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Abstract. The envelope theorem is derived for optimization problems with positively homogeneous convex
functionals defined on a space of random variables. Those problems include linear regression with general error
measures and optimal portfolio selection with the objective function being either a general deviation measure or
a coherent risk measure subject to a constraint on the expected rate of return. The obtained results are believed
to be novel even for Markowitz’s mean-variance portfolio selection, but are far more general and include explicit
envelope relationships for the rates of return of portfolios that minimize lower semivariance, mean absolute deviation,
deviation measures of L p-type and semi-L p type, and conditional value-at-risk. In each case, the envelope theorem
yields explicit estimates for the absolute value of the difference between deviation/risk of optimal portfolios with the
initial and perturbed asset probability distributions in terms of a norm of the perturbation.
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1. Introduction. Financial markets, being inherently uncertain, require elaborate sto-
chastic models for solving a variety of problems ranging from predicting asset prices, setting
interest rates, and selecting appropriate portfolios to making any kind of short-term and long-
term decisions. In general, any quantity of interest, e.g., asset price and interest rate, can be
modeled as a random variable (r.v.) X . However, uncertainty ingrained in X can be assessed
from at least three different perspectives, which depend on particular application and decision
maker preferences:

• How random or how non-constant X is. This aspect is central in estimating the ac-
curacy of an output of a stochastic model. For example, given two weather forecasts
“the temperature tomorrow morning will be between 10◦C and 30◦C” and “it will be
between 19◦C and 21◦C,” the latter provides a much shaper estimate—deviation in
the latter is much smaller than in the former.

• How non-zero X is. This aspect is critical when X models the random error of an
output from a stochastic model. A typical task in stochastic modeling is choosing
model parameters that minimize the error, which is an r.v.—one needs a way to
measure r.v.’s “nonzeroness” to formulate an appropriate optimization problem.

• How risky X is. This aspect arises when X models, for example, an uncertain out-
come from a financial investment, or from a business project. In this case, X > 0
and X < 0 correspond to profit and loss, respectively, and the problem is to assess
hazard associated with X . Hazard can be split into two types: overall hazard in X to
be called risk and hazard relative to some benchmark to be called regret.

Non-constancy, non-zeroness, overall hazard and relative hazard in X are measured by
deviation measure D(X), error measure E (X), risk measure R(X) and regret measure V (X),
respectively. Four measures D , E , R and V can all be defined as positively homogenous
convex functionals in a unified axiomatic framework—such four measures related by

(1) D(X) = inf
C∈R

E (X−C), R(X) = D(X)−E[X ], V (X) = E (X)−E[X ],
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form fundamental quadrangle [44], where E[·] denotes the expected value. In (1), D is called
deviation projected from error measure E , S (X) = argminC∈RE (X −C), i.e., the set of C
for which the minimum in (1) is attained and finite, is called the statistic of X associated
with E [50], R is known under different names: averse measure of risk1 [50], expected gain-
confidence [3], safety measure [35] and safety-risk measure [40], and U(X) = −V (X) is
argued to measure utility of X [44]. For a detailed discussion of measures D , E , R and V
and statistic S , see [18, 22, 44, 45, 46, 47, 48, 49, 50].

Virtually any problem in finance deals with at least one of the four: error, deviation,
risk, and regret/utility, which can arise in objective functions and constraints. For example,
the bi-criteria risk-reward approach chooses a portfolio with the desired level of reward and
the minimum level of risk, where risk can be measured by either a risk measure or a devia-
tion measure. It is originated from the classical mean-variance portfolio theory [36, 37] and
since then has been extensively used in a vast number of works on portfolio selection, see,
e.g. [22, 34, 43, 47, 48, 49]. Alternatively, an investor may minimize risk or regret of a port-
folio without a constraint on the expected return. In this case, he/she may measure portfolio
risk by coherent risk measures [1, 2, 11, 12, 15, 23, 57]. Optimization of an error measure
arises, for example, in linear regression, where a random target is approximated by a linear
combination of given r.v.’s (explanatory variables), and regression coefficients are found by
minimizing the error measure of the difference between the target and its approximation [50].

In the above discussion, returns of assets in a portfolio problem and the target and the
explanatory variables in a generalized linear regression are all assumed to be known r.v.’s.
However, this is rarely, if ever, the case in practice. Distributions of those r.v.’s are estimated
from data and as such they will change with the arrival of any new data and/or with the choice
of different time intervals and a different time window. How are sensitive then optimal val-
ues of measures D , E , R and V in corresponding optimization problems to disturbances in
underlying random parameters? Estimation errors in means and variance-covariance matrix
of asset returns was already acknowledged by Markowitz [37] and addressed further in sub-
sequent works of Kalymon [30] and Frankfurter et al. [16]. Remarkably, Kallberg & Ziemba
[29] showed that the optimal solution of the mean-variance portfolio optimization was con-
siderably more sensitive to errors in mean returns than to errors in the variance-covariance
matrix. Also, Best & Grauer [5] showed that a quite small change in the mean return of just
one asset can “drive half the securities from the portfolio.” However, they observed that the
expected value and variance of the optimal portfolio return were much more stable. Guigues
[25] obtained upper bounds for a possible variation of the variance of the optimal portfolio
return in terms of variations in the mean returns and variance-covariance matrix. Grechuk &
Zabarankin [24] analyzed sensitivity of the mean-variance optimal portfolio return to changes
in the weights assigned to historical data.

Much less is known about sensitivity of optimal values of general deviation measures
to disturbances in assets’ returns in portfolio selection. Assuming assets’ rates of return to
be normally distributed, Simaan [53] showed that compared to the classical mean-variance
model, the mean absolute deviation model is more sensitive to estimation errors in the normal
distribution parameters. Under the same assumption of normally distributed rates of return
and imposing no constraint on portfolio expected return, Kondor et al. [33] concluded that op-
timal portfolios that minimize standard deviation, mean absolute deviation, CVaR deviation,
and maximum loss deviation are quite sensitive to the noise in the normal distribution parame-
ters. Kandasamy [31] analyzed sensitivity of optimal portfolios that minimize a risk/deviation
measure, e.g. CVaR and semivariance, through numerical experiments only.

1Given a random (nonconstant) payoff X with expected value E[X ], risk aversion is the preference E[X ] � X .
This yields R(E[X ])<R(X), which with (1) and R(E[X ]) =E[−E[X ]]+D(E[X ])≡E[−X ] simplifies to D(X)> 0.
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In the mathematical literature, the study of how the optimal value in an optimization
problem changes for perturbed parameters is known as sensitivity analysis, parametric pro-
gramming, and perturbation analysis, and goes back at least to Hoffman & Jacobs [27],
Orchard-Hays [39], and Williams [55], who studied this question for linear programs. One
of the standard approaches, which is attributed arguably to Danskin [10], is to derive upper
and lower estimates for the directional derivatives of an optimal value function with respect
to parameters. For other approaches, e.g. second-order estimates, and for a comprehensive
up-to-date survey, see Bonnans & Shapiro [7]. In the economics and finance literature, a
formula for the derivative of the optimal value of the objective function in an optimization
problem with respect to problem parameters is given by envelope theorem. For an expected
utility, the corresponding formula is known as Roy’s identity [54, Ex. 4, p. 123], while in the
context of production economy, a related result is known as Hotelling’s lemma [54, Ex. 4, p.
108]. Milgrom & Segal [38] derived the envelope theorem for arbitrary choice sets.

The contribution and organization of this work are as follows. Section 2 reviews the
axiomatic framework for measures of deviation, error, risk and regret related by (1). Section 3
derives the envelope theorem for an optimization problem whose objective and constraints
involve only positively homogeneous convex functionals, and also extends sensitivity analysis
to the case when perturbations are unknown—robust sensitivity analysis. It presents explicit
estimates for the absolute value of the difference of the optimal values of the initial and
perturbed optimization problems in terms of a norm of the perturbation. Section 4 specializes
the theorems to generalized linear regression and to mean-deviation and mean-risk portfolio
problems. Section 5 concludes the work. The appendix presents some technical results.

2. Positively homogeneous convex functionals.

2.1. Error, deviation, risk, and regret. Let (Ω,M ,P) be a probability space, where Ω

is the set of future states ω , M is a field of subsets of Ω, and P is a probability measure on
(Ω,M ). Here, a random variable (r.v.) is an element of L 2(Ω) = L 2(Ω,M ,P). Let FX (x)
and qX (α) = inf{x|FX (x) > α} be the cumulative distribution function (CDF) and quantile
function of an r.v. X , respectively.

DEFINITION 2.1 (basic functionals). A basic functional is any functional F : L 2(Ω)→
(−∞,+∞] satisfying (see [21])

(F1) F (λX) = λF (X) for all X and all λ > 0 (here 0∞ = 0) (positive homogeneity),
(F2) F (X +Y )6 F (X)+F (Y ) for all X and Y (subadditivity),
(F3) {X ∈L 2(Ω)

∣∣F (X)6 c} is closed in L 2(Ω) for all c < ∞ (lower semicontinuity).

Measures of error, deviation, risk, and regret, which form a fundamental quadrangle [44],
are subclasses of basic functionals. Namely, a basic functional is

• An error measure E : L 2(Ω)→ [0,+∞] if it satisfies
(E4) E (X)> 0 for nonzero X with E (C)< ∞ for constant C [50].
• A deviation measure D : L 2(Ω)→ [0,+∞] if it satisfies

(D4) D(X) = 0 for constant X , and D(X)> 0 otherwise (nonnegativity) [45, 46].
F1, F2, and D4 imply that D(X +C) = D(X) for all constants C (constant transla-
tion invariance) [46].

• A risk measure R : L 2(Ω)→ (−∞,+∞] if it satisfies
(R4) R(C) =−C for constants C.
With F2, R4 is equivalent to R(X +C) = R(X)−C for all constants C [46]. R is
called coherent [1], if satisfies F1–F3, R4, and (R5): R(X)6 0 for all X > 0. With
F2, R5 is equivalent to R(X) 6 R(Y ) when X > Y . R is called averse [46], if it
satisfies F1–F3, R4, and (R6): R(X)> E[−X ] for all non-constant X .

• A regret measure V : L 2(Ω)→ (−∞,+∞] if it satisfies
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(V4) V (X)> E[−X ] for all non-zero X (see [44]).
V4 is similar to R6, but it holds for every non-zero X , not just for non-constant one.

A basic functional F is law invariant if F (X) = F (Y ) whenever X and Y have the
same distribution. Every law invariant R, which can be defined on an atomless probability
space, i.e. for which there exists an r.v. with a continuous CDF, except only R(X) =−E[X ],
is averse [20, Proposition 8].

Relationships (1) show that E is a “generator” of a quadrangle. In fact, given an error
measure E , a deviation measure D can also be obtained from penalties relative to expectation:

(2) D(X) = E (X−E[X ]),

and the second and third relationships in (1) still hold with such D , see [46]. For example,
for the L p norm E (X) = ‖X‖p ≡ E[|X |p]1/p with p > 1, (2) and (1) yield D(X) = ‖X −
E[X ]‖p, R(X) = ‖X −E[X ]‖p−E[X ] and V (X) = ‖X‖p−E[X ]. In particular, for p = 2,
E (X) = ‖X‖2 is mean-square error and D(X) = ‖X −E[X ]‖2 = σ(X) standard deviation,
whereas for p= 1, E (X)= ‖X‖1 is mean absolute error and D(X)= ‖X−E[X ]‖1 =MAD(X)
mean absolute deviation. The functionals R(X) = E[−X ] +λσ(X) and R(X) = E[−X ] +
λMAD(X), popular in finance literature [37, 34], are averse measures of risk for any λ > 0,
and the latter is also coherent if λ 6 1/2. However, E (X) = ‖X‖p and D(X) = ‖X−E[X ]‖p
treat ups and downs of X equally, which is not a desirable property in finance applications.

A non-symmetric generalization of E (X) = ‖X‖p is given by [50, (2.3)]

(3) Ea,b,p(X) = ‖a [X ]++b [X ]−‖p with a > 0, b > 0, and p ∈ [1,∞],

where [X ]± = max{0,±X}. For example, E1,1,p(X) = ‖X‖p, whereas E0,1,p(X −E[X ]) and
E1,0,p(X −E[X ]) are deviation measures of semi-L p type, e.g. E0,1,2(X −E[X ]) = σ−(X)
is the standard lower semideviation. Then R(X) = E[−X ] + λ Ea,b,p(X −E[X ]) with λ >
0 is an averse risk measure, which is coherent at least when a = 0, b = 1 and λ = 1 or
when a+ b 6 1, p = 1 and λ = 1 [46, Theorem 3]. For any α ∈ (0,1), E1,1/α−1,1 is known
as the Koenker-Bassett error measure used in quantile regression [32, 44]. In this case, R
and D determined through (1) are conditional value-at-risk (CVaR) and CVaR deviation,
respectively [50, Example 2.4]:

(4) CVaRα(X)≡− 1
α

∫
α

0
qX (s)ds, CVaR∆

α(X)≡ E[X ]− 1
α

∫
α

0
qX (s)ds,

which can be generalized into mixed CVaR and mixed CVaR-deviation, respectively [50,
Example 2.4]:

(5) R(X) =
∫ 1

0
CVaRα(X)dλ (α), D(X) =

∫ 1

0
CVaR∆

α(X)dλ (α)

with some λ (α)> 0 such that
∫ 1

0 dλ (α) = 1. Note that mixed CVaR is a coherent risk mea-
sure [46]. Mixed CVaR and mixed CVaR-deviation are used in inverse portfolio optimization
[22, 23], where λ (α) is recovered from investor’s presumably optimal portfolios. For other
examples of E , D , R, and V , see [44, 45, 46, 50].

2.2. Dual representation and differentiability. Every basic functional F (X) can be
represented by [21, Proposition 3.1]

(6) F (X) = sup
Y∈Y

E[XY ], Y ⊂L 2(Ω),
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where Y will be called the dual set of F and can be recovered by

(7) Y =
{

Y ∈L 2(Ω)
∣∣ E[XY ]6 F (X) for all X ∈L 2(Ω)

}
.

Relations (6) and (7) establish a one-to-one correspondence between basic functionals F :
L 2(Ω)→ (−∞,+∞] and nonempty closed convex sets in L 2(Ω).

This work is confined to basic functionals, which are continuous everywhere on L 2(Ω).
A basic functional F is continuous if and only if it is finite: F (X) < ∞ for all X ∈L 2(Ω)
[19, Proposition 3.12], and also it is continuous if and only if its dual set Y is bounded
[46, Theorem 1]2. Since L 2(Ω) is a reflexive Banach space, this implies that Y is weakly
compact by Kakutani’s theorem [13, Theorem 3.31], which means that the supremum in (6)
is always attained [28]. Consequently, for any X ∈ L 2(Ω), the subdifferential ∂F (X) =
argmaxY∈Y E[XY ] is nonempty closed convex set, see also [48] and [52, Corollary 3.1].

The representation (6) determines
• An error measure, E , if and only if Y is a nonempty closed convex set such that

(i) |E[Y ]|6 c for some c < ∞ and every Y ∈ Y and (ii) E[XY ]> 0 for some Y ∈ Y
and every nonzero X ∈L 2(Ω).3

• A deviation measure, D , if and only if Y is a non-empty closed convex set such that
(i) E[Y ] = 0 for all Y ∈Y and (ii) E[XY ]> 0 for some Y ∈Y and every nonconstant
X ∈L 2(Ω).

• A risk measure, R, if and only if Y is a nonempty closed convex set such that
(i) E[Y ] = −1 for all Y ∈ Y . R is averse if Y satisfies (i) and E[XY ]> E[−X ] for
some Y ∈ Y and every nonconstant X ∈L 2(Ω), and R is coherent if Y satisfies
(i) and Y 6 0 for all Y ∈ Y .

• A regret measure, V , if and only if Y is a nonempty closed convex set such that
E[XY ]> E[−X ] for some Y ∈ Y and every nonzero X ∈L 2(Ω).

For D and R, QD = 1−Y and QR = −Y are called risk envelopes of D and R,
respectively, whereas QD(X) = 1−∂D(X) and QR(X) =−∂R(X) are called risk identifier
sets of X with respect to D and R, respectively, and Q ∈QD(X) and Q ∈QR(X) are called
risk identifiers of X for D and R [1, 46, 48]. If D and R are related by (1), then QD = QR.

For σ , σ−, MAD and CVaR∆
α and for any non-constant X , risk identifier sets are given

by [48, (9), (11), (16), (31)], which yield the subdifferentials ∂D(X) = 1−QD(X):

σ(X) = ‖X−E[X ]‖2, ∂σ(X) =
{

σ(X)−1(X−E[X ])
}
,(8a)

σ−(X) = ‖Z‖2, Z = [X−E[X ]]−, ∂σ−(X) =
{
−σ−(X)−1(Z−E[Z])

}
,(8b)

MAD(X) = E[|X−E[X ]|], ∂MAD(X) = {Z−E[Z] |Z ∈ sign[X−E[X ]]},(8c)

where signY (ω) =±1 when Y (ω)≷ 0 and signY (ω) ∈ [−1,1] when Y (ω) = 0,
(9)

D(X) = CVaR∆
α(X), Y ∈ ∂CVaR∆

α(X)⇐⇒

 Y ∈ [1−α−1,1], E[Y ] = 0,
Y (ω) = 1 when X(ω)> qX (α),
Y (ω) = 1−α−1 when X(ω)< qX (α).

For deviation measures Dp(X) = ‖X−E[X ]‖p and D−(X) = ‖[X−E[X ]]−‖p with p ∈ (1,∞)
and for any non-constant X with Dp(X)<∞ and D−(X)<∞, the corresponding risk identifier

2[19, Proposition 3.12] and [46, Theorem 1] are formulated for deviation measures, but property (D4) is not
used in the proofs.

3(i)⇐⇒F (C)< ∞ for constants C, and (ii)⇐⇒ E (X)> 0 for nonzero X .
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sets Qp(X) and Q−(X) are singletons4 (see [14]), and so are the subdifferentials:

∂Dp(X) =−Dp(X)1−p (E[Z]−Z) , Z = |X−E[X ]|p−1 sign[X−E[X ]],(10a)

∂D−(X) = D−(X)1−p (E[Z]−Z) , Z = [X−E[X ]]p−1
− .(10b)

For mixed CVaR-deviation in (5) and for a continuous r.v. X , the subdifferential is a singleton
{Y} such that qY (α) = 1−

∫
[α,1) p−1dλ (p), α ∈ (0,1), and Y is comonotone5 with X . For an

arbitrary r.v. X , it is given by Proposition 6.2 in [8].
A basic functional F , being convex, has one-sided derivatives in any direction, and

(11)
∂+

∂ t
F (X + tZ) = sup

Y∈∂F (X+tZ)
E[Y Z],

for every X ,Z ∈L 2(Ω), see Theorem 2.1 in [9], which is proved for risk measures, but its
proof uses only F1–F3. There exists a two-sided derivative in (11) for t = 0 in any direction
if and only if ∂F (X) is a singleton [9].

3. Envelope theorem.

3.1. Ordinary envelope theorem. The ordinary envelope theorem [54, Theorem 3.10.4]
deals with the optimization problem

(12) υ(ξξξ ) = max f (x,ξξξ ) subject to g(x,ξξξ )6 0,

where x = (x1, . . . ,xn)
>, ξξξ = (ξ1, . . . ,ξl)

> is the vector of real parameters, g = (g1, . . . ,gm)
>,

and υ(ξξξ ) is a value function. It states that if
(a) For given ξξξ , problem (12) has a unique solution x∗ = x∗(ξξξ );
(b) There exists an open ball Bε(ξξξ ) and δ > 0 such that for every ξ̂ξξ ∈Bε(ξξξ ), problem

(12) has at least one solution x̂ ∈Bδ (x∗);
(c) f , g1, . . . ,gm are continuously differentiable functions in some open ball around

(x∗(ξξξ ),ξξξ ); and
(d) The gradients ∇xg j(x∗(ξξξ ),ξξξ ) corresponding to those constraints that are active for

given ξξξ are linearly independent (constraint qualification condition),
then υ(ξξξ ) is differentiable at ξξξ , and

(13) ∇υ(ξξξ ) = ∇ξξξ L (x,ξξξ )
∣∣
x=x∗(ξξξ ), λλλ=λλλ

∗(ξξξ )
,

where L (x,ξξξ ) = f (x,ξξξ )− λλλ
>g(x,ξξξ ) is the Lagrangian of (12), λλλ = (λ1, . . . ,λm)

> is the
vector of Lagrange multipliers, and λλλ

∗(ξξξ ) is the value of λλλ at optimality.

If ξξξ is perturbed by t h with ‖h‖E ≡
√

∑
n
i=1E[h2

i ] = 1 and some small t ∈ R then υ(ξξξ +

t h) can be estimated by

υ(ξξξ + t h) = υ(ξξξ )+ t h>∇υ(ξξξ )+o(t) = υ(ξξξ )+ t h> ∇ξξξ L (x,ξξξ )
∣∣
x=x∗(ξξξ ),λλλ=λλλ

∗(ξξξ )
+o(t) .

3.2. Envelope theorem for optimization problems with basic functionals. Central to
this work is the optimization problem

(14) υ(ξξξ ) = min
x∈X0

F0
(
ξξξ
>x
)

subject to F j
(
ξξξ
>x
)
6C j, j = 1, . . . ,k,

4For any choice of Z ∈ sign[X−E[X ]], the r.v. Z|X−E[X ]|p−1 is the same.
5Two r.v.’s X : Ω→ R and Y : Ω→ R are said to be comonotone, if there exists a set A⊂Ω such that P[A] = 1

and (X(ω1)−X(ω2))(Y (ω1)−Y (ω2))> 0 for all ω1,ω2 ∈ A.
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and its perturbed version

(15) φ(t) = min
x∈X0

F0
(
(ξξξ + t h)>x

)
subject to F j

(
(ξξξ + t h)>x

)
6C j, j = 1, . . . ,k,

where x=(x1, . . . ,xn)
> ∈Rn is the vector of decision variables, ξξξ =(ξ1, . . . ,ξn)

> ∈ [L 2(Ω)]n

is the vector of random parameters, h = (h1, . . . ,hn)
> ∈ [L 2(Ω)]n is the vector of random

disturbances of ξξξ , F0, . . . ,Fk are basic functionals, (C1, . . . ,Ck) ∈ Rk, X0 ⊆ Rn is a closed
convex set, and t ∈ [−t0, t0] for some t0 > 0.

Problem (15) will be studied under the following four assumptions:
(A1) No-redundancy: there is no t ∈ [−t0, t0] and x 6= 0 such that (ξξξ + t h)>x = 0, i.e., there
is no i ∈ {1, . . . ,n} such that ξi + thi is a linear combination of ξ j + th j for j 6= i.
(A2) Slater’s constraint qualification condition: there exists x̂ ∈ X0 such that

F j
(
(ξξξ + t h)>x̂

)
<C j, j = 1, . . . ,k, t ∈ [−t0, t0].

(A3) F0(X) < ∞, . . . ,Fk(X) < ∞ for all X ∈L 2(Ω). This implies that F j : L 2(Ω)→ R,
j = 0, . . . ,k, are continuous functionals [42, Corollary 8B].
(A4) For every t ∈ [−t0, t0], there is a constant Ct ∈ R such that the set

(16) Xt = {x ∈ X0 |F0
(
(ξξξ + t h)>x

)
6Ct , F j

(
(ξξξ + t h)>x

)
6C j, j = 1, . . . ,k},

is non-empty and bounded. If Xt is empty for all Ct ∈R, then the feasible set in (15) is empty.
The condition that Xt is bounded for some Ct guarantees that it is a compact subset of Rn, and
minimum in (15) exists by Weierstrass extreme value theorem [6].

Assumptions A1–A4 imply the following four properties of (15).
(P1) A1 implies that ξi + thi 6= 0 for all i and all t ∈ [−t0, t0] and that there could be at most
one i such that ξi + thi ∈ R. For such i (if exists), it is assumed that ξi ∈ R and hi ∈ R, i.e.,
variation of a constant is a constant.
(P2) A3 implies that for every j = 0, . . . ,k and every fixed ξξξ ,h and t, F j ((ξξξ + t h)>x) is
a convex function of x, is finite everywhere on Rn, and, therefore, is continuous, see [41,
Theorem 10.1]. By the same argument, F j ((ξξξ + t h)>x) is continuous in t for every fixed x.
(P3) For every fixed t ∈ [−t0, t0], (15) can be rewritten as minx∈Xt F0 ((ξξξ + t h)>x) with Xt
given by (16). Since F0(·) is convex and continuous by A3, and Xt is a closed convex set,
which is also non-empty and bounded by A4, an optimal solution of (15) always exists, and

(17) X ∗(t) = argmin
x∈Xt

F0
(
(ξξξ + t h)>x

)
is a non-empty, closed, convex, and bounded set.
(P4) Since F j ((ξξξ + t h)>x), j = 0, . . . ,k, are continuous convex functions of x, the subdiffer-
entials ∂xF j, j = 0, . . . ,k, with respect to x are non-empty convex compact sets. A2 implies
that x∗ ∈ X0 is a solution to (15) if and only if there exists λ ∗ ∈ (R+)k such that

(18) 0 ∈ ∂xF0
(
(ξξξ + t h)>x∗

)
+∑

k
j=1 λ

∗
j ∂xF j

(
(ξξξ + t h)>x∗

)
+NX0(x

∗)

and

(19) λ
∗
j (F j

(
(ξξξ + t h)>x

)
−C j) = 0, j = 1, . . . ,k,

where NX0(x
∗) = {y ∈ Rn |yT (x− x∗) 6 0 ∀x ∈ X0} is the normal cone to X0 at x∗, see [51,

Theorem 3.34]. With the chain rule for subdifferentials [26, Corollary 16]

∂xF j
(
(ξξξ + t h)>x∗

)
= {E[Yj(ξξξ + t h)] |Yj ∈ ∂F j

(
(ξξξ + t h)>x∗

)
}, j = 0, . . . ,k,
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so that condition (18) is equivalent to the existence of Y ∗j ∈ ∂F j ((ξξξ + t h)>x∗), j = 0, . . . ,k,
and of Lagrange multipliers λ ∗ ∈ (R+)k such that

(20) 0 ∈ E
[(

Y ∗0 +∑
k
j=1 λ

∗
j Y ∗j

)
(ξξξ + t h)

]
+NX0(x

∗).

Let

(21) Y ∗(t) =
{

Y ∗0 +∑
k
j=1 λ

∗
j Y ∗j

∣∣∣λ ∗j and Y ∗j satisfy (20) and (19)
}
.

Let X ∗ =X ∗(0) and Y ∗ =Y ∗(0) be the set of optimal solutions (17) and correspond-
ing subdifferentials (21), respectively, for the unperturbed problem (14).

THEOREM 3.1. Under A1–A4, φ in (15) is continuous and left and right differentiable
at 0 with

(22)
φ
′(0+) = min

x∈X ∗
max

Y∈Y ∗
E
[
Y h>x

]
= max

Y∈Y ∗
min

x∈X ∗
E
[
Y h>x

]
,

φ
′(0−) = max

x∈X ∗
min

Y∈Y ∗
E
[
Y h>x

]
= min

Y∈Y ∗
max

x∈X ∗
E
[
Y h>x

]
.

Proof. By [51, Theorem 4.7], (18) and (19) hold if and only if (x∗,λ ∗) is a saddle point
of the Lagrangian

(23) L (x,λ , t) = F0
(
(ξξξ + t h)>x

)
+∑

k
j=1 λ j(F j

(
(ξξξ + t h)>x

)
−C j),

i.e., L (x∗,λ , t)6 L (x∗,λ ∗, t)6 L (x,λ ∗, t) for all x ∈ X0, λ ∈ (R+)k, and t ∈ [−t0, t0]. By
[51, Theorem 4.8], problem (15) can then be recast in the form

(24) φ(t) = max
λ∈(R+)k

inf
x∈X0

L (x,λ , t) = min
x∈X0

sup
λ∈(R+)k

L (x,λ , t).

The dual characterization (6) of F0, . . . ,Fk through the corresponding dual sets Y0, . . . ,
Yk yields

(25) φ(t) = min
x∈X0

sup
Y j∈Y j , λ∈(R+)k

(
E
[(

Y0 +∑
k
j=1 λ jYj

) (
(ξξξ + t h)>x

)]
−∑

k
j=1 λ jC j

)
︸ ︷︷ ︸

= f (x,Y0,...,Yk,λ ,t)

.

Since f in (25) and

(26)
∂ f
∂ t

= E
[(

Y0 +∑
k
j=1 λ jYj

)
h>x
]

are continuous functions of all their arguments, (22) follows6 from Theorem 5 in [38].

COROLLARY 3.2. If in Theorem 3.1, the sets X ∗= {x∗} and Y ∗= {Y ∗} are singletons,
then φ ′(0+) = φ ′(0−), and (22) simplifies to

(27) φ
′(0) =

∂

∂ t
L (x,λ , t)

∣∣∣∣
x=x∗, λλλ=λλλ

∗, t=0
= E

[
Y ∗h>x∗

]
,

where L (x,λ , t) is defined by (23). Formula (27) is a random-parameter version of the
ordinary envelope relationship (13).

6Theorem 5 in [38] requires X ∗(t)×Y ∗(t) 6= /0 for t ∈ [0,1] and feasible sets for x, Y and λ to be compact:
these technicalities are addressed in Appendix A.
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COROLLARY 3.3. The problem

(28) υ(ξξξ ) = min
x∈X0

F0
(
ξξξ
>x
)
, X0 = {x ∈ Rn|Ax > b},

where A and b are given matrix and vector, respectively, is a particular case of (14) and is
frequently encountered in various applications, e.g. in portfolio selection [47, 48]. Let h be
defined as in Theorem 3.1, then φ(t) = υ(ξξξ + t h) is a particular case of (15), so that φ ′(0±)
is determined by (22) with X ∗ and Y ∗ given by

(29) (X ∗,Y ∗) =
{
(x∗,Y )

∣∣∣Y ∈ ∂F0
(
ξξξ
>x∗
)
, E [Y ξξξ ] = A>z, z > 0, z>(Ax∗−b) = 0

}
.

For every Y ∈ Y ∗, there exists z such that E [Y ξξξ ] = A>z, z > 0 and z>(Ax∗−b) = 0. This
implies that E

[
Y ξξξ

>x∗
]
= z>Ax∗, or, equivalently, that F0

(
ξξξ
>x∗
)
= b>z. In particular, when

A is a row a> and b is a scalar b 6= 0, z is the scalar z = b−1F0
(
ξξξ
>x∗
)

provided that z > 0,
and in this case,

(30) (X ∗,Y ∗) =
{
(x∗,Y )

∣∣∣Y ∈ ∂F0
(
ξξξ
>x∗
)
, E [Y ξξξ ] = b−1F0

(
ξξξ
>x∗
)
a
}
.

3.3. Robust optimization with unknown variation. In applications, the variation h in
(15) in rarely known. Let ξ̃ξξ be perturbation of ξξξ , and suppose that only the magnitude of
ξ̃ξξ −ξξξ :

δ = ‖ξ̃ξξ −ξξξ‖E ≡
√

∑
n
i=1E[(ξ̃i−ξi)2]

can be reliably estimated. The next theorem estimates then υ(ξ̃ξξ )−υ(ξξξ ) in terms of δ .

THEOREM 3.4. Let v = υ(ξξξ ) and ṽ = υ(ξ̃ξξ ) with υ defined in (14). Then under assump-
tions A1–A4,

(31)
ṽ− v 6 min

x∈X ∗
‖x‖Rn max

Y∈Y ∗

√
E [Y 2] ·δ +o

(
δ
)
,

v− ṽ 6 max
x∈X ∗

‖x‖Rn min
Y∈Y ∗

√
E [Y 2] ·δ +o

(
δ
)
,

where X ∗ and Y ∗ are defined in Theorem 3.1 for (14) with ξξξ . In particular, if X ∗ = {x∗}
and Y ∗ = {Y ∗} are singletons, then

(32) |ṽ− v|6 ‖x∗‖Rn

√
E [(Y ∗)2] ·δ +o

(
δ
)
.

Proof. Let h = (ξ̃ξξ − ξξξ )/δ , so that ‖h‖E =
√

∑
n
i=1E[h2

i ] = 1. With ‖x‖Rn =
√

∑
n
i=1 x2

i ,
the Cauchy-Schwarz inequality implies that

E
[
Y h>x

]
6 ∑

n
i=1

√
E[Y 2x2

i ]
√
E[h2

i ]6
√
E [Y 2]∑

n
i=1 x2

i ‖h‖E =
√

E [Y 2]‖x‖Rn ,

and Theorem 3.1 yields

φ
′(0+) = min

x∈X ∗
max

Y∈Y ∗
E
[
Y h>x

]
6 min

x∈X ∗
‖x‖Rn max

Y∈Y ∗

√
E [Y 2],

φ
′(0+) =− max

x∈X ∗
min

Y∈Y ∗
−E
[
Y h>x

]
>− max

x∈X ∗
‖x‖Rn min

Y∈Y ∗

√
E [Y 2].
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Consequently, for t > 0,

φ(t)−φ(0) = tφ ′(0+)+o
(
t
)
6 min

x∈X ∗
‖x‖Rn max

Y∈Y ∗

√
E [Y 2] |t|+o

(
t
)
,

φ(0)−φ(t) =−tφ ′(0+)+o
(
t
)
6 max

x∈X ∗
‖x‖Rn min

Y∈Y ∗

√
E [Y 2] |t|+o

(
t
)
,

which with t = δ yields (31).

3.4. Reinterpretation of sensitivity. When ξξξ is perturbed/updated, the true question is
not, in fact, about the change in the optimal value of F0 in (15), i.e. about the difference
φ(t)− φ(0), but whether the original solution x∗ of (14) should be recomputed. In other
words, how far is x∗ from the optimality in (15)? This can be assessed by the difference

(33) ψ(t) = F0
(
(ξξξ + t h)>x∗

)
−φ(t)+ max

λ ∗∈Λ(x∗)
∑

k
j=1 λ

∗
j (F j

(
(ξξξ + t h)>x∗

)
−C j),

where F0 ((ξξξ + t h)>x∗)−φ(t) and λ ∗j (F j ((ξξξ + t h)>x∗)−C j) are penalties for the objective
function and constraint violation, respectively, and Λ(x∗) is the set of Lagrange multipliers
λ ∗ satisfying the optimality conditions (19) and (20) for t = 0 and x = x∗. In this case, (11)
and (22) imply that

(34) ψ
′(0+) = max

λ ∗∈Λ(x∗)
max

Y j∈∂F j(ξξξ
>x∗)

E[(Y0 +∑
k
j=1 λ

∗
j Yj)h>x∗]− min

x∈X ∗
max

Y∈Y ∗
E
[
Y h>x

]
.

If the sets X ∗ = {x∗} and ∂F j(ξξξ
>x∗) = {Y ∗j }, j = 0,1, . . . ,k, are all singletons, then

(34) yields ψ ′(0) = 0, which also follows from (27). For twice differentiable ψ(t), ψ(t) =
O(t2), which indicates that for small t, x∗ can be kept as a near optimal solution for (15).

3.5. Extensions and generalizations. Theorem 3.1 relies on assumptions A1, A2, and
A4 which do not allow problem (15) to de-generate in certain senses. It can be extended in
several ways: (i) relaxing A3, i.e., establishing the envelope theorem for not necessarily finite
basic functionals on L 2(Ω), (ii) replacing L 2(Ω) by L p(Ω), 1 6 p 6 ∞, and (iii) relaxing
F1, i.e., establishing the envelope theorem for arbitrary convex functionals.

In (i), the envelope theorem cannot be established for all such functionals. For example,
F0(X) =− inf X is a basic functional on L 2(Ω), which is a coherent risk measure. Its dual
set (7) is given by Y =

{
Y ∈ L 2(Ω)

∣∣E[Y ] = −1
}

. This set is unbounded, and, for any
bounded continuous r.v. X , e.g. for X being uniformly distributed on (0,1), the supremum
in (6) is not attained, so that ∂F0(X) = /0, and (22) does not hold. Of course, failure of (22)
does not imply that the directional derivatives φ ′(0±) do not exist. However, Appendix B
presents an optimization problem with F0(X) =− inf X , where φ ′(0+) does not even exist.

In (ii), Theorem 3.1 does not hold all finite basic functionals F on L p(Ω), p ∈ [1,∞].
By A3, F is finite and hence continuous [42, Corollary 8B], whereas continuity of F im-
plies that the dual set Y in (6) is bounded [46, Theorem 1]. For p = 2, L p(Ω) is a re-
flexive Banach space, in which case, bounded Y is weakly compact [13, Theorem 3.31],
so that the supremum in (6) is always attained [28] and ∂F (X) 6= /0. For p 6= 2, L p(Ω)
is not reflexive, and the above argument does not hold. In fact, F0(X) = − inf X , defined
on L ∞(Ω), is a finite and continuous basic functional that can be represented by (6) with
Y =

{
Y ∈L 1(Ω)

∣∣E[Y ] = −1
}

, but the supremum in (6) is not attained. Thus, at least in
the case of p = ∞, F requires additional conditions, such as “continuity from below” [15,
Corollary 4.37], to guarantee that the supremum in (6) is attained.

For convex functionals on L 2(Ω), which are finite and continuous but not positively
homogeneous, the dual characterization (6) does not hold and Theorem 5 in [38] does not
seem to be directly applicable. Extending Theorem 3.1 for this case calls for a separate work.
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4. Optimization with error, deviation, risk, and regret measures.

4.1. Generalized linear regression. The generalized linear regression introduced in
[50] seeks to approximate an r.v. η by a linear combination of given r.v.’s ξ1, . . . ,ξn. It min-
imizes an error measure E : L 2(Ω)→ [0,∞] of the approximation error η − c0−∑

n
k=1 ck ξk

with respect to regression coefficients c0,c1, . . . ,cn:

(35) min
c0∈R, c∈Rn

E
(
η− c0−ξξξ

>c
)
,

where ξξξ = (ξ1, . . . ,ξn)
> and c = (c1, . . . ,cn)

>.
The error decomposition theorem in [50] states that (35) is equivalent to minimizing the

deviation measure D projected from E with respect to c:

(36) υE (ξξξ ,η) = min
c∈Rn

D
(
η−ξξξ

>c
)
,

and then setting optimal c∗0 to the statistic S of η−ξξξ
>c∗ associated with E , i.e.

c∗0 ∈S
(
η−ξξξ

>c∗
)
≡ argmin

c0∈R
E
(
η− c0−ξξξ

>c∗
)
.

By [50, Theorem 4.1], c∗ solves (36) if and only if there exists a Y ∈ ∂D
(
η−ξξξ

>c∗
)

such that
E[Y ξξξ ] = 0, i.e. the optimal solution set C ∗ and corresponding subdifferntial Y ∗ are given by

(37) (C ∗,Y ∗) =
{
(c∗,Y ) | Y ∈ ∂D

(
η−ξξξ

>c∗
)
, E
[
Y ξξξ
]
= 0
}
.

Let ξξξ + t h = (ξ1 + t h1, . . . ,ξn + t hn) and η + t h0 be perturbed ξξξ and η , respectively,
where h0 ∈L 2(Ω), h ∈ (L 2(Ω))n, and t ∈ [−t0, t0] for some t0 > 0, and let

(38) φE (t) = υE (ξξξ + t h,η + t h0).

Then Theorem 3.1 yields

(39) φ
′
E (0+) = min

c∈C ∗
max

Y∈Y ∗
E
[
Y
(
h0−h>c

)]
= max

Y∈Y ∗
min
c∈C ∗

E
[
Y
(
h0−h>c

)]
.

EXAMPLE 4.1 (quadratic error). Problem (35) with E (X) = ‖X‖2 is equivalent to (36)
with D = σ , and (39) with (8a) implies that

φ
′
E (0+) = E

[
η−ξξξ

>c∗−E[η−ξξξ
>c∗]

σ(η−ξξξ
>c∗)

(
h0−h>c∗

)]
=

cov(η−ξξξ
>c∗,h0−h>c∗)

σ(η−ξξξ
>c∗)

,

where c∗ is the (unique) optimal solution to (36) and where cov denotes covariance.

EXAMPLE 4.2 (Koenker-Bassett error measure [32]). Problem (35) with E = E1,1/α−1,1,
α ∈ (0,1), is equivalent to (36) with D = CVaR∆

α . If (36) has a unique solution c∗ such that
ρ∗ = η−ξξξ

>c∗ satisfies P[ρ∗ = qρ∗(α)] = 0, then (39) with (9) implies that

(40) φ
′
E (0+) = E[h0−h>c∗]−E[h0−h>c∗ |ρ∗ < qρ∗(α)].

For (35) with E = ‖X‖1 ≡ E1,1,1 (median regression), φ ′E (0+) is given by (40) with α = 1/2.

Function (33) shows how far the solution c∗ of (36) is from the optimality in (38):

ψE (t) = D
(
(η + t h0)− (ξξξ + t h)>c∗

)
−φE (t),

and (34) implies that

(41) ψ
′
E (0+) = max

Y∈∂D
(

η−ξξξ
>c∗
)E[Y (h0−h>c∗

)]
− min

c∈C ∗
max

Y∈Y ∗
E
[
Y
(
h0−h>c

)]
.

For example, for D = σ , ψ ′E (0+) = ψ ′E (0−) = 0.
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EXAMPLE 4.3 (Koenker-Bassett error measure: non-singleton case). In (38) with D =
CVaR∆

1/3, let Ω= {ω1,ω2,ω3}, P[ωi] = 1/3, i= 1,2,3, η =(η(ω1),η(ω2),η(ω3))= (0,1,3),
n = 1, ξ1 = (−1,0,1), h0 = (0,0,0), h1 = (0,−1,1). Then by evaluating directly, φE (t) =
1
3 −

2t
1+2t for t ∈ [0,3/4], so that φ ′E (0+) = −2. For (36), C ∗ = [1,2] and Y ∗ = {Y ∗} =

{(1,−2,1)}, and (39) reduces to minc1∈[1,2](−c1) = −2. Now, let c∗1 = 1. Then by evaluat-
ing directly, ψE (t) = 1

3 −φE (t) = 2t
1+2t , and ψ ′E (0+) = 2. Also, ∂D

(
η − ξξξ

>c∗
)
= {Y |Y =

(y,−1− y,1), y ∈ [−2,1]}, and (41) reduces to ψ ′E (0+) = maxy∈[−2,1]
−y−2

3 − (−2) = 2.

In application to (36), Theorem 3.4 yields the following corollary.

COROLLARY 4.1 (robust linear regression). Let v = υE (ξξξ ,η) and ṽ = υE (ξ̃ξξ , η̃), where
υE is defined in (36) with a continuous deviation measure D . Then (31) holds with X ∗ =

{x = (1,c), c ∈ C ∗}, where C ∗ and Y ∗ are given by (37), δ =

√
E[(η̃−η)2]+‖ξ̃ξξ −ξξξ‖2

E,
and where E

[
Y 2
]

simplifies to σ(Y ). A less precise but easier to compute estimate is given by

(42) |ṽ− v|6 max
c∈C ∗

√
1+∑

n
k=1(c

∗
k)

2 max
Y∈∂D(η−ξξξ

>c)
σ(Y ) ·δ +o

(
δ
)
.

EXAMPLE 4.4 (quadratic error: robust regression). For (36) with D = σ , C ∗ = {c∗} is

a singleton, σ(Y ) = 1, and (42) simplifies to |ṽ− v|6
√

1+∑
n
k=1(c

∗
k)

2 ·δ +o(δ ).

EXAMPLE 4.5 (Koenker-Bassett error measure: robust regression). For (36) with D =
CVaR∆

α , and any c ∈ C ∗, maxY∈∂D(η−ξξξ
>c) σ(Y ) in (42) simplifies to α−1−1.

Detail. Let Y ∗ ∈ ∂CVaR∆
α (ρ∗), ρ∗ = η − ξξξ

>c, be such that P[Y ∗ = α−1] = α and P[Y ∗ =
0] = 1−α , with σ2(Y ∗) = α ·α−2 +(1−α) ·0−12 = α−1−1. Then (9) implies that Y ∗ is
dominated by all other elements of ∂CVaR∆

α (ρ∗) with respect to concave ordering7, so that
σ2(Y ∗)> σ2(Y ) for Y ∈ ∂CVaR∆

α (ρ∗), see [17]. 2

4.2. Minimization of deviation and regret. Suppose there are n risky instruments with
rates of return r1, . . . ,rn. Let x1, . . . ,xn be proportions of the initial capital (portfolio weights)
invested in those instruments. Then x1, . . . ,xn satisfy the budget constraint e>x= 1, where e=
(1, . . . ,1)>, and the portfolio rate of return is determined by rp = r>x, where r = (r1, . . . ,rn)

>

and x = (x1, . . . ,xn)
>. An investor may wish then to minimize either a deviation measure D

or a regret measure V of rp:

(43) υD(r) = min
x∈X0

D(r>x), υV (r) = min
x∈X0

V (r>x),

where X0 = {x ∈ Rn |e>x = 1}. Let r+ t h be disturbance of r, where h ∈ (L 2(Ω))n, and
t ∈ [−t0, t0] for some t0 > 0, and let

(44) φD(t) = υD (r+ t h) , φV (t) = υV (r+ t h) .

With assumptions A1–A4, there is no asset redundancy and D and V are continuous, and both
problems in (43) are particular cases of (28) with ξξξ = r, A = e> and with b being scalar of 1.
Then Corollary 3.3 implies that φ ′D(0±) and φ ′V (0±) are given by (22), in which X ∗

D(0),
Y ∗D(0), X ∗

V (0) and Y ∗V (0) are determined by (30) with F0 = D and F0 = V , respectively:(
X ∗

F0
,Y ∗F0

)
=
{
(x∗,Y )

∣∣∣Y ∈ ∂F0
(
ξξξ
>x∗
)
, E [Y ξξξ ] = F0

(
ξξξ
>x∗
)
e
}
, F0 = D ,V .

7An r.v. X dominates an r.v. Y with respect to concave ordering, or X �c Y , if E[X ] = E[Y ], and
∫ x
−∞

FX (t)dt 6∫ x
−∞

FY (t)dt for all t ∈ R, see [17].
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If X ∗
D , Y ∗D , X ∗

V and Y ∗V are all singletons, then φ ′D(0+)= φ ′D(0−) and φ ′V (0+) = φ ′V (0−),
and φ ′D(0) and φ ′V (0) are given by (27). For brevity, let h∗ = h>x∗.

EXAMPLE 4.6. For σ , σ−, MAD, and CVaR∆
α , the subdifferentials are given by (8a)–

(8c), and (9), respectively, and for υD(r) in (43) with these deviation measures, (27) yields

φ
′
D(0) =


E[∂σ(ρ∗)h∗], D = σ ,

E[∂σ−(ρ
∗)h∗], D = σ−,

2(E[h∗ |ρ∗ > E[ρ∗]]−E[h∗])P[ρ∗ > E[ρ∗]], D = MAD,

E[h∗]−E[h∗ |ρ∗ < qρ∗(α)], D = CVaR∆
α ,

where for D = MAD and D = CVaR∆
α , it is assumed that argminx∈X0

D(r>x) is a singleton
{x∗} such that ρ∗ = r>x∗ satisfies P[ρ∗ = E[ρ∗]] = 0 and P[ρ∗ = qρ∗(α)] = 0, respectively.

EXAMPLE 4.7. Let V (X) = 2E[[X ]−], and let X ∗
V = {x∗} be a singleton such that ρ∗ =

r>x∗ satisfies P[ρ∗ = 0] = 0, then for υV (r) in (43), (27) yields

φ
′
V (0) =−2E[h∗ |ρ∗ < 0]P[ρ∗ < 0].

4.3. Mean-deviation portfolio optimization. This time suppose there are n+1 instru-
ments available for investment: a risk-free instrument with the rate of return r0 and n risky
instruments with rates of return r1, . . . ,rn. Let x0 and x1, . . . ,xn be proportions of the initial
capital (portfolio weights) invested in the risk-free instrument and in n risky instruments,
respectively. Then the portfolio rate of return is determined by rp = r0 x0 + r>x, where
r = (r1, . . . ,rn)

> and x = (x1, . . . ,xn)
>. The portfolio problem is to minimize a deviation

measure D of rp subject to the budget constraint x0 + e>x = 1, where e = (1, . . . ,1)>, and
subject to a constraint on the portfolio expected rate of return to be greater than or equal to
r0 +∆ with ∆ > 0 being a premium over r0, i.e.

(45) υ
∆
D(r0,r) = min

(x0,x)∈X0
D
(
r>x
)

subject to E
[
r0 x0 + r>x

]
> r0 +∆,

where X0 = {(x0,x) |x0 + e>x = 1}. It generalizes Markowitz’s mean-variance portfolio se-
lection that corresponds to D = σ . Positive homogeneity of D implies that (x0,x) solves (45)
if and only if

x = ∆ ·y, x0 = 1−∆ · e>y,

where y, called basic fund [47], is a solution to the optimization problem

(46) υD(r0,r) = min
y∈Rn

D
(
r>y
)

subject to E
[
(r− r0e)>y

]
> 1,

and the optimal values in (45) and (46) are related by

(47) υ
∆
D(r0,r) = ∆ ·υD(r0,r).

Let r0 + t h0 and r + t h be variations of r0
8 and r, respectively, where h0 ∈ R, h =

(h1, . . . ,hn) with hi ∈L 2, i = 1, . . . ,n, and t ∈ [−t0, t0] for some t0 > 0. Then let

(48) φD(t) = υD(r0 + t h0,r+ t h).

Under A1–A4, (48) is a special case of (15) with parameters ξξξ = r−r0e, disturbances h−h0e,
X0 = Rn, j = 1, F0 = D , and F1 = −E. In this case, A2 is equivalent to the condition that

8Different banks offer different risk-free rates and change them based on market conditions.
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for every t ∈ [−t0, t0], E[(ri + thi)], i = 1, . . . ,n are not all the same, A3 implies that D is
continuous, and A4 holds automatically, see [47, Proposition 4]. Then Theorem 4 in [48]
implies that for (46), Y0 ∈ ∂D

(
r>y∗

)
, λ ∗1 = D

(
r>y∗

)
and Y ∗1 =−1 in (21), so that

(49) (X ∗,Y ∗) =
{
(y∗,Y )

∣∣Y +D
(
r>y∗

)
∈ ∂D

(
r>y∗

)
, E [Y r] =−D

(
r>y∗

)
r0e
}
,

and Theorem 3.1 yields

(50)
φ
′
D(0+) = min

y∈X ∗
max

Y∈Y ∗
E
[
Y (h−h0e)>y

]
= max

Y∈Y ∗
min

y∈X ∗
E
[
Y (h−h0e)>y

]
,

φ
′
D(0−) = max

y∈X ∗
min

Y∈Y ∗
E
[
Y (h−h0e)>y

]
= min

Y∈Y ∗
max

y∈X ∗
E
[
Y (h−h0e)>y

]
.

If X ∗ = {y∗} and ∂D
(
r>y∗

)
= {Y ∗} are singletons, then φ ′D(0+) = φ ′D(0−) and with

h∗ = h>y∗, (50) simplifies to

(51) φ
′
D(0)≡ ∂

∂ t
υD(r0 + t h0,r+ t h)

∣∣∣∣
t=0

= E[Y ∗ h∗]−υD(r0,r)
(
E[h∗]−h0 e>y∗

)
.

COROLLARY 4.2. For (45), let φ∆(t)=υ∆
D(r0+t h0,r+t h). Then φ ′

∆
(0±)=∆ ·φ ′D(0±),

where φ ′D(0±) are given by (50).

COROLLARY 4.3. The investor, who demands E[rp] to be µ , solves

(52) υ
µ

D(r0,r) = min
(x0,x)∈X0

D
(
r>x
)

subject to E
[
r0 x0 + r>x

]
> µ,

where X0 = {(x0,x) |x0+e>x= 1}. Then φµ(t) = υ
µ

D(r0+t h0,r+t h) = (µ−r0−th0)φD(t),
and

(53) φ
′
µ(0±) = (µ− r0)φ

′
D(0±)−h0 φD(0) = (µ− r0)φ

′
D(0±)− h0

µ− r0
φµ(0),

where φ ′D(0±) is given by (50).

In the following examples, let y∗ be the vector of optimal portfolio weights in (46), and
for brevity, let ρ∗ = r>y∗ and h∗ = h>y∗.

EXAMPLE 4.8 (standard deviation). Let Λ be the covariance matrix for the random
rates of return r1, . . . ,rn and let Λ−1 be its inverse, then for (46) with D = σ ,

y∗ =
Λ−1ζζζ

ζζζ
>

Λ−1ζζζ
, σ(ρ∗) =

1√
ζζζ
>

Λ−1ζζζ

, ζζζ = E[r]− r0 e,

see [56, §8.2.1], and with (8a), (51) yields

(54) φ
′
σ (0) =

E[((r−E[r])>Λ−1ζζζ −1)h>Λ−1ζζζ ]

(ζζζ
>

Λ−1ζζζ )3/2
+h0

e>Λ−1ζζζ(
ζζζ
>

Λ−1ζζζ
)3/2 .

In the case of h0 = 0, Appendix C verifies (54) directly.

EXAMPLE 4.9. For σ−, MAD, CVaR∆
α , and deviations of L p-type and semi-L p type,

i.e. Dp and D−, the subdifferentials are given by (8b), (8c), (9), (10a), and (10b),9 respec-

9For p > 2, Dp(X) is not continuous on L 2(Ω), and derivation of (50) does not work as stated. However,
under the assumption that ri ∈L p(Ω) and hi ∈L p(Ω), i = 1, . . . ,n, Dp(X) can be defined on L p(Ω), and in this
case, it is continuously differentiable, and (51) follows from (27). The same remark concerns deviation measures of
semi-L p type.
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tively, and for (46) with these deviation measures, (51) yields

φ
′
D(0) =



E[∂σ−(ρ
∗)h∗]−σ−(ρ

∗)(E[h∗]−h0 e>y∗),
2(E[h∗ |ρ∗ > E[ρ∗]]−E[h∗])P[ρ∗ > E[ρ∗]]−MAD(ρ∗)(E[h∗]−h0 e>y∗),

E[h∗]−E[h∗ |ρ∗ < qρ∗(α)]−CVaR∆
α(ρ

∗)(E[h∗]−h0 e>y∗),
E[∂Dp(ρ

∗)h∗]−Dp(ρ
∗)(E[h∗]−h0 e>y∗),

E[∂D−(ρ
∗)h∗]−D−(ρ

∗)(E[h∗]−h0 e>y∗),

respectively, where for D = MAD and D = CVaR∆
α , it is assumed that (45) has unique solu-

tions y∗ such that ρ∗= r>y∗ satisfies P[ρ∗=E[ρ∗]] = 0 and P[ρ∗= qρ∗(α)] = 0, respectively.

EXAMPLE 4.10 (D = CVaR∆
α : non-singleton case). In (48) with D = CVaR∆

1/3, let Ω be
defined as in Example 4.3, and let n = 2, r1 = η , r2 =−ξ1, r0 = h0 = 0, h1 = (0,0,0), h2 =
(0,1,−1) with η and ξ1 from Example 4.3. Then by evaluating directly, φD(t) = 1

4 −
3t

2+4t for
t ∈ [0,3/4], so that φ ′D(0+) = −3/2. For (46), X ∗ = {(y1,y2) |y1 = 3/4, y2 ∈ [3/4,3/2]}
and Y ∗ = {Y ∗}= {(3/4,−9/4,3/4)}, and (50) reduces to miny2∈[3/4,3/2](−y2) =−3/2.

EXAMPLE 4.11 (D = σ : numerical illustration). Let a portfolio be formed out of 99
instruments from the FTSE 100 index,10 and let r0 = 0.01% and ∆ = 0.02%. Means and
variance-covariance matrix of instruments’ daily rates are estimated from the data for the
period 2015/04/01—2016/04/01 (T = 251 days). The disturbance vector h is selected ran-
domly: for each instrument i = 1, . . . ,n, and scenario j = 1, . . . ,T , hi j comes from a standard
normal distribution. Figure 1 shows the value function υ(t) = ∆ ·φσ (t) in (48) with D = σ

and also shows its linear approximation υ(0)+υ ′(0) t with υ ′(0) = ∆ ·φ ′σ (0) given by (54).

0.0002 0.0004 0.0006 0.0008 0.0010
t

0.000367

0.000368

0.000369

0.000370

0.000371

0.000372

v

FIG. 1. The value function υ(t) = ∆ · φσ (t) in (48) with standard deviation and its linear approximation
υ(0)+υ ′(0) t with υ ′(0) = ∆ ·φ ′σ (0) given by (54): solid and dashed curves, respectively.

For r, r0, ∆ and h from Example 4.11, Figure 2 depicts the value function υ(t) =∆ ·φD(t)
in (48) with D = σ− and also shows its linear approximation υ(0)+υ ′(0) t with υ ′(0) =
∆ ·φ ′D(0) given in Example 4.9 for D = σ−.

When r0 and r are perturbed/updated, the investor may be concerned how far the original
optimal solution y∗ in (46) deviates from the optimality in terms of penalty function (33),

10The index contains 101 instruments, two of which are excluded due to the lack of data.
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0.0002 0.0004 0.0006 0.0008 0.0010
t

0.000214

0.000216

0.000218

0.000220

v

FIG. 2. The value function υ(t) = ∆ · φσ− (t) in (48) with standard lower semideviation and its linear ap-
proximation υ(0) + υ ′(0) t with υ ′(0) = ∆ · φ ′D(0) given in Example 4.9 for D = σ−: solid and dashed curves,
respectively.

which simplifies to

ψD(t) = D
(
(r+ t h)>y∗

)
−φD(t)+D

(
r>y∗

)(
1−E

[
((r+ t h)− (r0 + t h0)e)>y∗

])
.

In this case, ψ ′D(0+) is given by (34), which with (11) and (50) takes the form
(55)
ψ
′
D(0+) = max

Y0∈∂D(r>y∗)
E[
(
Y0−D

(
r>y∗

))
(h−h0e)>y∗]− min

y∈X ∗
max

Y∈Y ∗
E
[
Y (h−h0e)>y

]
.

If y∗ is the only solution to (46) and if ∂D(r>y∗) = {Y ∗} is a singleton, then ψ ′D(0+) = 0.

EXAMPLE 4.12 (CVaR∆
α ). In Example 4.10, let y∗ = (3/4,3/4). Then by evaluating

directly, ψD(t) = 3t
2+4t , and ψ ′D(0+) = 3/2. Also, ∂D(r>y∗) = {Y |Y = (y,−1− y,1), y ∈

[−2,1]}, and (55) reduces to ψ ′D(0+) = maxy∈[−2,1]
−y−2

4 − (−3/2) = 3/2.

4.3.1. Robust portfolio optimization: application of Theorem 3.4 to problem (46).

COROLLARY 4.4. Let v = υD(r0,r) and ṽ = υD(r̃0, r̃) be optimal values in (46) with the
rates or return (r0,r) and (r̃0, r̃), respectively, and let D be a continuous deviation measure.
Then (31) holds with δ =

√
∑

n
i=1E[((r̃i− r̃0)− (ri− r0))2] and with X ∗ and Y ∗ determined

in (49). A less precise but easier to compute estimate is given by

(56) |ṽ− v|6 max
y∈X ∗

‖y‖Rn max
Y∈∂D(r>y)

√
σ2(Y )+ v2 ·δ +o

(
δ
)
.

In particular, if X ∗ = {y∗} and ∂D (r>y∗) = {Y ∗} are singletons, then (32) simplifies to

(57) |ṽ− v|6 ‖y∗‖Rn

√
σ2(Y ∗)+ v2 ·δ +o

(
δ
)
.

EXAMPLE 4.13 (standard deviation). For (46) with D = σ , the solution y∗ is given in
Example 4.8, and v = σ(r>y∗). Then since σ2(Y ∗) = 1, (57) takes the form

|ṽ− v|6

√
ζζζ
>

Λ−2ζζζ

√
1+ζζζ

>
Λ−1ζζζ(

ζζζ
>

Λ−1ζζζ
)3/2 ·δ +o

(
δ
)
.
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EXAMPLE 4.14 (standard lower semideviation). For D = σ−, (57) holds with

σ
2(Y ∗)+ v2 = 1− (E [[ρ∗−E[ρ∗]]−])2

σ2
−(ρ

∗)
+σ

2
−(ρ

∗), ρ
∗ = r>y∗.

EXAMPLE 4.15 (mean absolute deviation and CVaR deviation). For D = MAD and
D = CVaR∆

α , and any y ∈X ∗, maxY∈∂D(r>y)σ2(Y ) in (56) takes the form

(58) max
Y∈∂D(r>y)

σ
2(Y ) =

{
4p∗(1− p∗), D = MAD,

α
−1−1, D = CVaR∆

α ,

where p∗ = max{P[ρ∗ > E[ρ∗]],P[ρ∗ < E[ρ∗]],1/2} and ρ∗ = r>y.

Detail. If Y ∈ ∂MAD(ρ∗), then Y = Z−E[Z] for some Z ∈ sign[ρ∗−E[ρ∗]], and σ2(Y ) =
σ2(Z). Let Z∗ ∈ sign[ρ∗−E[ρ∗]] be such that E[Z∗] = E[Z] and let Z∗ take values −1 and 1
only: P[Z∗ = 1] = p and P[Z∗ =−1] = 1− p, where p ∈ [P[ρ∗ > E[ρ∗]],1−P[ρ∗ < E[ρ∗]]].
Then Z dominates Z∗ with respect to concave ordering, which implies that σ2(Z∗)> σ2(Z),
see [17], and σ2(Z∗) = 4p(1− p) attains maximum at p = p∗. This proves (58) for D =
MAD, whereas (58) for D = CVaR∆

α follows from Example 4.5. 2

4.3.2. Comparison of robust properties for different deviation measures. With (56),
the relative error |ṽ− v|/v is estimated by

(59)
|ṽ− v|

v
6 max

y∈X ∗
‖y‖Rn

√
1
v2 max

Y∈∂D(r>y)
σ2(Y )+1 ·δ +

o
(
δ
)

v
.

For any continuous deviation measure D and any r.v. X , the smaller the coefficient

(60) γ(D ,X) =
1

D(X)2 max
Y∈∂D(X)

σ
2(Y ),

the better estimate (59) for X = r>y.

PROPOSITION 4.5. For any deviation measure D and any r.v. X, γ(D ,X)> γ(σ ,X).

Proof. For any Y ∈ ∂D(X),

γ(D ,X)>
σ2(Y )
D(X)2 =

σ2(Y )
cov(Y,X)2 >

σ2(Y )
σ2(Y )σ2(X)

=
1

σ2(X)
= γ(σ ,X),

where the last equality follows from (60) and Example 1 in [48].

Proposition 4.5 suggests that optimization with standard deviation is more robust than
that with any other deviation measure in the sense that estimate (59) is the tightest for standard
deviation. In the view of Proposition 4.5, the ratio

γ(D ,X)

γ(σ ,X)
=

σ2(X)

D(X)2 max
Y∈∂D(X)

σ
2(Y )

may indicate “loss in robustness” when D is used in place of σ .

EXAMPLE 4.16 (normal distribution). Let X be normally distributed. Then

γ(σ−,X)

γ(σ ,X)
= 2− 2

π
≈ 1.36,

γ(MAD,X)

γ(σ ,X)
=

π

2
≈ 1.57,

γ(CVaR∆
α ,X)

γ(σ ,X)
=

α(1−α)

φ 2(Φ−1(α))
,
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where φ and Φ are probability density function and CDF of a standard normal distribution,
respectively. In particular,

γ(CVaR∆
0.5,X)

γ(σ ,X)
=

π

2
,

γ(CVaR∆
0.05,X)

γ(σ ,X)
≈ 4.47,

γ(CVaR∆
0.01,X)

γ(σ ,X)
≈ 13.94.

Detail. Since the ratio γ(D ,X)/γ(σ ,X) is invariant under a linear transformation of X , X
can be assumed to have a standard normal distribution. Then, the elements Y of the subdif-
ferential for the r.v. X with respect to σ−, MAD and CVaR∆

α are given by (8b), (8c), and (9),
respectively, for which

σ
2(Y ) =

E[[X ]−]
2− (E[[X ]−])

2

σ−(X)2 = 1− 1
π
, σ

2(Y ) = 1, σ
2(Y ) = α

−1−1,

respectively. With σ−(X) = 1/
√

2, MAD(X) =
√

2/π and CVaR∆
α(X) = α−1φ(Φ−1(α)),

the statement follows. 2

It is known that if the rates of return r are jointly normally distributed, then optimization
with an arbitrary deviation measure yields the same optimal solution x∗, and in this case, all
deviation measures are equivalent. However, perturbed rates of return r̃ are not assumed to
be normally distributed, and the deviation measures are not equivalent from the robustness
perspective. While standard deviations σ(r>x) and σ(r̃>x) of the original and perturbed
portfolios are relatively close to each other, CVaR deviations of these portfolios can differ
significantly, especially for small α . Example 4.16 is in agreement with the well-known fact
that CVaR is difficult to estimate for small α [4] and with the observation that “estimation
risk” for mean absolute deviation is greater than that for standard deviation [53].

4.3.3. One fund theorem and capital asset pricing model.
Theorem 3 in [47] generalizes the one-fund theorem for optimal mean-variance portfolio:

for any ∆ > 0, optimal portfolio in (45) is a combination of a risk-free asset and a basic fund
with zero weight in the risk-free asset. Depending on the value of the risk-free rate of return,
a basic fund may have either positive, negative or zero price: a basic fund with price of ±1 is
called master fund of positive/negative types, whereas a basic fund with zero price is called
master fund of threshold type (see [48, Definition 2]). The classical one-fund theorem (for
D = σ ) covers only the case of positive master fund, which is called market portfolio.

Suppose that rM is the rate of return of a master fund of positive type for given r0 and
r and suppose rp is the rate of return of an optimal portfolio in (45), then the generalized
one-fund theorem [47, 48] implies that

x∗0(r0,r) =
E[rM]−E[rp]

E[rM]− r0
,(61a)

D(rp) = D

(
E[rM]−E[rp]

E[rM]− r0
r0 +

E[rp]− r0

E[rM]− r0
rM

)
≡

E[rp]− r0

E[rM]− r0
D(rM),(61b)

where 1−x∗0(r0,r) is the weight of the master fund in an optimal portfolio and (61b) is called
efficient frontier (security market line for D = σ ), see Figure 3.

In fact, if y∗ is a basic fund, i.e. a solution to (46), such that e>y∗ > 0, then x∗ = y∗/e>y∗
defines a master fund of positive type [47, Definition 2] with the rate of return rM = rT x∗, and

(62)
D(rM)

E[rM]− r0
= D(r>y∗)≡ υD(r0,r),
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0

r0

E[rM]

D(rM)

master fund of
positive type

efficient set
(risky assets)

efficient set
(with risk-free asset)

D(rp)

E[rp ]

FIG. 3. Efficient sets (frontiers) for portfolio problem (45): expected rate of return versus deviation of optimal
mean-deviation portfolios when the risk-free asset is available (security market line for D = σ ) and when it is not.

where υD(r0,r) is defined in (46). The ratio

S(r0,r) =
E[rM]− r0

D(rM)
≡ 1

υD(r0,r)

is the slope of the efficient frontier and is also called the Sharpe ratio for D = σ . In this case,

(63) φS(t) = S(r0 + t h0,r+ t h)≡ 1
φD(t)

and φ
′
S(0±) =−

φ ′D(0±)
(φD(0))2 ,

where φD(t) and φ ′D(0±) are given by (48) and (50), respectively.
In fact, with (62), (61b) takes the form

(64) D(rp) = υD(r0,r)(E[rp]− r0) ,

which also follows from (47).
Let h0 = 1 and h≡ 0, then with (61a) and (61b), (50) yields

(65)
∂+

∂ r0
υD(r0,r)6

D(rM)

(E[rM]− r0)2 6
∂−

∂ r0
υD(r0,r),

where ∂±/∂ r0 are the right/left partial derivatives. In particular, υD(r0,r) is an increasing
function on r0. With (65), (63) implies that

∂+

∂ r0
S(r0,r)>−

1
D(rM)

>
∂−

∂ r0
S(r0,r).

With (53) and (62), (65) yields

(66)
∂+

∂ r0
υ

µ

D(r0,r)6−
E[rM]−µ

(E[rM]− r0)2 D(rM)6
∂−

∂ r0
υ

µ

D(r0,r),

where µ and υ
µ

D(r0,r) are defined in (52). In particular, for a master fund, (65) implies that

(67) µ = E[rM] ⇐⇒ ∂+

∂ r0
υ

µ

D(r0,r)6 0 6
∂−

∂ r0
υ

µ

D(r0,r),

which can be used as a condition for finding E[rM].
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EXAMPLE 4.17 (standard deviation). In Example 4.8, condition (67) with (53) and (54)
for h≡ 0 and h0 = 1 determines the expected rate of return of a master fund of positive type:

∂υ
µ

σ (r0,r)
∂ r0

=
(µ e−E[r])>Λ−1ζζζ(

ζζζ
>

Λ−1ζζζ
)3/2 = 0 =⇒ µM = E[rM] =

E[r]>Λ−1ζζζ

e>Λ−1ζζζ
.

Let rM be the rate of return of a master fund of positive type for a given r0 = r∗0. If r0
changes by some small ε , can the same master fund be used in the one-fund theorem? This
question is similar to that in §3.4, but the difference is that here only the rate of return rM of
the master fund and not the optimal portfolio x∗ is assumed to be fixed, so that weights of the
risk-free asset and the master fund should be re-balanced to satisfy the constraint in (48). Let

ψM(r0 + ε) =
D(rM)

E[rM]− (r0 + ε)
−υD(r0 + ε,r)

be the change in the slope of the efficient frontier—note that ψM(r0) = 0 by (62). Then, if
∂

∂ r0
υD(r0,r) exists at r0 = r∗0, (65) yields

ψ
′
M(r∗0) =

D(rM)

(E[rM]− r∗0)
2 −

D(rM)

(E[rM]− r∗0)
2 = 0,

whereas if ψM(r0) is twice differentiable at r0 = r∗0, we obtain

ψM(r∗0 + ε) = ψM(r∗0)+ψ
′
M(r∗0)ε +ψ

′′
M(r∗0)ε

2 +O
(
ε

3)= ψ
′′
M(r∗0)ε

2 +O
(
ε

3) .
In other words, if r0 is perturbed by ε , the master fund remains optimal up to O

(
ε2
)
. If,

however, ∂

∂ r0
υD(r0,r) does not exist, then the use of the same master fund in the one-fund

theorem may not be appropriate.

EXAMPLE 4.18 (standard deviation). For D = σ , ψM(·) is twice differentiable and

ψM(r∗0 + ε) =
e>Λ−1(ζζζ e>− eζζζ

>
)Λ−1ζζζ(

ζζζ
>

Λ−1ζζζ
)5/2 ε

2 +O
(
ε

3) ,
where ζζζ = E[r]− r∗0 e, and Λ is the covariance matrix defined in Example 4.8.

4.3.4. Maximizing expectation with a constraint on deviation. Being still concerned
about only the expected value E[rp] and a deviation D(rp) of portfolio rate of return rp =
r0 x0 + r>x, the investor may wish to maximize E[rp] subject to a constraint on D(rp):

(68) υE(r0,r) = max
(x0,x)∈X0

E
[
r0 x0 + r>x

]
subject to D

(
r>x
)
6 d,

where X0 = {(x0,x) |x0 + e>x = 1} and d > 0. Let

(69) φE(t) = υE(r0 + t h0,r+ t h).

Of course, φ ′E(0±) can be obtained similarly to φ ′D(0±) in (50). However, it is instructive to
address it through problem (45). Indeed, (64) (one-fund theorem) implies that problems (45)
and (68) have the same master funds and the same efficient frontiers 11 and

υE(r0,r) = ∆
d

υ∆
D(r0,r)

+ r0 =
d

υD(r0,r)
+ r0,

11(D(rp),E[rp]) is in the efficient frontier of (45) if and only if there is no feasible r′p such that E[r′p]> E[rp] and
D(r′p)6 D(rp) with at least one inequality being strict, which implies that (D(rp),E[rp]) is in the efficient frontier
of (68).
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where the second equality follows from (47). Consequently,

(70) φE(t) =
d

φD(t)
+ r0 + t h0 and φ

′
E(0±) =−

d
(φD(0))2 φ

′
D(0±)+h0,

where φD(t) and φ ′D(0±) are given by (48) and (50), respectively.
For σ and σ− and for MAD and CVaR∆

α under the assumption that (68) has unique solu-
tions x∗ such that ρ∗= r>x∗ satisfies P[ρ∗=E[ρ∗]] = 0 and P[ρ∗= qρ∗(α)] = 0, respectively,
φ ′D(0+) = φ ′D(0−), and the derivative φ ′D(0) in (70) is given in Examples 4.8 and 4.9.

4.4. Minimization of risk. The constraint in (45) is always active, and (45) can be
equivalently recast in terms of the averse measure of risk R(X) = D(X)−E[X ], see (1), as

(71) υ
∆
R(r0,r) = min

(x0,x)∈X0
R
(
r0 x0 + r>x

)
subject to E

[
r0 x0 + r>x

]
= r0 +∆

with X0 = {(x0,x) |x0 + e>x = 1}. In this case,

(72) υ
∆
R(r0,r) = υ

∆
D(r0,r)− (r0 +∆) = ∆ ·υD(r0,r)− (r0 +∆),

where υ∆
D(r0,r) is defined in (45). Let

φR(t) = υ
∆
R(r0 + t h0,r+ t h).

In view of (72), φR(t) = ∆ · φD(t)− (r0 + t h0 + ∆), where φD(t) is defined by (48), and
consequently,

(73) φ
′
R(0±) = ∆ ·φ ′D(0±)−h0

with φ ′D(0±) determined by (50).

EXAMPLE 4.19 (CVaR). Let (71) with R = CVaRα , α ∈ (0,1), have a unique solution
(x∗0,x

∗) such that ρ∗ = r>x∗ satisfies P[ρ∗ = qρ∗(α)] = 0, then (73) and Example 4.9 yield

φ
′
R(0+)=E[h∗]−E[h∗ |ρ∗< qρ∗(α)]−∆

−1 CVaR∆
α(ρ

∗)(E[h∗]−h0 e>x∗)−h0, h∗= h>x∗.

5. Conclusions. The envelope relationship (Theorem 3.1) is obtained for optimization
problems whose objectives and constraints involve arbitrary positively homogeneous convex
functionals defined on the space of random variables. When problem solution sets and cor-
responding subdifferentials are singletons, it simplifies to random-parameter version (27) of
the ordinary envelope relationship. The function ψ(t), introduced by (33), then indicates how
far an optimal solution x∗ of an unperturbed problem is from optimality in the corresponding
perturbed problem. When (27) is applicable, ψ(0) = ψ ′(0) = 0, which implies that x∗ can be
kept as a nearly optimal solution in the case of small perturbations. Theorem 3.4 estimates
perturbation of the value function of optimization problems in terms of perturbations of prob-
lem parameters. Theorems 3.1 and 3.4 are then specialized for optimization problems with
error, regret, deviation and risk measures such as generalized linear regression and optimal
portfolio selection. The results are believed to be novel even for Markowitz’s mean-variance
portfolio selection (Examples 4.8, 4.11, 4.13, 4.17, and 4.18). Remarkably, portfolio selection
with standard deviation is “more robust” than that with any other deviation measure (§4.3.2).
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Appendix A. Technical details of the proof of Theorem 3.1.
Theorem 5 in [38] requires X ∗(t)×Y ∗(t) 6= /0 for t ∈ [0,1] and the feasible sets for x,

Y and λ to be compact.
Obviously, Theorem 5 in [38] can be applied to t ∈ [−t0, t0] instead of t ∈ [0,1], and

X ∗(t)×Y ∗(t) 6= /0 for t ∈ [−t0, t0] follows from assumptions A3 and A4.
For every t ∈ [−t0, t0] and for any optimal Lagrange multiplier λ ∗1 , . . . ,λ

∗
k ,

φ(t)6 L (x̂,λ ∗, t)6 F0
(
(ξξξ + t h)>x̂

)
+λ

∗
j (F j

(
(ξξξ + t h)>x̂

)
−C j), j = 1, . . . ,k,

where x̂ is such that assumption A2 holds, and the first and second inequalities follow from
the definition of a saddle point and from non-negativity of Lagrange multipliers, respectively.
This implies that

0 6 λ
∗
j 6C = max

j∈{1,...,k}
sup

t∈[−t0,t0]

F0 ((ξξξ + t h)>x̂)−φ(t)
C j−F j ((ξξξ + t h)>x̂)

< ∞,

where the last inequality follows from assumption A2. Consequently, (R+)k in (24) and (25)
can be replaced by the compact set [0,C]k.

Since F0,F1, . . . ,Fk are finite and continuous by assumption A3, the corresponding
Y1, . . . ,Yk are bounded, convex and closed in L 2(Ω), so is the set Y of all r.v.’s Y ∗0 +

∑
k
j=1 λ ∗j Y ∗j with λ ∗j ∈ [0,C] and Y ∗j ∈ Y j, j = 0, . . . ,k. Since L 2(Ω) is a reflexive Banach

space, this implies that Y is weakly compact by Kakutani’s theorem [13, Theorem 3.31],
and since f in (25) and ∂ f/∂ t in (26) are continuous functions in the weak topology, this is
sufficient for application of Theorem 5 in [38].

The remaining issue is a possible non-compactness of X0 ⊂Rn. Assumptions A3 and A4
imply that for every fixed t, X ∗(t) is a non-empty convex compact set. It remains to show
that X ∗(t) is bounded uniformly in t.

PROPOSITION A.1. There exists t ′0 > 0 and C > 0 such that ‖x‖Rn < C for every t ∈
[−t ′0, t

′
0] and x ∈X ∗(t).

With Proposition A.1, we can apply [38, Theorem 5] to t ∈ [−t ′0, t
′
0] and compact set

X = {x ∈ X0|‖x‖Rn 6C}. The proof of Proposition A.1 relies on the optimization problem

(74) υ(t) = min
x∈X

f (x, t),

where X ⊆ Rn and t is a real-valued parameter.

PROPOSITION A.2. Let υ(t) in (74) exist for every t, and let f be continuous in t for
every x. Then υ(t) is continuous.

Proof. For any t1, t2, let x1, x2 be the corresponding solutions of (74). Then υ(t1) =
f (x1, t1) 6 f (x2, t1) and υ(t2) = f (x2, t2) 6 f (x1, t2). Consequently, f (x1, t1)− f (x1, t2) 6
υ(t1)−υ(t2)6 f (x2, t1)− f (x2, t2) and 0 6 limt2→t1( f (x1, t1)− f (x1, t2))6 limt2→t1(υ(t1)−
υ(t2))6 limt2→t1( f (x2, t1)− f (x2, t2)) = 0.

PROPOSITION A.3. Let υ(t) in (74) with X = Rn exist for every t, and let X (t) be a
set of corresponding solutions. Let also X (0) be bounded, f convex and continuous in x for
every t, and continuous in t for every x. Then

(75) lim
t→0

(
sup

x(t)∈X (t)
inf

x(0)∈X (0)
‖x(t)−x(0)‖

)
= 0.
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Proof. Fix any x∗ ∈ X (0). For any ε > 0, the set Xε(0) = {x ∈ Rn |‖x− x(0)‖ 6
ε for some x(0) ∈X (0)} is closed, bounded (hence compact) and convex, so that its bound-
ary ∂Xε(0) is also a compact set. Consequently, the minimum in

u(t) = min
x∈∂Xε (0)

f (x, t)

is attained for every t, and u(t) is continuous by Proposition A.2. Since ∂Xε(0)∩X (0) = /0,
u(0) > v(0) = f (x∗,0). Consequently, there exists a t(ε) > 0 such that u(t) > f (x∗, t) for
every t ∈ (−t(ε), t(ε)). For every x 6∈Xε(0), there exists an α ∈ (0,1) such that αx+(1−
α)x∗ ∈ ∂Xε(0). Consequently,

α( f (x, t)− f (x∗, t))> f (αx+(1−α)x∗, t)− f (x∗, t)> u(t)− f (x∗, t)> 0, t ∈ (−t(ε), t(ε)),

so that x 6∈X (t). Since x 6∈Xε(0) is arbitrary, this implies that X (t) ⊆Xε(0), |t| 6 t(ε),
and (75) follows.

Now we can prove Proposition A.1. X (t) is the solution set in

(76) min
x∈X0

sup
λ∈(R+)k

L (x,λ , t) = min
x∈X0

max
λ∈[0,C]k

L (x,λ , t).

Since L (x,λ , ·) is continuous, so is max
λ∈[0,C]k L (x,λ , ·). In application to (76), Proposition

A.3 yields lim
t→0

(
supx(t)∈X ∗(t) infx(0)∈X ∗(0) ‖x(t)−x(0)‖

)
= 0, and Proposition A.1 follows.

Appendix B. A counterexample.
The following example demonstrates that assumption A3 in Theorem 3.1 is critical.

EXAMPLE B.1. Let φ(t) be defined by (15) with k = 0, n = 2, F0(X) = − inf X, X0 =
{(x1,x2) |x1 + x2 = 1}, and with ξ1, ξ2, h1, and h2 defined as follows. Let Ω = {ω0,ω1, . . .}
be countable with P[ω0] = 3/4 and P[ωn] = 5−n, n > 1. Then

ξ1(ω0) = 0, ξ1(ωn) = 2−n, n > 1,

ξ2(ω0) = 1, ξ2(ωn) = 2−n−1, n > 1,

h1 = 0, and
h2(ω0) = 0, h2(ωn) = 2n, n > 1.

In this case, F0 is not a continuous basic functional, and φ ′(0+) does not exist.

Detail. The constraint x1 + x2 = 1 implies that x = (x1,x2) = (1−α,α), α ∈ R, and (ξξξ +
t h)>x = Xα = (1−α)ξ1+α(ξ2+ th2). Then− inf Xα =−min{α, infn(α (t 2n−1)+2−n)}.
For t = 0, φ(0) = minα(− inf Xα) = 0, and for t ∈ (0,1/2], optimal α is given by α = α∗t ≡
minn6log2 1/t 2−n/(2−2nt). Then φ(t) =− inf

(
Xα∗t

)
=−α∗t . However, limt→0+ α∗t does not

exist: limsupt→0+ α∗t = 9/8 and liminft→0+ α(t) = 1, so that φ ′(0+) does not exist. 2

Appendix C. Direct verification of (54).

∂υ(r0,r+ t h)
∂ t

∣∣∣∣
t=0

=
∂

∂ t
1√

(E[r+ t h]− r0 e)>Λ(r+ t h)−1(E[r+ t h]− r0 e)

∣∣∣∣∣
t=0

− 1
2c3/2

(
E[h]>Λ

−1
ζζζ +ζζζ

> ∂

∂ t
Λ(r+ t h)−1

∣∣∣∣
t=0

ζζζ +ζζζ
>

Λ
−1E[h]

)
,
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where ζζζ = E[r]− r0 e and c = ζζζ
>

Λ−1ζζζ . Then

∂

∂ t
Λ(r+ t h)−1

∣∣∣∣
t=0

=−Λ
−1 ∂

∂ t
Λ(r+ t h)

∣∣∣∣
t=0

Λ
−1

=−Λ
−1(E[rh>]+E[hr>]−E[r]E[h>]−E[h]E[r>])Λ−1.

For any vector a and matrix B, a>Ba = (a>Ba)> = a>B>a. With a = Λ−1ζζζ and B = E[rh>]
and with a = Λ−1ζζζ and B = E[r]E[h>], this identity yields

ζζζ
> ∂

∂ t
Λ(r+ t h)−1

∣∣∣∣
t=0

ζζζ =−2ζζζ
>

Λ
−1 (E[rh>]−E[r]E[h>]

)
Λ
−1

ζζζ .

Since E[h]>Λ−1 ζζζ = ζζζ
>

Λ−1E[h],

∂υ(r0,r+ t h)
∂ t

∣∣∣∣
t=0

=− 1
2c3/2

(
2E[h]>Λ

−1
ζζζ −2ζζζ

>
Λ
−1 (E[rh>]−E[r]E[h>]

)
Λ
−1

ζζζ

)
,

which simplifies to (54) with h0 = 0.
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