
University of Leicester

Doctoral Thesis

Epigenetic mechanisms of insect
polyphenisms

Author:
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Abstract
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Doctor of Philosophy

Epigenetic mechanisms of insect polyphenisms

by Zoë Natasha Lonsdale

Insects are emerging as a key lineage for the study of epigenetic phenomena. This is due to

the variety of polyphenisms found in insects. In this thesis, the caste polymorphism of the

buff-tailed bumblebee Bombus terrestris and the phase polymorphism of the desert locust

Schistocerca gregaria are studied to elucidate the underlying epigenetic mechanisms.

I establish the presence of allele-specific expression and methylation in B. terrestris. I

used next-generation RNA-sequencing to establish the DNA methylation, alternative splic-

ing, and gene expression patterns of B. terrestris worker reproduction. The presence of

allele-specific methylation and allele-specific expression were then determined in the same

context. Correlations with the aforementioned epigenetic mechanisms were drawn. One

major finding was that a higher degree of methylation was witnessed in more highly ex-

pressed genes. Higher methylation levels were also associated with more differentially

expressed genes and isoforms between workers of a different reproductive state. However,

the association between allele-specific expression and allele-specific methylation was weak.

The relationship between alternative splicing and the circadian clock in S. gregaria was

investigated. The first evidence of genes with differential circadian isoform expression

patterns is reported. Finally, I analysed whether genome-wide alternative splicing levels

are an important component in ascertaining the varying levels of eusociality found in

the Hymenoptera. Fewer splicing events per gene with multiple isoforms was found in

more highly eusocial species compared with solitary and more primitively eusocial species.

Thus this is the first evidence of an association between level of sociality and alternative

splicing.
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Chapter 1

General introduction

1.1 Polyphenisms

Ernst Mayr first coined the term “polyphenism” in 1963, to denote non-genetic and

genetic variation of phenotype [15]. There is great diversity in polyphenism type and

the organisms in which they develop, from nematodes to more complex mammalian

species. In a relatively simple animal model, nematodes such as Caenorhabditis ele-

gans exhibit a stress-induced polyphenism. In scenarios of high temperature or re-

duced food availability which is often combined with overcrowding with conspecifics,

L1 and L2 larval nematodes will develop into the “dauer” stage which is long-lived,

stress-resistant, and non-feeding [16, 17] (Figure 1.1a). This is an alternate state

to the L3 larval stage before a nematode continues through the L4 larval stage and

finally to become a reproductive adult.

Predator-induced polyphenisms are shown by water flea Daphnia species, whereby

head crests or neckteeth are produced by the animal when chemoreceptors in the

first antennae pair detect kairomones of a predator nearby [18] (Figure 1.1b). The

induced development of neckteeth in Daphnia pulex tend to cause predation by the

phantom midge larvae Chaoborus to be difficult [19]. This phenotypic plasticity is

1
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(a) (b)

(c) (d)

Figure 1.1: The diversity of animal polyphenisms. (A) C. elegans nematode
life-history [1]. (B) Second juvenile stage of predator-exposed Daphnia pulex
with neckteeth [2]. (C) Snowshoe hare coat colour polyphenism (Cooley Jericho
Community Forest 2017). (D) Female and male clownfish (Georggete Douwma,

Arkive).

thought to be regulated by the endocrine system, particularly the juvenoid signalling

pathway, however the full pathway is as yet unknown [20].

Polyphenisms are also witnessed in higher order Metazoans. Seasonal coat colour

polyphenisms occur in at least nine mammalian species [21], such as the Arctic fox

Vulpes lagopus and the snowshoe hare Lepus americanus (Figure 1.1c). In these

Arctic species coat colour is white in the winter and brown in the summer, thus

assisting the animals to be cryptic to the snow and snow-free woodland/tundra in

which they inhabit in different seasons. This polyphenism is key to an individual’s

survival. The Arctic fox evolved at least 2.6 million years ago (potentially 5 million

years ago) [22], but now climate change threatens the survival of these Arctic species

if their coat colour polyphenisms are not plastic enough to account for the reduction
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in snow fall in Arctic regions. Natural populations of snowshoe hares have limited

plasticity in the initiation dates of colour change and the rate of the fall brown-to-

white molt [21]. Therefore the correct timing of coat colour polyphenisms are key

to survival in these species.

Species’ fitness can be maximised by increases in reproduction as well as longevity,

and polyphenisms have been witnessed to affect both these fitness aspects. Ef-

fects on survival have been described here in the nematode, Daphnia, and Arc-

tic mammalian species, and reproduction benefits can be clearly witnessed in sex-

determining polyphenisms of several fish species. Functional hermaphroditism is a

sex-determining polyphenism that occurs in at least 27 families of teleost fish species

such as the clownfish [23]. In the monogamous clownfish Amphiprion percula, there

is a dominance hierarchy determined by size. The female is the dominant fish in a

social group also consisting of a large male and smaller immature juveniles (Figure

1.1d). In the event of the death of the female, the largest male will change sex

and the largest of the juveniles will mature and become part of the breeding pair

[24–26]. This is an example of sequential hermaphroditism and it has been deemed

to improve adaptation, increase survival rates, and enhance reproduction [27]. This

process is caused by differential gene expression in the brain two weeks after female

disappearance, particularly in genes encoding sex steroid hormones. This alteration

is followed by expression changes in the gonads from 24 days after female disappear-

ance [23, 28].

The examples I have briefly described consider just a few of the diverse extant

polyphenisms of the Metazoa. A great extent of polyphenisms are enclosed in the

class Insecta including life history stage polyphenisms (larval/adult stages), seasonal

polyphenisms (e.g. morphological changes in lepidoptera), caste polyphenism (work-

er/queen castes in eusocial insects), and density-dependent polyphenism (phase

polyphenism in locusts) [29–31]. There is currently estimated to be around 10 mil-

lion insect species [32, and references therein], and it has been argued that the great
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extent of polyphenisms insects possess hugely contributes to the evolutionary success

of the lineage [30].

1.1.1 The evolution of polyphenisms

Alternate phenotypes evolve as a response to variation in external selective pressures

[33–36]. The concept of a reaction norm is useful in modelling the relationship

between an organisms’ phenotype and environmental cues in the case of phenotypic

plasticity [37]. A reaction norm refers to the range of phenotypes of a particular

genotype when exposed to a range of environmental conditions and is typically

represented graphically [38]. Figure 1.2a is an example of a representation of a

reaction norm showing how a species’ phenotype alters according to its genotype

and environment. A steeper angle of a genotype line shows a greater degree of

plasticity. Thus, for a highly plastic genotype smaller changes in the environmental

variable will lead to larger changes in phenotype. Reaction norms are therefore

considered to be useful in understanding the selection pressures and evolution of

phenotypic plasticity and also the introduction of novel traits [37, 38].

When reaction norms become discrete and phenotypes do not gradually change

with small environmental changes (Figure 1.2b), polyphenisms (such as those de-

scribed in Section 1.1) occur [39]. Consequently, a discrete phenotypic switch will

be present whereby an organism’s phenotype is fixed until an environmental cue

reaches a threshold level that will initiate the development alternative phenotype.

In many insects there is a period during larval development when there is a height-

ened sensitivity to environmental cues such as photoperiod, temperature, crowding,

and changes in food quality [39]. This environmental sensitivity then signals reg-

ulatory pathways of polyphenisms discussed in Section 1.2 which induces different

phenotypes.
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(a) (b)

Figure 1.2: Reaction norm examples. (A) Genotypes A and B both have plastic
responses to the environmental variable, but they show opposite phenotypes in
response to the same environmental cue [adapted from 3]. The slope of the geno-
type lines indicates the degree of plasticity. (B) Reaction norm of a polyphenism
with Genotype C that has a discrete phenotypic switch at a threshold level of the

environmental variable.

Genetic accommodation has been suggested as a way in which the switch to

polyphenisms has evolved [40]. Genetic accommodation is when a “novel pheno-

type is introduced through a mutation or environmental change is moulded into

an adaptive phenotype through quantitative genetic changes” [37, 41]. Thus, it in-

creases the responsiveness of the phenotype to changes in environmental conditions.

For example, Suzuki and Nijhout found that a mutation in the control of hormone

titer of the tobacco hornworm (Manduca sexta) altered the larval colour phenotypic

threshold and therefore uncovered a temperature-dependent black larval morph as

a second phenotype to the wildtype green larval morph [40]. This study was exper-

imental compared to previous purely observational work, hence causation could be

deduced. This temperature-dependent phenotype switch could be represented in a

similar format to the reaction norm in Figure 1.2b.
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1.2 Regulation of polyphenisms

Regulatory genes are often described as key to the evolution of polyphenisms, and

it is primarily by this route that polyphenisms are proposed to have evolved in

the Hymenoptera [42–45]. Thus, rather than the formation of new genes, it is the

differential regulation of the same genes that is a key instigator of polyphenisms. The

regulation of genes that determines the initiation and maintenance of polyphenisms

can be controlled by genetic factors, the endocrine system, and epigenetic processes

[39]. For instance, genetic factors largely determine sexual dimorphism in mammals,

and these differential phenotypes are maintained through the endocrine system (with

androgens, estrogens, and progestins) [46, 47].

In animals, the endocrine system is important for the control and regulation of genes

and therefore different phenotypes [46]. The endocrine system consists of glands that

secrete hormones into the circulatory system which then act on target cells [48]. As

mentioned above (Section 1.1), Daphnia phenotypic plasticity is determined by the

juvenoid hormone signalling pathway [20], and the functional hermaphroditism of

teleost fish (Section 1.1) is indicated to be controlled through differential expression

of sex steroid hormones in the brain and gonads [23, 28].

The insect endocrine system (in particular the juvenile hormone, ecdysteroids, and

the insulin-signalling pathway) plays an important role in the development and

control of different morphologies [46]. In the tobacco hornworm a mutation in the

control of hormone titer determines the temperature-dependent threshold between

green (wildtype) and black larval morphs [40]. In the desert locust Schistocerca

gregaria there are two forms (solitary and gregarious) in a phase polyphenism (see

Section 1.4). The phase of a locust has been indicated to be transgenerationally

inherited involving endocrine regulation. Female locusts raised alone produce a

greater number of smaller eggs compared with female locusts raised in crowded

conditions [49, 50]. This trend is thought to be associated with ecdysteroid levels

in the ovaries. Ovarian ecdysteroid levels are up to four times higher in female
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desert locusts raised in crowded conditions with conspecifics compared to that of

female locusts raised alone [51]. These ecdysteroids are then found in the developing

eggs and have been reported to affect molting during embryonic development [52].

Consequently, this is thought to direct the offsprings’ phase-specific behaviour [46,

and references therein].

Hormone levels clearly have a significant impact on the initiation and regulation

of polyphenisms. Epigenetic mechanisms such as DNA methylation and histone

modifications (discussed in Section 1.2.1) can also have large effects in determining

distinct morphologies in Metazoan polyphenisms. The term epigenetics was derived

from the Greek word “epigenesis” which literally translates as over, outside of, or

around genetics. First coined by Waddington in 1942, this terminology originally de-

scribed how genetic processes affect development [53]. However, the widely accepted

modern definition now states epigenetics to be the study of changes of gene expres-

sion, and hence phenotype, not due to changes in the underlying DNA sequence

[54].

Epigenetics has far reaching effects on polyphenisms, including the regulation of

endocrine-related gene expression [55]. Epigenetic mechanisms are responsible for

the variety of often reversible polyphenisms involving the endocrine system as a

response to environmental stimuli. For instance, DNA methylation is known to reg-

ulate key enzymes of hormone biosynthesis. Differential methylation of CpGs near

the transcriptional start sites to three steroidogenesis enzymes (CYP11A1, HSD3B1,

and CYP19A) was found in bovine follicles [56]. This study also indicated DNA

methylation to have a role in the silencing of CYP19A1. Moreover, histone modi-

fications have been indicated to regulate the expression of the steroidogenic acute

regulatory (STAR) protein that regulates cholesterol entry to the mitochondria, and

influences steroidogenesis [57].

Polyphenism regulation by epigenetic processes have been identified in numerous

taxa and can have large effects on an organism’s biology. An epigenetic switch
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for body weight control has recently been identified in mammals, indicating a

polyphenism in energy metabolism. Dalgaard and colleagues found mice with a

mutation in the KRAB-zinc-finger transcription factor Trim28 to show a bimodal

distribution in body weight [58]. These adult mice could switch between two phe-

notypes of normal and increased body weight. This was associated with differential

expression of paternally imprinted genes between mice with these two phenotypes.

These findings indicate the Trim28 gene to affect susceptibility to obesity in humans.

1.2.1 Epigenetic mechanisms in polyphenisms

The variety of polyphenisms witnessed in insects (as described in Section 1.1) enables

this lineage to be ideal for the study of epigenetics [59]. Epigenetics plays key roles

in insect biology including development, aging, disease, and cell differentiation [60].

Epigenetics in insects has been key to our understanding of human diseases, for

instance the fruit fly Drosophila has been used as a model organism in the study

of the underlying mechanisms of the pathogenesis of Huntington’s disease [59, 61].

This use of insects to elucidate disease-associated epigenetic patterns is possible due

to the underlying molecular mechanisms being evolutionarily conserved across taxa

[59]. DNA methylation, histone modification, and microRNAs are the most common

epigenetic markers which are highly conserved in insects as well as in mammals and

plants [60]. DNA methylation and alternative splicing are the mechanisms which

will be the focus of this thesis (described in Sections 1.2.2 and 1.2.3). However,

other epigenetic processes can also have a large effect on phenotype.

Acetylation, methylation, phosphorylation, and ubiquitylation of histones have all

been reported to affect gene transcription [60]. Post-translational histone modifi-

cations affect protein binding properties and chromatin accessibility, which conse-

quently regulates gene expression [62–68]. Furthermore, histone modifications have

a close relationship with DNA methylation in mammals [summarised in 69]. Sim-

ilarly a pattern between DNA methylation and histone modification, primarily on
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the third histone of the nucleosome, has been found in the honeybee and a few

ant species [70, 71]. However, this relationship is a positive correlation in insects,

as opposed to the negative correlation witnessed in mammals [71]. A classic ex-

ample of insect histone-mediated regulation is of worker/queen development in the

honey bee, whereby royal jelly that contains phenyl butyrate (an inhibitor of his-

tone deacetylase) is fed to queen-destined larvae [72]. The phenyl butyrate induces

histone modifications which in turn cause transcriptional reprogramming, changes

in DNA methylation, and queen development.

Another epigenetic mechanism is that of non-coding RNAs which regulate gene

expression post-transcription [73]. MicroRNAs (miRNAs), Piwi-interacting RNAs

(piRNAs), and long non-coding RNAs (lncRNAs) are three prominent examples of

non-coding RNA. Firstly, miRNAs are short RNA sequences (2123 bp) that can

bind to mRNAs thus preventing mRNA translation [74]. Previous studies have

identified miRNAs to be partly responsible for caste determination within the Hy-

menoptera. miRNAs have been demonstrated to be differentially expressed in queen-

and worker-destined larvae in the honey bee Apis mellifera and bumblebee Bombus

terrestris, although the associated miRNAs were not conserved between these two

species [73, 75–77]. miRNAs are also indicated to be involved in the regulation of an

aphid polyphenism. Legeai and colleagues identified differential expression of miR-

NAs between three morphs: sexual females, parthenogenetic females that produce

parthenogenetic female offspring, and parthenogenetic females that produce sexual

males and females [78].

Second, piRNAs direct piwi proteins to transposon targets and also affect the DNA

methyltransferases (DNMTs) that silence transposons via de novo DNA methylation

[79]. PiRNAs are required for spermatogenesis across taxa, and the silencing of

transposons appears to be important in embryonic development in mammals [79,

80]. Furthermore, piRNAs have been found to be associated with transgenerational

epigenetic inheritance, which is described as when environmental effectors have an

impact on the gene expression of the subsequent generation or generations [81]. In
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Drosophila, piRNAs have been found to be transmitted from mother to offspring

in the germ cell cytoplasm and cause gene silencing in the offspring and multiple

successive generations [82–84].

Third, being linked to genomic imprinting, lncRNAs are greatly involved in mam-

malian transcription-regulatory processes [85, 86]. Also, in the honeybee lncRNAs

regulate brain development, functional diversification [87], and the transition from

nursing to foraging [88].

Transcription factors (TFs) regulate gene expression by changing their binding affini-

ties of target genomic sequences and are highly correlated with epigenetic mecha-

nisms [89]. Histone modifications and DNA methylation have been implicated in

regulating TF access and binding [90–97]. For example, promoter hypomethylation

causes the overexpression of the TF sonic hedgehog both directly and via nuclear

factor-kappa B activation in human tumours [98–100]. Moreover, several TFs are

associated with caste fate and behavioural plasticity in eusocial insects, and TF

binding sites are more variable among eusocial insects than between solitary and

eusocial insects indicating a key role in facilitating the diversity in caste phenotypes

witnessed in eusocial insects [42].

Other less widespread mechanisms of epigenetics also exist in insects. For instance,

modifications to RNA regulate its stability, localization, transport, splicing, and

translation, and it has been proposed that RNA methylation may play a role in the

more rapid/plastic expression changes [101]. However one of the most prominent

processes in the alteration of gene expression is DNA methylation. DNA methylation

is associated with some of the processes already mentioned, and has several existing

links with caste polyphenisms in eusocial insects [102].
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1.2.2 DNA methylation: a regulator of polyphenisms in in-

sects

5mC DNA methylation is an epigenetic mark that occurs when a methyl group is

added to the fifth carbon of cytosine of DNA [103]. 5mC methylation usually acts

on the cytosine of a CpG (cytosine-phosphate-guanine) site, but it can also occur

at CHG and CHH locations where H represents adenine, guanine, or thymine [104].

DNMTs catalyze the methylation of DNA. Dnmt3 initiates de novo methylation, and

Dnmt1 acts to maintain methylation which assists in copying methylation patterns

during DNA replication [105].

In mammals, methylation typically represses expression in repetitive DNA elements

and transposons [106]. In the mammalian lineage, it has been established that there

is a strong link between genomic imprinting and DNA methylation [107]. Methyla-

tion of one parent-of-origin-specific allele occurs on imprinting control regions during

gametogenesis, which then initiates the allele-specific down-regulation witnessed in

genomic imprinting [108, 109]. This allele-specific methylation is protected from

various phases of de-methylation that occur post-fertilisation [110, 111].

Similarly to mammals, social Hymenoptera have a functioning methylation system

with a full complement of DNMTs (with the exception of Polistes wasps) [44, 112,

113]. DNA methylation is widely known to be present in the eusocial Hymenoptera

at CpG sites [114], although levels of methylation are lower than in mammals [106].

Moreover, in contrast to mammalian methylation patterns transcribed exonic regions

are the locations in which methylation is found in the honey bee [106].

Methylation has been reported to be involved in insect polyphenisms such as social

insect caste differentiation and worker reproduction [102]. For instance, differen-

tial methylation has been found between honey bee queen and worker brains [115].

Sparsely methylated genes are associated with caste-specific gene expression in germ

lines in honeybees [116]. Moreover, silencing of Dnmt3 (typically responsible for de
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novo DNA methylation) in honey bee larvae caused queen development evocative of

a royal-jelly effect [117]. Although another study conducted by Herb and colleagues

found no methylation differences between worker and queen castes, they found dif-

ferences in methylation between honey bee nurse and forager worker subcastes [118].

This study was further able to demonstrate that methylation levels could be reversed

when reverting foragers back to nurse behaviours. Also of note, the desert locust S.

gregaria has displayed particularly high levels of DNA methylation for its placement

in the insect lineage which has thought to be indicative of the animal’s distinct phase

polyphenism [119].

Other studies question the importance of methylation-based epigenetics in the Hy-

menoptera [120]. Highly methylated genes were found to be uniformly and transcrip-

tionally active in different conditions and representing housekeeping genes expressed

in most cell types [121–123]. Libbrecht et al. found that methylated genes typically

showed consistently high expression levels and were not associated with different

castes in clonal raider ants [124]. Also, Standage and colleagues found a reduced

genome-wide methylation system in the primitively eusocial paper wasp, Polistes

dominula, and the loss of Dnmt3 [113]. Dnmt3 was also absent in the closely related

Polistes canadensis [44]. This points towards a reduced importance of methylation

in Polistes species.

Although there is some evidence to suggest methylation-dependent social insect caste

differentiation and worker reproduction, the relative importance of methylation in

the Hymenoptera as a whole so far remains undetermined. Despite methylation

appearing of little importance in the wasp [44, 113], this does not necessarily discount

its functional relevance in other Hymenopteran species of separate evolutions of

eusociality. Therefore, the question remains of if and how much methylation has

an effect on insect polyphenisms. Nevertheless, if DNA methylation is to have a

meaningful role in the epigenetics of any hymenopteran species it is likely that this

methylation is involved in the alternative splicing of genes, which is explored in

Section 1.2.3 below.
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1.2.3 DNA methylation: a mediator of alternative splicing

The process of intron removal and exon ligation of a given gene is considered to be

constitutive splicing [125]. However, there can be more than one protein encoded

from a gene [126]. Alternative splicing of a gene includes different combinations

of exons and introns and subsequently different proteins can be formed. This phe-

nomenon of alternative splicing can have a large effect on the phenotypic profile of

an organism [127]. DNA methylation and histone variants are thought to control

this process by acting as alternative splicing markers [128–130].

In mammals, methylation has been demonstrated to mediate alternative splicing

through complex relationships between different pathways [131], for example DNA

methylation has been linked with exon skipping at the H19 /Igf2 locus. Allele-

specific methylation of this locus causes exon skipping, and thus the isoform expres-

sion of either H19 (maternal allele) or Igf2 (paternal allele) [105, 132, 133]. DNA

methylation inhibits the binding of CCCTC-binding factor (CTCF) to RNA poly-

merase II (Pol II). Therefore hypermethylation allows Pol II elongation, and this

causes the skipping of exonic regions of DNA in transcription [134]. This type of

mechanism has also been suggested to explain why hypomethylation was associated

with alternative gene splicing in the gene ALK in the honey bee A. mellifera and

lipoprotein receptor 2 in the ant Camponotus floridanus [62, 128, 131, 135].

In contrast to the CTCF pathway, methylation has been found to be associated with

exon retention. When the mammalian methyl-CpG-binding protein 2 (MeCP2) is

methylated, MeCP2 pauses Pol II elongation [136, 137]. This is the opposite effect

of methylation to Pol II elongation compared with the CTCF pathway, and results

in the inclusion of exons at transcription. A pathway similar to this may explain

the finding of Bonasio et al. that methylation was involved with exon retention in

the ants C. floridanus and Harpegnathos saltator [122].
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In the Hymenoptera, methylated CpGs show a strong pattern of being located near

splicing sites and in the regions encoding alternatively spliced exons in the honey

bee Apis mellifera [115, 138]. Similarly, splicing factors are found at a higher level

in methylated genes [128].

Alternative splicing has been shown to be involved in the transition between nurse

and foraging worker roles in the honey bee Apis mellifera [118]. Lyko et al. and Park

et al. first suggested an association between alternative splicing and DNA methyla-

tion in the honey bee Apis mellifera and a parasitic wasp species, Nasonia [115, 139].

Flores and colleagues went on to report this association on a genome-wide scale in

A. mellifera [140]. Furthermore, in a distinct but closely related lineage (Isoptera)

differentially methylated genes between termite (Zootermopsis nevadensis) castes

were recently found to be associated with alternative splicing [141]. These stud-

ies indicate a role for DNA methylation in the regulation of splicing of alternative

variants in the Hymenoptera [122], although see also [123].

Furthermore, alternative gene isoforms have been found to be key to locust devel-

opment. Zhang et al. found both variants of an alternatively spliced gene, chitin

synthase 1, to be essential for the growth and development of the oriental migratory

locust, Locusta migratoria manilensis (Meyen) [142]. One isoform (LmCHS1A) was

predominantly expressed in the integument, and the other isoform (LmCHS1B) was

mainly expressed in the trachea. This suggested that LmCHS1A may play a major

role in chitin biosynthesis for the integument whereas LmCHS1B played a major

role in chitin biosynthesis for the trachea. Silencing of either variant led to a high

mortality rate of 88% and 51% in the locust nymphs injected with LmCHS1A and

LmCHS1B dsRNA, respectively. In a study by Wang et al., 45 genes were found to

have differentially expressed isoforms between solitarious and gregarious migratory

locusts (Locusta migratoria) [143]. These included genes associated with cytoskele-

ton dynamics which are involved in neuronal plasticity, a key mechanism associated

with behavioural phase change [144].
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DNA methylation-mediation is not the only way in which alternative splicing may

be controlled. The histone variant H2A.Z is enriched in hypomethylated loci and

has been suggested to have the potential to act as an alternative splicing marker

in the plant Arabidopsis thaliana and in the green spotted puffer-fish Tetraodon ni-

groviridis [129, 130]. Inhibitors of histone deacetylation increase Pol II elongation

rate by making chromatin more open [145]. This implies a role for histone modi-

fications in the regulation of alternative splicing. However no connection between

histone modifications and alternative splicing has yet been investigated in social in-

sects. Although histone deacetylases in the ant C. floridanus are involved in the

transition to foraging/scouting indicating a possible role for histone modifications

in determining caste-specific patterns of behaviour [146].

Therefore DNA methylation-mediated (and potentially histone modification- medi-

ated) alternative splicing could be a crucial mechanism in insect polyphenisms, and

is a good starting point to elucidating the exact pathways behind these phenomena

in the Hymenoptera. Two polyphenisms in the insect lineage that are becoming

key subjects for the study of the epigenetic mechanisms of polyphenisms are the

caste polyphenism of the buff-tailed bumblebee (Bombus terrestris) and the phase

polyphenism of the desert locust (Schistocerca gregaria). Throughout this thesis

these remarkable caste and phase polyphenisms will be studied.

1.3 Bumblebee caste polyphenism

The Hymenoptera order consists of the bees, wasps, ants, and sawflies. Eusocial-

ity has evolved nine times here as well as in termites, thrips, aphids, one beetle

species, and one mammalian species: the naked mole rat [8, 147–155]. Highly eu-

social species are recognised by overlapping generations, cooperative brood care,
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and reproductive division of labour [156]. Discrete caste systems enable reproduc-

tive division of labour whereby the queen typically monopolises reproduction, while

daughter workers predominantly look after the brood and forage for food.

While many ant, wasp, and bee species (e.g. the honey bee) are widely regarded

as highly eusocial, bumblebees are often thought of as primitively eusocial [157].

Bumblebee colonies are annual and are relatively small with 300-400 individuals in

Bombus terrestris colonies, compared to tens of thousands in those of the honey bee

Apis mellifera [158, 159].

The annual buff-tailed bumblebee (Bombus terrestris) colony is initiated in early

Spring when a queen will emerge from hibernation, find a suitable location to start

a nest, forage for food, and begin laying diploid eggs which develop into daughter

worker bees. These workers will take over the role of brood care and foraging while

the founding queen focuses her energy on ovipositing throughout the Spring and

Summer. Later in the Summer, the queen will switch to laying diploid queen eggs

and haploid eggs which develop into males. At this point of the year the colony will

be reaching its largest size, and worker aggression behaviours of humming, darting,

and attacks increase due to competition over reproduction [160]. (Although the

founding queen monopolises reproduction, workers may still produce haploid male

eggs.) Newly emerged queens (gynes) hibernate and males die soon after mating in

late Summer/Autumn.

Figure 1.3: Bombus terrestris queen (A) and worker (B) individuals, with sil-
houettes to show difference in body size.
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The discrete caste system is not as advanced in primitively eusocial species such as B.

terrestris compared to highly eusocial species. Regarding bumblebee polyphenism,

workers and queens are genetically similar, both being diploid as opposed to haploid

males. However, the behaviour, longevity, and morphology of these castes is differ-

ent: they have disparate roles within the colony, queens live longer than workers

[161], and queens are two to three times the size of workers (Figure 1.3). These

characteristics have sparked interest in bee epigenetics particularly regarding the

genetic basis of longevity [103, 162, 163], the evolution of eusociality [164–167], and

the evolution of genomic imprinting [11, 168].

1.4 Phase polyphenism in the desert locust

The other focal polyphenism of this thesis is the phase polyphenism witnessed in

the locust. The desert locust Schistocerca gregaria displays phenotypic plasticity

according to changes in population density of conspecifics. The two phases are

described as solitary and gregarious, and are associated with different behavioural

and morphological characteristics (Figure 1.4). Solitarious locusts are typically green

in colour which appears cryptic against the foliage in which they inhabit. As the

phase name suggests they live alone and given the choice move away from nearby

conspecifics [169]. Activity levels are highest during the night [170].

In contrast, gregarious locusts are brighter in colour (yellow/brown) and move in the

same direction as other locusts in an “escape-pursuit” behaviour [169]. Gregarious

individuals are active during the day, with peak activity previously reported at 1400

hrs [31], and their activity levels drop over night [171].

When there is an increase in population size or a reduction in food availability,

solitary locusts can be forced together with conspecifics causing them to become be-

haviourally gregarious [172]. However it takes several generations for morphological

changes to occur [173]. It is in this gregarious phase when locusts swarm, and hence
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Figure 1.4: Morphology of juvenile Schistocerca gregaria desert locusts in the
solitary and gregarious phases (Photograph: Compton Tucker, NASA GSFC)

are perceived as an agricultural pest species in Africa and the Middle East, where

they can cause devastation for crops such as barley, maize, sorghum, and wheat

[174].

The evolution of this density-dependent polyphenism has previously been explained

by a combination of the risks of predation and cannibalism [169, 175]. A solitary

locust uses crypsis to hide from predators and implements an “avoidance” strategy

to distance themselves from all conspecific threats. On the other hand, gregarious

locusts benefit from individual concealment from predators when part of a group.

Gregarious locusts have also developed the escape-pursuit behaviour when at a high

population density. Following conspecifics is argued to reduce collisions since the

locusts move into areas left vacant by other individuals, which decreases the risk of

cannibalism.
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1.5 Thesis aims and objectives

Through this thesis the following questions are asked in order to elucidate a more

defined understanding of the epigenetic mechanisms underlying insect polyphenisms.

Chapters 2, 3, and 4 focus on the eusocial buff-tailed bumblebee Bombus terrestris

as a model organism. Monoallelic methylation is widely known to be associated

with allele-specific expression in mammals [106, 107], and due to the complete set of

DNMTs in many Hymenoptera the same trend is predicted in social insects (Section

1.2.2). Chapter 2 concentrates on determining the presence of allele-specific expres-

sion and monoallelic methylation in B. terrestris. Is there an association between

allele-specific methylation and expression in social insects?

After establishing the presence of allele-specific effects in B. terrestris, chapters 3

and 4 focus on identifying associations between epigenetic mechanisms in reproduc-

tive and non-reproductive B. terrestris workers. Worker reproduction is a common

occurrence in B. terrestris, whereby in the later stages of a colony cycle some work-

ers will develop full ovaries and compete over producing haploid male offspring [160]

(Section 1.3). This process has previously been implied to be epigenetically regu-

lated [12]. Chapter 3 questions whether DNA methylation, gene expression, and

alternative splicing are involved in worker reproduction and determines if there are

correlations between these mechanisms. This chapter found general associations

between these effects and the reproductive switch in the worker caste.

Chapter 4 then extends this approach with the comparison of allele-specific methyla-

tion and allele-specific expression. I identified allele-specific expression in chapter 2,

and in chapter 4 I distinguish allele-specific differences that are specifically involved

in worker reproduction. This chapter looks to establish the effect that allele-specific

methylation and expression can have on a distinct trait in social insects: worker

reproduction.
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The final two results chapters focus on alternative splicing. As another insect

polyphenism example, chapter 5 centres on the gregarious phase of the desert lo-

cust Schistocerca gregaria. This species is considered a pest in the Middle East and

Africa where swarming can cause devastation for crops [174]. Strategies for insect

control are often more effective when applied at particular times of the day due to

circadian cycles affecting the prevalence of toxicity proteins [176]. Strong circadian

rhythms are present in swarming S. gregaria [177]. Therefore the relationship be-

tween alternative splicing and the circadian clock in the desert locust is investigated.

This chapter determines any isoforms with differential circadian rhythms in locusts.

This may have the potential instruct when would be the preferential time of day for

insecticide application.

After establishing the importance of alternative splicing in another model insect

species, chapter 6 takes a broader approach to alternative splicing and caste poly-

morphisms in eusocial insects. Workers of species with simple social structures have

a greater variety of roles to play in a colony compared to workers of species with

more complex social structures. Therefore it is of interest to determine the mecha-

nisms that enable the greater variety of behaviours in a particular caste. Alternative

splicing can provide a method for multiple proteins to be encoded from a single gene

[178]. A greater prevalence of alternative splicing could facilitate the variety of be-

haviours seen in workers of species with simple social structures. I analyse whether

genome-wide alternative splicing levels are an important component in ascertaining

the varying levels of eusociality found in the Hymenoptera.



Chapter 2

Searching for allele-specific

expression in Bombus terrestris

2.1 Introduction

Allele-specific expression is when there is a difference in expression levels of alleles

of the same gene whilst both alleles are both still being expressed at some level. (An

extreme form of allele-specific expression is named monoallelic expression, where

one allele is completely silenced.) Allele-specific expression is known to be caused

by a number of genetic as well as epigenetic processes [179]. The genetic process

usually involves cis effects such as transcription factor binding, microRNA binding,

and untranslated regions which alter RNA stability. For instance, microRNAs bind

to protein-coding genes and cause post-transcriptional gene silencing [180, 181].

Allele-specific expression can also occur through the phenomenon of genomic im-

printing, which is when one allele of a gene is down-regulated according to from

which parent the allele was inherited. Genomic imprinting is well described in mam-

mals with a high association with DNA methylation (see Section ??). Imprinting

has been predicted to have evolved in insects with a eusocial life history by Haig’s

21
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theory for the evolution of genomic imprinting [11, 168]. In particular, patrigenes

involved in worker reproduction and development are predicted to be imprinted. Re-

cently parent-of-origin allele-specific expression has been found in honey bees [182]

and there appears to be a fundamental role in social insect biology for methylation

[183].

In mammals and flowering plants, allele-specific expression is often associated with

methylation marks passed from parent to offspring [184]. However DNA methyla-

tion is involved in numerous other cellular processes [105]. There is contradictory

evidence for the role of methylation on allele-specific expression in social insects.

Methylation is associated with allele-specific expression in a number of loci in the

ants Camponotus floridanus and Harpegnathos saltator [122]. Recently, evidence

was found for allele-specific expression in bumblebee worker reproduction genes [185]

and methylation was found to be important in bumblebee worker reproduction [186].

However, other work on the honeybee Apis mellifera found no link between genes

showing allele-specific expression and known methylation sites in that species [187].

The recently sequenced genome of the bumblebee, Bombus terrestris, displays a

full complement of genes involved in the methylation system [188]. B. terrestris

is also a eusocial species with reproductive division of labour. The objective of

this study was to investigate allele-specific expression and monoallelic methylation

in the bumblebee, Bombus terrestris. The identification of a link between allele-

specific expression and methylation of worker reproduction and development genes

in a eusocial insect would be consistent with the leading theory for the evolution of

genomic imprinting.

I then searched specifically for patrigenic monoallelic expression of any candidate

loci I identified to show both monoallelic expression and monoallelic methylation.

Imprinting of patrigenes is predicted in genes involved in development and worker

reproduction in B. terrestris colonies, since reproduction of workers is the only way

for a patrigene to be continued into the next generation in a queen-right colony
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(Section ??). The identification of patrigenic monoallelic expression here would be

compatible with Queller’s predictions regarding Haig’s theory for the evolution of

genomic imprinting [11, 168].

2.2 Materials and Methods

In this study I examined the link between monoallelic methylation and monoallelic

expression in the bumblebee, Bombus terrestris, by examining two whole methy-

lome libraries and an RNA-seq library from the same bee (Figure 2.1). MeDIP-seq

is an immunoprecipitation technique that creates libraries enriched for methylated

cytosines [189]. Methyl-sensitive restriction enzymes can create libraries that are

enriched for non-methylated cytosines (MRE-seq) [189]. Genes found in both li-

braries are monoallelically methylated, with the hypermethylated allele being in

the MeDIP-seq data and the hypomethylated allele in the MRE-seq data [189].

Monoallelic expression was identified in these loci from the RNA-seq library. If only

one allele was expressed then these loci were both monoallelically methylated and

monoallelically expressed in this bee. I confirmed this monoallelic expression in one

locus using qPCR. I looked for further confirmation of this monoallelic expression

in twenty-nine Bombus terrestris RNA-seq libraries.
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Figure 2.1: Flow chart of methods for identification of monoallelic methylation
and monoallelic expression in Bombus terrestris for a given gene. Blue boxes in-
dicate methylation related methods. Green boxes refer to methods for expression.

I then more generally searched for allele-specific expression by analysing published

RNA-seq libraries from worker bumblebees [12, 190]. I identified heterozygotes in

the RNA-seq libraries and measured the expression of each allele. I then identified

loci that showed significant expression differences between their two alleles.

2.2.1 Samples

Data from twenty-nine RNA-seq libraries were used for the allele-specific expres-

sion analysis (six from Harrison et al. [12], and twenty-three from Riddell et al.
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[190]). Regarding the paternal monoallelic expression analysis, RNA-seq libraries

from three reproductive and two non-reproductive Bombus terrestris workers from

three colonies were used, along with their three corresponding founding queens (from

Harrison et al.) [12] (see Table 2.1).

The Riddell bees came from two colonies, one commercially-reared bumblebee colony

from Koppert Biological Systems U.K. and one colony from a wild caught queen from

the Botanic Gardens, Leicester. The Harrison bees were from three commercially

reared colonies obtained from Agralan Ltd. A Koppert colony worker bee was used

for the MeDIP-seq / MRE-seq / RNA-seq experiment, and was from a separate

Koppert colony to the bees used for the qPCR analysis. Samples are outlined in

Table 2. Colonies were fed ad libitum with pollen (Percie du sert, France) and 50%

diluted glucose/fructose mix (Meliose-Roquette, France). Before and during the

experiments colonies were kept at 26oC and 60% humidity in constant red light.

Table 2.1: Bees used in each experiment. Regarding the different colonies: K
refers to Koppert, A to Agralan and Q to the wild caught Leicester queen.

Experiment Number of worker Colony Tissue
bee samples

Allele-specific expression 1 A1 [12] Whole body
RNA-seq 2 A2 [12] Whole body

2 A3 [12] Whole body
1 A4 [12] Whole body
14 K1 [190] Abdomen
9 Q1 [190] Abdomen

MeDip/MRE/RNA-seq 1 K2 Whole body

qPCR 2 K3 Head
1 K4 Head
1 K5 Head

Paternal monoallelic expression 2 A1[12] Whole body
RNA-seq 3 A2[12] Whole body

3 A3[12] Whole body
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2.2.2 Next generation sequencing

2.2.2.1 MeDIP-seq, MRE-seq and RNA-seq

RNA and DNA was extracted from a single five day old whole bee (Colony K2). DNA

was extracted using an ethanol precipitation method. Total RNA was extracted

using Tri-reagent (Sigma-Aldrich, UK).

Three libraries were prepared from this bee by Eurofins genomics. These were

MeDIP-seq and MRE-seq libraries on the DNA sample and one amplified short insert

cDNA library with size of 150-400 bp using RNA. Both the MeDIP-seq and MRE-seq

library preparations are based on previously published protocols [189]. MeDIP-seq

uses monoclonal antibodies against 5-methylcytosine to enrich for methylated DNA

independent of DNA sequence. MRE-seq enriches for unmethylated cytosines by

using methylation-sensitive enzymes that cut only restriction sites with unmethy-

lated CpGs. Each library was individually indexed. Sequencing was performed on

an Illumina HiSeq2000 instrument (Illumina, Inc.) by the manufacturers protocol.

Multiplexed 100 base-pair reads were carried out yielding 9390 Mbp for the MeDIP-

seq library, 11597 Mbp for the MRE-seq library and 8638 Mbp for the RNA-seq

library.

2.2.2.2 Previously published RNA-seq

Full details of the RNA-seq protocols used have been published previously [12, 190].

Briefly, for the Riddell bees, total RNA was extracted from twenty three individual

homogenised abdomens using Tri-reagent (Sigma-Aldrich, UK). TruSeq RNA-seq

libraries were made from the 23 samples at NBAF Edinburgh. Multiplexed 50 base

single-read runs here performed on an Illumina HiSeq2000 instrument (Illumina,

Inc.) by the manufacturers protocol. For the Harrison bees, total RNA was extracted

from whole bodies using a GenElute Mammalian Total RNA Miniprep kit (Sigma-

Aldrich) following the manufacturers’ protocol. The six libraries were sequenced
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as multiplexed 50 base single-read runs on an Illumina HiSeq 2500 system in rapid

mode at the Edinburgh Genomics facility of the University of Edinburgh.

2.2.3 Monoallelic methylation and expression - Bioinfor-

matic analysis

I searched for genes that were monoallelically methylated (present in both methyla-

tion libraries), heterozygous and monoallelically expressed (only one allele present

in the RNA-seq library).

2.2.3.1 Alignment to genome

RNA-seq reads were aligned to the Bombus terrestris genome assembly

(AELG00000000) using Tophat [191] and converted to BAM files with Samtools

[192]. Reads were labelled with the AddOrReplaceReadGroups.jar utility in Picard

(http://picard.sourceforge.net/). The MRE-seq and MeDIP-seq reads were

aligned to the genome using BWA mapper [193]. The resultant SAM alignments

were soft-clipped with the CleanSam.jar utility in Picard and converted to BAM

format with Samtools. The Picard utility AddOrReplaceReadGroups.jar was used

to label the MRE and MeDIP reads which were then locally re-aligned with GATK

[194, 195]. PCR duplicates for all BAMs (mRNA, MeDIP and MRE) were marked

with the Picard utility Markduplicates.jar.

2.2.3.2 Identifying regions of interest and integrating data

Coverage of each data type was calculated using GATK DepthofCoverage [195].

Only regions with a read depth of at least six in each of the libraries (RNA-seq,

MeDIP-seq and MRE-seq) was used. Heterozygotes were identified using Samtools

mpileup and bcftools on each data set separately [193] and results were merged

(http://picard.sourceforge.net/)
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with vcf tools [196]. CpG islands were identified using CpG island searcher takai

comprehensive 2002. Regions of mRNA with overlaps of MeDIP, MRE, CpG islands

and monoallelic SNPs were identified with custom Perl scripts.

2.2.4 Patrigenic monoallelic expression - Bioinformatic

analysis

I searched for patrigenic monoallelic expression in three colonies for the nineteen

candidate genes (identified in Section 2.2.3) through comparing the gene expres-

sion of the workers and queens (Table 2.2). The BWA mapper [193] was used to

align each library to the Bombus terrestris reference genome (Bter 1.0, accession

AELG00000000.1) [188]. The RNA-seq libraries were prepared, filtered, and any

duplicates were removed using samtools (version 0.1.19-44428cd). Bcftools (version

0.1.19-44428cd) was then used to call the SNPs in each library. Each locus of the

nineteen candidate contigs previously identified to show monoallelic expression and

monoallelic methylation (in Section 2.2.3) was searched for in the eight RNA-seq li-

braries. Genotypes of these SNPs were then compared between workers and founding

queens of the same colonies.

Table 2.2: Number of whole body samples used for paternal monoallelic expres-
sion analysis from Harrsion et al. [12]. The colonies were obtained from Agralan

Ltd, hence the colony notation of A1, A2, and A3.

Caste Colony A1 Colony A2 Colony A3
Founding Queen 1 1 1
Reproductive Worker 1 1 1
Non-reproductive Worker 0 1 1

The problem here was distinguishing homozygotes from parent-specific gene expres-

sion. There are three possible scenarios, of which only one would inform us of any

parent-specific gene expression that is present. In the event that the worker is ho-

mozygote at a locus in question (e.g. AA - where the expressed base is denoted first,

and silenced base is second), the queen’s genotype, whatever it may be, would not
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be able to inform one of any existing parent-specific gene expression, as it would

be impossible to determine which base in the worker had been inherited from the

queen.

In the second case, if the worker is heterozygote (for instance, AT), and the queen

possessed the base expressed in the worker (i.e. the queen’s genotype is AT, TA,

AC, CA, AG, GA, or AA) then one still would not know whether there is a parental

effect or if this locus is merely homozygote in the worker.

However, in the final scenario, if the worker is heterozygote (AT), and the queen

does not have the base expressed in the worker (i.e. the queen’s genotype is TT,

TC, CT, GT, or TG) then one would know that this site is not homozygote in

the worker. Instead, this locus would be shown to be monoallelically expressed,

with paternal expression and maternal silencing. I would be able to see that the

paternally inherited base, A, is expressed, and that the locus is not homozygote in

that individual worker since the queen would not have the base, A, at that locus.

Searching for this in the same positions in multiple bumblebee colonies would tell

me if patrigenic expression of these genes can be generalized among B. terrestris

colonies.

2.2.5 Allele-specific expression - Bioinformatic analysis

I created a pipeline to search for heterozygous loci that show allele-specific expression

and identified the associated enriched gene ontology (GO) terms in twenty-nine

previously published RNA-seq libraries for those genes that fit this criteria [12, 190].

Each RNA library was mapped to the reference genome (Bombus terrestris, Bter

1.0, accession AELG00000000.1) [188] using the BWA mapper [193]. The mean GC

content of the 29 libraries was 42.34%, with individual libraries having a similar

GC content ranging from 40-46%. GC content differed with run (Nested ANOVA:

F = 20.302, df = 1, p < 0.001), but not by colony (Nested ANOVA: F = 1.763,
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df = 4, p = 0.171). The mean coverage of the 29 libraries was 13.29, with mean

library coverage ranging from 9.84 to 17.61. Run had an effect on coverage (Nested

ANOVA: F = 7.554, df = 1, p = 0.011), as did colony (Nested ANOVA: F = 6.962,

df = 4, p < 0.001). Therefore, the combat method in the R package SVA (version

3.20.0) was used to remove any batch effects and control for original differences in

coverage [197, 198]. The success of this control was confirmed by the R package

edgeR (version 3.14.0) [5, 6]. The SVA adjustment reduced the edgeR dispersion

value from 3.9994 (BCV=2) to 0 (BCV=0.0003) (Appendix A: Figure A.1).

Bcftools (version 0.1.19-44428cd), bedtools (version 2.17.0), and samtools (version

0.1.19-44428cd) were used to prepare the RNA libraries and call the SNPs, before

the SNPs were filtered based on mapping quality score [193, 199]. Only SNPs with

a mapping quality score of p <0.05 and a read depth of ≥6 and present in ≥3 of the

libraries were included in the analyses. The R package, QuASAR, was then used

to identify genotypes and locate any allele-specific expression at heterozygous sites

[200]. QuASAR removes SNPs with extreme differential allele expression from the

analyses, thus controlling for any base-calling errors. The loci (the SNP position

+/- 2900bp) identified as showing allele-specific expression in at least three of the

thirty libraries, were blasted (Blastx) against Drosophila melanogaster proteins (non-

redundant (nr) database) [201]. The blast results were annotated using Blast2Go

[202]. Fisher’s exact test was implemented to identify enriched GO terms, which

were then visualised using REVIGO [4]. To identify which bumblebee genes the

SNPs were located in, the SNP position +/- 25 bp was blasted (Blastn) against the

Bombus terrestris genome [188].

2.2.6 Candidate gene allele-specific qPCR

DNA was extracted from four bees from three Koppert colonies using the Qiagen

DNA Micro kit according to manufacturer’s instructions. RNA was extracted from

samples of the heads of the same worker bees with the QIAGEN RNeasy Mini
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Kit according to manufacturer’s instructions. cDNA was synthesized from a 8µl

sample of RNA using the Tetro cDNA synthesis Kit (Bioline) as per manufacturer’s

instructions.

I amplified numerous fragments of the nineteen candidate genes. Sanger sequencing

results were analyzed using the heterozygote analysis module in Geneious version

7.3.0 to identify heterozygotic nucleotide positions. It was difficult to identify SNPs

in exonic regions of the nineteen loci, which could be amplified with primers of

suitable efficiency. I managed to identify a suitable region in slit homolog 2 protein-

like (AELG01000623.1 exonic region 1838-2420).

The locus was run for 3 different reactions; T allele, G allele and reference. Ref-

erence primers were designed according to [203]. A common reverse primer (CTG-

GTTCCCGTCCAATCTAA) was used for all three reactions. A reference forward

primer (CGTGTCCAGAATCGACAATG) was designed to the same target het-

erozygote sequence, upstream of the heterozygote nucleotide position. The refer-

ence primers measure the total expression of the gene, whereas the allele specific

primers (T allele: CCAGAATCGACAATGACTCGT, G allele: CAGAATCGA-

CAATGACTCGG) measure the amount of expression due to the allele. Thus the

ratio between the allele-specific expression and reference locus expression would be

the relative expression due to the allele.

Three replicate samples were run for each reaction. All reactions were prepared by

the Corbett robotics machine, in 96 well qPCR plates (Thermo Scientific, UK). The

qPCR reaction mix (20µl) was composed of 1µl of diluted cDNA (50ng/µl), 1µl of

forward and reverse primer (5µM/µl each), 10µl 2X SYBR Green JumpStart Taq

ReadyMix (Sigma Aldrich, UK) and 7µl ddH20. Samples were run in a PTC-200

MJ thermocycler. The qPCR profile was; 4 minutes at 95oC denaturation followed

by 40 cycles of 30s at 95oC, 30s at 59oC and 30s at 72oC and a final extension of 5

minutes at 72oC.
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Forward primers are different, both in their terminal base (to match the SNP) and

in their length. It is entirely possible that they may amplify more or less efficiently

even if there was no difference in amount of template [204]. To test for this I repeated

all qPCRs with genomic DNA (1µl of diluted DNA (20ng/µl) from the same bees

as the template. I would expect equal amounts of each allele in the genomic DNA.

I also measured efficiency of each reaction as per [205].

Median Ct was calculated for each set of three technical replicates. A measure of

relative expression (ratio) was calculated for each allele in each worker bee as follows:

ratioallele =
E−Ctallele

allele

E
−Ctreference

reference

(2.1)

E is the median efficiency of each primer set [204, 205]. All statistical analysis was

carried out using R (3.1.0) [7].

2.3 Results

2.3.1 Monoallelic methylation and monoallelic expression

In total, I found nineteen genes that were both monoallelically methylated (present

in both Me-DIP and MRE-seq libraries) and monoallelically expressed (only one

allele present in the RNA-seq library), for an example see ras GTPase-activating

protein nGAP-like in Figure 2.2. Of the nineteen genes, fourteen had the hyperme-

thylated (MeDIP) allele expressed, while five had the hypomethylated (MRE-seq)

allele expressed (see Appendix A: Table A.1).
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Figure 2.2: Coverage of the RNA-seq, MRE-seq, and MeDIP-seq libraries for ras
GTPase-activating protein nGAP-like (LOC100652225). The transcript models
come from GCF 000214255.1 Bter 1.0. The y-axis in the coverage plots is log
(1 + coverage). The red vertical line represents the heterozygote position. The

MeDIP-seq allele was expressed in this locus

2.3.2 Confirmation of monoallelic expression by qPCR

Monoallelic expression was confirmed in one of these nineteen (slit homolog 2 protein-

like (AELG01000623.1)) by allele-specific qPCR (amarasinghe allele 2015). The

allele with a guanine at the SNP position had a mean expression of 6.04 ±8.28

(standard deviation) in four bees from three different colonies. The thymine allele

was not expressed at all in these bees. This was not due to the efficiency of the

primers as the DNA controls of both alleles showed similar amplification (G mean

= 422.70 ±507.36, T mean = 1575.17 ±503.02). In the three other loci tested (Ras

GTPase-activating protein 1, Ecdysone receptor, methionine aminopeptidase 1-like)
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I found apparent monoallelic expression, but could not dismiss primer efficiency as

the cause.

The nineteen genes were blasted against the nr / nt (nucleotide) database (blastn).

Four returned no hits and a further four returned noninformative hits. A number of

these genes had homologs known to be methylated in other animals (Table 2.3). Six

of the eleven genes with informative hits have functions to do with social organisation

in the social insects (Table 2.3).

I then looked at these nineteen genes in twenty-nine previously published RNA-

seq libraries. Fifteen of these nineteen genes expressed a single allele in all twenty

nine RNA-seq libraries, see Appendix A: Table A.2. The remaining four genes

(AELG01000620.1, AELG01001021.1, AELG01002224.1a, AELG01002224.1b) were

inconsistent; they showed expression of one allele in some B. terrestris workers, and

expression of two alleles in other workers.

2.3.3 Paternal monoallelic expression

I found nine of the nineteen candidate loci to have a corresponding SNP in at least

one of the five worker RNA-seq libraries, where only one allele was expressed (thus

indicating either homozygosity or monoallelic expression). The same genotypes were

identified between workers and their founding queens at all nine locations, in all three

colonies (i.e. the second scenario explained above) (Table 2.4). Consequently these

results could not confirm any patrigenic monoallelic gene expression which may here

be present. This dataset cannot determine whether these loci show paternal-specific

expression as opposed to maternal-specific expression or are homozygote.
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Table 2.4: Genotypes of the eight Harrison et al. [12] RNA-seq libraries at candidate loci
identified in Section 2.3.1 to show monoallelic expression and monoallelic methylation.

Contig SNP a RNA-seq library bc

A1 A2 A3 A2 A3 A1 A2 A3
RW RW RW NRW NRW Q Q Q

AELG01000543.1 3143 - C/T - - - C/T C/T -
AELG01000623.1 2544 - A/G - A/G A/G A/G - A/G
AELG01000829.1 3176 - C/T C/T C/T - - C/T -
AELG01001796.1 10938 - - G/A G/A - - - G/A
AELG01002621.1 85071 C/T - - C/T - C/T C/T -
AELG01003672.1 34537 - T/C T/C T/C - - - -
AELG01004618.1 50955 T/C T/C T/C T/C T/C T/C - T/C
AELG01005399.1 63410 - - - C/A - - - -
AELG01006475.1 1492 - - - A/G - - - -

Genotypes are listed as reference base/alternative base. If “-”, then no SNP is present for
this locus in that library. Only the reference allele is expressed.
a locus identified to show monoallelic expression and methylation
b RW = reproductive worker, NRW = non-reproductive worker, Q = founding queen.
c Numbers equate to colony number.

2.3.4 Allele-specific expression

I then searched more generally for allele-specific expression in the twenty-nine RNA-

seq libraries. 555 loci showed allele-specific expression in≥3 of the twenty-nine RNA-

seq libraries (Appendix A: Table A.3). No notable difference was seen between the

frequency of G/C -> A/T and A/T -> G/C base substitutions (Figure 2.3), despite

the expected mutation bias from G/C to A/T [188, 218]. Searching (blastn) for these

555 loci against Bombus terrestris returned 211 hits. To search for gene ontology

terms, blastx was used against Drosophila melanogaster, which returned 329 hits.

151 Gene Ontology (GO) terms were enriched in the 555 regions showing allele-

specific expression (Fishers exact test p <0.05), however none were significant at

the more stringent FDR <0.05. Figure 2.4 shows the large number of biological

functions associated with these 555 genes.



Chapter 2. Searching for allele-specific expression 37

Figure 2.3: Base substitutions of the 555 SNPs showing allele-specific expression
in at least three of twenty-nine Bombus terrestris transcriptome libraries. The
base substitution notation represents the reference base and the alternate base
at the polymorphic locus. For example, “G-C” represents a base substitution of

guanine to cytosine.
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Figure 2.4: A summary of the enriched GO terms (p <0.05, based on Blast2Go
annotation) found for genes displaying allele specific expression. This figure was
produced using Revigo [4]. Each rectangle represents a single cluster of closely
related GO terms. These rectangles are joined into different coloured “superclus-
ters” of loosely related terms. The area of the rectangles represents the p-value

associated with that clusters enrichment.

2.4 Discussion

Of the nineteen genes displaying monoallelic methylation and monoallelic expres-

sion, fourteen had the hypermethylated (MeDIP) allele expressed, while five had

the hypomethylated (MRE-seq) allele expressed (see Appendix A: Table A.1). In

ant genes with allele-specific methylation, the hypermethylated allele showed more

expression than the hypomethylated allele [122]. This fits with genome wide analysis

that shows exonic methylation in insects associated with increased gene expression
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[103, 219]. Our fourteen genes with the hypermethylated allele expressed agree with

this pattern. But how to explain the five genes where the hypomethylated allele was

expressed? Firstly, the role of methylation in insect gene expression is not clear cut,

with the relationship between exonic methylation and expression often disappearing

at the gene level [103]. For example, EGFR expression is lower in ant workers that

exhibit higher DNA methylation of EGFR [220]. Secondly, even in the canonical

mammalian methylation system, the “wrong” allele has been shown to be expressed

occasionally due to lineage-specific effects [221–225].

I then looked at the expression of these nineteen genes in all twenty-nine RNA-seq

libraries. If they are monoallelically expressed in these bees, I would find only one

allele in a given RNA-seq library. Fifteen of these nineteen genes were confirmed to

show a single allele in all twenty-nine RNA-seq libraries. I would also find only one

allele if that bee was homozygous. I can not rule out that these fifteen genes just

happen to be homozygous in all twenty-nine bees from five different colonies from

multiple sources.

The remaining four genes showed inconsistent expression with one allele being ex-

pressed in some B. terrestris workers, and expression of two alleles in other workers.

Natural intraspecific variation in imprinting has been found in other species [226].

Another explanation is that these loci are not epigenetically controlled but rather

their allele-specific expression is derived from genetic effects [227]. There are three

main genetic, as opposed to epigenetic, affectors of allele-specific expression [228].

Allele-specific expression can be caused by differences in the alleles’ sequence within

the translated part resulting in a modified protein. A change at the alleles’ cis reg-

ulatory sites, could cause differential binding of transcription factors. Transcript

processing can be affected by a change in the allele’s sequence a splice site or un-

translated region. This large number of possible causes of allele-specific expression

could explain why we see so many functions associated with the 555 genes showing

allele-specific expression (Figure 2.4).
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However, it is not just allele-specific expression that may have genetic as well as epi-

genetic effects. It has been shown in humans that some allele-specific methylation is

determined by DNA sequence in cis and therefore shows Mendelian inheritance pat-

terns [229]. An extreme example of genetically controlled allele-specific methylation

is found in Nasonia wasps, where there is no evidence for methylation driven ge-

nomic imprinting, but inheritable cis-mediated allele-specific methylation has been

found [230]. This cis-mediated methylation has recently been suggested as being

important in social insect biology [227, 231].

I have found that allele-specific expression is widespread in the bumblebee. I have

also found that the extreme version of allele-specific expression, monoallelic expres-

sion is associated with monoallelic methylation. Genomic imprinting in mammals

usually involves monoallelic methylation and expression. It is tempting to associate

my results with genomic imprinting, especially as a number of the genes discovered

are exactly the type predicted by theory to be imprinted [11]. Caution however

should be applied due to the lack of understanding of the functional role of methy-

lation in gene expression in insects and in the as yet unquantified role of genetic cis

effects in insect allele-specific methylation and expression.



Chapter 3

Alternative splicing, DNA

methylation, and gene expression

in Bombus terrestris

3.1 Introduction

Buff-tailed bumblebee (Bombus terrestris) workers generally do not have fully devel-

oped ovaries. However, when the bumblebee colony enters the competition phase of

its annual cycle some of the workers begin to develop full ovaries and produce hap-

loid sons (Section 1.3). This distinct phenotypic change has previously been linked

to divergent gene expression patterns, whereby reproductive workers have gene ex-

pression patterns more similar to queens compared to non-reproductive workers [12].

This implies that the epigenetic make-up of a B. terrestris individual is key to their

reproductive status.

Alternative splicing is a key regulator of gene expression [232]. Different combina-

tions of exons and introns of a gene can be translated and determine the initiation of

alternate proteins forms. This can have a large effect on an organism’s phenotype.

41
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For instance, human head and body lice occupy different ecological niches. Head

lice are a common occurrence especially in children, whereas body lice are usually

now restricted to people living in poor sanitary conditions and are vectors of three

serious pathogens [233, 234]. Head and body lice have almost identical genomes

and transcriptomes, and it is the great degree of differential splicing of their genes

which has been indicated to determine their different behaviours and feeding pat-

terns [127]. Therefore it is has been demonstrated that alternative splicing can have

a large effect on gene expression.

In the Hymenoptera, alternative splicing has previously been found to be involved in

worker reproduction. Jarosch and colleagues [235] found alternative splicing of the

gemini transcription factor to be associated with control of worker sterility in Apis

mellifera capensis. Knocking out of a specific exon via RNAi resulted in worker ovary

activation which is associated with parthenogenetically producing diploid female

offspring [235]. Hence, a worker would be able to produce offspring from an ovum

without fertilization.

The initiation of worker reproduction and caste differentiation between queens and

workers have been indicated to rely on the same gene regulatory networks in A. mel-

lifera since Formesyn and colleagues found the knockdown of an epidermal growth

factor receptor to be involved in caste differentiation and induction of reproduction

in workers [236]. In light of this, caste differentiation has been found to be associated

with alternative splicing. In Apis mellifera the transition from nursing to foraging

is linked with alternative splicing events [118]. Thus, A. mellifera regulatory genes

are differentially expressed or differentially spliced resulting in different behavioural

phenotypes in nurse and forager workers. This adds to the concept that alternative

splicing may be key to the initiation of worker reproduction.

Alternative splicing has been associated with DNA methylation in insects. In the

hymenopteran lineage, CpG methylation has been previously found to be linked

with controlling splicing in A. mellifera [115, 118, 237], Nasonia vitripennis [139],
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Camponotus floridanus, and Harpegnathos saltator [122]. This is described in detail

in Section 1.2.3 with possible antagonistic (MeCP2-like, CTCF-like) methylation-

mediated splicing processes. Hypomethylation was associated with alternative gene

splicing in A. mellifera and C. floridanus [62, 135], and hypermethylation was asso-

ciated with exon retention in C. floridanus and H. saltator [122]. DNA methylation

is not thought to be a “universal driver” of insect eusociality [238], but it is prob-

able that DNA methylation is acting in concert with other epigenetic modifiers

(e.g. ncRNAs, histone modifications) to regulate alternative splicing [62, 239, 240].

Furthermore, methylation has been indicated to play a role in B. terrestris worker

reproduction [186]. Therefore in this chapter and the next I explore epigenetic dif-

ferences in worker reproduction.

Here I implement a combination of RNA-sequencing and bisulfite-sequencing tech-

niques in the buff-tailed bumblebee B. terrestris workers. I identify differential

patterns of expression, methylation, and alternative splicing in reproductive and

non-reproductive workers, and also determine associations here between these epi-

genetic mechanisms. Subsequently, gene ontology analysis is conducted to deter-

mine any functions that are enriched in genes up-regulated in reproductive and

non-reproductive workers. The process of a B. terrestris worker developing ovaries

has been reported to require epigenetic signalling and changes in methylation

[12, 118, 186]. Thus, genes with functions associated with ovary development, epi-

genetic regulation, and signalling are expected to be differentially expressed and

differentially methylated between reproductive and non-reproductive workers.
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3.2 Methods

3.2.1 Bee husbandry and tissue sampling

Three B. terrestris colonies (referred to as colonies 1, 5, and 8) from Agralan were

kept at a temperature of 28oC and at 60% humidity. They were kept in red light and

fed pollen and a solution of 50% water and 50% honey ad libitum. Callow workers,

less than 24 hours old, were taken from each colony and placed in boxes of five

workers.

The worker bees were sacrificed at six days old. For each bee, the head was snap

frozen in liquid nitrogen immediately after it was sacrificed. Through dissection in

1% phosphate-buffered saline (PBS) solution, the reproductive status of the bees was

determined and classed as either reproductive (Figure 3.1a), non-reproductive (Fig-

ure 3.1b), or intermediate. Workers were classed as having developed ovaries, and

therefore reproductive, if the largest oocyte was larger than the trophocyte follicle

[241]. Immediately after dissection the ovaries of each worker were weighed (Figure

3.2), and the length of the largest oocyte of each ovary of the reproductive and

intermediate workers was measured (Figure 3.3). In order to sample the reproduc-

tive workers with the most developed ovaries, the bees that had the longest oocyte

length were selected as this measurement is tightly correlated with reproductive

status [242, 243].

3.2.2 RNA and DNA extraction and sequencing

The heads of three reproductive and three non-reproductive worker bees from each

of the three colonies were each sampled. For each head, an incision was made in

the sagittal plane dividing it in two. Left and right sides of the head were randomly

distributed to RNA and DNA extractions. RNA was extracted using the Sigma-

Aldrich GenElute Mammalian Total RNA Miniprep kit from half of the heads of
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(a) (b)

Figure 3.1: Ovaries of dissected (A) reproductive and (B) non-reproductive
Bombus terrestris workers

Figure 3.2: Ovary weight of Bombus terrestris workers immediately after dis-
section. Red points indicate outliers.

the worker bees. The other half of the heads of the same bees were used for DNA

extraction for bisulphite sequencing. The extracted RNA was treated with DNase

(Sigma-Aldrich DNase I treatment kit), and RNA quality was then determined by

Nanodrop and Agilent 2100 Bioanalyzer. A total of 18 RNA samples were sequenced

by BGI Tech Solution Co., Ltd. (Hong Kong).

DNA samples from the same eighteen worker bees were taken from half heads (Qi-

agen kit). Samples from the same colony and with the same reproductive status
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Figure 3.3: Largest oocyte length of dissected Bombus terrestris workers

(reproductive or non-reproductive) were pooled producing six pooled samples in to-

tal, and were sent for 100bp paired-end bisulfite sequencing (BS-seq) (BGI Tech

Solution Co., Ltd. (Hong Kong)).

3.2.3 Identification of differential isoforms and clustering

The RNA-seq libraries were aligned to the Bombus terrestris Bter 1.0 reference

genome (Refseq accession number GCF 000214255.1) [188] using Tophat2 [244].

The aligned transcripts were assembled using cufflinks (version 2.2.1) as described

by Trapnell et al. [245]. Cuffmerge was used to create a merged transcriptome

annotation from the transcripts of all eighteen libraries. Then cuffdiff identified dif-

ferentially expressed transcripts between samples from different colonies and with a

different reproductive status (reproductive versus non-reproductive). The cummeR-

bund [246] package in R (version 3.3.0) was used for further downstream processing

[7].
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3.2.4 Differential expression

After Tophat2 alignment (see Section 3.2.3), samtools and bcftools were used for

filtering and identifying variants. A general linear model (GLM) was conducted in

the R (version 3.3.0) [7] package edgeR (version 3.14.0) [5, 6] to identify differentially

expressed genes between reproductive and non-reproductive workers.

3.2.5 DNA methylation analyses

BS-seq libraries were aligned to same reference genome (Bter 1.0) using Bismark

[247] v.0.16.1 and bowtie2 [248] v.2.2.6 with standard parameters. Bismark was

also used to extract methylation calls and generate M-bias plots. After examination

of the M-bias plots up to 8bp were removed from the 5’ end of each read and up

to 5bp were removed from the 3’ end of each read. The anti-sense strand of the

reproductive Colony 5 sample was the exception, with 25bp being removed from the

3’ end. Alignment and methylation calling was then re-run with the new trimmed

reads.

Two methods were used to identify differentially methylated regions (DMRs), Seq-

Monk and the bsseq R package (described below). Subsequently the DMRs found

in both analyses were compared, and the regions found in both lists were deemed to

make up the more conservative final list of DMRs used in the downstream analysis.

First, SeqMonk [249] was used to identify differentially methylated regions between

reproductive and non-reproductive worker samples. Coverage outliers and duplicates

were removed and sample replicate sets were defined along with windows of 20

CpGs. Average window length was assessed and outliers were removed, leaving

windows between 20-3000bp. Methylation levels were quantified using the bisulfite

methylation quantitation pipeline available in SeqMonk, with a minimum of 4 reads

in every sample per CpG. Logistic regression analysis was then used to determine
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windows which significantly differed between the two sample sets, with a minimum

percentage difference in methylation levels of 10%.

Coverage files generated from Bismark were also used to carry out differential CpG

methylation analysis using the bsseq [250] (v.1.11.0) package in R (version 3.3.0) [7].

Data were smoothed and paired t-tests were carried out on each CpG with correction

for multiple testing. Differentially methylated regions were then calculated.

The DMRs generated from bsseq were read into SeqMonk and the logistic regression

results were filtered based on overlap with the bsseq DMRs. These common regions

were then further filtered producing a list of regions also overlapping a gene.

3.2.6 Gene ontology annotation

The loci (the SNP position +/- 2900bp) identified as showing differential expres-

sion, differential methylation, and alternative splicing, were blasted (Blastx) against

Drosophila melanogaster proteins (non-redundant, nr, database) [201]. The blast re-

sults were annotated using Blast2Go [202]. Fisher’s exact test was implemented to

identify enriched GO terms compared with the list of GO terms from the B. terrestris

reference transcriptome. Enriched GO terms were then visualised using REVIGO

[4]. REVIGO is a web server that summarizes lists of GO terms in graphical formats

by using a similarity clustering algorithm.

3.2.7 Comparisons: alternative splicing, methylation, and

expression

In R (version 3.3.0) [7], a multiple logistic regression was applied to methylation

percentages of each gene versus expression counts, and methylation percentages

were also measured against FPKM (Fragments Per Kilobase of transcript per Million

mapped reads) values which are a measure of relative gene expression.
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A hypergeometric test [251] was applied to identify if more genes and gene ontology

terms overlapped between regions with differential expression, differential methyla-

tion, and alternative splicing than would be expected by chance.

3.3 Results

3.3.1 RNA-seq and BS-seq mapping efficiencies

RNA-seq reads were mapped with a mean efficiency of 92.2% (91.0-92.7%). The

mean mapping efficiency was 63.6% (63.0-65.5%) and the mean coverage per gene

was 23.2 reads (20.2-24.2) for the BS-seq. The lower mapping efficiency for the

BS-seq is expected for bisulphite-treated DNA. Usually only 40-80% of reads from

bisulphite-treated DNA can be mapped to a reference genome [252].

3.3.2 Differential gene expression

A total of 12,072 genes were identified from all eighteen Bombus terrestris transcrip-

tome samples. After implementing a principal component analysis, non-reproductive

workers were higher on the PC2 axis compared to reproductive workers of the cor-

responding colony (Figures 3.4 and 3.5). This indicates a reproductive status effect.

There was also a colony effect as reproductive and non-reproductive colony 8 work-

ers clustered more closely together than with any other samples. This implies more

similar gene expression patterns between colonies 1 and 5 compared to colony 8.

After applying a two-way general linear model (GLM) with colony and reproductive

status as factors, 849 genes were up-regulated in reproductive workers compared to

non-reproductive workers, and 344 genes were found to be significantly up-regulated

in non-reproductive workers compared to reproductive worker bees (GLM [5], FDR
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Figure 3.4: Principal component analysis plot based on the 12,072 genes from all
18 Bombus terrestris transcriptome samples, merging replicates of the same colony
and reproductive status. Each point represents a gene. R refers to reproductive
workers, and N refers to non-reproductive workers. C1, C5, and C8 are the three
different B. terrestris colonies. For example, C1R refers to reproductive workers

from colony 1.
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Figure 3.5: Principal component analysis plot based on the 12,072 genes from all
18 Bombus terrestris transcriptome samples, with independent replicates. Each
point represents a gene. R refers to reproductive workers, and N refers to non-
reproductive workers. C1, C5, and C8 are the three different B. terrestris colonies.
0, 1, and 2 refer to the three different replicates for each sample type. For example,

C1R 0 refers to the first reproductive worker sample from colony 1.
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Figure 3.6: MA plot based on the 12,072 genes from all 18 Bombus ter-
restris transcriptome samples. Red data points show genes which are signifi-
cantly differentially expressed between reproductive and non-reproductive work-
ers (FDR<0.05) [5, 6]. Red data points with logFC>0 are up-regulated in repro-
ductive workers compared with non-reproductive workers. Red data points with
logFC<0 are up-regulated in non-reproductive workers compared with reproduc-

tive workers.
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Significantly Enriched GO Terms, p−val <0.05
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Figure 3.7: Significantly enriched gene ontology terms up-regulated in reproduc-
tive workers (REVIGO) [4]. Each rectangle represents a single cluster of closely
related GO terms. These rectangles are joined into different coloured “superclus-
ters” of loosely related terms. The area of the rectangles represents the p-value

associated with that clusters enrichment.

< 0.05). The eighteen transcriptome libraries had a dispersion value of 2.30891 and

a biological coefficient of variation (BCV) of 1.5195 (Figure 3.6).

These significantly differentially expressed genes were compared against the

Drosophila melanogaster protein non-redundant (nr) database (blastx). 610 out

of the 849 loci up-regulated in reproductive workers had blast hits, with 339 of these

loci also showing annotation. Of particular interest, the gene ecdysone was found

to be up-regulated in reproductive workers. 247 out of the 344 loci up-regulated in

non-reproductive workers had blast hits, with 145 of these also showing annotation.

320 gene ontology (GO) terms were enriched in regions up-regulated in reproductive
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Significantly Enriched GO Terms, p−val <0.05
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Figure 3.8: Significantly enriched gene ontology terms up-regulated in non-
reproductive workers (REVIGO) [4]. Each rectangle represents a single cluster
of closely related GO terms. These rectangles are joined into different coloured
“superclusters” of loosely related terms. The area of the rectangles represents the

p-value associated with that clusters enrichment.

workers (Figure 3.7), and 264 GO terms were enriched in the regions up-regulated

in non-reproductive workers (Figure 3.8) (Fisher’s exact test: p<0.05). Functions

associated with epigenetic regulation and signalling were present in both groups. For

instance, genes involved in the production of miRNAs involved in gene silencing and

genes related to the regulation of mRNA splicing via the spliceosome were found to

be enriched in regions up-regulated in reproductive workers. Genes involved in pep-

tide hormone processing (including histone H3-K27 acetylation and RNA splicing)

were significantly enriched in regions up-regulated in non-reproductive workers.
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3.3.3 Differential splicing of isoforms

A total of 51,153 isoforms were found to be expressed from the 12,072 genes found in

the eighteen B. terrestris transcriptome libraries. After filtering for an FPKM value

greater than 0.5, 6,901 of the 12,072 genes showed more than one isoform. These

6,901 genes had a total of 45,452 corresponding isoforms and will hence be known

as multi-isoform loci.

The expression patterns of non-reproductive worker multi-isoform loci from colonies

1 and 5 were more similar to each other (Jenson-Shannon distance = 0.0421) than

compared to reproductive workers of the same colonies (Jenson-Shannon distance

= 0.0582, and 0.0482) (Figures 3.9). Reproductive workers in colonies 1 and 5 had

expression patterns more similar to each other (Jenson-Shannon distance = 0.0406)

than compared to non-reproductive workers of the same colony. However, in colony

8 there is a colony effect. Reproductive and non-reproductive worker gene expression

is more similar in colony 8 than compared to workers of other colonies. Isoforms of

replicate 2 of the reproductive workers from colony 8 exhibited a greater difference

in expression compared to all other libraries (Figure 3.10).

Figure 3.9: Correlation of expression of multiple-isoform loci based on Jenson-
Shannon distance, showing merged replicates. Lower Jenson-Shannon values in-
dicate greater similarity of expression patterns. R denotes reproductive workers,

and NR indicates non-reproductive workers.
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After applying a principal component analysis a colony effect is seen with samples

corresponding more closely within colonies compared to reproductive status (Fig-

ure 3.11). However, the expression patterns of the isoforms of reproductive and

non-reproductive worker multi-isoform loci still separate in the same direction. The

reproductive worker samples are positioned higher on the PC2 axis than the corre-

sponding non-reproductive workers of the same colony.

Figure 3.11: Principal component analysis of the isoform expression of multiple-
isoform loci, merging replicates. R refers to reproductive workers, and N refers
to non-reproductive workers. C1, C5, and C8 are the three different B. terrestris

colonies. For example, C1R refers to reproductive workers from colony 1.

From the multi-isoform loci, 584 significantly differentially expressed isoforms were

identified between the eighteen transcriptome libraries (FDR adjusted p < 0.05). Of

these, 61 isoforms were significantly differentially expressed between reproductive

and non-reproductive workers in colony 1, 62 isoforms were differentially expressed

between reproductive and non-reproductive workers in colony 5, and nine isoforms

were differentially expressed between reproductive and non-reproductive workers in
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colony 8 (FDR adjusted p < 0.05). Thus a total of 103 isoforms were significantly

differentially expressed between reproductive and non-reproductive workers of the

same colony. 23 of these isoforms were differentially expressed in both colony 1

and colony 5, five isoforms were differentially expressed in colonies 1 and 8, and

five isoforms were differentially expressed in colonies 5 and 8 (Figure 3.12). Four

isoforms were significantly differentially expressed between reproductive and non-

reproductive workers in all three colonies (Table 3.1, Figure 3.13). Of these four

isoforms, two have been previously found to be components of Hymenoptera venom

and this is discussed further in Section 3.4.

37
19

38

1

4

1

3

Colony 1 Colony 5

Colony 8

Figure 3.12: Significantly differentially expressed isoforms between reproductive
and non-reproductive workers within the same colony. Total of 103 significantly

differentially expressed isoforms.

Table 3.1: Multi-isoform genes that are differentially expressed between reproductive and
non-reproductive workers in three B. terrestris colonies.

Transcript ID Gene ID Gene Name

TCONS 00048635 LOC100651307 Serine protease inhibitor 3-like

TCONS 00006883 LOC100647178 Venom acid phosphatase Acph-1-like

TCONS 00018880 LOC100644966 Uncharacterized

TCONS 00035686 LOC100643625 Putative pyridoxamine 5’-phosphate oxidase
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87 enriched gene ontology (GO) terms were found for the 103 genes of the isoforms

significantly differentially expressed between reproductive and non-reproductive

workers of the same colony (Figure 3.14). Of particular interest, the regulation

of histone methylation was enriched in this dataset, which indicates histone methy-

lation is differentially regulated between reproductive and non-reproductive workers

of the same colony.

Significantly Enriched GO Terms, p−val <0.05

dopamine biosynthesis
fatty acid elongation
flight
muscle system process
regulation: calcium ion transport
thermosensory behavior

dopamine
biosynthesis

10−formyltetrahydrofolate
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Figure 3.14: Enriched gene ontology terms of the genes of the 103 differentially
expressed isoforms between reproductive and non-reproductive workers within the
same colony (created using REVIGO [4]). Each rectangle represents a single clus-
ter of closely related GO terms. These rectangles are joined into different coloured
“superclusters” of loosely related terms. The area of the rectangles represents the

p-value associated with that clusters enrichment.
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3.3.4 Differential methylation patterns

203 genes were differentially methylated between reproductive and non-reproductive

worker bees. Of these, 79 were hypermethylated in reproductive workers compared

to non-reproductive workers. 94 showed hypomethylation in reproductive workers

compared with non-reproductive workers. 35 genes displayed instances of both hy-

permethylation and hypomethylation, indicating that in the same gene some CpGs

showed higher levels of methylation and other CpGs showed reduced levels of methy-

lation in reproductive compared to non-reproductive workers. This may be resultant

of differential splicing of isoforms of the same gene, or simply due to cis effects [253].

The ten most differentially methylated genes are listed in Table 3.2 and are largely

associated with epigenetic mechanisms including chromatin organisation, mRNA

splicing, and histone deacetylation.

245 GO terms were found to be enriched in the genes that showed differential

methylation between reproductive and non-reproductive worker bees (Fisher’s ex-

act test, p < 0.05) (Figure 3.15). 260 GO terms were found to be enriched in the

genes that showed hypermethylation in reproductive worker bees compared to non-

reproductive workers, and 320 GO terms were found to be enriched in the genes that

showed hypomethylation in reproductive workers. Of notable interest, the enriched

GO terms included positive regulation of the Ecdysteroid process (GO:005998),

regulation of alternative mRNA splicing (GO:0000381), gene silencing by RNA

(GO:0060966), epigenetic gene regulation (GO:0040029), positive epigenetic gene

regulation (GO:0045815), and inter-male aggressive behaviour (GO:0002121).
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Significantly Enriched GO Terms, p−val <0.05
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Figure 3.15: Enriched gene ontology terms of the differentially methylated genes
in reproductive and non-reproductive workers (created using REVIGO [4]). Each
rectangle represents a single cluster of closely related GO terms. These rectangles
are joined into different coloured “superclusters” of loosely related terms. The area
of the rectangles represents the p-value associated with that clusters enrichment.
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Table 3.2: The top ten differentially methylated genes between reproductive and non-reproductive bumblebee workers. Gene
function was inferred from conserved protein domains identified on NCBI.

Gene ID Description Function

Non-Repro

Methylation

(%)

Repro

Methylation

(%)

FDR

LOC100644478
NAD-dependent protein

deacetylase Sirt6

Gene silencing via chromatin,

life span
37.5 76.6 <0.01

LOC100645572
threonylcarbamoyladenosine

tRNA methylthiotransferase

Protein synthesis, tRNA and

rRNA base modification
36.9 72.3 <0.01

LOC100645370 protein phosphatase 1B
Regulating cellular responses

to stress
29.6 64.1 <0.04

LOC100643120 RILP-like protein homolog Membrane trafficking 49.3 71.4 <0.01

LOC100650146 retinol dehydrogenase 12 Retinol metabolism 0 21.4 <0.01

LOC100651986
chromodomain-helicase-DNA-binding

protein 1

Chromatin organisation,

histone deacetylation
43.8 23.1 <0.04

LOC100646999 Kv channel-interacting protein 2
Calcium sensing, protein

inactivation/activation
74.7 53.5 <0.01

LOC100646653
protein phosphatase 1 regulatory

subunit 7
Protein-protein interactions 36.0 9.3 <0.001

LOC100650375 integrator complex subunit 2
snRNA transcription and

processing
45.8 17.4 <0.04

LOC100651995
cleavage and polyadenylation

specificity factor subunit 6
mRNA splicing 33.0 2.8 <0.001
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3.3.5 Global expression and methylation patterns

There was a higher degree of methylation in exons and CDS regions, compared to

that of introns (Figure 3.16). Similar patterns were witnessed in reproductive and

non-reproductive workers. This is consistent with the methylation patterns found

in other studies of Hymenoptera [122, 238].

Relationships between methylation and expression levels showed only a slight corre-

lation at the gene level (Figures 3.17a and 3.17b), which is consistent with previous

studies [44, 122]. Yet there is a clear association between genome-wide methylation

and expression, with higher levels of methylation witnessed in more highly expressed

genes (Figure 3.18). After applying a linear model, there was a significant correlation

between expression rank and methylation level (ANCOVA: F = 1588.044, df = 1, p

< 0.0001), but no significant relationship between expression rank and reproductive

status (ANOVA: F = 1.965, df = 1, p = 0.161). This pattern is similar to that

observed in the ants Camponotus floridanus and Harpegnathos saltator by Bonasio

and colleagues [122]. The methylation level was slightly lower for those genes with

the highest expression levels in Bonasio et al. [122], but no such drop in methylation

at high expression levels was seen in the present study.



Chapter 3. Alternative splicing, DNA methylation, and gene expression 65

0.00

0.01

0.02

0.03

0.04

0.05

CDS exon gene intron mRNA ncRNA transcript
Genomic Feature

A
ve

ra
ge

 p
ro

po
rt

io
n 

of
 M

et
hy

la
te

d 
R

ea
ds

 p
er

 C
 P

os
iti

on

Non−Reproductive

Reproductive

Figure 3.16: Mean methylation levels (mean methylated reads per cytosine
position) of genomic features in reproductive and non-reproductive workers. Error

bars are 95% confidence intervals.
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(a)

(b)

Figure 3.17: Methylation level (percentage of CpGs methylated) versus expres-
sion level (log-transformed FPKM) for (A) reproductive and (B) non-reproductive

workers. Each point represents a gene.
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Figure 3.18: Gene body methylation (percentage of whole gene methylated)
versus binned gene expression (Number of total bins = 100, where genes in Bin 0
are least expressed and those in Bin 100 are most highly expressed). Lines were
generated using the LOESS local polynomial regression method implemented by

ggplot2 in R [7].

There was a significant difference in methylation per CpG between differentially

expressed genes (DEG) and non-DEG (t-test: t = -7.2494, df = 130.11, p < 0.0001)

with higher methylation levels in non-DEG (Figure 3.19). When only focusing on

the DEG, there was a trend of higher levels of methylation in genes with a greater

degree of differential expression between reproductive and non-reproductive workers

after applying a linear model (ANOVA: F = 792.78, df = 1, p < 0.0001) (Figure

3.20). Differentially expressed multi-isoform (DEI) genes showed lower gene body

methylation compared to that of non-DEI genes (t-test: t = -5.516, df = 100.49, p <

0.0001) (Figure 3.21). Interestingly, the same trend was significant for Dinoponera
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quadriceps in Patalano et al. [44]. There was also a significant difference in mean

expression levels between DEI genes and non-DEI genes (t-test: t = 5.9856, df =

101.64, p < 0.0001) with a higher average expression percentage in DEI genes (Figure

3.22).
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Figure 3.19: Mean methylation (percentage of CpGs methylated) levels of dif-
ferentially and non-differentially expressed genes. Error bars are 95% confidence

intervals.
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Figure 3.20: Differential expression (absolute logFC) and binned DNA methy-
lation (percentage of CpGs methylated) (bins=10, where 1 is least methylated, 10
is most highly methylated, and 0 represents unmethylated genes) Error bars are

95% confidence intervals.
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Figure 3.21: Mean methylation (percentage of CpGs methylated) levels of dif-
ferentially and non-differentially expressed multi-isoform genes. Error bars are

95% confidence intervals.
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Figure 3.22: Mean expression (FPKM) levels of differentially and non-
differentially expressed multi-isoform genes. Error bars are 95% confidence in-

tervals.
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Table 3.3: Comparing all known genes (LOC IDs) with differential expression, methyla-
tion, and alternative splicing with the hypergeometric test.

Gene set 1 Gene set 2 Genes p Significant overlap
overlapped

Up regulateda Down regulatedb 11 <0.0001 yes
Up regulateda Diff. Isoforms 0 - -
Up regulateda Hypermethylation 0 - -
Up regulateda Hypomethylation 1 0.65 no
Down regulatedb Diff. Isoforms 0 - -
Down regulatedb Hypermethylation 0 - -
Down regulatedb Hypomethylation 0 - -
Diff. Isoforms Hypermethylation 0 - -
Diff. Isoforms Hypomethylation 0 - -
a Gene expression up regulated in reproductive workers compared to non-reproductive workers.
b Gene expression down regulated in reproductive workers compared to non-reproductive workers.

Table 3.4: Comparing enriched Gene Ontology (GO) terms with differential expression,
methylation, and alternative splicing with the hypergeometric test.

GO set 1 GO set 2 GO terms p Significant overlap
overlapped

Up regulateda Down regulatedb 36 <0.0001 yes
Up regulateda Diff. Isoforms 0 - -
Up regulateda Hypermethylation 0 - -
Up regulateda Hypomethylation 0 - -
Down regulatedb Diff. Isoforms 4 0.00023 yes
Down regulatedb Hypermethylation 0 - -
Down regulatedb Hypomethylation 0 - -
Diff. Isoforms Hypermethylation 4 0.00022 yes
Diff. Isoforms Hypomethylation 2 0.18 no
a Gene expression up regulated in reproductive workers compared to non-reproductive workers.
b Gene expression down regulated in reproductive workers compared to non-reproductive workers.

Genes and GO terms present in multiple analyses out of the expression, methyla-

tion, and alternative splicing analyses were identified. Hypergeometric tests were

carried out to determine whether more genes and GO terms overlapped in these

analyses more than expected (hypergeometric test, p<0.05) (Tables 3.3 and 3.4).

Eleven genes overlapped between up- and down-regulated regions (Appendix B), and

36 gene ontology terms were also found to overlap between these categories. The

gene ontology terms which overlapped between up-regulated and down-regulated
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regions included genes functions associated with splicing (GO:0000974 - generation

of catalytic spliceosome for first transesterification step) and the female germline

(GO:0007301 - female germline ring canal formation, GO:0007312 - oocyte nucleus

migration involved in oocyte dorsal/ventral axis specification) (Appendix C). Down

regulated GO terms in reproductive workers also significantly overlapped with those

with differential isoform expression, as did GO terms associated with hypermethy-

lation and differential isoform expression (Appendix C).

3.4 Discussion

This is the first instance in which differential expression, methylation, and alter-

native splicing status has been directly compared between reproductive and non-

reproductive Bombus terrestris workers. Here, there are higher levels of gene body

methylation for genes with a higher degree of expression. The average methylation

level was higher for those genes and isoforms consistently expressed to the same

level between reproductive and non-reproductive genes compared to differentially

expressed genes and isoforms. This is reminiscent of a study of Nasonia that re-

ported that housekeeping genes had higher levels of methylation than genes with

other functions [123]. One would expect housekeeping genes to have uniform levels

of expression between workers of a different reproductive status. Therefore it follows

that genes that show consistent expression levels in bumblebees have higher levels

of methylation on average.

Despite methylation levels being higher in consistently expressed genes compared

to differentially expressed genes, a different pattern is seen when focusing on only

the subset of genes with differential expression. Of those genes with differential

expression between reproductive and non-reproductive workers, there is a higher

degree of differential expression in those genes with more methylation. This suggests

methylation to be involved in regulating gene expression levels in bees of alternate
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reproductive status. This is in line with the assertions of Wang et al. who conclude

that DNA methylation could play a role in maintaining differential expression [230].

Other epigenetic mechanisms potentially underlying these expression patterns are

here indicated; gene ontology terms involved in RNA splicing and histone H3-K27

acetylation were enriched in regions up-regulated in non-reproductive workers (Fig-

ure 3.8). Production of gene silencing miRNAs and regulation of mRNA via the

spliceosome were enriched in regions up-regulated in reproductive workers (Figure

3.7). In addition, histone methylation was associated with differentially regulated

isoforms (Figure 3.14). Genes associated with the regulation of the ecdysteroid pro-

cess and RNA splicing were also differentially methylated (Figure 3.15). Thus al-

ternative splicing, miRNAs, ecdysteroids, and histone modifications via methylation

and acetylation are all here implicated to be associated with bumblebee worker re-

production. These correlations are consistent with current literature. For instance,

ecdysteroids were previously found to be associated with reproductive division of

labour, being present at higher levels in dominant reproductive workers in B. ter-

restris queenless colonies [242].

Genes involved in histone acetylation were up-regulated in non-reproductive workers

compared to reproductive workers. Histone methylation acts in preventing tran-

scription of proteins through the tightening of the DNA strands around the histone

core, whereas acetylation loosens the DNA strands thus allowing transcription [254].

Therefore these processes act antagonistically and the histone acetyltransferases con-

tribute to histone demethylation [255]. Here, the up-regulation of genes involved in

histone acetylation in non-reproductive workers suggests initiation of gene expres-

sion.

Four multi-isoform genes were found to be differentially expressed between repro-

ductive and non-reproductive workers in all three B. terrestris colonies in this study.

One of these genes was uncharacterised, yet the three characterised genes had gene

functions of interest. Serine protease inhibitor 3-like was one of these four genes
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that were differentially expressed. Serine protease and serine protease inhibitors

are typically found in bumblebee venom [256, 257]. Serine proteases are fibrinolytic

agents that facilitate the enzyme plasmin to breakdown fibrin inside blood clots.

This facilitates the spread of bee venom throughout the victim’s bloodstream. In

contrast, serine protease inhibitors have been found to inhibit plasmin and exhibit

antifibrinolytic activity [256, 257]. Antifibrinolytic agents such as serine protease

inhibitors prevent the breakdown of fibrin in blood clots. Therefore serine protease

inhibitors reduce bleeding at a sting site [257].

Another differentially expressed multi-isoform gene, venom acid phosphatase Acph-

1-like, has also previously been identified to be present in venom. Acid phosphatase

is considered to be a common component in Hymenoptera venom, being present in

the venom of the honey bees Apis mellifera [258] and Apis cerana [259], as well as

endoparasitoid and ectoparasitoid wasps [260–263]. Acid phosphatase is the allergen

in bee venom which releases histamine from sensitized human basophils [258].

A putative pyridoxamine 5’-phosphate oxidase was found to be a multi-isoform gene

that was differentially expressed between reproductive and non-reproductive workers

in all three B. terrestris colonies. Pyridoxamine 5’-phosphate oxidase is an enzyme

that is involved in the de novo synthesis of pyridoxine (vitamin B6) which is required

for amino acid, glucose, and lipid metabolism [264]. Interestingly, in the honey

bee pyridoxamine 5’-phosphate oxidase was previously found to be differentially

expressed between bees trained to associate a floral odour with a sugar reward

compared with control bees exposed only to air [265]. This implied its importance

for learning and memory formation from olfactory signals.

Moreover, it is of interest to note the number of genes with differential methyla-

tion between reproductive and non-reproductive animals with regards to degree of

eusociality in comparison with previous studies. Patalano et al. found there to

be no differentially methylated regions between queen or “gamergate” reproductive

castes and non-reproductive workers in the paper wasp (Polistes canadensis) and
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the dinosaur ant (Dinoponera quadriceps), which are both very primitively eusocial

species [44]. In the present study 203 differentially methylated genes were identified

between primitively eusocial reproductive and non-reproductive B. terrestris work-

ers. Whereas Lyko et al. found 561 differentially methylated regions between queen

and worker honeybees (Apis mellifera) [115], a highly eusocial species. Therefore an

increasing prevalence of differential methylation may assist with morphological and

behavioural caste differentiation, that is associated with a higher degree of eusocial-

ity. A pattern such as this would be similar to the observations made by Simola

and colleagues [42]. They found that the evolution of transcription factors is more

divergent among eusocial insects than between solitary and eusocial insects.

In contrast, Bewick et al. [238] previously found no association between overall

methylation levels and degree of sociality in insects. This led to their conclusions

that methylation levels are highly variable across insects and methylation to not

be a “universal driver” of social behaviour [238]. However, differential methylation

patterns were not taken into account. It appears that overall methylation is not a

determinant of sociality, yet the degree of differential methylation between castes

could associate with insect sociality. The facilitation of different expression patterns

is key to the distinct caste polyphenisms witnessed in more highly eusocial species

and this is explored in regards to alternative splicing in Chapter 6.

In the future, it would be interesting to use these RNA-seq and BS-seq datasets to

explore the exact correlations between alternative splicing and DNA methylation

levels in a similar manner to the expression-methylation genome-wide comparisons

(Figures 3.18, 3.19, and 3.20). Also, a future study could compare the genes found

here to have differential gene expression to those previously found by Harrison et

al. [12]. Harrison et al. explored gene expression patterns in various B. terrestris

life history stages including reproductive and non-reproductive workers [12]. The

comparison of these studies would more firmly establish any gene expression patterns

of worker reproduction that are a common trend in this species, as opposed to colony-

specific effects.
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In conclusion, higher methylation levels have been found in genes with a higher

degree of expression in the bumblebee B. terrestris. Higher methylation levels were

also found in genes with a greater degree of differential expression between workers

with alternate reproductive states, this is indicative of methylation playing a role in

the control or maintenance of differential expression.



Chapter 4

Allele-specific expression and

methylation in reproductive and

non-reproductive Bombus

terrestris workers.

4.1 Introduction

Eusocial insects are becoming key model organisms for the study of epigenetics

[102, 266–268]. This is partly due to the presence of allele-specific expression and

methylation mentioned in Chapter 2. However, the exact relationship between

methylation and allele-specific expression in this lineage is not clear [122, 185–

187, 230].

In the last couple of years, two studies in particular have focused on searching for

parent-specific gene expression in the honey bee [182, 187]. These papers aimed to

uncouple parent-specific and lineage-specific gene expression through the implemen-

tation of reciprocal cross experiments. The few differences between these studies in

77
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design (e.g. tissue sampled) corresponds to divergent results [see 69]. Kocher and

colleagues [187] used different honey bee subspecies and reported predominantly

maternally biased parent-specific gene expression in the brain and full body. Gal-

braith et al. [182] used European and African honey bees of the same subspecies

and identified strong paternally biased parent-specific gene expression in the worker

fat body/ovaries. The genes found in Kocher et al. were compared with a list of

known methylated genes, but no methylation analysis was carried out on the same

bee samples to search for any methylation of the genes found to show parent-specific

gene expression. Methylation of genes was not studied in Galbraith et al.

Both allele-specific expression and methylation have been implicated to be associ-

ated with worker reproduction. Allele-specific expression of the worker reproduction

genes Ecdysone 20 monooxygenase and IMP-L2-like was found in the bumblebee

[185]. Moreover, in Chapter 2, I found genes with allele-specific expression in the

bumblebee, and several of these had caste differentiation functions. For example,

bicaudal-D showed allele-specific expression in the bumblebee, and this gene is in-

volved in the differentiation between soldiers and workers in the termite Reticuliter-

mes flavipes [216] and it is methylated more in eggs than sperm in the honeybee

[217]. Regarding methylation patterns, Amarasinghe et al. suggested that this

mechanism also plays an important role in bumblebee worker reproduction [186]

and I have established this in Chapter 3.

In this study I identify allele-specific gene expression and allele-specific methylation

in the same samples of reproductive and non-reproductive Bombus terrestris workers

in multiple colonies. Comparisons of these factors are drawn in combination with

the differentially expressed, differentially methylated and alternatively spliced genes

found in Chapter 3. Using these data I aim to distinguish any genome-wide allele-

specific effects of both expression and methylation in worker reproduction.
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4.2 Methods

4.2.1 Samples

The same worker bee samples with RNA-sequencing and bisulphite-sequencing were

selected as described in Chapter 3.

Alternative splicing can introduce biological variation in allele-specific expression in

different exons [269]. Therefore, it is important that phasing is taken into account

in this study to ensure good sequencing accuracy. During the process of sequencing,

phasing is when a nucleotide is not correctly removed after signal detection [270].

This would mean that no new nucleotide would be able to bind on this DNA fragment

so the old nucleotide would be incorrectly detected as the next base in the sequence.

Phasing is the main cause of decreasing per base sequence quality towards the end

of a read. Thus, per base sequence quality was calculated for all libraries in order

to account for any phasing that may be present. A per base sequence quality score

is an estimate of the probability of that base being incorrectly called. Sequence

quality checks were conducted with FastQC [271]. Per base sequence quality scores

(q) range from 0 to 40, where higher numbers indicate better quality. After applying

FastQC, per base sequence quality was found to be good (q score between 28 and

40) across all read positions for all samples.

4.2.2 Allele-specific expression analysis

The eighteen RNA-seq libraries were aligned to the B. terrestris Bter 1.0 refer-

ence genome (Refseq accession number GCF 000214255.1) [188] using Tophat [244].

Reads were mapped with a mean efficiency of 92.2% (91.0-92.7%). Bcftools (version

0.1.19-44428cd), bedtools (version 2.17.0), and samtools (version 0.1.19-44428cd)

were then used to prepare the RNA libraries and identify variants, before the variants

were filtered based on mapping quality score [193, 199]. The R package, QuASAR,
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identified genotypes and located any allele-specific expression at heterozygous sites

[200]. QuASAR removes SNPs with extreme differential allele expression from the

analyses, thus controlling for any base-calling errors. Genomic regions (+/-2900bp)

of the significant loci were blastx against the reference non-redundant (nr) Drosophlia

melanogaster genome to give the associated gene ontology (GO) terms. Fisher’s ex-

act test was then conducted to determine enriched GO terms.

4.2.3 Allele-specific methylation analysis

Bam files of aligned reads from Bismark (as described in Chapter 3) were used as

input files for armfinder within the Methpipe software (v.2.4.3) [272] to identify

allele-specific methylation. Armfinder implements a sliding window and admixture

model to identify allele-specific methylation in whole genome sequencing datasets

[272, 273]. For each “window” of the genome two models are implemented. The

first model is a “single allele” model which assumes the same degree of methylation

for both alleles. The second model is a “two allele” model that assumes the alleles

have different methylation levels. The model which fits the window with the highest

likelihood is accepted, then the programme moves onto the next genomic window

until the whole genome is analysed.

All reproductive and non-reproductive worker data were pooled separately, giving

a mean coverage of 69 reads per gene for each condition. Duplicates were removed

and standard parameters were used. Genes with allele-specific methylation were

compared against the nr D. melanogaster reference genome and enriched GO terms

found using Fisher’s exact test.
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4.2.4 Comparisons: allele-specific methylation and expres-

sion

The hypergeometric test [251] was applied to identify if more genes and gene ontology

terms overlapped between regions with allele-specific expression and allele-specific

methylation than would be expected by chance.

Recently (September 2017), a colleague (Alun Jones) produced custom annotations

of the B. terrestris reference transcriptome as part of his doctoral research. Due

to time constraints this could not be implemented to find annotations for all of the

genes of interest found here. Instead, a candidate gene approach was taken for only

the genes that showed both allele-specific expression and allele-specific methylation.

Annotations of the transcriptome were generated using Trinotate which integrates

a variety of methods for functional annotation. Within Trinotate, BLAST and

SwissProt were used to conduct homology searches in the transcript and protein

databases [274]. HMMER and PFAM were used for protein domain identification

[275, 276], and protein signal peptide and transmembrane domain prediction was

carried out by signalP and tmHMM [277, 278]. Existing annotation databases were

searched using the eggNOG, GO, and Kegg databases [279–281]. This generated

a more comprehensive annotation database of the B. terrestris genome compared

to the current reference transcriptome. The genes I identified to show both allele-

specific expression and allele-specific methylation were compared with this custom

database.
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4.3 Results

4.3.1 Allele-specific expression

447 SNPs were identified to show allele-specific expression in reproductive worker

bees in at least three of the nine transcriptome libraries. When searching for the

genes with blastx against the Bombus terrestris reference genome 321 of the 447

genes had blast hits, but only three of these had gene ontology (GO) annotation

due to the B. terrestris genome not currently being as well annotated compared to

model organisms such as Drosophila melanogaster. 116 genes had GO annotation

when conducting blastx with D. melanogaster. Thus the subsequent downstream

analyses were carried out using the D. melanogaster blastx results.

In the non-reproductive worker libraries, 497 SNPs were found to show allele-specific

expression in at least three libraries. 355 of the 497 had blastx hits for B. terrestris,

but again only three possessed GO annotation. However, 126 genes showed GO

annotation when blastx against D. melanogaster.
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Significantly Enriched GO Terms, p−val <0.05
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Figure 4.1: Enriched gene ontology terms of the genes with allele-specific ex-
pression in (A) reproductive workers (created using REVIGO [4]). Each rectangle
represents a single cluster of closely related GO terms. These rectangles are joined
into different coloured “superclusters” of loosely related terms. The area of the

rectangles represents the p-value associated with that clusters enrichment.
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Significantly Enriched GO Terms, p−val <0.05
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Figure 4.2: Enriched gene ontology terms of the genes with allele-specific ex-
pression in non-reproductive workers (created using REVIGO [4]). Each rectangle
represents a single cluster of closely related GO terms. These rectangles are joined
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rectangles represents the p-value associated with that clusters enrichment.
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Significantly Enriched GO Terms, p−val <0.05
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Significantly Enriched GO Terms, p−val <0.05
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Of the 447 and 497 SNPs showing allele-specific expression in reproductive and

non-reproductive workers respectively, 247 SNPs showed allele-specific expression in

both worker types. 200 SNPs only showed allele-specific expression in reproductive

workers, and 250 SNPs showed allele-specific expression in non-reproductive workers

only.

195 GO terms were found to be significantly enriched compared with the whole B.

terrestris transcriptome (Fisher’s exact test p<0.05) for genes with allele-specific ex-

pression in reproductive workers (Figure 4.1). 189 significantly enriched GO terms
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(Fisher’s exact test p<0.05) were found for genes with allele-specific expression in

non-reproductive workers (Figure 4.2). 123 of these were found to be enriched

GO terms of genes with allele-specific expression in both reproductive and non-

reproductive workers. 72 and 65 enriched GO terms were associated with genes that

showed allele-specific expression in reproductive workers only and non-reproductive

workers only (Figures 4.3 and 4.4).

Several GO terms associated with epigenetic mechanisms were enriched in genes

with allele-specific expression in both reproductive and non-reproductive workers.

These GO terms include histone H3-K27 acetylation and chromatin-mediated main-

tenance of transcription, as well as GO terms associated with canonical reproduction

pathways in social insects.

4.3.2 Allele-specific methylation

117 genes showed allele-specific methylation in non-reproductive workers, and 152

genes showed allele-specific methylation in reproductive workers. 77 of these genes

showed allele-specific methylation in both reproductive and non-reproductive work-

ers. Gene ontology terms enriched in the genes showing allele-specific methylation in

reproductive and non-reproductive workers are displayed in Figures 4.5a and 4.5b.

Of note, genes associated with RNA splicing, mRNA methylation, and histone H3-

K9 modification were enriched in genes with allele-specific methylation.

4.3.3 Comparisons: allele-specific methylation and expres-

sion

Genes and enriched GO terms that exhibited allele-specific expression or allele-

specific methylation were then compared with the genes and enriched GO terms

that were found to show differential expression, differential methylation, and alter-

native splicing from Chapter 3. Numbers of genes and enriched GO terms that were
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[4]).
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Table 4.1: Comparing all known genes (LOC IDs) with allele-specific expression, allele-
specific methylation, and overall differential expression, methylation, and alternative splic-
ing (see Chapter 3) with the hypergeometric test. Genes are referred to as up/down reg-
ulated or hyper-/hypo-methylated in the reproductive workers (Rep.), compared to the

non-reproductive workers (Non-rep.).

Gene set 1 Gene set 2 Genes p value Significant overlap
overlapped (p < 0.05)

Rep. ASEa Non-rep. ASEa 31 <0.0001 yes
Rep. ASEa Rep. ASMb 3 0.022 yes
Rep. ASEa Non-rep. ASMb 3 0.011 yes
Rep. ASEa Diff. Isoforms 0 - -
Rep. ASEa Up regulation 18 <0.0001 yes
Rep. ASEa Down regulation 6 <0.0001 yes
Rep. ASEa Hypermethylation 0 - -
Rep. ASEa Hypomethylation 0 - -
Non-rep. ASEa Rep. ASMb 2 0.14 no
Non-rep. ASEa Non-rep. ASMb 4 0.0016 yes
Non-rep. ASEa Diff. Isoforms 0 - -
Non-rep. ASEa Up regulation 17 <0.0001 yes
Non-rep. ASEa Down regulation 6 <0.0001 yes
Non-rep. ASEa Hypermethylation 1 0.4 no
Non-rep. ASEa Hypomethylation 0 - -
Rep. ASMb Non-rep. ASMb 77 <0.0001 yes
Rep. ASMb Diff. Isoforms 0 - -
Rep. ASMb Up regulation 5 0.0066 yes
Rep. ASMb Down regulation 2 0.12 no
Rep. ASMb Hypermethylation 4 0.058 no
Rep. ASMb Hypomethylation 7 0.0013 yes
Non-rep. ASMb Diff. Isoforms 0 - -
Non-rep. ASMb Up regulation 5 0.0022 yes
Non-rep. ASMb Down regulation 1 0.375 no
Non-rep. ASMb Hypermethylation 2 0.311 no
Non-rep. ASMb Hypomethylation 3 0.14 no

a Allele-specific expression
b Allele-specific methylation

observed to overlap more than expected are shown in Tables 4.1 and 4.2. See Ap-

pendices D and E for all significantly overlapping gene names, GO terms, and all

genes with both allele-specific expression and allele-specific methylation.
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Table 4.2: Comparing enriched Gene Ontology (GO) terms with allele-specific expres-
sion, allele-specific methylation, and overall differential expression, methylation, and al-
ternative splicing (see Chapter 3) with the hypergeometric test. Genes are referred to as
up/down regulated or hyper-/hypo-methylated in the reproductive workers (Rep.), com-

pared to the non-reproductive workers (Non-rep.).

GO set 1 GO set 2 GO terms p value Significant overlap
overlapped (p < 0.05)

Rep. ASEa Non-rep. ASEa 123 <0.0001 yes
Rep. ASEa Rep. ASMb 12 <0.0001 yes
Rep. ASEa Non-rep. ASMb 28 <0.0001 yes
Rep. ASEa Diff. Isoforms 10 <0.0001 yes
Rep. ASEa Up regulation 0 - -
Rep. ASEa Down regulation 10 <0.0001 yes
Rep. ASEa Hypermethylation 7 <0.0001 yes
Rep. ASEa Hypomethylation 9 <0.0001 yes
Non-rep. ASEa Rep. ASMb 12 <0.0001 yes
Non-rep. ASEa Non-rep. ASMb 31 <0.0001 yes
Non-rep. ASEa Diff. Isoforms 8 <0.0001 yes
Non-rep. ASEa Up regulation 0 - -
Non-rep. ASEa Down regulation 27 <0.0001 yes
Non-rep. ASEa Hypermethylation 8 <0.0001 yes
Non-rep. ASEa Hypomethylation 8 <0.0001 yes
Rep. ASMb Non-rep. ASMb 277 <0.0001 yes
Rep. ASMb Diff. Isoforms 6 <0.0001 yes
Rep. ASMb Up regulation 0 - -
Rep. ASMb Down regulation 5 <0.0001 yes
Rep. ASMb Hypermethylation 127 <0.0001 yes
Rep. ASMb Hypomethylation 149 <0.0001 yes
Non-rep. ASMb Diff. Isoforms 14 <0.0001 yes
Non-rep. ASMb Up regulation 0 - -
Non-rep. ASMb Down regulation 12 0.0002 yes
Non-rep. ASMb Hypermethylation 220 <0.0001 yes
Non-rep. ASMb Hypomethylation 261 <0.0001 yes

a Allele-specific expression
b Allele-specific methylation

A small number of genes significantly overlapped between genes showing allele-

specific expression in reproductive workers and allele-specific methylation in re-

productive and non-reproductive workers (Table 4.1). Four of these six genes

with allele-specific expression and allele-specific methylation were present in more

than one comparison. LOC105666144 was found to show allele-specific expression
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and allele-specific methylation in both reproductive and non-reproductive work-

ers. Second, LOC100644154 showed allele-specific expression in reproductive and

non-reproductive workers and allele-specific methylation in non-reproductive work-

ers. LOC100646154 had allele-specific expression in non-reproductive workers and

allele-specific methylation in reproductive and non-reproductive workers. Finally,

LOC100647771 showed allele-specific expression in reproductive workers and allele-

specific methylation in reproductive and non-reproductive workers. When conduct-

ing blastx searches against the reference nr D. melanogaster genome these six genes

with allele-specific expression and allele-specific methylation were uncharacterised.

Yet, after comparing these genes with the custom Trinotate annotation (Section

4.2.4), the six genes were found to have functions associated with the GRIP (golgin-

97, RanBP2alpha, Imh1p and p230/golgin-245) protein domain (LOC100642556),

nucleic acid binding (LOC105666144), protein phosphorylation (LOC100646154),

transcription factors (LOC100647771), transposase (LOC105666784), chromatin

modification, and the regulation of DNA binding (LOC100644154) (Appendix D:

Table D12).

Allele-specific expression in reproductive workers was also associated with over-

all differential expression levels between workers of a different reproductive status.

Similarly, allele-specific expression in non-reproductive workers was associated with

overall differential expression levels. Genes with allele-specific methylation in re-

productive and non-reproductive workers significantly overlapped with differentially

expressed and differentially methylated genes. However genes with differential splic-

ing between reproductive and non-reproductive workers did not overlap with any

other gene group. 87 known genes appeared in multiple significantly overlapping

gene lists, of these all were uncharacterised except four genes (Table 4.3).

Regarding gene ontology, a significant number of GO terms overlapped between

those GO terms with allele-specific expression and allele-specific methylation in re-

productive and non-reproductive workers, overall down regulation in reproductive

workers, overall differential methylation, and differential splicing (Table 4.2). Only
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Table 4.3: Characterised genes in multiple significantly overlapping enriched gene lists
with allele-specific expression, allele-specific methylation, differential expression, isoform

expression, and methylation (hypergeometric test, p<0.05).

LOC ID Gene name Number of GO term
overlapping
gene lists

LOC100644972 glycine-rich 2 -
protein DOT1-like

LOC100645332 Golgi resident 3 fatty-acyl-CoA-binding, integral
protein GCP60 component of membrane transport

LOC100643807 protein Jumonji 2 polytene chromosome, regulation
of histone H3-K27 methylation,
ESC/E(Z) complex, nuclear
euchromatin

LOC100647906 junctophilin-1 3 -

enriched GO terms that were up regulated in reproductive workers did not overlap

with any other GO list.

271 GO terms appeared in multiple significantly overlapping GO lists. Four GO

terms appeared in over ten of the lists of significantly overlapping GO terms (Table

4.4). This included negative regulation of phosphorylation, an epigenetic modifier

of histones.

Table 4.4: Gene ontology terms in over ten out of twenty-six significantly overlapping
enriched GO lists with allele-specific expression, allele-specific methylation, differential

expression, isoform expression, and methylation (hypergeometric test, p<0.05).

GO ID GO term Number of overlapping GO lists

GO:0002181 cytoplasmic translation 17
GO:0046579 positive regulation: Ras protein 14

signal transduction
GO:0010906 regulation: glucose metabolic process 15
GO:0042326 negative regulation: phosphorylation 13

4.4 Discussion

Close associations between the genes and gene ontology terms with allele-specific

expression and allele-specific methylation have been identified in the bumblebee
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Bombus terrestris. This reflects the potential for a relationship between these phe-

nomena. Only six genes showed both allele-specific expression and allele-specific

methylation (Table 4.1). This possibly demonstrates the previous assertion that

most allele-specific expression is driven by factors other than epigenetics [see 282,

and Chapter 2]. Moreover, the software available for allele-specific methylation de-

tection is limited. Armfinder in the Methpipe software was implemented and a false

discovery rate (FDR) was used [272]. The use of an FDR has the possibility of pro-

ducing a greater number of false negative results and hence cause more genes with

allele-specific methylation to be excluded from the results compared with other tests

of determining significance [283]. Therefore the FDR has recently been reported to

be too rigorous a method for bisulphite-sequencing datasets [284]. In the future, the

Benjamini & Hochberg method could be used to determine genes showing significant

allele-specific methylation because this test has the greatest sensitivity, specificity,

and FDRs closest to 0.05 in comparison to other methods [283, 285].

The fact still remains that out of the genes that were identified to have allele-

specific methylation, a relatively small number of these genes also showed allele-

specific expression. Thus, perhaps there is no direct link between allele-specific

expression and allele-specific methylation, and other mechanisms have greater roles

to play in worker reproduction (Section 1.2.1). For instance, transcription factors

(TF) bind to enhancer or promoter regions upstream of their target gene. This

affects the transcription of the target gene to either be up- or down-regulated [286].

Therefore TFs could be involved in the differential gene expression changes between

reproductive and non-reproductive workers.

Even though there were not many genes with both allele-specific expression and

allele-specific methylation, the gene annotations that were identified using the cus-

tom annotation database were associated with a variety of epigenetic mechanisms.

Allele-specific methylation is indicated to affect genes involved in chromatin modifi-

cation, protein phosphorylation, and TFs which regulate gene expression and protein
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activation. Here, a gene coding for a TF (LOC100647771) was found to have allele-

specific methylation and allele-specific expression in reproductive workers. This

implies that this TF may be partly epigenetically controlled. The allele-specific

methylation of LOC100647771 could affect the expression of the TF and this may

change its pervasiveness in the cell to regulate other genes that could be involved

in worker reproduction. Therefore, allele-specific methylation may affect genes that

have the potential to regulate the expression of worker reproduction genes down-

stream. The allele-specific expression of the six genes (with allele-specific expression

and allele-specific methylation) may be a result of the allele-specific methylation.

Alternatively they could be linked through other downstream mechanisms, or there

is still the possibility that the methylation status is a by-product of the allele-specific

expression (explored in Section 7.2.2). As well as the causation of this relationship

being unclear, other mechanisms are shown to be involved.

Several genes identified in this study show links with DNA methylation, alternative

splicing, and other epigenetic mechanisms. For instance, the jumonji gene was one

of four named genes that occurred in more than one of the significantly overlapping

methylation/expression gene lists. It was found to show allele-specific methylation

in both reproductive and non-reproductive workers, and showed overall hyperme-

thylation in non-reproductive workers. Therefore, it is interesting that the jumonji

group of proteins have previously been found to be involved in regulation of histone

demethylation [287–289]. This gene family has also been linked with cardiac dis-

ease, obesity, neurological disorders and some human cancers [see review 289, and

references therein].

Here it was found that genes with histone modification associations show allele-

specific methylation and expression. This is consistent with previous studies that

indicate histone modifications to be highly associated with insect methylation and

allele-specific expression. Hunt et al. reported that insect DNA methylation patterns

are consistent with those of histone modifications [71]. Also, Galbraith et al. [182]
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found several genes that were associated with histone modification to show allele-

specific expression with a paternal bias in reproductive workers.

Negative regulation of phosphorylation was here found to be highly involved in

bumblebee allele-specific expression and methylation processes. Phosphorylation

describes the addition of a phosphoryl group to a protein and is one of the most

abundant post-translational modifications [290]. Histone phosphorylation changes

the availability of DNA for transcription. Of note, histone acetylation can sup-

press an inhibitory phosphorylation and therefore initiate transcription [291]. Also,

phosphorylation of histone 3 prevents heterochromatin spreading by antagonizing

H3K9 methylation in Drosophila [292]. Hence phosphorylation plays key roles in

association with other mechanisms of epigenetic regulation.

Interestingly, a transposase which regulates the movement of transposons was found

here to have allele-specific methylation and expression. In mammals and plants

methylation acts to silence transposable elements [293]. Also, methylation was pre-

viously found to control transposase activity in maize [294]. In insects transposons

are typically unmethylated [129, 295, 296]. Therefore it is surprising that a trans-

posase is methylated in the bumblebee.

In this study only the genes showing both allele-specific expression and allele-specific

methylation were compared with the custom annotation database generated, but in

the future all the genes of interest could be compared with the custom database

to give a better understanding of the underlying expression patterns of worker re-

production. It would also be interesting to use these same RNA- and bisulphite-

sequencing libraries to determine whether the same allele is methylated and ex-

pressed. This would help indicate whether allele-specific methylation and allele-

specific expression are directly related or if they are potentially linked through other

downstream mechanisms.

In conclusion, allele-specific expression and allele-specific methylation have a weak
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correlation in reproductive and non-reproductive workers. However the insect epi-

genetic process is implicated to be complex, with the involvement and interaction

of DNA methylation, alternative splicing, hormone signalling pathways, and various

forms of histone modification.



Chapter 5

Differential circadian isoform

expression patterns in the desert

locust, Schistocerca gregaria

5.1 Introduction

The first three results chapters of this thesis (Chapters 2, 3, and 4) focused on

elucidating the underlying epigenetic mechanisms of the caste polyphenism found in

the Hymenoptera lineage. Here, I move onto studying another insect which displays

a polyphenism, and I explore the isoform expression patterns of the desert locust

Schistocerca gregaria.

The desert locust displays phenotypic plasticity according to changes in popula-

tion density of conspecifics (Section 1.4). The two phases are described as solitary

and gregarious, which are associated with different behavioural and morphological

characteristics. When there is an increase in population size or a reduction in food

availability, solitary locusts can be forced together with conspecifics causing them

to become behaviourally gregarious [172]. However it takes several generations for

97



Chapter 5. Circadian isoform expression patterns 98

morphological changes to occur [173]. It is in this gregarious phase when desert

locusts swarm, and hence are perceived as an agricultural pest species in Africa and

the Middle East, where they can cause devastation for crops such as barley, maize,

sorghum, and wheat [174].

Several insecticides have been developed with varying degrees of efficacy to coun-

teract this pest. Populations of the oriental migratory locust, Locusta migratoria

manilensis, are extremely destructive in China. Organophosphate insecticides have

been used to control this species for a few decades [38]. Organophosphates inhibit

acetylcholinesterase which is a catalyst for the breakdown of the neurotransmitter

acetylcholine and other choline esters [297]. However, the use of organophosphates

has now led to the resistance of this insecticide through increased detoxification by

esterases and glutathione S-transferases, and increased activity and reduced sensi-

tivity of acetylcholinesterase to organophosphate inhibition [298].

New strategies for locust control are being developed. RNAi silencing of chitin syn-

thase 1 led to high mortality rates in L. migratoria manilensis [142]. Chitin synthase

1 is essential for locust development and growth of the trachea and integument in

particular. Therefore this gene has been identified as a potential target for the

control of destructive locust swarms.

Moreover, the time of day at which an insecticide is applied has been observed to af-

fect its efficacy in mosquitoes [176]. Mosquito detoxification processes and therefore

pesticide susceptibility have been demonstrated to be affected by the circadian cycle

[176]. By applying insecticides at the time of day when detoxification processes are

at their most down-regulated the efficacy level of the insecticide may be maximised.

If there is a better understanding of the circadian cycle of genes involved in locust

detoxification the efficacy of locust insecticides could also be maximised. This would

be beneficial with whichever insecticide is used. Therefore, this chapter focuses on

the identification of genes with a circadian cycle in the desert locust S. gregaria.
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Gregarious S. gregaria individuals are active during the day, with peak activity re-

ported at 1400 hours [31, 171]. In contrast, solitary locusts are considered to be

nocturnal. Ould Ely and colleagues [170] observed solitary locust activity to peak

1-2 hours after dusk, and during the day solitary locusts exhibit hiding behaviours

and only tend to fly if they are disturbed [299]. These distinctive observed activ-

ity patterns of solitary and gregarious desert locusts thus indicate strong circadian

rhythms.

Since the discovery of the period (per) locus in Drosophila melanogaster [300], circa-

dian rhythms have been studied for over four decades to elucidate the genetic basis

of how organisms respond to different selection pressures that vary over a 24 hour

time period. The clock genes per, timeless (tim), and clock (clk), are known to be

important in the D. melanogaster circadian rhythm [301] and have been reported to

also have a rhythmic expression pattern in S. gregaria [177]. However, no difference

in expression patterns of these genes has yet been found between solitary and gregar-

ious locusts. This could be due to differences in photosensitivity between laboratory

and wild locust populations [171], or the circadian rhythm may be regulated further

downstream of the per, tim, and clk genes in the locust.

Little is yet known about interactions between circadian rhythms and post-

transcriptional processes. The circadian clock has been found to regulate alternative

splicing in mice [302] and microRNAs have been demonstrated to be necessary for

the maintenance of the circadian rhythm in D. melanogaster [303]. Furthermore,

alternative splicing has been demonstrated to be important in the locust. In a re-

cent study, 45 genes were found to have differentially expressed isoforms between

solitarious and gregarious migratory locusts (Locusta migratoria) [143]. These in-

cluded genes associated with cytoskeleton dynamics which are involved in neuronal

plasticity, a key mechanism associated with behavioural phase change [144]. How-

ever, there are biological differences between S. gregaria and L. migratoria. S.

gregaria and L. migratoria are both members of the Acrididae family, but are from

different subfamilies of Cyrtacanthacridinae and Oedipodinae, respectively. Phase
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polyphenism is not observed in all species of the Acrididae. Therefore it has been

suggested that the phase polyphenisms witnessed in S. gregaria and L. migratoria

evolved independently [304]. The underlying mechanisms behind gregarization of

these two subfamilies is indicated to be different. Tactile stimulation of the anten-

nae triggers gregariztion in an Oedipodinae species (Chortoicetes terminifera) [305],

whereas tactile stimulation of the hind legs as well as visual and olfactory cues lead to

gregarious behaviours in the Cyrtacanthacridinae subfamily (S. gregaria) [306, 307].

Hence isoform expression differences may not be the same in these two subfamilies.

It is currently unknown whether there are alternative isoform circadian expression

patterns in desert locusts (S. gregaria). Here I use whole genome RNA-sequencing

data to study how alternative splicing varies in gregarious locusts (Schistocerca gre-

garia forsk̊al) over a 24 hour period. This will facilitate the identification of detoxi-

fication isoforms with circadian patterns of expression.

5.2 Methods

5.2.1 Locust husbandry

Gregarious phase Schistocerca gregaria forsk̊al locusts were reared at the University

of Leicester under a 12:12 hour light:dark cycle. They were kept in groups of 100-300

individuals together in 50 x 50 x 50 cm cages. During the photophase (light) light

levels were 750-1000 lx with a temperature of 36oC, whereas in scotophase (dark),

locusts were kept in a light level of 0 lx and at 25oC. All locusts were fed wheat

seedlings and bran flakes ad libitum.
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5.2.2 Tissue samples and sequencing

Samples were taken at eight time points over a period of 24 hours (i.e. every 3

hours), starting at 1 hour after lights on (ZT 1). At each time point three gregarious

locusts were sampled, giving a total of 24 locust samples (Table 5.1). Locust age was

controlled for as all locusts were sampled 2 weeks (±3 days) after the adult molt.

Table 5.1: Gregarious Schistocerca gregaria forsk̊al
locust samples (m = male, f = female).

Time point (ZT)
Replicate

Circadian phase
A B C

1 m f m

Photophase
4 f f m
7 f f m
10 m f f
13 m f f

Scotophase
16 m f f
19 f f m
22 m f f

At least one male and at least one female were sampled at each time point in order to

discern a general pattern for differential circadian isoform expression patterns across

S. gregaria genders. No sex differences in the circadian rhythm of S. gregaria locusts

have been reported in previous literature. S. gregaria sexual dimorphism is limited

to morphological differences in size, reproductive organs, courtship behaviour, and

cuticle colour [308, 309]. Females do not display any courtship behaviours [309,

and references therein]. However, male S. gregaria locusts demonstrate courtship

behaviours of orientation towards the female, a slow approach, and mounting a

female locust [309, and references therein]. S. gregaria females are a brown-beige to

yellowish colour and tend to be larger in size compared to males [309]. Gregarious

S. gregaria males display a yellow cuticle colour 10 days after the adult molt, which

is partly due to juvenile hormone synthesis [310].

Dissections were carried out at 25oC under low intensity red light. The brain and

optic lobe were extracted and the tissues were pooled together for each individual
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before RNA extraction. The optic lobe was chosen for RNA extraction because it

has been indicated as the location of the central circadian clock in hemimetabolous

insects such as locusts. The compound eye is the primary photo-entrainment site for

the central circadian clock, and severing of the optic nerves or removal of the optic

lobes has been demonstrated to remove the activity rhythm [311, and references

therein].

The Trizol reaction was used to extract the RNA. Subsequently, TURBO DNase

treatment (Life technologies) and the Qiagen RNeasy mini kit were used to remove

any DNA and phenol contamination. RNA quality was checked using a bioanalyzer

(Agilent, G2939A). The 24 RNA samples were then sequenced with the NextSeq

platform (Illumina, Glasgow Polyomics, UK). Paired-end reads at 2x75bp with 25M

reads were sequenced. RNA sequencing resulted in approximately 1.3 x 109 reads,

25-75 bp in length.

5.2.3 Alternative splicing analysis

Transcriptome quality checks were carried out using fastQC (version 0.11.5) [271].

Subsequently 10 base pairs were removed from the 5’ ends of all RNA-seq libraries

(cutadapt version 1.11 [312]). In the previous three results chapters (Chapters 2, 3,

and 4) I began my analyses by aligning the Bombus terrestris RNA-seq libraries with

the reference genome of that species. However, the locust S. gregaria does not yet

have a published genome, so a different pipeline was used. KisSplice (version 2.4.0-

p1) [313] was used to identify alternative splicing events directly from the trimmed

transcriptome libraries. Pairwise comparisons with the R (version 3.4.1) package

kissDE (version 1.4.0) was carried out to test if variants were significantly differ-

entially expressed at the eight timepoints (coverage: at least 10 reads per variant)

[7, 314]. kissDE is based on count regression with a negative binomial distribution.

A general linear model framework is used with isoforms, experimental conditions,
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and the interaction between them as the variables. This pipeline separates all tran-

scripts into two groups: isoforms that include the exon of interest and isoforms that

exclude the exon of interest [314].

Subsequently, the genes identified by kissDE were further filtered using the

Jonckheere-Terpstra-Kendall (JTK) algorithm (JTK cycle in R) to uncover genes

with a period of 20-28 hours in both isoforms, and different isoform phase times (i.e.

time point of peak expression) [315]. The JTK algorithm is reported to detect cycling

transcripts more accurately and efficiently than the other commonly used methods

of COSOPT and Fishers G test [315]. The JTK algorithm was compiled from the

Jonckheere-Terpstra (JT) test and Kendalls tau. The JT test takes ordered inde-

pendent groups and identifies monotonic orders of data across the groups [316, 317].

By contrast, Kendall’s tau is used to measure the association between two measured

quantities [318]. Combining these measures in the JTK algorithm allows the JT test

to be applied to hypothesized group orderings, while keeping the group sizes fixed.

Kendall’s tau is calculated between the hypothesized time series and each cyclical

ordering. The period and phase with the minimum Kendall’s tau p value is then

selected to correlate to the expression pattern with the highest likelihood. Hence,

this algorithm identified differential isoform circadian expression patterns. Further

downstream analyses of k-means clustering and principal component analysis were

carried out in R [7].

Significantly differentially expressed isoforms with circadian patterns were searched

for in the migratory locust L. migratoria, the termite Zootermopsis nevadensis, and

German cockroach Blattella germanica nr databases (blastx) to find corresponding

gene IDs. The L. migratoria reference genome was selected on account of its phy-

logenetically close placement to S. gregaria, and the other two reference genomes

were chosen due to their slightly better annotation and close relation to the locust

lineage. Blast2GO was used to obtain associated gene ontology (GO) terms for the

genes identified [319].
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5.3 Results

7,580 genes with significantly differentially expressed isoforms over the eight time

points were identified in the gregarious locust (kissDE : FDR adjusted p < 0.05)

(Figure 5.1). Of these genes, 1,707 isoforms were identified to show a circadian

pattern of expression with a period of 20-28 hours (JTK: p < 0.05), and 111 iso-

forms showed a circadian expression pattern with Benjamini—Hochberg q < 0.05.

105 genes had both isoforms (210 isoforms) showing a significant circadian pattern

(period of 20-28 hours) (JTK: p < 0.05) and different phase times. No genes were

identified to have both isoforms showing a significant circadian pattern and different

phase times with q < 0.05. Hence, the 105 genes (210 isoforms) with p < 0.05 were

used for the downstream analysis.
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Figure 5.1: Principal Coordinate Analysis (PCoA) of all genes with differentially
expressed isoforms. Notation: “t1a 2” corresponds to time point 1, locust replicate

a, and isoform 2. Red represents isoform 1, and blue to isoform 2.

93.56% of the variance in expression of the 210 isoforms was explained by the differ-

ence in isoforms of the same genes (Figure 5.2), this reflects that these genes have
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differentially expressed isoforms. Several isoforms showed marked differences in ex-

pression between photophase (light) and scotophase (dark) (Figure 5.3). K-means

clustering (Figure 5.4) indicated that the majority of differences between isoforms

were due to distinct magnitudes of expression rather than temporal differences in

expression, even though in all 105 genes the two isoforms have disparate phase times

to each other (p < 0.05).

Time
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Figure 5.2: PCA of the 105 multi-isoform genes with circadian expression pat-
terns and different optimal phase times. Proportion of variance: PC1 = 0.9356,

PC2 = 0.0247
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Figure 5.3: Heatmap of 105 genes at eight time points with log-adjusted signifi-
cantly differentially expressed isoforms. Notation: “t1a” corresponds to timepoint

1, and locust replicate a.
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Figure 5.4: Congruent expression patterns over 24 hours, based on k-means
clustering for the 210 isoforms from the 105 differentially expressed multi-isoform
genes. Cl1-9 denote the nine clusters. Different y axis scale bars are used in each

sub-figure.

Figure 5.5 depicts some examples of the genes found with predominant temporal

differences in their circadian isoform expression patterns. In gene 5376 the first

isoform has peak expression at 0 ZT which is when lights turn on (Figure 5.5a).

Whereas isoform 2 has a phase of 4.5 ZT which is just before the time when the

expression of isoform 1 is at its lowest. Similarly, maximum isoform expression

levels are opposed at 4.5 ZT and 13.5 ZT for gene 731 (Figure 5.5b), and for gene

1426 the two isoform phases are exact opposites at 0 ZT and 12 ZT (Figure 5.5c).

Interestingly, after searching in the nr database (blastn) gene 731 had the most

similarity with DNA polymerase beta-like (LOC108772560) in the ant Cyphomyrmex

costatus (e-Value = 0.012). The beta subunit of DNA polymerase III was previously
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found to show a circadian rhythm of expression in a Synechococcus species strain

[320]. Thus the circadian expression pattern of a DNA polymerase beta-like gene

in the locust is supportive of previous assertions that the cell cycle and circadian

rhythms are closely linked and regulate each other [321].
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(c) Gene 1426 (Cl3)
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Figure 5.5: Genes with differential circadian isoform expression patterns. Dif-
ferent y axis scale bars are used in each sub-figure. Clusters (Cl) determined by

k-means clustering of the 105 differentially expressed multi-isoform genes.

After blastx searches, two of the 105 genes with differential circadian isoform ex-

pression patterns could be mapped to the L. migratoria genome and had associated

gene ontology (GO) terms (Table 5.2). Six of the 105 genes could be mapped to

the Z. nevadensis genome, and two other genes of the 105 could be mapped to the
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B. germanica genome (Tables 5.4 and 5.3). This low mapping rate is a reflection

of the current limited annotation of insect species outside the Dipteran lineage. Al-

though the circadian patterns are clear, the isoform differences in these ten genes

are predominantly due to differences in magnitude of expression despite the iso-

forms having different phases (Figures 5.6, 5.7, and 5.8). The GO terms of these ten

genes were generally associated with mitochondrion organization, transmembrane

transport, the apoptotic process, and the oxidation-reduction process.
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(b) Carboxylesterase
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Figure 5.6: Genes with mapping against the migratory locust L. migratoria
with differential circadian isoform expression. Y axis scales are different in each

sub-figure.
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Figure 5.7: Genes with mapping against the German cockroach B. germanica
with differential circadian isoform expression. Y axis scales are different in each

sub-figure.
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(a) ATP-dependent RNA helicase
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(b) Cytochrome P450 4c3
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(c) Hypothetical protein L798 06130
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(d) Esterase FE4
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(e) Dynamin-like 120 kDa
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(f) Synaptic vesicle glyco 2B
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Figure 5.8: Genes with mapping against the termite Z. nevadensis with differ-
ential circadian isoform expression. Y axis scales are different in each sub-figure.
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Table 5.2: Genes with differential isoform circadian expression in the gregarious phase of the desert locust Schistocerca
gregaria and their gene ontology terms (blastx with the migratory locust Locusta migratoria). Phase denotes the time at which

isoforms have peak expression levels (Isoform 1 : Isoform 2).

Gene Phase Length e-Value GO IDs GO Names
(ZT) (bp)

Fat body 10.5 : 12 311 5.94076E-7 GO:0005506; GO:0016705; iron ion binding; oxidoreductase activity,
cytochrome GO:0055114; GO:0020037 acting on paired donors, with incorporation

or reduction of molecular oxygen; oxidation-
reduction process; heme binding

Carboxylesterase 10.5 : 16.5 229 1.30523E-24 GO:0016787 hydrolase activity
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Table 5.3: Genes with differential isoform circadian expression in the gregarious phase of the desert locust Schistocerca gregaria
and their gene ontology terms (blastx with the cockroach Blattella germanica). Phase denotes the time at which isoforms have

peak expression levels (Isoform 1 : Isoform 2).

Gene Phase Length e-Value GO IDs GO Names
(ZT) (bp)

Seven up 9 : 12 81 2.45222E-7 GO:0003677; GO:0005634; DNA binding; nucleus; transcription factor activity,
GO:0003700; GO:0008270; sequence-specific DNA binding; zinc ion binding;
GO:0004879; GO:0046872; RNA polymerase II transcription factor activity,
GO:0006351; GO:0003707; ligand-activated sequence-specific DNA binding;
GO:0006355; GO:0043565; metal ion binding; transcription, DNA-templated;
GO:0043401; GO:0030522 steroid hormone receptor activity; regulation of

transcription, DNA-templated; sequence-specific
DNA binding; steroid hormone mediated signalling
pathway; intracellular receptor signalling pathway

decapentaplegic, 10.5 : 9 123 3.19787E-6 GO:0008083; GO:0005576; growth factor activity; extracellular region; growth
partial GO:0040007



C
h
ap

ter
5.

C
ircadian

isoform
expression

pattern
s

113

Table 5.4: Genes with differential isoform circadian expression in the gregarious phase of the desert locust Schistocerca
gregaria and their gene ontology terms (blastx with the termite Zootermopsis nevadensis). Phase denotes the time at which

isoforms have peak expression levels (Isoform 1 : Isoform 2).

Gene Phase Length e-Value GO IDs GO Names
(ZT) (bp)

ATP-dependent RNA 12 : 16.5 285 9.02E-28 GO:0000166; GO:0003676; nucleotide binding; nucleic acid binding;
helicase DDX17 GO:0005524; GO:0004386; ATP binding; helicase activity; hydrolase

GO:0016787 activity
Cytochrome P450 4c3 10.5 : 12 311 5.47E-11 GO:0005506; GO:0046872; iron ion binding; metal ion binding;

GO:0016491; GO:0016705; oxidoreductase activity, acting on paired
GO:0016020; GO:0016021; donors, with incorporation or reduction
GO:0055114; GO:0004497; of molecular oxygen; membrane; integral
GO:0020037 component of membrane; oxidation-

reduction process; monooxygenase
activity; heme binding

Hypothetical protein 10.5 : 6 156 6.38E-05 GO:0003676; GO:0046872 nucleic acid binding; metal ion binding
L798 06130
Esterase FE4 10.5 : 16.5 229 1.18E-12 GO:0016787 hydrolase activity
Dynamin-like 120 kDa 9 : 10.5 190 2.41E-10 GO:0000166; GO:0005525; nucleotide binding; GTP binding;

GO:0003924; GO:0005739; GTPase activity; mitochondrion;
GO:0006915; GO:0007005 apoptotic process; mitochondrion

organization
Synaptic vesicle glyco 2B 12 : 10.5 202 6.76E-17 GO:0055085; GO:0022857; transmembrane transport; transmembrane

GO:0016020; GO:0016021 transporter activity; membrane; integral
component of membrane
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5.4 Discussion

This is the first account of differential circadian isoform expression patterns in the

desert locust Schistocerca gregaria. Alternate isoforms have been identified to be

expressed at differential levels throughout the day, and previous literature shows

that several of these genes have already been associated with circadian rhythmic

patterns.

ATP-dependent RNA helicase DDX17 is an ortholog of the period-1 (prd-1 ) gene.

prd-1 has a long (25 hour) period length in the circadian rhythm of asexual spore

formation (conidiation) in the fungus Neurospora [322], and it was previously found

that prd-1 encodes an ATP-dependent RNA helicase that influences nutritional com-

pensation of the Neurospora circadian clock [323]. Therefore the finding here that

ATP-dependent RNA helicase DDX17 has a circadian pattern of expression in the

locust (Table 5.4, Figure 5.8a) reflects the ancestry of this conserved gene [324].

The expression of cytochrome P450 gene family members is regulated by the cir-

cadian clock in mammals [325, 326]. Consistent with previous studies, cytochrome

P450 4c3 and the fat body cytochrome have now been found here to have a circa-

dian pattern of expression in the desert locust (Tables 5.4 and 5.2, Figures 5.8b and

5.6a). It is also of note that cytochrome P450 4C1 (LOCMI16195) and cytochrome

C (LOCMI10443) were previously found to be differentially spliced genes between

gregarious and solitarious L. migratoria brain samples [143].

Interestingly, cytochrome P450 genes have been found to be associated with detoxi-

fication in insects (in the house fly, Musca domestica) [327]. Similarly, up-regulation

of esterase FE4 (which was also found here to have a circadian pattern in the locust

(Table 5.4, Figure 5.8d)) was previously found to be associated with causing insec-

ticide resistance in the aphid Myzus persicae [328]. This echoes the notion made

by Balmert et al. that mosquito detoxification processes and therefore pesticide

susceptibility are affected by the circadian cycle [176]. Hence, perhaps a similar
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trend is true for the desert locust. This knowledge could potentially be used in the

application of insecticides to combat crop-threatening locust swarms. By applying

the insecticide at the time of day when the cytochrome- and esterase FE4 -associated

pathways are at their most down-regulated (at dawn) the efficacy level of the insec-

ticide may be maximised.

The gene dynamin (dnm) that is involved in apoptosis [329] was found here to have

a circadian pattern of expression in the locust (Table 5.4, Figure 5.8e). In previous

literature, the circadian gene clock (clk) was found to play an important role in

apoptosis [330]. Silencing clk expression in human cell lines affected the expression of

apoptosis-related genes and caused an increase in the rate of apoptosis. Comparably,

in insects the Drosophila homolog of dnm (shibirets1) is involved in membrane vesicle

scission and has been proposed to be linked to setting the circadian period [331]. The

observed pattern of expression in the locust indicates a similar tight link between

apoptosis and circadian rhythms in this lineage.

The gene seven up (svp) controls photoreceptor cell fates in Drosophila [332] and

the knockdown of svp has an effect on Drosophila circadian rhythms [333]. Hence,

it is interesting that this gene that is involved in light detection shows a circadian

rhythm of expression here in the locust (Table 5.3, Figure 5.7a).

Finally, the decapentaplegic (dpp) gene encodes a bone morphogenetic protein and

in Drosophila dpp is positioned on the left arm of the second chromosome next

to timeless (tim) which is a key gene involved in circadian clock regulation [334].

Therefore, if the chromosomal positioning is similar in the locust there is a possibility

that there is linkage between dpp and tim causing dpp to have the observed circadian

pattern of expression (Table 5.3, Figure 5.7b).

Despite the low mapping rates to the current annotations of the reference genomes

available, several of the genes here identified to show circadian patterns of expres-

sion in gregarious locusts have been previously described to be associated with the

circadian clock in other organisms. This reflects the high rate of conservation of
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these functions across the Metozoa, and the number and breadth of processes which

are affected by the circadian clock. Furthermore, circadian alternative splicing has

previously been found to be tissue dependent [302], therefore focusing solely on the

brain and optic lobe in this study may have excluded notable circadian rhythms in

other organs. Therefore, in the future it would be interesting to conduct a similar

study comparatively with other tissues and when there are improved annotations

of closely related reference genomes available. Also, since solitary and gregarious

locusts have opposite activity levels throughout the day it would be of interest to

look into the circadian differences between the different phases of this polyphenism.



Chapter 6

Alternative splicing and

eusociality in the Hymenoptera

6.1 Introduction

Across the hymenopteran lineage there is a remarkable variety of life histories from

parasitic wasps and solitary bees to highly eusocial species. In species with a high

degree of eusociality, there are different castes that are highly specialised for different

roles in the running of the colony. In the honey bee, female bees are categorized into

queens that monopolise reproduction, and predominantly sterile workers that are

responsible for brood care and foraging. These different castes are behaviourally and

morphologically distinct, yet they are formed from the same genome. The presence

of these multiple phenotypes from the same genome must be due to differential gene

usage.

Alternative splicing permits the same gene to encode several different proteins

through different transcription start and termination sites and the inclusion or ex-

clusion of different exons and introns [178]; thus it is one mechanism through which

different phenotypes can form. Chen et al. found a strong relationship between

117
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alternative splicing and species complexity across 47 eukaryotic species [335], where

species complexity was measured by the number of cell types. Chordates were ob-

served to have the highest levels of alternative splicing than any other taxonomic

group [335]. Alternative splicing has also been demonstrated to be important in re-

cent lineage-specific radiations of phenotype. For instance, alternative splicing has

been established to play a key role in the adaptive radiation of cichlids, and the

adaptation of lice to different ecological niches [127, 336].

In the Hymenoptera, alternative splicing is known to play important roles in the

division of labour and caste differentiation in eusocial insects. Alternative splicing

has been shown to be involved in the transition between nurse and foraging worker

roles in the honey bee Apis mellifera [118]. In Jarosch et al. 2011 [235], alternative

splicing of a transcription factor was associated with control of worker sterility in

Apis mellifera capensis. Knocking out of a specific exon via RNAi resulted in worker

ovary activation which is associated with parthenogenetically producing diploid fe-

male offspring in this subspecies [235]. However, it is unknown whether the degree

of alternative splicing of a worker varies with species social complexity in the Hy-

menoptera.

An individual worker in a highly eusocial species has less varied behaviours to per-

form in comparison to primitively eusocial workers and solitary animals that have

a greater number of different roles. For example, the highly eusocial ant species M.

pharaonis and P. barbatus have sterile workers that do not need to exhibit mating

behaviours or develop reproductive organs [337, 338]. On the other hand, primitively

eusocial H. saltator colonies often contain “gamergate” workers that can mate and

lay fertilised eggs as well as assisting with raising conspecifics [163, 339]. There-

fore, it is anticipated that workers in highly eusocial species will have lower levels

of alternative splicing than workers in less socially complex species. I also predict

any genes with alternative splicing to be primarily associated with regulation and

signalling as these pathways are important for the initiation and maintenance of dif-

ferent phenotypes [340–342]. Here, I assess the relative levels of alternative splicing
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between workers of several hymenopteran species with different social structures.

6.2 Methods

6.2.1 Transcriptome selection

Eusociality has evolved in nine separate events in the Hymenoptera [8, 147–153]

(Figure 6.1). In this study, publicly available worker transcriptomes obtained from

six insect species were selected with varying degrees of sociality and phylogenetic

relatedness (Figure 6.2, Table 6.1) and cover three of these evolutionary events:

Apini (Apis mellifera), Bombini (Bombus terrestris), and Formicidae (Harpegnathos

saltator, Pogonomyrmex barbatus, Monomorium pharaonis).

Three highly eusocial Hymenopteran species were chosen: the honey bee (A. mellif-

era), the red harvester ant (P. barbatus), and the pharaoh ant (M. pharaonis). In

these three species there are distinct sterile worker castes and the queen monopolises

reproduction. The honey bee (A. mellifera) has perennial colonies that have an av-

erage number of 40,000 - 80,000 bees in Summer. M. pharaonis is a highly invasive

ant species [343, 344]. M. pharaonis colonies have an average of 170 queens that

make up around 5% of the colony [337]. They display unicoloniality (i.e. there is

no aggression between colonies) which gives the impression of large “super” colonies

when M. pharaonis nests are at a high density. P. barbatus reproduction is monopo-

lised by a mating “winged alate” caste that fly away to mate with males who exhibit

a mammal-like leking behaviour [345]. Although P. barbatus again has sterile work-

ers, worker roles are not constant and appear relatively fluid [338] compared with

A. mellifera and M. pharaonis indicating that this species may not be as highly

eusocial as A. mellifera and M. pharaonis.

The two primitively eusocial Hymenopteran species selected are the buff-tailed bum-

blebee (B. terrestris) and the indian jumping ant (H. saltator) [346]. These species
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Figure 6.1: Origins of eusociality in the Hymenoptera and termites [8]. Red
lines indicate evolution of eusocial status.

exhibit signs of eusociality, but are classified as primitively eusocial due to the lim-

ited morphological differences between their castes [347]. B. terrestris bees have

relatively small annual colonies with a monandrous queen that largely monopolises

reproduction (see Section 1.3), although workers often compete over reproduction to

produce haploid males [348]. H. saltator has small colonies and “gamergate” work-

ers often mate and reproduce [163, 339]. Therefore, the castes are less distinguished

in primitively eusocial species compared to highly eusocial species [349].

Sawflies are solitary, yet are still part of the Hymenopteran order. Therefore, the
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Figure 6.2: Phylogeny of hymenopteran species with diverse social structures
used in this study based on NCBI taxonomy (phyloT) [9].

wheat stem sawfly, Cephus cinctus, was selected as an outgroup. Sawfly larvae reside

in stems of wheat for around one month before they hibernate over Winter in stem

“stubs” and pupate in early Spring [350]. They emerge as adults from May to early

June, when they mate and lay eggs. Generally one egg is laid per stem, but in the

event of multiple eggs being laid in a single stem only one larva will survive.

6.2.2 Metrics of alternative splicing

Three metrics were used as measures of the pervasiveness of alternative splicing.

First, the proportion of genes with multiple isoforms was compared between the six

species with varying social structures. This is referred to as Metric 1. A worker

in a highly eusocial species has less varied behaviours to perform in comparison

to species with less complex social structures. Hence, workers in highly eusocial

species are anticipated to have lower levels of alternative splicing than workers in
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less socially complex species (Section 6.1). Therefore, for Metric 1 it is predicted

that workers of species with more complex social structures will have fewer genes

with multiple isoforms. Second, the mean number of isoforms per multi-isoform

gene was measured (Metric 2). I predict workers of species with more complex

social structures will have fewer isoforms per multi-isoform gene. Third, the number

of splicing events per multi-isoform gene was identified (Metric 3). It is anticipated

that workers of species with more complex social structures will have fewer splicing

events per multi-isoform gene. Metrics 1 and 3 were also used in the eukaryote-wide

study by Chen et al. that found a strong relationship between organism complexity

and alternative splicing [335]. The pipeline for determining the three metrics of

alternative splicing used in this study is summarised in Figure 6.3.

Figure 6.3: Flow chart of methodology to determine the pervasiveness of alter-
native splicing with regards to social structure in six species of Hymenoptera. ape

and cummeRbund are packages in R.
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6.2.3 Differential isoform expression analysis

Tophat (version 3.3.6) [244] was used to align the transcriptomes to the appropriate

reference genomes (Table 6.1). The aligned transcripts were assembled using cuf-

flinks (version 2.2.1) as described by Trapnell et al. [245]. Cufflinks accounts for

positional biases in coverage, thus resulting in the mapping coverage being represen-

tative of the associated reference transcriptome [351, 352]. Cuffmerge was used to

create merged transcriptome annotations from the transcripts. Then cuffdiff identi-

fied differentially expressed transcripts between different species. The cummeRbund

(version 2.14.0) [246] package in R (version 3.3.0) was used for further downstream

processing [7].

To control for mapping coverage the following equation (6.1) was implemented;

NMG =
MG

C
× 100

where: MG = multi-isoform genes; C = mean coverage, and

NMG = new multi-isoform genes that are controlled for coverage.

(6.1)

Table 6.1: Hymenopteran reference genomes and worker caste transcriptomes accessed
via the European Bioinformatics Institute database [13].

Index of Common name Latin binomial Worker Sample Coverage Reference genome
sociality1 transcriptomes (%) assembly

3 Buff-tailed Bombus C1R 12, Head 91.8 Bter 1.0
bumblebee terrestris C1N 32 Head 92.2 [188]

5 Honeybee Apis SRR1028783, Body 95.9 Amel 4.5
mellifera SRR1028784 Body 95.5 [353]

4 Red harvester Pogonomyrmex SRR1910415 Head 71.9 Pbar UMD V03
ant barbatus SRR1814129 Head 79.4 [346]

3 Indian jumping Harpegnathos SRR330972 Body 60.5 HarSal 1.0
ant saltator SRR330973 Body 81.4 [354]

5 Pharoah ant Monomorium DRR029612 Body 80.0 M.pharaonis V2.0
pharaonis DRR029613 Body 83.2 scaffold (EBI)

1 Wheat stem Cephus SRR3048750, Body 84.7 Ccin1 scaffold
sawfly cinctus SRR3052013 Body 90.7 (EBI)

1 1 = solitary, 2 = subsocial/parasocial, 3 = primitively eusocial, 4 = eusocial, and 5 = highly eusocial
2 see Chapter 3

An index of sociality was created in order to be incorporated into a Phylogenetic

Independent Contrasts (PIC) adjustment which controlled for varying degrees of
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phylogenetic relatedness between the six species. Each species was given a rating

on a scale from 1 to 5, where 1 = solitary, 2 = subsocial/parasocial, 3 = primi-

tively eusocial, 4 = eusocial, and 5 = highly eusocial [based on 347, and references

therein]. Therefore: C. cinctus = 1, B. terrestris and H. saltator = 3, P. barbatus =

4, and A. mellifera and M. pharaonis = 5. The leucine tRNA ligase and elongation

factor 1 - alpha F2 genes were used to create phylogenetic distance matrices. These

two genes have previously been demonstrated to give an accurate representation of

phylogenetic relationships in Atta fabricius ants [355]. The online platform Phy-

logeny.fr was used to create phylogenies with MUSCLE as an aligner, then PhyML

and TreeDyn were used to render the phylogenies and trees [356–362].

Using the generated distance matrices, a PIC adjustment in the R (version 3.4.0)

package ape (version 4.1) was then applied to the three metrics of alternative splic-

ing identified and the social index. This is based on Felsenstein’s method of PIC

which takes into account differences in evolutionary rates and phylogeny between

focal species and therefore it controls for the inherent non-independence of taxa

[10]. Correct topology and branch lengths are assumed, as is a Brownian motion

(BM) model of character evolution [363]. (The BM model perceives evolution of a

continuous variable as an independent “random walk” in each species that causes a

normal distribution of the variable across a phylogeny.) Contrasts in phenotype (X;

e.g. number of multi-isoform genes) are calculated between each species and divided

by its standard deviation [as detailed in 10]. Contrasts in a known variable (Y; e.g.

social index) are also calculated. Therefore the X contrasts will be independent of

each other but not of the Y contrasts. Thus the PIC adjustment has enabled social-

ity and the three metrics of alternative splicing to be comparable between the six

focal species here without phylogenetic relationships contributing as a confounding

factor [10, 364–367].
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6.2.4 Splicing event type and gene ontology

The R package spliceR (version 1.14.0) was used to identify different types of al-

ternative splicing event [368]. Regarding the gene ontology (GO) analysis, the

DNA sequences of the multi-isoform gene transcripts were retrieved from the

reference transcripts of the same species (GCF 000002195.4 Amel 4.5 rna from -

genomic.fna, GCF 000214255.1 Bter 1.0 rna from genomic.fna, GCF 000341935.1 -

Ccin1 rna from genomic.fna, GCF 000147195.1 HarSal 1.0 rna from genomic.fna,

GCF 000980195.1 M.pharaonis V2.0 rna from genomic.fna, GCF 000187915.1 Pb-

ar UMD V03 rna from genomic.fna). The first 2000 bases of the isoforms of the

multi-isoform genes were selected for efficiency to find the corresponding gene names

by comparison with the Drosophila melanogaster nr database (blastx), and to give

GO terms. Fisher’s exact test was implemented to identify GO terms which were

enriched in the multi-isoform genes compared with the reference transcriptome of

D. melanogaster (FlyBase [369]), a solitary insect.

6.3 Results

6.3.1 Relative splicing proportions

For the insects classified as highly eusocial, initially 4,750 genes out of a total 14,339

genes had more than one isoform (FPKM > 0.5) in Apis mellifera. This corresponded

to 21,373 isoforms, with 9,351 splicing events. In M. pharaonis, 6,621 out of 15,155

genes have more than one isoform (27,488 isoforms and 13,167 splicing events). P.

barbatus had 6,039 out of 13,959 genes with more than one isoform (24,329 isoforms,

11,912 splicing events).

By contrast, in the primitively eusocial species, B. terrestris showed 6,034 out of

12,254 genes to have more than one isoform (26,502 isoforms, 12,800 splicing events),
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and in H. saltator 6,800 out of 16,610 genes had more than one isoform (29,109 iso-

forms, 14,670 splicing events). The sawfly C. cinctus outgroup had 6,471 genes out

of 12,287 with more than one isoform (33,379 isoforms with 15,533 splicing events).

The relative splicing proportions were then identified with regards to sociality index

in three different formats.

6.3.1.1 Metric 1: Proportion of multi-isoform genes

Firstly, the degree of sociality and proportion of multi-isoform genes was compared.

After controlling for coverage, the solitary sawfly (C. cinctus) had the highest pro-

portion of multi-isoform genes. The primitively eusocial bee (B. terrestris) showed

a greater proportion of genes with multiple isoforms than the highly eusocial bee

(A. mellifera) (Figure 6.4). The same trend was also witnessed in the ant lineage

with the primitively eusocial ant H. saltator having a greater proportion of multi-

isoform genes compared to the highly eusocial ants (M. pharaonis and P. barbatus).

However, after applying a PIC this trend was found to not be significant (Linear

regression. EF1 alpha F2 distance matrix: Adjusted R-squared = 0.4305, F-statistic

= 4.779, df = 1,4, p = 0.0941; leucine tRNA ligase distance matrix: Adjusted R-

squared = 0.4624, F-statistic = 5.3, df = 1,4, p = 0.0827) (Figures 6.5a and 6.5b).

In other words, there was no correlation found here between degree of sociality and

proportion of multi-isoform genes.
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 Cephus cinctus

 Apis mellifera

 Bombus terrestris

 Harpegnathos saltator

 Pogonomyrmex barbatus

 Monomorium pharaonis

Percentage of genes with multiple isoforms (FPKM>0.5)
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Figure 6.4: Phylogeny and percentage of total genes with alternative splicing
after controlling for coverage. See Appendix F: Table F.1 for image references.
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Figure 6.5: Phylogenetic Independent Contrast (PIC) adjusted proportion of
multi-isoform genes and social index. PIC adjusted multi-isoform genes with
phylogenetic distances based on (A) elongation factor 1 alpha F2 (EF1 alpha
F2 ), and (B) leucine tRNA ligase. Phylogenies generated using (C) EF1 alpha
F2 (D) leucine tRNA ligase distance matrices with PIC scaled proportion of
multi-isoform genes (blue) and PIC scaled social index (red). The axes of scaled
index of sociality is calculated from the sociality index and phylogenetic distance

matrices using Felsenstein’s method [10].

6.3.1.2 Metric 2: Mean isoform number per multi-isoform gene

Second, the mean isoform number per multi-isoform gene was identified in the six

focal species. C. cinctus displayed the highest mean isoform number per multi-

isoform gene (Figure 6.6). The highly eusocial honeybee had a higher mean isoform
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count than the primitively eusocial bumblebee. Conversely, the primitively eusocial

ant had a higher mean isoform count than the two highly eusocial ant species.

After applying the PIC, there was no significant correlation between social status

and number of isoforms per multi-isoform gene (Linear regression. EF1 alpha F2

distance matrix: Adjusted R-squared = 0.266, F-statistic = 2.807, df = 1,4, p

= 0.1692; leucine tRNA ligase distance matrix: Adjusted R-squared = 0.296, F-

statistic = 3.103, df = 1,4, p = 0.153).

 Cephus cinctus

 Apis mellifera

 Bombus terrestris

 Harpegnathos saltator

 Pogonomyrmex barbatus

 Monomorium pharaonis

Mean number of isoforms per gene with mulitple isoforms

0 1 2 3 4 5 6

Figure 6.6: Phylogeny and mean number of isoforms per multi-isoform gene.
See Appendix F: Table F.1 for image references.

6.3.1.3 Metric 3: Number of splicing events per multi-isoform gene

Third, there was a negative correlation between number of splicing events per multi-

isoform gene and degree of eusociality (Linear regression. EF1 alpha F2 distance
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matrix: Adjusted R-squared = 0.860, F-statistic = 31.78, df = 1,4, p = 0.00487;

leucine tRNA ligase distance matrix: Adjusted R-squared = 0.860, F-statistic =

31.77, df = 1,4, p = 0.00488) (Figures 6.8a and 6.8b), with B. terrestris and H.

saltator having a greater mean number of splicing events per multi-isoform gene

than A. mellifera, M. pharaonis, and P. barbatus (Figure 6.7). The sawfly outgroup

again had the highest mean number of splicing events per multi-isoform gene.

 Cephus cinctus

 Apis mellifera

 Bombus terrestris

 Harpegnathos saltator

 Pogonomyrmex barbatus

 Monomorium pharaonis

Mean number of splicing events per gene with mulitple isoforms

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 6.7: Phylogeny and mean number of splicing events per multi-isoform
gene. See Appendix F: Table F.1 for image references.
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Figure 6.8: PIC adjusted mean number of splicing events per multi-isoform gene
and social index. PIC adjusted multi-isoform genes with phylogenetic distances
based on (A) EF1 alpha F2, and (B) leucine tRNA ligase. Phylogenies generated
using (C) EF1 alpha F2 and (D) leucine tRNA ligase distance matrices with PIC
scaled proportion of multi-isoform genes (blue) and PIC scaled social index (red).
The axes of scaled index of sociality is calculated from the sociality index and

phylogenetic distance matrices using Felsenstein’s method [10].

6.3.2 Splicing event type

A variety of splicing events are witnessed in these six species (Figure 6.9). The

majority of these splicing events tend to be at alternative transcription start sites,

alternative transcription termination sites, and exon skipping/inclusion events. Very
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few alternative splicing events showed mutually exclusive exons in their isoforms.

However, no significant difference in splicing event type between the six species was

found (chi-squared contingency table: chi-square = 21.0, df = 35, p = 0.970).

Amel Bter Ccin Hsal Mpha Pbar

Species

P
ro

po
rt

io
n 

of
 S

pl
ic

in
g 

E
ve

nt
s

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Splicing Event

A3

A5

ATSS

ATTS

ESI

ISI

MEE

MESI

Figure 6.9: Stacked barplot of the proportion of alternative splicing events in
six Hymenopteran species. Abbreviations: A3 = alternative 3’ splice site, A5
= alternative 5’ splice site, ATSS = alternative transcription start site, ATTS
= alternative transcription termination site, ESI = exon skipping/inclusion, ISI
= intron skipping/inclusion, MEE = mutually exclusive exons, MESI = multiple
exon skipping/inclusion. Amel = Apis mellifera, Bter = Bombus terrestris, Ccin =
Cephus cinctus, Hsal = Harpegnathos saltator, Mpha = Monomorium pharaonis,

Pbar = Pogonomyrmex barbatus.

6.3.3 Gene ontology

The alternatively spliced genes of the six hymenopteran species studied were sig-

nificantly enriched for the functions of neurogenesis, signalling pathways, and
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various housekeeping functions in comparison with the solitary insect Drosophila

melanogaster (Diptera) (Figures 6.10, 6.11, 6.12, 6.13, 6.14, and 6.15).

There was significant overlap between the enriched GO terms of the multi-isoform

genes for each of the six focal species (Hypergeometric test: p<0.00001). This is

likely to be a reflection of the divergence of the Dipteran and hymenopteran lin-

eages resulting in differential gene ontology patterns. The gene ontology library of

Drosophila melanogaster is likely to be different to that of a hymenopteran species.

Therefore this gene ontology analysis indicates the gene functions which are partic-

ularly prone to alternative splicing in a largely eusocial lineage.

The majority of GO terms were identified in only a single species, with a surprisingly

high number of enriched GO terms found only in A. mellifera. Phylogeny was

conveyed in the number of enriched GO terms in species intersections (Figure 6.16)

with a greater number of GO terms solely shared between closely related P. barbatus

and M. pharaonis compared with any other two species. Moreover, seventeen GO

terms were enriched in all six species studied (Figure 6.16: bar depicted in orange).

These seventeen GO terms were found to be associated with cellular housekeeping

functions indicating the probable importance of this epigenetic conservation (Figure

6.17).
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Figure 6.17: Gene ontology terms of multi-isoform genes that are significantly
enriched in all six Hymenopteran focal species (Fisher’s test: p < 0.05) (REVIGO)

[4].

6.4 Discussion

The prevalence of alternative splicing events here observed in the Hymenoptera (34-

60%) is comparable to the pervasiveness of splicing events previously recorded in

other insect species. 41.66% of all genes had alternative splicing events in the fruit

fly, Drosophila melanogaster, 29.74% in the head louse, Pediculus humanus capitis,

and 30.89% in the body louse, Pediculus humanus corporis [127].

A significantly fewer number of splicing events in multi-isoform genes were found

to occur in more highly eusocial species. This pattern is consistent with the loss of
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splicing sites in more highly eusocial caste individuals as hypothesised (see section

6.1). However, in contrast with the predictions no association between degree of

eusociality and proportion of multi-isoform genes in workers is here witnessed. There

are two possible reasons why this is the case. Firstly, alternative splicing may

have a negligible effect on allowing fewer proteins to be expressed in more highly

eusocial castes and instead other epigenetic mechanisms such as DNA methylation

and histone modifications may have greater roles to play. Secondly, in this study six

Hymenopteran species were used with two transcriptomes each, thus there may not

have been sufficient power here to detect a correlation of sociality with alternative

splicing. There was a 9% and 8% probability that the proportion of multi-isoform

genes here witnessed was not due to the insects’ social status, with phylogenies

applied from leucine tRNA ligase and EF1 alpha F2 respectively (Section 6.3.1:

PIC). Therefore, it could be of interest in the future for repetition with a more

extensive representation of the Hymenopteran lineage.

Moreover, one must be mindful of the limitations of this study. Due to the number of

transcriptomes currently available different body samples were used. Transcriptomes

sequenced from whole body samples were used for M. pharaonis, H. saltator, A.

mellifera, and C. cinctus, and transcriptomes sequenced from head samples were

used for B. terrestris and P. barbatus. If this would have any effect on the degree of

alternative splicing one would expect a higher number of genes showing alternative

splicing using whole body samples compared to head samples. If this was the case

it could cause highly eusocial P. barbatus to have a greater number of multi-isoform

genes than the primitively eusocial H. saltator. This would also cause an even greater

negative correlation between degree of eusociality and pervasiveness of alternative

splicing in the bee lineage. Furthermore, it would be of interest in the future to

apply the eusociality index developed by Keller and Perrin [370]. This would require

accurate information for each study species of the proportion of total energy spent

on offspring production and the proportion of the number of genetic copies made by

the ith individual from the parental generation, but it could potentially produce a
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more accurate depiction of the social status of the Hymenopteran species.

Previously exon skipping was found to be the most common type of alternative splic-

ing in mammals (38.4%) [371, 372], and alternative 3’ splice site events were found

to be most prevalent in Drosophila [372]. Keren and colleagues [178] describe the

prevalence of exon skipping to increase with greater complexity in the Eukaryota.

Therefore, it has been suggested that exon skipping demonstrates the greatest con-

tribution to phenotypic complexity, whereas the predominance of alternative 5’ and

3’ splice sites are seen as an “intermediate evolutionary stage” [178]. In contrast,

alternative transcription start sites are here observed to be the most common splic-

ing event type amongst the Hymenoptera. Few insect species have yet been studied

regarding their splicing event range. Thus, in the future it would be of interest to

investigate whether the prevalence of splicing types in other insects is similar to that

of Hymenoptera or more consistent with the well studied model species Drosophila

melanogaster.

Alternatively spliced genes were here found to be particularly associated with neu-

rogenesis, signalling, and housekeeping gene ontology terms. This is consistent with

previous studies that showed alternative splicing to be prevalent in genes associated

with regulation and signalling [340–342].

In conclusion, the finding that on average fewer splicing events are present per

multi-isoform gene in more highly eusocial species is indicative of a reduced degree

of splicing in caste individuals of more highly eusocial species. This points towards

alternative splicing having a role to play in the diversity of phenotypes and behaviour

witnessed in the Hymenoptera. In the future, it would be of interest to discover if

the multi-isoform genes identified have orthologs with multiple isoforms in other

species. It would also be interesting to see if this trend in workers is continued in

male and queen members of eusocial species. In addition, it was previously found

that the evolution of transcription factors - another facilitator of phenotypic diversity

(Section 1.2.1) - is more divergent among eusocial insects than between solitary and
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eusocial insects [42]. Therefore, future research could investigate whether there are

similarly higher overall levels of alternative splicing in species of high eusociality

compared to that of solitary or primitively eusocial species.



Chapter 7

General discussion

7.1 A summary of the results

This thesis has focused on the epigenetic mechanisms underlying two main

polyphenisms in insects: the eusocial insect caste polyphenism and the locust phase

polyphenism. I summarise my findings below.

Chapter 2: Searching for allele-specific expression in Bombus

terrestris.

Eusocial insects in the Hymenoptera lineage are emerging as models for epigenetics.

DNA methylation is known to affect allele-specific expression in the epigenetics of

mammals and flowering plants. However, there is contradictory evidence on whether

this pattern is conserved in eusocial insects.

Here, I investigated allele-specific expression and monoallelic methylation in the

bumblebee, Bombus terrestris. I found nineteen genes that were both monoallelically

methylated and monoallelically expressed in a single bee. A number of these genes

are involved in reproduction. Fourteen of these genes expressed the hypermethylated
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allele, while the other five expressed the hypomethylated allele. I also searched for

allele specific expression in twenty-nine published RNA-seq libraries. I found 555

loci with allele-specific expression. The presence of allele-specific expression was

here established, however the underlying cis or epigenetic mechanisms are not clear.

Therefore epigenetic routes of biased gene expression were explored in Chapters 3

and 4.

Chapter 3: Alternative splicing, DNA methylation, and gene

expression in Bombus terrestris.

In the buff-tailed bumblebee Bombus terrestris workers generally do not have fully

developed ovaries. However, when the colony enters the competition phase of it’s

annual cycle some of the workers begin to develop full ovaries and produce haploid

sons. This distinct phenotypic change has previously been linked to DNA methy-

lation [12] but the exact pathway is largely unknown. DNA methylation is known

to affect alternative splicing and therefore gene expression in mammals. Here, I

consider whether this association between these epigenetic mechanisms continues in

B. terrestris, and if this correlates with worker reproduction.

In this study I found higher methylation levels in genes with a higher degree of

expression in a similar manner to that found by Bonasio et al. [122]. Higher methy-

lation levels were also found to be associated with differential expression between

reproductive and non-reproductive workers. A similar trend was found for differen-

tial isoform expression. This indicates methylation to play a role in the maintenance

or control of differential expression. This study was then extended to explore allele-

specific effects in Chapter 4.
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Chapter 4: Allele-specific expression and methylation in re-

productive and non-reproductive Bombus terrestris workers.

Both allele-specific expression and methylation have been implicated to be associ-

ated with worker reproduction. Allele-specific expression of worker reproduction

genes were previously found in the bumblebee [185], and bumblebee reproductive

workers have gene expression patterns more similar to queens compared to non-

reproductive workers [12]. This chapter builds on work in Chapter 2 where I found

genes with allele-specific expression in the bumblebee, and several of these had caste

differentiation functions. It has also been suggested that methylation patterns play

an important role in bumblebee worker reproduction [186].

Here I identified allele-specific gene expression and allele-specific methylation of re-

productive and non-reproductive Bombus terrestris workers in multiple colonies.

Comparisons of these factors were drawn in combination with the differentially ex-

pressed, differentially methylated and alternatively spliced genes found in Chapter

3. Allele-specific expression and allele-specific methylation show a weak correlation

in reproductive and non-reproductive workers, so they may not be directly related.

Thus the insect epigenetic process is implicated to be complex, with the involve-

ment and interaction of DNA methylation, alternative splicing, hormone signalling

pathways, and various forms of histone modification. For example, negative regu-

lation of phosphorylation was here found to be highly involved in the bumblebee

allele-specific expression and methylation processes.

Chapter 5: Differential circadian isoform expression patterns

in the desert locust, Schistocerca gregaria.

A different polyphenism system was considered in Chapter 5, the phase polyphenism

of the desert locust Schistocerca gregaria. The gregarious form of S. gregaria is often

considered a significant pest of crops [174], and it possesses a distinct circadian
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pattern with activity peaking at 1400 hours and at it’s lowest levels during the night

[31, 171]. The circadian clock has been found to regulate alternative splicing in mice

[302], and alternative splicing has been previously demonstrated to be important in

alternate phases of a different locust species [143]. However it was unknown whether

any isoforms showed expression patterns to reflect the strong circadian cycle of the

locust.

Through this chapter I identified genes with differential circadian isoform expression

patterns. Several of these genes had previously been described to be associated with

the circadian clock in other organisms. This reflects the high rate of conservation of

these functions across the Metazoa, and the number and breadth of processes that

are affected by the circadian clock.

Chapter 6: Alternative splicing and eusociality in the Hy-

menoptera.

Highly eusocial insects are distinguished from solitary and more primitively eusocial

animals by the caste system which creates reproductive and sterile individuals in

the same colony [156]. Due to the division of labour a single caste will carry out a

smaller variety of tasks compared to an individual belonging to a less highly eusocial

species. Alternative splicing facilitates multiple proteins to be expressed from the

same gene [178]. Thus it was hypothesised that there would be lower caste-specific

splicing levels in more highly eusocial insects.

In contrast to predictions, no difference was deduced in the proportion of genes with

multiple isoforms or the mean number of isoforms per multi-isoform gene compared

with level of eusociality. However, I found that there were fewer splicing events per

gene with multiple isoforms in more highly eusocial hymenopteran species compared

with primitively eusocial and solitary species. This is consistent with the proposed

hypothesis. The reduction in the degree of splicing in caste individuals of more
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highly eusocial species points towards alternative splicing having a role to play in the

diversity of phenotypes and behaviour witnessed in the Hymenoptera. In addition,

consistent with previous literature [340–342], alternatively spliced genes were here

found to be particularly associated with neurogenesis, signalling, and housekeeping

gene ontology terms.

7.2 Future implications

Throughout the first three results chapters (Chapters 2, 3, and 4) focusing on the

caste polyphenism of the bumblebee, I concentrated on methylation and expression

profiles in the context of worker reproduction in particular. The relationship between

these factors and other epigenetic mechanisms has become more apparent. Further-

more the types of gene functions (e.g. caste differentiation and worker reproduction)

that are associated with these patterns has been revealed. These observations along

with the prevalence of allele-specific effects are reminiscent of the phenomenon of

genomic imprinting and the predictions made by Queller [11] (detailed in Section

7.2.1 below).

7.2.1 Genomic imprinting link

Genomic imprinting is described as parent-specific gene expression, whereby the

allele expressed is dependent on from which parent the allele was inherited [373].

One example of genomic imprinting is the Zdbf2 locus that is imprinted in mice,

causing the long isoform of Zdbf2 (Liz ) transcript to be expressed briefly in early

embryos and embryonic stem cells [374]. Notably a study recently found that this

transient early embryonic expression programs the adult epigenetic state [375]. Ge-

nomic imprinting has been identified in mammals and angiosperms, and chromoso-

mal genomic imprinting has been reported in various other organisms [376–380]. In

mammals genomic imprinting is predominantly present in the reproductive tissues
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(e.g. placenta), but it has also been reported in the brain [107, 381]. However, it

has been questioned since the 1990’s why the established phenomenon of genomic

imprinting first evolved [382].

Genomic imprinting is counter-intuitive. In diploid organisms, natural selection is

expected to favour expression of both alleles of a gene to ensure normal expression

levels even when a non-functional or deleterious allele arises [383]. Therefore it is

unexpected for a mechanism such as imprinting to evolve that silences one allele

[384].

Several explanations have been put forward as to why genomic imprinting evolved in

the first place. The three main theories comprise of Day and Bonduriansky’s sexual

antagonism theory [385], Wolf and Hager’s maternal-offspring co-adaptation theory

[386], and Haig’s kinship theory [384]. Firstly, the sexual antagonism theory relies

on sex-specific selection pressures acting on a gene [385]. Genomic imprinting is said

to allow the more adaptive allele for the offspring’s gender to be expressed. However

this theory does not account for imprinted genes expressing the opposite sex-of-

parent allele, which has repeatedly been demonstrated through reciprocal crosses

[384].

Secondly, the maternal-offspring co-adaptation theory claims the fitness of offspring

can largely depend on interactions between the offspring and their mother [386].

Genomic imprinting is proposed to evolve when the two alleles of a gene in the

offspring relate to different fitness levels due to their effect on interactions with the

mother. One major drawback of this approach is that there is no prediction of

genomic imprinting in adults, unless erasure of an imprint is costly [384]. Yet adult

genomic imprinting has been reported in the literature in several scenarios [387, 388].

The leading explanation for the evolution of imprinting is Haig’s kinship theory [168].

This proposes that genomic imprinting arose due to maternal- and paternal-derived

alleles having different selection pressures in relation to kin resource allocation [168].
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Haig’s theory is the principal line of thought, because it is consistent with the cur-

rently found imprinted genes in mammals and angiosperms [384, 389]. Unlike the

other two theories, the kinship theory is compatible with both expression of the

opposite sex-of-parent allele and its presence in adults.

Haig’s theory goes on to predict imprinting to occur in organisms with different de-

grees of relatedness in close social groups, such as eusocial insects [11]. Haplodiploid

social insects are prime candidates for tests of kinship theory as there are many

contexts within a colony in which an individual interacts with conspecifics of vary-

ing relatedness, for instance worker reproduction, queen competition, and colony

fission. Queller developed this theory to make predictions of the types of genes

functions, and which alleles (matrigene/patrigene) should be imprinted in the social

Hymenoptera in various contexts [11]. To note, matrigenes are alleles in self which

have been inherited from the mother, whereas maternal alleles are genes within the

mother. The same concept applies for patrigenes and paternal alleles.

In haplodiploid species females hatch from fertilized (diploid) eggs, whilst males

hatch from unfertilised (haploid) eggs, so the degree of relatedness between offspring

is different for matrigenes and patrigenes. The coefficient of relatedness (r) between

a worker (Figure 7.1) and other sister workers is 0.75, which is higher than their

relatedness with their own offspring (r = 0.5). Therefore, according to the classic

Hamiltonian inclusive fitness theory, in the decision of whether to help care for

workers laid by the queen or produce their own offspring, a worker is predicted to

choose to help raise their sister workers in a bumblebee colony [11, 390].

However, in a bumblebee colony where there is genomic imprinting different conclu-

sions are made. Queller’s predictions are laid out in the decision of a worker bee

to either help care for the sons laid by the colony queen (i.e. brothers), help care

for the offspring of workers (i.e. nephews), or to reproduce herself to produce sons

[11, 69].
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Figure 7.1: Bombus terrestris pedigree. r = coefficient of relatedness (adapted
from Queller 2003 [11])

In bumblebee colonies the queen is monogynous (i.e. singly mated) causing all

worker offspring to have the same father. Compared to other workers r = 1 for a

patrigene. Yet r = 0 with sons produced by the queen (brothers) for the patrigene.

Therefore in a queen-right colony reproduction of sisters or the focal worker is the

only way for the same patrigene as in the focal worker to be continued into the next

generation. Conversely, for matrigenes r = 0.5 with other workers and r = 0.5 with

brothers. So matrigenes are expected to regulate the focal worker’s reproduction

when it is associated with high costs to brothers, because matrigenes are less likely

to occur in nephews (r = 0.25) than they are in brothers.

In a scenario when the founding bumblebee queen dies (i.e. queenless), the only

remaining options are to either help care for the offspring of workers, or to reproduce

herself to produce sons. There now should not be any differential selective pressure

on the patrigene since it has the same degree of relatedness to the offspring of the

focal worker and the offspring of her sisters (r = 0.5). Whereas the matrigene would

favour reproduction by the focal worker since the degree of relatedness is higher with

her sons (r = 0.5) compared to with nephews (r = 0.25).

Identifying genomic imprinting in the social Hymenoptera (ants, bees, and wasps)
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would provide an opportunity to test this evolutionary theory [11]. Recently Gal-

braith et al. [182] and Kocher et al. [187] carried out reciprocal cross experiments

which tested Haig’s predictions in the honey bee, and they each provide evidence for

parent-of-origin effects (described in Section 4.1). However these two studies were

somewhat contradictory, leaving this debate still remaining unresolved. Galbraith

and colleagues found an association between patrigene expression and worker re-

production. Whereas, Kocher and colleagues reported a small group of significant

parent-specific gene expression which was primarily maternally biased. These stud-

ies were carried out with different tissues. Moreover, European and African Apis

mellifera ligustica bees were sampled in Galbraith et al., but Kocher et al. used

two different honeybee lineages from these continents, namely A. mellifera carnica

and A. mellifera scutellata. Therefore Pegoraro and colleagues [69] suggested that

the parent-of-origin effects Kocher et al. [187] and Galbraith et al. [391] witnessed

could be conditional to the environmental and tissue-specific context in which the

difference in expression was tested.

A method of determining indicators of the presence of genomic imprinting in social

insects is the identification of the underlying mechanisms. DNA methylation is key

to imprinting in mammals. The addition of a methyl group to the fifth carbon of

cytosine (5-methylcytosine - 5mC) in an imprinting control region on only one of

the two alleles of a gene is associated with the allele-specific expression of that gene

[392]. This association is well described in mammals [69]. However, any relationship

between methylation and parent-specific gene expression in social insects is not so

clear, as is discussed below (Section 7.2.2).

7.2.2 Methylation: driver, effector, or response?

In mammals, methylation acts as a marker on imprinting control regions which initi-

ates the silencing of the associated allele [69, and references therein]. The presence of

a complete set of DNMTs (apart from Polistes wasps) in social insects [44, 103, 113]
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and the prediction of imprinting in this lineage [11] leads us to question whether

methylation initiates or “drives” expression changes in the Hymenoptera in a pro-

cess similar to that of mammals.

In mammals more than 70% of CpGs are methylated and DNA methylation acts to

silence specific genes via imprinting control regions [104]. Whereas hymenopteran

methylation levels are much lower with less than 2% of CpGs methylated, exons are

targeted (Chapter 3 and [122]), and this epigenetic marker is generally believed to

have an opposite effect with being associated with increased gene expression [106].

Therefore if methylation is a driver of parent-specific gene expression the exact pro-

cess is predicted to differ to that of the mammalian lineage. In several previous

studies differential methylation has been found to be associated with processes pre-

dicted to be imprinted in social insects such as caste differentiation and worker

reproduction (see Section 1.2.2). Moreover, my studies found higher methylation

levels to be associated with differential expression between reproductive and non-

reproductive workers (Chapter 3). This indicates methylation to play a role in the

maintenance or control of differential expression. However, the absence of Dnmt3

and reduced methylation system in a Polistes wasp [113] implies that either DNA

methylation has a variable effect across the social Hymenoptera or that methylation

is not the key driver to allele-specific expression in this lineage.

Another more probable scenario is that methylation could be an effector of allele-

specific expression in combination with other mechanisms such as histone modifi-

cations and ncRNAs. My research demonstrates that there may not be a direct

link between allele-specific expression and allele-specific methylation (Chapter 4)

and other factors are implied to be involved, specifically alternative splicing, hor-

mone signalling pathways, and histone modifications (Chapters 3 and 4). Moreover,

methylation-independent genomic imprinting has been recently reported in mam-

mals, showing that methylation is not necessary for parent-specific gene expression

[393].
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Alternatively, there is still the possibility that methylation is not a driver or effector

of allele-specific expression in the Hymenoptera. Methyl groups could simply be

opportunistic in their binding. Highly methylated genes are typically associated

with housekeeping functions and are uniformly expressed in the Hymenoptera [121–

123], which is supported by my findings in Chapter 3. Unravelling of chromatin

which facilitates the transcription of genes would also help enable methylation to

act on those regions. This process would explain any correlations witnessed between

methylation and expression in the Hymenoptera. In this field correlations have

only been able to be inferred thus far, yet novel methods like CRISPR will be able

to investigate causation of methylation related effects. This is explored below in

Section 7.2.3, along with a method to resolve the discrepancies between the studies

of Kocher et al. and Galbraith et al. [187, 391].

7.2.3 Future directions

In the future, a reciprocal cross could be conducted with the same sub-species of

bee to resolve the discrepancy between the studies by Kocher et al. and Galbraith

et al. [182, 187] (Section 7.2.1). Galbraith sampled the ovaries and the fat body in

combination [182]. Hence, one cannot determine whether the expression patterns

seen were resultant of primarily the reproductive tissue, the fat body (which acts

as a liver and resource provision for the oocytes), or if expression patterns were

similar in both tissues. Ovaries largely consist of the oocytes. However, methylation

and imprinting are erased in primordial germ cells and new imprints are established

in mature gametes (assuming a methylation based method of imprinting in social

insects). I would presume the ovaries would show expression patterns representative

of the potential offspring of the worker bee, rather than the worker itself. Therefore,

I would expect the fat body could be the tissue determining the parent-specific

gene expression witnessed in Galbraith et al. [182]. Thus it would be of interest to
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separately sample the ovaries, fat body, and brain in any future reciprocal cross. This

would test the predicted tissue-specific nature of parent-specific gene expression.

Experiments such as these reciprocal crosses are facilitated by the inception of next

generation sequencing. The breadth and depth of knowledge of hymenopteran epi-

genetics has been significantly advanced due to this methodology over the past few

decades. Now, a new gene editing technology, CRISPR, has emerged which greatly

builds on the capabilities of RNAi [394]. As described in Pegoraro et al. [69],

CRISPR gene editing technology could be beneficial in searching for the underlying

mechanisms of imprinting-linked expression patterns. Recently, CRISPR has been

tested in the hymenopteran species of Nasonia vitripennis, Apis mellifera, and the

clonal raider ant Ooceraea biroi [395–397]. This demonstrates that this method could

be used in hymenopteran species to induce knock-downs or mutations of imprinting-

related genes. Knock-down of genes involved in DNA methylation (e.g. DNMTs)

and the measurement of the expression status of key worker reproduction or caste

differentiation genes could elucidate any direct relationship between these factors.

Studies so far (including my own) have established correlations, but this approach

has the advantage of being able to determine causation.

Targeting of specific protein domains is also a benefit of CRISPR [394]. Therefore,

this approach could be applied to histone modification proteins. In mammals, hi-

stone modifications are the epigenetic markers that are most frequently associated

with imprinting [398]. Notably, histone modifications were often indicated through-

out Chapters 3 and 4 to be involved in worker reproduction and linked to allele-

specific expression and methylation patterns. Therefore, it would be of interest to

target specific modifications, particularly of histone 3 (H3K9, H3K27, H3K4) and 4

(H4K20) [69], to elucidate the exact pathways involved.

The adaptability of CRISPR allows it’s application in many areas. Methylation

tags and histone modifications are two common epigenetic markers, therefore it is

thought that these factors are more likely to be involved in hymenopteran caste
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differentiation and imprinting. However, other markers such as modifications on

cytosines have been described in mammals and have been suggested to have a distinct

role to play in the epigenome [see 69, and references therein]. For instance, 5-

hydroxymethylationcytosine (5hmC) has been indicated to be an epigenetic tag and

may regulate DNA methylation [399]. Hence the underlying pathways are likely to

be complex and involve numerous tissue- and cell-specific marker types. CRISPR

provides an exciting new method to establish these complex pathways.



Chapter 8

Conclusions

I have made the following contributions to scientific knowledge through my doctoral

research:

1. The identification of genes with allele-specific expression in Bombus terrestris.

2. Genome-wide associations between gene expression and DNA methylation in

Bombus terrestris were found for the first time, with higher exonic methylation

levels compared to that of introns.

3. A weak association between allele-specific expression and allele-specific methy-

lation in Bombus terrestris was elucidated.

4. For the first time, the presence of genes with differential circadian isoform

expression patterns in the gregarious phase of the desert locust S. gregaria

was identified.

5. The first evidence of fewer splicing events per gene with multiple isoforms in

more highly eusocial hymenopteran species compared with primitively eusocial

and solitary species.
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