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Let g be a complex orthogonal or symplectic Lie algebra and g′ ⊂ g the Lie subalgebra
of rank rk g′ = rk g − 1 of the same type. We give an explicit construction of genera-
torsof theMickelssonalgebra Zq(g,g′) in termsofChevalleygeneratorsvia theR-matrix
of Uq(g). C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4927582]

I. INTRODUCTION

In the mathematics literature, lowering and raising operators are known as generators of step
algebras, which were originally introduced by Mickelsson1 for reductive pairs of Lie algebras,
g′ ⊂ g. These algebras naturally act on g′-singular vectors in U(g)-modules and are important in
representation theory.2,3

The general theory of step algebras for classical universal enveloping algebras was developed
in Refs. 2 and 4 and extended to the special linear and orthogonal quantum groups in Ref. 5.
They admit a natural description in terms of extremal projectors,4 introduced for classical groups
in Refs. 6 and 7 and generalized to the quantum group case in Refs. 8 and 9. It is known that
the step algebra Z(g,g′) is generated by the image of the orthogonal complement g ⊖ g′ under the
extremal projector of the g′. Another description of lowering/raising operators for classical groups
was obtained in Refs. 10, 11, and 3 in an explicit form of polynomials in g.

A generalization of the results of Refs. 10 and 11 to quantum gl(n) can be found in Ref. 12.
In this special case, the lowering operators can be also conveniently expressed through “modified
commutators” in the Chevalley generators of U(g) with coefficients in the field of fractions of
U(h). Extending3 to orthogonal and symplectic quantum groups is not straightforward, since there
are no nilpotent triangular Lie subalgebras g± in Uq(g) but only their deformed associative enve-
lope. We suggest such a generalization, where the lack of g± is compensated by the entries of the
universal R-matrix with one leg projected to the natural representation. Those entries are nicely
expressed through modified commutators in the Chevalley generators turning into elements of g±
in the quasi-classical limit. Their commutation relation with the Chevalley generators modifies the
classical commutation relations with g± in a tractable way. This enabled us to generalize the results
of Refs. 10, 11, and 3 and construct generators of Mickelsson algebras for the non-exceptional
quantum groups. Explicit form of these generators is useful in quantization of conjugacy classes,
because they are related to singular vectors generating certain submodules involved.13,14

A. Quantized universal enveloping algebra

In this paper, g is a complex simple Lie algebra of type B, C, or D. The case of gl(n) can be
easily derived from here due to the natural inclusion Uq

�
gl(n)� ⊂ Uq(g), so we do not pay special

attention to it. We choose a Cartan subalgebra h ⊂ g with the inner product (., .) on h∗ normalized to
the unit length of the highest weight of the natural representation. By R, we denote the root system
of g with a fixed subsystem of positive roots R+ ⊂ R and the basis of simple roots Π+ ⊂ R+. For
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every λ ∈ h∗, we denote by hλ its image under the isomorphism h∗ ≃ h, that is (λ, β) = β(hλ) for all
β ∈ h∗. We put ρ = 1

2


α∈R+ α for the Weyl vector.
Suppose that q ∈ C is not a root of unity. Denote by Uq(g±) the C-algebra generated by e±α,

α ∈ Π+, subject to the q-Serre relations
1−ai j
k=0

(−1)k


1 − ai j

k

qαi

e
1−ai j−k
±αi

e±α j
ek±αi
= 0,

where ai j =
2(αi,α j)
(αi,αi) , i, j = 1, . . . ,n = rk g, is the Cartan matrix, qα = q

(α,α)
2 , and



m
k

q
=

[m]q!
[k]q![m − k]q!

, [m]q! = [1]q · [2]q · · · [m]q.

Here, and further on, [z]q = qz−q−z
q−q−1 whenever q±z make sense.

Denote by Uq(h) the commutative C-algebra generated by q±hα, α ∈ Π+. The quantum group
Uq(g) is a C-algebra generated by Uq(g±) and Uq(h) subject to the relations

qhαe±βq−hα = q±(α,β)e±β, [eα,e−β] = δα,β
qhα − q−hα

qα − q−1
α

.

Although h is not contained in Uq(g), still it is convenient for us to keep reference to h.
Fix the comultiplication in Uq(g) as in Ref. 15,

∆(eα) = eα ⊗ qhα + 1 ⊗ eα, ∆(e−α) = e−α ⊗ 1 + q−hα ⊗ e−α,

∆(q±hα) = q±hα ⊗ q±hα,

for all α ∈ Π+.
The subalgebras Uq(b±) ⊂ Uq(g) generated by Uq(g±) over Uq(h) are quantized universal en-

veloping algebras of the Borel subalgebras b± = h + g± ⊂ g.
The Chevalley generators eα can be extended to a set of composite root vectors eβ for all β ∈ R.

A normally ordered set of root vectors generate a Poincaré-Birkhoff-Witt (PBW) basis of Uq(g) over
Uq(h).15 We will use g± to denote the vector space spanned by {e±β}β∈R+.

The universal R-matrix is an element of a certain extension of Uq(g) ⊗ Uq(g). We heavily use
the intertwining relation

R∆(x) = ∆op(x)R, (1.1)

between the coproduct and its opposite for all x ∈ Uq(g). Let {εi}ni=1 ⊂ h
∗ be the standard ortho-

normal basis and {hεi}ni=1 the corresponding dual basis in h. The exact expression for R can be
extracted from Ref. 15, Theorem 8.3.9, as the ordered product

R = q
n
i=1 hεi⊗hεi


β

expqβ
{(1 − q−2

β )(eβ ⊗ e−β)} ∈ Uq(b+)⊗̂Uq(b−), (1.2)

where expq(x) = ∞k=0 q
1
2 k(k+1) xk

[k]q! .
We use the notation ei = eαi

and f i = e−αi
for αi ∈ Π+, in all cases apart from i = n, g =

so(2n + 1), where we set fn = [ 1
2 ]qe−αn. The reason for this is twofold. First, the natural representa-

tion can be defined through the classical assignment on the generators, as given below. Second, we
get rid of qαn = q

1
2 and can work over C[q], as the relations involved turn into

[en, fn] = qhαn − q−hαn

q − q−1 ,

f 3
n fn−1 − (q + 1 + q−1) f 2

n fn−1 fn + (q + 1 + q−1) fn fn−1 f 2
n − fn−1 f 3

n = 0.

It is easy to see that the square root of q disappears from the corresponding factor in presentation
(1.2).

In what follows, we regard gl(n) ⊂ g to be the Lie subalgebra with the simple roots {αi}n−1
i=1 and

Uq

�
gl(n)� the corresponding quantum subgroup in Uq(g).
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Consider the natural representation of g in the vector space CN . We use the notation i′ =
N + 1 − i for all integers i = 1, . . . ,N . The assignment

π(ei) = ei, i+1 ± ei′−1, i′, π( f i) = ei+1, i ± ei′, i′−1, π(hαi
) = eii − ei+1, i+1 + ei′−1, i′−1 − ei′i′,

for i = 1, . . . ,n − 1, defines a direct sum of two representations of gl(n) for each sign. It extends to
the natural representation of the whole g by

π(en) = en,n+1 ± en′−1,n′, π( fn) = en+1,n ± en′,n′−1, π(hαn) = enn − en′n′,

π(en) = enn′, π( fn) = en′n, π(hαn) = 2enn − 2en′n′,

π(en) = en−1,n′ ± en,n′+1, π( fn) = en′,n−1 ± en′+1,n, π(hαn) = en−1,n−1 + enn − en′n′ − en′+1,n′+1,

respectively, for g = so(2n + 1), g = sp(2n), and g = so(2n).
Two values of the sign give equivalent representations. The choice of minus corresponds to

the standard representation that preserves the bilinear form with entries Ci j = δi′j, for g = so(N),
and Ci j = sign( N+1

2 − i)δi′j, for g = sp(N). However, we fix the sign to + in order to simplify
calculations. The above assignment also defines representations of Uq(g).

II. R-MATRIX OF NON-EXCEPTIONAL QUANTUM GROUPS

Define Ř = q−
n
i=1 hεi⊗hεiR. Denote by Ř− = (π ⊗ id)(Ř) ∈ End(CN) ⊗ Uq(g−) and by Ř+ =

(π ⊗ id)(Ř21) ∈ End(CN) ⊗ Uq(g+). In this section, we deal only with Ř− and suppress the label “−”
for simplicity, Ř = Ř−.

Denote by N+ the ring of all upper triangular matrices in End(CN) and by N ′+ its ideal spanned
by ei j, i < j + 1.

Lemma 2.1. One has

Ř = 1 ⊗ 1 + (q1+δ1n − q−1−δ1n)
n
i=1

π(ei) ⊗ f i mod N ′+ ⊗ Uq(g−),

where δ1n is present only for g = sp(2n).

Proof. For all positive roots α, β, the matrix π(eαeβ) belongs to N ′+. Also, π(eβ) ∈ N ′+ for all
β ∈ R+\Π+. Therefore, the only terms that contribute to Spanεi−ε j ∈Π+{ei j ⊗ Uq(g−)} are those of
degree 1 from the series expqα

(1 − q−2
α )(eα ⊗ e−α) with α ∈ Π+. �

Write Ř =
N

i, j=1 ei j ⊗ Ři j, where Ři j = 0 for i > j. Due to the h-invariance of Ř, the entry Ři j ∈
Uq(g−) carries weight ε j − εi.

For all g, we have fk,k+1 = fk = fk′−1,k′ once k < n and fn,n+1 = fn = fn+1,n′ for g = so(2n + 1),
fn−1,n′ = fn = fn,n′+1 for g = so(2n), and fnn′ = [2]q fn for g = sp(2n). We present explicit expres-
sions for the entries f i j in terms of modified commutators in Chevalley generators, [x, y]a = x y −
ayx, where a is a scalar; we also put q̄ = q−1.

Proposition 2.2. Suppose that εi − ε j ∈ R+\Π+. Then, the elements f i j are given by the follow-
ing formulas:

For all g and i + 1 < j 6 N+1
2 ,

f i j = [ f j−1, . . . [ f i+1, f i]q̄ . . .]q̄, f j′i′ = [. . . [ f i, f i+1]q̄, . . . f j−1]q̄. (2.1)

Furthermore,

• For g = so(2n + 1): fnn′ = (q − 1) f 2
n and

f i,n+1 = [ fn, f i,n]q̄, fn+1, i′ = [ fn′, i′, fn]q̄, i < n,

f i j′ = qδi j[ fn+1, j′, f i,n+1]q̄δi j, i, j < n.
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• For g = sp(2n): fnn′ = [2]q fn and

f in′ = [ fn, f in]q̄2, fni′ = [ fn′i′, fn]q̄2, i < n,

f i j′ = qδi j[ fn j′, f in]q̄1+δi j, i, j < n.

• For g = so(2n): fnn′ = 0 and

f in′ = [ fn, f i,n−1]q̄, fni′ = [ fn′+1, i′, fn]q̄, i < n − 2,
f j i′ = qδi j[ fni′, f j,n]q̄1+δi j, i, j 6 n − 1.

Proof. The proof is a direct calculation with the use of the identity

( fα ⊗ 1)Ř − Ř( fα ⊗ 1) = Ř(q−hα ⊗ fα) − (qhα ⊗ fα)Ř,
which follows from intertwining axiom (1.1) for x = fα. This allows us to construct the elements
f i j by induction starting from fα, α ∈ Π+. �

For each α ∈ Π+, denote by P(α) the set of ordered pairs l,r = 1, . . . ,N , with εl − εr = α. We
call such pairs simple.

Proposition 2.3. The matrix entries f i, j ∈ Uq(g−) such that εi − ε j < Π
+ satisfy the identity

[eα, f i j] =


(l,r )∈P(α)

�
f ilδ jrqhα − q−hαδil fr j

�
,

for all simple positive roots α.

Proof. The proof is a straightforward calculation based on intertwining relation (1.1), which is
equivalent to

(1 ⊗ eα)Ř − Ř(1 ⊗ eα) = Ř(eα ⊗ qhα) − (eα ⊗ q−hα)Ř,
for x = eα, α ∈ Π+. Alternatively, one can use the expressions for f i j from Proposition 2.2. �

III. MICKELSSON ALGEBRAS

Consider the Lie subalgebra g′ ⊂ g corresponding to the root subsystem Rg′ ⊂ Rg generated by
αi, i > 1, and let h′ ⊂ g′ denote its Cartan subalgebra. Let the triangular decomposition g′− ⊕ h′ ⊕ g′+
be compatible with the triangular decomposition of g. Recall the definition of step algebra Zq(g,g′)
of the pair (g,g′). Consider the left ideal J = Uq(g)g′+ and its normalizer N = {x ∈ Uq(g) : eαx ⊂
J,∀α ∈ Π+

g′}. By construction, J is a two-sided ideal in the algebraN . Then, Zq(g,g′) is the quotient
N /J.

For all βi ∈ R+g \R+g′ let eβi be the corresponding PBW generators and let Z be the vector space

spanned by ekl−βl . . . ek1
−β1

ek0
0 em1

β1
. . . eml

βl
, where e0 = qhα1, ki ∈ Z+, and k0 ∈ Z. The PBW factoriza-

tion Uq(g) = Uq(g′−)ZUq(h′)Uq(g′+) gives rise to the decomposition

Uq(g) = ZUq(h′) ⊕ (g′−Uq(g) +Uq(g)g′+).
Proposition 3.1 (Ref. 5, Theorem 1). The projection Uq(g) → ZUq(h′) implements an embedd-

ing of Zq(g,g′) in ZUq(h′).
Proof. The statement is proved in Ref. 5 for the orthogonal and special linear quantum groups

but the arguments apply to symplectic groups too. �

The algebra Zq(g,g′) inherits the adjoint action of the Cartan subalgebra, so one can speak
of weights of its elements. It is proved within the theory of extremal projectors that Zq(g,g′) is
generated by elements of weights β ∈ Rg\Rg′ plus z0 = qhα1. We calculate them in Secs. III A and
III B, cf. Propositions 3.5 (negative β) and 3.9 (positive β).
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A. Lowering operators

In what follows, we extend Uq(g) along with its subalgebras containing Uq(h) over the field of
fractions of Uq(h) and denote such an extension by hat, e.g., Ûq(g). In this section, we calculate
representatives of the negative generators of Zq(g,g′) in Ûq(b−).

Set hi = hεi ∈ h for all i = 1, . . . ,N and introduce ηi j ∈ h + C for i, j = 1, . . . ,N , by

ηi j = hi − h j + (εi − ε j, ρ) − 1
2
∥εi − ε j∥2. (3.1)

Here, ∥µ∥ is the Euclidean norm on h∗.

Lemma 3.2. Suppose that (l,r) ∈ P(α) for some α ∈ Π+. Then,

(i) if l < r < j, then ηl j − ηr j = hα + (α,ε j − εr),
(ii) if i < l < r, then ηl i − ηr i = hα + (α,εi − εr),

(iii) ηlr = hα.

Proof. We have (α, ρ) = 1
2 ∥α∥2 for all α ∈ Π+. This proves (iii). Further, for εl − εr = α,

ηl j − ηr j = hα +
1
2
∥α∥2 +

1
2
∥ε j − εr∥2 − 1

2
∥ε j − εr − α∥2 = hα + (α,ε j − εr), r < j,

ηl i − ηr i = hα +
1
2
∥α∥2 +

1
2
∥εi − εr∥2 − 1

2
∥εi − εr − α∥2 = hα + (α,εi − εr), i < l,

which proves (i) and (ii). �

We call a strictly ascending sequence m⃗ = (m1, . . . ,ms) of integers a route from m1 to ms. We
write m < m⃗ and m⃗ < m for m ∈ Z if, respectively, m < min m⃗ and max m⃗ < m. More generally, we
write m⃗ < k⃗ if max m⃗ < min k⃗. In this case, a sequence (m⃗, k⃗) is a route from min m⃗ to max k⃗. We
also write m ≤ m⃗ if m = min m⃗ and m⃗ ≤ m if m = max m⃗.

Given a route m⃗ = (m1, . . . ,ms), define the product f m⃗ = fm1,m2 · · · fms−1,ms ∈ Uq(g−). Consider
a free right Ûq(h)-module Φ1m generated by f m⃗ with 1 6 m⃗ 6 j and define an operation ∂lr : Φ1 j →
Ûq(b−) for (l,r) ∈ P(α) as follows. Assuming 1 6 ℓ⃗ < l < r < ρ⃗ < j, set

∂lr f (ℓ⃗,l) f (l,r ) f (r, ρ⃗) = f (ℓ⃗,l) f (r, ρ⃗)[ηl j − ηr j]q,
∂lr f (ℓ⃗,l) f (l, ρ⃗) = − f (ℓ⃗,l) f (r, ρ⃗)q−ηl j+ηr j,
∂lr f (ℓ⃗,r ) f (r, ρ⃗) = f (ℓ⃗,l) f (r, ρ⃗)qηl j−ηr j,

∂lr f m⃗ = 0, l < m⃗, r < m⃗.

Extend ∂lr to entire Φ1 j by Ûq(h)-linearity. Let p : Φ1 j → Û(g) denote the natural homomorphism of
Ûq(h)-modules.

Lemma 3.3. For all α ∈ Π+ and all x ∈ Φ1 j, eα ◦ p(x) = (l,r )∈P(α) p ◦ ∂lr(x) mod Ûq(g)eα.

Proof. A straightforward analysis based on Proposition 2.3 and Lemma 3.2. �

To simplify the presentation, we suppress the symbol of projection p in what follows.
Introduce elements Aj

r ∈ Ûq(h) by

Aj
r =

q − q−1

q−2ηr j − 1
, (3.2)

for all r, j ∈ [1,N] subject to r < j. For each simple pair (l,r), we define (l,r)-chains as

f (ℓ⃗,l) f (l, ρ⃗)A
j

l
+ f (ℓ⃗,l) f (l,r ) f (r, ρ⃗)A

j

l
Aj
r + f (ℓ⃗,r ) f (r, ρ⃗)A

j
r , f (ℓ⃗,l) f l, jA

j

l
+ f (ℓ⃗, j), (3.3)

where 1 6 ℓ⃗ < l and r < ρ⃗ 6 j. Remark that f (l,r ) =
 (α,α)

2


q

e−α, where α = εl − εr .

Lemma 3.4. The operator ∂lr annihilates (l,r)-chains.
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Proof. Applying ∂lr to the 3-chain in (3.3), we get

f (ℓ⃗,l) f (r, ρ⃗)(−q−ηl j+ηr j Aj

l
+ [ηl j − ηr j]qAj

l
Aj
r + qηl j−ηr j Aj

r).
The factor in the brackets turns zero on substitution of (3.2).

Now apply ∂l j to the right expression in (3.3) and get

f (ℓ⃗,l)([hα]qAj

l
+ qhα) = f (ℓ⃗,l)(

qhα − q−hα

q−2ηl j − 1
+ qhα) = f (ℓ⃗,l)

[hα − ηl j]q
[−ηl j]q = 0,

so long as ηl j = hα by Lemma 3.2. �

Given a route m⃗ = (m1, . . . ,ms), put Aj

m⃗
= Aj

m1 · · · A
j
ms ∈ Ûq(h) (and Aj

m⃗
= 1 for the empty

route) and define

z− j+1 =


1<m⃗< j

f (1,m⃗, j)A
j

m⃗
∈ Ûq(b−), j = 2, . . . ,N, (3.4)

where the summation is taken over all possible m⃗ subject to the specified inequalities plus the empty
route.

Proposition 3.5. eαz− j = 0 mod Ûq(g)eα for all α ∈ Π+
g′ and j = 1, . . . ,N − 1.

Proof. Thanks to Lemma 3.3, we can reduce consideration to the action of operators ∂lr , with
(l,r) ∈ P(α). According to the definition of ∂lr , the summands in (3.4) that survive the action of ∂lr
can be organized into a linear combination of (l,r)-chains with coefficients in Ûq(h). By Lemma 3.4,
they are killed by ∂lr . �

The elements z−i, i = 1, . . . ,N − 1, belong to the normalizer N and form the set of negative
generators of Zq(g,g′) for symplectic g. In the orthogonal case, the negative part of Zq(g,g′) is
generated by z−i, i = 1, . . . ,N − 2.

B. Raising operators

In this section, we construct positive generators of Zq(g,g′), which are called raising opera-
tors. Consider an algebra automorphism ω : Uq(g) → Uq(g) defined on the generators by fα ↔ eα,
q±hα → q∓hα. For i < j, let gj i be the image of f i j under this isomorphism. The natural representa-
tion restricted to Uq(g±) intertwines ω and matrix transposition. Since (ω ⊗ ω)(Ř) = Ř21, the matrix
Ř+ = (π ⊗ id)(Ř21) is equal to 1 ⊗ 1 + (q − q−1)i< j e j i ⊗ gj i.

Lemma 3.6. For all α ∈ Π+
g′ and all i > 1, eαgi1 =


(l,r )∈P(α) δilgr1 mod Ûq(g)eα.

Proof. Follows from the intertwining property of the R-matrix. �

Consider the right Ûq(h)-module Ψi1 freely generated by f (m⃗,k)gk1 with i 6 m⃗ < k. We define
operators ∂lr : Ψi1 → Ûq(g) similarly as we did it for Φ1 j. For a simple pair (l,r) ∈ P(α), put

∂l,r f (m⃗,k)gk1 =



f (m⃗,l)gr1, l = k,�
∂l,r f (m⃗,k)

�
gk1, l , k,

i 6 m⃗ < r.

The Cartan factors appearing in ∂lr f (m⃗,k) depend on hα. When pushed to the right-most position,
hα is shifted by (α,ε1 − εr). We extend ∂lr to an action on Ψi1 by the requirement that ∂lr com-
mutes with the right action of Ûq(h). Let p denote the natural homomorphism of Ûq(h)-modules,
p : Ψi1 → Ûq(g). One can prove the following analog of Lemma 3.3.

Lemma 3.7. For all α ∈ Π+
g′ and all x ∈ Ψi1, eα ◦ p(x) = (l,r )∈P(α) p ◦ ∂lr(x) mod Ûq(g)eα.

Proof. Straightforward. �

We suppress the symbol of projection p to simplify the formulas.
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For i < j, let ∥i − j∥ be the number of simple positive roots entering εi − ε j. For all i, k =
2, . . . ,N , i < k, put

Ai
k =

qηk1−ηi1

[ηi1 − ηk1]q , Bi
k =

(−1)∥i−k ∥
[ηi1 − ηk1]q .

For each (l,r) ∈ P(α), where α ∈ Π+
g′, define 3-chains as

f (i,m⃗,l)gl1Bi
l + f (i,m⃗,l) f (l,r )gr1Ai

lB
i
r + f (i,m⃗,r )gr1Bi

r , (3.5)

with i < m⃗ < l < r 6 N and

f (i, ℓ⃗,l) f (l, ρ⃗,k)gk1Ai
l + f (i, ℓ⃗,l) f (l,r ) f (r, ρ⃗,k)gk1Ai

lA
i
r + f (i, ℓ⃗,r ) f (r, ρ⃗,k)gk1Ai

r (3.6)

with i < ℓ⃗ < l < r < ρ⃗ < k 6 N . The 2-chains are defined as

gi1 + f (i,r )gr1Bi
r , f (i,m⃗,k)gk1 + f (i,r ) f (r,m⃗,k)gk1Ai

r , (3.7)

where r is such that εi − εr ∈ Π+g′ and i < r < m⃗ < k 6 N . In all cases, empty m⃗ are admissible.

Lemma 3.8. For all α ∈ Π+
g′ and all (l,r) ∈ P(α), the (l,r)-chains are annihilated by ∂lr .

Proof. Suppose that i = l and apply ∂ir to the left 2-chain in (3.7). The result is

gr1 + [hα]qgr1Bi
r = gr1(1 + [hα + (α,ε1 − εr)]qBi

r) = gr1(1 + [ηi1 − ηr1]qBi
r) = 0

by Lemma 3.2. Applying ∂ir to the right 2-chain in (3.7) we get

f (r,m⃗,k)gk1(−q−ηi1+ηr1 + [ηi1 − ηr1]qAi
r) = 0.

Now consider 3-chains. The action of ∂lr on (3.6) produces

− f (i, ℓ⃗,l)q
−hα f (r, ρ⃗,k)gk,1Ai

l + f (i, ℓ⃗,l)[hα]q f (r, ρ⃗,k)gk,1Ai
lA

i
r + f (i, ℓ⃗,l)q

hα f (r, ρ⃗,k)gk,1Ai
r ,

which turns zero since −qηr1−ηl1Ai
l
+ [ηl1 − ηr1]qAi

l
Ai
r + qηl1−ηr1Ai

r = 0. The action of ∂lr on (3.5)
yields

f (i,m⃗,l)gr1Bi
l + f (i,m⃗,l)[hα]gr1Ai

lB
i
r + f (i,m⃗,l)qhαgr1Bi

r .

This is vanishing since Bi
l
+ [ηl1 − ηr1]Ai

l
Bi
r + qηl1−ηr1Bi

r = Bi
l
+

[ηi1−ηr1]q
[ηi1−ηl1]q Bi

r = 0. �

Given a route m⃗ = (m1, . . . ,mk) such that i < m⃗ let Ai
m⃗

denote the product Ai
m1

. . . Ai
mk

. Intro-
duce elements zi ∈ Ûq(g−)g+ of weight ε1 − εi by

zi−1 = gi1 +


i<m⃗<k6N

f (i,m⃗,k)gk1Ai
m⃗

Bi
k, i = 2, . . . ,N.

The summation includes empty m⃗.

Proposition 3.9. eαzi = 0 mod Ûq(g)eα, for all α ∈ Π+
g′ and i = 1, . . . ,N − 1.

Proof. By Lemma 3.6, the vectors g2′1 and zN−1 = g1′1 are normalizing the left ideal Ûq(g)g′+,
so is zN−2 = g2′1 + f1g1′1B1′

2′. Once the cases i = 2′,1′ are proved, we further assume i < 2′. In view
of Lemma 3.7, it is sufficient to show that zi−1 is killed, modulo Ûq(g)g′+, by all ∂lr such that
εl − εr ∈ Π+g′. Observe that zi−1 can be arranged into a linear combination of chains, which are
killed by ∂lr , as in Lemma 3.8. �

The elements zi, i = 1, . . . ,N − 1, belong to the normalizer N . They form the set of positive
generators of Zq(g,g′) for symplectic g. In the orthogonal case, the positive part of Zq(g,g′) is
generated by zi, i = 1, . . . ,N − 2.
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