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ABSTRACT
We investigate the pre-disruption gravitational dynamics and post-disruption hydrodynamics
of the tidal disruption of stars by supermassive black hole (SMBH) binaries. We focus on
binaries with relatively low mass primaries (106 M�), moderate mass ratios, and separations
with reasonably long gravitational wave inspiral times (tens of Myr). First, we generate a
large ensemble (between 1 and 10 million) of restricted three-body integrations to quantify
the statistical properties of tidal disruptions by circular SMBH binaries of initially unbound
stars. Compared to the reference case of a disruption by a single SMBH, the binary potential
induces a significant variance into the specific energy and angular momentum of the star at
the point of disruption. Second, we use Newtonian numerical hydrodynamics to study the
detailed evolution of the fallback debris from 120 disruptions randomly selected from the
three-body ensemble (excluding only the most deeply penetrating encounters). We find that
the overall morphology of the debris is greatly altered by the presence of the second black
hole, and the accretion rate histories display a wide range of behaviours, including order of
magnitude dips and excesses relative to control simulations that include only one black hole.
Complex evolution typically persists for many orbital periods of the binary. We find evidence
for power in the accretion curves on time-scales related to the binary orbital period, though
there is no exact periodicity. We discuss our results in the context of future wide-field surveys,
and comment on the prospects of identifying and characterizing the subset of events occurring
in nuclei with binary SMBHs.
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1 IN T RO D U C T I O N

Observations of the tidal disruption of stars by supermassive black
holes (SMBHs; Hills 1975; Rees 1988) can yield unique informa-
tion about several, otherwise-inaccessible astrophysical phenom-
ena. When a disruption occurs, approximately half of the tidally dis-
rupted debris returns to the SMBH (Rees 1988), circularizes through
a sequence of dissipation processes (Evans & Kochanek 1989), and
generates a luminous, panchromatic accretion episode (Cannizzo,
Lee & Goodman 1990; Ulmer 1999; Lodato & Rossi 2011). Re-
cent numerical investigations have shown that the material circu-
larizes on scales comparable to the tidal disruption radius, given by
rt = (Mh/M∗)1/3 R∗ for a star of mass M∗ and radius R∗ around a
black hole of mass Mh (Bonnerot et al. 2016c; Hayasaki et al. 2016;
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Shiokawa et al. 2015). If the black hole mass is less than 107 M�,
the rate at which material returns to the SMBH can lead to super-
Eddington accretion rates lasting from days to years (Evans &
Kochanek 1989); in this case, radiation pressure can inflate the
accretion disc into a quasi-spherical envelope extending to much
larger radii (Loeb & Ulmer 1997; Coughlin & Begelman 2014),
strong winds can be driven from the surface of the disc (Strubbe
& Quataert 2009, 2011; Shen et al. 2016), and relativistic jets can
be launched from the system (Coughlin & Begelman 2014; Kelley,
Tchekhovskoy & Narayan 2014; Coughlin & Nixon 2015), all of
which lead to vastly different disc morphologies and appearances
of the tidal disruption event (TDE).

The rates at which TDEs occur are sensitive to the structure
and relaxation processes taking place in galactic nuclei (Magor-
rian & Tremaine 1999; Wang & Merritt 2004). Most disruptions
are expected to occur around the lowest mass black holes, making
TDEs particularly good probes of the poorly understood, low-mass
end of the SMBH mass function (Stone & Metzger 2016). Most
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promisingly, although much has already been learned from the first
dozens of observed TDEs (Komossa 2015), the rate of TDE iden-
tifications is expected to increase by as much as two orders of
magnitude as forthcoming wide-area surveys come online [e.g. the
Large Synoptic Survey Telescope (LSST); Ivezic et al. 2008.

The presence of SMBH binaries in galactic nuclei (Begelman,
Blandford & Rees 1980) may affect both the rate and appearance of
TDEs. At early epochs, when the binary is still relatively wide, the
secondary acts as a perturber that increases the rate at which stars
diffuse into the loss cone of the primary (Polnarev & Rees 1994).
Later on, as the binary approaches coalescence, the rate of TDEs
from unbound stars is predicted to be suppressed, as stars entering
the loss cone and encountering the binary will most often be ejected
rather than being tidally disrupted by either hole (Chen, Liu &
Magorrian 2008). Conversely, the rate of TDEs from bound stars
may be greatly enhanced, as dynamics related to the Kozai–Lidov
effect (Kozai 1962; Lidov 1962) drive stars towards nearly radial
orbits (Ivanov, Polnarev & Saha 2005; Chen et al. 2009, 2011; Li
et al. 2015).

At still closer separations, the presence of a binary may alter not
just the rate of events, but also the evolution of individual TDEs. If
the fallback time of the debris stream is of the order of the binary
orbital time, then the fallback rate (and resultant disc formation)
will be greatly modified from the single-SMBH case. For this to be
relevant observationally requires a binary with an orbital period of
years or less; however, provided this additional criterion is satisfied,
the presence of the binary will result in a modification of the fallback
rate from the predicted power law Ṁ ∝ t−5/3 (Phinney 1989; Evans
& Kochanek 1989); thus, a binary companion could provide another
means for the asymptotic fallback rate to deviate from the canoni-
cally assumed t−5/3 law (see Guillochon & Ramirez-Ruiz 2013 for
a demonstration of how partial disruptions break from t−5/3 and
Hayasaki et al. 2013, who show that lower eccentricities provide
another means of deviation from this behaviour). In some subset
of cases, accretion on to the disrupting black hole can be inter-
rupted (Liu, Li & Chen 2009; Ricarte et al. 2016), and in others,
accretion on to both black holes will ensue. Liu, Li & Komossa
(2014) have suggested that the observed light curve of a TDE in the
galaxy SDSS J120136.02+300305.5 is modified by a binary com-
panion; irrespective of whether that claim is confirmed, it seems
very probable that future samples of thousands of TDEs will con-
tain some events whose appearances have been altered by binary
dynamics. Successfully isolating and modelling those events would
not only generate a sample of SMBH binaries at interestingly small
separations, but also provide a new technique for finding SMBH
binaries that is independent of emission-line diagnostics that can
be plagued by spurious correlations with gas dynamics (Müller-
Sánchez et al. 2015).

Our goal in this paper is to analyse the morphological evolution
of the accretion discs generated from TDEs by SMBH binaries, and
to quantify the accretion and fallback rates of the disrupted debris
on to the SMBHs. Using restricted three-body integrations, we first
calculate encounter cross-sections and geometries in the case where
stars approach a circular binary on a parabolic trajectory about the
binary centre of mass (COM). (In this paper, we focus on unbound
stars for reasons of simplicity, as modelling TDEs from bound
stars cannot be disentangled from the history of the binary merger.)
We then simulate the hydrodynamics of an unbiased sample of
the resulting TDEs with smoothed particle hydrodynamics (SPH)
simulations, and we directly calculate the accretion rates on to the
SMBHs. In doing so, we extend the work of Ricarte et al. (2016),
who studied TDEs in binaries using a test particle approach, and that

of Hayasaki & Loeb (2016), who used hydrodynamic simulations
to study the rare case of a TDE nearly coincident with the final
coalescence of the binary.

The plan of this paper is as follows. In Section 2, we justify our
choice of binary parameters, which is driven by the requirements
that the orbital period be short enough to affect the observable por-
tion of the fallback while being long enough that the gravitational-
wave inspiral time not be unreasonably short. In Section 3, we
describe the methods used for the three-body integrations, and we
analyse the statistics (i.e. the tidal disruption rate, the distribution
of energies at the time of disruption, the time taken to be disrupted,
etc.) determined from those three-body encounters. We use the re-
sults of the three-body encounters – particularly the properties of
the orbit of the star immediately before disruption – to simulate a
subset of those encounters with the SPH code PHANTOM (Price &
Federrath 2010; Lodato & Price 2010), and we present the results
of those simulations in Section 4. We discuss the implications of
our findings in Section 5 before concluding and summarizing in
Section 6.

2 SE L E C T I O N O F PA R A M E T E R S

Binaries tight enough to affect the dynamics of TDEs are typi-
cally well into the regime where inspiral is dominated by gravi-
tational wave losses. Since these losses increase steeply with de-
creasing separation (∝a−4, where a is the binary semimajor axis; see
equation 3), we expect the population of TDEs noticeably perturbed
by binary companions to be dominated by systems with larger sep-
arations.

To estimate this relevant separation, consider a binary with
masses Mh,1 and Mh,2 in a circular orbit of semimajor axis a. Ig-
noring stellar structure-dependent corrections (Diener et al. 1995),
a star of mass M∗ and radius R∗ that interacts with the binary will
be disrupted if it strays within a distance rt,1 = (Mh,1/M∗)1/3R∗ of
the primary or rt,2 = (Mh,2/M∗)1/3R∗ of the secondary.

After disruption, the bound debris is on highly eccentric orbits
that span a range of semimajor axes around the disrupting black
hole. For a disruption by the primary, for example, an orbit with
a semimajor axis adebris will have an apocentre of �2adebris and a
period P = 2π(a3

debris/GMh,1)1/2. At a time of P after disruption,
the binary will strongly perturb the fallback of the bound material
if the apocentre distance of the debris is outside of the Roche lobe
of the disrupting hole. Defining the mass ratio q ≡ Mh,2/Mh,1 < 1,
the spherical effective radius of the Roche lobe around the primary
is approximately (Eggleton 1983)

rL � 0.49q−2/3

0.6q−2/3 + ln(1 + q−1/3)
a. (1)

The secondary’s Roche lobe radius is given by the same expression
with q → 1/q. Imposing the condition that the apocentre of debris
returning after time P is rL, the binary separation in units of the
primary’s tidal disruption radius is

a

rt,1
= 0.6q−2/3 + ln(1 + q−1/3)

0.245q−2/3

(
GM∗

4π2R3∗

)1/3

P 2/3. (2)

There is no dependence on the primary mass (or on the secondary
mass, for disruptions by the secondary). For a given type of star,
binaries that can potentially perturb TDE fallback rates on a speci-
fied time-scale P have a fixed separation in units of tidal radii. For
Solar-type stars and q = 0.2, for example, a binary with a/rt, 1 ≈
1.6 × 102 would perturb the fallback on to the primary on time-
scales of around one month.
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For circular orbits, the gravitational wave coalescence time-scale
from a separation a is (Peters & Mathews 1963)

tmerge = 5c5

256G3Mh,1Mh,2(Mh,1 + Mh,2)
a4. (3)

With a specified as in equation (2) and with a given orbital period,
the merger time-scale for binaries close enough to perturb TDEs
scales with mass as M−5/3. We therefore expect – even more strongly
than for TDEs as a whole – that the population of TDEs with
observable binary perturbations ought to be concentrated towards
the low-mass end of the SMBH mass function. At sufficiently low
masses, however, the merger time-scales are long enough that a
non-zero number of binary-perturbed TDEs are expected in a large
sample. Taking as an example a binary with a 106-M� primary
and a mass ratio q = 0.2, the separation could be close enough
to influence TDE dynamics on a time-scale of a month while still
having a merger time of tmerge ≈ 4 × 107 yr. Ignoring for now
any enhancement of the TDE rate, taking the ratio of this merger
time to that of galactic mergers (of the order of a Gyr) would
suggest, very roughly, that of the order of 1 per cent of TDEs in this
mass range would take place in observationally interesting binaries.
From a more rigorous standpoint, Wegg & Nate Bode (2011) have
calculated, by following the inspiral of the secondary SMBH during
the disruption and ejection of stars in the vicinity of the primary, that
3 per cent of all TDEs should occur by binaries as they transition to
a hardened state. A substantially higher fraction is predicted if we
relax the one-month requirement by even a modest factor.

Finally, we ask whether the TDEs of observational interest in
binaries are likely to arise primarily from bound stars – those that
diffuse in energy space on to orbits that remain tightly bound to the
binary (Peebles 1972; Bahcall & Wolf 1976) – or unbound stars,
which scatter primarily in angular momentum space and thus have
effectively zero energy with respect to the black holes (Frank &
Rees 1976; Shapiro & Lightman 1976; Lightman & Shapiro 1977);
see Chen et al. (2009) and Chen et al. (2008), respectively, for an
analysis of each of these cases. The number of bound stars can be
estimated if we assume that each black hole is initially surrounded
by a cusp of stars with a density profile ρ(r) ∝ r−7/4 (Bahcall &
Wolf 1976), normalized such that the enclosed stellar mass equals
the black hole mass within a sphere of influence rBH = GMh/σ

2,
where σ is the nuclear velocity dispersion. The nearest star then has
an orbital radius r∗,1 ∼ GM4/5

∗ M
1/5
h σ−2. Adopting an M–σ relation

of Mh = 106(σ/60 km s−1)4 M� (roughly consistent with Gültekin
et al. 2009; though see Graham & Scott 2013), the distance of the
star nearest to the primary black hole is

r∗,1

rt,1
∼ 8

(
Mh,1

106 M�

)−19/30

, (4)

where rt, 1 is the tidal radius of the primary, and we are assuming
Solar-type stars. This argument suggests that, for the observationally
interesting binaries (with a/rt, 1 ∼ 102), at most a handful of bound
stars from the original cluster would be left to be tidally disrupted
over the last few tens of Myr. For this reason, we focus on TDEs
from unbound stars in this paper. However, we note that bound stars
could be more important if the stellar density on very small scales
was enhanced due to, for example, the migration of resonantly
captured stars (in an analogous context, Yu & Tremaine 2001) or
via the disruption of binaries (Hills 1988).

3 T H R E E - B O DY I N T E R AC T I O N S

Here we describe the initial setup of both the binary and the stars
for the three-body encounters (Section 3.1), before going on to our
results concerning the statistics of those encounters (Section 3.2).

3.1 Three-body setup

We consider the gravitational interaction between a star, treated as a
test particle, and a circular binary with masses M1 and M2, with M1

≥ M2. The equations for the evolution of the star are then standard,
and are given for completeness in Appendix A.

As noted in Section 2, the interesting cases (from observational
and physical standpoints alike) are when the orbital period of the
binary is of the order of months and the masses are relatively small.
Given these constraints, we will let the mass of the primary be
M1 = 106 M� and the binary semimajor axis be a = 100 rt =
100R∗(Mh/M∗)1/3, where R∗ = 1 R� and M∗ = 1 M� are the ra-
dius and mass of the star, respectively; these numbers then give
a = 2.26 × 10−4 pc = 46.5 au and Torb = 106 d, where Torb is the
orbital period of the binary.

Our primary goal in this paper is to investigate the hydrodynamic
interactions that take place after stellar disruption. We therefore
focus on the single mass ratio q = 0.2, and run a large number
(10 million) of realizations to gather good statistics. However, for
comparative purposes, we will also integrate a smaller number (one
million) of three-body interactions in which we vary the mass ratio
between q = 0.1 and 1 in increments of 0.1.

To specify the initial positions and velocities of the star, we
will assume that the galaxy nucleus hosting the SMBH binary is
spherical, meaning that stars entering the sphere of influence of
the binary do so isotropically. We assume that the stars of interest
approach the binary on parabolic orbits about the COM, and, as
noted previously, we ignore any contribution from bound stars.

For the initial conditions, we let the stars be uniformly distributed
on a sphere of radius r0, and we will choose r0 = 50 in units of
the binary semimajor axis. This large separation implies that the
quadrupole correction to the potential relative to the monopole term
is �quad �50−2, so the star effectively sees the binary as a point
mass at the COM. The square of the angular momentum of the star
will be uniformly distributed over the range �2 = [0, 4]; we trun-
cate the upper bound at 4 because the pericentre of the star is rp =
�2/2, and the probability of interacting with the binary (and being
tidally disrupted) is significantly reduced once rp � 1 [see Fig. 3
(shown later) for a validation of this notion]. A uniform distribution
is appropriate if the scattering events experienced by the tidally dis-
rupted star impart a large relative change in its angular momentum
per orbit (the pinhole regime; Lightman & Shapiro 1977).

3.2 Results

We integrated 10 million, restricted three-body interactions between
a star and a binary SMBH with a mass ratio of 0.2 for a maximum
of 1600 orbits; for comparative purposes, we also integrated one
million encounters between a star and binary SMBHs with mass
ratios in the range of q = 0.1–1 in increments of 0.1, also for 1600
orbits. In every case, the primary black hole had a mass of 106 M�;
while the explicit value of the mass of either hole is not needed to
integrate the dynamical equations (which depend only on the mass
ratio; see equations A10–A13), it is necessary for specifying when
the star is tidally disrupted. If the star came within the tidal radius
of either black hole, the star was considered ‘tidally disrupted’

MNRAS 465, 3840–3864 (2017)

 at U
niversity of L

eicester on January 4, 2017
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


Tidal disruption events 3843

Figure 1. Probability of being fully tidally disrupted, Nt/Ne ≡ λt, as a
function of the mass ratio q, with the associated 3σ error bars. The error
bars for the case of q = 0.2 are smaller by a factor of ∼3 because of the
larger number of three-body integrations done for that case.

and contributed to the total number of encounters that ended in the
destruction of the star (note that this criterion accounts only for total
disruptions of most low-mass stars; see below); if the star receded
to more than 100 semimajor axes from the binary, it was considered
‘ejected’ and did not contribute to the total number of TDEs; and,
finally, if it stayed within 100 semimajor axes of the binary for more
than 1600 orbits, the orbit was considered ‘inconclusive’ and did
not contribute to the total number of TDEs. Experimentation shows
that these criteria, although approximate, suffice to yield reliable
statistics for TDE dynamics in binaries. We are also not considering
partial disruptions, which occur for β � 0.5 for a γ = 5/3 polytrope
(Guillochon & Ramirez-Ruiz 2013).

Fig. 1 shows the tidal disruption fraction, Nt/Ne ≡ λt, determined
by simply taking the total number of tidal disruptions, Nt, and
dividing by the total number of encounters, Ne; the x-axis is the mass
ratio of the binary. The 3σ error bars were calculated by assuming
that the probability of being disrupted follows a Poisson distribution,
from which the rms value is σ = √

λt/Ne. Interestingly, this figure
demonstrates that the probability of being fully disrupted by the
binary is nearly independent of the mass ratio; taking the average
over all the mass ratios, we find that the average rate of disruption
is 〈λt〉 = 0.0194. The exact values of the mean and 1σ deviations
for the different mass ratios are given in Table 1.

Fig. 2 shows the fraction of disruptions by the primary black hole,
Np/Nt ≡ λp, as a function of the binary mass ratio, q, calculated
by simply taking the total number of disruptions by the primary,

Figure 2. Fraction of full disruptions contributed by the primary black hole,
λp, as a function of the binary mass ratio, q. The error bars indicate the 3σ

deviations, and the yellow line shows the best-fitting, linear relationship
λp = 0.96 − 0.46q. As for Fig. 1, the smaller error bars for q = 0.2 are due
to the fact that we integrated 10 million, as opposed to 1 million, three-body
encounters.

Np, and dividing by the total number of TDEs, Nt. The ratio drops
from 0.5 at q = 1 to �0.92 at q = 0.1. Overall, we find that the
probability of being disrupted by the primary as a function of q is
very well fitted by the linear relation

λp(q) = 0.96 − 0.46q, (5)

which is shown by the yellow line in Fig. 2.
The probability of being disrupted by the primary must satisfy

λp(q = 0) = 1 and λp(q = 1) = 1/2, and equation (5), which is
the best-fitting linear relationship that results from a least-squares
regression, violates this requirement at q = 0. This lack of agreement
could be due to the fact that the best-fitting line was calculated
only with the mean values at each q, meaning that there is some
uncertainty in the coefficients appearing in equation (5) due to the
error bars in Fig. 2. Alternatively, the ‘true’relationship for λp as
a function of q may not be exactly linear, and a higher order fit
could cause the constant in equation (5) to change from 0.96 to 1.
In either case, the fact that the best fit conforms almost exactly to
the expected relationship based on the requirements that λp(0) = 1
and λp(1/2) = 1/2 likely implies that the true distribution is very
nearly linear.

The positive correlation between the number of TDEs caused by
the primary SMBH and the mass ratio is predictable: The larger
black hole has a larger tidal radius, and thus the probability of

Table 1. Mean values of parameters describing the orbits of the disrupted stars for the full set of simulated mass ratios, q; the numbers in parentheses are
the 1σ deviations. The quantities tabulated here are λt: the probability of full disruption; λp: the probability of being fully disrupted by the primary SMBH;
μβ,p(s): the mean impact parameter for full disruptions by the primary (secondary); μt: the expectation value of the amount of time taken to be disrupted; μ�:
the mean original angular momentum of the disrupted stars; με : the mean energy of the COM of the star at the time of disruption; μz: the mean of the original
z-coordinate of the disrupted stars; μN: the mean number of additional ‘close encounters’, one such encounter occurring any time a star passes within three
tidal radii of either black hole without being disrupted.

q 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

λt × 102 (σ t × 104) 1.96 (9.4) 2.00 (7.2) 1.97 (3.4) 1.96 (4.4) 1.95 (4.8) 1.91 (37) 1.88 (2.6) 1.89 (4.5) 1.91 (9.5) 1.93 (2.8)
λp × 10 (σ p × 102) 9.2 (1.0) 8.7 (0.28) 8.1 (1.5) 7.7 (1.4) 7.2 (1.0) 6.7 (1.2) 6.4 (1.1) 5.9 (1.1) 5.5 (1.2) 5.0 (0.68)
μβ, p (μβ, s) 3.7 (5.5) 3.8 (5.2) 3.9 (4.9) 3.9 (4.5) 3.9 (4.3) 3.8 (3.7) 3.9 (4.0) 4.0 (3.9) 4.0 (3.7) 3.9 (3.7)
μt (σ t) 80 (93) 57 (63) 50 (53) 48 (49) 46 (49) 44 (43) 43 (41) 44 (44) 43 (42) 43 (40)
μ� (σ�) 0.70 (0.45) 0.81 (0.44) 0.86 (0.43) 0.91 (0.41) 0.95 (0.40) 0.97 (0.39) 0.99 (0.39) 1.0 (0.38) 1.0 (0.37) 1.0 (0.37)
με (σ ε ) −0.42 (1.0) −0.52 (1.6) −0.52 (2.0) −0.56 (2.3) −0.60 (2.5) −0.59 (2.6) −0.59 (2.7) −0.60 (2.7) −0.65 (2.7) −0.64 (2.7)
μz (σ z) −0.086 (27) 0.10 (25) 0.026 (24) 0.094 (24) −0.17 (23) 0.097 (23) −0.13 (23) 0.16 (23) 0.086 (23) −0.045 (23)
μN (σN) 0.75 (2.4) 0.45 (1.4) 0.36 (0.94) 0.34 (0.74) 0.33 (0.74) 0.32 (0.72) 0.31 (0.70) 0.30 (0.63) 0.30 (0.66) 0.30 (0.68)

MNRAS 465, 3840–3864 (2017)

 at U
niversity of L

eicester on January 4, 2017
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


3844 E. R. Coughlin et al.

Figure 3. Probability distribution of the impact parameter β ≡ rp/rt, where
rp is the point of the closest approach to the disrupting black hole and rt is
the tidal radius of that hole, for a binary mass ratio of q = 0.2. The inset
shows the value of the PDF at the mid-points of the bins (purple curve) and
the analytic solution fβ = 1/β2 (red curve) on a log–log scale.

being tidally disrupted by that hole is correspondingly greater. How-
ever, if the increased rate of destruction by the primary were purely
due to this geometric effect, then we would expect the probability
of being disrupted by the primary to scale as q2/3, i.e. as the ratio
of the areas of the black holes. It is apparent from Fig. 2, though,
that a linear relationship fits the rate of TDEs due to the primary
black hole extremely well, meaning that there is an additional, dy-
namical effect that increases the probability of being disrupted by
the primary.

Fig. 3 shows the probability distribution function (PDF), fβ , of
the impact parameter β = rt/rp, where rp is the point of closest
approach of the star to the disrupting black hole and rt is its tidal
radius, for the full set of TDEs with a binary mass ratio of 0.2.
The bin width for this figure is �β = 1/3, which captures a large
number of encounters (of the order of thousands) per bin. The inset
in the figure shows, on a log–log scale, the PDF at the bin centre
(purple curve) alongside the power-law solution 1/β2 (red line),
which demonstrates that the PDF for the impact parameter is very
well approximated by the function fβ = β−2; this demonstrates that
the square of the angular momentum of the star about the disrupting
SMBH is almost exactly characterized by a uniform distribution.
The β that results in the star being swallowed whole by the primary
is βc, p = 23.5, while that for the secondary, βc, s = 118 (these simply
come from equating the tidal disruption radius to the Schwarzschild
radius of the hole). The average β for stars disrupted by the primary
is then 〈βp〉 �ln (23.5) �3.2, while that for the secondary, 〈βs〉
�ln (118) �4.8. The average impact parameter μβ (over both the
primary and secondary, cut off at the Schwarzschild radius of the
secondary) for all of the mass ratios is given in Table 1.

Fig. 4 illustrates the PDF for the time, in units of binary orbits,
taken to be disrupted for the binary mass ratio of 0.2. The bin width
for this figure was �t = 5 orbits, and the sharp falloff for times less
than roughly 25 orbits is due to the fact that the stars originated at a
distance of 50 semimajor axes (and from such a distance, each star
takes approximately 27 orbits just to reach the binary). The inset
shows the value of the PDF at the bin centre (purple curve) and the
solution ft ∝ t−5/2 (red line) on a log–log scale. This inset therefore
demonstrates that the PDF for the time taken to be disrupted, ft,
is well matched by the power law ft = 0.056 × (26.5/t)5/2 (the
multiplicative constant comes from the normalization of the PDF)

Figure 4. PDF for the number of binary orbits taken to be disrupted for
the total sample of TDEs disrupted by a binary with mass ratio 0.2. The
sharp cutoff for orbits less than roughly 25 is due to the fact that every star
took approximately 503/2

√
2/(6π) � 26.5 orbits to just reach the binary.

The inset shows the value of the PDF at the mid-points of the bins (purple
curve), while the red curve shows the solution ft = 0.056 × (26.5/t)5/2.

until the number of orbits surpasses roughly 500 orbits, at which
point the PDF drops off much more rapidly.

Fig. 5 shows the PDF for the initial z-coordinate of the disrupted
stars for a mass ratio of 0.2, where the left-hand panel is for stars
disrupted by the primary, the middle for the secondary, and the right-
hand panel is the total PDF. Recalling that the original distribution
of stars was isotropic (i.e. equal probability of being at any given
{x0, y0, z0} constrained to a sphere of radius 50 in units of the
binary semimajor axis), this figure reveals that disrupted stars are
preferentially located in the plane of the orbit of the binary. The
reason for this tendency is that the majority of the disrupted stars
are temporarily captured by the binary before being disrupted (i.e.
there is a significant fraction that are not disrupted on their ‘first
pass’), which is apparent from Fig. 4. To be placed on a bound
orbit, however, the star must ‘see’ one of the black holes with a
lower velocity, meaning that it has effectively less kinetic energy
with respect to the system.

Fig. 6 displays the PDF for the original (i.e. when the COM of
the star is at 50 binary separations) specific angular momentum (in
units of

√
GMa) of the stars disrupted by the primary (left-hand

panel), secondary (middle panel), and composite (right-hand panel)
for a mass ratio of 0.2. The bin width for this figure is �� = 0.025.
This figure shows that stars with specific angular momenta greater
than � � 1.8, or pericentre distances greater than rp � 1.6a, are not
tidally disrupted, which is a reasonable result: The star must either
come close enough to be disrupted by one of the stars on the first
pass or to be temporarily captured by the binary. Note, however,
that there is a sizable fraction of stars that have pericentre distances
greater than rp > 1 (� >

√
2), which shows that the star does not

actually have to pass through the binary in order to be disrupted.
The average angular momentum over the full set of disrupted stars
for a mass ratio of 0.2 is μ� = 0.81, while the standard deviation is
σ � = 0.44; the averages and standard deviations for the other mass
ratios are given in Table 1.

Fig. 7 shows the PDF for the specific energy (in units of GM/a) of
the disrupted stars at the time of disruption for a mass ratio of 0.2; the
left-hand panel shows the distribution for the stars disrupted by the
primary (the bin width for this panel is �ε = 0.1), while the middle
and right-hand panels show the distribution for stars disrupted by
the secondary and the composite PDFs, respectively (the bin width
for both these panels is �ε = 0.2). The energy was calculated from
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Figure 5. PDF for the initial z-coordinate, in units of the semimajor axis of the binary, of stars disrupted by the q = 0.2 binary if the star is disrupted by the
primary (left-hand panel), the secondary (middle panel), and the composite PDF (right-hand panel). This figure shows that disrupted stars are preferentially
located in the plane of the binary, which arises from the fact that many stars are placed on to temporary ‘bound’ orbits before being disrupted, which is also
apparent from Fig. 4.

Figure 6. PDF for the original specific angular momentum, in units of GMa, of the stars disrupted by the binary with mass ratio 0.2. The left-hand panel
represents stars disrupted by the primary, the middle panel by the secondary, and the right-hand panel is the total, composite PDF. The sharp cutoff at specific
angular momenta greater than about � �1.8 comes from the fact that the pericentre of the star is rp = �2/2, meaning that stars with angular momenta greater
than about

√
2 will not interact with the binary.

Figure 7. PDF for the specific energy at the time of disruption of stars disrupted by the q = 0.2 binary, where the energy is in units of GM/a. The left-hand
panel represents stars disrupted by the primary, the middle panel by the secondary, and the right-hand panel is the total, composite PDF. The wider spread
in the specific energy distribution for disruptions by the secondary arises from the higher relative velocities generated between the star and that hole (see
equations A1–A4).

the canonical Hamiltonian of the system evaluated at the time of
disruption, i.e. ε = v2/2 +�, where v is the speed of the star and � is
the total potential of the binary, given by equation (A7). Even though
this energy is not conserved owing to the time-dependent nature of
the potential, it should give some indication of the ‘boundness’ of
the disrupted debris to the binary. This figure demonstrates that,
due to the interaction with the binary, the energies of the disrupted
stars deviate from the original, parabolic value of ε = 0. Therefore,
the specifics of the evolution of the tidally disrupted debris may
differ significantly from the disruption by a single SMBH – not
only because of the presence of the secondary, but also because
of this change in the specific energy of the COM (see Section 4).
The average energy for a mass ratio of 0.2 is με = −0.52, with a
standard deviation of σ ε = 1.63; those quantities for the other mass
ratios are given in Table 1.

It is also apparent from the second panel in Fig. 7 that the ‘wings’
at larger energies in the composite PDF arise primarily from the

disruptions by the secondary black hole. This feature is due to the
fact that the change in the energy of the COM of the star originates
from the relative motion between the star and the disrupting black
hole: If the SMBH is moving away from the star at the time of
disruption, then the effective kinetic energy of the star is decreased,
leading to a bound state (and conversely for motion away from the
star at the time of disruption). Since the speed of the secondary black
hole is greater than that of the primary, the spread in energies at the
time of disruption is greater for stars disrupted by the secondary.

We have found that the positions of the stars at the time of dis-
ruption were isotropically distributed about the disrupting SMBH.
This result may seem surprising, given Fig. 5, which shows that
the tidally disrupted stars are preferentially located within the plane
of the binary (i.e. small initial z-position), and we therefore might
expect this preference to be reflected in the position of the star at
the time of disruption. However, because the tidal disruption radius
is a small fraction of the binary separation, even a very small initial
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Figure 8. Log of the PDF for the number of additional times that the
disrupted stars come within three tidal radii of either SMBH, Nenc (i.e.
disrupted stars that only come within three tidal radii at the time of disruption
have Nenc = 0), for the mass ratio of 0.2. The inset plots the values of the
PDF at the bin centre (purple curve) and the power law fenc ∝ N−3.5

enc , which
approximates the PDF reasonably well.

z0 correlates to a large deviation from the binary mid-plane (in units
of tidal radii) when the star is tidally disrupted; for this reason,
the initial preference to be located near the mid-plane is negligible
when the stars reach the disrupting SMBH.

Fig. 8 shows the PDF for the number of ‘additional encounters’,
Nenc, that each tidally disrupted star experiences; an additional en-
counter occurs any time that the star comes within three tidal radii
of either SMBH (the encounter experienced when the star is actu-
ally disrupted, i.e. comes within one tidal radius of an SMBH, is
not counted), for a mass ratio of 0.2. The inset shows the values
of the PDF at the mid-points of the bins (purple curve) alongside
the curve fenc ∝ N−3.5

enc , which fits the solution fairly accurately and
shows that the PDF falls off quite rapidly for larger values of Nenc.
This figure demonstrates that, while the falloff of the PDF with
Nenc is rather steep, there is a non-zero fraction of stars that are
‘nearly disrupted’ a number of times before actually crossing the
tidal radius of either hole. In these cases, the star may be mildly
to significantly distorted by the tidal interaction with the SMBHs,
which could conceivably heat and rotate the star, cause it to inflate
(rendering it more easily tidally disrupted), and change the stellar
orbit in a manner not captured by our point particle treatment (see
also Antonini, Lombardi & Merritt 2011, who investigated some
of these effects for the close passage of binary stars near isolated
SMBHs).

We note that our criterion for disruption, that is, the pericentre
distance of the star to either black hole be less than rt(M1,2/M∗)1/3,
accounts only for full disruptions of γ = 5/3 polytropes (and stars
with similar central densities; see below), in which there is no
surviving core of the star. However, the distance characterizing
complete disruption does depend on the stellar composition, with
higher central densities generally requiring larger β (Guillochon &
Ramirez-Ruiz 2013; Manukian et al. 2013). Accounting for these
composition-dependent differences would then result in an increase
or decrease in the rate of disruption, though averaging over different
stellar types may have little effect.

Perhaps more importantly, partial stellar disruptions do still gen-
erate debris streams that are bound to the SMBHs. In these cases,
the overall amount of accreted material is less than that for a full
disruption of the same star, and the asymptotic fall-back rate dif-
fers from t−5/3 (Guillochon & Ramirez-Ruiz 2013). Nevertheless,

in our analysis here, we consider only full disruptions, the hydro-
dynamics of which we now consider, and leave the effects of partial
disruptions to a future investigation.

4 H Y D RO DY NA M I C S I M U L AT I O N S O F T D E s
BY BI NA RY SMBHs

In the previous section, we found that the energy and angular mo-
mentum of the COM of the star at the time of disruption differ from
those of a parabolic orbit. The evolution of the tidally disrupted
debris will therefore exhibit characteristics that are not predicted
from the standard picture of TDEs, in which the COM is assumed
to follow a parabolic orbit; for example, the fall-back time of the
most bound debris may be earlier or later than otherwise expected,
and more (or less) of the tidally disrupted debris may be bound
to the binary. In addition, we expect the motion of the disrupting
black hole and the presence of the second SMBH to induce other
variations in the fallback of the debris and the formation of the
accretion disc (or discs). To investigate these effects on the hydro-
dynamic evolution of the tidally disrupted debris, in this section,
we use numerical methods to simulate the tidal disruption of stars
by an SMBH binary.

4.1 Simulation setup

We used the SPH code PHANTOM (Price & Federrath 2010; Lodato &
Price 2010) to simulate the tidal disruption of a solar-like star (i.e.
one with a solar mass and a solar radius) by an SMBH binary. PHAN-
TOM has been compared to grid-based algorithms for accuracy (Price
& Federrath 2010). This code has been highly effective for simu-
lating complex fluid geometries (Nixon et al. 2012; Nixon, King &
Price 2013; Martin et al. 2014a,b; Doğan et al. 2015; Nealon, Price
& Nixon 2015) and has also been used to study TDEs, including the
disruption process itself (Coughlin & Nixon 2015), the evolution
of the disrupted debris (Coughlin et al. 2016b), and the formation
of the accretion disc (Bonnerot et al. 2016c), with the results being
consistent with expectations from analytic estimates (Rees 1988;
Coughlin et al. 2016b).

We employ an artificial viscosity to maintain particle order and
to capture shocks. Specifically, we adopt a variable α viscosity that
evolves according to the prescription outlined in Cullen & Dehnen
(2010), with αAV

min = 0.01 and αAV
max = 1, while we set βAV = 2. Past

investigations have shown (Price & Federrath 2010) that this choice
of βAV accurately captures shocks when the Mach number is not
too extreme.

For the parameters of the binary, we let the primary mass be
M1 = 106 M�, the secondary mass be M2 = 2 × 105 M� (i.e. a
mass ratio of 0.2), and the binary separation be a = 100rt, where rt is
the tidal radius of the primary SMBH. As mentioned in Section 2,
a separation this large guarantees that the binary orbital time is
of the order of the fall-back time of the tidally disrupted debris.
Also, this combination of masses and separation yields a fairly long
gravitational-wave inspiral time (a few million years), meaning that
there is a high probability that there will be at least one TDE before
the coalescence of the binary. In particular, using the fact that the
rate of disruption for a mass ratio of 0.2 is λt = 0.02 (Fig. 1 and
Table 1) and the rate at which stars are scattered into the loss cone of
an isolated SMBH is λs = 10−4–10−5 per galaxy per year (Frank &
Rees 1976; Stone & Metzger 2016), we expect the number of TDEs
over the lifetime of the binary to be roughly Ntde �λtλsτ bina/rt,
where τ bin is the lifetime of the binary. Adopting τ bin �4 × 107 yr
(Section 2), we find that roughly Ntde �800–8000 stars should be
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disrupted before the binary coalesces. [We note that this number is
actually an upper limit, as the fraction a/rt is a decreasing function
of time; however, since the binary inspiral time is very sensitive to
the separation (equation 3), the binary spends the majority of its
lifetime at larger separations, and hence the true number should be
close to the one quoted here.]

The disrupted star was constructed as an n = 3/2 polytrope
(Hansen, Kawaler & Trimble 2004) with a Solar mass and a Solar
radius. We generated this polytrope by first placing the particles
on a close-packed sphere and then stretching that sphere to closely
resemble a polytropic distribution. The resulting configuration was
then relaxed for 10 sound-crossing times to achieve a static ini-
tial state, which closely matches the analytical polytrope solution.
While a γ = 5/3 polytrope does not yield as high a density con-
trast as is appropriate for the true Sun (Guillochon & Ramirez-
Ruiz 2013), it approximates well the density distribution of real
stars, especially at the low-mass end (Hansen et al. 2004) where the
IMF is thought to peak (Kroupa 2001).

As we noted above, the properties of the stellar orbit at the
time of disruption differ from those of the original parabolic en-
counter because of the interaction with the binary. To accommodate
these deviations and to investigate their effects on the evolution
of the tidally disrupted debris, we initialized our SPH simulations
with randomly selected encounters from Section 3 that ended in
the disruption of the star, subject only to a cut to avoid the most
deeply penetrating encounters (see below for details). To mitigate
the computational cost, however, we did not simulate the entire
three-body problem before the disruption. Instead, we opted to start
the relaxed polytrope at five tidal radii from the disrupting black hole
with the velocity of every SPH particle equal to that of the COM
of the star, the orbit of the COM determined from the restricted
three-body integrations; this approach is similar to what has been
done in past investigations (e.g. Lodato, King & Pringle 2009). The
choice of five tidal radii was made so that the star was sufficiently
far from the disrupting black hole to be virtually unaffected by the
tidal force, but close enough to not waste an excessive amount of
computational resources in retracing the restricted three-body orbit.
We ran 120 such simulations (i.e. of randomly selected orbits from
Section 3 that ended in the disruption of the star) and we also ran
120 ‘control’ simulations with identical initial conditions but with-
out the presence of the other SMBH (i.e. if the disrupting black hole
was the primary, then the control simulation was initiated with the
same positions and velocities as the binary disruption but boosted
into the rest frame of the primary; the evolution then proceeded with
only the point mass potential of the primary). The control simula-
tions then isolate the dynamical effects introduced by the presence
of the second SMBH from the alterations to the energy and angular
momentum of the COM of the star.

The gas was assumed to follow an adiabatic equation of state
throughout the evolution of the TDE, with the adiabatic index equal
to the polytropic index of γ = 5/3. These simulations therefore
assume that the gas cools very efficiently after being shocked, and
that the temperature remains low enough such that the contribution
of radiation to the gas dynamics is small. Both the shock heating
and the contribution of radiation would serve to ‘inflate’ the gas
and extend the resulting accretion regions around the binary and
individual SMBHs to larger radii. While these effects have obvious
important astrophysical implications, we leave their study to future
investigations and focus primarily on the (hydro)dynamics in this
paper.

At all stages of the simulation, the self-gravity of the gas was in-
cluded. It has been demonstrated, both analytically (Kochanek 1994;

Coughlin et al. 2016b) and numerically (Guillochon et al. 2014;
Coughlin & Nixon 2015; Coughlin et al. 2016a), that self-gravity
can be very important for modifying the structure of the disrupted
debris, especially when the pericentre distance of the disrupted star
is larger (β �1) and the adiabatic index of the gas is stiffer (γ ≥ 5/3;
Lodato et al. 2009; Coughlin et al. 2016b). The self-gravity of the
debris was calculated by using a tree algorithm alongside an opening
angle of 0.5 (Barnes & Hut 1986; Gafton & Rosswog 2011).

In every simulation we used 5 × 105 SPH particles. To assess the
impact of resolution on our results, we also ran a lower resolution
(2.5 × 105 particles) and a higher resolution (one million) simulation
of one particular run. We discuss the convergence properties of the
simulations based on these additional runs in Section 5.3.

The gravitational field of the binary was modelled by two Newto-
nian point masses, and each point mass acted as a sink particle with
an accretion radius of 0.5 times the tidal radius of the respective
SMBH. Any particle passing within the accretion radius of either
black hole is ‘accreted’ and removed from the simulation.

Finally, because the probability distribution of the impact pa-
rameter of disrupted stars falls off somewhat weakly with β (fβ =
1/β2), there are some orbits that have very small pericentre dis-
tances. For these cases, where general relativistic effects become
very important even on the initial encounter, treating the potential as
Newtonian likely introduces very large inaccuracies for the result-
ing distribution of debris. Furthermore, the star is intensely shocked
in these instances, meaning that the ensuing expansion of the debris
will be very sensitive to the thermodynamic properties of the gas
and resolution. Because we feel that our present approach could
not accurately capture these effects, we opted not to simulate any
TDEs that had impact parameters greater than 5. We note that this
is still a very deep encounter, as the amount of vertical compression
– assuming that the envelope of the star undergoes effective free-
fall as it enters the tidal sphere of the disrupting hole – is roughly
δR/R∗ � 1/β3 � 1/125 (Carter & Luminet 1983; see also Ross-
wog, Ramirez-Ruiz & Hix 2009, who found that one could ignite
nuclear burning in white dwarfs compressed by similar amounts).
Overall, our results for higher β are in agreement with past inves-
tigations that considered similar scenarios (e.g. Ramirez-Ruiz &
Rosswog 2009, who considered TDEs with β = 3 by intermediate-
mass black holes).

4.2 Results

4.2.1 Morphological evolution

Figs 9 and 10 show the x–y (in-plane) and x–z (out-of-plane) pro-
jections, respectively, of the evolution of the debris generated from
1 of the 120 simulated TDEs; in this particular case, the star was
disrupted by the secondary. In these panels, the colours correlate
with the projected column density of the material, with the brightest
colours corresponding to the densest regions, and the times are just
after disruption (top left-hand panel), 0.25 (top right-hand panel),
0.5 (middle left-hand panel), 1 (middle right-hand panel), 1.5 (bot-
tom left-hand panel), and 2 binary orbits (bottom right-hand panel).
The two blue circles represent the SMBHs, with the radius of each
circle set, for visualization purposes, to 10 times the tidal radius of
the respective black hole.

Originally the TDE proceeds as if the disrupting SMBH were
isolated (the stream from the control case appears identical to the
stream in the top left-hand panel of Fig. 9 at that time). However,
once the tidally disrupted debris stream leaves the Roche lobe of
the secondary, the primary SMBH begins to significantly alter the
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Figure 9. x–y projection of the evolution of the debris generated from a TDE, with the colours indicating the value of the column density (brighter colours
correspond to denser material); the blue circles represent the SMBHs, with the size of each circle being 10 times the size of the tidal radius of the respective
hole. The x-axis covers roughly seven binary semimajor axes, while the y-axis covers approximately six. In this case, the star was disrupted by the secondary,
and the time since the start of the simulation (when the star was at 5rt) is shown in the top right-hand corner in units of binary orbits. A movie of this simulation
can be found in the supplementary information available online.
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Figure 10. x–z projection of the evolution of the debris generated from the same TDE as shown in Fig. 9. The times, colours, etc., correspond to those in
Fig. 9.
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morphology of the flow following the disruption of the star. These
effects from the primary start to become apparent in the top right-
hand panel of Fig. 9, where the debris stream accreting on to the
secondary is bent by the gravitational field of the companion hole.
By the middle left-hand panel, we see that the primary has ‘stolen’
the incoming debris stream, leaving a small, eccentric accretion
disc around the secondary and feeding material on to the primary
in an extended disc. When the binary makes a complete orbit (mid-
dle right-hand panel), the secondary comes close enough to the
stream to significantly alter its dynamics, generating a large de-
bris ‘loop’ that becomes disconnected from the system. Continued
perturbations from the secondary SMBH result in a highly chaotic
distribution of material by the two bottom panels (1.5 and 2 orbits
from the left-hand to right-hand side), with small-scale (i.e. within
the Roche lobe of either hole) accretion discs around each hole and
a large-scale cloud of debris that surrounds the binary and extends
to roughly 10 binary separations.

The out-of-plane projection, Fig. 10, demonstrates a qualitatively
similar evolution to the in-plane projection: While the TDE orig-
inally proceeds as one would expect from an isolated SMBH, the
system rapidly becomes highly disorganized due to the perturbing
effects of both the primary and the secondary. This figure also shows
that the original stellar orbit was fairly inclined with respect to the
orbital plane of the binary. Furthermore, while the stream initially
stays relatively confined to the binary plane (note that the orien-
tation of the accretion disc around the primary is quite tilted with
respect to the original plane of the disrupted debris), by the two
bottom panels, the large-scale distribution of material is roughly
spherical and surrounds the entire binary.

Fig. 11 shows the in-plane (x–y) projection of the distribution
of the debris from six different simulated TDEs (none of which
corresponds to that shown in Fig. 9), all at a time of 1.5 binary
orbits (roughly five months post-disruption). The colours scale with
the column density of the gas, with lighter colours corresponding to
denser areas, and the plot range and black hole sizes are the same as
those for Fig. 9. The two top panels resulted from stars disrupted by
the secondary SMBH, while the four bottom panels were disrupted
by the primary.

As is apparent from Fig. 11, the qualitative appearance and dy-
namical evolution of a TDE generated by a SMBH binary depends
very sensitively on the properties of the star at the time of disruption.
Fig. 9 represents somewhat of a ‘Goldilocks’ situation in which the
star is disrupted by the secondary but its trajectory is towards the
primary. In this case, the primary SMBH is guaranteed to have a
very large effect on the evolution of the disrupted debris early on
(indeed, by half of an orbit the stream is significantly deflected by
its gravitational influence). However, in all of the cases illustrated
in Fig. 11, the configuration of the debris has been transformed into
a very disordered state.

We note that each TDE generates a series of ‘loops’ of debris that
tend to recede away from the binary, and these features are apparent
in all of the panels of Fig. 11 (as well as the panels in Fig. 9). These
loops originate when the bound debris starts to leave the Roche lobe
of the disrupting hole, causing its new pericentre position to deviate
significantly from the position of the hole.

We also see from Fig. 11 that there are ‘gaps’ in these debris
loops (one particularly obvious gap can be found near the top
left-hand corner of the middle left-hand panel in Fig. 11), which
occur when the debris stream self-intersects, generating a shock
that blasts material from the less dense portion of the stream.
These self-intersections are reminiscent of those usually invoked
to explain the formation of post-disruption accretion discs around

isolated SMBHs, with the self-intersection in those cases induced
by the general relativistic advance of periapsis (though nodal pre-
cession, if the SMBH is spinning, can reduce the likelihood and
efficiency of self-intersection; Rees 1988; Kim, Park & Lee 1999;
Stone & Loeb 2012; Dai, Escala & Coppi 2013; Dai, McKin-
ney & Miller 2015; Guillochon & Ramirez-Ruiz 2015; Bonnerot,
Rossi & Lodato 2016b; Hayasaki, Stone & Loeb 2016; Jiang, Guil-
lochon & Loeb 2016).

In our simulations, however, the black holes are modelled with
Newtonian gravity, meaning that the self-intersections found here
are induced by a combination of the differences in the orbital prop-
erties of the debris and the motion of the SMBHs (i.e. the time
dependence of the binary system and its gravitational potential).
Furthermore, while apsidal precession generally causes stream in-
tersections that occur primarily in the plane of the motion of the
stream itself, resulting in a large dissipation of kinetic energy, here
the material can rapidly swing out of the original plane of the dis-
rupted star (as evidenced from Fig. 10). In these instances, stream
collisions can occur over a wide range in angles that do not necessar-
ily coincide with a single plane, thereby confining the intersections
to narrow portions of the stream (creating the gaps) and resulting in
only small portions of the stream being affected. Nevertheless, there
are some instances, for example, the disruption in Figs 9 and 10,
where the stream self-intersection does lead to the formation of
the accretion disc (see the movie in the supplementary information
available online).

Interestingly, in some cases, the debris generated from the TDE
was completely ejected from the system, generating no fall-back
whatsoever. Of the 120 simulations performed, there were 4 such
cases, and all of them were associated with disruptions by the sec-
ondary SMBH (there were, however, also some instances in which
only a small amount of material was bound to the system, and these
corresponded to disruptions by both the secondary and the primary).
In these completely unbound instances, the specific energy of the
COM of the star at the time of disruption happened to be so large
that the entire debris stream had positive energy with respect to the
binary.

To obtain a rough idea of the energy of the COM required to eject
the entire stream, we can assume that the energies of the gas parcels
comprising the star are ‘frozen in’ at the time that the COM passes
through the tidal radius of the disrupting hole. This assumption then
gives

εi = 1

2
v2

i − GM1,2

ri

� εc + ε∗m
1/3
1,2 ηi, (6)

where vi and ri are the velocity and position of gas parcel i, respec-
tively, and M1, 2 is the mass of the disrupting hole. The last line of this
expression follows from assuming that the entire star moves with the
COM prior to disruption, and we have set εc = v2

c /2 − GM1,2/rc as
the energy of the COM (vc and rc are the COM speed and position,
respectively), m1,2 ≡ M1,2/M∗, ε∗ ≡ GM∗/R∗, and ηiR∗ ≡ ri − rt.
Since |ηi| ≤ 1, the entire stream will be ejected if

εc − ε∗m
1/3
1,2 > 0. (7)

From Fig. 7, we see that εc = Nεb, where εb = G(M1 + M2)/(2a)
is the binding energy of the binary and N is a pure number, and
we will set a = k rt, 1 (for our simulations k = 100). Using these
relations and rearranging, this inequality then yields

Ni >
2 m

1/3
1 m

1/3
i

m1 + m2
k. (8)
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Figure 11. x–y projection of the debris produced from six different simulated TDEs at a time of 1.5 binary orbits. The top two plots were disruptions by the
secondary SMBH, while the bottom four were disrupted by the primary. The colours, plot ranges, etc., are all identical to those of Fig. 9.
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This equation is valid for any binary mass ratio and any value of k;
if we now plug in parameters specific to our set of simulations, this
inequality becomes

Ni � 2 m
1/3
i

1.2 × 100
. (9)

Thus, for disruptions by the primary, the energy of the COM at the
time of disruption must satisfy εc � 1.6 × εb, while disruptions by
the secondary require εc � 1.0 × εb.

This scaling argument demonstrates that it is easier for the sec-
ondary SMBH to entirely eject streams than the primary for two
reasons, the first being, as we just showed, that disruptions by the
secondary result in a smaller limit on the energy of the COM re-
quired to achieve complete ejection. The second reason arises from
the fact that the specific energy distribution for stars disrupted by
the secondary has an inherently wider spread than that for stars
disrupted by the primary, as can be seen in Fig. 7. Noting from this
figure that there are very few stars disrupted by the primary that
satisfy εc > 1.6εb, we expect, and indeed the simulations confirm,
that only a small fraction of disruptions by the primary will result
in completely unbound streams.

A precisely analogous argument holds when we consider entirely
bound streams: If even the most energetic portion of the stream is
to remain bound to the binary, then we require εc � −1.6εb for
disruptions by the primary, and εc � −1.0εb by the secondary. As
we can see from Fig. 7, this scenario is much more likely for either
SMBH.

We will return to a further discussion of these points and their
ramifications in Section 5.

4.2.2 Accretion and fallback rates

As was mentioned in Section 4.1, the accretion radius of each SMBH
was set to half of its tidal radius, and particles entering within the
accretion radius of either hole were ‘accreted’ and removed from
the simulation. The rate at which particles are accreted then gives
the raw accretion rate of either SMBH.

An accretion radius of rt/2, where rt is the tidal radius of the
relevant SMBH, was chosen to offset two competing goals, the
first being to minimize the computational cost of the simulations:
Particles orbiting very close to the SMBH require very short time-
steps, which can dominate the computational cost of the simulation.
On the other hand, maintaining a smaller accretion radius generally
results in a more realistic distribution of tidally disrupted debris.
Indeed, if the accretion radii were made too large, every incoming
debris stream would be swallowed entirely upon reentry, and much
of the interesting hydrodynamics that generated Figs 9–11 would
have been lost. From these two competing effects, it was decided
that rt/2 was a reasonable compromise.

It may seem as though a smaller accretion radius always results
in a more accurate distribution of debris (up until one reaches the
Schwarzschild radius, which corresponds to accretion radii of rt/24
and rt/69 for the primary and secondary, respectively). However,
with the number of particles used here (5 × 105), it is not possible to
resolve the flow at such small radii. Furthermore, an accretion radius
of rt/2 already corresponds to only 24 Schwarzschild radii of the
primary SMBH, meaning that decreasing the accretion radius only
slightly more would result in general relativistic effects becoming
very important. Using a smaller accretion radius would therefore
require a large increase in particle number and the inclusion of
general relativity, which is outside the scope of this paper.

As stated in Section 4.1, the heat generated from the shocks
caused by stream–stream collisions does not contribute to the ther-
modynamics; the physical interpretation of this restriction is that
the heat injected into the gas through shock heating is radiated very
efficiently, and thus the polytropic constant relating the pressure to
the gas density remains unaffected. Because of this restriction, the
accretion discs around the individual SMBHs generally stay con-
fined to within a few tidal radii in radial extent and are very thin (see
Section 5.1 for a verification of this point). However, the inclusion of
shock heating could cause these discs to ‘puff up’ significantly, sim-
ilarly to what was seen in the simulations of Hayasaki et al. (2016)
when they included the heat generated by shocks in the thermody-
namic properties of the gas; furthermore, we find that the accretion
rates from our simulations can be super-Eddington by two to three
orders of magnitude in some instances (see Fig. 12), meaning that
radiation pressure should be very important for expelling gas and
inflating the accretion discs (Strubbe & Quataert 2009; Coughlin
& Begelman 2014). It is therefore also reasonable to consider the
effective accretion rate as the rate at which disrupted debris enters
into some larger region around either SMBH, as this would mimic
the modulation of the black hole accretion rate by a surrounding
accretion flow.

Given the aforementioned uncertainties in relating the numerical
‘accretion rate’ to observational quantities – such as a luminosity –
we also calculate a ‘fallback rate’ by counting all of the particles
that cross a radius of 3rt, the radius of 3rt chosen for consistency
with Coughlin & Nixon (2015), who also calculated a fallback
rate by this method. Furthermore, to successfully add to the fall-
back rate, the particle must have a negative specific energy with
respect to the SMBH on to which it is falling (i.e. we do not count
unbound particles that happen to stray too closely to one or the
other SMBH).

Fig. 12 show, on a log–log scale, the accretion and fallback rates
of both SMBHs in Solar masses per year (the black, green, red, and
blue curves represent the primary accretion rate, primary fallback
rate, secondary accretion rate, and secondary fallback rate, respec-
tively), as a function of time in years, and the control accretion rate
(grey curve) for 40 different simulations; accretion and fallback rates
from the other 80 simulations can be found in the supplementary ma-
terial available online. The disrupting black hole is indicated in the
top left-hand corner of each plot, P being disruptions by the primary,
and S by the secondary. The straight lines give the Eddington limits
of the SMBHs assuming an accretion efficiency of 10 per cent, with
the top, magenta line corresponding to that of the primary (being
ṀEdd,p � 0.026 M� yr−1) and the bottom, cyan line representing
that of the secondary (being ṀEdd,s � 0.0052 M� yr−1). There are
a few panels that have no accretion, and these are the instances in
which the stream was completely ejected from the binary system.
The accretion rates from the other 80 simulations can be found in
the online supplementary material accompanying this paper.

Overall, it is obvious that the presence of the second SMBH
has dramatic, sporadic effects on the evolution of the accretion
rates (from here onwards, we will refer to both the raw accretion
rates and the fallback rates by simply accretion rates), and those
effects are quite pronounced over many binary orbits (i.e. long af-
ter disruption; one binary orbit corresponds to roughly 0.3 yr). In
many cases, the accretion proceeds in a fairly regular fashion be-
fore abruptly changing by an order of magnitude (or more) on very
short time-scales relative to the binary orbit. It is also apparent
that the canonical fallback rate of Ṁfb ∝ t−5/3 (Phinney 1989) is
hardly ever actualized, despite the fact that the control cases, reas-
suringly, do display this behaviour. We also see that the accretion
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Figure 12. log–log plot of the accretion rate of the primary (black curve), the fallback rate of the primary (green curve), the accretion rate of the secondary
(red curve), the fallback rate of the secondary (blue curve), and the accretion rate of the control (grey curve) for 20 different simulations. The disrupting black
hole is indicated in the top left-hand corner, with a P indicating disruptions by the primary and an S by the secondary. Accretion and fallback rates are measured
in units of Solar masses per year, while time is measured in years (one binary orbit corresponds to 0.3 yr). The magenta and cyan lines represent the Eddington
limit for the primary and secondary SMBHs, respectively, assuming an accretion efficiency of 0.1. Simulations with no accretion whatsoever were complete
ejections of the stream. The accretion and fallback rates for the other 80 simulations can be found in the online supplemental material accompanying this paper.
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Figure 12 – continued

rates, which count particles that cross 0.5rt, and the fallback rates,
which count bound particles that enter within 3rt, follow each other
closely for most simulations, indicating that the precise choice of
accretion radius does not have a major influence on the results. The
mapping between the accretion rate and the luminosity in a specific
band involves several additional physical considerations (Lodato
& Rossi 2011), but these are likely to be the same between TDEs
generated by isolated and binary SMBHs.

Disruptions by the secondary SMBH display the most deviation
from the controls, even at early times. The reason for this behaviour
is that the Roche lobe of the secondary is a small fraction of the
binary separation, and the tidally disrupted debris (even the most
bound debris) recedes to large distances from the disrupting hole
before returning. Thus, the primary can significantly deflect the
path of the debris stream (and change the energies and angular
momenta of the gas parcels comprising the stream) soon after the
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star is disrupted. Furthermore, the accretion rates can either signif-
icantly exceed or fall well below the controls, which arises from
the direction of the disrupted debris stream: In the cases where the
accretion rate exceeds that of the control, the motion of the ejected
stream is approximately antiparallel to the direction pointing from
the secondary SMBH to the COM of the binary. Thus, as the stream
recedes from the secondary, it sees more mass in the direction of
the secondary, causing the material to more rapidly accelerate back
towards the disrupting hole and increasing the accretion rate. In con-
trast, when the stream is ejected towards the primary SMBH, the
accretion rate falls below the control because it experiences an ad-
ditional gravitational force in the direction away from the direction
of the disrupting hole. This counteralignment then decreases the
infall velocity of material on to the secondary and correspondingly
diminishes the accretion rate.

For disruptions by the primary, the accretion rate on to the primary
SMBH, in most cases, approximately follows the control rate at
early times. This result is reasonable, as the Roche radius of the
primary is a fairly large fraction of the separation; therefore, the
material ‘sees’ only the primary black hole for a fairly long time
post-disruption, i.e. until the apocentre distances of the disrupted
gas parcels start to exceed the Roche radius of the primary. This
interpretation is also consistent with the rapid falloffs exhibited by
the accretion rates of the primary: The sudden decline marks the
point where the returning debris had, at its apocentre distance, left
the Roche lobe of the primary and is therefore deflected from its
original trajectory in the direction of the COM. We will return to a
further discussion of this point and its implications in Section 5.

The control simulations show the isolated effects caused by the
alteration in the specific energy and angular momentum of the COM
of the star at the time of disruption. We see that, even though all
of the curves tend to follow the t−5/3 law at late times, there are
large differences in the return time of the most bound debris, and
the duration and magnitude of the peak in the fallback rate.

5 D ISCUSSION

In this section, we discuss in more detail some of the most inter-
esting findings presented in the previous section. In particular, we
more closely analyse the accretion discs generated from the TDEs,
we investigate the potential periodicities in the accretion rates, we
consider the effects of resolution on the outcomes of our simu-
lations, we make some remarks on the long-term (i.e. after many
binary orbits) evolution of the accretion morphologies and rates, and
we consider the implications of totally bound and unbound debris
streams.

5.1 Accretion flows

It is apparent from Figs 9–11 that, following the disruption of the
star, much of the shredded stellar material recedes to very large
distances from the binary. Depending on the specific energy of
the material and the deviations induced to that energy from the
binary potential, that material either leaves the system on hyperbolic
trajectories (as is the case for roughly half of the debris when a
star is disrupted by an isolated SMBH) or returns to the sphere of
influence of the binary on very weakly bound orbits. As shown in
the last panels of Figs 9 and 10, those orbits are distributed about
the binary in a quasi-spherical fashion.

However, some of the tidally disrupted debris also stays confined
to one or both of the SMBHs in the form of actively accreting
discs, morphologically evident from Fig. 11. Fig. 13 shows the

result of one particular simulation at a time of roughly 1.75 orbits
in which a disc has formed only around the primary – the disrupting
black hole for this case (in this figure, the size of each blue circle
was set to two times the accretion radius of the respective SMBH
for the purpose of visualization). This was also found to be the
general trend: disruptions by the primary usually resulted in an
accretion disc formed only around the primary, though Fig. 11
shows that discs also formed around the secondary in some of those
instances; Fig. 12 also show that a substantial amount of material is
sometimes accreted by the secondary for disruptions by the primary.
On the other hand, disruptions by the secondary generally resulted
in accretion on to both SMBHs.

From Fig. 13 we see that the accretion disc around the primary
extends to approximately 10 per cent of the semimajor axis of the
binary (approximately 5–10 au in physical units). Furthermore, it
is already evident from this scale that the disc itself has quite a bit
of substructure, being somewhat elongated in the direction of the
semimajor axis of the binary, having a sharp, well-defined inner
and outer radius, and possessing a radial gradient in its column
density profile. The left-hand panel of Fig. 14 shows a closeup
of the x–y projection of the disc (in this figure, the size of the
SMBH has been set to 0.1 times its accretion radius, simply for
the sake of presentation). Here it is evident that the location of the
inner boundary is somewhat ellipsoidal, while the outer edge of the
accretion flow remains more circular.

The right-hand panel of this figure is the same as the left-hand
panel, but we have rotated the coordinates by 60◦ in a counter-
clockwise sense about the x-axis (in other words, the top half of the
left-hand panel is rotated by 60◦ into the page and the bottom half
correspondingly by 60◦ out of the page). This panel demonstrates
that the inner and outer radii of the accretion disc are significantly
inclined with respect to one another. Furthermore, it is apparent that
neither disc has its angular momentum vector aligned to that of the
binary.

We have found that the orientation and tilts of the accretion
discs are relics of the orientation of the stream at the time that
it began to actively accrete on to the binary. Moreover, the inner
and outer flows are actually composed of two distinct discs that
formed at two different times: The outer accretion disc forms after
the first passage of the primary through the returning debris stream,
occurring at roughly 0.5 binary orbits. The second accretion disc,
on the other hand, is generated when the primary passes through
the debris stream a second time at 1.5 binary orbits.

It is because the discs formed from discrete portions of the re-
turning debris stream that they have well-defined radii, truncated at
the approximate circularization radius of the material out of which
they formed (which, because of the time-dependent nature of the
potential of the binary, is not necessarily conserved from the dis-
ruption). Furthermore, the relative tilt between the inner and outer
discs is observed to change over time, with the warp connecting the
two viscously torquing the inner one and causing it to align with
the outer one. At the instant that the inner accretion disc forms (at
roughly 1.5 orbits), its relative tilt to the outer disc is close to 90◦,
while the tilt angle decreases and becomes nearly coplanar by a
time of 2 orbits.

In addition to the continued impact of the stream on to the accre-
tion flow, the binary itself should, in a more general sense, also have
some effect on the evolution of the accretion discs formed around
the primary and the secondary. In particular, we expect the mis-
alignment between the angular momentum vector of the disc(s) and
the binary to induce a precession of the accretion disc itself, and that
precession will have some spatial dependence. Thus, over a long
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Figure 13. x–y projection of the accretion flow generated from one simulation at a time of approximately 1.75 binary orbits; in this case, the star was disrupted
by the primary. The scale here shows the size of the accretion disc around the primary, and the sizes of the blue circles are set to two times the accretion radius
of the respective SMBH.

Figure 14. Left-hand panel: a closeup of Fig. 13 showing the detailed structure of the accretion disc in the plane of the binary. Right-hand panel: same as
the left-hand panel, but rotated by 60◦ in a counterclockwise sense about the x-axis (i.e. the accretion disc is rotated by 60◦ into the plane). This panel shows
that the inner accretion flow possesses a significant tilt angle with respect to the larger accretion flow, and this geometric effect causes the apparent column
density to appear to decrease in regions closer to the SMBH. A movie of the formation and evolution of the accretion disc can be found in the supplementary
information available online.
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enough time-scale, the binary should induce a warped structure in
the accretion disc, with the magnitude of the warp depending on the
local viscosity within the disc (see Nixon & King 2016 for a review
of warped disc physics, and e.g. Larwood et al. 1996; Fragner &
Nelson 2010; Doğan et al. 2015 for simulations of misaligned discs
in binary systems). These discs may also be susceptible to Kozai–
Lidov oscillations on longer time-scales (Martin et al. 2014a,b,
2016).

Finally, we see that the discs formed in our simulations are very
thin, and this thinness is a direct consequence of our neglect shock
heating – if the material retained the heat generated when incom-
ing debris self-intersects to form the original accretion discs or
when the debris impacts the preexisting accretion discs, the re-
sulting flows would likely be considerably more extended in the
radial and vertical directions. Additionally, the back reaction of the
generated accretion luminosity was entirely ignored in our anal-
ysis, even though it is apparent from Fig. 12 that the accretion
rates often exceed the Eddington luminosity of one or both holes.
Therefore, these discs could be much more puffed up in the vertical
direction and possess a combination of winds and outflows, such
as those suggested by Strubbe & Quataert (2009) and Coughlin &
Begelman (2014).

For a more complete view of the dynamics discussed in this
subsection, we refer the reader to a movie in the supplementary
information available online that demonstrates the formation and
evolution of the accretion disc in the simulation shown in Figs 13
and 14.

5.2 Fallback periodicity

It is evident from Fig. 12 that the accretion and fallback rates on
to one or both SMBHs are highly variable from simulation to sim-
ulation. In particular, the time taken for the return of the most
bound material varies by more than an order of magnitude in time,
even between disruptions by the same SMBH; the peak(s) in the
fallback rates occur orders of magnitude below and above the es-
timates from the control cases and, as mentioned in Section 4.2.1,
depend sensitively on the trajectory of the disrupted debris; at later
times, the fallback rates seem to conform only to the t−5/3 rate in
a very small subset of cases, and the rates themselves are highly
variable on very short time-scales (i.e. on time-scales that amount
to small fractions of a single binary orbit) at both early and late
times.

Nevertheless, and in spite of all these obvious differences, the
disruptions by the primary tend to generate accretion rates that
exhibit a quasi-periodic behaviour, with dips and spikes below and
above the control rate on time-scales that are comparable to the
binary orbit. At first, this finding seems consistent with the restricted
three-body integrations of Liu et al. (2014) and Ricarte et al. (2016),
who argued that the secondary SMBH could intersect (or come
sufficiently close to) the tidally disrupted debris stream and interrupt
the accretion on to the primary. Under this interpretation, then, the
accretion rate on to the primary should drastically decrease at some
discrete time following the disruption of the star, quickly resume
the previous accretion rate following the passage of the secondary,
and this behaviour should be repeated once per binary orbit.

We find, however, that the quasi-periodic behaviour exhibited in
our accretion and fallback rates is not entirely consistent with this
picture. For one, it is apparent that while the accretion rate of the
primary does fall below the control value at times, while at others
the binary rate actually exceeds that of the control. In addition, if we
recall that a binary orbit amounts to approximately 0.3 yr, we see

that the time-scale(s) associated with the periodicity are generally
only a fraction of one orbit. The changes in the accretion rate on to
the primary are also, at least in some instances, uncorrelated with
the position of the secondary, that is, decreases in the accretion rate
on to the primary occur at times when the secondary is nowhere near
the incoming debris stream. Finally, the ability of the secondary to
intersect the stream is clearly maximized when the disruption occurs
in a manner that is coplanar with the binary, but the periodic nature
of our accretion rates seems uncorrelated with the angle the debris
stream makes with the binary orbital plane.

We suspect that the quasi-periodic behaviour of our accretion
rates likely arises more from the motion of the primary instead of
the direct presence of the secondary. Specifically, when the star
is originally disrupted by the primary, the event proceeds as if
the SMBH were isolated (as is apparent, in most cases, from the
fact that the accretion rate on to the primary originally matches that
of the control in Fig. 12), and the stream returns approximately
to the point of disruption. However, as the apocentre distances of
the bits of the returning stream start to extend beyond the Roche
lobe of the primary, the stream no longer ‘sees’ the primary but
is, instead, influenced approximately by the monopole moment
of the gravitational field of the binary. The pericentre distances
of the returning gas parcels then start to deviate from the origi-
nal site of the disruption and are deflected towards the COM of
the binary.

Once the stream starts to be deflected in this way, the returning
debris will, in general, miss the primary and generate a dip in
its accretion rate, unless the position of the primary, the COM,
and the point at which the stream reenters the Roche lobe of the
primary are approximately collinear. When this alignment occurs,
accretion will resume on to the primary at a rate that could either
fall below or exceed the original fallback rate. Geometrically, this
alignment will happen twice per orbit, meaning that the frequency
over which we expect these variations in the accretion rate to occur
is approximately equal to half the binary orbital period.

This argument ignores additional aspects of the problem that
could complicate and potentially confound the ‘clean’ periodicity
we would otherwise expect. For example, the gravitational potential
of the binary does not instantaneously change from a point mass
at the location of the primary to a point mass at the location of
the COM as the material leaves the Roche lobe. Furthermore, the
quadrupole moment of the potential will still induce additional,
time-dependent variations in the orbits of the incoming gas parcels,
which could introduce additional periodicities in the accretion rate.
Finally, the secondary SMBH does accrete a sizeable amount of
material in a subset of disruptions by the primary, as can be seen in
Fig. 12, demonstrating that the secondary is capable of physically
impacting the stream. In these instances, then, there may be an
additional periodic variation induced in the accretion rate of the
primary with a periodicity of the order of one binary orbital period,
in line with the expectations of Liu et al. (2014) and Ricarte et al.
(2016).

To more concretely assess the potential periodic nature of the ac-
cretion rates, one can analyse the power spectra of the binary runs
in comparison to the controls. Fig. 15 shows one specific power
spectrum of the accretion rate of the primary, the temporal varia-
tion of which is shown in the top right-hand panel of Fig. 12. In
this figure, ω = 2π corresponds to the angular frequency of one
binary period, the solid blue curve is from the simulation with the
binary, while the dashed orange curve is the control case. There is
a very prominent peak that occurs at ω � 4.5π, yielding a periodic
time-scale of �0.44 binary orbits – a time-scale that is consistent
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Figure 15. Power spectrum of the primary accretion rate corresponding
to the top right-hand panel of Fig. 12, with the solid blue curve being the
binary simulation and the dashed orange curve the control. Here ω = 2π
corresponds to variations on one orbital period, and the prominent spike –
showing that there is indeed a periodicity within the temporal accretion rate
– occurs at a frequency of 4.5π, or a time-scale of 0.44 times the binary
period.

with our proposed interpretation of the motion of the primary gener-
ating the variation. There are also smaller peaks at frequencies near
ω = 10π, which could be indicative of higher order resonances
caused by the effects of the binary orbital motion on the debris
stream.

The top right-hand panel of Fig. 12 has an apparent, by-eye, quasi-
periodic variability, and it is therefore not overly surprising that the
power spectrum of such a light curve possesses a well-defined peak.
However, we have also found that many of the other simulations
– even those that do not possess obvious patters of variation –
also exhibit peaks at frequencies that correspond to approximately
integral numbers of the binary orbital frequency, the largest of those
peaks occurring at either one or two times the binary period. This
finding is then indicative of the notion that TDEs generated by
SMBH binaries generally exhibit variations on time-scales that are
comparable to the orbital period of the binary.

The frequency corresponding to half a binary orbital period, as
we argued above, ultimately comes from the motion of the primary.
Thus, as the binary mass ratio starts to decrease, this feature will start
to become less prominent in the power spectrum. When q � 1, we
would then expect only the motion of the secondary to potentially
alter the distribution of tidally disrupted debris, resulting in a peak at
a frequency corresponding to one, as opposed to half, binary orbital
period. However, as noted by Ricarte et al. (2016), the original orbit
of the star must be nearly coplanar with the binary orbital plane in
order for there to be a large effect.

5.3 Resolution

In this paper, all of the simulations we used to analyse the accretion
morphologies and rates were performed with 5 × 105 SPH particles
(for more details of the numerical methods, see Section 4.1). An
important question, then, is how much those morphologies and rates
depend on the number of particles used.

To obtain a rough idea of the dependence of our results on resolu-
tion, we ran two additional simulations employing the same initial
setup for the star that produced Figs 9 and 10. However, one simu-
lation was characterized by having a low resolution and used only
2.5 × 105 particles, while the other had a comparatively high reso-
lution and used 106 particles.

Fig. 16 compares the morphology of the accretion and fallback
flows generated from the three simulations, with a low resolution
in the left-hand panel, a medium resolution (with 5 × 105 particles)
in the middle panel, and a high resolution in the right-hand panel.
Qualitatively, we see that there is very little difference in the overall,
bulk structure and organization of the fluid around the binary, and
it is only until one investigates the smallest scales that one finds
any deviations between the panels. This behaviour is, of course, ex-
pected: On large scales, the dynamics is primarily ballistic, with the
main hydrodynamic effects occurring intermittently when streams
intersect. On small scales, shocks, disc circularization, and possible
hydrodynamic instabilities are all more challenging to resolve.

Fig. 17 shows the accretion rates on to both the primary and
secondary for the low-, middle-, and high-resolution simulations; in

Figure 16. x–y projection of run 47 at a time of two orbits; the left-hand, middle, and right-hand panels show the low-resolution (2.5 × 105 particles),
medium-resolution (5 × 105 particles), and high-resolution (106 particles) runs, respectively. This figure demonstrates that the overall structure of the accretion
flow is largely unaffected by resolution.
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Figure 17. Accretion rate on to the primary for the low-resolution (LP),
medium-resolution (MP), and high-resolution (HP) simulations of run 47,
and the accretion rate on to the secondary for the low-resolution (LS),
medium-resolution (MS), and high-resolution (HS) runs.

the legend, L, M, and H stand for low, medium, and high resolution,
while the subscripts P and S stand for accretion on to the primary and
secondary (e.g. LP is the accretion rate on to the primary for the low-
resolution test). This figure demonstrates that the accretion rates are
reasonably well resolved, with discrepancies between simulations
only amounting to a few tens of percent, at most.

The one consistent trend apparent from Fig. 17 is that a higher
resolution results in a shift towards lower accretion rates, with the
most significant decreases occurring when the accretion rates them-
selves are relatively low (e.g. compare the accretion rates on to the
primary at a time of roughly 0.3 yr). This trend likely signifies that
the regions in the immediate vicinity of the accretion radii of either
black hole at these times are not completely resolved: A smaller
number of particles generate a correspondingly higher, effective
numerical viscosity. This larger viscosity then increases the ability
of the gas to transport angular momentum through the disc, thereby
artificially augmenting the accretion rate on to the hole. However,
we note that this trend is particularly apparent only when the accre-
tion rates are low, with larger accretion rates – which have a greater
number of particles in the inner regions of the discs – showing very
little deviation between the resolution tests.

5.4 Long-term evolution

It is especially apparent from the accretion curves (Fig. 12) and, to
more or less of an extent, from the morphologies of the surrounding
flows themselves (Figs 9–11) that, even after two complete binary
orbits (or nearly six months in time following the original disruption
of the star), the binary system has not settled into an asymptotic,
‘steady state’ following the disruption of the original star. In partic-
ular, most, if not all, of the simulations show a rapid variation in the
fallback and accretion curves for months after the disruption of the
star, and most have not exhibited any type of a power-law decline.
To investigate how long it could conceivably take for such a state to
be reached, we evolved the run shown in Figs 9 and 10 for a total
of six binary orbits, or 1.7 yr, and analysed the long-term accretion
rates and flow morphologies.

Fig. 18 shows the distribution of disrupted debris after six binary
orbits, the left-hand panel being the projection on to the binary
plane and the right-hand panel the projection out of the plane. As is
apparent, much of the material has conformed to two, well-defined
discs surrounding each individual SMBH. Nevertheless, there is
still a large amount of debris that lies outside of these two discs,
with a very pronounced, spiral structure emanating from the disc
surrounding the primary. The incoming debris stream is also still
evident, and the right-hand panel shows that it makes a significant
angle with respect to the binary plane. We also see, from the right-
hand panel, that the debris has become more localized to the plane
of the binary (compare this panel to the bottom right-hand panel of
Fig. 10).

Fig. 19 illustrates the accretion rate on to the primary (black
curve), the accretion rate on to the secondary (red curve), and the
power law t−5/3 (green, dashed curve) for reference. We see that the
accretion rate on to the secondary has, on average, started to follow
an approximate, t−5/3 decay. However, there is still a large degree of
variability, with changes ranging by roughly a factor of 5 above and
below the t−5/3 decay. The accretion rate on to the primary, on the
other hand, remains approximately constant following a particularly
large outburst around 0.7 yr.

These figures demonstrate that, even after six binary orbits, or
nearly 2 yr following the disruption of the original star, the accretion
rates on to the SMBHs have not settled into something that is easily
identifiable as a steady state. Surprisingly, the accretion rate on
to the primary SMBH does not resemble anything that would be
obviously indicative of an accretion episode following a TDE. This
finding seems to imply that, even though the primary is considerably
more massive than the secondary, many orbits are required in order

Figure 18. Morphology of the debris produced from run 047 at a time of six binary orbits, or approximately 1.7 yr after the disruption of the star. The left-hand
panel shows the projection in the plane of the binary, while the right-hand panel shows the out-of-plane projection.
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Figure 19. The accretion rates on to the primary (black curve) and sec-
ondary (red curve) as functions of time, and the ∝ t−5/3 power law (green
dashed line) for reference, calculated for a total of six binary orbits (or
1.7 yr) for run 047.

to deflect the stream to the point where it returns to the COM
(approximately coincident with the location of the primary).

As we noted above, this particular TDE was exceptionally dy-
namic and resulted in an extremely disordered distribution of ma-
terial. Some of the other simulations, specifically those in which
the primary was the disrupting SMBH, may start to exhibit less
chaotic variability by six (or fewer) orbits following the initial dis-
ruption. Indeed, this is already somewhat apparent from some of
the accretion curves at two orbits.

5.5 Entirely unbound/bound streams

We noted in Section 4.2 that some debris streams were completely
ejected from the binary system, which resulted from the fact that
the energy of the stellar COM at the time of disruption was so high
that even the most bound debris had positive energy. As we showed
at the end of Section 4.2.2, the energy of the stellar COM, εc, must
satisfy εc/εb > Ni in order for the stream to be completely ejected,
where εb is the binding energy of the binary and

Ni = 2 m
1/3
1 m

1/3
i

m1 + m2
k. (10)

In this expression, m1,2 ≡ M1,2/M∗ is the ratio of the primary or
secondary mass to the stellar mass, mi is the mass of the disrupting
hole (divided by the stellar mass), and k is the ratio of the binary
separation to the tidal radius of the primary.

For our specific set of simulations, we adopted k = 100, which
gave Ni �1. Investigating the histograms that show the distribution
of the energy of the COM at the time of disruption (Fig. 7), we found
that there should be a small number of cases in which all of the debris
is ejected from the binary, and preferentially so by the secondary
(and this preference was confirmed by the simulations). However,
we note that the required energy cutoff given by equation (10) is
linearly dependent on the separation of the binary. Furthermore, the
histograms in Fig. 7 show that there is a very sharp cutoff in the
number of stars that satisfy εc � few × εb, which shows that even
for marginal increases in the binary separation (i.e. by a factor of
2), there should be a drastic falloff in the number of totally ejected
streams. Conversely, a decrease in the binary separation should
dramatically increase the number of entirely unbound streams, not

only because the necessary energy of the COM decreases, but also
because we expect a larger spread in the energies of the disrupted
stars owing to the higher speeds of the SMBHs.

Even though entirely unbound streams do not result in accretion,
they still may generate observational signatures: As the stream ex-
its the sphere of influence of the binary, it will interact with the
preexisting gas and dust in the circumnuclear medium (CNM). As
investigated by Guillochon et al. (2016) (see also Chen, Gómez-
Vargas & Guillochon 2016), this interaction generates a drag on the
stream, decelerating the outward motion of the debris, reorienting
and tangling the stream due to its radially dependent density profile
(Coughlin et al. 2016b), and depositing energy into the ambient
medium, these features mimicking those of a supernova remnant.
Furthermore, because the COM of the stream is on a hyperbolic
orbit, the total amount of energy deposited into the CNM and the
eventual stopping distance of the stream can exceed those from an
ordinary TDE (i.e. one produced by an isolated SMBH).

From the four of our simulations that resulted in the total ejec-
tion of the stream, we find that the maximum energy (over all four
simulations) is εej �0.001c2, yielding an asymptotic velocity of
v∞ � √

2εej � 0.045c. Comparatively, the maximum terminal ve-
locity for the disruption of a Solar-like star by an isolated 106-M�
SMBH is v∞ �0.02c (this makes the usual assumption that the stel-
lar COM is on a parabolic orbit; Rees 1988), showing that the shift
in the energy of the COM in these cases can (at least) double the
terminal velocity of the most unbound debris. We also find that the
total amount of energy contained in these entirely unbound debris
streams to be Einj = {1.03, 0.703, 1.49, 0.348} × 1051 erg, which
is a factor of ∼10 times the amount one would expect from the
debris streams ejected by isolated SMBHs (Guillochon et al. 2016).
This additional factor of 10 comes both from the fact that the total
mass of the star is ejected (as opposed to half) and that the energies
are augmented by roughly the binding energy of the binary.

In a more general sense, the evolution of the unbound portions of
these streams as they impact the CNM should differ substantially
from those arising from isolated SMBHs. Specifically, as is evident
from Figs 11, the streams are tangled into large, sweeping arcs,
which extend over hundreds of degrees from end to end, as they
escape from the binary system. In contrast, the angle subtended by
the unbound portion of the debris stream generated by the disruption
of a Solar-like star by a 106-M� SMBH is θarc � √

2/10 � 0.1.
Since the drag force on the stream is proportional to its area, which
scales with its length, this shows that the time-scale over which the
stream slows appreciably is approximately a factor of 100 shorter
in this case.

Finally, while the disruption of a star by an isolated SMBH gen-
erates one unbound debris stream that expands from the radius of
disruption, many of our simulations are characterized by concen-
tric ejections of loops of material over time. Thus, the unbound
debris remnants produced from the disruptions by binaries may not
necessarily have one, well-defined remnant. Furthermore, if two
unbound loops separated in time are relatively coplanar, one might
expect that the debris stream ejected at a later time could traverse
the already cleared path made by a preceding stream, culminating in
the second stream encountering the stalled, initial remnant. In this
case, the interaction of the second stream with the original remnant
may cause a sudden rebrightening.

In addition to entirely unbound streams, some tidally disrupted
streams can also be completely bound to the binary, which requires
an energy less than the negative of equation (10). It is apparent from
Fig. 7 that this situation is much easier to achieve than the entirely
unbound case, which results from the fact that most disrupted stars
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Figure 20. Histogram of the total amount of mass accreted by the binary
(blue bars) and the control SMBH (green bars) at the terminus of each
simulation (which amounts to roughly two orbits for most cases, but is
somewhat fewer for a few runs). The value of this number is a lower limit
on the total amount of disrupted debris that is bound to each system.

are placed on unstable, but temporarily bound orbits before being
disrupted.

Fig. 20 shows a histogram of the total amount of mass accreted at
the end of each simulation, corresponding to a time of roughly two
orbits for most cases. The blue bars are the binary runs, while the
green bars are from the controls. This plot demonstrates that, while
roughly a quarter of the simulations have not yet accreted much
material, a substantial fraction have already consumed greater than
20 per cent of the disrupted stellar debris by 5.8 months. Compara-
tively, it would take roughly nine months for an isolated, 106-M�
SMBH to accrete 0.2 M� of disrupted debris under the impulse
approximation (assuming the disrupted star was Solar like and that
all of the mass that returns to the point of disruption is immediately
accreted; Coughlin & Begelman 2014). In addition, four binary
runs and a dozen controls already accreted more than half of all the
available debris, thereby exceeding the theoretical limit one would
normally invoke for the disruption of a star by an isolated SMBH.

6 SU M M A RY A N D C O N C L U S I O N S

In this paper, we have taken a two-step approach to analysing the
tidal disruption of stars by SMBH binaries. First, we performed a
large number of restricted three-body integrations of a point mass
in a binary potential. By injecting stars (considered point masses)
from random orientations into a binary of fixed separation, we were
able to determine – from a statistical standpoint – the properties of
the stellar orbits at the time of disruption, defined as the moment at
which the star crossed the tidal sphere of either SMBH. Importantly,
our results also demonstrated that the energies and angular momenta
of the COM of the disrupted stars can differ drastically from those
of the originally assumed parabolic orbit, a discrepancy that arises
from the time-dependent nature of the binary potential.

We then simulated the hydrodynamical evolution of 120 different
TDEs, with the initial conditions for those TDEs randomly drawn
from our sample of three-body integrations. Specifically, we deter-
mined – from the restricted three-body results – the position and
velocity of the COM of 120 to-be-disrupted stars when they were
five tidal radii from the disrupting hole. Those positions and ve-
locities were then used to initiate SPH simulations with the code
PHANTOM (Price & Federrath 2010), with which we followed the

hydrodynamical evolution of the TDEs for two binary orbital peri-
ods. In our analysis, we opted to focus on a circular binary with fixed
properties, being a primary mass of 106 M�, a secondary mass of
2 × 105 M� (a mass ratio of 0.2), and a separation of 100 tidal radii
of the primary (or roughly 10−4 pc). We also ran 120 control sim-
ulations in which we removed the non-disrupting hole, ultimately
in an effort to distinguish the effects of changing the energy and
angular momentum of the stellar COM from the dynamical effects
of the binary itself.

Our restricted three-body integrations yielded a number of inter-
esting results concerning the statistical nature of TDEs by SMBH
binaries, the first being that the rate of TDEs (assuming an isotropic
initial distribution of stars on parabolic orbits with uniformly dis-
tributed angular momenta) is nearly independent of the mass ratio
of the binary (see Fig. 1), that rate being equal to approximately
0.02 (i.e. 2 per cent of stars that encounter the binary will be tidally
disrupted). We also showed that the likelihood of being disrupted
by the primary, λp, is greater than that of the secondary, and is very
well approximated by the linear relation λp(q) = 0.96 − 0.46q, q =
M2/M1 being the mass ratio of the binary. The PDFs of the impact
parameter β = rt/rp (rt being the tidal radius of the disrupting hole
and rp the pericentre distance of the disrupted star), the time taken
to be disrupted T, and the number of additional encounters N (an
additional encounter being any time a star came within 3rt of either
hole without being disrupted) were found to be well fitted by the
power laws fβ =β−2, fT ∝ T−2.5, and fN ∝ N−3.5 (see Figs 3, 4, and 8).
Finally, the PDFs describing the energy and angular momentum of
the stellar COM at the time of disruption were widely distributed
(see Figs 6 and 7), showing that the time dependence of the binary
potential can dramatically alter the dynamics of the ensuing TDE –
even before the star is actually disrupted.

The hydrodynamical simulations demonstrated that the second
SMBH can have large effects on the evolution of the tidally dis-
rupted debris. As confirmed by Figs 9–11, the distribution of the
material rapidly (i.e. after less than one binary orbit post-disruption)
becomes very chaotic, spreading to large radii in both the plane of
the binary and out of the plane. Interestingly, in some cases, the de-
bris conformed to an approximately spherical configuration around
the binary, as can be seen in the bottom right-hand panel of Fig. 10.
Furthermore, a subset of simulations in which the secondary was
the disrupting SMBH generated entirely unbound debris streams,
creating no fallback whatsoever.

The accretion rates following these disruptions also showed an
intense amount of variability on short and long time-scales, the
accretion rates themselves shown in Fig. 12 (see also the figures
in the online supplementary material). Interestingly, a number of
the disruptions generated quasi-periodic behaviour, with dips in the
accretion rates occurring of the order of the binary orbital period
(the top right-hand panel of Fig. 12 illustrates one particularly good
example of this phenomenon). As we argued in Section 5.2, this
periodicity likely arises from the motion of the primary SMBH,
and should therefore occur on time-scales comparable to half of the
binary period. This interpretation is in contrast to those put forth by
Ricarte et al. (2016), who argued that the secondary SMBH could
– at least in the instances in which the disrupted debris is confined
approximately to the plane of the binary – intersect the tidally
disrupted debris stream and thereby reduce the accretion on to the
primary once per binary orbit. While this situation could certainly
occur, and it does seem to be the case that at least some of our
simulations show evidence for periodic behaviour on the time-scale
of one binary orbital period, the movie showing the formation and
evolution of one accretion disc and our Fig. 15, which shows the
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power spectrum for one simulation, support the interpretation that
the motion of the primary induces the majority of the periodicity.
However, for smaller mass ratios where the motion of the primary
becomes negligible, the periodic interruption proposed by Liu et al.
(2014) and Ricarte et al. (2016) may be the dominant contributor to
the variation in the fallback rate.

Many disruptions resulted in small-scale (i.e. extending to only
a few per cent of the binary separation) accretion discs surrounding
one or both of the SMBHs, some of which are evident in Fig. 11. A
closeup of one such accretion disc, shown in Fig. 14, illustrates that
these discs can have very complex geometries, including a non-
uniform, elliptical geometry, and, especially from the right-hand
panel of Fig. 11, highly inclined tilts and warps. We have found
that, at least for the case appropriate to Fig. 11, these features arise
from the time-dependent and highly chaotic origin of the accretion
disc; in particular, the disc itself is actually composed of two discs,
each formed at discrete times in the evolution of the binary. The mis-
alignment angle between the inner and outer discs is also a function
of time, the viscous interaction between the two dragging the inner
disc into coalignment with the outer one (see the movie here).

It is apparent from Figs 9–12 that many of the simulations still
show a high degree of variability in both the morphology of the
accretion flows and the accretion rates themselves. We ran one
simulation for a total of six orbits (amounting to 1.7 yr) to investigate
the long-term evolution of one such system, and we found that,
even after this amount of time, there was still a display of chaotic
behaviour in both the appearance of the distribution of disrupted
material and the accretion rates (see Figs 18 and 19). While the
accretion rate of the secondary SMBH (the disrupting hole for this
case) fell off at a rate that, on average, mimicked the t−5/3 decay,
the primary accretion rate remained approximately flat and did not
resemble anything indicative of a TDE. However, we note that this
particular simulation was rather extreme in terms of the chaotic
distribution of debris, and other more ‘tame’ TDEs may tend to
follow a more regular pattern at earlier times (indeed, this is arguably
evident from some of the panels in Fig. 12).

Our simulations are generally characterized by the formation
of small-scale, gravitationally bound clumps, resulting from the
gravitational instability of the stream (Coughlin & Nixon 2015);
these are not visible in Figs 9 and 11 because of their incredibly
small scale (∼R�), and they are correspondingly smoothed over
the resolution element of the figures. This instability is expected
on analytical grounds if the impact parameter is not sufficiently
high, though the growth rate of the instability is stunted by the
tidal field of the binary (Coughlin et al. 2016b). Specifically, the
decay of the background density profile of the stream resulting
from its tidal deformation causes the overdensities to grow as power
laws, instead of exponentials, in time, meaning that they are very
difficult to resolve and their properties are, in general, dependent
on the resolution of the simulation. Clumps bound to the binary are
generally sheared apart upon returning to the vicinity of the binary,
as their densities are significantly lower than that of the original star,
and thus add to the chaotic nature of the distribution of the debris
around the binary. In the unbound segment of the stream, the clumps
recede from the binary and could, conceivably, escape from the host
galaxy after interacting with the surrounding CNM (in a manner
that could differ from that suspected from unbound debris streams
that do not harbour clumps; Guillochon et al. 2016). However,
recombinations (Kasen & Ramirez-Ruiz 2010) or magnetic fields
(Guillochon & McCourt 2016; Bonnerot et al. 2016a) could provide
significant pressure support to resist the collapse into small-scale
clumps.

The simulations we performed involved the disruption of a single
type of progenitor (being Solar like and following a polytropic,
γ = 5/3 density distribution) by a circular binary of fixed properties.
While this approach obviously leaves a large number of parameters
to explore in this problem, here we have performed the first extensive
parameter-space sweep involving the properties of the orbit of the
star (e.g. the point of closest approach of the star to the disrupting
SMBH, the orientation of the orbit with respect to the plane of
the binary, etc.). Even though the accretion curves generated from
these simulations display a wide range of properties, we have found
that many exhibit periodic dips that vary on the order of the binary
orbital period, and Fig. 15 – a power spectrum from one particular
simulation – confirms this statement on more quantitative grounds.
This finding points to the promising conclusion that upcoming wide-
field surveys (e.g. LSST; Ivezic et al. 2008) may be able to start to
determine, at the very least, the orbital parameters of SMBH binaries
that generate TDEs.
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King A., 2014b, ApJ, 792, L33
Martin R. G., Lubow S. H., Nixon C., Armitage P. J., 2016, MNRAS, 458,

4345
Müller-Sánchez F., Comerford J. M., Nevin R., Barrows R. S., Cooper

M. C., Greene J. E., 2015, ApJ, 813, 103
Nealon R., Price D. J., Nixon C. J., 2015, MNRAS, 448, 1526
Nixon C., King A., 2016, in Haardt F., Gorini V., Moschella U., Treves A.,

Colpi M., eds, Lecture Notes in Physics Vol. 905, Astrophysical Black
Holes. Springer-Verlag, Berlin, p. 45

Nixon C., King A., Price D., Frank J., 2012, ApJ, 757, L24
Nixon C., King A., Price D., 2013, MNRAS, 434, 1946
Peebles P. J. E., 1972, ApJ, 178, 371
Peters P. C., Mathews J., 1963, Phys. Rev., 131, 435
Phinney E. S., 1989, in Morris M., ed., Proc. IAU Symp. Vol. 136, The

Center of the Galaxy. Kluwer, Dordrecht, p. 543
Polnarev A. G., Rees M. J., 1994, A&A, 283, 301
Price D. J., Federrath C., 2010, MNRAS, 406, 1659
Ramirez-Ruiz E., Rosswog S., 2009, ApJ, 697, L77
Rees M. J., 1988, Nature, 333, 523
Ricarte A., Natarajan P., Dai L., Coppi P., 2016, MNRAS, 458, 1712
Rosswog S., Ramirez-Ruiz E., Hix W. R., 2009, ApJ, 695, 404

Shapiro S. L., Lightman A. P., 1976, Nature, 262, 743
Shen R.-F., Nakar E., Piran T., 2016, MNRAS, 459, 171
Shiokawa H., Krolik J. H., Cheng R. M., Piran T., Noble S. C., 2015, ApJ,

804, 85
Stone N., Loeb A., 2012, Phys. Rev. Lett., 108, 061302
Stone N. C., Metzger B. D., 2016, MNRAS, 455, 859
Strubbe L. E., Quataert E., 2009, MNRAS, 400, 2070
Strubbe L. E., Quataert E., 2011, MNRAS, 415, 168
Ulmer A., 1999, ApJ, 514, 180
Wang J., Merritt D., 2004, ApJ, 600, 149
Wegg C., Nate Bode J., 2011, ApJ, 738, L8
Yu Q., Tremaine S., 2001, AJ, 121, 1736

S U P P O RT I N G IN F O R M AT I O N

Supplementary data are available at MNRAS online.

Please note: Oxford University Press is not responsible for the
content or functionality of any supporting materials supplied by
the authors. Any queries (other than missing material) should be
directed to the corresponding author for the article.

A P P E N D I X A : B I NA RY E QUAT I O N S

In this appendix, we write down and derive, for the reference of
the reader, the equations describing the evolution of the SMBH
binary and the motion of the star (considered a point mass) in the
gravitational potential of the binary.

We will let the binary occupy the x–y plane, with the x-axis
parallel to the original (i.e. at a time of zero) separation vector
between the two black holes. The black holes will have masses of
M1 and M2, with M1 ≥ M2, and the (assumed-stationary) COM of
the binary will be the origin of the coordinate system. With this
setup, the evolution of the binary is described by the following
equations:

R1 = M2

M
r, (A1)

R2 = M1

M
r, (A2)

r = a
(
1 − e2

)
1 + e cos φ

, (A3)

a3/2

√
GM

(
1 − e2

)3/2

(1 + e cos φ)2

dφ

dt
= 1. (A4)

Here, R1 is the separation of M1 from the COM, R2 is the separation
of M2 from the COM, M ≡ M1 + M2 is the total mass of the binary,
r ≡ |R2 − R1| is the magnitude of the displacement vector between
the two masses, φ is the angle made between r and the x-axis,
a ≡ (rmax + rmin)/2 is the semimajor axis of the binary (where rmax

and rmin are the maximum and minimum values of the separation
between the masses, respectively), and e = (rmax − rmin)/(rmax +
rmin) is the eccentricity of the binary.

We will define the positive-x direction as pointing from M1 to
M2 at t = 0, while the positive-y direction will be orthogonal to
the x-axis moving in a counterclockwise sense. The z-axis is then
constructed in a right-handed manner. We will also restrict ourselves
to circular binaries, for which e = 0, and in this case, the x and y
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positions of the black holes as functions of time are analytically
found to be

X1 = −(1 − m) cos τ, Y1 = −(1 − m) sin τ, (A5)

X2 = m cos τ, Y2 = m sin τ. (A6)

Here, Xi and Yi are the x and y positions of the black holes normalized
by the semimajor axis, m ≡ M1/M is the ratio of the primary
black hole mass to the total mass, and τ ≡ t

√
GM/a3/2 is the time

normalized by the orbital time of the binary (modulo a factor of
2π).

Now consider a star – treated as a point mass – that initially
encounters the binary from a very large distance. At any instant in
time, the total gravitational potential affecting the star is

� = −GM1

D1
− GM2

D2
, (A7)

where D1 and D2 represent the magnitudes of the separations be-
tween the star and the black holes of masses M1 and M2, respectively.
We can parametrize these distances in terms of the x, y, and z co-
ordinates of the star measured from the binary COM; doing so and
letting x, y, and z be normalized by the binary semimajor axis gives

D2
1 = a2

(
(x − X1)2 + (y − Y1)2 + z2

)
, (A8)

D2
2 = a2

(
(x − X2)2 + (y − Y2)2 + z2

)
. (A9)

The Lagrangian of the star moving under the influence of the binary
is then

L = GM

a

{
1

2

(
ẋ2 + ẏ2 + ż2

) + �1 + �2

}
, (A10)

where

�1 = m√
(x + (1 − m) cos τ )2 + (y + (1 − m) sin τ )2 + z2

(A11)

and

�2 = 1 − m√
(x − m cos τ )2 + (y − m sin τ )2 + z2

. (A12)

From the Lagrangian, we can construct the Euler–Lagrange equa-
tions that govern the motion of the star in the binary potential, given
by

d

dt

(
∂L

∂ẋi

)
− ∂L

∂xi

= 0, (A13)

where xi = {x, y, z}.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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