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ABSTRACT
There is a subset of short gamma-ray bursts (SGRBs) that exhibit a rebrightening in their high-
energy light curves known as extended emission. These bursts have the potential to discern
between various models proposed to describe SGRBs as any model needs to account for
extended emission. In this paper, we combine fallback accretion into the magnetar propeller
model and investigate the morphological changes fallback accretion has on model light curves
and fit to the afterglows of 15 SGRBs exhibiting extended emission from the Swift archive. We
have parametrized the fallback in terms of existing parameters within the propeller model and
solved for the disc mass and angular frequency of the magnetar over time. We then apply a
Markov chain Monte Carlo routine to produce fits to the data. We present fits to our extended
emission SGRB sample that are morphologically and energetically consistent with the data
provided by Swift Burst Alert Telescope and X-ray Telescope. The parameters derived from
these fits are consistent with predictions for magnetar properties and fallback accretion models.
Fallback accretion provides a noticeable improvement to the fits of the light curves of SGRBs
with extended emission when compared to previous work and could play an important role in
explaining features such as variability, flares and long dipole plateaux.
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1 IN T RO D U C T I O N

Gamma-ray bursts (GRBs) are the brightest, most intense explo-
sions in the Universe. They are very brief flashes of gamma-rays,
lasting from a fraction of a second to several seconds, that occur at
a rate of a few per day at random locations throughout the Universe
(Mészáros 2006). GRBs are categorized based on a bimodal distri-
bution in their temporal and spectral properties (e.g. Kouveliotou
et al. 1993): long-soft GRBs and short-hard GRBs (SGRBs). The
prompt emission of SGRBs typically lasts <2 s and their spectra
are hard, whereas long-soft GRBs last >2 s and have softer spectra.
However, this 2 s divide is not strict, e.g. Bromberg et al. (2013), and
there is significant overlap between the two distributions including
interesting phenomena such as the SGRBs with extended emission
(SGRBEEs) discussed in this paper.

SGRBEEs are a subset of SGRBs which show rebrightening in
high-energy light curves after the prompt emission spike (approx-
imately 10 s after trigger), which is referred to as the extended
emission (EE; Norris & Bonnell 2006). The peak flux of EE is
usually lower than the initial spike but it can last for a few hun-
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dred seconds, therefore the total fluence is often higher (Perley
et al. 2009). They are believed to be a subset of SGRBs due to their
hard spectra, association with galaxies with low-star-forming rates
and the lack of any detectable supernovae coincident with the burst.
These bursts are an interesting subset to study since any model hop-
ing to describe SGRBs generally needs to account for those that
exhibit EE and provide an argument as to why some bursts do not,
or determine whether EE is just an observational artefact. Also, a
model would need to explain EE energetically and account for the
similar total energy in the EE and the prompt emission.

Different mechanisms have been suggested to power EE, includ-
ing magnetar spin-down (Metzger, Quataert & Thompson 2008;
Bucciantini et al. 2012), a two-jet solution (Barkov & Pozanenko
2011), fallback accretion (Rosswog 2007), r-process heating of the
accretion disc (Metzger et al. 2010) and magnetic reconnection and
turbulence (Zhang & Yan 2011). Previously, Gompertz, O’Brien &
Wynn (2014) have implemented a propeller model with a magnetar
central engine as an explanation for EE bursts. The magnetar is
believed to be formed during the merger of two compact objects,
i.e. a neutron star (NS) binary (Rosswog, Ramirez-Ruiz & Davies
2003; Belczynski et al. 2006), a white dwarf binary (Chapman et al.
2007) or an NS-white dwarf binary. Compact object binary mergers
are also the most popular candidates for SGRB progenitors. Mag-
netars have proven to be a favourable central engine choice since
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the energy released from their magnetic field via dipole spin-down
is comparable to the energy contained within EE. The magnetic
propeller model aims to extract the energy required for EE from
mass ejected from the system via the propeller mechanism. The
version presented in Gompertz et al. (2014) consists of a static disc
that is fully formed at t = 0 and is drained via either accretion or
propellering. The results presented in Gompertz et al. (2014) run
out of energy before fitting the fading afterglow, since the energy
reservoir is not replenished, and does not fit to the prompt emission.

Models such as Rosswog (2007), Kumar, Narayan & Johnson
(2008) and Cannizzo, Troja & Gehrels (2011) predict the fallback
of mass into a disc and so the version of the propeller model pre-
sented here has been extended to include fallback accretion. This
replenishes the disc and thereby increases the overall available en-
ergy budget within the model. This means that the mass of the
disc can vary over time as opposed to the static disc presented in
Gompertz et al. (2014) and affects the spin-up of the magnetar
thereby changing the morphology of the light curves produced.
This extension to the model will allow us to fit the prompt emission
and retain enough energy to fit the fading afterglow where previous
models could not. The fallback rate is modelled with a t−5/3 profile
(Rosswog 2007) and the fallback time-scale, along with the avail-
able fallback mass, have been parametrized in terms of pre-existing
parameters within the model. We aim to investigate the morpho-
logical changes that fallback introduces into the light curves and
to explain the prompt emission (and hence all of the high-energy
light curve) with a single model. As well as the addition of fallback
mass and disc physics into the model, we have also introduced a
new model for the propeller, fitted with variable efficiency param-
eters, and fitted to prompt emission data that were not included in
Gompertz et al. (2014).

In Section 2, the mathematical theory of the propeller model is
presented including: a discussion of significant changes applied for
this paper, an exploration of the parameter space and a comparison
with previous work by Gompertz et al. (2014). Section 3 introduces
the sample of SRGBEEs to be studied and Section 4 describes the
method used to fit the model to the data. Discussed results and
concluding remarks are presented in Sections 5 and 6, respectively.

2 MO D E L D E V E L O P M E N T

Within the propeller model, the propeller regime is defined accord-
ing to the relationship between the Alfvén radius (the radius at
which the dynamics of the gas within the disc is strongly influenced
by the magnetic field, rm) and the co-rotation radius (the radius at
which material in the disc orbits at the same rate as the magnetar
surface, rc). These radii are defined as follows:

rm = μ4/7(GM)−1/7

(
3MD(t)

tν

)−2/7

, (1)

rc = (GM/ω2)1/3, (2)

where μ is the magnetic dipole moment of the central engine, G is
the gravitational constant, M is the mass of the central engine, MD(t)
is the disc mass at any given time, ω is the angular frequency of the
central engine and tν is the viscous time-scale that is given by tν
= RD/αcs. Here, RD is the disc radius, α is a viscosity prescription
and cs is the sound speed in the disc. We have used α = 0.1 and
cs = 107 cm s−1 throughout this work, in keeping with Gompertz
et al. (2014).

When rc > rm, the accretion disc is rotating more rapidly than
the magnetic field (assuming the magnetic field rotates rigidly with
the magnetar surface) and magnetic torques act to slow the infalling
material down and allow it to accrete. In this case, the magnetar
gains angular momentum and spins up hence the rotation of the
field increases. Conversely if rc < rm, the magnetic field is rotating
faster than the material and the result is that particles are accel-
erated to super-Keplerian velocities and ejected from the system.
The magnetar loses angular momentum to the ejected material and
its rotation is slowed. This is the propeller regime. To prevent the
ejected material from exceeding the speed of light, rm is capped
at a fraction of the light cylinder radius rlc, which is the radius at
which the magnetic field lines rotate at the speed of light in order
to maintain rigid rotation with the stellar surface. It is difficult to
determine where effective coupling between the magnetic field and
the plasma breaks down. We have therefore used a conservative
estimate of rm = 0.9rlc in common with Gompertz et al. (2014) that
allows comparison with their results.

The theory behind the magnetic propeller model is largely based
on that presented in Piro & Ott (2011) and Gompertz et al. (2014).
Therefore, a full description of the model equations will not be pre-
sented here and the focus will remain on the amendments required
to model fallback accretion. We have assumed the accretion disc
has a surrounding mass budget available to fallback smoothly on
to the outer radius of the disc on a ballistic time-scale of t−5/3, in
line with models such as Rosswog (2007), and mass flows from the
inner disc towards the magnetar with an exponential profile.

The radii rm and rc are dependent on the mass of the accretion disc
and the rotation frequency of the magnetar. We have modelled the
change in disc mass and frequency with the following equations:

ṀD = Ṁfb − Ṁprop − Ṁacc, (3)

ω̇ = Nacc + Ndip

I
. (4)

Equation (3) accounts for mass added to the disc through fallback
accretion (Ṁfb) and mass lost from the disc via the propeller mecha-
nism or accretion on to the magnetar (Ṁprop and Ṁacc, respectively).
In equation (4), I = 0.35MR2 is the magnetar’s moment of inertia
and Nacc and Ndip are the accretion and dipole torques acting on the
magnetar, respectively. In this work, we adopt the classical dipole
torque experienced by any rotating, magnetized body (Shapiro &
Teukolsky 1983). Nacc has two forms dependent on the relationship
between rm and the magnetar radius, R. If rm > R,

Nacc = (GMrm)1/2
(
Ṁacc − Ṁprop

)
, (5)

or if rm < R,

Nacc = (GMR)1/2
(
Ṁacc − Ṁprop

)
. (6)

In the above equations, Ṁfb, Ṁprop, and Ṁacc are defined as follows:

Ṁfb = Mfb

tfb

(
t + tfb

tfb

)−5/3

, (7)

where Mfb is the available fallback mass and tfb is the fallback
time-scale,

Ṁprop = η2

(
MD(t)

tν

)
, (8)

Ṁacc = (1 − η2)

(
MD(t)

tν

)
, (9)
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Figure 1. A demonstration of how quickly the propeller switches on as a
function of n described by equation (10). The dotted line corresponds to n
= 1, the dashed line corresponds to n = 10 and the solid line corresponds
to n = 100.

where η2 is the efficiency of the propeller mechanism that we define
as

η2 = 1

2
(1 + tanh[n(� − 1)]). (10)

This definition of η2 allows accretion to be turned off at a variable
rate as the propeller switches on and the combined efficiency of
these mechanisms can never exceed 100 per cent. In equation (10),
� is the ‘fastness parameter’, � = ω/(GM∗/r3

m)1/2 = (rm/rc)3/2,
which switches the propeller on as � → 1, and n controls how
‘sharp’ the propeller switch-on is, as demonstrated in Fig. 1.

We parametrize the available fallback mass as a fraction (δ) of
the initial disc mass, Mfb = δMD,i, and the fallback time-scale is
similarly parametrized as a fraction (ε) of the viscous time-scale,
tfb = εtν . Equations (3) and (4) are coupled, first order, ordinary
differential equations (ODEs) and, using an ODE integrator, the
values of MD and ω can be calculated for a given range of time
points. Fig. 2 demonstrates how these fallback parameters affect the
disc mass and rotational frequency of a magnetar and disc system
and how the propeller condition rm/rc evolves with time.

For short time-scales and small fallback masses (ε = 1; δ = 1;
solid, red curve), the magnetar spins up more slowly despite rapid
fallback because the disc is only being fed small amounts of mass.
Hence, the propeller mechanism turns on earlier since the propeller
condition is at a lower frequency. For short time-scales and large
fallback masses (ε = 1; δ = 10; dashed, red curve), mass is quickly
added to the disc and the magnetar spins up rapidly. The propeller
mechanism is turned on later because the conditional frequency is
higher. For long time-scales and small fallback masses (ε = 10; δ

= 1; solid, green curve), the disc is fed a small amount of mass very
slowly and so the magnetar spins up gradually. Again, the propeller
condition is at a lower frequency and therefore the mechanism turns
on earlier. For long time-scales and large fallback masses (ε = 10;
δ = 10; dashed, green curve), the disc mass stays constant over a
longer period providing a gentle spin-up of the magnetar. Again,
the propeller condition is a higher frequency and the mechanism
turns on later. Generally speaking, an initially denser disc makes
the propeller mechanism harder to initiate, but the magnetar is spun
up more rapidly and therefore satisfies the propeller condition at an
earlier time.

Figure 2. A demonstration of how different combinations of the fallback
parameters ε and δ affect the disc mass (top panel) and rotation frequency
(centre panel) of a magnetar and disc system with fixed magnetic field,
initial spin period, initial disc mass and radius. The bottom panel shows the
evolution of the propeller condition rm/rc over time for each combination.
The system is in the propeller regime when rm/rc > 1 (i.e. above the black,
dashed line).

Once equations (3) and (4) have been integrated, they are then
used to estimate the luminosities from the dipole and propelled
components, such that

Lprop = ηprop

[
−Naccω −

(
η2

GMMD

rmtν

)]
(11)

and

Ldip = ηdip
μ2ω4

6c3
, (12)

where ηprop and ηdip are the propeller and dipole energy–luminosity
conversion efficiencies, respectively. The total luminosity is given
by the sum of the dipole and propeller luminosities and divided by
a beaming fraction to account for the relativistic beaming of the jet:
Ltot = (1/fB)(Ldip + Lprop). 1/fB is the fraction of the stellar sphere
that is emitting and is related to the half-opening angle of the jet, θ j,
as: fB = 1 − cos (θ j) (Rhoads 1999; Sari, Piran & Halpern 1999).

2.1 Comparing dipole torque equations

For the dipole torque, we have used the classical solution as given
by Shapiro & Teukolsky (1983) and Piro & Ott (2011),

Ndip = −μ2ω3

6c3
. (13)
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Figure 3. A comparison of how equation (13) (solid line; Piro & Ott 2011)
and equation (14) (dashed line; Bucciantini et al. 2006) affect (a) the stel-
lar spin; (b) the dipole torque; (c) the dipole luminosity and (d) the total
luminosity of a synthetic GRB light curve.

The negative sign indicates that Ndip spins the magnetar down and
produces dipole emission. However, work done by Gompertz et al.
(2014) instead uses the following form for the dipole torque:

Ndip = −2

3

μ2ω3

c3

(
rlc

rm

)3

, (14)

which is equation 2 in Bucciantini et al. (2006).
Bucciantini et al. (2006) use a relativistic magnetohydrodynamic

(MHD) treatment to solve for the plasma winds emanating from
a rotating NS and accretion disc system. They assume that the
flow emerges from open flux tubes (providing the extent and shape
of the open field line region in the magnetic field is known) and
that a truncation of the disc produces more open flux tubes and
therefore a greater mass-loss. Equation (14) is then derived from
these assumptions. However, it is not certain that these assumptions
apply within the model presented in this work and a full MHD
treatment of the magnetic propeller is not presented. Therefore,
equation (13) is used rather than introducing uncertain assumptions
into the model. A comparison between equations (13) and (14) is
shown in Fig. 3 using a synthetic GRB light curve with arbitrary
parameters.

2.2 Exploring parameter space

To determine how the modifications to the propeller model have
affected the phenomenological classes outlined in Gompertz et al.
(2014, humped, classic, sloped and stuttering), the parameter vari-
ation experiment they originally performed was repeated with val-
ues from Table 1. The magnetar mass and radius were fixed to be
1.4 M� and 10 km, respectively, the propeller and dipole efficien-
cies were set to 100 per cent and the beaming fraction to 1 since
they only act to normalize the luminosity here. The produced light
curves represented all combinations of B, Pi, MD,i, RD, ε, δ and n.
The four phenomenological types originally outlined in Gompertz
et al. (2014) were recovered and examples of each are shown in
Fig. 4. All values for n appeared commonly in each type suggesting
that the model is insensitive to n.

Table 1. Values used to test the effect of parameter variation on the shape
of a GRB light curve. B – magnetic field; Pi – initial spin period; MD,i –
initial disc mass; RD – disc radius; ε – time-scale ratio; δ – fraction of initial
disc mass available in the global mass budget; n – sharpness of propeller
switch-on.

B (1015 G) 1 5 10 50 –
Pi (ms) 1 5 10 – –
MD,i (M�) 10−5 10−4 10−3 10−2 10−1

RD (km) 100 500 1000 – –
ε 1 10 – – –
δ 1 10 – – –
n 1 10 50 – –

2.3 Comparing types to previous work

In order to determine how well the modified model recovered the
four types, the parameters given in Table 2 were used to generate
light curves using the previous model described in Gompertz et al.
(2014). The fallback accretion in the modified model was turned off
by setting ε = 1 and δ = 10−6, i.e. the amount of fallback mass is
so negligible that the magnetar behaves as if only the accretion disc
is present and the fallback time-scale becomes irrelevant. The value
of n used was 1 as this is the closest approximation to the propeller
switch-on modelled in previous work. Fig. 5 compares the modi-
fied model without fallback to the previous work. The difference in
dipole luminosity between the two models is explained by our use of
the classical dipole torque as discussed in Section 2.1. Equation (13)
has a longer dipole duration than equation (14) causing some mor-
phological differences. However, the modified model does not re-
cover the propeller luminosity in all cases, the stuttering type being
the most different. Since we have already seen in Fig. 4 that the
modified model is capable of reproducing all types successfully, it
is suggested that they have moved in parameter space due to the
inclusion of Ṁprop and its link to Ṁacc through η2.

3 SWIFT SGRBEE SAMPLE

The data for the GRB sample were collected by Swift. The Swift
satellite (Gehrels et al. 2004), launched in 2004, is a multiwave-
length observatory dedicated to GRB hunting with rapid slewing
capabilities. It carries three instruments: the Burst Alert Telescope
(BAT; Barthelmy et al. 2005), the X-ray Telescope (XRT; Burrows
et al. 2005) and the Ultra-Violet/Optical Telescope (UVOT; Roming
et al. 2005). The Swift mission and the UK Swift Science Data Centre
(UKSSDC;1 Evans et al. 2007, 2009) provided the data presented
in this paper.

The data need to undergo a cosmological k-correction and ab-
sorption correction, as described in Bloom, Frail & Sari (2001), to
produce bolometric (1–10 000 keV), redshift-corrected light curves
before they can be fitted by the model. This method requires the
photon index, �, the absorption coefficient, σ (given by the ratio of
counts-to-flux unabsorbed to counts-to-flux observed, which are all
available on the UKSDCC repository) and the redshift, z, some of
which were found in the literature (see Table 3 ). For those GRBs
with no measured redshift, the sample mean of 0.39 from Gompertz
et al. (2014) was used. Alternatively, a randomly generated redshift
(e.g. within 1, 2 or even 3 standard deviations of the mean value)
could be used. The effect of an increasing z is an increase in lumi-
nosity and earlier on-set times that, as we will see later in this paper,

1 www.swift.ac.uk
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Figure 4. Top to bottom: Type I – humped; Type II – Classic; Type III – sloped; Type IV – stuttering. Each row shows plots for one example of each class. They
are not fully representative of the range of energetics or morphology for their respective classes since they are intended to highlight the light-curve shapes only.
Left-hand panels: synthetic light curves representing the four phenomenological classes. Dotted line – dipole luminosity; dashed line – propeller luminosity;
solid line – total luminosity. Centre panels: mass flow rates in the system. Solid line – mass flow rate on to the central magnetar; dashed line – propellered mass
flow out of the system. Right-hand panels: positions of key radii relative to the centre of the magnetar. Dashed line – Alfvén radius; dotted line – co-rotation
radius; solid line – light cylinder radius. Lower horizontal dot–dashed line is the magnetar radius, upper horizontal dot–dashed line is the outer disc radius, RD.

Table 2. Main parameters used to compare light curves from the previous
model (Gompertz et al. 2014) with the modified model without fallback
accretion.

Humped Classic Sloped Stuttering

B (1015 G) 1 1 10 5
Pi (ms) 5 5 5 5
MD,i (M�) 10−3 10−4 10−4 10−2

RD (km) 100 1000 1000 500

causes the model to favour larger initial disc masses and fallback
mass budgets. Since these may not have a physical basis, we have
chosen to use the sample mean, as in previous work by Gompertz
et al. (2014).

The sample studied in Gompertz et al. (2013, 2014) has been
expanded here by selecting identified SGRBEEs from Kaneko et al.
(2015, which covers bursts to the end of 2012) that have good data
available in the Swift archive. Plus GRBs 150424A and 160410A
which are identified as EE bursts within GCN Circulars (Norris
et al. 2015; Sakamoto et al. 2016, respectively). The data used in
the fitting incorporates XRT data and BAT data that have been
extrapolated into the XRT bandpass (available from the UKSDCC
Burst Analyser tool) since the effect of the EE is not always evident
in the XRT light curve alone.

4 FI T T I N G RO U T I N E

A Markov chain Monte Carlo simulation (MCMC; MacKay 2003,
chap. 4) was used to fit the model to data as there are a minimum
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Figure 5. Comparison of light curves generated by the previous model
(Gompertz et al. 2014; red curves) and the modified model without fallback
accretion (black curves). The fallback was turned off by setting ε = 1 and δ

= 10−6; n = 1 as the closest approximation to the switch on in the previous
model. Solid lines – total luminosity; dashed lines – propeller luminosity;
dotted lines – dipole luminosity.

Table 3. The sample of SGRBEEs and the parameters required for a cos-
mological k-correction. For GRBs with an unknown redshift (marked with
an ∗), the sample mean of 0.39 from Gompertz et al. (2014) was used.
†Upper limit (D’Avanzo et al. 2009). aProchaska et al. (2005); bSoderberg,
Berger & Ofek (2005); cPrice, Berger & Fox (2006); cBerger (2007); dCenko
et al. (2006); eGraham et al. (2009); fD’Avanzo et al. (2007); gSelsing et al.
(2016).

GRB � σ z

050724 1.58+0.21
−0.19 1.26 0.2578a

051016B 1.85+0.14
−0.13 1.31 0.9364b

051227 2.1+0.4
−0.4 1.31 2.8†

060614 1.78+0.08
−0.08 1.06 0.1254c

061006 2.1+0.6
−0.4 1.61 0.4377c

061210 2.60+1.92
−0.71 3.48 0.4095d

070714B 1.79+0.24
−0.22 1.15 0.9224e

071227 1.5+0.6
−0.5 1.02 0.381f

080123 2.46+1.04
−0.70 1.71 0.39∗

080503 2.38+0.42
−0.16 1.24 0.39∗

100212A 1.99+0.40
−0.18 1.37 0.39∗

100522A 2.40+0.17
−0.16 2.45 0.39∗

111121A 1.78+0.21
−0.20 1.42 0.39∗

150424A 1.98+0.24
−0.22 1.23 0.39∗

160410A 1.5+0.7
−0.6 1.02 1.717g

of six parameters and the MCMC will efficiently search a large
portion of parameter space and increase the probability of finding
the global minimum of the model. However, the MCMC method
requires a burn-in phase that is loosely defined as an unknown
number of steps at the beginning of the simulation where each
‘walker’ attempts to find the lowest area of probability space. The
chain is generally considered to be burned in when all walkers have
converged on to this area of probability space. The ‘EMCEE’ module
was used to handle the MCMC (Foreman-Mackey et al. 2013).

Table 4. Upper and lower limits placed on the fitting parameters in the
MCMC. MD,i, RD, ε and δ were searched in log-space for efficiency.

Lower Upper

B (1015 G) 10−3 10
Pi (ms) 0.69 10
MD,i (M�) 10−3 10−1

RD (km) 50 2000
ε 0.1 1000
δ 10−5 50
ηdip (per cent) 1 100
ηprop (per cent) 1 100
1/fB 1 600

To construct the posterior probability distribution, a Gaussian log-
likelihood function of the following form was chosen

ln(plikelihood) = −1

2

N∑
i=1

(
yi − ŷi

σi

)2

, (15)

where yi is a data point, σ i is its associated uncertainty and ŷi is
a model point calculated at the same x-value as yi. The Swift light
curves used here are binned to contain a minimum of 20 photons
per time bin (an exception may be applicable in the last bin) making
Gaussian statistics suitable. A prior probability that is flat when the
parameters are within the limits given in Table 4 was also chosen,

ln(pprior) =
{

0 : xl < x < xu

−∞ : otherwise.
(16)

Hence, the full posterior probability distribution is given by

ln(p) = ln(plikelihood) + ln(pprior). (17)

For the MCMC, 100 affine invariant walkers (Goodman & Weare
2010) were used and ran for a 50 000 step burn-in phase to allow
the walkers to test all of parameter space. After this run, the best
100 distinct probabilities were chosen to serve as the starting point
for the final MCMC run of the same length. This made sure that
the parameters recovered were representative of the global mini-
mum, not a local minimum, and reduces the burn-in of the chain to
�1000 steps in most cases. Although, if the time series (parameter
or probability value versus model number for each walker) showed
that the chain had not fully converged, the process of selecting the
100 best probabilities was repeated and the chain run again until
convergence was achieved. The optimal parameters were found by
taking the median of the posterior probability distributions and their
uncertainties are given by the 95 per cent percentiles. We chose the
median, rather than the mean or mode, since it is less sensitive to
the tails of distributions and is preserved under reversible transfor-
mations of the data (e.g. log10ε → ε). Fits for the SGRBEE sample
were produced with a range of free parameters (p): p = 6 (B, Pi,
MD,i, RD, ε and δ); 7 (original 6 plus 1/fB); 8 (original 6 plus ηdip and
ηprop) and 9 (all listed parameters). ηdip, ηprop and 1/fB were fixed to
5 per cent, 40 per cent and 1 per cent, respectively, when they were
not free parameters, in keeping with Gompertz et al. (2014). The fits
were repeated for fixed values of n = 1, 10, 100 and the corrected
Akaike Information Criterion (AICc; Cavanaugh & Neath 2011)
was used to establish the best-fitting models. We chose this statis-
tic since it allows us to compare models of varying free parameter
number (p).

AICc is given by the following equation

AICc = −2 ln(L) + 2k + 2k(k + 1)

N − k − 1
, (18)
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Table 5. AICc values for models using 6, 7, 8 and 9 free parameters (p) for n = 1, 10, 100. Underlined values are the lowest AICc values for each n bracket
and values in bold are the minima across all values of n. Values marked with an ∗ are modified since N − k − 1 = 0 for these models.

n = 1 n = 10 n = 100
GRB p = 6 p = 7 p = 8 p = 9 p = 6 p = 7 p = 8 p = 9 p = 6 p = 7 p = 8 p = 9

050724 2415 1790 1975 1682 2496 2216 2005 1507 2509 2128 2007 1610
051016B 802 540 771 531 785 562 742 518 785 549 742 435
051227 538 267 318 235 535 271 317 235 535 381 317 233
060614 47 390 47 256 47 521 44 709 48 428 47 275 46 950 44 746 48 422 47 263 48 013 45 278
061006 269 244 252 250 317 242 543 253 323 244 262 257
061210 673 802 1054∗ 103 101 677 149 1649∗ 5148 670 210 969∗ 5127
070714B 1303 1419 1260 1352 1302 1397 1260 1301 1302 1844 1260 1180
071227 335 161 163 158 226 339 161 163 225 265 161 230
080123 308 308 298 305 337 291 308 307 360 283 330 360
080503 2335 2375 2474 2474 2375 2379 2294 2583 2927 2475 3539 2784
100212A 9055 8372 8130 7310 9299 8271 8988 8196 9258 8498 8988 8588
100522A 29 377 22 992 27 472 23 419 27666 23326 26 116 22 184 27 531 22 460 26 744 22 411
111121A 1754 1747 1761 1803 1753 1751 1748 1766 1753 1750 1761 1742
150424A 2377 2997 2223 1334 2315 51 246 2170 58 080 2315 1795 2171 1432
160410A 974 473 546 18742 1115 366 546 403 1255 412 546 359

where k is the number of free parameters and N is the number of
observations in the data set. This penalizes a model for ‘overfit-
ting’ and scales with k. We have substituted equation (15) for the
maximum log-likelihood ln (L), which then cancels down to the χ2

statistic. The minimum AICc value within a set is then representa-
tive of the optimum model fit since if the AICc value of a model that
has a large number of free parameters (and hence a large penalty)
is less than a model with fewer free parameters (and hence a small
penalty), then it can be generally assumed that the extra parameters
improve the quality of fit.

5 R ESULTS AND DISCUSSION

Table 5 presents the AICc values for all results of the fitting routine.
The large spread of values is representative of the difficulty χ2

(the root of the AICc) has comparing a smooth model with highly
variable data, especially in the early-time BAT data. Table 5 shows
that the general picture of the model is stable over all n values
since there is a reasonable spread of best fits. This also confirms
the observation made in Section 2.2 that the model is reasonably
insensitive to n. Increasing n only makes features such as humps
appear sharper, which does not have a great impact on the overall
quality of the fit. The best global fits to the SGRBEE sample (bold
values in Table 5) are presented in Fig. 6.

The p = 6 set represents the core physics of the model by con-
straining the fundamental properties of the magnetar (B and Pi), the
accretion disc (MD,i and RD) and the fallback (Mfb and tfb through
δ and ε, respectively) and is the most energetically restricted case
compared to the p = 9 case that has the largest energy reservoir. Fur-
thermore, ηdip and ηprop determine the efficiency at which the dipole
and propeller mechanisms, respectively, need to work at in order to
convert the energy to luminosity. Lastly, fB accounts the anisotropy
of the radiation (1/fB is the solid angle of emission). The results of
the MCMC were analysed for parameter correlations though none
were found since our method of selecting the best probabilities after
the burn-in phase removes any correlation by placing the parameters
in the global minimum.

The k-correction performed in Section 3 assumes isotropic emis-
sion, whereas in actuality, GRBs are beamed into a very narrow
opening angle due to their relativistic velocity (Fruchter et al. 1999;
Harrison et al. 1999; Frail et al. 2001). Rather than divide the data

down to a beam-corrected level, our routine works to multiply the
model up to the isotropic luminosity level so that model compar-
ison becomes easier on the same scale. The morphologies of the
fits change as each new parameter is introduced since they handle
the high luminosities at early times allowing the core parameters to
reconfigure. This means that there can be more energy available at
late times to fit the fading afterglow.

It is interesting to compare the freedom of the model (i.e. how
many free parameters are used) with the ‘sharpness’ of the pro-
peller (i.e. the n value). Generally speaking, the AICc value of the
fit improves as the number of free parameters increases, whereas,
increasing n for the same number of free parameters often does not
improve the fit. Also, p = 8 fits often perform worse than p = 7
fits implying that the beaming fraction has a greater role within the
model than the efficiencies, but the inclusion of all three of these
parameters are most preferable. Table 6 shows a comparison of
the jet half-opening angles derived from the best fits in this work
with hydrodynamical modelling performed by Ryan et al. (2015)
for four GRBs common to both studies. Our model produces sys-
tematically narrower jets (most likely caused by the model attempts
to fit the early-time luminosity) that are partially consistent with
Ryan et al. (2015) in errors (e.g. GRBs 051016B and 060614), and
where they are not (e.g. GRB 061006), they are broadly consistent
to ∼2σ–2.5σ .

Comparing our results with that of Gompertz et al. (2014), we
can see the inclusion of fallback accretion within the propeller
model allows for an improvement in fitting the ‘tail’ of the fading
afterglow. This can be seen in GRBs 051227, 060614 and 061006,
where Gompertz et al. (2014) did not produce such good fits to the
tail. Hence, fallback accretion is a necessary addition to the propeller
model in order to fully explain the energetics and morphologies of
SGRBEEs. Additionally, the extended model handles variability
and flares within the data much more naturally than Gompertz et al.
(2014) and copes with the early-time luminosity detected by BAT.

The parameters derived from the fits in Fig. 6 are presented in
Table 7. We find that the magnetic fields derived from the fits are
in the moderate to high end of the parameter space and that the
sample generally has slow initial spins. The slow initial spins are
most likely due to the additional fallback spinning the magnetar up
and, therefore, the constraints on high initial spin rates is relaxed.
This has an impact on the value of the magnetic field derived as
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Figure 6. Best global fits to the SGRBEE sample (bold values in Table 5). Dashed line – propeller luminosity; dotted line – dipole luminosity; solid line –
total luminosity; red points – combined BAT and XRT data.
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Table 6. Table showing the half-opening angles (in radians) for four GRBs,
calculated from fB = 1 − cos (θ j). θ j values are from the global best fits of
this work (uncertainties are 95 per cent confidence interval); θ0 values are
from Ryan et al. (2015).

GRB θ j θ0

051016B 0.07+0.11
−0.11 0.35+0.11

−0.24
060614 0.079+0.359

−0.500 0.293+0.122
−0.085

061006 0.078+0.088
−0.081 0.407+0.068

−0.173

070714B 0.06+0.18
−0.12 0.33+0.11

−0.11

the fit moves along the correlation between B and Pi discussed in
Gompertz et al. (2014). The sample fits also tend to favour massive
discs and narrow jet opening angles. This is most likely due to the
model extracting as much of the available energy as possible to fit
the high luminosities at early times in the light curve, data which
was not included in the fits of Gompertz et al. (2014). The values of
ε, δ, ηdip and ηprop are widely distributed throughout the parameter
space. The derived parameters are consistent with predictions for a
magnetar (Giacomazzo & Perna 2013; Mereghetti, Pons & Melatos
2015; Rea et al. 2015) and are also consistent with the results in
Gompertz et al. (2014).

We will now examine how increasing the number of free param-
eters affects the fits in three GRBs from the sample. GRB 060614
has been chosen since this is a uniquely interesting burst given its
characteristics. GRBs 050724 and 111121A were chosen as exam-
ples of the model behaving consistently well, or vice versa, over the
different parameter sets.

5.1 GRB 050724

Fig. 7 shows a comparison of fits with varying p to GRB 050724 for
n = 100. For p = 6, the model does a reasonable job of fitting the high

Figure 7. Models fitted to GRB 050724 with n = 100 and p = 6 (top left), 7
(top right), 8 (bottom left) and 9 (bottom right). Solid line – total luminosity;
dashed line – propeller luminosity; dotted line – dipole luminosity; red points
– combined BAT and XRT data.

luminosity at early times but does not retain enough energy to fit
the tail. The fit demanded a large amount of fallback, δ = 1.65+1.26

−0.62,
on a short time-scale, ε = 0.13+0.04

−0.02, and a very rapid spin period,
P = 0.69 ms (limit), in order to reach such a high luminosity so soon.
Since the fallback mass reaches the disc quickly, there is nothing left
in the fallback budget to provide energy for the late-time emission.
p = 7 and 8 provide improved fits to the early-time luminosity but
again fail to fit the fading tail despite the additional parameters being
pushed to the higher end of their limits, e.g. 1/fB = 578+21

−71 for p =
7 and ηprop = 99+1

−5 per cent for p = 8
(
ηdip = 12+2

−2 per cent
)
. p = 9

is the only model that succeeds in fitting the tail but still requires
a highly efficient emission mechanism for the propeller, ηprop =
86+13

−18 per cent, and a very narrow beaming angle, 1/fB = 502+93
−103.

Table 7. Parameters derived from the best global fits to the SGRBEE sample (bold values in Table 5). Reported errors are 95 per cent. Values marked with an
[L] have reached a parameter limit; those marked with [F] were fixed during fitting. The χ2

red values are also presented to indicate goodness of fit.

GRB n[F] B Pi MD,i RD ε δ ηdip ηprop 1/fB χ2
red

(× 1015 G) (ms) ( × 10−2 M�) (km) (per cent) (per cent)

050724 10 4.81+0.11
−0.23 9.70+0.29

−0.92 0.489+0.070
−0.023 320+5

−5 1.26+11.87
−1.15

(
0.50+1.82

−0.30

)
× 10−3 5+1

−1 86+13
−18 508+87

−100 6

051016B 100 9.95+0.05
−0.12 3.44+0.19

−0.17 9.84+0.16
−0.67 54+4

−2 262.25+443.06
−244.97

(
0.39+1.33

−0.28

)
× 10−4 25+22

−7 77+21
−31 431+158

−175 5

051227 100 5.15+0.72
−0.54 3.02+0.29

−0.31 9.31+0.66
−1.32 263+10

−16 0.94+22.57
−0.83

(
1.28+4.78

−0.97

)
× 10−2 89+10

−25 52+27
−17 526+71

−149 7

060614 1 6.02+0.05
−0.05 9.99+0.01

−0.04 9.99+0.01
−0.05 680+6

−6 998.58+1.37
−6.15 2.29+0.05

−0.05 99+1
−4 1[L] 322+16

−8 19

061006 10 2.60+0.53
−0.35 6.83+1.88

−4.20 1.14+3.82
−0.37 1915+82

−344 131.21+92.86
−51.42 17.78+6.58

−4.30 5[F] 40[F] 330+258
−304 15

061210 10 7.60+0.45
−0.40 6.00+0.68

−0.59 1.71+0.26
−0.23 124+3

−3 733.05+250.59
−285.29

(
9.41+4.70

−3.92

)
× 10−3 5[F] 40[F] 241+74

−55 23

070714B 100 6.58+1.56
−1.74 4.91+0.80

−1.15 9.32+0.65
−1.47 463+20

−19 30.93+3.52
−3.43 1.68+0.12

−0.12 87+12
−34 80+19

−19 536+62
−129 11

071227 1 8.59+1.35
−2.89 5.99+2.30

−3.34 1.54+3.03
−0.62 268+22

−21 9.60+50.17
−9.47

(
1.35+5.10

−0.75

)
× 10−3 3+4

−2 59+39
−41 72+197

−59 4

080123 100 9.55+0.43
−1.06 6.21+1.22

−1.41 0.928+0.374
−0.190 231+7

−6 26.21+52.13
−24.42

(
5.97+6.81

−2.04

)
× 10−5 5[F] 40[F] 158+41

−60 6

080503 10 1.97+0.45
−0.32 1.85+0.59

−0.55 0.33+1.08
−0.22 566+65

−36 0.42+0.21
−0.20 10.35+25.85

−8.28 70+29
−48 29+27

−15 1[F] 9

100212A 1 9.97+0.03
−0.13 7.26+0.23

−0.23 9.91+0.08
−0.33 163+1

−1 978.19+21.03
−94.38

(
7.12+0.36

−0.68

)
× 10−1 77+22

−22 17+5
−5 422+166

−99 19

100522A 10 9.32+0.05
−0.09 9.95+0.04

−0.19 0.467+0.012
−0.003 75+1

−1 5.44+3.14
−2.50

(
8.76+2.39

−1.20

)
× 10−4 7+3

−3 73+26
−26 375+205

−99 89

111121A 100 4.19+0.32
−0.28 4.38+0.64

−0.46 8.61+1.31
−1.44 812+12

−12 99.59+30.58
−23.43

(
2.84+0.36

−0.33

)
× 10−3 84+16

−32 41+12
−13 474+120

−180 13

150424A 1 9.80+0.19
−0.73 5.74+0.13

−0.41 9.94+0.06
−0.22 826+19

−22 339.09+61.77
−53.67 6.92+0.81

−0.78 19+1
−2 99+1

−4 594+6
−22 11

160410A 100 5.02+0.81
−0.82 2.33+0.78

−0.65 6.23+3.36
−2.03 95+6

−7 12.25+10.49
−7.56

(
2.20+0.63

−0.47

)
× 10−2 24+20

−15 78+21
−39 419+172

−223 6
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Figure 8. Models fitted to GRB 060614 with n = 100 and p = 6 (top left), 7
(top right), 8 (bottom left) and 9 (bottom right). Solid line – total luminosity;
dashed line – propeller luminosity; dotted line – dipole luminosity; red points
– combined BAT and XRT data.

Figure 9. Models fitted to GRB 111121A with n = 100 and p = 6 (top left), 7
(top right), 8 (bottom left) and 9 (bottom right). Solid line – total luminosity;
dashed line – propeller luminosity; dotted line – dipole luminosity; red points
– combined BAT and XRT data.

It is interesting to note the late-time giant flare within the tail of
GRB 050724 that the model has not been able to fit. At present, the
phenomena that cause such large outbursts at these late times are
still poorly understood (see Falcone et al. 2006; Curran et al. 2008;
Chincarini et al. 2010).

5.2 GRB 060614

GRB 060614 poses a challenge to typical long/short classification
scheme since it has a duration of ∼100 s but the hard spectrum
and lack of supernova connection are more indicative of the short
classification (Mangano et al. 2007; Zhang et al. 2007; Xu et al.
2009).

Fig. 8 presents model fits of varying p and n = 100 to data for
GRB 060614. p = 6 provides a good fit to the early-time lumi-
nosity but after ∼100 s, its energy reservoir is depleted and the
light curve rapidly drops off before fitting the tail. This demands
a rapid spin period, P = 0.90+0.01

−0.01 ms, and a large amount of fall-
back mass, δ = 49.61+0.38

−1.63, reaching the disc on a short time-scale,

Table 8. AICc values for fits to the SGRBEE sample with varying p values
and n = 1 with data <10 s excluded. Values in bold face are the mini-
mum value for each GRB. ∗GRB 061210 has fewer data points than free
parameters resulting in a negative AICc value that was not considered when
choosing the best fit.

GRB p = 6 p = 7 p = 8 p = 9

050724 1611 1489 1561 1259

051016B 340 252 310 153
051227 178 53 59 70
060614 48 086 43 738 43 728 43 610
061006 177 90 114 123
061210 −17∗ 181 66 357
070714B 203 215 177 195
071227 112 89 100 101
080123 354 308 298 319
080503 2281 2375 2157 2339
100212A 8198 7602 7771 7073
100522A 8530 7401 7725 6322
111121A 872 782 819 787
150424A 366 279 354 251
160410A 495 149 212 222

ε = 0.31+0.03
−0.03. p = 7 adds more structure to the early-time lumi-

nosity and has a more gradual decrease of emission but still fails to
reach the tail, whereas, p = 8 is very much a repeat of p = 6 and of-
fers no improvement. Again, p = 9 offers the best results for fitting
to the tail but requires a very efficient emission mechanism for the
propeller, ηprop = 100 per cent (limit), and a moderate beaming frac-
tion, 1/fB = 251+6

−7. Oddly, this model requires the least efficient
dipole emission as well, ηdip = 1 per cent (limit). This is probably
due to the difference in EE and dipole luminosity being the greatest
in GRB 060614 and so the model has to do something to achieve
a drop in luminosity spanning several orders of magnitude while
maintaining parameters that can produce bright, early emission.

GRB 060614 continues to be a very odd case when we examine
its best-fitting parameters in Table 7 relating to the fit in Fig. 6 and
n = 10. It is one of the slowest rotating candidates with one of
the most massive and most slowly fed discs. Also, the dipole and
propeller emission efficiencies have completely reversed roles with
ηdip = 99+1

−4 per cent and ηprop = 1 per cent (limit). The propeller’s
main job is to modulate the spin in order to achieve the desired
luminosities. Since the propeller plays no role in this particular
fit, this indicates that that has been completely taken over by the
fallback.

5.3 GRB 111121A

Fig. 9 presents model fits of varying p and n = 100 to data for GRB
111121A. This is an example of the model behaving well across all
values of p. Despite the fits for p = 6, 7 and 8 looking very similar,
the parameters derived from the fits vary quite significantly. For p =
6 and 8, relatively small values of magnetic field are recovered, B =(
2.00+0.12

−0.11

) × 1015 G and B = (
1.53+1.40

−0.31

) × 1015 G, respectively,
whereas p = 7 has a large magnetic field of B = (

8.15+1.77
−4.65

) ×
1015 G. The initial spin values for these fits also follow a similar
pattern with spins near the break-up limit for p = 6 and 8, Pi =
0.69 ms (limit) and Pi = 0.89+0.16

−0.17 ms, respectively, and a much
slower spin for p = 7, Pi = 6.36+1.96

−3.76 ms.
Lastly, the p = 9 fit has derived parameters in the moder-

ate region of parameter space, B = (
4.19+0.32

−0.28

) × 1015 G and
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Figure 10. Global best-fitting models produced from fitting to the SGRBEE sample for n = 1 and excluding data <10 s (bold values in Table 8). Solid, black
line – total luminosity; dashed, black line – propeller luminosity; dotted, black line – dipole luminosity. Points are combined BAT and XRT data: red points
have been included in the fitting, blue points were excluded.

Pi = 4.38+0.64
−0.46 ms. It has a slowly fed disc with a small amount

of fallback mass, ε = 99.59+30.58
−23.43 and δ = (

2.84+0.36
−0.33

) × 10−3. We
derive a propeller efficiency consistent with the value used to Gom-
pertz et al. (2014) of ηprop = 41.48+11.99

−13.27 per cent but the fit requires

a much higher dipole efficiency of ηdip = 83.60+15.65
−31.94 per cent and a

narrow jet opening angle of 1/fB = 474+120
−180. However, this fit has

introduced a flare at roughly the 1000 s mark that could be indicative
of overfitting.
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Table 9. Parameters derived from the best-fitting models to the SGRBEE sample for n = 1 and excluding data <10 s. Uncertainties represent a 95 per cent
confidence interval. Values marked with an [L] are a parameter limit; those marked with an [F] were fixed during fitting. χ2

red values are shown to indicate
goodness of fit. ∗GRB 061210 has fewer data points than free parameters resulting in a negative χ2

red value.

GRB B Pi MD,i RD ε δ ηdip ηprop 1/fB χ2
red

(× 10−15 G) (ms) ( × 10−2 M�) (km) (per cent) (per cent)

050724 3.30+0.48
−0.36 9.94+0.06

−0.26 0.167+0.042
−0.028 383+7

−7 0.94+12.75
−0.83

(
0.85+3.15

−0.73

)
× 10−3 1[L] 98+2

−8 253+35
−22 5

051016B 1.18+0.68
−0.48 9.09+0.87

−2.84 2.47+4.73
−1.63 59+4

−3 635.72+234.17
−216.98

(
1.00+0.91

−0.51

)
× 10−3 1[L] 94+6

−20 220+296
−144 2

051227 8.86+1.10
−3.19 4.00+1.66

−1.84 0.67+1.84
−0.31 134+35

−26 4.98+456.99
−4.86

(
0.30+1.31

−0.30

)
× 10−1 5[F] 40[F] 82+77

−57 2

060614 6.21+0.41
−1.03 8.30+1.14

−2.48 0.755+0.453
−0.117 1680+23

−23 562.87+161.29
−103.91

(
1.00+0.14

−0.10

)
× 10−2 84+15

−52 8+2
−4 506+91

−225 20

061006 7.16+0.81
−1.07 7.97+1.63

−3.97 2.07+3.29
−0.56 1908+89

−372 136.05+94.65
−54.63 20.98+7.99

−5.34 5[F] 40[F] 380+209
−311 8

061210 0.75+0.27
−0.24 0.80+0.26

−0.11 7.04+2.76
−2.20 128+143

−42 182.82+748.09
−165.31

(
1.47+6.69

−1.13

)
× 10−1 7+3

−3 91+9
−25 1[F] −33∗

070714B 4.97+1.20
−1.45 1.00+0.15

−0.27 4.24+2.93
−0.90 320+29

−25 520.96+453.38
−494.48

(
1.55+0.92

−0.65

)
× 10−1 48+42

−31 80+19
−36 1[F] 2

071227 8.40+1.52
−2.37 1.79+1.99

−0.80 4.98+4.42
−2.80 250+25

−23 1.78+28.53
−1.67

(
0.95+4.28

−0.61

)
× 10−3 5[F] 40[F] 49+51

−33 2

080123 7.08+0.18
−0.25 0.91+0.07

−0.04 9.84+0.16
−0.61 254+5

−4 62.03+117.14
−58.06

(
1.56+1.90

−1.19

)
× 10−4 4+3

−3 98+2
−9 1[F] 6

080503 5.45+0.55
−1.29 6.95+2.91

−4.62 6.27+3.61
−5.58 59+2

−5 0.108+0.079
−0.008 4.21+37.64

−2.15 73+26
−54 60+20

−36 1[F] 9

100212A 9.98+0.02
−0.07 7.50+2.39

−4.32 9.96+0.04
−0.17 163+1

−1 980.05+19.22
−87.98

(
7.07+0.23

−0.62

)
× 10−1 79+20

−20 17+5
−4 441+148

−94 19

100522A 3.06+0.09
−0.07 9.93+0.07

−0.33 0.509+0.076
−0.105 63+2

−1 0.22+1.21
−0.11

(
3.11+2.10

−1.87

)
× 10−3 1[L] 99+1

−3 316+26
−19 37

111121A 9.03+0.92
−2.25 6.34+1.64

−2.71 1.14+1.22
−0.31 292+16

−14 32.44+7.02
−5.21

(
1.77+0.36

−0.26

)
× 10−2 5[F] 40[F] 247+119

−167 7

150424A 9.19+0.68
−1.03 8.99+0.97

−2.76 0.544+0.421
−0.115 434+61

−43 20.40+9.75
−7.56

(
1.88+0.66

−0.59

)
× 10−2 61+37

−45 13+14
−9 122+331

−69 2

160410A 3.58+0.63
−0.95 3.17+0.80

−1.43 3.32+3.94
−0.89 826+79

−87 21.83+199.41
−19.02

(
3.65+5.63

−2.19

)
× 10−2 5[F] 40[F] 410+181

−285 3

Table 10. AICc values for fits to the SGRBEE sample excluding data <10 s
and using equation (14) for the dipole torque. ∗GRB 061210 has fewer data
points than free parameters and so these statistics should be treated with
caution.

GRB p = 6 p = 7 p = 8 p = 9

050724 5927 17 516 1636 1287
051016B 396 2327 444 147
051227 493 1000 192 64
060614 50 687 88 449 44 055 43 667
061006 294 854 424 111
061210∗ 372 1236 96 1532
070714B 880 3622 212 1402
071227 115 1293 161 202
080123 355 6162 752 290
080503 3186 13 299 2336 3670
100212A 9035 35 074 8757 8037
100522A 8709 22 489 8808 6391
111121A 2498 8441 898 757
150424A 398 5861 252 267
160410A 1198 1479 717 971

5.4 Refitting excluding early-time data

The results presented in Table 7 are consistently pushing the upper
bounds for the initial disc mass, MD,i. This is most likely due to the
model’s need to have a high accretion rate at early times in order
to reach the high luminosities at those times. Since the emission
produced at these times is usually attributed to internal shocks and
energy drawn from the merger rather than magnetic particle accel-
eration, fitting these high early-time luminosities may not strictly
be within the remit of the model. We therefore chose to refit the
sample excluding some of the early-time data.

We chose an arbitrary cut-off of 10 s to define the on-set of
EE after the prompt emission. This meant we avoided making an
arbitrary cut for each individual burst since EE is not currently well
defined. The fits were performed for p = 6, 7, 8 and 9 and n = 1 for
comparison with the work in Gompertz et al. (2014).

Table 8 presents the AICc values of the refits. The best fits (bold
values) from Table 8 are plotted in Fig. 10 and the parameters de-
rived from these fits are presented in Table 9 with the χ2

red goodness
of fit statistic. GRB 061210 has very few data points and excluding
data <10 s means that there are fewer data points than free param-
eters that resulted in negative AICc and χ2

red values. Therefore, it is
shown here for consistency rather than as a statistically significant
result.

As is shown in Fig. 10, the result of excluding the early-time data
is to produce more light curves of the humped morphology than
the sloped or classic variety in Fig. 6. But most surprisingly, this
experiment did not succeed in reducing MD,i as expected, suggesting
the extra mass is a result of another change in the model, most likely
the use of equation (13) instead of equation (14). Equation (14)
enhances the dipole spin-down and mass-loss resulting in a lower
initial disc mass.

5.5 Refitting with enhanced dipole torque

For direct comparison with Gompertz et al. (2014), the sample was
fitted once more using the enhanced dipole torque in equation (14)
from Bucciantini et al. (2006) for n = 1 and p = 6, 7, 8 and 9. The
AICc values for the fits are presented in Table 10, the best fits from
this table are shown in Fig. 11 and the parameters derived from
those fits are presented in Table 11.

Including equation (14) in the model provides a marginal im-
provement in fitting, e.g. the tail of GRB 100212A is matched more
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Figure 11. Results of fitting to the SGRBEE sample for the best global fits (bold values in Table 10) excluding data <10 s and using equation (14) for the
dipole torque. Solid, black line – total luminosity; dashed, black line – propeller luminosity; dotted, black line – dipole luminosity. Data points are combined
BAT and XRT data: blue points have been excluded from the fit, red points were included.
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Table 11. Parameters derived from fits to SGRBEE sample for the global fits (bold values in Table 10) excluding data <10 s and using equation (14) for the
dipole torque. Uncertainties are a 95 per cent confidence interval and values marked with an [L] are a parameter limit. ∗GRB 061210 has fewer data points than
parameters resulting in a negative χ2

red value.

GRB B Pi MD,i RD ε δ ηdip ηprop 1/fB χ2
red

(× 1015 G) (ms) ( × 10−2 M�) (km) (per cent) (per cent)

050724 2.75+0.26
−0.31 8.91+0.63

−1.12 0.100+0.021
−0.005 378+8

−8 983.76+15.64
−67.62

(
5.70+1.15

−1.13

)
× 10−3 1[L] 97+3

−10 522+73
−128 5

051016B 0.36+0.20
−0.09 2.33+0.61

−0.57 2.62+2.35
−1.56 52+5

−2 772.31+205.95
−259.35

(
4.15+5.45

−1.97

)
× 10−4 1[L] 92+7

−23 524+73
−213 2

051227 8.12+1.80
−3.86 4.91+3.23

−3.01 0.26+0.87
−0.15 159+60

−40 13.32+732.02
−13.21

(
0.77+6.62

−0.77

)
× 10−2 45+51

−36 53+44
−44 238+327

−187 2

060614 3.03+0.36
−0.39 6.05+1.60

−1.42 0.31+0.13
−0.08 1297+17

−17 632.65+119.29
−105.42

(
1.53+0.14

−0.14

)
× 10−2 80+19

−41 19+10
−8 383+208

−222 20

061006 3.57+0.61
−0.75 2.67+0.93

−1.02 1.08+0.96
−0.36 423+15

−14 52.71+51.20
−29.47

(
2.38+0.65

−0.61

)
× 10−3 73+26

−48 6+6
−3 347+240

−273 11

061210 0.40+0.03
−0.03 0.69[L] 1.19+0.25

−0.22 211+89
−59 815.21+177.54

−528.85

(
3.21+3.07

−0.88

)
× 10−1 17+3

−3 99+1
−3 1[F] −43∗

070714B 1.77+0.17
−0.15 0.69[L] 3.43+0.38

−0.82 307+26
−22 41.83+598.49

−21.04

(
1.21+0.92

−0.32

)
× 10−1 75+24

−59 99+1
−5 1[F] 2

071227 1.19+0.27
−0.13 0.70+0.04

−0.01 5.46+0.20
−0.60 1144+97

−116 250.23+674.92
−225.49

(
0.20+1.25

−0.13

)
× 10−1 5[F] 40[F] 1[F] 3

080123 8.31+1.61
−2.20 5.67+2.71

−2.52 0.32+0.38
−0.13 244+7

−6 54.14+91.66
−48.87

(
1.26+1.09

−0.60

)
× 10−4 4+7

−3 66+32
−40 154+351

−112 6

080503 9.10+0.87
−4.06 1.06+0.74

−0.35 0.75+0.92
−0.12 767+23

−40 36.89+828.92
−36.76

(
0.01+16.16

−0.01

)
× 10−1 2+3

−1 68+21
−43 1[F] 9

100212A 0.73+0.08
−0.07 3.91+0.37

−0.34 0.11+0.02
−0.01 550+15

−15 0.37+0.95
−0.25

(
2.46+3.05

−1.34

)
× 10−2 1[L] 77+21

−26 94+50
−26 22

100522A 1.53+0.29
−0.12 0.74+0.15

−0.05 8.45+1.22
−2.38 243+6

−5 18.73+10.36
−6.57

(
4.72+0.56

−0.50

)
× 10−3 89+11

−24 1[L] 43+22
−10 37

111121A 2.21+0.26
−0.22 1.45+0.34

−0.26 1.97+0.64
−0.51 247+15

−12 0.20+0.73
−0.10

(
5.00+3.77

−3.18

)
× 10−2 32+22

−24 60+38
−44 35+91

−18 6

150424A 0.38+0.08
−0.07 0.75+0.12

−0.05 0.39+0.11
−0.04 540+22

−21 951.95+46.20
−168.74

(
5.13+0.88

−0.84

)
× 10−1 2+1

−1 91+9
−21 1[F] 2

160410A 1.49+0.14
−0.13 0.69[L] 0.17+0.53

−0.06 544+563
−322 0.57+6.17

−0.46 20.42+22.88
−16.15 99+1

−4 100[L] 1[F] 17

closely in Fig. 11 than Fig. 10, though in some cases it performs
much worse, e.g. GRB 160410A. The initial disc mass MD,i is re-
duced by approximately an order of magnitude across the sample.
This is a reflection of the enhanced energy output facilitated by
equation (14). Equation (14) does not produce a dramatic change
in the morphology or energetics of the fits, nor does it significantly
improve the fit statistics. However, the derived disc masses are more
broadly in line with previous work (e.g. Rosswog 2007).

5.6 The B–P landscape

Fig. 12 shows where the results of this work fall in relation to other
GRBs in both the long and short classifications. It needs to be noted
that the results from Gompertz et al. (2014) used fixed efficiencies of
ηdip = 5 per cent and ηprop = 40 per cent, whereas the work done in
Rowlinson et al. (2013) uses 100 per cent efficiency instead, and our
efficiencies have been free parameters in most fitting procedures.
Also, Gompertz et al. (2014) used equation (14) that enhances the
dipole spin-down and so these results appear to occupy their own
region of low magnetic field and spin period. Hence, conclusions
drawn from this plot require some caution.

However, Fig. 12 does show us that our results occupy a region
of moderate to high magnetic field and spin period, indicating that
the fallback accretion relaxes the constraints on the initial spin of
the magnetar (i.e. it does not need to be born near the break-up
period) since it will be spun up by the fallback regardless. Though
this result could be due to either the addition of a t−5/3 fallback
accretion profile or our inclusion of beaming as a fitting parameter.
The results of this work still do not approach the same region as
Gompertz et al. (2014) even when early-time, high-luminosity data
is excluded and equation (14) is used which consolidates that the

shift in B–P parameter space is due to the inclusion of fallback
accretion.

6 C O N C L U S I O N S

We have modified the magnetar propeller model to include fallback
accretion, examined the effect these changes have on model light
curves and used an MCMC to fit the model to a sample of short
GRBs exhibiting EE for a range of free parameters and ‘sharpness’
of propeller. We have found that the parameters derived from the
fits produced by the propeller model with fallback accretion are
consistent with theoretical predictions for magnetars.

Our model can cope with long, dipole plateaux and flare-like vari-
ability but struggles with the early-time, short-time-scale variabil-
ity. However, since this variability is usually present in the prompt
emission that is generally attributed to internal shocks rather than
magnetic acceleration of particles, it is not strictly within the remit
of the model to fit it.

The addition of fallback accretion provides a noticeable im-
provement in matching light curves compared to those presented in
Gompertz et al. (2014) and fallback accretion may play a pivotal
role in explaining the features of EE light curves. Our model uses a
smoothed representation of fallback disc feeding as a simplest case
scenario. A more ‘clumpy’ representation could potentially be more
physical and useful to explain phenomena such as flares (Dall’Osso
et al. 2017).
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Figure 12. Plots of magnetic field strength versus initial spin period. The
solid (dashed) red line represents the break-up period for a collapsar (binary
merger) progenitor (Lattimer & Prakash 2004). Top panel – blue stars:
stable magnetars and green circles: unstable magnetars that collapse to form
a black hole (Rowlinson et al. 2013). Black ‘+’ symbols are the LGRB
candidates identified by Lyons et al. (2010) and Dall’Osso et al. (2011).
Red squares (both panels) show the values found in Gompertz et al. (2014).
Yellow hexagons (both panels) represent the magnetic fields and initial spin
periods of this work for the global best-fitting values in Table 7. Bottom
panel – magenta hexagons are the B and Pi values for fits excluding data
<10 s in Table 9; green hexagons are B and Pi values for fits excluding
data <10 s and including equation (14) in Table 11. Filled symbols have
observed redshifts, open symbols use the sample average redshift, which is z
= 0.39 for extended bursts and z = 0.72 for the short bursts from Rowlinson
et al. (2013).
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