R-matrix and Mickelsson algebras for orthosymplectic quantum groups

Cite as: J. Math. Phys. 56, 081701 (2015); https://doi.org/10.1063/1.4927582
Submitted: 13 May 2015 . Accepted: 17 July 2015 . Published Online: 04 August 2015
Thomas Ashton, and Andrey Mudrov

ARTICLES YOU MAY BE INTERESTED IN

R-matrix and inverse Shapovalov form
Journal of Mathematical Physics 57, 051706 (2016); https://
doi.org/10.1063/1.4950894
The effect of non-Newtonian viscosity on the stability of the Blasius boundary layer
Physics of Fluids 28, 074107 (2016); https://doi.org/10.1063/1.4958970
Quantization of borderline Levi conjugacy classes of orthogonal groups
Journal of Mathematical Physics 55, 121702 (2014); https://
doi.org/10.1063/1.4902381

Don't let your writing

R-matrix and Mickelsson algebras for orthosymplectic quantum groups

Thomas Ashton and Andrey Mudrov ${ }^{\text {a }}$
Department of Mathematics, University of Leicester, University Road, LE1 7RH Leicester, United Kingdom

(Received 13 May 2015; accepted 17 July 2015; published online 4 August 2015)

Abstract

Let \mathfrak{g} be a complex orthogonal or symplectic Lie algebra and $\mathfrak{g}^{\prime} \subset \mathfrak{g}$ the Lie subalgebra of rank $\mathrm{rk} \mathfrak{g}^{\prime}=\mathrm{rkg}-1$ of the same type. We give an explicit construction of generators of the Mickelsson algebra $Z_{q}\left(\mathfrak{g}, \mathfrak{g}^{\prime}\right)$ in terms of Chevalley generators via the R -matrix of $U_{q}(\mathfrak{g})$. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4927582]

I. INTRODUCTION

In the mathematics literature, lowering and raising operators are known as generators of step algebras, which were originally introduced by Mickelsson ${ }^{1}$ for reductive pairs of Lie algebras, $\mathfrak{g}^{\prime} \subset \mathfrak{g}$. These algebras naturally act on \mathfrak{g}^{\prime}-singular vectors in $U(\mathfrak{g})$-modules and are important in representation theory. ${ }^{2,3}$

The general theory of step algebras for classical universal enveloping algebras was developed in Refs. 2 and 4 and extended to the special linear and orthogonal quantum groups in Ref. 5. They admit a natural description in terms of extremal projectors, ${ }^{4}$ introduced for classical groups in Refs. 6 and 7 and generalized to the quantum group case in Refs. 8 and 9. It is known that the step algebra $Z\left(\mathfrak{g}, \mathfrak{g}^{\prime}\right)$ is generated by the image of the orthogonal complement $\mathfrak{g} \theta \mathfrak{g}^{\prime}$ under the extremal projector of the \mathfrak{g}^{\prime}. Another description of lowering/raising operators for classical groups was obtained in Refs. 10, 11, and 3 in an explicit form of polynomials in \mathfrak{g}.

A generalization of the results of Refs. 10 and 11 to quantum $\mathfrak{g l}(n)$ can be found in Ref. 12. In this special case, the lowering operators can be also conveniently expressed through "modified commutators" in the Chevalley generators of $U(\mathrm{~g})$ with coefficients in the field of fractions of $U(\mathfrak{h})$. Extending ${ }^{3}$ to orthogonal and symplectic quantum groups is not straightforward, since there are no nilpotent triangular Lie subalgebras $\mathfrak{g}_{ \pm}$in $U_{q}(\mathfrak{g})$ but only their deformed associative envelope. We suggest such a generalization, where the lack of $\mathfrak{g}_{ \pm}$is compensated by the entries of the universal R-matrix with one leg projected to the natural representation. Those entries are nicely expressed through modified commutators in the Chevalley generators turning into elements of $\mathfrak{g}_{ \pm}$ in the quasi-classical limit. Their commutation relation with the Chevalley generators modifies the classical commutation relations with $\mathfrak{g}_{ \pm}$in a tractable way. This enabled us to generalize the results of Refs. 10, 11, and 3 and construct generators of Mickelsson algebras for the non-exceptional quantum groups. Explicit form of these generators is useful in quantization of conjugacy classes, because they are related to singular vectors generating certain submodules involved. ${ }^{13,14}$

A. Quantized universal enveloping algebra

In this paper, \mathfrak{g} is a complex simple Lie algebra of type B, C, or D. The case of $\mathfrak{g l}(n)$ can be easily derived from here due to the natural inclusion $U_{q}(\mathfrak{g l}(n)) \subset U_{q}(\mathfrak{g})$, so we do not pay special attention to it. We choose a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$ with the inner product (...) on \mathfrak{h}^{*} normalized to the unit length of the highest weight of the natural representation. By R, we denote the root system of \mathfrak{g} with a fixed subsystem of positive roots $R^{+} \subset R$ and the basis of simple roots $\Pi^{+} \subset R^{+}$. For

[^0]every $\lambda \in \mathfrak{h}^{*}$, we denote by h_{λ} its image under the isomorphism $\mathfrak{h}^{*} \simeq \mathfrak{h}$, that is $(\lambda, \beta)=\beta\left(h_{\lambda}\right)$ for all $\beta \in \mathfrak{h}^{*}$. We put $\rho=\frac{1}{2} \sum_{\alpha \in \mathrm{R}^{+}} \alpha$ for the Weyl vector.

Suppose that $q \in \mathbb{C}$ is not a root of unity. Denote by $U_{q}\left(\mathfrak{g}_{ \pm}\right)$the \mathbb{C}-algebra generated by $e_{ \pm \alpha}$, $\alpha \in \Pi^{+}$, subject to the q -Serre relations

$$
\sum_{k=0}^{1-a_{i j}}(-1)^{k}\left[\begin{array}{c}
1-a_{i j} \\
k
\end{array}\right]_{q_{\alpha_{i}}} e_{ \pm \alpha_{i}}^{1-a_{i j}-k} e_{ \pm \alpha_{j}} e_{ \pm \alpha_{i}}^{k}=0
$$

where $a_{i j}=\frac{2\left(\alpha_{i}, \alpha_{j}\right)}{\left(\alpha_{i}, \alpha_{i}\right)}, i, j=1, \ldots, n=\mathrm{rkg}$, is the Cartan matrix, $q_{\alpha}=q^{\frac{(\alpha, \alpha)}{2}}$, and

$$
\left[\begin{array}{l}
m \\
k
\end{array}\right]_{q}=\frac{[m]_{q}!}{[k]_{q}![m-k]_{q}!}, \quad[m]_{q}!=[1]_{q} \cdot[2]_{q} \cdots[m]_{q}
$$

Here, and further on, $[z]_{q}=\frac{q^{z}-q^{-z}}{q-q^{-1}}$ whenever $q^{ \pm z}$ make sense.
Denote by $U_{q}(\mathfrak{h})$ the commutative \mathbb{C}-algebra generated by $q^{ \pm h_{\alpha}}, \alpha \in \Pi^{+}$. The quantum group $U_{q}(\mathfrak{g})$ is a \mathbb{C}-algebra generated by $U_{q}\left(\mathfrak{g}_{ \pm}\right)$and $U_{q}(\mathfrak{h})$ subject to the relations

$$
q^{h_{\alpha}} e_{ \pm \beta} q^{-h_{\alpha}}=q^{ \pm(\alpha, \beta)} e_{ \pm \beta}, \quad\left[e_{\alpha}, e_{-\beta}\right]=\delta_{\alpha, \beta} \frac{q^{h_{\alpha}}-q^{-h_{\alpha}}}{q_{\alpha}-q_{\alpha}^{-1}}
$$

Although \mathfrak{b} is not contained in $U_{q}(\mathfrak{g})$, still it is convenient for us to keep reference to \mathfrak{b}.
Fix the comultiplication in $U_{q}(\mathfrak{g})$ as in Ref. 15,

$$
\begin{gathered}
\Delta\left(e_{\alpha}\right)=e_{\alpha} \otimes q^{h_{\alpha}}+1 \otimes e_{\alpha}, \quad \Delta\left(e_{-\alpha}\right)=e_{-\alpha} \otimes 1+q^{-h_{\alpha}} \otimes e_{-\alpha} \\
\Delta\left(q^{ \pm h_{\alpha}}\right)=q^{ \pm h_{\alpha}} \otimes q^{ \pm h_{\alpha}},
\end{gathered}
$$

for all $\alpha \in \Pi^{+}$.
The subalgebras $U_{q}\left(\mathrm{~b}_{ \pm}\right) \subset U_{q}(\mathfrak{g})$ generated by $U_{q}\left(\mathfrak{g}_{ \pm}\right)$over $U_{q}(\mathfrak{h})$ are quantized universal enveloping algebras of the Borel subalgebras $\mathfrak{b}_{ \pm}=\mathfrak{h}+\mathfrak{g}_{ \pm} \subset \mathfrak{g}$.

The Chevalley generators e_{α} can be extended to a set of composite root vectors e_{β} for all $\beta \in \mathrm{R}$. A normally ordered set of root vectors generate a Poincaré-Birkhoff-Witt (PBW) basis of $U_{q}(\mathfrak{g})$ over $U_{q}(\mathfrak{h}) .{ }^{15}$ We will use $\mathfrak{g}_{ \pm}$to denote the vector space spanned by $\left\{e_{ \pm \beta}\right\}_{\beta \in \mathrm{R}^{+}}$.

The universal R-matrix is an element of a certain extension of $U_{q}(\mathfrak{g}) \otimes U_{q}(\mathfrak{g})$. We heavily use the intertwining relation

$$
\begin{equation*}
\mathcal{R} \Delta(x)=\Delta^{o p}(x) \mathcal{R} \tag{1.1}
\end{equation*}
$$

between the coproduct and its opposite for all $x \in U_{q}(\mathfrak{g})$. Let $\left\{\varepsilon_{i}\right\}_{i=1}^{n} \subset \mathfrak{h}^{*}$ be the standard orthonormal basis and $\left\{h_{\varepsilon_{i}}\right\}_{i=1}^{n}$ the corresponding dual basis in \mathfrak{h}. The exact expression for \mathcal{R} can be extracted from Ref. 15, Theorem 8.3.9, as the ordered product

$$
\begin{equation*}
\mathcal{R}=q^{\sum_{i=1}^{n} h_{\varepsilon_{i}} \otimes h_{\varepsilon_{i}}} \prod_{\beta} \exp _{q_{\beta}}\left\{\left(1-q_{\beta}^{-2}\right)\left(e_{\beta} \otimes e_{-\beta}\right)\right\} \in U_{q}\left(\mathrm{~b}_{+}\right) \hat{\otimes} U_{q}\left(\mathrm{~b}_{-}\right) \tag{1.2}
\end{equation*}
$$

where $\exp _{q}(x)=\sum_{k=0}^{\infty} q^{\frac{1}{2} k(k+1)} \frac{x^{k}}{[k]_{q}!}$.
We use the notation $e_{i}=e_{\alpha_{i}}$ and $f_{i}=e_{-\alpha_{i}}$ for $\alpha_{i} \in \Pi^{+}$, in all cases apart from $i=n, \mathfrak{g}=$ $\mathfrak{s v}(2 n+1)$, where we set $f_{n}=\left[\frac{1}{2}\right]_{q} e_{-\alpha_{n}}$. The reason for this is twofold. First, the natural representation can be defined through the classical assignment on the generators, as given below. Second, we get rid of $q_{\alpha_{n}}=q^{\frac{1}{2}}$ and can work over $\mathbb{C}[q]$, as the relations involved turn into

$$
\begin{gathered}
{\left[e_{n}, f_{n}\right]=\frac{q^{h_{\alpha_{n}}}-q^{-h_{\alpha_{n}}}}{q-q^{-1}}} \\
f_{n}^{3} f_{n-1}-\left(q+1+q^{-1}\right) f_{n}^{2} f_{n-1} f_{n}+\left(q+1+q^{-1}\right) f_{n} f_{n-1} f_{n}^{2}-f_{n-1} f_{n}^{3}=0
\end{gathered}
$$

It is easy to see that the square root of q disappears from the corresponding factor in presentation (1.2).

In what follows, we regard $\mathfrak{g l}(n) \subset \mathfrak{g}$ to be the Lie subalgebra with the simple roots $\left\{\alpha_{i}\right\}_{i=1}^{n-1}$ and $U_{q}(\mathfrak{g l}(n))$ the corresponding quantum subgroup in $U_{q}(\mathfrak{g})$.

Consider the natural representation of \mathfrak{g} in the vector space \mathbb{C}^{N}. We use the notation $i^{\prime}=$ $N+1-i$ for all integers $i=1, \ldots, N$. The assignment

$$
\pi\left(e_{i}\right)=e_{i, i+1} \pm e_{i^{\prime}-1, i^{\prime}}, \quad \pi\left(f_{i}\right)=e_{i+1, i} \pm e_{i^{\prime}, i^{\prime}-1}, \quad \pi\left(h_{\alpha_{i}}\right)=e_{i i}-e_{i+1, i+1}+e_{i^{\prime}-1, i^{\prime}-1}-e_{i^{\prime} i^{\prime}},
$$

for $i=1, \ldots, n-1$, defines a direct sum of two representations of $\mathfrak{g l}(n)$ for each sign. It extends to the natural representation of the whole \mathfrak{g} by

$$
\begin{gathered}
\pi\left(e_{n}\right)=e_{n, n+1} \pm e_{n^{\prime}-1, n^{\prime}}, \quad \pi\left(f_{n}\right)=e_{n+1, n} \pm e_{n^{\prime}, n^{\prime}-1}, \quad \pi\left(h_{\alpha_{n}}\right)=e_{n n}-e_{n^{\prime} n^{\prime}}, \\
\pi\left(e_{n}\right)=e_{n n^{\prime}}, \quad \pi\left(f_{n}\right)=e_{n^{\prime} n}, \quad \pi\left(h_{\alpha_{n}}\right)=2 e_{n n}-2 e_{n^{\prime} n^{\prime}}, \\
\pi\left(e_{n}\right)=e_{n-1, n^{\prime}} \pm e_{n, n^{\prime}+1}, \quad \pi\left(f_{n}\right)=e_{n^{\prime}, n-1} \pm e_{n^{\prime}+1, n}, \quad \pi\left(h_{\alpha_{n}}\right)=e_{n-1, n-1}+e_{n n}-e_{n^{\prime} n^{\prime}}-e_{n^{\prime}+1, n^{\prime}+1},
\end{gathered}
$$ respectively, for $\mathfrak{g}=\mathfrak{s p}(2 n+1), \mathfrak{g}=\mathfrak{s p}(2 n)$, and $\mathfrak{g}=\mathfrak{s p}(2 n)$.

Two values of the sign give equivalent representations. The choice of minus corresponds to the standard representation that preserves the bilinear form with entries $C_{i j}=\delta_{i^{\prime} j}$, for $\mathfrak{g}=\mathfrak{s o}(N)$, and $C_{i j}=\operatorname{sign}\left(\frac{N+1}{2}-i\right) \delta_{i^{\prime} j}$, for $\mathfrak{g}=\mathfrak{s p}(N)$. However, we fix the sign to + in order to simplify calculations. The above assignment also defines representations of $U_{q}(\mathfrak{g})$.

II. R-MATRIX OF NON-EXCEPTIONAL QUANTUM GROUPS

Define $\check{\mathcal{R}}=q^{-\sum_{i=1}^{n} h_{\varepsilon_{i}} \otimes h_{\varepsilon_{i}} \mathcal{R}}$. Denote by $\check{R}^{-}=(\pi \otimes \mathrm{id})(\check{\mathcal{R}}) \in \operatorname{End}\left(\mathbb{C}^{N}\right) \otimes U_{q}\left(\mathrm{~g}_{-}\right)$and by $\check{R}^{+}=$ $(\pi \otimes \mathrm{id})\left(\check{\mathcal{R}}_{21}\right) \in \operatorname{End}\left(\mathbb{C}^{N}\right) \otimes U_{q}\left(\mathfrak{g}_{+}\right)$. In this section, we deal only with \check{R}^{-}and suppress the label "-" for simplicity, $\check{R}=\breve{R}^{-}$.

Denote by N_{+}the ring of all upper triangular matrices in $\operatorname{End}\left(\mathbb{C}^{N}\right)$ and by N_{+}^{\prime} its ideal spanned by $e_{i j}, i<j+1$.

Lemma 2.1. One has

$$
\check{R}=1 \otimes 1+\left(q^{1+\delta_{1 n}}-q^{-1-\delta_{1 n}}\right) \sum_{i=1}^{n} \pi\left(e_{i}\right) \otimes f_{i} \bmod N_{+}^{\prime} \otimes U_{q}\left(\mathfrak{g}_{-}\right),
$$

where $\delta_{1 n}$ is present only for $\mathfrak{g}=\mathfrak{s p}(2 n)$.
Proof. For all positive roots α, β, the matrix $\pi\left(e_{\alpha} e_{\beta}\right)$ belongs to N_{+}^{\prime}. Also, $\pi\left(e_{\beta}\right) \in N_{+}^{\prime}$ for all $\beta \in \mathrm{R}^{+} \backslash \Pi^{+}$. Therefore, the only terms that contribute to $\operatorname{Span}_{\varepsilon_{i}-\varepsilon_{j} \in \Pi^{+}}\left\{e_{i j} \otimes U_{q}\left(\mathfrak{g}_{-}\right)\right\}$are those of degree 1 from the series $\exp _{q_{\alpha}}\left(1-q_{\alpha}^{-2}\right)\left(e_{\alpha} \otimes e_{-\alpha}\right)$ with $\alpha \in \Pi^{+}$.

Write $\check{R}=\sum_{i, j=1}^{N} e_{i j} \otimes \check{R}_{i j}$, where $\check{R}_{i j}=0$ for $i>j$. Due to the \mathfrak{h}-invariance of \check{R}, the entry $\check{R}_{i j} \in$ $U_{q}\left(\mathfrak{g}_{-}\right)$carries weight $\varepsilon_{j}-\varepsilon_{i}$.

For all \mathfrak{g}, we have $f_{k, k+1}=f_{k}=f_{k^{\prime}-1, k^{\prime}}$ once $k<n$ and $f_{n, n+1}=f_{n}=f_{n+1, n^{\prime}}$ for $\mathfrak{g}=\mathfrak{s p}(2 n+1)$, $f_{n-1, n^{\prime}}=f_{n}=f_{n, n^{\prime}+1}$ for $\mathfrak{g}=\mathfrak{s o}(2 n)$, and $f_{n n^{\prime}}=[2]_{q} f_{n}$ for $\mathfrak{g}=\mathfrak{s p}(2 n)$. We present explicit expressions for the entries $f_{i j}$ in terms of modified commutators in Chevalley generators, $[x, y]_{a}=x y-$ ay x, where a is a scalar; we also put $\bar{q}=q^{-1}$.

Proposition 2.2. Suppose that $\varepsilon_{i}-\varepsilon_{j} \in \mathrm{R}^{+} \backslash \Pi^{+}$. Then, the elements $f_{i j}$ are given by the following formulas:

For all g and $i+1<j \leqslant \frac{N+1}{2}$,

$$
\begin{equation*}
f_{i j}=\left[f_{j-1}, \ldots\left[f_{i+1}, f_{i}\right]_{\bar{q}} \ldots\right]_{\bar{q}}, \quad f_{j^{\prime} i^{\prime}}=\left[\ldots\left[f_{i}, f_{i+1}\right]_{\bar{q}}, \ldots f_{j-1}\right]_{\bar{q}} . \tag{2.1}
\end{equation*}
$$

Furthermore,

- For $\mathfrak{g}=\mathfrak{s o}(2 n+1): f_{n n^{\prime}}=(q-1) f_{n}^{2}$ and

$$
\begin{gathered}
f_{i, n+1}=\left[f_{n}, f_{i, n}\right]_{\bar{q}}, \quad f_{n+1, i^{\prime}}=\left[f_{n^{\prime}, i^{\prime}}, f_{n}\right]_{\bar{q}}, \quad i<n, \\
f_{i j^{\prime}}=q^{\delta_{i j}}\left[f_{n+1, j^{\prime}}, f_{i, n+1}\right]_{\bar{q}}^{\delta_{i j}}, \quad i, j<n .
\end{gathered}
$$

- $\operatorname{For} \mathfrak{g}=\mathfrak{s p}(2 n): f_{n n^{\prime}}=[2]_{q} f_{n}$ and

$$
\begin{gathered}
f_{i n^{\prime}}=\left[f_{n}, f_{i n}\right]_{\bar{q}^{2}}, \quad f_{n i^{\prime}}=\left[f_{n^{\prime} i^{\prime}}, f_{n}\right]_{\bar{q}^{2}}, \quad i<n, \\
f_{i j^{\prime}}=q^{\delta_{i j}}\left[f_{n j^{\prime}}, f_{i n}\right]_{\bar{q}^{1+\delta_{i j}},}, \quad i, j<n .
\end{gathered}
$$

- For $\mathfrak{g}=\mathfrak{s o}(2 n): f_{n n^{\prime}}=0$ and

$$
\begin{gathered}
f_{i n^{\prime}}=\left[f_{n}, f_{i, n-1}\right]_{\bar{q}}, \quad f_{n i^{\prime}}=\left[f_{n^{\prime}+1, i^{\prime}}, f_{n}\right]_{\bar{q}}, \quad i<n-2, \\
f_{j i^{\prime}}=q^{\delta_{i j}}\left[f_{n i^{\prime}}, f_{j, n}\right]_{\bar{q}^{1+\delta_{i j}},}, \quad i, j \leqslant n-1 .
\end{gathered}
$$

Proof. The proof is a direct calculation with the use of the identity

$$
\left(f_{\alpha} \otimes 1\right) \check{\mathcal{R}}-\check{\mathcal{R}}\left(f_{\alpha} \otimes 1\right)=\check{\mathcal{R}}\left(q^{-h_{\alpha}} \otimes f_{\alpha}\right)-\left(q^{h_{\alpha}} \otimes f_{\alpha}\right) \check{\mathcal{R}},
$$

which follows from intertwining axiom (1.1) for $x=f_{\alpha}$. This allows us to construct the elements $f_{i j}$ by induction starting from $f_{\alpha}, \alpha \in \Pi^{+}$.

For each $\alpha \in \Pi^{+}$, denote by $P(\alpha)$ the set of ordered pairs $l, r=1, \ldots, N$, with $\varepsilon_{l}-\varepsilon_{r}=\alpha$. We call such pairs simple.

Proposition 2.3. The matrix entries $f_{i, j} \in U_{q}\left(\mathfrak{g}_{-}\right)$such that $\varepsilon_{i}-\varepsilon_{j} \notin \Pi^{+}$satisfy the identity

$$
\left[e_{\alpha}, f_{i j}\right]=\sum_{(l, r) \in P(\alpha)}\left(f_{i l} \delta_{r r} q^{h_{\alpha}}-q^{-h_{\alpha}} \delta_{i l} f_{r j}\right),
$$

for all simple positive roots α.
Proof. The proof is a straightforward calculation based on intertwining relation (1.1), which is equivalent to

$$
\left(1 \otimes e_{\alpha}\right) \check{\mathcal{R}}-\check{\mathcal{R}}\left(1 \otimes e_{\alpha}\right)=\check{\mathcal{R}}\left(e_{\alpha} \otimes q^{h_{\alpha}}\right)-\left(e_{\alpha} \otimes q^{-h_{\alpha}}\right) \check{\mathcal{R}},
$$

for $x=e_{\alpha}, \alpha \in \Pi^{+}$. Alternatively, one can use the expressions for $f_{i j}$ from Proposition 2.2.

III. MICKELSSON ALGEBRAS

Consider the Lie subalgebra $\mathfrak{g}^{\prime} \subset \mathfrak{g}$ corresponding to the root subsystem $R_{g^{\prime}} \subset R_{\mathfrak{g}}$ generated by $\alpha_{i}, i>1$, and let $\mathfrak{h}^{\prime} \subset \mathfrak{g}^{\prime}$ denote its Cartan subalgebra. Let the triangular decomposition $\mathfrak{g}_{-}^{\prime} \oplus \mathfrak{h}^{\prime} \oplus \mathfrak{g}_{+}^{\prime}$ be compatible with the triangular decomposition of \mathfrak{g}. Recall the definition of step algebra $Z_{q}\left(\mathfrak{g}, \mathfrak{g}^{\prime}\right)$ of the pair $\left(\mathfrak{g}, \mathfrak{g}^{\prime}\right)$. Consider the left ideal $J=U_{q}(\mathfrak{g}) \mathfrak{g}_{+}^{\prime}$ and its normalizer $\mathcal{N}=\left\{x \in U_{q}(\mathfrak{g}): e_{\alpha} x \subset\right.$ $\left.J, \forall \alpha \in \Pi_{g^{+}}^{+}\right\}$. By construction, J is a two-sided ideal in the algebra \mathcal{N}. Then, $Z_{q}\left(\mathfrak{g}, \mathfrak{g}^{\prime}\right)$ is the quotient N / J.

For all $\beta_{i} \in \mathrm{R}_{\mathrm{g}}^{+} \backslash \mathrm{R}_{g^{\prime}}^{+}$let $e_{\beta_{i}}$ be the corresponding PBW generators and let Z be the vector space spanned by $e_{-\beta_{l}}^{k_{l}} \ldots e_{-\beta_{1}}^{k_{1}} e_{0}^{k_{0}} e_{\beta_{1}}^{m_{1}} \ldots e_{\beta_{l}}^{m_{l}}$, where $e_{0}=q^{h_{\alpha_{1}}}, k_{i} \in \mathbb{Z}_{+}$, and $k_{0} \in \mathbb{Z}$. The PBW factorization $U_{q}(\mathfrak{g})=U_{q}\left(\mathfrak{g}_{-}^{\prime}\right) Z U_{q}\left(\mathfrak{h}^{\prime}\right) U_{q}\left(\mathfrak{g}_{+}^{\prime}\right)$ gives rise to the decomposition

$$
U_{q}(\mathfrak{g})=Z U_{q}\left(\mathfrak{h}^{\prime}\right) \oplus\left(\mathfrak{g}_{-}^{\prime} U_{q}(\mathfrak{g})+U_{q}(\mathfrak{g}) \mathfrak{g}_{+}^{\prime}\right) .
$$

Proposition 3.1 (Ref. 5, Theorem 1). The projection $\left.U_{q}(\mathfrak{g}) \rightarrow Z U_{q}(\mathfrak{b})^{\prime}\right)$ implements an embedding of $Z_{q}\left(\mathfrak{g}, \mathfrak{g}^{\prime}\right)$ in $Z U_{q}\left(\mathfrak{h}^{\prime}\right)$.

Proof. The statement is proved in Ref. 5 for the orthogonal and special linear quantum groups but the arguments apply to symplectic groups too.

The algebra $Z_{q}\left(\mathfrak{g}, \mathfrak{g}^{\prime}\right)$ inherits the adjoint action of the Cartan subalgebra, so one can speak of weights of its elements. It is proved within the theory of extremal projectors that $Z_{q}\left(\mathfrak{g}, \mathfrak{g}^{\prime}\right)$ is generated by elements of weights $\beta \in \mathrm{R}_{\mathfrak{g}} \backslash \mathrm{R}_{\mathrm{g}^{\prime}}$ plus $z_{0}=q^{h_{\alpha_{1}}}$. We calculate them in Secs. III A and III B, cf. Propositions 3.5 (negative β) and 3.9 (positive β).

A. Lowering operators

In what follows, we extend $U_{q}(\mathfrak{g})$ along with its subalgebras containing $U_{q}(\mathfrak{h})$ over the field of fractions of $U_{q}(\mathfrak{b})$ and denote such an extension by hat, e.g., $\hat{U}_{q}(\mathfrak{g})$. In this section, we calculate representatives of the negative generators of $Z_{q}\left(\mathfrak{g}, \mathfrak{g}^{\prime}\right)$ in $\hat{U}_{q}\left(\mathfrak{b}_{-}\right)$.

Set $h_{i}=h_{\varepsilon_{i}} \in \mathfrak{h}$ for all $i=1, \ldots, N$ and introduce $\eta_{i j} \in \mathfrak{h}+\mathbb{C}$ for $i, j=1, \ldots, N$, by

$$
\begin{equation*}
\eta_{i j}=h_{i}-h_{j}+\left(\varepsilon_{i}-\varepsilon_{j}, \rho\right)-\frac{1}{2}\left\|\varepsilon_{i}-\varepsilon_{j}\right\|^{2} . \tag{3.1}
\end{equation*}
$$

Here, $\|\mu\|$ is the Euclidean norm on $\mathfrak{\mathfrak { h }}$.
Lemma 3.2. Suppose that $(l, r) \in P(\alpha)$ for some $\alpha \in \Pi^{+}$. Then,
(i) if $l<r<j$, then $\eta_{l j}-\eta_{r j}=h_{\alpha}+\left(\alpha, \varepsilon_{j}-\varepsilon_{r}\right)$,
(ii) if $i<l<r$, then $\eta_{l i}-\eta_{r i}=h_{\alpha}+\left(\alpha, \varepsilon_{i}-\varepsilon_{r}\right)$,
(iii) $\eta_{l r}=h_{\alpha}$.

Proof. We have $(\alpha, \rho)=\frac{1}{2}\|\alpha\|^{2}$ for all $\alpha \in \Pi^{+}$. This proves (iii). Further, for $\varepsilon_{l}-\varepsilon_{r}=\alpha$,

$$
\begin{aligned}
& \eta_{l j}-\eta_{r j}=h_{\alpha}+\frac{1}{2}\|\alpha\|^{2}+\frac{1}{2}\left\|\varepsilon_{j}-\varepsilon_{r}\right\|^{2}-\frac{1}{2}\left\|\varepsilon_{j}-\varepsilon_{r}-\alpha\right\|^{2}=h_{\alpha}+\left(\alpha, \varepsilon_{j}-\varepsilon_{r}\right), \quad r<j, \\
& \eta_{l i}-\eta_{r i}=h_{\alpha}+\frac{1}{2}\|\alpha\|^{2}+\frac{1}{2}\left\|\varepsilon_{i}-\varepsilon_{r}\right\|^{2}-\frac{1}{2}\left\|\varepsilon_{i}-\varepsilon_{r}-\alpha\right\|^{2}=h_{\alpha}+\left(\alpha, \varepsilon_{i}-\varepsilon_{r}\right), \quad i<l,
\end{aligned}
$$

which proves (i) and (ii).
We call a strictly ascending sequence $\vec{m}=\left(m_{1}, \ldots, m_{s}\right)$ of integers a route from m_{1} to m_{s}. We write $m<\vec{m}$ and $\vec{m}<m$ for $m \in \mathbb{Z}$ if, respectively, $m<\min \vec{m}$ and $\max \vec{m}<m$. More generally, we write $\vec{m}<\vec{k}$ if $\max \vec{m}<\min \vec{k}$. In this case, a sequence (\vec{m}, \vec{k}) is a route from $\min \vec{m}$ to $\max \vec{k}$. We also write $m \leq \vec{m}$ if $m=\min \vec{m}$ and $\vec{m} \leq m$ if $m=\max \vec{m}$.

Given a route $\vec{m}=\left(m_{1}, \ldots, m_{s}\right)$, define the product $f_{\vec{m}}=f_{m_{1}, m_{2}} \cdots f_{m_{s-1}, m_{s}} \in U_{q}\left(\mathfrak{g}_{-}\right)$. Consider a free right $\hat{U}_{q}(\mathfrak{l})$-module $\Phi_{1 m}$ generated by $f_{\vec{m}}$ with $1 \leqslant \vec{m} \leqslant j$ and define an operation $\partial_{l r}: \Phi_{1 j} \rightarrow$ $\hat{U}_{q}\left(\mathrm{~b}_{-}\right)$for $(l, r) \in P(\alpha)$ as follows. Assuming $1 \leqslant \vec{\ell}<l<r<\vec{\rho}<j$, set

$$
\begin{aligned}
& \partial_{l r} f_{(\vec{e}, l)} f_{(l, r)} f_{(r, \vec{p})}=f_{(\vec{\ell}, l)} f_{(r, \vec{p})}\left[\eta_{l j}-\eta_{r j}\right]_{q}, \\
& \partial_{l r} f_{(\vec{e}, l)} f_{(l, \vec{\rho})}=-f_{(\vec{e}, l)} f_{(r, \vec{p})} q^{-\eta_{l j}+\eta_{r j}}, \\
& \partial_{l r} f_{(\vec{\ell}, r)} f_{(r, \vec{\rho})}=f_{(\vec{\ell}, l)} f_{(r, \vec{\rho})} q^{\eta_{l j}-\eta_{r j}}, \\
& \partial_{l r} f_{\vec{m}}=\quad 0, \quad l \notin \vec{m}, r \notin \vec{m} .
\end{aligned}
$$

Extend $\partial_{l r}$ to entire $\Phi_{1 j}$ by $\hat{U}_{q}(\mathfrak{h})$-linearity. Let $p: \Phi_{1 j} \rightarrow \hat{U}(\mathrm{~g})$ denote the natural homomorphism of $\hat{U}_{q}(\mathfrak{h})$-modules.

Lemma 3.3. For all $\alpha \in \Pi^{+}$and all $x \in \Phi_{1 j}, e_{\alpha} \circ p(x)=\sum_{(l, r) \in P(\alpha)} p \circ \partial_{l r}(x) \bmod \hat{U}_{q}(\mathfrak{g}) e_{\alpha}$.
Proof. A straightforward analysis based on Proposition 2.3 and Lemma 3.2.
To simplify the presentation, we suppress the symbol of projection p in what follows.
Introduce elements $A_{r}^{j} \in \hat{U}_{q}(\mathfrak{h})$ by

$$
\begin{equation*}
A_{r}^{j}=\frac{q-q^{-1}}{q^{-2 \eta_{r j}-1}}, \tag{3.2}
\end{equation*}
$$

for all $r, j \in[1, N]$ subject to $r<j$. For each simple pair (l, r), we define (l, r)-chains as

$$
\begin{equation*}
f_{(\vec{\ell}, l)} f_{(l, \vec{\rho})} A_{l}^{j}+f_{(\vec{\ell}, l)} f_{(l, r)} f_{(r, \vec{\rho})} A_{l}^{j} A_{r}^{j}+f_{(\overrightarrow{\ell,}, r)} f_{(r, \vec{\rho})} A_{r}^{j}, \quad f_{(\vec{\ell}, l)} f_{l, j} A_{l}^{j}+f_{(\vec{\ell}, j)}, \tag{3.3}
\end{equation*}
$$

where $1 \leqslant \vec{\ell}<l$ and $r<\vec{\rho} \leqslant j$. Remark that $f_{(l, r)}=\left[\frac{(\alpha, \alpha)}{2}\right]_{q} e_{-\alpha}$, where $\alpha=\varepsilon_{l}-\varepsilon_{r}$.
Lemma 3.4. The operator $\partial_{l r}$ annihilates ($\left.l, r\right)$-chains.

Proof. Applying $\partial_{l r}$ to the 3-chain in (3.3), we get

$$
f_{(\vec{\ell}, l)} f_{(r, \vec{\rho})}\left(-q^{-\eta_{l j}+\eta_{r j}} A_{l}^{j}+\left[\eta_{l j}-\eta_{r j}\right]_{q} A_{l}^{j} A_{r}^{j}+q^{\eta_{l j}-\eta_{r j}} A_{r}^{j}\right)
$$

The factor in the brackets turns zero on substitution of (3.2).
Now apply $\partial_{l j}$ to the right expression in (3.3) and get

$$
f_{(\vec{\ell}, l)}\left(\left[h_{\alpha}\right]_{q} A_{l}^{j}+q^{h_{\alpha}}\right)=f_{(\vec{\ell}, l)}\left(\frac{q^{h_{\alpha}}-q^{-h_{\alpha}}}{q^{-2 \eta_{l j}}-1}+q^{h_{\alpha}}\right)=f_{(\vec{\ell}, l)} \frac{\left[h_{\alpha}-\eta_{l j}\right]_{q}}{\left[-\eta_{l j}\right]_{q}}=0
$$

so long as $\eta_{l j}=h_{\alpha}$ by Lemma 3.2.
Given a route $\vec{m}=\left(m_{1}, \ldots, m_{s}\right)$, put $A_{\vec{m}}^{j}=A_{m_{1}}^{j} \cdots A_{m_{s}}^{j} \in \hat{U}_{q}(\mathfrak{b})$ (and $A_{\vec{m}}^{j}=1$ for the empty route) and define

$$
\begin{equation*}
z_{-j+1}=\sum_{1<\vec{m}<j} f_{(1, \vec{m}, j)} A_{\vec{m}}^{j} \in \hat{U}_{q}\left(\mathfrak{b}_{-}\right), \quad j=2, \ldots, N \tag{3.4}
\end{equation*}
$$

where the summation is taken over all possible \vec{m} subject to the specified inequalities plus the empty route.

Proposition 3.5. $e_{\alpha} z_{-j}=0 \bmod \hat{U}_{q}(\mathfrak{g}) e_{\alpha}$ for all $\alpha \in \Pi_{\mathfrak{g}^{\prime}}^{+}$and $j=1, \ldots, N-1$.
Proof. Thanks to Lemma 3.3, we can reduce consideration to the action of operators $\partial_{l r}$, with $(l, r) \in P(\alpha)$. According to the definition of $\partial_{l r}$, the summands in (3.4) that survive the action of $\partial_{l r}$ can be organized into a linear combination of (l, r)-chains with coefficients in $\hat{U}_{q}(\mathfrak{h})$. By Lemma 3.4, they are killed by $\partial_{l r}$.

The elements $z_{-i}, i=1, \ldots, N-1$, belong to the normalizer \mathcal{N} and form the set of negative generators of $Z_{q}\left(\mathfrak{g}, \mathfrak{g}^{\prime}\right)$ for symplectic \mathfrak{g}. In the orthogonal case, the negative part of $Z_{q}\left(\mathfrak{g}, \mathfrak{g}^{\prime}\right)$ is generated by $z_{-i}, i=1, \ldots, N-2$.

B. Raising operators

In this section, we construct positive generators of $Z_{q}\left(\mathfrak{g}, \mathfrak{g}^{\prime}\right)$, which are called raising operators. Consider an algebra automorphism $\omega: U_{q}(\mathfrak{g}) \rightarrow U_{q}(\mathfrak{g})$ defined on the generators by $f_{\alpha} \leftrightarrow e_{\alpha}$, $q^{ \pm h_{\alpha}} \mapsto q^{\mp h_{\alpha}}$. For $i<j$, let $g_{j i}$ be the image of $f_{i j}$ under this isomorphism. The natural representation restricted to $U_{q}\left(\mathfrak{g}_{ \pm}\right)$intertwines ω and matrix transposition. Since $(\omega \otimes \omega)(\check{\mathcal{R}})=\check{\mathcal{R}}_{21}$, the matrix $\check{R}^{+}=(\pi \otimes \mathrm{id})\left(\check{\mathcal{R}}_{21}\right)$ is equal to $1 \otimes 1+\left(q-q^{-1}\right) \sum_{i<j} e_{j i} \otimes g_{j i}$.

Lemma 3.6. For all $\alpha \in \Pi_{\mathfrak{g}^{\prime}}^{+}$and all $i>1, e_{\alpha} g_{i 1}=\sum_{(l, r) \in P(\alpha)} \delta_{i l} g_{r 1} \bmod \hat{U}_{q}(\mathfrak{g}) e_{\alpha}$.
Proof. Follows from the intertwining property of the R-matrix.
Consider the right $\hat{U}_{q}(\mathfrak{h})$-module $\Psi_{i 1}$ freely generated by $f_{(\vec{m}, k)} g_{k 1}$ with $i \leqslant \vec{m}<k$. We define operators $\partial_{l r}: \Psi_{i 1} \rightarrow \hat{U}_{q}(\mathfrak{g})$ similarly as we did it for $\Phi_{1 j}$. For a simple pair $(l, r) \in P(\alpha)$, put

$$
\partial_{l, r} f_{(\vec{m}, k)} g_{k 1}=\left\{\begin{array}{rl}
f_{(\vec{m}, l)} g_{r 1}, & l=k, \\
\left(\partial_{l, r} f_{(\vec{m}, k)}\right) g_{k 1}, & l \neq k,
\end{array} \quad i \leqslant \vec{m}<r .\right.
$$

The Cartan factors appearing in $\partial_{l r} f_{(\vec{m}, k)}$ depend on h_{α}. When pushed to the right-most position, h_{α} is shifted by $\left(\alpha, \varepsilon_{1}-\varepsilon_{r}\right)$. We extend $\partial_{l r}$ to an action on $\Psi_{i 1}$ by the requirement that $\partial_{l r}$ commutes with the right action of $\hat{U}_{q}(\mathfrak{h})$. Let p denote the natural homomorphism of $\hat{U}_{q}(\mathfrak{h})$-modules, $p: \Psi_{i 1} \rightarrow \hat{U}_{q}(\mathrm{~g})$. One can prove the following analog of Lemma 3.3.

Lemma 3.7. For all $\alpha \in \Pi_{\mathfrak{g}^{\prime}}^{+}$and all $x \in \Psi_{i 1}, e_{\alpha} \circ p(x)=\sum_{(l, r) \in P(\alpha)} p \circ \partial_{l r}(x) \bmod \hat{U}_{q}(\mathfrak{g}) e_{\alpha}$. Proof. Straightforward.

We suppress the symbol of projection p to simplify the formulas.

For $i<j$, let $\|i-j\|$ be the number of simple positive roots entering $\varepsilon_{i}-\varepsilon_{j}$. For all $i, k=$ $2, \ldots, N, i<k$, put

$$
A_{k}^{i}=\frac{q^{\eta_{k 1}-\eta_{i 1}}}{\left[\eta_{i 1}-\eta_{k 1}\right]_{q}}, \quad B_{k}^{i}=\frac{(-1)^{\|i-k\|}}{\left[\eta_{i 1}-\eta_{k 1}\right]_{q}} .
$$

For each $(l, r) \in \mathrm{P}(\alpha)$, where $\alpha \in \Pi_{\mathfrak{g}^{\prime}}^{+}$, define 3-chains as

$$
\begin{equation*}
f_{(i, \vec{m}, l)} g_{l 1} B_{l}^{i}+f_{(i, \vec{m}, l)} f_{(l, r)} g_{r 1} A_{l}^{i} B_{r}^{i}+f_{(i, \vec{m}, r)} g_{r 1} B_{r}^{i} \tag{3.5}
\end{equation*}
$$

with $i<\vec{m}<l<r \leqslant N$ and

$$
\begin{equation*}
f_{(i, \vec{\ell}, l)} f_{(l, \vec{\rho}, k)} g_{k 1} A_{l}^{i}+f_{(i, \vec{\ell}, l)} f_{(l, r)} f_{(r, \vec{\rho}, k)} g_{k 1} A_{l}^{i} A_{r}^{i}+f_{(i, \vec{\ell}, r)} f_{(r, \vec{\rho}, k)} g_{k 1} A_{r}^{i} \tag{3.6}
\end{equation*}
$$

with $i<\vec{\ell}<l<r<\vec{\rho}<k \leqslant N$. The 2-chains are defined as

$$
\begin{equation*}
g_{i 1}+f_{(i, r)} g_{r 1} B_{r}^{i}, \quad f_{(i, \vec{m}, k)} g_{k 1}+f_{(i, r)} f_{(r, \vec{m}, k)} g_{k 1} A_{r}^{i} \tag{3.7}
\end{equation*}
$$

where r is such that $\varepsilon_{i}-\varepsilon_{r} \in \Pi_{g^{\prime}}^{+}$and $i<r<\vec{m}<k \leqslant N$. In all cases, empty \vec{m} are admissible.
Lemma 3.8. For all $\alpha \in \Pi_{\mathfrak{g}^{\prime}}^{+}$and all $(l, r) \in P(\alpha)$, the (l, r)-chains are annihilated by $\partial_{l r}$.
Proof. Suppose that $i=l$ and apply $\partial_{i r}$ to the left 2-chain in (3.7). The result is

$$
g_{r 1}+\left[h_{\alpha}\right]_{q} g_{r 1} B_{r}^{i}=g_{r 1}\left(1+\left[h_{\alpha}+\left(\alpha, \varepsilon_{1}-\varepsilon_{r}\right)\right]_{q} B_{r}^{i}\right)=g_{r 1}\left(1+\left[\eta_{i 1}-\eta_{r 1}\right]_{q} B_{r}^{i}\right)=0
$$

by Lemma 3.2. Applying $\partial_{i r}$ to the right 2-chain in (3.7) we get

$$
f_{(r, \vec{m}, k)} g_{k 1}\left(-q^{-\eta_{i 1}+\eta_{r 1}}+\left[\eta_{i 1}-\eta_{r 1}\right]_{q} A_{r}^{i}\right)=0
$$

Now consider 3-chains. The action of $\partial_{l r}$ on (3.6) produces

$$
-f_{(i, \vec{\ell}, l)} q^{-h_{\alpha}} f_{(r, \vec{\rho}, k)} g_{k, 1} A_{l}^{i}+f_{(i, \vec{\ell}, l)}\left[h_{\alpha}\right]_{q} f_{(r, \vec{\rho}, k)} g_{k, 1} A_{l}^{i} A_{r}^{i}+f_{(i, \vec{e}, l)} q^{h_{\alpha}} f_{(r, \vec{\rho}, k)} g_{k, 1} A_{r}^{i}
$$

which turns zero since $-q^{\eta_{r 1}-\eta_{l 1}} A_{l}^{i}+\left[\eta_{l 1}-\eta_{r 1}\right]_{q} A_{l}^{i} A_{r}^{i}+q^{\eta_{l 1}-\eta_{r 1}} A_{r}^{i}=0$. The action of $\partial_{l r}$ on (3.5) yields

$$
f_{(i, \vec{m}, l)} g_{r 1} B_{l}^{i}+f_{(i, \vec{m}, l)}\left[h_{\alpha}\right] g_{r 1} A_{l}^{i} B_{r}^{i}+f_{(i, \vec{m}, l)} q^{h_{\alpha}} g_{r 1} B_{r}^{i}
$$

This is vanishing since $B_{l}^{i}+\left[\eta_{l 1}-\eta_{r 1}\right] A_{l}^{i} B_{r}^{i}+q^{\eta_{l 1}-\eta_{r 1}} B_{r}^{i}=B_{l}^{i}+\frac{\left[\eta_{i 1}-\eta_{r 1}\right]_{q}}{\left[\eta_{i 1}-\eta_{l 1}\right]_{q}} B_{r}^{i}=0$.
Given a route $\vec{m}=\left(m_{1}, \ldots, m_{k}\right)$ such that $i<\vec{m}$ let $A_{\vec{m}}^{i}$ denote the product $A_{m_{1}}^{i} \ldots A_{m_{k}}^{i}$. Introduce elements $z_{i} \in \hat{U}_{q}\left(\mathfrak{g}_{-}\right) \mathfrak{g}_{+}$of weight $\varepsilon_{1}-\varepsilon_{i}$ by

$$
z_{i-1}=g_{i 1}+\sum_{i<\vec{m}<k \leqslant N} f_{(i, \vec{m}, k)} g_{k 1} A_{\vec{m}}^{i} B_{k}^{i}, \quad i=2, \ldots, N .
$$

The summation includes empty \vec{m}.
Proposition 3.9. $e_{\alpha} z_{i}=0 \bmod \hat{U}_{q}(\mathfrak{g}) e_{\alpha}$, for all $\alpha \in \Pi_{\mathfrak{g}^{\prime}}^{+}$and $i=1, \ldots, N-1$.
Proof. By Lemma 3.6, the vectors $g_{2^{\prime} 1}$ and $z_{N-1}=g_{1^{\prime} 1}$ are normalizing the left ideal $\hat{U}_{q}(\mathfrak{g}) \mathfrak{g}_{+}^{\prime}$, so is $z_{N-2}=g_{2^{\prime} 1}+f_{1} g_{1^{\prime} 1} B_{2^{\prime}}^{1^{\prime}}$. Once the cases $i=2^{\prime}, 1^{\prime}$ are proved, we further assume $i<2^{\prime}$. In view of Lemma 3.7, it is sufficient to show that z_{i-1} is killed, modulo $\hat{U}_{q}(\mathfrak{g}) \mathfrak{g}_{+}^{\prime}$, by all $\partial_{l r}$ such that $\varepsilon_{l}-\varepsilon_{r} \in \Pi_{g^{\prime}}^{+}$. Observe that z_{i-1} can be arranged into a linear combination of chains, which are killed by $\partial_{l r}$, as in Lemma 3.8.

The elements $z_{i}, i=1, \ldots, N-1$, belong to the normalizer \mathcal{N}. They form the set of positive generators of $Z_{q}\left(\mathfrak{g}, \mathfrak{g}^{\prime}\right)$ for symplectic \mathfrak{g}. In the orthogonal case, the positive part of $Z_{q}\left(\mathfrak{g}, \mathfrak{g}^{\prime}\right)$ is generated by $z_{i}, i=1, \ldots, N-2$.

ACKNOWLEDGMENTS

This research is supported in part by the RFBR Grant No. 15-01-03148. We are grateful to the Max-Plank Institute for Mathematics in Bonn for hospitality and excellent research atmosphere.
${ }^{1}$ J. Mickelsson, "Step algebras of semi-simple Lie algebras," Rep. Math. Phys. 4, 307-318 (1973).
${ }^{2}$ D. P. Zhelobenko, "Extremal projectors and generalized Mickelsson algebras over reductive Lie algebras," Izv. Akad. Nauk SSSR, Ser. Mat. 52, 758-773 (1988) (in Russian) [Math. USSR Izv. 33, 85 (1989) (in English)].
${ }^{3}$ A. I. Molev, "Gelfand-Tsetlin bases for classical Lie algebras," in Handbook of Algebra (Elsevier/North-Holland, Amsterdam, 2006), Vol. 4, pp. 109-170.
${ }^{4}$ D. P. Zhelobenko, "S-algebras and Verma modules over reductive Lie algebras," Dokl. Akad. Nauk SSSR 273, 785-788 (1983) (in Russian) [Sov. Math. Dokl. 28, 696-700 (1983) (in English)].
${ }^{5}$ P. Kekäläinen, "Step algebras of quantum algebras of type A, B and D," J. Phys. A: Math. Gen. 29, 1045-1053 (1996).
${ }^{6}$ R. M. Asherova, Yu. F. Smirnov, and V. N. Tolstoy, "Projection operators for simple Lie groups," Theor. Math. Phys. 8, 813-825 (1971).
${ }^{7}$ R. M. Asherova, Yu. F. Smirnov, and V. N. Tolstoy, "Projection operators for simple Lie groups. II. General scheme for constructing lowering operators. The groups $S U(n)$," Theor. Math. Phys. 15, 392-401 (1973).
${ }^{8}$ V. N. Tolstoy, "Projection operator method for quantum groups," in Special Functions 2000: Current Perspective and Future Directions, NATO Science Series II: Mathematics, Physics and Chemistry Vol. 30 (Kluwer Academic Publishers, Dordrecht, 2001), pp. 457-488.
${ }^{9}$ S. Khoroshkin and O. Ogievetsky, "Mickelsson algebras and Zhelobenko operators," J. Algebra 319, 2113-2165 (2008).
${ }^{10}$ J. G. Nagel and M. Moshinsky, "Operators that lower or raise the irreducible vector spaces of U_{n-1} contained in an irreducible vector space of U_{n}, , J. Math. Phys. 6, 682-694 (1965).
${ }^{11}$ P.-Y. Hou, "Orthonormal bases and infinitesimal operators of the irreducible representations of group U_{n}," Sci. Sin. 15, 763-772 (1966).
${ }^{12}$ R. M. Asherova, Č. Burdík, M. Havlícek, Yu. F. Smirnov, and V. N. Tolstoy, "q-analog of Gelfand-Graev basis for the noncompact quantum algebra $U_{q}(u(n, 1))$," SIGMA 6, 010 (2010).
${ }^{13}$ T. Ashton and A. Mudrov, "On representations of quantum conjugacy classes of $G L(n)$," Lett. Math. Phys. 103, 1029-1045 (2013).
${ }^{14}$ T. Ashton and A. Mudrov, "Representations of quantum conjugacy classes of orthosymplectic groups," Zap. PDMI 433, 20-40 (1915).
${ }^{15}$ V. Chari and A. Pressley, A Guide to Quantum Groups (Cambridge University Press, Cambridge, 1995).
${ }^{16}$ V. Drinfeld, "Quantum groups," in Proceedings of the International Congress of Mathematicians, Berkeley, edited by A. V. Gleason (AMS, Providence, 1987), pp. 798-820.

[^0]: ${ }^{\text {a) }}$ E-mail: am405@le.ac.uk

