001 <0.0001 0.1

CCL-5 (pg/ml) 4.5 (3.7 - 5.6) 16.8 (13.3 - 21.2) 3.8 (2.6 - 5.5) <0.0001 0.39 <0.0001

CCL-13 (pg/ml) 17.4 (14.5 - 21.0) 18.4 (14.2 - 23.9) 40.0 (27.7 - 57.9) 0.73 <0.0001 0.001

CCL-17 (pg/ml) 21.3 (16.4 - 27.7) 25.2 (19.0 - 33.4) 36.0 (23.3 - 55.6) 0.4 0.043 0.17

CXCL-10 (pg/ml) 235.8 (167.7 - 331.7) 841.5 (566.5 - 1249.9) 254.1(140.7 - 458.8) <0.0001 0.83 0.001

CXCL-11 (pg/ml) 12.4 (8.7 - 17.6) 36.1 (22.1 - 59.1) 23.6 (15.4 - 35.9) <0.0001 0.08 0.28

TNFα (pg/ml) 1.4 (1.2 - 1.7) 23.3 (16.1 - 33.7) 1.8 (1.1 - 3.0) <0.0001 0.32 <0.0001

Definition of abbreviations: G=Group. Data presented as geometric mean with corresponding 95% confidence inter-
val; Group 1=(Asthma=94; COPD=12); Group 2= (Asthma=55; COPD=18); Group 3= (Asthma=7; COPD=28)

.

Three validation subgroups were identified using linear discriminant analysis,

in which group 1 consists of 88% asthmatics and 12% COPD subjects; group 2

comprises 75% asthmatic and 25% COPD subjects; and group 3 consists of 20%

asthmatic and 80% COPD subjects. The subjects in group 1 have elevated per-
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centage sputum eosinophils; group 2 subjects have high level in sputum neutrophils,

and in most of the proinflammatory mediators and TH1 derived mediators. Whereas

group 3 is non-neutrophilc COPD dominated group in which the subjects have high

level of IL-6 and CCL-2. The overall patterns of the mediators across the test (ori-

ginal) clusters and the validation subgroups are depicted graphically in figure 5.2 on

page 100.

(a) (b)
Figure 5.2: Patterns of mediators : (a) across test clusters and (b) across validation
subgroups which validated using linear discriminant analysis

Overall, the clinical and mediators patterns observed in the validation study are

very similar to the test study (see the validation tables 5.5 and 5.6, and the test

tables 4.2 and 4.6; and the test and validation figures 5.2(a) and 5.2(b) for detailed

comparisons).
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5.5 Validation using IL-1β and Disease Status

Assignment of a new subject to a pre-existing subgroup (validation) using linear

discriminant analysis is mathematically plausible. However, as it happened in this

study, it needs a considerable number of variables (cytokines) to assign a single

subject to the right subgroup as the original clusters were identified using a range

of cytokines. This approach is too complicated to implement in clinic for subject

assignments into relevant subgroup. Therefore, a simple alternative approach was

proposed, which will be implemented based on the observed patterns of the clinical

and biological characteristics across the test clusters. Then the validation subjects

will be assigned to the subgroups using this approach, with the hope that not too

much information is lost compared to the alternative linear discriminant analysis

approach.

A clear pattern was observed in the original identified clusters, in which it was

evident that cluster 1 (asthma dominated) and cluster 3 (COPD predominant) can

be easily split based on the clinical characteristics of asthma and COPD, accord-

ing to the GINA and GOLD guidelines. However, it is quite difficult to identify

the overlap group (cluster 2) based on these guidelines. Therefore, to establish the

cutoff value from the cytokines for cluster 2, a Classification and Regression Trees

(CART) technique was performed, using RPART R package [119], one at a time to

all these cytokines which have the highest discriminant function (from discriminant

analysis) and highest factor loadings (from factor analysis).

Those cytokines that performed well in discriminating the overlapping cluster at

a cutoff which found using CART, were compared using their percentage of correctly

predicted values (sensitivity ratios). Then the best cutoff was established accord-

ing to the higher total accuracy of the confusion matrix. Subsequently, the best

determined cytokine cutoff (with the highest sensitivity ratio in discriminating the

clusters), together with the disease classification (asthma or COPD), were applied

to classify the validation study into three subgroups.

Thus, IL-1β at 130 pg/ml cutoff performed extremely well in discriminating the

overlap group (cluster 2) from cluster 1 and 3 in the test study, and is depicted in
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figure 5.3 on page 102. IL-1β cutoff with combination of disease status (asthma or

COPD) were applied as a classifier to validate the identified clusters using independ-

ent asthma and COPD study.

Figure 5.3: Absolute IL-1β concentrations on a log scale (base 10) across the 3 identified
stable biological clusters. A= Asthma; C=COPD. P is the p-value for geometric mean
difference between cluster 1 or cluster 3 versus cluster 2 (overlap).

Assuming asthma and COPD as two clinically distinctive diseases (according

to the existing guidelines) and IL-1β above 130 pg/ml cutoff for the overlap, the

validation subjects were assigned to three subgroups. For instance, if a subject was

diagnosed as asthmatic and his/her IL-1β level is below 130 pg/ml he/she would

be assigned to group 1; and if a subject was diagnosed with COPD and his/her

IL-1β level is below 130 pg/ml was assigned to group 3; and irrespective of disease

status (asthma or COPD) if a subject has IL-1β level above 130 pg/ml was assigned

to group 2 (overlap cluster). Therefore, all the clinical characteristics and sputum

mediators of the validation study were reported across the subgroups in tables 5.7

and 5.8, respectively, on page 103.
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Table 5.7: Statistical summaries of demographic and clinical characteristics across the val-
idation subgroups (which represent the differences and similarities between the subgroups)
that were predicted using IL-1β and disease status (asthma or COPD)

P-value P-value P-value
Variable Group 1 Group 2 Group 3 G1 vs. G2 G1 vs. G3 G2 vs. G3

Male [n (%)] 66 (64.1) 51 (57.3) 22 (68.7) 0.34 0.63 0.26

Current or Ex-smokers 28 (27.2) 54 (60.7) 32 (100) <0.0001 <0.0001 <0.0001

Pack-year history 9.5 (5.8 - 15.7) 17.0 (11.5 - 25.2) 41.5 (33.5 - 51.6) 0.06 <0.0001 0.001

Age (year)+ 49 (1.2) 57 (1.8) 68 (1.6) <0.0001 <0.0001 0.001

Duration of Disease (year) 17 (14.1 - 20.7) 13 (10.6 - 16.6) 4 (2.7 - 4.7) 0.08 <0.0001 <0.0001

BMI (kg/m2)+ 29.9 (0.7) 29.0 (0.6) 27 (1.3) 0.33 0.03 0.13

Prednisolone dose use [n (%)] 57 (55.3) 35 (39.3) 2 (6.25) 0.027 <0.0001 <0.0001

Daily Prednisolone dose (mg)* 10 (8 - 15) 10 (5 - 10) 6.25 (5 - 7.5) 0.15 0.11 0.24

Daily ICS dose (mcg/day)*a 1600 (1000 - 2000) 2000 (1000 - 2000) 900 (200 - 2000) 0.52 0.006 0.008

Pre FEV1/FVC ratio (%)+ 70.1 (1.2) 61.0 (1.7) 56.6 (2.4) <0.0001 <0.0001 0.16

Pre FEV1 Predicted (%)+ 71.2 (2.3) 64.1(2.5) 60.2 (3.6) 0.033 0.019 0.4

Sputum Neutrophil count (%)+ 59.0 (2.8) 70.4 (2.5) 59.2 (4.2) 0.003 0.97 0.023

Sputum Eosinophil count (%) 5.6 (4.3 - 7.3) 3.5 (2.8 - 4.4) 3.9 (2.5 - 5.9) 0.009 0.12 0.68

TCC (x106 cells/g sputum) 0.98 (0.7 - 1.3) 3.1 (2.3 - 4.1) 3.1 (2.2 - 4.5) <0.0001 <0.0001 0.97

Definition of abbreviations: BMI= Body Mass Index; FEV1=Forced Expiratory Volume in the First Second;
FVC=Forced Vital Capacity; TCC=Total sputum cell count; G=Group; Group 1= (Asthma=103, COPD=0);
Group 2 = (Asthma=63 and COPD=26); Group 3= (Asthma = 0 and COPD=32); CFU = colony forming
units; Prednisolone dose use = Maintenance prednisolone dose use; ICS = Inhaled Corticosteroid. Data presen-
ted as geometric mean (95% CI) unless stated;+Mean (standard error of mean (SEM)); ∗median (1st and 3rd
quartile); Dose for only those subjects prescribed daily prednisolone; Pack-year history of current and ex-smokers;
abeclomethasonedipropionate equivalent

Table 5.8: Statistical summaries of sputum mediators across the validation subgroups
(which represent the differences and similarities between the subgroups) that were pre-
dicted using IL− 1β cutoff and disease status (asthma or COPD)

P-value P-value P-value

Variable Group 1 Group 2 Group 3 G1 vs. G2 G1 vs. G3 G2 vs. G3

IL-1β (pg/ml) 37.0 (29.1 - 47) 527.1 (407.1 - 682.5) 40.0 (28.2 - 56.6) <0.0001 0.75 <0.0001

IL-5 (pg/ml) 1.2 (1.0 - 1.5) 1.3 (1.0 - 1.9) 1.0 (0.6 - 1.7) 0.69 0.45 0.37

IL-6 (pg/ml) 34.7 (25.6 - 47) 190 (138.4 - 261) 157.7 (88.8 - 280.2) <0.0001 <0.0001 0.56

IL-6R (pg/ml) 153 (102.7 - 228.6) 549.4 (454.9 - 663.6) 101.7 (74.1 - 139.5) <0.0001 0.17 <0.0001

IL-8 (pg/ml) 975 (597 - 1592) 8609 (706 2 - 10496) 1646 (1041 - 2603) <0.0001 0.15 <0.0001

IL-10 (pg/ml) 2.2 (1.8 - 2.6) 3.1 (2.2 - 4.3) 0.4 (0.2 - 0.6) 0.063 <0.0001 <0.0001

CCL-2 (pg/ml) 202 (166.8 - 244.9) 414.8 (336.4 - 511.6) 488.3 (340.0 - 701.4) <0.0001 <0.0001 0.44

CCL-4 (pg/ml) 101.3 (65.3 - 157.3) 685.4 (497.8 - 943.8) 631.5 (382.8 - 1041.7) <0.0001 <0.0001 0.79

CCL-5 (pg/ml) 5.2 (4.1 - 6.7) 11.7 (9.2 - 14.8) 3.7 (2.5 - 5.5) <0.0001 0.16 <0.0001

CCL-13 (pg/ml) 14.7 (12.4 - 17.5) 22.0 (17.1 - 28.3) 39.4 (27.4 - 56.6) 0.01 <0.0001 0.017

CCL-17 (pg/ml) 19.5 (15.1 - 25) 26.1 (19.7 - 34.7) 35.7 (22.9 - 55.6) 0.13 0.025 0.26

CXCL-10 (pg/ml) 250.5 (163 - 384) 595.4 (420.6 - 842.9) 297.7 (194.2 - 456.6) 0.002 0.64 0.034

CXCL-11 (pg/ml) 17.3 (12.4 - 24.2) 25.0 (16.3 - 38.5) 15.8 (7.8 - 31.8) 0.18 0.81 0.28

TNFα (pg/ml) 1.6 (1.3 - 2.0) 14.4 (9.8 - 21.2) 1.3 (0.7 - 2.1) <0.0001 0.39 <0.0001

Definition of abbreviations: G=Group; Group 1= (Asthma=103 and COPD=0); Group 2 = (Asthma=63 and
COPD=26); Group 3= (Asthma = 0 and COPD=32). Data presented as geometric mean with corresponding 95%
confidence interval

Thus, three validation subgroups were identified using IL-1β cut off and the

disease status (asthma or COPD), in which group 1 consists of 100% asthmatics

(n=103), group 2 consists 71% (n=63) asthmatic and 29% (n=26) COPD subjects,
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and group 3 consists of 100% (n=32) COPD subjects. The subjects in group 1

have elevated percentage sputum eosinophils; group 2 subjects have high level in

sputum neutrophils, and in most of the proinflammatory mediators and TH1 derived

mediators. Whereas group 3 is non-neutrophilc COPD dominated group with high

level of IL-6 and CCL-2. The overall patterns of the mediators across the test

(original) clusters and the validation subgroups are depicted graphically in figures

5.4(a) and 5.4(b) on page 100.

(a) (b)
Figure 5.4: Patterns of sputum mediators : (a) across test clusters and (b) across validation
subgroups using IL-1β cutoff and disease status

The patterns of the clinical and sputum mediators in the validation subgroups

(which identified using IL-1β and disease status) is very similar to the test clusters;

(see the validation tables 5.7 and 5.8, and the test tables 4.2 and 4.6; and the test

and validation figures 5.4(a) and 5.4(b) for details).

TNFα

In this study, although IL-1β at cutoff 130 pg/ml performed really well in discrim-

inating the overlap group (cluster 2) from clusters 1 and 2, TNFα also performed

similarly in discriminating the overlap group at cutoff 5 pg/ml (see figure 5.5 on

page 105). Thus, TNFα could be an alternative marker to IL-1β for future subjects

assignment to the identified biological subgroups.
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Figure 5.5: Absolute TNFα concentrations on a log scale (base 10) across the three
identified stable biological clusters. A = Asthma; C=COPD. P is the p-value for geometric
mean difference between cluster 1 or cluster 3 versus cluster 2 (overlap).
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5.6 Discussion

In this section, the biological clusters (which were identified in the asthma and

COPD test (original) study in chapter 4) were validated using an independent study;

and three validation subgroups, which have similar cell-counts and inflammatory

mediator patterns as the test study clusters, were identified. The similarity between

the cytokine profiles (inflammatory mediators) and cell-counts in test and validation

groups supports the view that each cluster is a consistent phenotype and might

reflect phenotype-specific responses to treatment.

Two approaches were used to validate the clusters in an independent subgroups

using discriminant analysis and the generation of a classifier that used the disease

allocation (asthma or COPD status) and sputum IL-1β cutoff. Sputum IL-1β was

the best discriminator between the subjects with asthma or COPD in clusters 1 and

3, respectively, with those in the overlap group (cluster 2). Although, validating

using linear discriminant analysis is mathematically plausible, the clinical diagnosis

of asthma or COPD together with a single sputum cytokine (IL-1β cutoff) demon-

strates a simple approach to segment asthma and COPD populations into three

groups with distinct and consistent cytokine profiles. This approach, with further

validation and study, has advantages in its simplicity and offers the potential for

immediate use in stratified medicine studies although it might underestimate small,

albeit potentially important subgroups such as TH2 high COPD. In addition, TNFα

shows similar performance as IL-1β in discriminating the overlap group, and could

be an alternative potential biomarker for future subjects assignment.
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Chapter 6

Modeling Asthma and COPD

Biological Heterogeneity at

Exacerbation State

6.1 Objectives

The objective of this chapter is to model the biological heterogeneity of asthma and

COPD at exacerbation state using appropriate statistical techniques. Subsequently

to identify the common and distinctive biological subgroups of both diseases at

exacerbation state. The patterns of demographic, clinical, sputum mediators and

the microbiome communities will be assessed across the identified biological sub-

groups/clusters.

6.2 Introduction

In this study, patients with asthma and COPD were followed up at stable state

and during exacerbations, with sampling performed in longitudinal visits and in

treatment näıve exacerbations. To date this is the largest study that has used

biomarker cytokines sampling in longitudinal follow-up and exacerbation visits. An

exacerbation is a state in which an asthmatic or COPD patient symptoms get worse

and are not enough to control symptoms using the standard treatments such as

bronchodilators (inhalers) and steroids. The main symptoms are chest tightness,

rapid progressive dyspnea (shortness of breath), dry cough, and extreme wheezing.

At worse, it is a life-threatening episode of airway obstruction and is considered as

medical emergency state [120].

In this study patient recruitment was performed after fulfilment of specific entry
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criteria detailed in chapter 2. An exacerbation was defined according to Anthonisen

criteria, and diary cards were used to trigger contact to the research department.

Similar to the previous exacerbation studies [121–123], all patients were asked at

study entry to contact the research department whether there was an increase in

symptoms of breathlessness, sputum production or sputum purulence in comparison

to stable state. Following review by a clinician and demonstration that there was

no an alternative cause for symptom change (using clinical examination), exacerba-

tion data (such as clinical characteristic and sputum mediators) were captured in

those patients who required treatment with systemic corticosteroids and/or antibi-

otic therapy.

In the previous chapters, the characteristics of asthma and COPD subjects were

assessed at stable state, and the common and distinctive biological subgroups were

identified. In this chapter, the biological subgroups of asthma and COPD will be

investigated at exacerbation state, and they will be assessed whether the patterns

are similar or different to the identified stable subgroups. However, first descriptive

analysis will be preformed to assess the patterns of the clinical characteristics, spu-

tum mediators (cytokines) and microbiome communities across asthma and COPD

at exacerbation state. The patterns might aid to justify that the identified clusters

may provide further information which are missing at disease level.

6.3 Study Population

In these prospective studies, thirty-seven asthmatics and seventy-five COPD sub-

jects have exacerbated. At their exacerbation visit, their clinical characteristics such

as lung-function (pre- and post-FEV1), cell-counts (sputum and blood eosinophils,

neutrophils, and sputum total cell-count), visual analogue scores (cough, dyspnea),

a number of sputum cytokines, and a panel of microbiome communities at both

phylum and genus levels were recorded.
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6.4 Descriptive Analysis

6.4.1 Patterns of Clinical Characteristics Across Asthma

and COPD

The patterns of the clinical parameters were assessed across asthma and COPD at

exacerbation state, and presented as summary statistics in table 6.1 on page 109.

Table 6.1: Statistical summaries of demographic and clinical characteristics across asthma
and COPD that represent the differences and similarities between the two diseases at
exacerbation state.

Variable Asthma (n=37) COPD (n=75) P-value

Pre FEV1 1.9 (0.15) 1.13 (0.06) < 0.0001

Post Pre FEV1 1.99 (0.18) 1.16 (0.06) < 0.0001

Pre FEV1 predicted (%) 67.87 (4.63) 43.32 (2.09) < 0.0001

Post FEV1 predicted (%) 71.21 (5) 44.5 (2.1) < 0.0001

Sputum neutrophil count (%) 62.79 (5.03) 74.55 (2.61) 0.03

Blood neutrophils (x109/L) 6.44 (0.42) 6.85 (0.36) 0.49

VAS score-cough (mm) 63.06 (3.72) 64.18 (2.61) 0.81

VAS score-dypsonea (mm) 65.03 (3.31) 70.16 (2.59) 0.24

Blood eosinophils (x109/L)+ 0.17 (0.12 - 0.24) 0.16 (0.13 - 0.2) 0.92

Sputum eosinophils count (%)+ 1.19 (0.56 - 2.52) 1.06 (0.71 - 1.57) 0.77

Macrophage count (%)+ 15.14 (10.04 - 22.82) 10.56 (8.04 - 13.86) 0.16

TCC (x106cells/g sputum)+ 3.78 (2.19 - 6.52) 6.28 (4.58 - 8.62) 0.1

Definition of abbreviations: VAS= Visual Analogue Score; FEV1 = Forced Expiratory Volume in the First Second;
TCC=Total sputum cell count. Data presented as Mean (standard error of mean (SEM)) unless stated; +geometric
mean (95% CI)

As shown in the above table, the lung function measurements are significantly

lower in COPD subjects compared to asthmatics. However, there is no significant

difference between the two diseases in cell-counts and visual analogue scores except

in sputum neutrophils.

6.4.2 Patterns of Sputum Mediators Across Asthma and

COPD

Thirty one asthmatic and seventy three COPD subjects have records on a number of

sputum cytokines (mediators) at exacerbation state. Since, there are corresponding
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record for the mediators at stable state, their patterns across stable and exacerbation

states were assessed, and presented graphically, separately for asthmatic and COPD

subjects in figures 6.1(a) and 6.1(b) on page 110, respectively.

(a) (b)
Figure 6.1: Sputum mediators at stable and exacerbation states: (a) Asthma and (b)
COPD

As we observed in the figures above, most of the mediators (in both diseases)

appeared to elevate at exacerbation state (except those TH2 derived mediators)

compared to stable state. Sputum IL-6R and CCL-5 were the best discriminators of

exacerbation from stable state in asthmatic (figure 6.1(a)), and in COPD subjects

(figure 6.1(b), respectively.

In addition, the patterns of these mediators were assessed at exacerbation state

across asthma and COPD, and displayed graphically in figure 6.2 on page 111.

110



Figure 6.2: Patterns of sputum mediators across asthma and COPD at exacerbation state

As it is illustrated in the figure above, several mediators (such as IL-5, IL-6R,

CXCL-10, CXCL-11, CCL-5 and CCL-26) are significantly elevated in asthmatic

compared to COPD subjects at exacerbation state. In contrast, IL-6, CCl-3, CCL-4

and TNF-R1 are significantly increased in COPD compared to asthmatic subjects.

However, these two diseases do not have significant differences in IL-β, IL-8, IL-

10, IL-13, CCL-2, CCL-13, CCL-17, TNFα, TNF-R2 and VEGF, although these

mediators show increasing patterns towards specific disease (asthma or COPD) as

demonstrated in figure 6.2 on page 111.

Furthermore, to understand the overall patterns of the mediators at exacerbation

state across asthma and COPD, principal component analysis (PCA) was performed

on the cytokines (displayed in figure 6.2), to reduce to low dimensional components.

The first two PCA components (which account for most of the variance of the

mediators) were extracted and used to display the data graphically in figure 6.3 on

page 112.
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Figure 6.3: Sputum mediators across asthma and COPD at exacerbation state presented
using the first two principal component scores

As is shown in the figure above, there is a considerable overlap between asthma

and COPD subjects with respect to their sputum mediators at exacerbation state.

This observation is similar to the patterns observed at stable state (see figure 2.4 on

page 48 in chapter 2).

In addition, to investigate the internal structures (hidden patterns) of the medi-

ators at exacerbation state, the correlations between the mediators are displayed as

a heatmap in figure 6.4(a). Further visualization was also performed on these medi-

ators to assess whether they create distinctive subgroups based on their correlation

structures, and graphically presented in figure 6.4(b) on page 113.
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(a) (b)
Figure 6.4: Sputum mediators at exacerbation state: (a) correlation matrix and (b) sub-
groups. Heatmap colors: Dark-red indicates strong positive correlation; dark-blue for
strong negative correlation; light-red for weak positive correlation; light-blue for weak
negative correlation; and yellow for no correlation.

As we observe in the above heatmap there is strong correlations between the

mediators, which is similar to the patterns observed at stable state in figure 2.5(a) in

chapter 2. In addition, the mediators at exacerbation appeared to create subgroups

based on their correlation matrix, and those cytokines which strongly correlated

were grouped together. For example, TH2 derived mediators (IL-5, IL-13, CCL-

13, CCL-17, and CCL-26) aggregated together; pro-inflammatory mediators (IL-1β,

IL-6, IL-8, IL-10, TNFα, TNF-R1, TNF-R2 and VEGF) grouped together, and

TH1 derived mediators (CXCL-10 and CXCL-11) also formed another group. These

patterns are also similar to the patterns observed at stable state in figure 2.5(b) on

page 49 in chapter 2.

6.4.3 Patterns of Microbiome Communities Across Asthma

and COPD

The pattern of micrbiome profiles were not compared previously across asthma and

COPD at exacerbation state. In this study, the 16S rDNA based bacterial com-

munity patterns will be assessed across asthma and COPD, and across the identified

biological clusters (the differences between the biological subgroups of asthma and

COPD might be related to changes in microbial community patterns) at exacerba-

tion visit.
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Subjects

In this study, 16 asthmatic and 54 COPD subjects who have sputum mediators

recorded at exacerbation state have corresponding microbiome measurements. The

microbiome communities were obtained from 16S rRNA sequencing and OTU clas-

sification bacterial genomic DNA, which was extracted from the sputum samples

using the Qiagen DNA Mini kit (Qiagen, CA, USA) (for details see chapter 2). The

sequencing reads were processed using QIIME pipeline [124], and 30 communities

(species) at phylum and 399 species at genus levels were identified. In this de-

scriptive analysis, the alpha and beta diversity, and patterns of the most abundant

communities will be assessed across asthma and COPD at phylum and genus levels.

6.4.4 Alpha and Beta Diversity of Microbiome Communit-

ies

Alpha (α), within a subject, [125] and beta (β), between subjects, [126] diversity at

both phylum and genus levels were calculated using Shannon-Weiner and Sorensen

indices, respectively, using the Vegan R-package version 2.3 [127].

Alpha diversity is estimated using Shannon-Weaver index, and formu-

lated as follows:

H = −
S∑

i=1

pi loge(pi) (6.1)

Where, pi is the proportion of species i, and S is the number of species, so that
∑S

i=1 pi = 1,

e is the base of natural logarithm.

Beta diversity was estimated using Sorensen index, and formulated as follows:

β =
a+ b

2a+ b+ c
(6.2)

Where, a is the shared species between two subjects, b and c are the unique species

in each subject. Then the overall beta diversity is estimated as the mean of all pairwise

comparison of the subjects.
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Alpha Diversity Across Asthma and COPD

Alpha diversity for each subject was estimated at phylum and genus levels, and the pat-

terns are presented graphically across asthma and COPD subjects in figure 6.5 on page

115.

Figure 6.5: Patterns of alpha diversity of microbiome communities at phylum and genus
levels across asthma and COPD at exacerbation state

As shown in the figure above, alpha diversity are significantly higher in asthmatic

compared to COPD subjects at phylum level. However, there is no significant difference

at genus levels between the two diseases.

Beta Diversity Across Asthma and COPD

Beta diversity (as formulated above) was calculated at phylum and genus levels for asth-

matic and COPD subjects separately. Beta diversity at phylum level is quite similar

between the two diseases, in which 0.20 in asthmatic and 0.21 in COPD subjects. How-

ever, it is higher in COPD at genus level, in which 0.43 in asthmatic and 0.51 in COPD

subjects.
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6.4.5 Patterns of the Most Abundant Microbiome Com-

munities Across Asthma and COPD

The relative abundance of each community was calculated at phylum and genus levels, and

if any of the species has more than 2% median relative abundance in either asthma an-

d/or COPD diseases were used for further analysis. Therefore, Actinobacteria, Bacteroid-

etes, Firmicutes and Proteobacteria at phylum level; and Actinomyces (phylum Actin-

obacteria), Rothia (phylum Actinobacteria), Prevotella (phylum Bacteroidetes), Gemella

(phylum Firmicutes), Streptococcus (phylum Firmicutes), Veillonella (phylum Firmicutes)

and Haemophilus (phylum Proteobacteria) at genus level satisfied the criteria. The pat-

terns of these highly abundant species were investigated across asthma and COPD, and

graphically presented.

Patterns at Phylum Level Across Asthma and COPD

The patterns of the four most abundant microbiome species at phylum level (Actin-

obacteria, Bacteroidetes, Firmicutes and Proteobacteria) are presented graphically across

asthma and COPD in figure 6.6 on 117.
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Figure 6.6: Patterns of microbiome communities at phylum level across asthma and COPD
at exacerbation

As observed in the figure above, only Bacteroidetes are significantly elevated in asth-

matics compared to COPD subjects. However, there is no clear difference in Actinobac-

teria, Firmicutes and Proteobacteria across the two diseases.

Patterns at Genus Level Across Asthma and COPD

The patterns of the most abundant genera such as Actinomyces (phylum Actinobacteria),

Rothia (phylum Actinobacteria), Prevotella (phylum Bacteroidetes), Gemella (phylum

Firmicutes), Streptococcus (phylum Firmicutes), Veillonella (phylum Firmicutes) and

Haemophilus (phylum Proteobacteria) are graphically presented across asthma and COPD

subjects in figure 6.7 on page 118.
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Figure 6.7: Pattern of microbiome communities at genus level across asthma and COPD
at exacerbation
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As it has been illustrated in the figure above, only Prevotella (phylum Bacteroidetes)

and Veillonella (phylum Firmicutes) are significantly elevated in asthmatic compared to

COPD subjects at exacerbation state. However, there are no significant differences across

the diseases in the others most abundant genera (such as Actinomyces, Rothia, Gemella,

Streptococcus and Haemophilus) although they show sign of elevation towards specific

disease.

6.4.6 Descriptive Summaries

In the above descriptive analysis, we observed that several clinical variables, sputum me-

diators and most abundant communities did not show any significant difference across

asthma and COPD at disease level. Therefore, these patterns will be assessed further

across the exacerbation biological subgroups, in order to reveal any hidden patterns which

are missing when only comparing at disease level.
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6.5 Statistical Methods for Biological Clustering

From the above explanatory analysis, we can observe that the patterns of the sputum me-

diators at exacerbation are very similar to the patterns observed at stable state. Therefore,

a two stage (factor and cluster analyses) was performed to identify the common and dis-

tinctive exacerbation biological clusters/subgroups of asthma and COPD.

First, factor analysis (with varimax rotation) was applied to all the cytokines and

reduced to small independent factors. The optimal factors were retained on the basis of

screeplot (factors above the break in the curve) and eigenvalue above one [102]. Sub-

sequently, the corresponding factor scores which represent each subject was generated

and used as input into k-means cluster analysis to identify the subjects clusters (for the

statistical methods details readers refer to chapter 3 and 4). The statistical summary of

all the available demographic and clinical characteristics were presented across the bio-

logical subgroups. In addition, alpha and beta diversity, and the patterns of the most

abundant communities (at both phylum and genus levels) are presented across the bio-

logical clusters. The biological subgroups (clusters) were interpreted according to these

characteristics patterns.

In addition, after the biological clusters were identified using factor scores as input to

k-means clustering, linear discriminant analysis was applied to predict the subgroups using

the actual cytokines measurements. Then mediators which have substantial contribution

in discriminating the subgroups were identified, and number of clusters less one discrim-

inant function scores for each subject were generated and used to display the subjects

subgroups graphically.

6.6 Results

6.6.1 Asthma and COPD Factors at Exacerbation State

Factor analysis (principal factor with varimax rotation) was performed on asthma and

COPD mediators at exacerbation state, and four factors were retained which accounted

for about 94.2% of the total shared variance and almost all the correlation that exists

between the mediators. Since IL-13 has below limit of detection in most of the subjects, it

was excluded from factor analysis; however, its pattern was assessed across the identified

subgroups in the post analysis. The rotated factor loadings are depicted in table 6.2 on

page 121.
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Table 6.2: Varimax rotated factor loadings of sputum mediators at exacerbation

Factor 1 Factor 2 Factor 3 Factor 4 C1 U2

IL-1β 0.90 -0.25 -0.06 0.10 0.88 0.12
IL-5 0.04 0.87 0.26 0.02 0.83 0.17
IL-6 0.50 0.01 0.07 0.57 0.57 0.43
IL-6R 0.82 0.13 0.19 -0.30 0.82 0.18
IL-8 0.80 0.02 -0.03 0.17 0.67 0.33
IL-10 0.68 -0.08 0.38 0.15 0.64 0.36
CXCL-10 0.07 0.23 0.90 0.08 0.88 0.12
CXCL-11 -0.11 0.24 0.83 0.15 0.77 0.23
CCL-2 0.11 0.23 0.50 0.40 0.47 0.53
CCL-3 0.50 0.16 0.27 0.66 0.78 0.22
CCL-4 0.39 0.34 0.18 0.57 0.62 0.38
CCL-5 0.63 0.03 0.64 -0.03 0.82 0.18
CCL-13 -0.12 0.55 0.17 0.43 0.54 0.46
CCL-17 -0.24 0.81 0.02 0.23 0.76 0.24
CCL-26 -0.06 0.84 0.20 -0.04 0.75 0.25
TNFα 0.82 -0.27 0.22 0.30 0.89 0.11
TNF-R1 0.91 -0.09 -0.20 0.19 0.92 0.08
TNF-R2 0.92 0.05 0.17 0.16 0.91 0.09
VEGF 0.67 0.09 -0.26 0.07 0.52 0.48
Eigenvalue 6.54 2.91 2.77 1.83

C1 = Proportion of total variation accounted for by the common factors (common variance)
U2 = Proportion of total variation not accounted by the common factors (unique variance)

In the table above, clear patterns in the factor loadings were observed, in which proin-

flammatory mediators appeared to load in factor 1, TH2 mediators in factor 2, and TH1

mediators in factor 3. These observations are quite consistent with the patterns observed

in figure 6.4 (b) on page 113.

6.6.2 Asthma and COPD Clusters at Exacerbation State

In this study, three biological clusters were identified at exacerbation state using factor

scores as input into k-means clustering. The clinical parameters and mediators are presen-

ted across the identified subgroups in table 6.3 and table 6.4, respectively. In addition,

the clusters are presented graphically across the first two discriminant functions scores

(number of clusters less one) in figure 6.8 on page 123; and the patterns of the mediators

across the subgroups are also presented in figure 6.9 on page 123.
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Table 6.3: Statistical summaries of demographic and clinical characteristics across the
three identified biological clusters at exacerbation that represent the differences and sim-
ilarities between the clusters

P-value P-value P-value
Variable Cluster 1 Cluster 2 Cluster 3 C1 vs. C2 C1 vs. C3 C2 vs. C3

Male [n (%)] 21 (65.6) 21 (63.6) 24 (61.5) 0.87 0.72 0.85

Current or Ex-smokeres [n (%)] 25 (78.1) 21 (63.6) 31 (79.5) 0.2 0.9 0.13

Age (year) 63 (2.0) 63 (2.4) 67 (1.6) 0.34 0.95 0.36

BMI (kg/m2) 28.4 (1.2) 28.9 (1.1) 25.5 (0.72) 0.47 0.96 0.48

Pre FEV1 (L) 1.37 (0.15) 1.52 (0.12) 1.14 (0.09) 0.39 0.18 0.01

Post FEV1 (L) 1.43 (0.18) 1.48 (0.13) 1.22 (0.09) 0.79 0.25 0.09

Pre FEV1 predicted (%) 47.43 (4.1) 54.7 (3.87) 46.38 (3.81) 0.23 0.85 0.14

Post FEV1 predicted (%) 49.01 (4.86) 54.33 (4.06) 49.05 (3.7) 0.4 0.99 0.35

Sputum neutrophil count(%) 60.44 (3.82) 59.89 (4.54) 87.36 (2.52) 0.9 <0.0001 <0.0001

Blood neutrophils (x109/L) 5.88 (0.42) 6.26 (0.48) 8.02 (0.54) 0.59 0.002 0.02

VAS score-cough (mm) 65 (4.11) 63.24 (3.77) 66.67 (3.21) 0.74 0.75 0.48

VAS score-dypsonea (mm) 72.19 (4.12) 62.88 (3.87) 68.77 (3.11) 0.08 0.51 0.23

Blood eosinophils (x109/L) 0.29 (0.21 - 0.4) 0.13 (0.09 - 0.17) 0.13 (0.1 - 0.17) <0.0001 <0.0001 0.83

Sputum eosinophils count (%) 5.6 (2.95 - 10.64) 0.75 (0.43 - 1.3) 0.39 (0.3 - 0.5) <0.0001 <0.0001 0.02

Macrophage count (%) 16.5 (12.4 - 21.94) 22.61 (15.98 - 32.0) 5.71 (3.95 - 8.25) 0.22 <0.0001 <0.0001

TCC (x106cells/g sputum) 3.09 (2.1 - 4.55) 3.38 (2.01 - 5.66) 12.44 (8.24 - 18.8) 0.79 <0.0001 <0.0001

Bacterial colonization [n/N (%)] 7/30 (23.3) 8/26 (30.8) 26/38 (68.4) 0.53 <0.0001 0.003

Definition of abbreviations: VAS= Visual Analogue Score; BMI= Body Mass Index; FEV1 = Forced Expir-
atory Volume in the First Second; TCC=Total sputum cell count, C=cluster; Cluster 1= (Asthma=11 and
COPD=21); Cluster 2= (Asthma=15 and COPD=18); Cluster 3 = (Asthma=5 and COPD=34). Data presen-
ted as geometric mean (95% CI) unless stated;+Mean (standard error of mean (SEM)); ∗median (1st and 3rd

quartiles); Dose for only those subjects prescribed daily prednisolone; Pack-year history of current and ex-smokers;
abeclomethasonedipropionate equivalent

Table 6.4: Statistical summaries of sputum mediators across the three identified biological
clusters at exacerbation state that represent the differences and similarities between the
clusters

P-value P-value P-value
Variable Cluster 1 Cluster 2 Cluster 3 C1 vs. C2 C1 vs. C3 C2 vs. C3

IL-1β 42.2 (23.3 - 76.4) 92.6 (49.4 - 173.5) 1093 (616.1 - 1938.8) 0.08 <0.0001 <0.0001

IL-5 5.8 (3.7 - 9.2) 1.7 (1 - 2.9) 0.6 (0.5 - 0.8) <0.0001 <0.0001 <0.0001

IL-6 160.5 (95.8 - 269) 368.5 (186.1 - 729.7) 708 (435.2 - 1151.8) 0.05 <0.0001 0.12

IL-6R 270.1 (161 - 452.9) 305.6 (192.2 - 485.9) 640.4 (424.1 - 967.1) 0.72 0.01 0.02

IL-8 2929 (2045 - 4195.3) 3121.6 (2012.7 - 4841.4) 10493 (7938.8 - 13868.9) 0.81 <0.0001 <0.0001

IL-10 2.1 (1.8 - 2.6) 12.9 (6.4 - 25.9) 10.8 (6.6 - 17.7) <0.0001 <0.0001 0.68

IL-13 14.1 (11.2 - 17.6) 11.1 (9.3 - 13.3) 8.9 (8 - 9.9) 0.07 <0.0001 0.03

CXCL-10 383.9 (236.4 - 623.3) 3740.1 (2271.6 - 6158.1) 147.4 (93.5 - 232.2) <0.0001 0.006 <0.0001

CXCL-11 24.5 (13.7 - 43.9) 442.1 (174.2 - 1121.9) 4.4 (2.8 - 6.8) <0.0001 <0.0001 <0.0001

CCL-2 381.6 (268 - 543.4) 947.2 (581.8 - 1541.8) 297.7 (225.5 - 392.9) 0.001 0.36 <0.0001

CCL-3 44.7 (29.7 - 67.2) 72.6 (40.3 - 130.8) 88.8 (59.7 - 132) 0.17 0.04 0.57

CCL-4 976.4 (625.1 - 1525.1) 1072.1 (573.4 - 2004.5) 1114.5 (750.2 - 1655.8) 0.8 0.71 0.92

CCL-5 5 (3.3 - 7.7) 19.7 (12.1 - 32.1) 9.9 (6.9 - 14.3) <0.0001 0.03 0.03

CCL-13 27.8 (22 - 35) 20 (13.9 - 28.8) 12.1 (10.1 - 14.4) 0.1 <0.0001 0.01

CCL-17 50.9 (32.8 - 79) 8.6 (5.7 - 13) 4.7 (3.1 - 7.2) <0.0001 <0.0001 0.05

CCL-26 18.6 (12.6 - 27.5) 5.2 (3.4 - 7.7) 2.3 (1.8 - 2.8) <0.0001 <0.0001 <0.0001

TNF-α 2.5 (1.5 - 4.1) 20.9 (9.5 - 45.8) 78.3 (45.6 - 134.4) <0.0001 <0.0001 0.007

TNF-R1 754.8 (562.4 - 1013.1) 772.6 (528.5 - 1129.4) 4143.4 (3157.4 - 5437.3) 0.92 <0.0001 <0.0001

TNF-R2 303.7 (206.9 - 445.9) 564.9 (328.3 - 972.2) 1387.9 (980 - 1965.6) 0.05 <0.0001 0.006

VEGF 1212.7 (1021.5 - 1439.8) 1083.2 (904.8 - 1296.9) 2035.7 (1652.4 - 2508.1) 0.43 <0.0001 <0.0001

Definition abbreviations: C=cluster; Cluster 1= (Asthma=11 and COPD=21); Cluster 2= (Asthma=15 and
COPD=18); Cluster 3 = (Asthma=5 and COPD=34). Data presented as geometric mean with corresponding
95% confidence interval (CI); unit of the mediators is pg/ml.
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Figure 6.8: The 3 identified exacerbation biological clusters presented using subjects’
discriminant scores. Hollow triangle indicates asthma and bold circle indicates COPD.

Figure 6.9: Patterns of sputum mediators across the three clusters of asthma and COPD
at exacerbation
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Cluster 1

Cluster 1 consists of 31 subjects (asthma =11 and COPD =21), in which 65% are men,

with 65 years average age, and 78% are current or ex-smokers. Subjects in this cluster

have high blood and sputum eosinophil count, 5.6 (95%: 2.95 - 10.64), and 0.29 (95%: 0.21

- 0.4), respectively (Table 6.3). In addition, these subjects have elevated TH2 cytokines

(IL-5, IL-13, CCL-13, CCL-17 and CCL-26), table 6.4 and figure 6.9.

Subjects in this cluster have also clinical records at stable state, and pairwise compar-

ison were performed to compared the patterns of these characteristics at stable state with

their corresponding levels at the exacerbation (table 6.5). The lung function measurements

(such as pre- and post-FEV1, pre- and post FEV1 percentage predicted) were significantly

lower at exacerbation compared to stable state (all p-value < 0.01). In contrast, visual

analogue scores (cough and dyspnea) (all p-value < 0.0001), and sputum eosinophils (p-

value = 0.02) were significantly higher at exacerbation compared to stable state.

Table 6.5: Statistical summaries of the pairwise comparison (within subject) of the clinical
parameters between stable and exacerbation states in cluster 1

Variable Stable Exacerbation P-value

Pre FEV1 (L) 1.59 (0.14) 1.37 (0.15) 0.002

Post FEV1 (L) 1.68 (0.16) 1.43 (0.18) <0.001

Pre FEV1 predicted (%) 56.73 (4.15) 47.43 (4.1) 0.004

Post FEV1 predicted (%) 59.46 (4.43) 49.01 (4.86) <0.001

Sputum neutrophil count (%) 62.45 (3.87) 60.44 (3.82) 0.45

Blood neutrophils (x109/L) 5.2 (0.3) 5.88 (0.42) 0.06

VAS score-cough (mm) 32.75 (5.59) 65 (4.11) <0.0001

VAS score-dypsonea (mm) 35.91 (5.6) 72.19 (4.12) <0.0001

Blood eosinophils (x109/L)+ 0.27 (0.21 - 0.34) 0.29 (0.21 - 0.4) 0.64

Sputum eosinophils count (%)+ 2.39 (1.3 - 4.4) 5.6 (2.95 - 10.64) 0.02

Macrophage count (%)+ 22.55 (17.82 - 28.54) 16.5 (12.4 - 21.94) 0.06

TCC (x106cells/g sputum)+ 2.21 (1.55 - 3.16) 3.09 (2.1 - 4.55) 0.23

Definition of abbreviations: VAS= Visual Analogue Score; FEV1 = Forced Expiratory Volume in the First Second;
TCC=Total sputum cell count. Data presented as Mean (standard error of mean (SEM)) unless stated; +geometric
mean (95% CI)

In addition, the patterns of the sputum mediators across stable and exacerbation were

assessed in this cluster, and graphically illustrated in figure 6.10 on page 125. However,

most of the mediators have no significant difference between stable and exacerbation states

(except CCL-26) in this cluster.
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Figure 6.10: Patterns of sputum mediators across stable and exacerbation in cluster 1

Cluster 2

Cluster 2- consists of 33 subjects (asthma=15, COPD=18), 64% are men with 66 years

average age, and 64% are current or ex-smokers. The subjects in this cluster have elevated

level in TH1 derived cytokines (CXCL-10, CXCL-11) and CCL-5 compared to cluster 1

(tables 6.3 and 6.4 and figure 6.9).

In addition, the patterns of the clinical characteristics were compared (using pairwise

comparison) between stable and exacerbation states in this cluster, and presented in table

6.6. The lung function measurements (such as pre- and post-FEV1, pre- and post-FEV1

percentage predicted) were significantly lower at exacerbation compared to stable state (all

p-value < 0.01). In contrast, visual analogue scores (cough and dyspnea) were significantly

incremented at exacerbation compared to stable state (all p-value <0.0001), which is

similar to the pattern observed in cluster 1. However, no blood or sputum cell-counts

were significantly different between exacerbation and stable states, which is in contrast to

the patterns observed in cluster 1 (see table 6.6).
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Table 6.6: Statistical summaries of the pairwise comparison (within subject) of the clinical
parameters between stable and exacerbation states in cluster 2

Variable Stable Exacerbation P-value

Pre FEV1 (L) 1.72 (0.12) 1.52 (0.12) 0.005

Post FEV1 (L) 1.8 (0.13) 1.48 (0.13) <0.0001

Pre FEV1 predicted (%) 62 (4.03) 54.7 (3.87) 0.004

Post FEV1 predicted (%) 63.84 (3.86) 54.33 (4.06) <0.001

Sputum neutrophil count (%) 67.94 (3.61) 59.89 (4.54) 0.29

Blood neutrophils (x109/L) 5.75 (0.37) 6.26 (0.48) 0.21

VAS score-cough (mm) 30.67 (4.28) 63.24 (3.77) <0.0001

VAS score-dypsonea (mm) 39.61 (4.08) 62.88 (3.87) <0.0001

Blood eosinophils (x109/L)+ 0.17 (0.12 - 0.26) 0.13 (0.09 - 0.17) 0.2

Sputum eosinophils count (%)+ 1.09 (0.68 - 1.75) 0.75 (0.43 - 1.3) 0.12

Macrophage count (%)+ 17.28 (11.51 - 25.96) 22.61 (15.98 - 32.01) 0.46

TCC (x106cells/g sputum)+ 1.78 (1.14 - 2.78) 3.38 (2.01 - 5.66) 0.06

Definition of abbreviations: VAS= Visual Analogue Score; FEV1 = Forced Expiratory Volume in the First Second;
TCC=Total sputum cell count. Data presented as Mean (standard error of mean (SEM)) unless stated; +geometric
mean (95% CI)

In addition, the patterns of the mediators were assessed (using pairwise comparison)

across stable and exacerbation states in this group, and most of the mediators (such

as IL-1β, IL-6, IL-10, IL-13, CXCL-10, CXCL-11, CCL-3, CCL-5 and TNFα) appeared

to elevated significantly at exacerbation compared to stable state. However, CCL-13 and

CCL-17 decreased significantly at exacerbation compared to the stable state (Figure 6.11).

Figure 6.11: Patterns of sputum mediators across stable and exacerbation states in cluster
2
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Cluster 3

Cluster 3 is a COPD predominant group which consists of 39 subjects (asthma=5 and

COPD=34), 61% are men with 67 average age and 79% were current or ex-smokers.

Subjects in this group have elevated level of blood and sputum neutrophil cell counts and

high level of pro-inflammatory mediators (IL-1β, IL-6, IL-6R, TNFα, TNF-R1, TNF-R2

and VEGF) and increased bacterial colonisation compared to cluster 1 and 2.

Subjects in this cluster have also clinical records at stable state, and pairwise com-

parison were performed to compare with their corresponding levels at exacerbation state

(table 6.6). The lung function measurements (such as pre- and post-FEV1, pre- and post

FEV1 percentage predicted) were significantly lower at exacerbation (all p-value < 0.01).

Whereas visual analogue scores (cough and dyspnea), and blood and sputum neutrophil

and sputum total-cell-count are significantly increased at exacerbation (all p-value <0.05).

However, blood or sputum eosinophils cell-counts are significantly lower at exacerbation

compared to stable state (all p-value < 0.05), which is in contrast to the patterns observed

in cluster 1 (table 6.7).

Table 6.7: Statistical summaries of the pairwise comparison (within subject) of the clinical
parameters between stable and exacerbation states in cluster 3

Variable Stable Exacerbation P-value

Pre FEV1 (L) 1.27 (0.09) 1.14 (0.09) 0.002

Post FEV1 (L) 1.34 (0.1) 1.22 (0.09) 0.001

Pre FEV1 predicted (%) 52.26 (4) 46.38 (3.81) <0.001

Post FEV1 predicted (%) 54.55 (4.02) 49.05 (3.7) <0.0001

Sputum neutrophil count (%) 73.25 (3.63) 87.36 (2.52) 0.003

Blood neutrophils (x109/L) 6.18 (0.43) 8.02 (0.54) <0.001

VAS score-cough (mm) 49.46 (4.51) 66.67 (3.21) <0.001

VAS score-dypsonea (mm) 51.61 (3.89) 68.77 (3.11) <0.001

Blood eosinophils (x109/L)+ 0.19 (0.14 - 0.25) 0.13 (0.1 - 0.17) 0.04

Sputum eosinophils count (%)+ 0.96 (0.6 - 1.54) 0.39 (0.3 - 0.5) <0.001

Macrophage count (%)+ 12.63 (9.25 - 17.26) 5.71 (3.95 - 8.25) 0.001

TCC (x106cells/g sputum)+ 4.45 (2.97 - 6.67) 12.44 (8.24 - 18.8) <0.001

Definition of abbreviations: VAS= Visual Analogue Score; FEV1 = Forced Expiratory Volume in the First Second;
TCC=Total sputum cell count. Data presented as Mean (standard error of mean (SEM)) unless stated; +geometric
mean (95% CI)

In addition, the pattern of the mediators in this cluster were assessed across stable

and exacerbation using pairwise comparison approach, and displayed in figure 6.12 on page

128. In this cluster, the overall pattern of the mediators across stable and exacerbation

states is not quite clear, which is dissimilar to the patterns observed in clusters 1 and 2.
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Several mediators (such as IL-1β, IL-6R, IL-8, IL-10, CXCL-10, CXCL-11, CCL-5, TNFα,

VEFG) were significantly higher at exacerbation; in contrast, most of the TH1 and TH2

mediators (such as IL-5, CXCL-10, CXCL-11, CCL-2, CCL-13, CCL-17 and CCL-26) were

significantly lower at exacerbation compared to their levels at stable state.

Figure 6.12: Pattern of sputum mediators across stable and exacerbation in cluster 3
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6.6.3 Patterns of Microbiome Communities Across the Bio-

logical Clusters

Some of the subjects who were assigned to the biological clusters have corresponding

microbiome information at both phylum and genus levels; in which 17 subjects (asthma=5;

COPD=12) in cluster 1, 22 subjects (asthma=7; COPD=15) in cluster 2, and 30 subjects

(asthma=4; COPD=26) in cluster 3 had microbiome records. In this section, the pattern

of alpha and beta diversity indices and the most abundant communities will be assessed

across the subgroups.

Patterns of Alpha and Beta Diversity Across the Biological

Clusters

Alpha diversity at phylum and genus levels are estimated across the biological clusters,

and displayed in figure 6.13 on page 129.

(a) (b)
Figure 6.13: Patterns of alpha diversity across the biological clusters at exacerbation state:
(a) at phylum level and (b) at genus level

As observed in the figure above, the pattern of alpha diversity is not significantly

different between the three biological clusters (although a trend is seen that is higher in

cluster 1, then cluster 2 compared to cluster 3).

In addition, beta diversity is estimated for each cluster, which is quite similar across

the clusters at phylum level, in which 0.21 in cluster 1, 0.20 in cluster 2 and 0.21 in cluster

3. However, at genus level it appears higher in cluster 3 compared to the other clusters,

in which 0.44 in cluster 1, 0.50 in cluster 2, and 0.54 in cluster 3.
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Patterns of the Most Abundant Microbiome Communities

Across the Biological Clusters at Phylum Level

The patterns of the most abundant microbiome communities at phylum level (Actinobac-

teria, Bacteroidetes, Firmicutes and Proteobacteria) are presented across the biological

exacerbation clusters in figure 6.14 on page 130.

Figure 6.14: Patterns of the most abundant microbiome communities at phylum level
across the biological clusters at exacerbation state

As illustrated in the above figure, Firmicutes and Proteobacteria are significantly el-

evated in cluster 2 and cluster 3, respectively. However, the abundance of Actinobacteria

and Bacteroidetes look high in cluster 1 compared to the other clusters, but not statistic-

ally significant. These observations are quite novel as the we observed in figure 6.6 on 117,

Firmicutes and Proteobacteria are not statistically significant across asthma and COPD

(at disease level) but they are significantly different across the biological clusters.
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Patterns of the Most Abundant Microbiome Communities

Across the Biological Clusters at Genus Level

The patterns of the microbiome communities at genus level such as Actinomyces (phylum

Actinobacteria), Rothia (phylum Actinobacteria), Prevotella (phylum Bacteroidetes), Gemella

(phylum Firmicutes), Streptococcus (phylum Firmicutes), Veillonella (phylum Firmicutes)

and Haemophilus (phylum Proteobacteria) were investigated across the identified exacer-

bation biological clusters, and are graphically presented in figure 6.15 on page 132.

As demonstrated in the figures below, only Streptococcus (phylum Firmicutes) is sig-

nificantly elevated in cluster 2 (this is consistent with Firmicutes’s pattern at phylum level

across the clusters). In addition, Prevotella (phylum Bacteroidetes) shows a borderline

significant elevation towards cluster 1. However, the other most abundant communities at

genus level do not have clear differences across the biological clusters. As we observed in

figure 6.7 on page 118, Streptococcus (phylum Firmicutes) was not statistically different

between asthma and COPD at disease level, but significantly different across the identified

biological clusters. This observation, suggested that the biological clusters can reveal some

hidden patterns of the microbiome communities at genus level.
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Figure 6.15: Pattern of the microbiome communities across the biological clusters at
exacerbation
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Summary of the Microbiome Communities Patterns

At phylum level

Alpha diversity is significantly higher in asthmatic, which suggests the proportions of

the species in each subject are more diverse in asthmatic compared to COPD subjects.

However, beta diversity (between subjects) is similar across the two diseases. In addition,

both diversity are similar across the clusters.

From the most abundant species, only Bacteroidetes significantly elevated in asthmatic

compared to COPD subjects at disease level, but it was not significantly different across

the biological clusters. On the other hand, Firmicutes and Proteobacteria were not signi-

ficantly different between the two diseases, but Firmicutes and Proteobacteria significantly

elevated in cluster 2 and cluster 3, respectively.

At genus level

Alpha diversity is similar between the diseases, but Beta diversity is higher in COPD

subjects compared to asthmatic, at genus level. In addition, Alpha diversity is not different

between the clusters, but Beta diversity appeared to be larger in cluster 3 compared to

clusters 1 & 2.

From these most abundant genera, only Prevotella (phylum Bacteroidetes) and Veil-

lonella (phylum Firmicutes) are significantly elevated in asthmatics compared to COPD

subjects at disease level; however, these species are not significantly different across the

biological clusters. Whereas, although Streptococcus (phylum Firmicutes) was not signi-

ficantly different across the diseases, but it appeared to elevate significantly in cluster 2

compared to the other clusters.
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6.7 Discussion

In this study, three exacerbation biological subgroups of asthma and COPD were identi-

fied using the combination of factor and cluster analyses. The three subgroups represented

both asthma and COPD with different proportion of overlap between the diseases. Sub-

jects in cluster 1 have elevated eosinophils (blood and sputum) and TH2 derived cytokines,

and increased proportion (although not significant) of Actinobacteria and Bacteroidetes

at phylum level, and Actinomyces (phylum Actinobacteria), and Prevotella (phylum Bac-

teroidetes) at genus level. Subjects in cluster 2 have high TH1 derived mediators, and

Firmicutes at phylum level, and Streptococcus (phylum Firmicutes) at genus level. Cluster

3 is a COPD predominated group which has high level in blood and sputum neutrophils,

proinflammatory mediators, bacterial colonization and Proteobacteria at phylum level and

sign of elevation in the proportion of Haemophilus (phylum Proteobacteria) at genus level

although it was not significantly different across the clusters.

In addition, subjects in this study have records of clinical characteristics and sputum

mediators at stable state, and their patterns were compared in each cluster with their

corresponding exacerbation visits. In cluster 1, the lung function measurements such as

pre- and post-FEV1, pre- and post-FEV1 percentage predicted were significantly lower

at exacerbation compared to stable. In contrast, visual analogue scores (cough and dys-

pnea), and sputum eosinophils are significantly higher at exacerbation compared to stable

state. In addition, most of the mediators have no significant difference between stable and

exacerbation, except CCL-26 which is higher at exacerbation, in this cluster.

In cluster 2, the lung function measurements such as pre- and post-FEV1, pre- and

post-FEV1 percentage predicted were significantly lower at exacerbation. In contrast,

visual analogue scores (cough and dyspnea) increased at exacerbation, which is similar to

the pattern observed in cluster 1. However, no blood or sputum cell-count was significantly

different between exacerbation and stable states, which is dissimilar to the pattern in

cluster 1. In addition, most of the mediators (such as IL-6, IL-10, IL-13, CXCL-10, CXCL-

11, CCL-2, CCL-5 and TNFα) significantly increased but CCL-17 significantly decreased

at exacerbation compared to stable state in this cluster.

In cluster 3, the lung function measurements (such as pre- and post-FEV1, pre- and

post FEV1 percentage predicted) are significantly lower at exacerbation. On the other

hand, visual analogue scores (cough and dyspnea), and blood and sputum neutrophil

and sputum total-cell-count are significantly increased at exacerbation compared to stable
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state. However, blood or sputum eosinophils are significantly lower at exacerbation com-

pared to stable state in contrast to the patterns observed in cluster 1. In addition, the

overall patterns of the mediators across stable and exacerbation were not quite clear.

Mediators (such as IL-5, IL-6R and IL-10 ) were significantly higher at exacerbation; in

contrast, most TH1 and TH2 mediators (such as IL-5, CXCL-11, CCL-2, CCL-13, CCL-17

and CCL-26) are significantly lower at exacerbation compared to their patterns at stable

state.

Overall, each cluster has specific clinical and biological interpretation, and shows in-

teresting patterns with respect to microbiome communities (at both phylum and genus

levels). These clusters may represent a specific phenotype which may respond differently

to particular treatment. In addition, the patterns across the stable and exacerbation

subgroups are quite similar in which subjects who have elevated level of TH2 cytokines

have high eosinophil cell counts, and these which are high in proinflammatory mediators

appeared to have high level in neutrophils cell counts and bacterial colonization. Fur-

thermore, the two diseases appeared to have more in common in terms of subgroups at

exacerbation compared to stable state.

The possible limitation of this study is that the asthmatic subjects at exacerbation are

relatively smaller compared to COPD subjects. However, the subjects in each disease are

reasonable and have enough power for any statistical and subgroup analyses. In addition,

the exacerbation subgroups (unlike to the stable clusters) were not validated in an inde-

pendent study as we do not have exacerbation validation dataset at the moment, so the

stability of these clusters could be questionable and should be interpreted cautiously. Fur-

thermore, as the number of subjects who have the microbiome information were relatively

smaller than the subjects who have sputum cytokines (used for the identification of the

biological clusters) so the entire pattern of the microbiome communities may not be reveal

across the clusters. This may underpowered to establish a proper connection between the

biological subgroups and the microbiome communities in this study and requires further

studies with bigger sample size.

In conclusion, in this study three biological exacerbation subgroups were identified,

which have specific clinical and biological interpretation. These three subgroups repres-

ented asthma and COPD with different proportion of overlap between both diseases.
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Part II

Developing a Novel Method for

Variable Selection in Model-based

Clustering
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Chapter 7

Variable Selection in Model-based

clustering: a Finite Gaussian Mixture

Model

7.1 Objectives

The main objective of this part of the thesis is to develop a new method of variable

selection for model-based clustering (Gaussian mixture model).

7.2 Introduction

Although it seems the more information that exists for individuals would be better for

clustering, adding non-informative (irrelevant) clustering variables may not make a basic

change in the identification of the optimal clusters except hiding the existing subgroups.

For example, assuming the observations are distinctive on few variables but similar (homo-

geneous) on most of the variables. Therefore, including these non-informative variables as

input into the clustering algorithm could be a harmful (which may add unnecessary noise

and hide the optimal clusters) as the clustering non-informative variables may dominate

the effect of the clustering informative variables.

The general objective of variable selection in clustering is to maximize the identification

of the optimal number of clusters using minimum number of clustering relevant variables.

This may allow explaining the clusters in a simple and manageable way by removing these

clustering irrelevant variables. In addition, it may improve interpretation, visualization,

identification of cost-effective variables for future prediction and validation by not measur-

ing those non-informative variables. Particularly in medical research it would be useful for

subject selection for clinical trials, adjustment of the standard care treatments targeting

each subgroup based on the state (threshold) of these relevant variables.
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The application of clustering in biomedical research and other fields to the discovery

of novel clusters/subgroups has increased considerably. However, selecting the best subset

of relevant variables that produce optimal clusters remains a key problem. In respiratory

research, to my knowledge, no single study applied a formal variable selection in clustering.

The common approaches of choosing input variables for clustering algorithm are: based

on the clinical utilities of the variables by eliminating the redundant ones [14], reducing

the dimension of the observed variables using factor analysis [128]/ principal component

analysis (PCA) [91] and use the corresponding scores as input into clustering algorithm,

or using the highest-loading observed variables (after factor analysis) [87, 90].

These approaches have several limitations; for example, reducing variables based on

their clinical utilities/previous information is very subjective without mathematical justi-

fication, in which the selected variables are not tested using rigorous mathematical tech-

niques whether they represent well these excluded variables from the clustering algorithm.

In addition, using factor/PCA scores in a situation where the observed variables don’t

have strong correlation is quite dangerous, as it is more likely to end up with few latent

variables (scores) which represent very small amount of total information/variance exist

in the entire variables as it has been observed in this study [91]; in which they reduced

their variables into small PCA scores which only explain 61% of the information of the

total variance of the observed variables. Furthermore, using the highest loading observed

variables as input into clustering algorithm may not work well in a situation that were

described in the simulation study (chapter 3). In summary:

1. The observed variables may not have strong correlation (internal patterns), and may

not be suitable for factor analysis.

2. The factor loadings of the retained highest-loading observed variable may not be as

close as to the optimal (i.e. to one).

3. There could be multiple observed variables that have similar loadings in each factor,

but their loadings may not be as close as to the optimal (e.g. less than 0.7).

4. The entire information in the observed variables may not be captured reasonably well

by the retained factors (corresponding to the highest-loading observed variables).

Using the above approaches is not always guaranteed for optimal outcome (clusters).

Thus, a rigor investigation (screening) using appropriate techniques should be implemented

in order to choose the input variables for clustering. In this study, we proposed a new

138



variable selection method for model-based clustering (which integrates variable selection

and clustering simultaneously) to generalize the approach of Raftery and Dean (2006,

JASA 101,168-178) [129]. This method is developed for any dataset which have continuous

variables (which do not have strong correlation or internal patterns as sputum cytokines)

as input into a model-based clustering algorithm such as clinical data (e.g. demographic

and clinical characteristics) and/or other social science research data in which the number

of observations should be greater than the number of variables. However, for dataset

in which the variables that have strong correlation as sputum cytokines, the two stage

approach (factor and cluster analyses) appeared as a best method to identify the optimal

clusters in the simulation study (see chapter 3 for details).

This part of the thesis started with a general description of cluster analysis. The

detailed mathematical formula of model-based clustering (Gaussian mixture model that

is optimized using EM-algorithm), the effect of variable selection in clustering and the

implementation of variable selection in model-based clustering are described. In addition,

the algorithm of Raftery & Dean [129] was reviewed in detail. The detailed description of

the proposed algorithm for variable selection in model-based clustering is reported. This

part concluded by comparing the performance of the new method with other existing tech-

niques using real and simulated dataset (with known cluster membership), and eventually

it is applied to respiratory data in order to identify novel clusters.

7.3 Cluster Analysis

Cluster analysis is a technique that splits a heterogeneous population into more homo-

geneous subgroups (see figure 3.4 on page 63 in chapter 2 for graphical demonstration of

clustering). Most of the existing clustering techniques rely on heuristic methods that are

based on similarity or dissimilarity distance measures (such as k-means and hierarchical

clustering algorithms). Although this approach is computationally feasible and available in

most open-source and commercial statistical software, the main criticism is that there is no

well accepted criteria for choosing the optimal number of clusters. An alternative method

is a model-based clustering, in which a more formal statistical procedure can be imple-

mented to choose the optimal clusters (mixture components) using likelihood approach.

Thus, this part of thesis will focus on model-based clustering.
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7.4 Model-based Clustering

7.4.1 Gaussian Mixture Model

A Gaussian mixture model is a model-based clustering technique in which each component

probability distribution (mixture component) is corresponding to a cluster. It assumes that

the observed data come from heterogeneous (two or more) populations instead of from

a single (homogeneous) population, it works by modeling each of the sub-populations

separately and the overall population as a mixture of these sub-populations [130, 131].

The optimal mixture components (clusters) and cluster memberships are estimated using

maximum likelihood, which is optimized using EM algorithm [132].

Gaussian mixture model with k components is formulated as follows:

f(X) =
k∑

k=1

ωkfk(x/µk,Σk) (7.1)

Where ωk is the non-negative mixing coefficient, which sums to one, and represents

the prior probability of an observation coming from component (cluster) k; and fk(x) is

the density function of cluster k with mean µk, and variance–covariance matrix Σk.

7.4.2 Bivariate Gaussian Mixture Distribution

A bivariate distribution of Gaussian mixture of two components (clusters) with varying

means and variance-covariance matrices is simulated and displayed in figure 7.1 on page

141. The data are simulated with ω1 = 0.4, µ1 = [0,−2], Σ1 = [1.0, 0.4, 0.4, 1.0]; ω2 = 0.6,

µ2 = [5, 3], Σ2 = [0.2, 0.6, 0.6, 0.3]. This means that cluster 1 consists of 40% of the

observations with mean of X1 and X2 equal to 0 and -2, respectively; and their standard

deviation is the same which is 1, and the correlation between X1 and X2 is 0.4. Cluster 2

consists of 60% of the observations, in which X1 has mean = 5 and standard deviation =

0.2; and X2 has mean = 3 and standard deviation = 0.3, the correlation between X1 and

X2 (in this cluster) is 0.6. These data represented the general format of Gaussian mixture,

and can be extended to high-dimensional multivariate Gaussian mixture distribution by

increasing the number of variables.
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Figure 7.1: Bivariate Gaussian mixture density

7.4.3 Maximum Likelihood Estimation for Gaussian Distri-

bution

Likelihood can be used to measure the goodness of fit in a Gaussian model, such as how

well the model fits the data.

Assuming there is an independent dataset, X = [x1, x2, ..., xn], drawn from a single

Gaussian distribution with probability density function f(X, θ); where θ [µ (mean) and

σ2 (variance)] are the parameters. The likelihood function can be written as follows:

L(X;µ, σ2) =

n∏
i=1

f(Xn;µ, σ2) (7.2)

The goal is to estimate the parameters (µ̂ and σ̂2) that maximized the likelihood

function (equation 7.2). However, it is impossible to maximise directly from the above

equation. Therefore, the equation should be transformed to the corresponding natural

logarithm (log-likelihood function), which is strictly equivalent to the likelihood func-

tion. Then the parameters can be analytically estimated by partial differentiating the

log-likelihood function, with respect to the mean (µ) to get sample mean (µ̂), and with

respect to the variance (σ2) to get sample variance (σ̂2). This approach works well in

a single Gaussian distribution to identify parameters which maximize the log-likelihood

function. However, in multivariate Gaussian mixture model, it is difficult to implement

this approach to estimate the parameters that maximise the corresponding log-likelihood
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function (equation 7.3). Thus, an iterative approach such as EM-algorithm is used to es-

timate the parameters that maximize the log-likelihood function in multivariate Gaussian

mixture model [132].

The log-likelihood function of Gaussian mixture model can be written as fol-

lows;

log L(θ) =
n∑

j=1

log{
K∑
k=1

ωk f(xj ;µk,Σk)} (7.3)
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7.4.4 EM-algorithm for Gaussian Mixture Model

EM is an Expectation - Maximization algorithm which maximizes the log-likelihood func-

tion (equation 7.3) of a Gaussian mixture model (equation 7.1) with respect to the estim-

ated parameters (ωk, µk, Σk) using an iterative approach [132]. The parameters (ω
(0)
k ,

µ
(0)
k , Σ

(0)
k ) can be initialized using heuristic approach such as k-means algorithm. In the

EM-algorithm, an observation’s class membership is identified using Bay’s theorem, by cal-

culating the posterior probabilities, and assigning the observation into the group/cluster

in which the observation has the highest probability.

Given a Gaussian mixture model (equation 7.1) with log-likelihood function (equation

7.3), the optimal parameters which maximize the log-likelihood function can be estimated

by iterating the following E andM steps until convergence to the maximum likelihood

function, i.e. (log L(θi+1)− log L(θi) u 0).

E-step: Estimate the posterior probabilities using the current parameters

τ
(i)
jk =

ω
(i)
k f(xj ;µ

(i)
k ,Σ

(i)
k )∑K

k=1 ω
(i)
k f(xj ;µ

(i)
k ,Σ

(i)
k )

M-step: Re-estimate the parameters using the current posterior probabilities

ω
(i+1)
k =

∑n
j=1 τ

(i)
jk

n

µ
(i+1)
k =

∑n
j=1 τ

(i)
jk xj∑n

j=1 τ
(i)
jk

Σ
(i+1)
k =

∑n
j=1 τ

(i)
jk (xj − µ(i+1)

k )(xj − µ(i+1)
k )T∑n

j=1 τ
(i)
jk

(7.4)

Here, the likelihood function is guaranteed to increase in each iteration until conver-

gence. However, the convergence is not guaranteed to be a global maximum as it could

converge to a local maximum, in which more than a single optimal result could be identi-

fied. In addition, the EM algorithm is prone to initialization in which the results could be

influenced how the parameters were initialized, usually heuristic clustering algorithm such
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as k-means [105] are commonly used to initialize the parameters. For more detailed proof,

application of EM - algorithm to Gaussian mixture model and its strength and limitations,

readers refer to GJ. Titterington et al (1985) [130] and GJ McLachlan et al (2007) [131].

7.4.5 Optimal Number of Clusters in Gaussian Mixture Model

The likelihood function of the Gaussian mixture may be used to assess how well the model

fitted to the data. However, the corresponding maximum log-likelihood estimator gets

larger as the number of components (clusters) is increased in the model. Therefore, the

maximum log-likelihood estimator is not the suitable approach to choose the optimal k

components/clusters.

However, the most common approach to address this problem in Gaussian mixture

model is using the Bayesian information criterion (BIC). BIC was originally developed by

G. Schwarz (1978) [133] for assessing non-nested model fit. Fraley and Raftery(1998) [134]

showed that it is approximately equivalent to Bayes factor [135, 136], and they successfully

applied for model comparison and choosing the optimal number of clusters in Gaussian

mixture model [134]. It is insensitive to the number of clusters, and the smaller the BIC

is the better fit.

BIC for Gaussian mixture model is formulated as follows:

BIC = −2 ∗ log L(θ) + p ∗ log(n) (7.5)

Where, L(θ) is the maximum log-likelihood estimator, n is the number of observations;

p = 2∗c− 2 + 3∗c∗d+ c∗d2
2 (number of parameter), c= number of clusters, and d= number of

variables.

7.5 Variable Selection in Cluster Analysis

7.5.1 Introduction

Variable (feature) selection is quite common in supervised techniques such as linear re-

gression and discriminant analyses [137–139]. However, recently, with the availability of

hundreds of thousands of variables, such as gene expression and medical imaging data,

some progress has been made for formalising the objective of variable selection in unsu-
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pervised techniques such as cluster analysis, and that become an active field of research

[129, 140, 141].

Although it seems more information that exists for individuals would be better for clus-

tering, but adding non-informative (irrelevant) clustering variables may not make a basic

change in the identification of the optimal clusters except for hiding the existing subgroups.

For example, assuming the observations are distinctive on few variables but similar (homo-

geneous) on most of the variables. Therefore, including these non-informative variables as

input into the clustering algorithm could be a harmful (which may add unnecessary noise

and hide the optimal clusters) as the clustering non-informative variables may dominate

the effect of the clustering informative variables.

The general objective of variable selection in clustering is to maximize the identification

of the optimal number of clusters using minimum number of clustering relevant variables.

This may allow the explanation of the clusters in a simple and manageable way by re-

moving these clustering irrelevant variables. In addition, it may improve interpretation,

visualization, identification of cost-effective variables for future prediction and validation

by not measuring those non-informative variables [139].

There are two common types of variable selection in clustering. They are filter and

wrapper approaches. In the filter approach, variables are selected prior to clustering [142,

143] based on certain criteria (e.g. based on previous studies or data reduction techniques

such as principal component or factor analyses). It is computationally feasible; however,

there is a risk to remove potential clustering informative variables through that filtering

process. Whereas, the wrapper method is an alternative approach (which address the issue

in the filter approach) that assesses the variables according to their clustering usefulness,

in which variable selection and clustering are implemented simultaneously [129, 140, 144];

in which this part of the thesis will focus on.

7.6 Variable Selection for Model-based Clustering

7.6.1 Clustering Relevant and Irrelevant Variables

In cluster analysis, variables can be categorized as clustering relevant (informative) or

irrelevant (non-informative) based on their ability to split the observations into signific-

ant distinctive subgroups. A variable that can classify observations into distinctive sub-

groups/clusters is called a clustering relevant variable, if this is not the case it is known

as a clustering irrelevant variable. For example, the simulated variable X in figure 7.2(a)
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can be treated as a clustering relevant variable as it is able to split the observations into

two distinctive subgroups at approximate cutoff 2 (e.g. at X = 2). However, variable Y in

figure 7.2(b) can be considered as clustering irrelevant as it could not split the observations

into distinctive subgroups. Although the observations can be classified into two subgroups

on the bases of variable Y (e.g. at Y = 0), the difference between the two subgroups

would more likely be insignificant (i.e. homogeneous across the subgroups on Y ). Thus,

including variable Y into a clustering algorithm does not add any further information

except for including unnecessary noise which could hide the existing clusters with respect

to variable X.

(a) (b)
Figure 7.2: (a) Clustering relevant and (b) Clustering irrelevant
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7.6.2 Univariate Clustering Variable Selection

In model-based clustering a variable relevance for clustering can be assessed univariately

using BIC index.

For example, by calculating the BIC-differnce (∆BIC) between ”no-cluster” to ”optimal-

clusters”, and formulated as follows:

∆BIC = BICnoCluster −BICoptimalClusters

The standard calibration of BIC difference with respect to clustering evidence is re-

ported in [134, 135], and formulated as follows:

1. BICd < 2 : Weak evidence

2. BICd ≥ 2 &BICd < 6 : Positive evidence.

3. BICd ≥ 6 &BICd < 10 : Strong evidence

4. BICd ≥ 10 : Very strong evidence

Example

Several normally distributed univariate data were simulated from two subgroups, which

have varying means but (for simplicity) the same standard deviation, and displayed in

figure 7.3. Then BIC for no-clusters (i.e. one cluster) and for two-clusters (optimal

clusters) were estimated as formulated in equation 7.5 on page 144, and the BIC differences

were calculated.
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Figure 7.3: BIC for assessing clustering information

As we observe in the figures above, when the mean difference between the two groups/clusters

is very small (almost zero) the BIC difference between no-cluster and two-clusters becomes

negative, which suggests that the observations should be treated as one group/cluster

instead of two subgroups. However, as the mean differences between the two groups in-

creases, the corresponding BIC differences appeared to increase substantially. Thus, BIC

is a useful criterion for assessing a variable for clustering relevance.

7.6.3 Multivariate Clustering Variable Selection

As the dimension of the variables increases, selecting clustering relevant variables is not

straightforward as the relevance of a variable may be influenced by other variables’ struc-

ture. In general we expect four possible structures (scenarios) in high dimensional data.

For graphical demonstration, an artificial data was simulated (which fairly represented the

four possible scenarios) and displayed in figure 7.4 on page 150.
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Scenarios

1. Clustering relevant and correlated variables

• For instance, two variables which are correlated (dependent) and both have

clustering information (see figure 7.4(a)).

2. Clustering relevant and irrelevant but uncorrelated variables.

• For example, two variables in which one is clustering relevant and the other is

irrelevant, and they are uncorrelated (see figure 7.4(b)).

3. Two clustering relevant and but uncorrelated variables

• For instance, one variable which is clustering relevant and the other one is

irrelevant but they are dependent (correlated) (see figure 7.4(c)).

4. Clustering relevant and irrelevant but correlated variables

• For example, one variable which is clustering relevant and the other one irrel-

evant but they are uncorrelated (independent) ( see figure 7.4(d)).
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(a) (b)

(c) (d)
Figure 7.4: (a) Scenario 1: Both clustering informative and dependent variables; (b) Scen-
ario 2: Clustering informative and uninformative but uncorrelated variables; (c) Scenario
3: Both clustering informative but independent variables; (d) Scenario 4: Clustering in-
formative and uninformative but dependent variables

Thus a robust method, which accounts the above possible scenarios, should be imple-

mented in order to identify these clustering relevant variables in high-dimensional (mul-

tivariate) data.
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7.6.4 Regression-based Variable Selection

Variable selection in clustering is very complex particularly as the dimension of the vari-

ables increases, because the relevance of a variable is considerably affected by its correlation

with other relevant or irrelevant variables. However, Raftery and Dean (R&D)[129] at-

tempted to address this challenge as a model comparison problem using forward stepwise

variables selection algorithm. They evaluated the dependence between the relevant and

irrelevant variables using linear regression. In other words, they assessed how well the ir-

relevant variable was represented by those relevant variables, by regressing the clustering

irrelevant variables on the relevant variables and calculated the corresponding regression

BIC.

Their paper raised motivation for several researchers (e.g. Maugis C and colleague

[140] attempted to extend their algorithm); however, its limitation is not yet fully ad-

dressed. Inspiring by their method, I started to develop a new variable selection method for

model–based clustering, which extends their approach. The variable selection in the R&D

method entirely depends on the self-standing model-based clustering technique [145, 146]

(in which the EM-algorithm was initialized using hierarchical algorithm). However, in this

study, I wrote my own new mode-based clustering technique, in which the EM-algorithm

was initialized using several heuristic algorithms such as k-means, kmediod or fuzzy k-

means. In addition, a new approach also proposed to address the singularity issues in the

model-based clustering.
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Overview of Raftery and Dean Method

Raftery and Dean (2006, JASA 101, 168-178) [129] developed a regression-based variable

selection method for model-based clustering

The basic idea of the R&D algorithm is as follows:

• Assume a dataset has X1 and X2 measurements, and X1 has more clustering evid-

ence than X2 based on BIC.

• Step 1: Evaluate optimal clustering BIC for X1 (BICX1)

• Step 2: Regress X2 on X1 and calculate regression BIC (BICreg).

• Step 3: Identify optimal clusters using combination of X1 and X2, and record

the joint BIC (BICjoint).

• Step 4: If BICjoint < (BICX1 +BICreg), then X2 will be included as clustering

relevant with X1, otherwise it will be excluded as irrelevant.

Regression BIC (BICreg) is calculated as follows:

BICreg = −n log(2π)− n log(RSS/n) − n− (dim(S1) + 2) log(n) (7.6)

Where, RSS is the residual sum of squares; n is the number of observations; dim(S1) is the

dimension (number) of relevant variables

The R&D method performs reasonable well in selecting the clustering relevant variables

in real and simulated data. However, as the structure of the dataset gets so complex, it

appears to miss some clustering relevant variables and as a consequence the expected

number of optimal clusters is also lost.
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The following may be the possible reasons for their method limitations;

1. They considered unnecessary relationship between clustering relevant and irrelev-

ant variables; and did not allow the irrelevant variables to be independent of the

clustering relevant variables in a situation where the two variables are uncorrelated.

2. They considered only linear relationship between the clustering irrelevant and relev-

ant variables although there is a possibility that the relationship could be non-linear,

which may affect the regression BIC.

3. To avoid the singularity of the log-likelihood function (i.e. variance-covariance mat-

rix is not positive definite), they constrained the variance-covariance matrix, which

may have a substantial impact in their algorithm to miss the optimal clusters and

misclassify the observations.

Motivating Example

Multivariate data with known clusters was simulated. This data has six clusters and 8

clustering relevant and irrelevant variables (X1, X2, ..., X8). Variables X1, X2, X3, X4

and X5 are clustering relevant, and X6, X7 and X8 are clustering irrelevant variables

(homogeneous across the clusters). However, variables X1, X2 and X3 are uncorrelated

to the other clustering relevant variables (X4 and X5). The data is displayed in figure 7.5

on page 154.
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Figure 7.5: Multivariate simulated data, the combination of colours (red, black or blue)
and symbols (circle or triangle) divided the data into six subgroups.

The performance of the R&D method was assessed on the simulated data above (which

is displayed in figure 7.5). Thus, their method selected only X4 and X5 as clustering

relevant variables, and two corresponding optimal clusters (which are much smaller than

the expected 6 simulated clusters).

Scenarios to Address This Problem

Two approaches were proposed to address that particular problem which was observed

when the R&D method was applied to the above simulated data.

First Scenario:

In multivariate data, variables may have hidden internal structures (based on their correl-

ations), and on the bases of these patterns variables can be partitioned into independent

subsets. Variables which are strongly correlated can be assigned into the same subgroup.

Then the variable selection method can be implemented in each variables’ subset in order

to identify the corresponding clustering relevant variables.
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Steps for the Proposed Scenario

• Firstly, the entire variables are partitioned into independent subsets based on their

correlation matrix (internal structures)

• Variables which are strongly correlated are assigned together

• Clustering relevant variables are selected from each subset

• Finally, using the aggregated relevant variables from each subset, the corresponding

optimal clusters are identified.

The above proposed approach was applied to the simulated data which is displayed in

figure 7.5, and some hidden structures were identified within the variables. Thus, based

on those structures the variables were partitioned into two independent subsets, and are

displayed in figure 7.6 (a) & (b) on page 155. Variables X1, X2, X3, X6 and X7 were

assigned together, and variables X4, X5 and X8 grouped together as second subset.

(a) (b)

Figure 7.6: (a) First subset and (b) Second subset. The combination of colors (red, black
or blue) and symbols (circle or triangle) divided the data into six subgroups.

By utilizing the R&D method into each variables’ subgroup, variables X1, X2 and

X3 from the first subset, and variables X4 and X5 from the second subset were selected

as clustering relevant variables. Then using these five relevant variables (X1, X2, X3, X4

and X5), six optimal clusters (as expected) were identified using mclust package [145] with

misclassification of 15% .

This shows that how the identification of clustering relevant variables could be im-

proved just by partitioning the entire variables into independent subsets based on their
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correlation patterns (internal structures). However, the mclust package [145] assigned only

85% of the observations into the true clusters (although it identified the optimal number

of clusters), which needs some modification for optimal observations‘ assignment into the

right clusters.

Second Scenario

There is a scenario (situation) in which variables may not have a relationship with re-

spect to the entire (global) dataset, but a relationship (correlation) may exist among the

variables locally in part of the data (e.g. in each cluster). To assess for this pattern (non-

linear relationship) between the irrelevant and relevant variables, the following additional

approach was proposed.

• Once the global relevant variables and corresponding optimal clusters are identified

using the first scenario.

• Each cluster is treated as an independent dataset, and a further search in each cluster

for local relevant variables from these globally irrelevant variables is performed.

To demonstrate the second scenario graphically, a bivariate data is simulated and

depicted in figure 7.7 on page 157. Assume that only X was selected as clustering relevant

variable and two corresponding optimal clusters were identified using the first scenario.

However, if each cluster was assessed further with respect to Y , then additional local

clusters appeared within each global cluster. Then using both X & Y , four optimal

clusters could be identified. Thus to avoid loss of such hidden important clusters, the

second scenario needs to be accounted for.
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Figure 7.7: Additional clusters within a cluster

In the above multivariate simulated data 7.5 on page 154, the six global clusters were

treated as new six independent datasets. Then the global irrelevant variables (X6, X7

and X8) were further examined in each cluster whether they could be able to classify the

clusters into further subgroups. However, no additional clusters were found apart from

those previously identified six global clusters using the first scenario.

7.7 Proposed Variable Selection Method for Model-based

Clustering

To formalize the above scenarios into an algorithm, we propose a new variable selection

method for model-based clustering which generalizes the approach of R&D. This method

relaxes the global prior assumptions of linear-relationships between relevant and irrelev-

ant variables by searching for latent (hidden) structures among the variables; and also

accounts for non-linear relationships between relevant and irrelevant variables. A Gaus-

sian mixture model (with unconstrained variance-covariance matrices) was fitted using the

EM-algorithm (equations 7.4.4 and 7.4 on page 143), and was used to identify the optimal

clusters.
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7.7.1 Initialization the Parameters in the EM-algorithm

As the EM-algorithm is prone to initialization in which it could converge to a local max-

ima rather than the global maximum, in such a situation there may be multiple optimal

solutions (clusters) for a single dataset, especially when the clusters are not well separated.

Thus, in this study the parameters in the EM-algorithm were initialized using several heur-

istic approaches such as the k-means [105], k-medoids, fuzzy-kmeans or hierarchical; in

which researchers could have an option to choose which could suit to their data structure.

7.7.2 Covariance Matrix Singularity

In the application of EM-algorithm to the Gaussian mixture model, singularities (variance-

covariance not positive definite) in the likelihood function is quite common particularly

when the number of data in a cluster becomes insufficient. For example, when a component

collapses onto a data point (this means that where a cluster or component has only a single

observation) in which the mean is equivalent to the data-point and the variance is zero,

and the corresponding log-likelihood becomes indefinite (infinite) (see eq 7.3 on page 142

for mathematical details).

There are various approaches in the literature to keep the variance-covariance matrix

positive definite (avoiding singularity). For example, R&D variable selection method used

a self-standing model-based clustering technique [146] in which the problem was addressed

based on the eigenvalue decomposition of the mixture components variance-covariance

matrices. They constrained the variance-covariance matrix, and identified 14 possible

models to fit the data which optimize the variance-covariance matrices that ensures a

positive definiteness in at least one of the models. Although that approach guarantees

for positive definite, but not necessary is the best fit to the data (here is a danger in

which that may not reveal the optimal number of clusters and may not also assign the

observations into the expected right subgroup).

In this study, we use the Gaussian mixture model with unconstrained (full) variance-

covariance matrices (unlike R&D method) which accounts various dependencies among

the variables within and across the clusters. For example, variables may be dependent

in one cluster but independent within another cluster. We handled the singularity issues

using the algorithm proposed here [147]. The algorithm is written in R statistical software

and reported in appendix A.
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The singularity algorithm is described below:

1. First the variance-covariance matrix is tested for positive definiteness using Cholesky

factorization

2. While the test fails, one of the following is done:

(a) If there is a negative element in the diagonal, then one percent of the maximum

element in the diagonal is added to all diagonal elements

(b) Otherwise all the diagonal elements are incremented by one percent.

3. Iterate step 1 and 2 till the variance-covariance matrix have positive definite.
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7.7.3 Application of Factor Analysis to Split Variables into

Independent Subsets

In this study factor analysis was used for assessing the hidden internal structures and

splitting of the variables into independent subsets. First, factor analysis with varimax

rotation (see section 3.3.3 on page 59 for details) is performed to the entire dataset, and

factors which have eigenvalue above one are retained, then variables are assigned (subset)

together if they load in the same factor, otherwise partitioned into different subset. For

example, in the simulation study in chapter 3, factor analysis with varimax rotation was

performed to the artificial data, and variables X1, X3, X13, X14, &X18 loaded in factor 1;

variables X2, X8, X10, X16, &X17 in factor 2; variables X6, X7, X9, X19, &X20 in factor

3; and variables X4, X5, X11, X12, &X15 in factor 4 (see table 3.2 on page 62 for details).

Therefore, in the proposed variable selection for model-based clustering method, variables

which load in the same factor (after factor analysis with varimax rotation) are assigned

together in the same subset (variables’ subgroup).
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7.7.4 Proposed Algorithm

The fundamental basis of the proposed method is to start with one large variables set con-

taining the entire variables, and then divide the variables into independent subsets based

on their correlation-matrix. Variables that are dissimilar (uncorrelated) are split off and

turned into small independent subsets. The forward stepwise variable selection algorithm

is applied separately on each variables’ subset and split the variables into clustering rel-

evant and irrelevant. Then the global relevant variables are aggregated from each subset,

and used to identify the corresponding optimal clusters. In addition, each cluster is con-

sidered as independent new dataset, and a further search for local relevant variables from

these global irrelevant variables is performed. Finally, the relevant variables are updated,

and the corresponding optimal clusters are identified.

The proposed approach accounts for the possible structures of variables in high-

dimensional data whether they are correlated or uncorrelated by searching the latent

(hidden) patterns of the variables. In addition, it accounts for the linear and non-linear

relationship between the relevant and irrelevant variables. The proposed method comprises

three algorithms.

1. Algorithm 1: For splitting the variables into independent subsets

2. Algorithm 2: For forward stepwise variable selection in each subset.

3. Algorithm 3: For implementing algorithms 1 & 2 further in each cluster
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Proposed Algorithms

Algorithm 1

Step 1: Let Y denote the entire variables. Apply factor analysis with varimax

rotation to Y .

Step 2: Retain factors having eigenvalue greater or equal to one.

if (N(F ) > 1) then

Step 3: Identify a factor in which a variable has maximum loadings

Step 4: Subset variables together if they have maximum loadings in the same

factor

else
Stop

end

Algorithm 1: For splitting the variables into independent subsets. N(F ) = num-

ber of factors having eigenvalue greater than one.
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Algorithm 2

Step 1: Let S denote one of the variables subset. Apply model-based clustering to

each variable in S. Choose the variable yielding the highest BIC difference (∆BIC)

between optimal-clusters and no-clusters, and record ∆BIC and optimal−BIC for

that variable, S1.

if (∆BIC > 0) then

Step 2: Split the variables (S) into clustering relevant (S1) and irrelevant (S2)

while (N(S2) > 0) do

Step 3: Fit linear regression for each variable in S2 on S1 and calculate

corresponding regression BIC (BICreg), and record summation of S1

optimal-BIC (BICopt) and BICreg for each variable (Xi) in S2 and denote

as sumBIC = BICopt +BICreg.

Step 4: Apply model based clustering on the combination of S1 and each

variable from S2, and calculate the joint optimal-BIC (BICjoint), and

choose the variable which has the highest BIC difference

(BICdiff = sumBIC −BICjoint)

if (BICdiff > 0) then

Include that variable with the relevant variables (S1)

Repeat steps 3 and 4 till no new variable is added to S1

else
Stop

end

end

else
Stop

end

Algorithm 2: For forward stepwise variable selection in each variables’ subset.
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Algorithm 3

while (N(S1) > 0 & N(S2) > 0) do

Step 1: Apply model-based clustering on S1 and record the optimal number of

clusters (C).

Step 2: Treat each global cluster j (Cj), as separate new dataset

Step 3: Search for local relevant variable in each cluster(Cj) on S2 using

algorithms 1 & 2

if (N(S1
cj ) > 0) then

Step 4: Include these variables with S1

else
Stop

end

end

Algorithm 3: For implementing algorithms 1 & 2 further in each cluster. N(S1)

= number of relevant variables; N(S2) = number of irrelevant variables; N(S1
cj

)

= number of relevant variables in each cluster.
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7.8 Performance of the Proposed Method

The proposed algorithm is written in R statistical software [113], and developed into R-

package (”VarSel4GMM”), the codes are reported in appendix B. In the proposed method,

the Gaussian mixture model with unconstrained (full) variance-covariance was used, which

was optimized using EM-algorithm. The EM-algorithm was initialized using several heur-

istic clustering algorithms such as k-means, k-medoids or fuzzy k-means. To assess the

performance of the proposed method, simulated and real datasets with known class mem-

bership were used; and its performance was compared with the R&D method as their

algorithm is available in R-package (”clustvarsel”).

7.8.1 Instructions on How to Use the ”VarSel4GMM” Pack-

age of the Proposed Method in R

The R package (”VarSel4GMM”) for the proposed method comprises six interlinked R

functions such as ”gmmEM”,”sigmaFixer”, ”REGbic”, ”EMvSel”, ”subEMvSel” and ”gmmVarSel”,

and are presented in appendix A. In this section, how to use the package (in R scientific

computing platform) for simultaneous variable selection and clustering is described.

gmmEM

This function implements the model-based clustering (Gaussian mixture model which is

optimized using EM algorithm) to the dataset. The EM-algorithm is initialized using

k-means, k-medoids or fuzzy k-means. The input is a dataframe or matrix (rows = obser-

vations and columns=variables). The outputs are number of clusters, assignment of ob-

servations in each cluster, means and variance-covariance matrix of input variables in each

cluster, Bayesian information criterion (BIC), maximum log-likelihood estimator, number

of iteration (after how many iterations the algorithm converges or stops), proportion of

observations assigned in each cluster and number of parameters (degree of freedom).

sigmaFixer

This function fixes the singularity issues in variance-covariance matrix of Gaussian mixture

model (which is optimized using EM-algorithm). First, it computes the Choleski factor-

ization of the variance-covariance matrix to assess for positive definite; then if the matrix
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is not positive definite, it keeps adding 1% to the diagonal of the matrix and iterates till

the matrix is positive definite.

REGbic

This function calculates the univariate and multivariate regression BIC. The dependent

variable is a single continuous variable but the predictors can be a single or multiple

continuous variable/s.

EMvSel

This function implements the forward variable selection algorithm to the dataset in order

to identify the clustering relevant variables in model-based clustering.

subEMvSel

This function splits the variables into independent subsets and implements the ”EMvSel”

function in each variables’ subset. Then the global clustering relevant variables from each

subset are selected and the corresponding global optimal clusters are identified.

gmmVarSel

This function treats the global clusters, which are identified using the ”subEMvSel” func-

tion, as independent new datasets and further search for local relevant variables from

these globally irrelevant variables is implemented in each cluster, and returns the final up-

dated clustering relevant variables. Then these variables are plugged into the ”gmmEM”

function and the final corresponding optimal clusters are identified.
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7.8.2 Example 1: Simulated data

First simulated data

An artificial data on eight dimensions was simulated, which consists of two subsets of

clustering relevant variables (X1, X2 & X3) and (X4 & X5) (with no correlation between

the two relevant subsets), and normally distributed clustering irrelevant variables (X6,

X7 and X8). The first relevant subset (X1, X2 and X3) divided the entire dataset into

three distinctive subgroups, and the second subset (X4 and X5) into two subgroups. From

these irrelevant variables, X6 is a noisy variable which does not correlated with any of the

variables, but X7 only correlated with the first relevant subset (X1, X2, and X3) and X8

correlated only with the second relevant variables (X4 and X5). The data is displayed in

figure 7.8 on page 167.

Figure 7.8: Multivariate simulated data, the combination of colours (red, black or blue)
and symbols (circle or triangle) divided the data into six subgroups.

When we applied our model-based clustering (where the EM-algorithm was initialized

using k-means algorithm) to all the variables (without any variable selection), our method

identified five clusters as optimal clusters with 84.2% correct classification; whereas R&D

method (”MCLUST”) identified eight optimal clusters with true classification 74.8%.

However, when we performed the variable selection (dropping irrelevant variables), our
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proposed method identified X1, X2, X3, X4 and X5 as clustering relevant, and six corres-

ponding optimal clusters with true classification 98.2%; whereas R&D variable selection

method (”clustvarsel”) identified only X4 and X5 as clustering relevant and two corres-

ponding optimal clusters with classification of 43.4%. The results are reported in table

7.1 on page 168.

Table 7.1: Performance of the proposed method using simulated data

Raftery & Dean method Our method
Selected variables Optimal clusters Classification Selected variables Optimal clusters Classification

All variables 8 74.8% All variables 5 84.2%
X4 & X5 2 43.4% X1, X2, X3, X4 & X5 6 98.2%

Second simulated data

We simulated a second dataset with different scenario to the first simulated data (figure

7.8), in which only one set of relevant variables and majority of the variables are irrelevant

(noisy). The simulated data consists of three clustering relevant (X1, X2 and X6) and six

(X3, X4, X5, X7, X8 and X9) noisy clustering irrelevant variables (normally distributed).

There is no correlation between the clustering relevant and irrelevant variables. The

relevant subset (X1, X2 and X6) divided the entire dataset into two distinctive subgroups.

The data is displayed in figure 7.9 on page 169.
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Figure 7.9: Multivariate simulated data, the colours (red and blue) divided the data into
two subgroups.

Table 7.2: Performance of the proposed method using simulated data

Raftery & Dean method Our method
Selected variables Optimal clusters Classification Selected variables Optimal clusters Classification

All variables 3 77.2% All variables 2 99.8%
X1, X2 & X6 2 99.4% X1, X2 & X6 2 99.4%

When we applied our model-based clustering (where the EM-algorithm was initialized

using k-means algorithm) to all the variables (without any variable selection), our method

identified two clusters as optimal clusters with 99.8% correct classification; whereas R&D

method (”MCLUST”) identified three optimal clusters with true classification 77.2%.

However, when we performed the variable selection (dropping irrelevant variables), our

proposed method identified X1, X2 and X7 as clustering relevant, and two corresponding

optimal clusters with true classification 99.4%; whereas R&D variable selection method

(”clustvarsel”) also identified X1, X2 and X7 as clustering relevant and two corresponding

optimal clusters with classification of 99.4%. The results are reported in table 7.2 on page

169.
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Third simulated data

Several random datasets were simulated using ”clusterGeneration” R package [214]. This

package has a function (genRandomClust) which generates random clusters based on de-

gree of separation index (sepVal), number of clusters, and number of relevant and noisy

(irrelevant) variables. The index (sepVal) represents the separation degree between the

clusters, which ranges from -0.99 (highly overlapped clusters) to 0.99 (well separated

clusters). We generated several datasets (403 observations in each dataset) which have

three clusters, five relevant and three noisy variables; however, the degree of separation

(sepVal) between clusters varies across these datasets. The datasets are displayed graph-

ically across the clusters in appendix A on page 200 (Figures: a - e). The main aim of this

scenario is to assess the performance of the proposed method in identifying the optimal

clusters based on the degree of separation of the clusters.

Table 7.3: Performance of the proposed method using simulated data

Raftery & Dean method Our method

Selected variables Optimal clusters Classification Selected variables Optimal clusters Classification

sepVal=-0.2

All variables No clusters - All variables No clusters -
X1, X2, X4 & X8 3 80.89% X1, X2 , X4 & X8 3 84.86%

sepVal=0.005

All variables 3 95.53% All variables 2 71.96%

X1, X2 , X4, X7 & X8 3 95.29% X1, X2 , X4 & X8 3 96.28%

sepVal=0.06

All variables 3 97.02% All variables 3 97.52%
X1, X2, X4 & X8 3 97.02% X1, X2 , X4 & X8 3 97.27%

sepVal=0.1

All variables 3 99.01% All variables 2 99.26%

X1, X2, X4 & X8 3 99.01% X1, X2 , X4 & X8 3 99.01%

sepVal=0.2

All variables 3 99.75% All variables 3 99.50%

X1, X2, X4, X7 & X8 2 99.50% X1, X2 , X4 & X8 3 100.00%

When we applied the proposed method (where the EM-algorithm was initialized using

k-means algorithm) to all the variables (without any variable selection) and to the selected
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variables, the proposed method appeared to perform well in identify the optimal clusters

as the degree of separation between the clusters increases; and R&D method also showed

similar pattern. However, where the degree of separation (sepVal) was 0.005, using all

the variables, our method (the EM-algorithm was initialized using k-means) identified two

clusters rather than three with 71.96% true classification (although R&D identified the

optimal clusters correctly with 95.53% true classification); but when the EM-algorithm was

initialized using kmedoids, our method identified three clusters and the true classification

improves to 96.03%. This shows that how the initialization of the EM-algorithm affects the

identification of the optimal clusters in model-based clustering. The results from R&D

and the proposed methods are displayed in table 7.3 on page 170 across the degree of

separation (sepVal).

7.8.3 Example 2: Seeds data

To compare the proposed method performance on the real dataset, we used a well know

seeds real dataset from ”UCI Machine Learning Repository”, which commonly researchers

use for assessing the performance of their new methods.

Seeds dataset comprised kernels belonging to three different varieties of wheat, such

as Kama, Rosa and Canadian; each type consists of 70 elements (samples). They were

randomly selected for the experiment, and displayed in figure 7.10 on page 172. The

data is described in detail previously here [148], and the data is publicly available on this

website: https://archive.ics.uci.edu/ml/datasets/seeds.
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Figure 7.10: Seed dataset, each colour represent three different varieties of wheat (sub-
group)

We applied the proposed method to the above seeds real dataset, and compare its

performance with R&D method. When we apply our model-based clustering (the EM-

algorithm was initialized using k-means algorithm) to all the variables (without any vari-

able selection), our method identified four optimal clusters with true classification 74%;

whereas R&D method identified four optimal clusters as well, but with true classifica-

tion 66%. However, when we performed the variable selection, our method identified

kernel − groove− length, perimeter, kernel − length, area & kernel − width and three

corresponding optimal clusters with 94.3% true classification; where as R&D variable se-

lection method identified only perimeter, area and compactness as clustering relevant

and seven corresponding optimal clusters with classification of 47.4%. The results are

reported in table 7.4 on page 172.

Table 7.4: Performance of the proposed method using seeds real dataset
Raftery & Dean method Our method

Selected variables
Optimal

clusters
Classification Selected variables

Optimal

clusters
Classification

All variables 4 66% All variables 4 74%

perimeter, area & com-

pactness
7 47.4%

kernel-groove-length,

perimeter, kernel-

length, area & kernel-

width

3 94.3%
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7.8.4 Example 3: Wine data

Furthermore, we used wine real dataset from ”UCI Machine Learning Repository” to

compare performance of the proposed method with R&D method. These data are the

results of a chemical analysis of wines grown in the same region in Italy but derived from

three different cultivars (the data are depicted in figure 7.11 on page 173). The analysis

determined the quantities of 13 constituents found in each of the three types of wines.

The data is previously described in detail here [149], and are publicly available here:

https://archive.ics.uci.edu/ml/datasets/Wine.

Figure 7.11: Scatterplot matrix of wine data with points marked (coloured) according to
the known wine types (subgroup)

We applied the proposed method to the above wine real dataset, and compare again

its performance with R&D method. When we apply our model-based clustering (the

EM-algorithm was initialized using k-mediods algorithm), to all the variables, our method

identified two optimal clusters with 69.1% true classification, whereas R&D identified seven

optimal clusters with a classification of 65.7%. However, when we performed the variable

selection, our method selects OD280, Flavanoids, Phenols, Nonflavanoid, Proline,

Magnesium, Intensity, Hue, Malic Proanthocyanins as clustering relevant variables,

and three corresponding optimal clusters with classification of 95.5%. Whereas R&D

variable selection method identified Malic, Proline, Flavanoids, Intensity, Magnesium,
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Alcalinity & Alcohol as clustering relevant, and five corresponding optimal clusters with

80.3% true classification. These results are reported in table 7.5 page 174.

Table 7.5: Performace of the proposed method using wine real dataset
Raftery & Dean method Our method

Selected variables
Optimal

clusters
Classification Selected variables

Optimal

clusters
Classification

All variables 7 65.7% All variables 2 69.1%

Malic, Proline, Flavanoids,

Intensity, Magnesium, Al-

calinity & Alcohol

5 80.3%

OD280, Flavanoids, Phen-

ols, Nonflavanoid, Proline,

Magnesium, Intensity, Hue,

Malic & Proanthocyanins

3 95.5%

7.8.5 Example 4: Kim’s Simulated data

Kim and his colleague simulated a multivariate data, 300 observations and six variables,

and depicted in figure 7.12 on page 174. They did not discuss how many optimal clusters

exist in the dataset and left for open discussion. The details are published here [150].

Other studies used these dataset and attempted to identify the clustering relevant and

optimal clusters, such as here [151].

Figure 7.12: Kim’s simulated dataset

We applied our method to these dataset and var2, var3 and var4 were selected as

clustering relevant variables, and eight corresponding optimal clusters were identified.
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R&D method also identified the same relevant variables and optimal number of clusters.

7.8.6 Example 5: Severe Refractory Asthma data

The proposed method is applied to cluster 349 subjects from British Thoracic Society

severe refractory asthma registry. Previously a two-stage approach (factor and cluster

analyses) was applied to this data, and five optimal clusters were identified [128]. As

the data was suffering with missingness, Newby and colleague [128] imputed the missing

values. Thereafter, those continuous variables that are missing in less than 30% of the

subjects were included in factor analysis, and five factor scores were extracted and used

as input into clustering algorithm. The following variables satisfy the criteria and used

as input into factor analysis: BMI, hospital admission in the last 12 month, pre FEV1

predicted, pre FVC% predicted, pre FEV1/FVC ratio, blood eosinophils, IgE, rescue ster-

oid courses in the last 12 months, Beclomethasone Dipropionate (BDP) equivalent dose

inhaled corticosteroids and age at onset of symptoms. For the list of variables used and

detailed steps of the multiple imputations, readers should be referred to Newby et al [128].

The factor and cluster analyses approach might not be the best for this data as the

variables were not strongly correlated, and are not well represented by the retained five

factors. As observed in the table 1, most of the variables’ variances (>80%) were not well

explained by these retained factors except FEV1, FVC and FEV1/FVC. The corresponding

factor scores which generate from these factors are also not good representative of all the

observed variables (see chapter 3 for factor score formula and how it depends on th factor

loadings), therefore the two-stage approach (factor and cluster analyses) might not be the

best for this data.
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Table 7.6: Varimax rotated factor loadings of sputum mediators at exacerbation

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 C1 U2

BMI (kg/m2) -0.09 0.13 0.11 0.24 -0.22 0.14 0.86

Admission12m (n) 0.02 0.02 0.39 -0.04 -0.02 0.15 0.85

FEV1 (%) 0.74 0.65 -0.03 0.05 0.01 0.98 0.02

FVC (%) 0.97 0.02 0.02 -0.03 0.01 0.93 0.07

FEV1/FVC (%) 0.08 0.96 0.02 0.00 -0.01 0.92 0.08

Blood eosinophils (%) 0.00 -0.06 0.09 0.04 0.31 0.11 0.89

IgE (kU/L) 0.09 -0.03 0.06 -0.25 0.21 0.12 0.88

Rescuest12m (n) 0.01 0.06 0.44 -0.07 0.05 0.21 0.79

BDP equivalent (µg) -0.06 -0.06 0.26 0.05 -0.18 0.11 0.89

Age onset (years) -0.05 0.09 -0.13 0.37 0.04 0.17 0.83

C1 = Proportion of total variation accounted for by the common factors (common variance)
U2 = Proportion of total variation not accounted by the common factors (unique variance)
Abbreviations: BMI = body mass index; Admission12m=hospital admission in the last 12 month; FEV1= forced
expiratory volume in the first second; FVC= forced vital capacity; Rescue steroids12m= rescue steroid courses in
the last 12 months; BDP=Beclomethasone Dipropionate; IgE= immunoglobulin E; 1 (kU/L)= 2.4 (ng/mL)

The proposed method was applied to these data to identify clustering relevant variables

and corresponding optimal clusters. Therefore, four variables (IgE, blood eosinophils, BDP

equivalent and age at onset of symptoms) were selected as clustering relevant variables,

and four corresponding optimal clusters were identified. These clusters have demonstrated

clinical utility with cluster-specific pattern. The clinical characteristics across the identi-

fied clusters are presented in table 7.7 on page 176.

Table 7.7: Statistical summaries of ”severe refractory asthma” clusters which were identi-
fied using the new variable selection and clustering method

Variable Cluster 1 (n=63) Cluster 2 (n=19) Cluster 3 (n=129) Cluster 4 (n=138) ANOVA P-value

BMI (kg/m2) 29.45 (0.84) 25.26 (1.24) 29.47 (0.59) 29.37 (0.51) 0.05

FEV1 (%) 67.17 (3.24) 64.97 (5.54) 65.37 (1.96) 67.05 (2.07) 0.92

FVC (%) 79.81 (2.6) 87.52 (5.3) 82.17 (1.92) 82.35 (1.56) 0.54

FEV1/FVC (%) 64.87 (1.89) 58.68 (3.47) 61.97 (1.31) 63.43 (1.32) 0.37

Blood eosinophils (%) 0.36 (0.04) 1.07 (0.24) 0.45 (0.04) 0.33 (0.03) <0.0001

IgE (kU/L) 89.25 (10.4) 1938.55 (403.01) 116.55 (7.75) 359.49 (25.56) <0.0001

Rescue steroids12m (n) 3.76 (0.48) 5.05 (0.9) 4.89 (0.42) 4.49 (0.36) 0.38

BDP equivalent (µg) 954.76 (15.46) 1646.26 (191.57) 1916.81 (15.89) 2274.02 (111.8) <0.0001

Age onset (years) 30.15 (2.29) 23.37 (5.34) 29.83 (1.73) 21.38 (1.55) <0.0001

Abbreviations: BMI = body mass index; Admission12m=hospital admission in the last 12 month; FEV1= forced
expiratory volume in the first second; FVC= forced vital capacity; Rescue steroids12m= rescue steroid courses in
the last 12 months; BDP=Beclomethasone Dipropionate; IgE= immunoglobulin E; 1 (kU/L)= 2.4 (ng/mL)

The advantage of applying this approach compare to the previous method is that it

identified very few clustering relevant variables, which are easy to measure them in a clinic

and would be helpful for subjects selection for clinical trials and assignment of subject to

subgroup in which he/she could respond to treatment, and validation of the identified

clusters.
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7.8.7 Example 6: Asthma and COPD Sputum Cytokines

As the sputum cytokines (which discussed in the first part of this thesis) are strongly

correlated and have internal pattern, the two-stage approach (i.e. using factor score as

input into clustering algorithm) appeared as best method for this type of data. However,

to assess the performance of the proposed method for this kind of data, it was applied

to asthma and COPD sputum mediators at exacerbation state to identify the relevant

observed cytokines and corresponding optimal clusters. Twenty mediators (such as IL-1β,

IL-5, IL-6, IL-6R, IL-8, IL-10, IL-13, CXCL-10, CXCL-11, CCL-2, CCL-3, CCL-4, CCL-5,

CCL-13, CCL-17, CCL-26, TNFα, TNF-R1, TNF-R2 and VEGF), were included in the

variable selection algorithm. Then TNFα, CXCL-11, CXCL-10, IL-5, IL-10, IL-13, CCL-

4 , CCL-5, CCL-13, CCL-26 and TNF-R2 were selected as clustering relevant variables.

Thereafter, using these selected variables; two clusters were identified as optimal. These

two clusters represented the subjects with elevated Th-2 and proinflammatory profiles,

respectively. In which subjects in cluster 1 has elevated level in these Th-2 mediators

(such as CCL-27), whereas cluster 2 subjects have elevated level in these proinflammatory

mediators (such as IL-1β, TNFα), and the data are displayed in table 7.8 on page 178.

However, the subgroup which represents the Th-1 mediators high is not revealed using the

new method although it was captured using the two-stage technique (factor and cluster

analysis) in the previous analysis (see chapter 6). Thus, for variables which have strong

correlation (internal patterns) still the two-stage method might be the best.
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Table 7.8: Statistical summaries of asthma and COPD biological clusters which were
identified using the new variable selection and clustering method

Variable Cluster 1 (Asthma=13; COPD=39) Cluster 2 (Asthma=18; COPD=34) P-value

IL-1β 36.5 (23.9 - 55.9) 920.8 (587.1 - 1444) <0.0001

IL-5 1.9 (1.2 - 2.9) 1.5 (1 - 2.2) 0.49

IL-6 185.1 (111.5 - 307.4) 717.7 (488.7 - 1054) <0.0001

IL-6R 170.7 (125.5 - 232.1) 883.3 (636.7 - 1225.4) <0.0001

IL-8 2282.3 (1707.8 - 3050) 10192.1 (8065.9 - 12878.6) <0.0001

IL-10 1.9 (1.8 - 2.1) 24.9 (16.2 - 38.1) <0.0001

IL-13 11.7 (10 - 13.7) 10.4 (9.1 - 11.8) 0.25

CXCL-10 394.2 (260.5 - 596.7) 773.1 (413 - 1447.2) 0.08

CXCL-11 27.9 (16 - 48.7) 37.2 (15 - 92.2) 0.6

CCL-2 350.4 (276.9 - 443.5) 614.2 (414.7 - 909.7) 0.018

CCL-3 37.9 (27.8 - 51.6) 120.1 (81 - 178.1) <0.0001

CCL-4 758.3 (541 - 1062.8) 1473.3 (955.2 - 2272.3) 0.02

CCL-5 4 (3.2 - 5.1) 24.9 (18.2 - 34.2) <0.0001

CCL-13 20.6 (16.7 - 25.6) 16.3 (12.7 - 20.8) 0.15

CCL-17 21.8 (14.3 - 33.4) 6.5 (4.3 - 9.6) <0.0001

CCL-26 7.1 (4.8 - 10.4) 4.5 (3.3 - 6.1) 0.08

TNFα 3 (2 - 4.6) 104.8 (70 - 156.8) <0.0001

TNF-R1 620 (485.6 - 791.5) 3344.7 (2589.9 - 4319.4) <0.0001

TNF-R2 247 (181.3 - 336.6) 1730.4 (1348.8 - 2219.9) <0.0001

VEGF 1070.6 (947.2 - 1210) 1885.8 (1571.8 - 2262.6) <0.0001

7.9 Discussion

In this study, a new variable selection method for the model-based clustering was proposed

to generalize the R&D variable selection approach (with the hope that variable selection or

dropping irrelevant variables in clustering may improve the observations classification into

the correct subgroups). The new method searches for latent (structure) among the entire

variables and divides the variables into independent subsets on the bases of their internal

structures (correlations). In addition, it accounts the linear and non-linear relationship

between the clustering relevant and irrelevant variables.

The model-based clustering method (which is used in this study) is optimized us-

ing EM-algorithm. The EM-algorithm is initialized using several heuristic clustering

algorithms such as k-means, k-medoids or fuzzy k-means. In addition, unconstrained

variance-covariance matrix is used and the singularity issues (not positive definite) in the

variance-covariance matrix is addressed using an iterative approach. The positive definite

of the variance-covariance matrix is tested using Choleski decomposition [152]. If the mat-

rix is not positive definite, the algorithm keeps adding 1% to the diagonal of the matrix

till it becomes a positive definite.

The proposed approach appears as promising in its ability to unearth the clustering

178



relevant variables and corresponding optimal clusters, and starts to outperform the R&D

method, which is very encouraging. The only limitation we observed thus far is that it is

unable to reveal optimal clusters for dataset which have strong correlation (for this type of

data even R&D did not perform well), and our method is also computationally infeasible

especially with the increase of the number of observations and variables. However, its speed

can be improved massively by using a parallel programming approach (i.e. dividing the

task into available processors and execute the sequences of instructions in parallel across

the clusters or/and variables’ subgroups). In addition, presently this study is focusing

on the model-based clustering, but in future it will be extended to heuristic clustering

techniques (with some modifications) in which it might account for dataset in which the

number of variables is greater than the number of observations, and variables which have

strong correlation such as cytokines and gene expression.

In summary, this study showed that including irrelevant variables in clustering could

add unnecessary noise and hide existing optimal subgroups. In addition, it also showed

that removing variables without properly checking (for globally and locally relevant vari-

ables), could cause losing potential clusters as we observed in the R&D method. Although

our method appears to choose more variables, it outperformed the R&D method in identi-

fying the relevant variables and optimal number of clusters in the simulations and real

data shown.
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Chapter 8

Thesis Conclusion and Future

Direction

8.1 Objectives

This thesis has two main parts. In the first part, robust statistical techniques were applied

to model the biological heterogeneity of asthma and COPD jointly, and subsequently three

stable and three exacerbation clusters were identified with different proportions of overlap

between the two diseases. In the second part, a new method for variable selection in model

based clustering was developed, and was applied to simulated and real dataset. In this

chapter, the overall findings, contributions and limitations of the thesis are summarized,

and the future direction of the project is also outlined.

8.2 Part One

The first part of the thesis is an application in which the biological heterogeneity of

asthma and COPD was modeled jointly using robust statistical techniques. Subsequently,

three biological subgroups, separately at stable and exacerbation states with different

proportions of overlap between the two diseases were identified. The identified subgroups

have clinical and biological implications that may contribute to the personalized medicine,

patient selection for clinical trials and adjustment of the standard care treatments targeting

each subpopulation.

8.2.1 Stable Biological Subgroups of Asthma and COPD

At stable state, distinct and overlapping biological (sputum mediators) subgroups of

asthma and COPD were identified using two-stage statistical technique (factor and cluster

analyses). This showed that asthma and COPD have clear distinctive demographic and
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lung-function characteristics, but they have considerable common biological features at

stable state. Patients from both diseases were categorized into three clinically and bio-

logically relevant subgroups using clustering algorithm. These subgroups were asthma

dominant (Cluster 1), asthma and COPD overlap group (Cluster 2), COPD dominant

group (Cluster 3); in which cluster 1 was characterized by increased TH2 inflammatory

mediators (such as IL-5, IL-13 and CCL-26) with eosinophilic inflammation. Cluster 2 was

the overlap subgroup with increased neutrophilic inflammation, high proportion of bac-

terial colonization and elevated proinflammatory mediators (such as IL-1β and TNFα).

Whereas, cluster 3 was COPD-predominant group with mixed eosinophilic and neutro-

philic inflammation and elevated proinflammatory cytokine levels (such as IL-6).

Although cluster 1 was characterized by increased level of TH2 mediators and eosino-

phils cellular profiles, but the potential connection between these mediators and eosino-

phils was not fully understood in which whether the TH2 cytokines mediate/cause the

eosinophilic inflammation. In previous study, Stirling et al (2001) suggested that IL-5

enhances asthma by increasing number of eosinophils [153], but its contribution to COPD

is unknown. Cluster 2 (overlap) was also characterized by high level in TH1 derived and

proinflammatory cytokines (such as IL-1β, IL-6R, IL-8, IL-10, CCL-3, CCL-4, CCL-5,

CXCL-10, TNFα, and VEGF) and high proportion of bacterial colonization with neut-

rophilic inflammation. In this cluster these cytokines may have mediation/direct effect

in causing the neutrophilic inflammation as there was a significant positive correlation

between neutrophilic and IL-1β only in this subgroup. However, these pattern need to be

replicated in bigger study, and experimented in a laboratory. This study is an observational

from single center, and did not test for causality or mediation effect using mathematical

approach due to the lack of enough data within the cluster. In the previous study it has

been suggested that IL-1β may enhance asthma and COPD [154], but the mechanism was

not fully explained. This group is also characterized by high level of bacteria colonisation

compared to the other two clusters. Previous studies suggested that infections (viral and

bacterial) may contribute to the pathogenesis and progression of COPD [36], and was

reported an association between bacterial colonization and airway inflammation [39], and

between airway bacteria load and decline in FEV1 in COPD patients [40]. Whereas in

asthmatic studies, it has been suggested that bacterial organisms may increase airway

hyperresponsiveness and inflammation [41], and asthmatics with neutrophilic inflamma-

tion are commonly culture-positive for Haemophilus influenza [42, 43], which may suggest

the potential role of bacteria presence (especially H. influenza) in the lower airway in the
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continuation of neutrophilic airway inflammation [44]. The third cluster is characterized

by high levels in IL-6 and CCL-2 mediators, and majority of the subjects were COPD

patients. They tend to be older, male dominant with shorter duration of disease, and

low lung-function measurements and high pack-year history. The mechanisms of IL-6 and

CCL-2 in these airway diseases were not clearly understood, but it has been reported

that IL-6 may increase inflammation in asthma and COPD [155]. Whether this subgroups

could benefit from anti-IL-6 drug is unknown and require further big observational study

and mechanistic experiment in a research laboratory.

In conclusion, this study showed that separation between asthma and COPD at stable

state is clearly visible, but there is also an overlap between the diseases at biological

level. Asthmatics who are high in TH2 derived cytokines with eosinophilic inflammation

and COPD subjects who have elevated level of proinflammatory cytokines with low neut-

rophilic cell counts as two distinct airways diseases, but the two diseases overlap when

both have elevated level in TH1 derived and proinflammatory cytokines with neutrophilic

inflammation and high proportion of bacterial colonization. Although the underlying po-

tential mechanism is not completely understood, this study may bring new definitions

that acknowledge the overlap and highlight the similarities and differences between the

two diseases when they are stable. In addition, it may bring attention to the potential con-

tributions of cytokines in classification asthma and COPD phenotypes, which might yield

new insights that could benefit future efforts in these airway diseases research, diagnosis,

prevention using more personalized intervention approach.

8.2.2 Validation subgroups

The stable subgroups were validated on an independent asthma and COPD study using

two approaches (such as discriminant analysis, and combination of disease status and IL-1β

cut off), and identified three subgroups with similar patterns of clinical characteristics and

mediator profiles across the subgroups as the test clusters, which suggested the stability

of the clusters in an independent subjects. Although there are slight differences in the

proportion of asthma and COPD between the test and validation subgroups, there are no

significant differences in the proportions across the groups. In addition, although the two

classifier techniques performed well in validating the study, they need to be replicated in

bigger studies before using as a standard approach for subjects’ assignment into relevant

subgroups.

182



8.2.3 Exacerbation Biological Subgroups of Asthma and COPD

Similarly, a two-stage technique (cluster and factor analysis) was also applied to model the

biological heterogeneity of asthma and COPD using the sputum mediators at exacerbation

state. Subsequently, three biological clusters were identified. The first two clusters (cluster

1 and 2) represented the overlap of asthma and COPD, and the third cluster (cluster 3)

was COPD predominant subgroup; in which cluster 1 was with eosinophilic inflammation

and increased TH2 inflammatory mediators; cluster 2 was with elevated TH1 cytokines

and increased proportion of subjects with Firmicutes and Streptococcus (phylum Firmi-

cutes); and cluster 3 was clinically chronic bronchitis with neutrophilic inflammation and

increased proportion of bacterial colonization and Proteobacteria, and elevated level of

proinflammatory mediators.

8.2.4 Similarities between the Stable and Exacerbation Sub-

groups

The patterns of clinical and biological characteristics observed across the stable and ex-

acerbation subgroups are very consistent; in which subjects who have elevated level of

eosinophils have increased level of TH2 derived cytokines. The subgroups that have high

neutrophils cell-counts also have elevated level of proinflammatory mediators and increased

proportion of bacterial colonization. However, asthma and COPD subjects appeared to

have more similarity on the biological mediators at exacerbation compared to stable state.

This study showed that TH2 profile is rather associated with eosinophilic inflamma-

tion than with neutrophilic or bacterial colonization. On the other hand, neutrophilic

inflammation (non-eosinophilic) was characterized by a cytokine profile featuring raised in

proinflammatory such as IL-1β and TNFα and increased proportion of bacterial coloniz-

ation. This pattern highlights that the non-eosinophilic phenotype including neutrophilic

represents a major part of asthmatic and COPD population, which may suggests that the

non-eosinophilic inflammation is characterized by different molecular mechanisms than

eosinophilic inflammation. For example, these TH2 cytokines were not increased in non-

eosinophilic asthma/COPD that may indicate there are other non-TH2 cytokines (such

as TH1 and proinflammatory) play a role in causing/mediating these non-eosinophilic

inflammations (such as neutrophilic inflammation).

Although the reasons why there is such a variation in neutrophilic and eosinophilic

inflammations in asthmatic and COPD patients remain unclear but may be linked to the
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level of the cytokines profiles and bacterial infection. However, the mechanistic of this

pattern requires to be experimented in a laboratory.

8.2.5 Limitations

The specific study limitations have been discussed within each chapter. However, the

general limitation of the applied work is that only subjects with severe asthma and COPD

who attended a secondary care setting (from a single center) were included, and thus

might not be representative of a more generalized population. We acknowledge that our

findings cannot be extrapolated to mild and/or moderate asthma or mild COPD but are

confident that our populations are representative of our broader secondary care respirat-

ory patient population. Further studies are required to include healthy controls, larger

populations including those with mild disease from multi-centres for generalization. In

addition, the exacerbations were moderate and findings cannot be extrapolated to severe

exacerbations. Furthermore, the description of an exacerbation in this study was relied

on several parameters; in which a patient has to experience a change in symptoms and

recognise that if is different from baseline (stable) symptoms, and has to report to a med-

ical practitioner. Thereafter, a medical practitioner will assess that whether the reported

symptoms are different to the patient’s baseline symptoms and requires medical therapy

with corticosteroids and antibiotics. However, the medical practitioner does not know

whether these symptoms relate to an exacerbation or whether the treatment will work

as there is no simple biomarker available to identify exacerbation from stable state. Al-

though, this definition is consistent with the current literature but it has some shortfalls

which may have an impact on the findings. In general, the basis of an exacerbation relies

on subjective reporting by patients and subjective assessments made by physicians, and

the current definition of exacerbation also does not account the underlying cause of the

exacerbation, the treatment response or the complex psychological or social influences

that exist in patients with chronic respiratory disease. However, identifying a standard

biomarker threshold that could predict an exacerbation from stable state may aid in the

solving some of these complexity.

Although the longitudinal stability of the clusters was not tested directly in this study,

the biological heterogeneity was modeled separately at stable and exacerbation states and

revealed similar patterns of the clinical and biological characteristics across the identified

subgroups at both states. The patterns show the relationship (pathological connection)

between the mediators and other clinical characteristics especially with cellular profiles is
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not time and state (stable or exacerbation) dependent.

Furthermore, in this study only mediators which are detectable in more than 50% of

the population were included, and may have some influence on the findings, but these

mediators represent quite well the overall profiles (panel) of the cytokines (i.e. Th-2, Th-

1 and proinflammatory). So the findings, particularly the connection between elevated

cellular profiles (eosinophilic and neutrophilic) and Th-2 high or Th-2 low (i.e. high in

Th-1 or proinflammatory) is interesting observations, and deserves further investigation

in other population in order to develop a new cytokine-based therapeutic targeting each

subpopulation similar to anti-IL-5. Anti-IL-5 appeared to be effective in reducing the

eosinophilic inflammation in these subjects who have high level of TH2 cytokines and

eosinophilic cell-counts [58, 72, 73]. However, in future a large number of mediators can

be assessed using similar statistical approach if new technology is manufactured to measure

these undetectable mediators.

Thus far, more than 45 papers cited our published paper (which was generated from

this thesis [1]) and Dirkje and colleague [152] discussed the paper and pointed out that

some of the demographic and treatments may have effect on the results. However, the

effects of these suspected confounding variables were assessed empirically on the factor

scores (which were used for constructing the clusters) and found no evidence. Although

this is an observational study, the findings were highly unlikely influenced/confounded by

these possible asthma and COPD confounding characteristics such as standard treatments

and smoking status. This study just revealed novel biological clusters which do not rely on

clinical and demographic characteristics in which the mechanisms are not yet understood.

Finally, in this study the patterns were revealed using mathematical algorithms, but

not explore the mechanisms underlying this strong relationship (especially the connection

between mediators and cellular profiles in both stable and exacerbation states). However,

future large longitudinal observational studies from multi-centers and/or experimental

studies are required for better understanding of the potential mechanisms of the observed

patterns in each subpopulation. In addition, although the clusters at stable were validated

on an independent study using two techniques, the exacerbation clusters are required to

be validated in similar format to assess the stability of the clusters in an independent

population.
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8.2.6 Summary of Clinical Findings

In this study the biological subgroups of asthma and COPD were identified using statist-

ical techniques, and revealed further information that was hidden at disease level (across

asthma versus COPD group comparison) in the clinical characteristics, biological me-

diators and microbiome community. These observations may have clinical utilities for

targeted medicine and/or may help to understand better the potential mechanism and

heterogeneity of the diseases, and encourage further mechanistic studies. For example,

it has been observed that subjects who have elevated level in eosinophil inflammation

have increased level in TH2 derived mediators (cytokines). In addition, the subjects

who have elevated level in neutrophils cell-counts have increased level in proinflammatory

and bacterial colonization at both stable and exacerbation, and increased proportion of

Proteobacteria at exacerbation. Furthermore, at exacerbation subjects who have elev-

ated level in TH1 cytokines have increased proportion of Firmicutes at phylum level and

Streptococcus (phylum Firmicutes) at genus level. These observations are novel and the

pathological connections/interactions between the characteristics are not fully understood

yet in which whether the increase in inflammatory mediators causes/mediated the cellular

airways inflammations. Therefore, further experimental studies are required to under-

stand the relationship between the inflammatory mediators (cytokines), cellular profiles,

microbiome community and other characteristics in each subpopulation.

In conclusion, there are limited data in the literature to show the patterns of a range of

inflammatory mediators and cellular profiles across asthmatics and COPD at both stable

and exacerbation states. So our study is the biggest to show the patterns of broad spec-

trum of characteristics across asthma and COPD at both stable and exacerbation which

may extend our knowledge in the field by showing the relationship between clinical, me-

diator and microbiome in each subgroup beyond the comparison at disease level. This

study explored the biological heterogeneity in asthma and COPD, and identified sub-

groups which may calls for targeted cytokine-based treatments or/and mechanistic study

for selected sub-population. In general, this study may bring attention to the potential

contributions of cytokines in classification of asthma and COPD phenotypes, which might

yield new insights that could benefit future efforts into diagnosis, prevention, patient se-

lection for clinical trials and development of personalized intervention (treatment-specific

anti- inflammatory therapies).
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8.2.7 Statistical Methods to Model the Biological Hetero-

geneity of Asthma and COPD

In this study, the performances of several statistical methods were compared on simulation

study to identify the right approach to model the biological heterogeneity (using sputum

cytokines) of asthma and COPD jointly. Modeling the heterogeneity of the diseases using

the sputum mediators (cytokines) was not straightforward as these mediators have strong

correlations (internal patterns), and based on these patterns they were partitioned into

several independent subgroups. Thus, for this type of data, using factor scores (derived

from factor analysis) as input into k-means clustering algorithm outperformed the altern-

ative approaches in the simulation study. Thereafter, this approach was applied to model

the biological heterogeneity of asthma and COPD independently at stable and exacerba-

tions states. Subsequently, three stable and three exacerbation independent clusters with

different proportions of overlap between the two diseases were identified.

This approach (using factor scores as input into clustering algorithm) works very well

in a situation where there are strong correlations between the observed variables as it ac-

counts for the internal patterns (underlining structures) of the variables in partitioning the

observations into distinctive subgroups. This means that the correlations of the observed

variables are accounted within each cluster, and able to identify subgroup with elevated

level of variables that have similar pathways (strong correlation). Whereas, in the stand-

ard clustering techniques (i.e. using the observed variables as input into the clustering

algorithms), the internal patterns (correlation among the variables within a cluster) are

usually ignored, which assumes a local independence (uncorrelated) between the variables

within each cluster.

However, prior to applying this technique (using factor scores as input into clustering

algorithm) to cluster observations, the internal patterns of the observed variables should

be assessed using graphical visualization. If there is evidence of observed variables’ sub-

groups (internal patterns), factor analysis (with varimax rotation) should be implemented

to these variables to extract the factor scores for each observation. In addition, it is bet-

ter to be investigated the variables communalities (the shared variance explained by the

retained factors) before extracting the factor scores. If most of the variables have com-

munalities less than 50%, it would be better to use the standard approach (i.e. using all

the measured/observed variables as input into the clustering algorithm) instead of using

factor scores. In such situation, using the factor scores as input into clustering algorithm
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may under-represent the information exists in the entire variables, and its consequence

could be quite serious. However, if the variables that have communalities less than 50%

are few (e.g. less than 25% of the entire variables) then these variables could be removed

from the factor analysis prior to extracting the factor scores as these variables may hide

the optimal clusters exist in the dataset.

In addition, if the observed variables have strong correlation, the retained factors

(based on the screeplot or eigenvalue above one) may capture most of the information

exist in the observed variables. Thus, using the corresponding factor scores (which are

retained using the above criteria) as input into a clustering algorithm would be robust

(although this is a heuristic approach and hard to justify mathematically). However, it

could be a dangerous practice to use this approach in a situation where there are weak

correlations between the variables, which may lead to the extraction of very few factors

that greatly under-represent the entire information exists in the observed variables as

observed in these studies [91, 128].

Furthermore, in a situation where the factor scores are used as input into clustering

algorithm, it would be better to predict the identified clusters using linear discriminant

analysis using the observed variables. This approach is very helpful in identifying variables

that have significant contribution in discriminating the clusters, and may aid for future

validation or subject’s assignment to the identified subgroups. In addition, this may give

a general overview that how well the clusters are distinctive with respect to the observed

variables as usually the identified clusters utilities are interpreted based on the patterns

of the observed variables instead of on the patterns of the factor scores (latent variables).

Moreover, K-means clustering algorithm was used for identifying subjects’ subgroups

in this study. It’s a popular non-probabilistic data-clustering algorithm which is not prone

to model overfit (when the number of parameters becomes greater than the observations),

and is in the top three algorithms been used in the last 10 years for similar clustering

purpose. However, one of its main drawbacks is, despite the various suggestions (indexes),

there is no commonly acceptable methodology on how to compare models with different

numbers of clusters in order to identify the optimal number of clusters. The “Elbow”

(Scree plot) technique was used in this analysis to choose the possible number of clusters

by incorporating the suggestion from variables subgroups and clinical and biological plaus-

ibility of the clusters. The rationale behind the Elbow methods is that the clusters before

the break (inflation) in the graph (which displays the within cluster variation against the

number of clusters) capture most of the information, and the clusters after the break is
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very near to some of the existing ones and do not add any further information. There is

a probabilistic model-based approach, which is analogous to “K-means clusters on factor

scores” for identifying clusters with underlying structure, which is known as Factor Mix-

ture Model (FMM). FMM uses latent class analysis for classification and factor analysis for

identifying the underlying structure, here the optimal number of clusters is chosen based

on Akaike information criterion (AIC), Bayesian Information Criterion (BIC) and other

measures of goodness fit. This approach has an advantage over the method applied in this

analysis as all subjects who have at least one cytokines can be included in the analysis,

and the clusters can be adjust for other possible confounding covariates (continuous and

categorical). However, this approach is prone to overfit, and computationally intensive

and currently could handle maximum up to three factors, and only is implemented in

Mplus (a commercial statistical software).

8.2.8 Future Direction

The asthmatic and COPD subjects who participated in this study have been followed up

and further measurements such as gene expression and CT (x-ray computed tomography)

scan of their small and large airways will be available soon. Therefore, the patterns of

such characteristics will be assessed across asthma and COPD, and across the identified

biological subgroups at both stable and exacerbation state, and further subgroups will be

explored using statistical algorithms. In addition, patterns of the microbiome communities

at phylum and genus levels at stable state are in the process of being extracting from the

existing samples, and will be assessed across stable and exacerbation, and further micro-

biome subgroups of the diseases will be investigated using robust statistics techniques.

In addition, the approach that uses factor scores (derived from factor analysis with

varimax rotation) as input into a clustering algorithm appeared to outperform the altern-

ative approaches, particularly in a situation where there are strong correlations between

the observed variables. Therefore, this approach will be developed into an algorithm by in-

corporating visualization techniques (using graphical techniques for assessing the internal

structure of the variables), and a criterion for removing noise variables (e.g. variables

which have high error-terms compared to their communalities in factor analysis) prior to

extracting factor scores for clustering. Thereafter, the identified clusters will be predicted

using discriminant analysis to identify variables that have significant contribution in dis-

criminating the subgroups, The may aid for future subject assignment to the relevant

group using few observed variables. In addition, the issue of missing data will be handled.
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The algorithm will be written in R (statistical software platform) and will be publicly

available as an open source.

In this study the mediators provided valuable information regarding the clinical sub-

groups during stable and exacerbations states, and indicate clinically important tools that

may result in better understanding of the disease process and lead to superior management

strategies and direct personalized therapy. However, the patterns were revealed using

mathematical algorithms, but not explore the mechanisms underlying the relationships

observed among the characteristics in each subgroup (especially the connection between

cytokines and cellular profiles at both stable and exacerbation states). Although the longit-

udinal work and validation develop some understandings in the stability of the subgroups,

the overall mechanisms is very complex, and it is not known how these cytokines alter

expression of multiple inflammations in these airway diseases. In other chronic inflam-

matory diseases, such as rheumatoid arthritis and inflammatory bowel diseases, blocking

some of these cytokines has proven to be of clinical benefit, so there has been considerable

interest in determining whether the same approach might also be useful in inflammatory

airway diseases and these can be experimented in research laboratory. Therefore, further

mechanistic work to assess the connection between the biological clusters and cellular in-

flammation and microbiological are required. For example, this approach may provide

a basis to investigate whether exacerbations due to airway inflammations and bacterial

infection could be prevented by treating with cytokine-based drugs (such as anti-Th-2)

and antibiotic, respectively.
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8.2.9 Benefit and Limitation of Cluster Analysis in Medical

Research

Cluster analysis is an unsupervised multivariate technique that aims to classify a sample

of subjects on the basis of a set of variables into a number of distinctive (discrete) sub-

groups. The observations within each cluster are more similar (homogeneous) to each

other than between clusters (minimizing within group variation and maximizing between

groups variation). There is a major advantage of using cluster analysis to characterize

heterogeneity population in medical research. For example, it may provide new insights

and enhance our understanding of the diseases complexity (where the characterisation of

patients on the basis of clusters of symptoms can be useful in the identification of an ap-

propriate personalised/stratified approach of therapy). In addition, it aids to direct future

mechanistic studies, structure detection and generating hypothesis (exploring the deeper

relationships between variables in each subpopulation). Furthermore, it may identify a

novel potential biomarker that could predict treatment response and could be also useful

for patients’ selection in clinical trial (to maximize the chances of success) and adjusting

the standard treatments targeting each subgroup.

Although cluster analysis has advantage in understanding complex dataset, it has sev-

eral limitations in which researchers and readers should be aware. The robustness of

the identified clusters could be influenced due to several things: such as because of the

structure of the variables (as most of the clustering algorithms assume multivariate nor-

mality), outliers, missing values (usually the standard techniques assume only complete

case analysis), choice of measure of similarity, choice of the input variables, and uncon-

trolled confounding factors. Thus, researchers should consider carefully and be cautious

whether a specific clustering algorithm is a suitable and meaningful approach for the data-

set at hand before drawn any conclusions from the result. Many of these algorithms are

greedy (i.e. the optimal local solution is always taken in the hope of finding an optimal

global solution in which sometimes quite impossible especially when the clusters are not

well separated). Applying an appropriate clustering algorithm based on the type of the

input data is the best approach; for example, some clustering approach allows detection

of irregular clusters (i.e. those which have poorly defined shapes), and some are sensitive

to outliers compared to others.
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Confounding Variables in Cluster Analysis

Some potential confounding factors (such as treatments and demographic characteristics)

may influence cluster membership, and should be accounted whilst clustering the subjects.

For example, if the potential confounding factors (which are not included in the cluster-

ing algorithm) affect these variables that are used as input into cluster analysis, then the

robustness (validity) of the identified clusters could be questionable and the analysis may

lead to distorted results which may have a profound consequence. Most of the common

clustering algorithms, particularly these heuristic approach (such as k-means and hier-

archical) do not have capability to adjust for confounding factors. However, the effect

of these suspected confounding factors can be assessed empirically. For example, con-

founding factors can be investigated as follows: by assessing whether the variables used

as input into the clustering algorithm are associated with the confounding factors and/or

the confounding factors are not the reverse effect of these input variables. If no evidence

is found, then it can be concluded that the identified clusters are highly unlikely could

be influenced/confounded by these possible confounding factors. However, we have to be

aware that there should be unknown factors which could influence the variables (which

used as input into clustering algorithm) and the results should be interpreted cautiously

till the observed relationships are justified in an experimental study.

Missing Data Issues in Cluster Analysis

Missing data is the main issue in any statistical analysis including cluster analysis due

to the fact that considerable number of subjects are more likely to be excluded from the

analysis because of the missingness. The main cause of missing values in medical research

are not fully understood. However, they could be due to the fact that the questionnaires

were not filled properly, invalid values were recorded, undetectable measurements (e.g. a

patient may not produce enough sputum in which it may affect the extraction of all the

possible sputum mediators and microbiome communities) and so on.

Most of the common clustering techniques do not handle missing data and require only

complete cases (subjects without missing values). In cluster analysis, excluding substantial

number of subjects with missing values may underpowered the robustness of the results

as the subjects which included in the analysis may not represent these excluded. There

are several formal and informal approaches have been implemented to address the issue

of missing data in clustering. Such as replacing the missing values by the average of the
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available data (mean imputation); but the issue with this approach is that a large numbers

of missing values are more likely to be similar to each other as the same values are assigned

for these missing values. In addition, if other approaches such as stochastic models are used

for imputation, randomization are added to the data in which subjects with missing data

makes them highly unlikely to cluster (group) together. In general, applying imputation

techniques in cluster analysis to impute missing values might be dangerous as this approach

may introduce unrealistic (artificial) (dis)similarity in the dataset.

Dealing with missing data in cluster analysis is at its early stage, and requires an

attention from researchers in which, at least, these informal approaches aforementioned

should to be tested rigorously using simulation studies whether they are robust under the

assumptions of Missing At Random (MAR), Missing Completely At Random (MCAR)

and Missing Not at Random (MNAR) mechanisms. Although the assumptions could be

difficult to check, the simultaneous investigation of the missing data patterns and the

observed values may allow a better understanding of the missing data mechanisms. In

addition, the percentage of the imputed values under certain missingness mechanisms

should be quantified in order to identify robust clusters using the imputed data. However,

in situation where the imputation is impossible, at least the representation of these subjects

which were excluded from the analysis should to be assessed (whether they have similar

characteristics to these subjects were included) for the generalization of the results.

Selection of Input Variable in Cluster Analysis

The choice of the input variables in cluster analysis is quite controversial, especially when

the choice is not justified mathematically and/or clinically. For example, the identified

clusters could be very dependent on the variables which are included in the clustering

algorithm. Although it seems the more information that exists for individuals would

be better for clustering, adding non-informative (irrelevant) clustering variables may not

make a basic change in the identification of the optimal clusters except hiding the ex-

isting subgroups. Therefore, including these non-informative variables as input into the

clustering algorithm could be a harmful (which may add unnecessary noise and hide the

optimal clusters) as the clustering non-informative variables may dominate the effect of

these clustering informative variables.

The general objective of variable selection in clustering is to maximize the identification

of the optimal number of clusters using minimum number of clustering relevant variables.

Particularly in medical research it would be useful for subject selection for clinical trials,
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and adjustment of the standard care treatments targeting each subgroup based on the

state (threshold) of these few relevant variables.

However, identifying an appropriate method to choose the relevant variables for clus-

tering (without losing additional information with these excluded) is an ongoing study.

The common approaches of choosing input variables for clustering algorithm are: based

on the clinical utilities of the variables by eliminating these redundant ones (which is very

subjective), and reducing the dimension of the observed variables using factor or principal

component analyses (PCA) and use the corresponding scores as input into clustering al-

gorithm, or using the highest-loading observed variables (after factor analysis), which may

not be robust approaches for dataset which have no strong correlations (see chapter 3 for

details).

Selection of Optimal Number of Clusters

In cluster analysis, it is necessary to select the optimal number of clusters although it is not

always straightforward. There are several informal (subjective) approaches especially in

heuristics clustering techniques, and more formal (using BIC) in model-based clustering.

Most of the existing clustering techniques rely on heuristic methods that are based on

similarity or dissimilarity distance measures (such as k-means and hierarchical clustering

algorithms). This approach is computationally feasible and available in most open-source

and commercial statistical software and not prone to model overfitting. However, one of its

main drawbacks is that, despite the various suggestions (indexes), there is no commonly

acceptable methodology on how to compare models with different numbers of clusters

in order to identify the optimal number of clusters. In addition, the choice of the op-

timal clusters is very subjective, and usually depends on the clinical interpretation and

plausibility of the clusters.

An alternative method is a model-based clustering, in which a more formal statistical

procedure can be implemented to choose the optimal clusters (mixture components) using

likelihood approach such as BIC. However, although the optimal clusters could be chosen

based on the BIC but not always guaranteed for their clinical interpretation. Even the EM-

algorithm (which uses to optimise the model-based clustering) is prone to initialization

where it could converge to a local maxima rather than the global maximum, in which

there may be multiple optimal solutions (clusters) for a single dataset, especially when the

clusters are not well separated. Thus, the choice of the optimal clusters is a “trade off”

between the criterion and interpretablility of the clusters.
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Stability of Clusters

Testing stability of clusters in independent studies, and overtime within the same study is

very important before drawn a conclusion based on a single cross-sectional findings. The

stability of a clustering solution can be validated on an independent studies using super-

vised techniques (such as linear discriminant analysis). However, assessing how the clusters

(e.g. identified at baseline) would be stable overtime is not straightforward although it

can be investigated heuristically using supervised techniques (by predicting the baseline

clusters using the follow-up data and check for the misclassification), but this approach

does not answer the cause (mechanism) of that misclassification as it does not account

the trajectories of the variables overtime (temporal changes). An alternative methods are

needed to identify the follow-up clusters (which accounts the within and between subjects

variations) by adjusting the baseline clusters and identify the impact of each variable in

keeping or misclassifying the subjects. If this approach is far from exist, as it has been

implemented in this study, clustering can be implemented separately at stable and exacer-

bation states and compare the patterns (relationship between variables in each subgroups).

For example, in this study, we found that the relationship between mediators and cellular

profiles in each subgroup are similar at both stable and exacerbation states, which shows

that these patterns are time and state (stable or exacerbation) independent (invariant).

Conclusion

Application of cluster analysis in medical research may provide a valuable information, and

identify clinically important subgroups which lead to the superior management strategies

and more personalized therapy. There are a wide range of robust clustering techniques

which work well, but researchers should be aware of their caveats and known issues asso-

ciated with them in order to identify a more robust clusters. As each clustering technique

behaves differently for different type of data, users should have to check the assumptions

of each clustering algorithm in order to identify the right approach for the dataset at

hand. In addition, prior to clustering, a rigour investigation (screening) of the variables

should be implemented using appropriate techniques (such as using graphical visualization

and data reduction) in order to get a guidance which approach to use. Furthermore, it

is better to implement post clustering analysis (compare the patterns and relationship of

variables within and between the clusters), and investigating the stability of the clusters

in an independent study and overtime.
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Cluster analysis is generally an exploratory approach which helps to discover hidden

patterns in very complex dataset. However, the current approaches have several limita-

tions; so a new clustering technique is needed which is not prone to model overfitting, and

has a flexibility in handling missing data, selecting input variables, adjusting for potential

confounding factor and testing stability of the clusters overtime.

8.3 Part Two

8.3.1 Proposed Variable Selection for Model-based Cluster-

ing

In this part, a new method for variable selection in model based clustering is proposed.

This method extends the technique that was originally developed by R&D [129]. The

proposed algorithm searches for latent structures in the entire variables, and splits the

variables into two or more independent subsets if there is evidence of internal patterns

among the variables. Thereafter, forward variable selection algorithm is performed in

each variables’ subset, and all the relevant variables are aggregated from each subset and

corresponding global optimal clusters were identified. Furthermore, each global cluster is

treated as independent dataset and further search for local clustering relevant variables

from these globally clustering irrelevant variables are performed. If local clustering relev-

ant variable is identified, that variable is included with these globally relevant variables.

Finally, using all the aggregated relevant variables the corresponding optimal clusters

(which may exist in the entire dataset) are identified.

Overall, this approach relaxes the unrealistic assumptions of the relationship between

clustering relevant and irrelevant variables (where R&D method assumes), in a situation

where these variables are uncorrelated (independent). In addition, it accounts for the non-

linear relationship between clustering relevant and irrelevant variables by breaking down

the entire dataset into possible subgroups.

In this proposed method, an independent model-based clustering is developed in which

it is optimized using EM-algorithm. The EM-algorithm is initialized using several heuristic

clustering algorithms such as k-means, k-medoids or fuzzy k-means. In addition, the

singularity issue of the variance-covariance matrix is addressed by replacing the diagonal

of the matrix with small positive value (i.e. 1%). The performance of this approach was

assessed in the simulation and real dataset and compared with R&D method.
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8.3.2 Limitation

The proposed method appeared to outperform the R&D method, but it requires complete

cases at the moment in which it couldn’t impute missing values although it is possible

to impute the missing values and use the imputed variables as input into the algorithm,

similar to what Newby and colleague [128] have applied for the ATS asthmatic data. In

addition, the method performed better in data which do not have strong correlations

among the variables as the sputum cytokines. However, for data with strong correlation

among the variables such as sputum cytokines still the two stage (factor and cluster

analyses) would be the best in identifying the clusters with underlying variable profiles.

In addition, the new method is prone to overfit if the number of the parameters is greater

than number of observation as it is a model-based clustering technique.

8.3.3 Conclusion

The proposed method outperformed the R&D method and showed that clustering using

clustering relevant variables improved substantially the identification of optimal clusters

exist in the dataset. In addition, although no variable selection is performed (i.e. using all

the observed variables as input into clustering), the proposed clustering method appeared

to outperform the model-based clustering technique that was used in the R&D method.

The possible explanations for the limitations in the R&D method could be because of

the initialization of the EM-algorithm (which is initialized using hierarchical clustering

algorithm) or/and the unnecessary constrains of the variance-covariance matrices in their

model-based clustering technique in order to avoid the singularity issues.

8.3.4 Future Direction

In future, this work will be expanded to account the situation where the variables are

greater than the observations, without being prone to overfitting. In addition, the al-

gorithm will be extended to heuristic clustering algorithm and handle missing data issues

(includes missing data imputation algorithm and implement simultaneously with the vari-

able selection and clustering). In addition, at the moment the proposed method perhaps

does not perform adequately in uncovering the optimal clusters in the dataset which have

strong correlations between the variables (such as sputum mediators); so the algorithm

will be extended to account for these type of data.
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Appendix A

Figures of Simulated Data
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Figure (a): multivariate simulated data where the degree of separation (sepVal) between
the clusters is -0.2, the colours represent the three clusters.
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Figure (b): multivariate simulated data where the degree of separation (sepVal) between
the clusters is 0.005, the colours represent the three clusters.
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Figure (c): multivariate simulated data where the degree of separation (sepVal) between
the clusters is 0.06, the colours represent the three clusters.
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Figure (d): multivariate simulated data where the degree of separation (sepVal) between
the clusters is 0.01, the colours represent the three clusters.
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Figure (e): multivariate simulated data where the degree of separation (sepVal) between
the clusters is 0.2, the colours represent the three clusters.
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Appendix B

R-code for the Proposed Variable

Selection Method

In this session, all the R codes for the proposed variable selection method for model-based

clustering are presented.

1 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

2 # Fix singularity of variance - covariance matrix in #

3 # model - based clustering which fits using EM - algorithm #

4 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

5

6 sigmaFixer <- function(sigma , ...){

7 sigma <- as.matrix(sigma)

8 r <- dim(sigma)[1]

9 fixrate <- 0.01

10 covfixmat <- array(1,c(r,r)) + fixrate*diag(1,r)

11 min_limit <- .Machine$double.eps*10

12

13 if (!all(is.finite(sigma))){

14 warning (" covariance matrix is not finite ")

15 }

16

17 # Enforces the squareness and symmetricity

18 nsigma <- sigma - (( sigma - t(sigma))/2)

19 iter <- 0

20

21 # Checking the covariance matrix is not positive definite

22 while (postDef(nsigma) == 0 & (iter < 10000)){
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23

24 iter <- iter + 1

25 d <- diag(nsigma)

26 if (any(d <= min_limit)){

27 m <- max(abs(d))*fixrate

28 neg <- min(d)

29

30 if (neg < 0){

31 addit <- (m - neg)*diag(1,r)

32 }

33 else {

34 if (m < min_limit){

35 m <- min_limit

36 }

37 addit <- m*diag(1,r)

38 }

39 nsigma <- nsigma + addit

40 }

41 else {

42 # Increase the diagonal values by 1%

43 nsigma <- nsigma*covfixmat

44 }

45 }

46 # return ( list ( nsigma , iter ) )

47 return(nsigma)

48 }

50

51 # testing for postive definite

52 postDef <- function(Sigma){

53 Sigma <- as.matrix(Sigma)

54 q <- try(chol(Sigma)[2], TRUE)

55 if (q==0){

56 t <- 1

57 }
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58 else {

59 t <- 0

60 }

61 return(t)

62 }

67

68 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

69 # R code for Gaussian Mixture Model using EM - algorithm

70 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

71 # ’ gmmEM

72 # ’

73 # ’ This is a model - based clustering method which is

optimazed using EM algorithm . The EM - algorithm is

initialized using k - means , k - medoids or fuzzy k - means

( cmeans ) algorithms

74 # ’ @param x a numeric matrix or dataframe for clusterng ; c

is number of clusters ;

75 # ’ @return Estimated means and variance - covariance matrix

in each cluster , and BIC , loglikelihood , number of

iteration , clusters ( class ) and number of parameters

76 # ’ @examples

77 # ’ gmmEM ( iris [ ,1:4] , c =2 , initialize = c (" kmeans ") )

78 # ’

79 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

80

81 gmmEM <- function(x, c=1:10 , initialize = c(" kmeans",

"kmedoids"," fuzzykmeans "),iter = NULL , tol = NULL , ...) {

82

83 require(clusterSim) # for initialization the kmeans

clustering algorithm

84 require(FactMixtAnalysis) # for calculating confusion

matrix

85 require(mvtnorm) # for multivariate density function

86 require(e1071) # for fussy kmeans
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87

88 x <- as.matrix(x)

89

90 if (is.null(x)) return(NULL)

91

92 # X is non - missing

93 if (any(is.na(x))) {

94 warning ("NA ’s in the dataframe ")

95 return(NULL)

96 }

97

98 n <- nrow(x)

99 d <- ncol(x)

100

101 if (c==1 && d==1){

102 j <- 1 # number of clusters

103

104 # initialise the algorithm using k - means , k - medoids or

fuzzykmeans algorithms

105

106 if (initialize ==" kmedoids "){

107 k <- pam(x, c, do.swap=F)

108 }

109 else if (initialize ==" fuzzykmeans "){

110 k <- cmeans(x, c, iter.max = 100)

111 }

112 else {

113 k <- kmeans(x, c, nstart = 1)

114 }

115

116 mu <- mean(x[k$cluster == 1])

117 sigma <- sd(x[k$cluster == 1])

118

119 p <- sum(k$cluster == 1)/length(x)
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120

121 loglik <- sum(log(p*( dnorm(x,mu ,sigma))))

122

123 p <- (2*j-2 +3*j*d +j*d^2)/2 # parameters or degree of

freedom ; j = number of clusters

124 bic <- -2*loglik+ p*log(n)

125

126 return(list(mean=mu , sigma=sigma , loglikhood=loglik ,

n=n, BIC = bic , df = p, clusters=j))

127

128 }

129

130 else if (c>=2 & d==1){

131

132 # initialize the EM - algorithm using kmeans , kmedoids or

fuzzykmeans algorithms

133 if (initialize ==" kmedoids "){

134 k <- pam(x, c, do.swap=F)

135 }

136 else if (initialize ==" fuzzykmeans "){

137 k <- cmeans(x, c, iter.max = 100)

138 }

139

140 else {

141 k <- kmeans(x, c, nstart = 25)

142 }

143

144 j <- c

145 mu <- lapply (1:c, function(i) mean(x[k$cluster ==i,]))

146 mu <- lapply(mu , function(x){replace(x, is.na(x),

.Machine$double.eps)})

147

148 sigma <- lapply (1:c, function(i) sd(x[k$cluster ==i,]))

205



149 sigma <- lapply(sigma , function(x){replace(x, is.na(x),

.Machine$double.eps)})

151

152 # sigma <- lapply ( sigma , function ( x )

replace ( sigma , x ==0 ,. Machine$double . eps ) ) # replacing

zeros sigma

153

154 p <- lapply (1:c, function(i) sum(k$cluster ==i)/nrow(x))

155 p <- lapply(p, function(x){replace(x, is.na(x),

.Machine$double.eps)})

156

157 Ntau <- lapply (1:c, function(i)

p[[i]]*( dnorm(x,mu[[i]],sigma [[i]])))

158 Ntau <- sapply(Ntau , cbind)

159 SUMtau <- apply(Ntau ,1,sum)

160 loglik <- sum(log(SUMtau))

161

162 tol = 1e-06

163 iter <- 0

164 tau <- 0

165

166 # for loop

167 for (i in 1:1000) {

168

169 iter <- iter + 1

170

171 Ntau <- lapply (1:c, function(i)

p[[i]]*( dnorm(x,mu[[i]],sigma [[i]])))

172 Ntau <- sapply(Ntau , cbind)

173 SUMtau <- apply(Ntau ,1,sum)

174

175 tau <- Ntau/SUMtau

176 p <- lapply (1:c, function(i) sum(tau[,i])/nrow(x))
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177 p <- lapply(p, function(x){replace(x, is.na(x),

.Machine$double.eps)})

178

179 mu <- lapply (1:c, function(i)

sum(tau[,i]*x)/sum(tau[,i]))

180 mu <- lapply(mu, function(x){replace(x, is.na(x),

.Machine$double.eps)})

181

182 sigma <- lapply (1:c, function(i) sqrt(sum(tau[,i]

183 * (x - mu[[i]])^2)/sum(tau[,i])))

184 sigma <- lapply(sigma , function(x){replace(x,

is.na(x), .Machine$double.eps)})

185

186 loglik_0 <- loglik

187

188 Ntau <- lapply (1:c, function(i)

p[[i]]*( dnorm(x,mu[[i]],sigma [[i]])))

189 Ntau <- sapply(Ntau , cbind)

190 SUMtau <- apply(Ntau ,1,sum)

191 loglik <- sum(log(SUMtau))

192

193 del_loglik <- loglik - loglik_0

194

195 if ((abs(del_loglik) < tol) ||

(is.nan(abs(del_loglik)))) {

196

197 break

198

199 }

200 }

202

203 prob <- as.data.frame(tau)

204 class <- apply(prob , 1, which.max)

205
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206 par <- (2*j-2 +3*j*d +j*d^2)/2 # parameters or degree of

freedom ; j is number of clusters

207

208 bic <- -2*loglik+ par*log(n)

209

210 return(list(lambda = p, mu = mu , sigma =sigma ,

211 loglikhood = loglik , n=n ,BIC= bic ,df=par ,

number_of_iteration = iter ,

212 clusters=j, class = class))

213 }

214

215 else if (c >= 2 & d >= 2) {

216

217 # initialize the algorithm using k - means , fuzzykmeans

or kmedoids

218 if (initialize ==" kmedoids "){

219 k <- pam(x, c, do.swap=F)

220 }

221

222 else if (initialize ==" fuzzykmeans "){

223 k <- cmeans(x, c, iter.max = 100)

224 }

225 else {

226 k <- kmeans(x,x[initial.Centers(x, c) ,])

227 }

228

229 j <- length(unique(k$cluster))

230

231 mu <- lapply (1:c, function(i) apply(x[k$cluster ==i,],2,

mean))

232 sigma <- lapply (1:c, function(i) cov(x[k$cluster ==i,]))

233 sigma <- lapply(sigma ,function(x) sigmaFixer(x)) #

fixing singularity

234
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235 p <- lapply (1:c, function(i) sum(k$cluster ==i)/nrow(x))

236

237 tol <- 1e-6

238 iter <- 0

239 tau <- 0

240

241 Ntau <- lapply (1:c, function(i)

p[[i]]*( dmvnorm(x,mu[[i]],sigma [[i]])))

242 Ntau <- sapply(Ntau , cbind)

243 SUMtau <- apply(Ntau ,1,sum)

244

245 loglik <- sum(log(SUMtau))

246

247 # for loop

248 for (i in 1:1000){

249

250 iter <- iter + 1

251

252 Ntau <- lapply (1:c, function(i)

p[[i]]*( dmvnorm(x,mu[[i]],sigma [[i]])))

253 Ntau <- sapply(Ntau , cbind)

254 SUMtau <- apply(Ntau ,1,sum)

255

256 tau <- Ntau/SUMtau

257 p <- lapply (1:c, function(i) sum(tau[,i])/nrow(x))

258

259 mu <- lapply (1:c, function(i) apply (x, 2, function(x)

sum(tau[,i]*x)/sum(tau[,i])))

260

261 x_m <- lapply (1:c, function(i) sweep(x, 2,

mu[[i]],"-"))

262

263 sigma <- lapply (1:c, function(i)

(t(as.matrix(x_m[[i]]))%*%(as.matrix(x_m[[i]])
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264 * tau[,i]))/sum(tau[,i]))

265 sigma <- lapply(sigma ,function(x) sigmaFixer(x)) #

fixing singularity

266

267 loglik_0 <- loglik

268 Ntau <- lapply (1:c, function(i)

p[[i]]*( dmvnorm(x,mu[[i]],sigma [[i]])))

269 Ntau <- sapply(Ntau , cbind)

270 SUMtau <- apply(Ntau ,1,sum)

271 loglik <- sum(log(SUMtau))

272

273 del_loglik <- loglik - loglik_0

275

276 if ((abs(del_loglik) < tol) ||

(is.nan(abs(del_loglik)))) {

277

278 break

279

280 }

281

282 }

283

284 prob <- as.data.frame(tau)

285 class <- apply(prob , 1, which.max)

286 par <- (2*j-2 +3*j*d +j*d^2)/2 # parameters or degree of

freedom

287

288 bic <- -2*loglik+ par*log(n)

289

290 return (list(lambda=p, mu=mu ,

sigma=sigma ,loglikhood=loglik ,

291 number_of_iteration=iter , n=n, BIC = bic ,

df=par , class=class))

292 }
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293 }

295

296 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

297 #R - code for Linear Regression BIC

298 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

299 # ’ REGbic

300 # ’

301 # ’ This calculates regression BIC

302 # ’ @param y is dependent variable as numeric vector , and x

is independent variable / s as numeric matrix

303 # ’ @return regression BIC ( numeric )

304 # ’ @export

305 # ’ @examples

306 # ’ REGbic ()

307 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

309

310 REGbic <- function (y, x) {

311

312 y <- as.vector(y)

313 x <- as.matrix(x)

314

315 if (any(is.na(y))|| any(is.na(x))) {

316 warning ("NA ’s in the y or x")

317 return(NULL)

318 }

319

320 if (any(is.null(y))|| any(is.null(x))) {

321 return(NULL)

322 }

323

324 p <- ncol(x) + 2

325

326 n <- length(y)

327 fit <- lm(y~x)

211



328 sigma <- (sum(( summary(fit)$resid)^2)/n)^0.5

329

330 if (ncol(x)==1){

331 REG.bic <- - (-n*log (2*pi) -2*n*log(sigma)-n-log(n)*3)

332 } else {

333

334 REG.bic <- - (-n*log (2*pi) -2*n*log(sigma)-n-log(n)*p)

335 }

336 return(REG.bic)

337 }

340

341 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

342 # R - code for Variable Selection in model - based Clustering

using

343 # Forward Stepwise Algorithm

344 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

345 # ’ EMvSel

346 # ’

347 # ’ This selects clustering relevant variables for

model - based clustering using greedy forward selection

algorithm

348 # ’ @param X is a numeric matrix / dataframe , bic is a criteria

to select a variable as clustering relevant , default is 0

349 # ’ @return clustering relevant variables ( character )

350 # ’ @export

351 # ’ @examples

352 # ’ EMvSel ()

353 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

354 # forward feature selection algorithm

355 # Forward greedy search

356 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

357

358 EMvSel <- function(X, bic=0) {

359
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360 X <- as.data.frame(X)

361

362 if (is.null(X)) return(NULL)

363

364 # X is non - missig

365 if (any(is.na(X))) {

366 warning ("NA ’s in the dataframe ")

367 return(NULL)

368 }

369

370 n <- nrow(X)

371 d <- ncol(X)

372

373 if (is.null(X)) return(NULL)

374

375 # First Step - selecting single variable

376

377 BIC_opt <- rep(NA ,d) # optimal BIC

378 BIC_diff <- rep(NA,d)

379 BIC_one <- rep(NA ,d)

381

382 # identify the optimal univariate clusters

383

384 univ.BICs <-lapply (2:3, function(i) try(apply(X,2,

function(X) gmmEM(X,c=i,initialize =

c(" kmeans "))$BIC),TRUE))

385

386 univ.BIC <- data.frame(t(sapply(univ.BICs ,c)))

387

388 univ.BIC <- replace(univ.BIC , is.na(univ.BIC),

.Machine$double.xmax)

389

390 try(BIC_one <- apply(X, 2, function(X) gmmEM(X,c=1,

initialize = c(" kmeans "))$BIC), TRUE)
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391

392 BIC_sd <- sweep(-(univ.BIC), 2, FUN = "+", BIC_one) # BIC_d

<- c ( BIC_one - BIC_opt )

393

394 BIC_d <- apply(BIC_sd ,2,max) # choosing the highest

difference

395

396 # Find the variable with the highest BIC difference between

optimal clusters and no cluster

397

398 v <- max(BIC_d[is.finite(BIC_d)])

399 g <- which(BIC_d ==v,arr.ind=TRUE)[1]

400

401 # This is the first selected variable with most univariate

clustering evidence

402 if (max(BIC_d[is.finite(BIC_d)]) > 0){

403 S <- matrix(c(X[,g]),n,1)

404

405 }

406 else {

407 return(list(VarSel=NULL , var ="No relevant variable "))

408 stop("No relevant variable ")

409 }

410

411 # optimal BIC of the first selected relevant variable

412 BIC_S <- min(univ.BIC[g])

413 colnames(S) <- colnames(X)[g]

415

416 if (ncol(X)==1){

417

418 if (BIC_d[g] >= 10){

419

420 return(list(VarSel=colnames(X)))

421 }
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422 if (BIC_d[g] < 10) {

423 # return ( NULL )

424 return(list(VarSel=NULL , var ="No relevant variable "))

425 stop("No relevant variable ")

426 }

427 }

429

430 if (ncol(X) > 1) {

431

432 # N is the matrix of currently irrelevant variables

433 N <- as.matrix(X[,-g])

434 colnames(N) <- colnames(X)[-g]

435

436 # subset is a matrix records the proposed variable ,

optimal BIC of S and difference in BIC for clustering

versus no clustering on S .

437

438 subset <- matrix(c(colnames(S),round(BIC_S , 4),

round(BIC_d[g],4) ,"Yes") ,1,4)

440

441 # Second Step - selecting second variable

442 BIC_reg <- rep(0,ncol(N))

443 BIC_joint <- rep(0,ncol(N))

444 BIC_sum <- rep(0,ncol(N))

445 BIC_j <- rep(0,ncol(N))

447

448 # Bivariate joint clustering

449

450 biv.BICs <-lapply (2:6, function(i) try(apply(N,2,

function(N) gmmEM(cbind(S,N),c=i, initialize =

c(" kmeans "))$BIC),TRUE))

451 err <- sapply(biv.BICs , is , class2 ="try -error")

452 nulls <- sapply(biv.BICs , is, class2 ="NULL")

453 biv.BIC_s <- biv.BICs[err== FALSE & nulls== FALSE]
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454 biv.BIC <- data.frame(t(sapply(biv.BIC_s ,c)))

455

456 biv.BIC <- replace(biv.BIC , is.na(biv.BIC),

.Machine$double.xmax)

458

459 # regressing non - relevant variable on relevant variable

460 try(BIC_reg <- apply(N,2,function(N) REGbic(N, S)),TRUE)

462

463 BIC_sum <- BIC_reg + BIC_S

464

465 BIC.df <- sweep(-(biv.BIC), 2, FUN = "+", BIC_sum)

466

467 BIC_diff <-apply(BIC.df ,2,max)

469

470 # Choose the variable with the largest difference

471 v <- max(BIC_diff[is.finite(BIC_diff)])

472 g <- which(BIC_diff ==v,arr.ind=TRUE)[1]

473

474 BIC_opt <- apply(biv.BIC , 2, min)

475

476 # add the second best variable if its BIC difference is

positive ( greater than bic )

477 if(BIC_diff[g] > bic){

478 subset <-

rbind(subset ,c(colnames(N)[g],round(BIC_opt[g],4),

479 round(BIC_diff[g],4) ,"Yes"))

480 j <- c(colnames(S),colnames(N)[g])

481 S <- cbind(S,N[,g])

482 colnames(S) <- j

483 N <- as.matrix(N[,-g])

484 } else{

485

486 subset <-

rbind(subset ,c(colnames(N)[g],round(BIC_opt[g], 4),
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round(BIC_diff[g],4) ,"No"))

487

488 return(list(VarSel=colnames(S), Steps=subset))

489 stop()

490 }

491

492 S <- as.data.frame(S)

493 ss <- names(S)

494 N <- X[ , -which(names(X) %in% ss)]

495 N <- as.data.frame(N)

496 colnames(N) <-names(X)[!names(X) %in% names(S)]

497 iter <-0

499

500 while ((ncol(N) !=0) & !is.null(ncol(N)) & (iter <

ncol(X))) {

501

502 iter <- iter + 1

503

504 BIC_reg <- rep(0,ncol(N))

505 BIC_joint <- rep(0,ncol(N))

506 BIC_diff <- rep(0,ncol(N))

507 BIC_opt <- rep(0, ncol(N))

509

510 # identifying the optimal multivariate clusters

511

512 mv.BICs <- lapply (2:6, function(i) try(gmmEM(S[,j],

c=i, initialize = c(" kmeans "))$BIC ,TRUE)) # optimal BIC

using the relevant variables

513

514 mv.BIC <- data.frame(t(sapply(mv.BICs ,c)))

515 mv.BIC <- replace(mv.BIC , is.na(mv.BIC),

.Machine$double.xmax)

516
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517 mr <- min(sapply (mv.BIC , cbind)) # BIC for optimal

cluster

518 MC <- which(sapply (mv.BIC , cbind)==mr ,arr.ind=TRUE)[1]

519 MC <- MC+1 # optimal clusters

521

522 # BIC of optimal clusters

523 try(BIC_opt <- gmmEM(S[,j],c=MC , initialize =

c(" kmeans "))$BIC ,TRUE)

524 try(BIC_joint <- apply(N,2, function(N)

gmmEM(cbind(S[,j],N),c=MC, initialize =

c(" kmeans "))$BIC),TRUE)

525

526 # regressing non - relevant variable on relevant variable

527 try(BIC_reg <- apply(N,2,function(N) REGbic(N,

S[,j])),TRUE)

528

529 BIC_sum <- BIC_reg + BIC_opt

530 BIC_diff <- BIC_sum - BIC_joint

531

532 # Choose the variable with the largest BIC difference

533 v <- max(BIC_diff[is.finite(BIC_diff)])

534 g <- which(BIC_diff ==v,arr.ind=TRUE)[1]

536

537 if(BIC_diff[g] > bic) {

538

539 # if this difference is positive , add this variable

to S and update the clustering model ’ s BICs

540

541 subset <-

rbind(subset ,c(colnames(N)[g],round(BIC_opt ,4),

542 round(BIC_diff[g],4), "Yes"))

543 j <- c(colnames(S),colnames(N)[g])

544 S <- as.data.frame(cbind(S,N[,g]))

545 colnames(S) <- j
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546

547 ss <-names(S)

548

549 N <- (X[ , -which(names(X) %in% ss)])

550 N <- as.data.frame(N)

551 colnames(N) <-names(X)[!names(X) %in% names(S)]

552

553 } else{

554

555 subset <-

rbind(subset ,c(colnames(N)[g],round(BIC_opt ,4),

round(BIC_diff[g],4) ,"No"))

556 break

557 }

558 }

559

560 # Lists the selected variables and the matrix of steps ’

information

561 colnames(subset) <-

c(" ProposedVariable "," optimal_BIC "," BIC_Difference",

"Relevant ?")

562 return(list(VarSel=colnames(S), Steps=subset))

563 }

564 }

567

568 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

569 # R - code for Relevant Variable Selection in each Variables ’

570 # Subset

571 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

572

573 # ’ subEMvSel

574 # ’

575 # ’ This function splits the entire variables into

independent small subsets , and implement the function
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" EMvSel " to each subset to select clustering relevant

variables

576 # ’ @param Y is a numeric matrix / dataframe ; BIC is a

criteria to select a relevant variable , default is 0

577 # ’ @return aggregated clustering relevant variables from

each variable subset ( character )

578 # ’ @export

579 # ’ @examples

580 # ’ subEMvSel ()

581 # ’

582 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

583 # Subset of variables are identified using factor analysis

with varimax rotation

584 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

585 # The above function ( EMvSel ) algorithm is applied in each

586 # variables ’ subset to identify the relevant variables

587 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

589

590 # Factor Analysis

591

592 subEMvSel <- function (Y, BIC=0) {

593

594 require(psych)

595 Y <- as.data.frame(Y)

596 d <- ncol(Y)

597

598 # identify the possible number of factors for the entire

variables using factor analysis with varimax rotation .

599 fact <- lapply (1:d, function(i) try(fa(Y, i, SMC=F, rotate=

"varimax ")$factors ,TRUE))

600

601 f <- max(suppressWarnings(na.omit(as.numeric(fact))))

602

603 if (f >=2){
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604 # if the variables have more than two blocks implement the

following codes

605 loading <- abs(fa(Y, f, SMC=F, rotate=

"varimax ") $loadings [,1:f])

606 factors <- as.data.frame(loading)

607

608 eigenvalue <- apply( factors ,2, function(x) sum(x^2))

609 kk <- as.data.frame(eigenvalue)

610

611 # extracting factors which have total explained variance

greater than 1

612 eigen1 <- kk[kk > 1,1]

613

614 k <- length(eigen1) # possible number of factors

615

616 if (k > 1){

617 loading <- fa(Y, k, SMC=F, rotate=

"varimax ") $loadings [,1:k]

618 loading <- abs(as.data.frame(loading))

619

620 # identify subset of variables ( creating block for

variables before clustering )

621 subst <- apply( loading , 1, function(x) sample( c(

colnames(loading)[ which( x == max(x))]) ,))

622 s1 <- as.vector(subst)

623 s2 <- cbind(s1, variables=names(subst))

624 # dt <- data . table ( s2 )

625 dt <- as.data.frame(s2)

626 dtt <- cbind(dt , Factor=as.numeric(dt$s1))

627 dtt <- as.data.frame(dtt)

628 datt <- dtt [,2:3]

629

630 f.subset <- as.character ()
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631 q <- length(table(datt$Factor)) # final variables ’

subsets

632

633 for (i in 1:q) {

634 sub <- datt[datt$Factor ==i,]

635 rownames(sub) <- sub[,1]

636 subset <- rownames(sub)[rownames(sub) %in% names(Y)]

637 mm <- EMvSel(Y[,c(subset), drop=F], bic=BIC) #

feature selection in each block and collect the relevant

variables

638 # s <- names ( mm$VarSel )

639 f.subset <- c( f.subset , c(mm$VarSel))

640 }

641

642 }

643 else {

644 f.subset <- EMvSel(Y, bic=BIC)$VarSel

645

646 }

647 }

648

649 else {

650 f.subset <- EMvSel(Y, bic=BIC)$VarSel # extract these

matching with the original variables only to avoid null

651 }

652

653 return (f.subset)

654 }

658

659 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

660 # R - code for Variable Selection in Model - based clustering

661 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

662

663 # ’ gmmVarSel
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664 # ’

665 # ’ This function implements the function ( subEMvSel ) in each

global cluster to search further for local relevant

variables .

666 # ’ Z is a numeric matrix / dataframe ; BIC_diff is the

criteria to select the relevant variable in each cluster ,

default is 10

667 # ’ @return final clustering relevant variables ( character )

668 # ’ @export

669 # ’ @examples

670 # ’ gmmVarSel ( iris [ ,1:4])

671 # ’ [1] " Petal . Length " " Sepal . Width " " Petal . Width "

672 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

674

675 gmmVarSel <- function(Z, BIC_diff =10){

676

677 Z <- as.data.frame(Z)

678

679 s <- suppressWarnings(subEMvSel(Z)) # relevant variables

selected using algorithm 1

680

681 if (ncol(as.matrix(Z[,!colnames(Z) %in% s])) >= 1 &

length(s) >0){

682

683 opt_clusterBIC <- lapply (2:3, function(i)

try(gmmEM(Z[,s], c=i, initialize =

c(" kmeans "))$BIC ,TRUE)) # optimal BIC using relevant

variables

684 opt_clusterBIC <- sapply (opt_clusterBIC , cbind)

685 opt_clusterBIC <- replace(opt_clusterBIC ,

is.na(opt_clusterBIC), .Machine$double.xmax)

686 vv <- min(sapply(opt_clusterBIC , cbind)) # BIC for

optimal cluster
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687 G <- which(sapply (opt_clusterBIC ,

cbind)==vv,arr.ind=TRUE)[1]

688 G <- G+1 # optimal cluster using relevant variables

689

690 class <- gmmEM(Z[,s], c=G, initialize =

c(" kmeans "))$class # class assigment from algorithm 1

691 Z.new <- cbind(Z, class)

692 c_var <- suppressWarnings(lapply (1:G, function(i)

try(subEMvSel(Z[Z.new$class ==i,! colnames(Z) %in%

s],BIC=BIC_diff),TRUE))) # select relevant in each

cluster

693

694 c_s <-

as.vector(unique(do.call(rbind ,as.list(sapply(c_var ,

cbind))))) # relevant variable in each cluster

695 cs <- colnames(Z[,colnames(Z) %in% c_s ,drop=F])

696 all_s <- unique(as.vector(c(s, cs))) # all selected

relevant variables from algorithm 1 and 2

697

698 return(all_s)

699 }

700

701 else {

702 return(s)

703

704 }

705

706 }
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[157] Judith Garcia-Aymerich, Federico P Gómez, Marta Benet, Eva Farrero, Xavier Bas-
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