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Abstract

The tidal force from a supermassive black hole can rip apart a star that passes close enough in what is known as a
Tidal Disruption Event (TDE). Typically, half of the destroyed star remains bound to the black hole and falls back
on highly eccentric orbits, forming an accretion flow that powers a luminous flare. In this paper, we use analytical
and numerical calculations to explore the effect of stellar rotation on the fallback rate of material. We find that
slowly spinning stars (Ω*0.01Ωbreakup) provide only a small perturbation to fallback rates found in the non-
spinning case. However, when the star spins faster, there can be significant effects. If the star is spinning retrograde
with respect to its orbit, the tidal force from the black hole has to spin down the star first before disrupting it,
causing delayed and sometimes only partial disruption events. However, if the star is spinning prograde, this works
with the tidal force and the material falls back sooner and with a higher peak rate. We examine the power-law
index of the fallback curves, finding that in all cases the fallback rate overshoots the canonical t−5/3 rate briefly
after the peak, with the depth of the overshoot dependent on the stellar spin. We also find that, in general, the late
time evolution is slightly flatter than the canonical t−5/3 rate. We therefore conclude that considering the spin of the
star may be important in modeling observed TDE light curves.
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1. Introduction

If a star passes close enough to a supermassive black hole in
the center of a galaxy, it can be stretched and pulled apart by
the hole’s gravitational field in what is known as a tidal
disruption event (TDE). To be disrupted, the star must pass
within the tidal radius, rt=(MBH/M*)

1/3R*, which is the
distance at which the tidal force from the black hole overcomes
the self-gravity of the star. Some of the stellar debris is expelled
into the galaxy, while the rest falls back toward the black hole
and is expected to circularize into an accretion disk, losing
energy and feeding the hole to generate a high-energy flare
(Rees 1988). The appearance of the flares depends on several
parameters including black hole mass and spin, stellar proper-
ties, and the orbit of the star. The amount of mass falling back
to the accretion disk over time can be inferred from the light
curves, which show a rise to a peak and then a power-law
decay. This decay typically takes the form -t

5
3 (Rees 1988;

Phinney 1989), derived from the negative Kepler energy of the
bound debris:
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and with the specific energy distribution dM

dE
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uniform. This shows the rate of fallback is proportional to -t
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TDEs are usually modeled with the star on a parabolic orbit
as most tidally disrupted stars are assumed to come from large
radii and need to reach pericentre at ∼50Rg, where Rg is the
gravitational radius Rg=GMBH/c

2, giving the eccentricity of
the orbit as close to unity: = »-

+
e 1

r r

r r
a p

a p
. As a result of the

orbit being parabolic, the amount of bound/unbound material
is distributed 50–50.
The star reaches the tidal radius with an impact parameter, β,

the ratio of tidal radius to pericentre distance. The extent of the
disruption event depends on this impact parameter as follows:
the critical point of disruption is at βc=1, where a larger β
gives a deeper orbit, and the star is only partially disrupted if
β<1, and no disruption occurs for β=1. However, βc is
dependent on stellar structure and can vary by a factor of ∼2
(Guillochon & Ramirez-Ruiz 2013). βc would also vary with
the spin of the star depending on spin magnitude and direction.
A star spins at a fraction of its break-up velocity, which, in

addition to the black hole’s tidal force, would quicken its
disruption, provided they were in the same direction. If the star
is spinning against the direction of the tidal force, it would
hinder the disruption and can leave behind an intact portion of
the star.
Lodato et al. (2009) showed that the light curve is only

proportional to -t
5
3 at late times and depends on stellar structure

during the early stage of the fallback. They show that more
compressible stars (smaller values of γ, the polytropic index)
give a gentler rise to the peak. They conclude that the -t

5
3 decay

only holds where the energy distribution dM/dE is constant,
which is approximately true only at late times. Given that most
of the accreted material returns to the black hole before
reaching -t

5
3 , it is not clear how many observed events would

be characterized by a -t
5
3 light curve. At late times, the light

curve is expected to change shape due to the viscous timescale
in the accretion disk (power-law index ∼−1.2; Cannizzo et al.
1990).
Guillochon & Ramirez-Ruiz (2013) looked at the effect of

changing the impact parameter for cases spanning grazing
encounters (low β) to deep plunges (high β) using γ=4/3, 5/3
for high- and low-mass main-sequence stars. They showed that
the most concentrated stars drop in fallback rate quickly after the
peak where only partial disruption of the star occurred. Their
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results show much steeper decays than the expected -t
5
3 where

some of the stellar core remains intact, which suggests we can
determine from observations if a flare has produced a
survived core.

A star will break up if it is spun up to the point at which
Fsg∼Frot where self-gravity of the star is

* *
GM R2 2 and the

centrifugal force is * * *
 WM R2 , where Ω* is the stellar rotation

frequency. This gives a break-up angular velocity of

*

*

W = ( )GM

R
. 3br 3

We define the break-up fraction as λ=Ω*/Ωbr where Ω*>0
is a prograde spin and Ω*<0 is retrograde.

Current observations of spinning stars include the Sun,
which spins at 0.002 of its break-up velocity (with an equatorial
period of 24 days). Meibom et al. (2015) additionally found a
sample of 30 cool stars, from the NGC 6819 cluster observed
by Kepler, which spun on average with 0.035Ωbr (assuming a
stellar radius from a rotation period of 18.2 days). Nascimento
et al. (2014) found a mean rotation period of 19 days over 43
main-sequence stars, some of which however had periods as
slow as 27 days. McQuillan et al. (2014) determined the
periods for 34,030 Kepler MS stars of temperature <6500 K
and found a range of periods from 0.2 to 70 days. Assuming
Sun-like mass and radius, this faster period corresponds to a
spin 0.057Ωbr. However, given the bias of TDE detections in
post-starburst galaxies and, as young stars rotate faster, we
might expect many disruptions involving stars with higher
spins. For example, a solar-mass pre-main-sequence star of age
∼1Myr would reach spins of 0.07 of break up (Bouvier 2013).
A B-type MS star, HD43317, observed by CoRoT rotates at
50% of its critical velocity, which corresponds to ∼0.28Ωbr

(Rieutord & Lara 2013).
TDEs are produced and fill the loss cone via one of two

regimes: the diffusive or pinhole. In the pinhole regime, a far
away star experiences one large kick to send it on an orbital
path passing within the tidal radius of an SMBH. These stars
pass within the loss cone multiple time in an orbit (Stone &
Metzger 2016). For stars much closer, the loss cone is filled
slowly by stars diffusing over many stellar orbits. This
diffusive regime can cause stars to be slowly pushed to smaller
orbits, and then the tidal field can spin up the star to larger
prograde velocities before disruption occurs. Stars in the
pinhole regime tend to have large impact parameters whereas
diffusive regime stars have β≈1 (Stone & Metzger 2016).

With the first light of LSST due in 2021, at which time it will
perform all-sky surveys every three days (Marshall et al. 2017),
the catalog of observed TDEs is expected to rapidly increase.
Therefore, more accurate light curves would be useful to
classify new observations. In this work, we look at the whether
stellar spin has a significant role in numerical TDE models. We
look at both prograde and retrograde spins and compare their
fallback rate curves to the non-spinning case, as well as
analyzing how the decay of the curves compare with
predictions. Previous models of TDEs have neglected the use
of spinning stars so it is important to test whether it is actually
fair to exclude this. Fallback curves are so far only constrained
to a few parameters that determine the stream evolution, such
as impact parameter, mass ratio, and polytropic index. With the
inclusion of other properties, such as stellar spin, we may find
that there is a larger error involved when constraining these
parameters.

Stone et al. (2013) show that stellar spin widens the energy
distribution of the star and note that the misalignment between
large stellar spins and the orbital angular momentum could
have a larger effect on the energy spread. We can estimate the
tidal radius for a spinning star (cf. Kesden 2012) by balancing
the self-gravity with the tidal force and force due to spin:

=  ( )F F F 4sg tidal rot
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We note that this estimate behaves appropriately in the
correct limits. When Ω*=0, it recovers the standard tidal
radius, and when Ω*=+Ωbr, the radius is infinite, and when
Ω* = −Ωbr, the radius is reduced appropriately.
In Section 2, we present analytical calculations. In Section 3,

we present our numerical simulations, and we conclude in
Section 4.

2. Analytical Predictions

2.1. Impulse Approximation

Assume that the tidal force acts impulsively (see Lodato
et al. 2009), meaning that the star is unperturbed and maintains
perfect hydrostatic balance prior to reaching the tidal radius,
and is completely destroyed (self-gravity and pressure
negligible) after the star passes through the tidal radius. Under
this “impulse approximation,” the energy of a given gas parcel
within the star at the moment the stellar center of mass (COM)
reaches the tidal radius is

 = -
∣ ∣

( )v
r

GM1

2
, 72

where v is the instantaneous velocity vector of the gas parcel
and r is its vector displacement from the black hole. Since the
star is assumed to be in hydrostatic equilibrium, we can write

* *W= + ´ ( )v v R, 8

where *v is the stellar COM velocity, *W is the angular velocity
of the star, and R is the position of the gas parcel within the star
measured from the stellar COM. Further writing *= +r r R,
where *r is the position of the COM, employing the tidal
approximation (i.e., keeping only first-order terms in the small
quantity R/r*), and using the fact that the star is on a parabolic
orbit, the energy becomes

* *
*
* * W W= ´ + + ´

⎛
⎝⎜

⎞
⎠⎟ · ( ) ( )v r R R
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r

1

2
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2

This expression yields the (conserved) energy of a gas parcel as
a function of its position within the star, R, following the
disruption; from it, we can deduce a number of important
effects of rotation on the dynamics of the TDE.
For one, the lowest-order (in *W ) effect of rotation is given

by the first term in parentheses in this equation, which scales
identically with R as the standard (non-spinning) energy spread

2
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induced from the tidal force of the black hole, which is the
second term in parentheses. Equating these two yields the
rotation rate of the star that would match the spread in energy
generated by the tidal force alone. Defining this rotation rate as
Ωeq=λeqΩbr, where * *

W = GM Rbr
3 is the break-up rotation

rate of the star (M* and R* are the stellar mass and radius,
respectively), then performing some algebra demonstrates that
λeq;1. Therefore, if the star is rotating at only a small
fraction of its break-up speed, the spread in energy imparted by
rotation will always be subdominant to that imparted by the
tidal force. The nonlinear term in Equation (9) is, therefore,
negligible for all physical stars.

Second, if the angular velocity is exactly parallel to the COM
velocity, then there is no first-order term in the correction to the
energy spread and the effects of rotation on the evolution of
the tidally disrupted debris are much smaller. In this case, the
centrifugal barrier generated by the rotation would reduce
the gravitational self-confinement of the tidally disrupted debris
stream. The ability of the stream to fragment under its own self-
gravity, as seen in Coughlin & Nixon (2015) and Coughlin
et al. (2016), would then be inhibited, but the spread in the
energy along the stream would be largely unaltered by the
rotation.

Third, if the star is spinning at an oblique angle relative to
the COM velocity, then Equation (9) becomes (assuming that
the rotation rate is below break-up and ignoring the nonlinear
term):

*
*

* q f q= W + - W
⎛
⎝
⎜⎜
⎡
⎣⎢

⎤
⎦⎥

⎞
⎠
⎟⎟ ( )v

GM

r
v Rsin cos cos . 10z x2

In this expression, we let the line connecting the black hole and
the stellar COM define the x-direction, the stellar COM velocity
is in the y-direction, and the z-direction is defined from these in
a right-handed sense; the rotation rate of the star is then

*W = W W W{ }, ,x y z in these coordinates. We also defined the
position of the gas parcel within the star in spherical
coordinates, so q f q f q= { }R R R Rsin cos , sin sin , cos .
Interestingly, Equation (10) demonstrates that rotation in the

x-direction serves to tilt the location of the most-bound debris

Figure 1. Predicted fallback curves for different stellar spin fractions, λ. Compared to a non-spinning star, prograde spins (black) lead to earlier fallback with higher
peaks, and retrograde spins (red) fall back later with smaller peaks. The deviation from the non-spinning case (dashed–dotted line) increases with spin magnitude.

Figure 2. Check that the spin of the polytrope (black particles) maintains the
correct velocity (red dashed) by taking the polytrope out of the corotating frame
and putting it in isolation in its inertial frame.

3
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element out of the orbital plane of the star: differentiating
Equation (10) with respect to θ, where f=π for the most-
bound material, the energy is minimized at the angle

*

*
*

q =
W

W +
( )v

v
cot . 11x

z
GM

r

m

2

Since * *
W v GM rz

2 when the star is rotating with velocities
below break-up, we can Taylor expand this equation to give

q
p

l- ( )
2

2 , 12xm

where λx is defined by * *
lW = GM Rx x

3 . It is also
straightforward to show that the most-unbound debris element

Figure 3. Comparing fallback rates of bound stellar material for different stellar rotation velocities both prograde (black) and retrograde (red) with respect to the orbit
(shown with error bars in the bottom panel). We see that stars with prograde spin disrupt sooner and with higher peaks compared to the non-spinning case (dashed–
dotted), whereas a retrograde spin hinders disruption, as the tidal forces need to spin down the star first.

4
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is located at an angle of p l+2 2 x. Therefore, rotation in
the x-direction shifts the line defining the maximum energy
spread from the x-axis to one that is tilted from the x-axis by the
small angle l2 x.

Finally, if the angular velocity is purely in the z-direction,
then * *W´ µv r , and the expression for the energy simplifies
to

*
* *

 l= W + = +
⎛
⎝⎜

⎞
⎠⎟ ( ) ( )v

GM

r
x

GMx

r
1 2 , 13

2 2

where * q f=x R sin cos and the last line follows from letting

* *=v GM r2 , * * *= ( )r R M M 1 3, and * *
lW = GM R 3 .

This expression demonstrates that, as for the non-rotating case,
surfaces of constant energy within the star coincide with
surfaces of constant linear displacement in the direction
connecting the black hole and the stellar COM. We also see
that, if Ω is positive, corresponding to alignment between the
orbital angular momentum vector of the stellar COM and the
angular velocity of the star, the total spread in the energy
increases, while anti-alignment reduces the effective energy
spread. Thus, stars rotating in a prograde sense—where Ω is
aligned with the angular momentum of the star—are more
easily disrupted than non-spinning stars, while retrograde-
rotating stars are less easily disrupted.

Equation (13) also shows that the most-bound gas parcel has
an energy

*

*

 l= - +( ) ( )GMR

r
1 2 . 14mb 2

Using the energy–period relation for a Keplerian orbit then
gives the return time of the most tightly bound debris:

*

*

p
l= + -⎜ ⎟⎛

⎝
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⎠ ( ) ( )T

R M

M GM2

2
1 2 . 15mb

3 2
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This shows that prograde-spinning stars (positive λ) result in
shorter return times of the most-bound debris, while retrograde
spin yields a longer return time.

2.2. Fallback Model

Here we construct a simple, analytic model for the return of
the debris to the black hole following the disruption of a
spinning star analogous to that presented in Lodato et al.
(2009). For the sake of simplicity and because our numerical
simulations are restricted to this case (see Section 3.1), we
confine our calculations to the scenario in which the stellar
angular velocity is parallel to the orbital angular momentum of
the star, so Equation (13) describes the spread in the energy
following the disruption. Tilts to the rotation should only
slightly modify these results, as shown in the previous
subsection.
From Equation (13), the energy of a given gas parcel within

the star at the time of disruption is purely a function of its linear
position in the star, x. Furthermore, the energy–period relation
of a Keplerian orbit ensures that all gas parcels with the same
energy return to the black hole at the same time t. Therefore, to
derive the total fallback mass Mfb that has yet to return to the
black hole, one can parameterize the mass in the star at the time
of disruption in terms of x and then use Equation (13) to write x
(ò)=x(ò(t)). It follows geometrically that this can be written
(see also Lodato et al. 2009 and Coughlin & Begelman 2014)

*òp r=( ) ( ) ( )dM x R RdRdx2 , 16
x

R

fb

where ρ is the density of the star at the time of disruption,
assumed to be the original stellar density profile; by writing
r ( )R we are ignoring any latitudinal variations induced by the
stellar rotation. This is a good approximation when the rotation
rate is not too close to the break-up velocity. Using the energy–
period relation for a Keplerian orbit in Equation (16) then gives
the fallback rate as

* *ò
p
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where *= -( ) ( )x t R t Tmb
2 3. Finally, if we define the dimen-

sionless position within the star as *h = R R and the average
stellar density by

* * *
r p= ( )M R3 4 3 , then this expression

simplifies to
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This expression clearly illustrates the rough magnitude and
asymptotic, t−5/3 scaling of the fallback rate.
The integral in Equation (18) cannot, in general, be done

analytically, so we numerically integrate it and plot the
solutions for several λ in Figure 1.

3. Simulations

We present simulations using the three-dimensional
smoothed particle hydrodynamics code PHANTOM (Price
et al. 2018). We use a solar-type star modeled as a polytrope

Figure 4. Comparison of the simulation fallback curves (solid lines) with
analytically predicted curves (dashed) from Section 2. The analytical and
numerical curves show the same trends of a prograde spin giving a higher peak
and earlier fallback compared to retrograde. However, the differences show the
need for numerical modeling of TDEs to correctly recover features in the
curves from effects such ass changes to the stellar structure due to spin.

5
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Figure 5. Star at initial position on orbit (left) and then at pericentre (right) for prograde 0.2 (top), non-spinning (middle), retrograde 0.2 cases (bottom). Overlaid is the
velocity structure of the star (not including orbital velocity) and the star spins prograde or retrograde with respect to its orbit. The length of the velocity arrows
indicates the column integral of v dz.

6
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(γ=5/3) and a M106 black hole sink particle modeled with
Newtonian gravity.4 The first step of the simulation is to relax
the polytrope to put the star in equilibrium. Once relaxed, the
star is placed on a parabolic orbit starting outside the tidal field
of the hole at ∼4.9rt and with an impact parameter β=1,
where β=rt(Ω=0)/rp. We do not use the tidal radius
equation affected by spin (Equation (6)) as this allows us to see
the effect of the stellar spin in a controlled manner, rather than
changing the orbit and then trying to differentiate between the
two effects. The star is initially in hydrostatic equilibrium
where pressure and self-gravity are balanced. Disruption starts
as the star passes within the tidal radius where the tidal force of
the hole overcomes the self-gravity of the star and the pressure
redistributes the energy in the star and widens the specific
energy distribution (Lodato et al. 2009). The disrupted star
further stretches into a stream as it continues its orbit. We can
follow the return of the bound material to the hole to measure
the fallback rate. The black hole is initially given a small
accretion radius ( R20 g) to prevent swallowing the star whole.
Once the disrupted star is sufficiently past the hole, the

accretion radius is increased to 3rt. We do not attempt to
resolve the circularization and disk-forming process, so any
particle that crosses the accretion radius is removed from the
simulation and is considered accreted. We measure the fallback
rate from the rate of particles being removed.
We set the polytrope spinning with a corotation angular

velocity, Equation (19), at a fraction of its break-up velocity.
The corotation corresponds to the inner and outer parts of the
star rotating at the same rate but with different velocities. We
look at break-up velocity fractions: λ=(±0.002, ±0.01,
±0.05, ±0.2), where positive corresponds to prograde spin and
negative is retrograde. We chose these values to show that even
a small spin, like the Sun (λ=0.002), can have an effect on
the fallback curve. Higher spins for solar-type stars do not fit
with observations, and some simulations of higher λ do not get
fully disrupted. Within this paper, we refer to each spin by its
fraction λ and direction, and define the spin of the star as:

*
*

*

l lW = W = ( )GM

R
. 19br 3

We relax the star before starting the simulations to remove
initial perturbations. To do this, we relax the star for 10 rotation
periods in the relevant corotating frame, with a velocity
damping. In practice, the star relaxes after ∼1 rotation period.

Figure 6. For the 0.2 retrograde disrupted star after passing pericentre, we can see the clear effect that a retrograde spin has on the extent of disruption from pericentre
and onwards, particularly where we see a small dense core still intact.

Figure 7. Density structures of the disrupted stars as a function of distance from the black hole. The left and right tails of each plot show the bound and unbound parts
of the debris stream. In the retrograde plot, the vertical peak in the center (highlighted within the box) shows that the stellar core remains intact.

4 Relativistic effects are small during the disruption phase for these
parameters. It would be necessary to include relativistic effects to model the
circularization process and for very deep plunges (Guillochon & Ramirez-
Ruiz 2013; Gafton et al. 2015) with pericentre distances ∼1Rg.

7
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Figure 8. Disrupted debris streams for zero spin (middle panel) and λ=0.05 prograde (top) and retrograde (bottom). The stream is plotted at a time of t=17 days
post pericentre. Stellar spin does not significantly affect the geometry of the stream. There is a detectable difference in the streams lengths, which is due to the
quickened/delayed disruption from prograde/retrograde spins.

Figure 9. Energy distribution for the zero spin (short dashed) and 0.05 spin (prograde: solid and retrograde: long dashed) simulations shown in Figure 8, where
= De E E , *D =E GM R RBH peri

2 and dm=dM/M*. These differences in the energy distribution result in differences in the fallback rates.
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Spin affects the stellar structure by expanding the star
isotropically in the x and y directions but not in z, as there is
more centrifugal support in the z=0 plane. This causes the
star to be non-spherical in the z–x plane, but for low spins, there
is little distortion, so the star is approximately spherical with an
aspect ratio of 1.03 for a spin of λ=0.2. The distortion is
more significant for higher spins, e.g., for λ=0.4 (not
simulated) the aspect ratio is 1.17.

We relax the spinning polytrope in the corotating frame
where it appears static. We can then check that the polytrope is
spinning at the correct Ω* by taking it out of the corotating
frame after it has relaxed and placing it in isolation in its
inertial frame. Figure 2 shows the azimuthal velocities of the
particles (black dots) as a function of radius together with
the exact solution (red dashed line), where it shows a good fit to
the correct spin.

We can measure the fallback rates for each spin and compare
these to the non-spinning case. We also look at the decay of the
curves and whether they follow the predicted t−5/3 behavior.
We model the evolution for ∼1.6 yr as usually most of the
bound material will fall back within this time (∼76% for the

non-spinning case). If the power-law index does not settle to
the expected −5/3 within early times, then it is unlikely to ever
be observed. The luminosity, which follows the behavior of the
fallback curve if the viscous timescale is much shorter than
variations in the fallback rate (Lodato 2012), will be too low to
detect if t−5/3 is not reached until late times.
The results we present in this paper were done with a million

particles. We also ran the simulations with 104 and 105 particles
and found no physical change in shape of the fallback curves,
only a decrease in simulation noise and error bar size with an
increase in particle number, which allows us to view any real
features with more clarity.

3.1. Results

Figure 3 shows the fallback rates, over a time of
approximately 1.6 yr, for different stellar spin velocities. The
curves for the retrograde spins show less and delayed fallback
of material to the hole compared to the prograde and non-
spinning cases. In Figure 4, we compare our numerical
simulations with our analytical predictions from Section 2.
Both the analytical and numerical solutions show that the

Figure 10. Power-law evolution for different spins plotted with the expected-5 3 (dashed), where = ˙n d M d tlog log is the power-law index. The initial overshoots
of the expected t−5/3 are due to accreting clumps, which are larger for retrograde spins. The larger error bars toward the end are due to increased noise in the later parts
of the fallback curves. We see that the power law does not converge on-5 3 for most of the TDE evolution. It is unlikely that a t−5/3 light curve would be observed at
late times.
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fallback occurs earlier for prograde spins and later for
retrograde spins. They also both show the same trend with
peak fallback rate—the prograde case has a higher peak than
the retrograde case. However, the analytical and numerical
curves for the same spin value do not agree closely due to the
simplifying assumptions in the analytical model discussed at
the start of Section 2.

We show in Figure 5 the velocity structure, without their
orbital velocity, i.e., only showing the effect of spin and the
tidal force, of the star at its initial position before orbiting and at
pericentre. We see that prograde is spinning in the direction of
the orbit, which causes it to be disrupted quicker. For faster
retrograde spins (e.g., −0.2), the stars remained partially intact,
as a result of the tidal forces having to spin down the star before
disruption can occur. We can see this highlighted in the
zoomed section of Figure 6 and in the right panel of Figure 7,
where the spike in density is the bound core. This is expected
as the retrograde case moves the tidal radius inwards
(Equation (6); recall we have used β(Ω=0)=1 to define
the simulation orbits). While a retrograde spin hinders stellar
disruption, a prograde spin will quicken disruption and debris
fallback, as the stellar material is slightly more bound, so it
returns to the hole quicker.

We can see from Figure 8 that the stellar rotation does not
have a significant impact on the stream geometry, except where
a bound core survives for higher (retrograde) spins, as in
Figure 6. In Figure 9, we show how spin affects the energy
distribution. As discussed in Section 2 and shown by
Equation (9), for small spin fractions, the change in the energy
distribution due to stellar rotation is small compared to the
effect from the tidal force.

We measured the power law of the fallback decay to see
whether the curves in the spinning cases follow the expected
t−5/3. We performed linear regression on sections of the slope
and found that the power law does vary from the predicted
value (see Figure 10). The power-law index initially overshoots
the −5/3 and more so in the retrograde cases. This is due to the
self-gravitating nature of the stream (Coughlin & Nixon 2015).
The power law may bounce back to a less steep gradient than
−5/3 after the overshoot, as material has been redistributed
along the stream by self-gravity. At late times, the power-law
index is roughly constant. We can also see that the power-law
indices do not settle very well on the expected n=−5/3, and
generally stay above this until late times. At late times, the
errors grow as the number of particles in the stream decreases.
This is in agreement with Lodato et al. (2009) who also found
the power law to be shallower and only reached t−5/3 at late
times for non-spinning polytropes. This has been found in
several other studies (Guillochon & Ramirez-Ruiz 2013;
Coughlin & Nixon 2015; Wu et al. 2018).
We ran simulations for misaligned spins for λ=0.05 where

we rotate the star to produce θ=45° (where the angular
velocity vector of the star is rotated by 45° around the x-axis for
prograde; i.e., the angular velocity vector has positive y and z
components) and 90° (where the angular velocity vector points
in the direction of the orbital velocity at pericentre). We see in
Figure 11 that varying the spin angle in this way only changes
the fallback curve slightly compared to the aligned spins for the
45° case. For the 90° case, we expect from Equation (9) that
there is no first-order effect from spin (and remembering that
any second-order effect is negligible), which is confirmed by

Figure 11. Fallback curves for aligned (solid) and misaligned (dashed), prograde (black) and retrograde (red) spins and for the non-spinning case (blue solid). For the
simulated 45° angles, we find only a small variation in the fallback curves compared to an aligned spin with the same magnitude. However, for both of the 90° cases,
where the angular velocity vector is parallel to the orbital velocity vector at pericentre, the stellar spin has no effect on the stream and these fallback curves match the
non-spinning case.
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Figure 11 where the fallback curves match the non-spin-
ning case.

4. Discussion and Conclusions

We ran simulations of a solar-mass star, modeled as a
polytrope of 1 million particles with index γ=5/3, being
tidally disrupted by a M106 black hole with an impact
parameter of β=1 for a just full disruption. We did this for a
standard case of a non-spinning star and black hole and then
introduced stellar spins of values: ±0.002, ±0.01, ±0.05, and
±0.2 (fractions of the star’s break-up velocity, where

* * *
lW = GM R 3 ) where sign indicates direction of spin with

respect to its orbit, taking prograde as positive.
When we include stellar rotation into the simulation, we

obtain interesting changes in behavior. The direction of the
star’s spin will either help or hinder disruption as the tidal
forces will also impart a spin onto the star. If the star is
spinning prograde with respect to its orbit, then it is spun up by
the tidal forces and will fall back quicker and with more
material for faster initial spins. Conversely, the black hole has
to spin down a retrograde spinning star, leading to delayed, and
sometimes only partial, disruptions.

We also see some interesting features around the peak of the
fallback curve, in all but the faster prograde cases, where the
fallback of bound material deviates from the expected t−5/3

decay by accreting extra mass in self-gravitating clumps in the
debris stream and then less mass afterwards. The total mass
accreted still averages out to half of the original stellar mass
(due to half of the debris being bound, half unbound). We find
that even after the overshoot occurs, the power law remains
shallower and does not settle to the expected t−5/3 until late
times, by which point the TDE is unlikely to be observable
anyway.

We initially calculated predictions for the debris fallback rate
with the impulse approximation, which assumes the star is
undisturbed until it reaches pericentre. Comparing to our
numerical simulations, we see the analytical solutions are not a
perfect fit, with smaller peak fallback rates and longer material
return times than the numerical. The impulse approximation
also misses features around the peak that should occur due to
changes in the stellar structure before it reaches pericentre.
However, the analytical solutions recover the trends observed
in the simulations, e.g., how the rise and peak fallback rates
change with stellar spin.

Our analytic arguments suggested, and our numerical
simulations confirmed, that stellar spin is only important for
modifying the features of the fallback (e.g., the return time of
the most-bound debris and the time to peak fallback rate) when
the star is spinning at a modest fraction of its break-up velocity.
One way of generating such rapidly spinning stars prior to
disruption is if the disrupting SMBH is in a binary system: as
shown in Coughlin et al. (2017), a star can have a number of
“close encounters”—where the star comes within at least three
tidal radii of either black hole—prior to being disrupted as it
traces out a chaotic, three-body orbit in the binary potential. By
performing a statistical analysis of millions of three-body
encounters, Coughlin et al. (2017) demonstrated that 10% of
all three-body orbits resulting in disruptions had at least one
close encounter. In these close encounters, while the tidal field
of the black hole may not be sufficient to completely unbind the
star, the tidal torque will spin the star up to a significant fraction

(∼10%) of its break-up velocity, and repeated close encounters
could push the fraction of break-up to near unity. One might
therefore expect some stars disrupted by binaries to be rapidly
rotating, necessitating the inclusion of this effect on the
predicted fallback curves.
The change in fallback rates, both shape and normalization,

suggest that stellar spin can play an important role in defining
the energy distribution of the stream and thus the observable
properties of the event. It may be necessary to include such
details to accurately determine system parameters from
observed data.
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