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Abstract: Land surface temperature (LST) is a crucial parameter in the interaction between the 

ground and the atmosphere. The Sentinel‐3A Sea and Land Surface Temperature Radiometer 

(SLSTR) provides global daily coverage of day and night observation in the wavelength range of 

0.55 to 12.0 μm. LST retrieved from SLSTR is expected to be widely used in different fields of earth 

surface monitoring. This study aimed to develop a split‐window (SW) algorithm to estimate LST 

from two‐channel thermal infrared (TIR) and one‐channel middle infrared (MIR) images of SLSTR 

observation. On the basis of the conventional SW algorithm, using two TIR channels for the daytime 

observation, the MIR data, with a higher atmospheric transmittance and a lower sensitivity to land 

surface emissivity, were further used to develop a modified SW algorithm for the nighttime 

observation. To improve the retrieval accuracy, the algorithm coefficients were obtained in different 

subranges, according to the view zenith angle, column water vapor, and brightness temperature. 

The proposed algorithm can theoretically estimate LST with an error lower than 1 K on average. 

The algorithm was applied to northern China and southern UK, and the retrieved LST captured the 

surface features for both daytime and nighttime. Finally, ground validation was conducted over 

seven sites (four in the USA and three in China). Results showed that LST could be estimated with 

an error mostly within 1.5 to 2.5 K from the algorithm, and the error of the nighttime algorithm 

involved with MIR data was about 0.5 K lower than the daytime algorithm. 

Keywords: land surface temperature; Sentinel‐3A SLSTR; split‐window algorithm; validation 

 

1. Introduction 

Land surface temperature (LST), which is the key parameter in the interaction between the 

ground and the atmosphere, plays a significant role in the fields of agriculture, meteorology, ecology, 

and hydrology [1,2]. LST has a complex spatial and temporal distribution, due to the changing surface 

type and atmospheric conditions. Therefore, ground measurements cannot practically provide LST 

values at a large scale. Remote sensing data offer the only possibility of measuring LST around the 

globe with sufficiently high spatial and temporal resolution [3]. 
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LST retrieval from remote sensing data can be traced back to the 1970s [4]. Many LST retrieval 

methods have been proposed for thermal infrared (TIR) data under different assumptions of 

atmosphere and emissivity in order to solve the problems identified when calculating LST from 

satellite data, as follows: Atmospheric correction from the sensor to the ground and the impact of 

land surface emissivity (LSE) [5]. Among all of these methods, the split‐window (SW) algorithm is 

one of the most effective and widely used methods. The conventional SW algorithm utilizes linear or 

nonlinear combinations of the brightness temperature at the top of the atmosphere (TOA) of two 

adjacent TIR channels at around 11 and 12 μm to remove the atmospheric effect during radiative 

transfer and to estimate LST. It has been applied to retrieve LST from various sensors, such as 

Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat 8, and Chinese FengYun‐2C (FY‐

2C) [6–8]. On the basis of the conventional SW algorithm, if more than two TIR bands are available 

on the sensor, new forms of SW algorithms can be developed to make full use of the spectral 

information. For instance, Ye et al. [9] proposed a four‐channel algorithm and applied it to Chinese 

Gaofen‐5 (GF‐5) satellite data. Sun and Pinker [10] proposed a three‐channel algorithm that could be 

applied to any sensor with three TIR channels. Results show that multichannel algorithms provide a 

more accurate retrieval than conventional ones. 

It is known that middle infrared (MIR) data, which also contain the thermal radiance information 

of land surface, according to the Planck’s law, can be used for LST retrieval. Moreover, MIR channels 

have lower atmospheric absorption and attenuation than TIR channels [10]. However, retrieving LST 

from MIR data is challenging and therefore not as developed as retrieval from TIR, because MIR data 

contain reflected solar irradiance during the daytime, which is difficult to separate from the land 

surface thermal radiance. MIR data observed at night can be used to retrieve LST because it does not 

contain solar irradiance. For instance, Zhao et al. [11] applied the SW algorithm to nighttime MIR 

observation and developed a modified algorithm for retrieving LST from two‐channel MIR data at 

night. On the basis of this study, Zhao et al. [12] further proposed a method to estimate the solar 

irradiance during the daytime and established a new LST retrieval algorithm from daytime MIR data. 

The European Commission Sentinels are a fleet of satellites designed to deliver the wealth of 

data and imagery that are central to the European Commission’s Copernicus program. Among all the 

satellites, Sentinel‐3A was launched on 16 February 2016 and flies at an altitude of 814.5 km at a near‐

polar, sun‐synchronous orbit with a descending node equatorial crossing at 10:00 of the mean local 

solar time [13]. It carries the Sea and Land Surface Temperature Radiometer (SLSTR), which follows 

on from the previous Along Track Scanning Radiometers (ATSR) series in terms of measuring the 

surface temperature of the earth. SLSTR observes the global surface daily in nine bands, of which 

three are in visible and near infrared ranges (VNIR, centered at 0.555, 0.659, and 0.865 μm), three are 

in short wave infrared ranges (SWIR, centered at 1.375, 1.610, and 2.25 μm), and three are in middle 

and thermal infrared ranges (MIR/TIR, centered at 3.74, 10.85, and 12.0 μm). Both VNIR and SWIR 

images are captured at a resolution of 0.5 km, whereas both MIR and TIR images are captured at a 

resolution of 1 km. The two TIR channels and one MIR channel on the SLSTR are designed to maintain 

a highly accurate earth surface temperature, but up to now, no publications about the LST retrieval 

algorithm and validation from those data are available. The existing SLSTR LST product only utilizes 

the two TIR channels using a nadir‐only split‐window algorithm based on a regression coefficient 

approach that relies on statistics to generate realistic retrieval coefficients, but the MIR channel 

observation is still not fully used. Moreover, the existing product directly puts water vapor and view 

zenith angle into the algorithm equation as parameters, which may make the retrieval result more 

sensitive to the error of water vapor and view zenith angle [14,15]. Therefore, it is necessary to 

develop and report a specified algorithm to retrieve LST from Sentinel‐3A SLSTR by fully using the 

MIR and TIR data and reduce the sensitivity to the uncertainty of other auxiliary parameters. From 

this point of view, the study is the first to focus on this topic on the basis of the split‐window 

algorithm. Sentinel‐3B was launched on 25 April 2018 and has the same channel specification as 

Sentinel‐3A. Thus, the LST algorithms developed in this paper will also be useful for Sentinel‐3B. As 

a result, this study will be organized as follows: Section 2 presents the development of the new SW 

algorithm and the method to obtain the necessary parameters for LST retrieval. Section 3 shows the 
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application of the proposed algorithm and its validation results, using ground‐measured data. 

Finally, Section 4 presents discussions and conclusions. 

2. Methodology 

2.1. Theoretical Background 

According to the thermal radiative transfer model, for a cloud‐free atmosphere under local 

thermodynamic equilibrium, the thermal radiance observed at the TOA can be expressed as [3] 

�� = �����(��) + (1 − ��)���
↓ ��� + ���

↑  (1)

where εi is the emissivity of channel i, Bi(Ts) is the channel blackbody radiance at land surface 

temperature Ts, ���
↓  is the downward atmospheric thermal radiance, (1 − ��)���

↓  represents the 

downward atmospheric thermal radiance reflected by the land surface, τi is the upward atmospheric 

transmittance from the surface to the sensor, and ���
↑  is the upward atmospheric thermal radiance. 

As seen from Equation (1), retrieving LST from the thermal radiance measured at the TOA must 

eliminate the influences of both atmosphere and emissivity. For the atmosphere part, we use a 

modified SW algorithm to remove its effect, while for the emissivity part, land classification product 

and vegetation cover information are used to estimate LSE. Figure 1 presents the technique process 

of the study, in which atmospheric profiles and surface spectra are first used to generate the 

simulation dataset. The simulation dataset is then divided into several subranges, according to the 

view zenith angle (VZA), column water vapor (CWV) and brightness temperature (BT), and the 

algorithm coefficient is calculated in each subrange separately. Finally, LST of each case can be 

estimated by using the corresponding algorithm coefficient. Details are introduced in the following 

part. 

 

Figure 1. Technique process of the proposed algorithm. 

2.2. Algorithm Development 

Among the existing retrieval algorithms, the split‐window algorithm is an effective and widely 

used method for several sensors. With the assumption that LSE is known, LST can be retrieved by 

linear or nonlinear combinations of the brightness temperature at the TOA of two adjacent TIR 

channels to remove the atmospheric effect. A classical SW algorithm is applied to MODIS [16] and 

Landsat 8 [7], which can be expressed as follows: 
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where an (n = 0–7) are algorithm coefficients, which can be determined from the simulated dataset, i 

and j are two TIR channels centered at about 11 μm and 12 μm, Ti and Tj are the brightness 

temperatures of the two channels, ε is the average emissivity of the two channels (i.e., ε = (εi + εj)/2), 

and Δε is the emissivity difference between the two channels (i.e., Δε = εi – εj). 

Similar to the TIR channel, the MIR channel also contains the information of land surface thermal 

radiance and can be used for LST retrieval. Moreover, the MIR channel has lower atmospheric 

attenuation and sensitivity to LSE. Mushkin et al. [17] found that if LSE has an error at 0.02, then it 

will cause 1 K error for the retrieved results from the TIR channel, but it will only cause 0.5 K error 

for the retrieved results from the MIR channel. In spite of the advantages of the MIR channel, LST 

retrieval from MIR data is underdeveloped, because MIR data additionally contain reflected solar 

irradiance during the daytime, which is nearly equal to and difficult to be separated from the land 

surface thermal radiance. To avoid the influence of the solar irradiance, the MIR data obtained from 

the nighttime observation, rather than the daytime observation, is utilized to estimate LST and 

improve the retrieval accuracy. 

As stated above, the SLSTR has one MIR channel (Channel 7) and two TIR channels (Channels 

8 and 9), whose spectral responses are shown in Figure 2. Since Channels 8 and 9 are conventional 

SW channels, the SW algorithm for their daytime data can be developed according to Equation (2). 

As for the nighttime observation, Channel 7 can be additionally taken into account to make full use 

of the MIR channel information. Sun and Pinker [18] proposed a new form of SW algorithm that 

utilizes the difference between the brightness temperatures of MIR and TIR channels, thereby 

breaking the conventional SW pattern where only the differences between TIR brightness 

temperatures are used. Inspired by their research and in combination with the algorithm proposed 

by Wan [16], the current study presents the nighttime algorithm equation as follows: 
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where bn (n = 0–13) are algorithm coefficients obtained from the simulated dataset, Tk (k = 7–9) are the 

brightness temperatures of channel k, εij is the average emissivity of channels i and j, and Δεij is the 

emissivity difference between channels i and j. 

 

Figure 2. Spectral response filters of the middle infrared (MIR) and thermal infrared (TIR) channels 

of Sentinel‐3A Sea and Land Surface Temperature Radiometer (SLSTR). 
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2.3. Simulation Dataset 

To obtain the algorithm coefficients, 946 clear‐sky atmospheric profiles of Thermodynamic 

Initial Guess Retrieval Version 3 (TIGR‐3) [19,20], including tropical, mid‐latitude, and polar 

atmospheric information, were selected as input parameters for the atmospheric radiative transfer 

model MODTRAN (MODerate spectral resolution atmospheric TRANsmittance and radiance code) 

Version 5.2 to simulate ���
↓ , ���

↑ , and τi in the three channels of SLSTR [21]. The principle of selection 

was that one profile was affected by the cloud if any level of relative humidity of the profile was 

greater than 90%. Among the selected atmospheric profiles, CWVs ranged from 0 to 6.5 g/cm2, 

whereas air temperatures at the bottom layer of the profiles (T0) ranged from 230 to 310 K [22]. 

Considering the difference between surface temperature and air temperature during the day and 

night, LSTs for simulation input were set to nine levels for the daytime algorithm, ranging from T0 − 

10 to T0 + 30 K, with the step of 5 K, and set to seven levels for the nighttime algorithm, ranging from 

T0 − 20 to T0 + 10 K, with the step of 5 K. That aside, 60 emissivity spectra were selected for simulation 

from the Advanced Spaceborne Thermal Emission Reflection (ASTER) spectral library version 2 [23] 

and the University of California–Santa Barbara (UCSB) emissivity library [24], including 10 

vegetation, 20 soil, 20 rock, 5 water, and 5 mineral spectra. Moreover, due to the large field of view 

(about 60°) and ground swath (about 1400 km) of Sentinel‐3A images, data simulation was performed 

under five VZAs, i.e., 0°, 15°, 25°, 35°, and 45°, to reduce the angle effect on LST estimation. Finally, 

2,554,200 groups of simulated data were obtained for the daytime algorithm development (946 

atmospheric profiles × 9 LSTs × 60 emissivities × 5 VZAs), while 1,986,600 groups of simulated data 

were obtained for the nighttime algorithm development (946 atmospheric profiles × 7 LSTs × 60 

emissivities × 5 VZAs). 70% of the simulated data were selected randomly as a training set to construct 

the retrieval algorithm, and another 30% of the simulated data were used to test the algorithm. Fully 

considering different atmosphere, surface, and view conditions, both the training set and the test set 

could sufficiently represent all the possible combinations. 

2.4. Algorithm Coefficients and Analysis 

The algorithm coefficients were calculated for each VZA by regression analysis on the basis of 

the simulation dataset under each condition of VZA. Considering that atmospheric water vapor 

content had an enormous influence on thermal radiance and caused uncertainty to LST retrieval, the 

CWVs of the 946 atmospheric profiles were divided into four subranges, in which algorithm 

coefficients were calculated, respectively. In order to avoid the discontinuity of retrieval results 

caused by different CWV subranges, an overlap of 0.5 g/cm2 was set between two adjacent CWV 

subranges [7–9]. As a consequence, there were 812, 100, 76, and 51 profiles with CWV ranging from 

0 to 2.5 g/cm2, from 2 to 3.5 g/cm2, from 3 to 4.5 g/cm2, and from 4 to 6.5 g/cm2, respectively. 

Moreover, considering that LST might vary tremendously under different conditions, the 

simulated data were divided into several subranges, according to their temperature under each CWV 

subrange. Since the true LST was undetermined, brightness temperature (BT) was used for the 

division. Figure 3 shows the relationship between simulated LST and BT of the two TIR channels 

(denoted by BT8 and BT9, respectively). The root‐mean‐square error (RMSE) between simulated LST 

and BT was denoted by T_diff in Figure 3, from which it was found that BT8 was closer to LST, with 

a temperature difference of about 2.07 K. Therefore, BT8 was chosen for subrange division. For 

daytime and nighttime algorithms, BT8 was divided into four subranges, as follows: (0, 285) K, [285, 

300) K, [300, 315) K, [315, +∞) K and (0, 280) K, [280, 290) K, [290, 300) K, [300, +∞) K, respectively. As 

a result, the simulated data were divided into 160 subranges, i.e., 5 VZAs × 4 CWVs × 4 BT8s × 2 times 

(day and night). For each subrange, the algorithm coefficients of Equations (2) and (3) were calculated 

by regression analysis separately and stored in a lookup table. 
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Figure 3. Relationship between simulated land surface temperature (LST) and brightness 

temperature (BT) of the two TIR channels. 

Tables 1 and 2 show the coefficients and the corresponding RMSEs when VZA = 0° for the 

daytime and nighttime algorithms, respectively. Considering that the retrieval accuracy might be 

sensitive to the uncertainty of LSE, a random noise of Gaussian distribution with zero mean and 0.01 

standard deviation was introduced to LSE, and Equations (2) and (3) with original coefficients were 

then used to calculate a biased LST. The RMSEs with the random noise in LSE are also listed in Tables 

1 and 2. Figure 4 presents the histograms of LST residual errors (ΔT) for both algorithms. It can be 

discovered that the absolute value of most residual errors is less than 1 K. For the daytime algorithm, 

the ratio of |Δ�| < 1 K is 96.4%, while that for nighttime is 98.7%. Figure 5 presents the variation of 

the temperature RMSE (without noise) as the CWV changes under different VZAs. Results suggest 

that (i) the RMSE shows an increasing trend as the CWV increases, and decreases if the MIR channel 

is involved in the nighttime algorithm, especially with the case of a large CWV level; (ii) the RMSEs 

with noise are generally lower than 2 K for the daytime algorithm and 1.5 K for the nighttime 

algorithm, and the nighttime algorithm is less sensitive to the uncertainty of LSE; and (iii) a larger 

VZA leads to a larger RMSE. After constructing the algorithm, 30% of the simulated data are used as 

a test set to evaluate the algorithm. The test results are displayed in Figure 6. The retrieved LST and 

the simulated LST show a strong correlation with a small error. For the daytime algorithm, the 

regression determination coefficients are: R2 is 0.9996, bias is 0.0033 K, and RMSE is 0.49 K, whereas 

for the nighttime algorithm, R2 is 0.9997, bias is 0.0020 K, and RMSE is 0.38 K. It illustrates that LST 

can be estimated with the proposed algorithm, and the involvement of the MIR channel can reduce 

the algorithmic error and improve the retrieval accuracy in theory. 

Table 1. Coefficients and root‐mean‐square errors (RMSEs) of different subranges for the daytime 

algorithm where view zenith angle (VZA) = 0°. 

CWV 

(g/cm2) 
BT (K) a0 a1 a2 a3 a4 a5 a6 a7 

RMSE (K) 

Without 
noise 

With 
noise 

[0, 2.5] 

(0, 285) ‐3.062 1.015 0.167 ‐0.323 3.559 3.865 15.789 ‐0.181 0.21 1.32 

[285, 300) ‐4.826 1.020 0.192 ‐0.298 3.402 0.623 ‐5.283 0.055 0.33 1.43 

[300, 315) 2.899 0.994 0.191 ‐0.313 2.908 3.614 ‐13.992 0.144 0.31 1.75 

[315, +∞) 9.103 0.977 0.195 ‐0.319 2.548 3.524 ‐12.441 0.123 0.30 1.87 

[2, 3.5] 

(0, 285) 20.916 0.926 0.174 ‐0.263 5.756 ‐0.147 8.598 ‐0.254 0.43 1.27 

[285, 300) 13.663 0.951 0.187 ‐0.283 6.372 0.345 ‐0.756 ‐0.106 0.53 1.41 

[300, 315) 16.841 0.942 0.199 ‐0.299 5.041 1.398 ‐7.915 0.054 0.57 1.71 

[315, +∞) 25.420 0.915 0.214 ‐0.371 4.985 0.076 ‐1.549 0.036 0.51 1.93 

[3, 4.5] 
(0, 285) 47.842 0.829 0.155 ‐0.189 6.900 3.078 ‐5.235 ‐0.352 0.71 1.07 

[285, 300) 13.359 0.949 0.144 ‐0.178 6.660 6.447 ‐10.709 ‐0.042 0.59 1.12 
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[300, 315) 9.721 0.964 0.164 ‐0.194 5.689 3.657 ‐10.460 0.030 0.81 1.52 

[315, +∞) 63.312 0.796 0.236 ‐0.256 4.489 ‐2.393 ‐9.569 0.084 1.02 1.94 

[4, 6.5] 

(0, 285) ‐10.657 1.033 0.108 ‐0.117 6.780 ‐0.212 ‐8.853 ‐0.212 0.32 0.58 

[285, 300) ‐0.600 0.995 0.121 ‐0.120 6.558 5.241 ‐9.541 0.033 0.78 1.07 

[300, 315) 8.622 0.968 0.138 ‐0.106 5.732 4.703 ‐14.378 0.053 1.04 1.51 

[315, +∞) 203.901 0.637 ‐0.332 1.179 ‐44.482 47.653 ‐130.253 1.732 1.28 2.08 

Table 2. Coefficients and RMSEs of different subranges for the nighttime algorithm where VZA = 0°. 

CWV 
(g/cm2) 

BT (K) 

b0 b1 b2 b3 b4 b5 b6 RMSE (K) 

b7 b8 b9 b10 b11 b12 b13 
Without 

noise 

With 

noise 

[0, 2.5] 

(0, 280) 
‐3.050 1.015 0.165 ‐0.281 3.394 ‐0.032 30.614 

0.23 1.19 
‐0.366 ‐6.978 ‐4.598 0.074 6.010 4.417 ‐0.091 

[280, 290) 
1.036 0.999 0.183 ‐0.320 4.540 16.407 9.147 

0.37 1.49 
‐0.139 5.744 ‐2.027 0.089 ‐5.493 1.879 ‐0.078 

[290, 300) 
‐0.994 1.005 0.190 ‐0.297 4.420 ‐21.120 15.620 

0.32 1.29 
‐0.192 ‐8.156 2.550 ‐0.078 7.225 ‐3.717 0.106 

[300, +∞) 
‐2.965 1.014 0.196 ‐0.250 3.117 ‐30.338 13.061 

0.25 1.07 
‐0.140 ‐12.612 3.166 ‐0.101 11.758 ‐4.529 0.133 

[2, 3.5] 

(0, 280) 
16.807 0.941 0.160 ‐0.311 4.809 21.523 ‐7.853 

0.43 1.36 
‐0.079 14.058 5.224 0.024 ‐12.160 ‐3.424 ‐0.075 

[280, 290) 
15.340 0.947 0.163 ‐0.283 5.113 23.413 ‐16.580 

0.50 1.37 
0.132 14.299 3.267 0.053 ‐10.967 ‐0.761 ‐0.109 

[290, 300) 
10.520 0.962 0.175 ‐0.266 6.814 ‐13.047 16.083 

0.50 1.14 
‐0.409 1.226 7.296 ‐0.144 1.660 ‐5.080 0.094 

[300, +∞) 
‐9.796 1.030 0.203 ‐0.265 6.798 ‐38.554 35.950 

0.31 0.82 
‐0.572 ‐11.883 5.363 ‐0.138 13.938 ‐5.256 0.151 

[3, 4.5] 

(0, 280) 
13.462 0.951 0.082 ‐0.238 3.172 17.880 ‐10.185 

0.61 1.01 
‐0.186 4.671 7.400 ‐0.076 ‐8.581 ‐6.134 ‐0.063 

[280, 290) 
6.348 0.978 0.075 ‐0.218 5.772 17.963 3.681 

0.64 1.11 
‐0.195 7.061 10.284 ‐0.273 ‐8.638 ‐7.734 0.104 

[290, 300) 
‐2.472 1.006 0.121 ‐0.185 6.454 ‐2.422 9.853 

0.57 0.89 
‐0.378 3.098 9.329 ‐0.247 ‐0.664 ‐5.970 0.134 

[300, +∞) 
‐13.935 1.043 0.183 ‐0.172 7.051 ‐25.340 16.953 

0.35 0.70 
‐0.511 ‐5.771 5.698 ‐0.129 8.950 ‐4.591 0.123 

[4, 6.5] 

(0, 280) 
‐40.985 1.140 0.051 ‐0.156 2.083 11.440 ‐18.210 

0.17 0.46 
‐0.096 ‐7.460 4.087 ‐0.033 0.024 ‐4.227 ‐0.082 

[280, 290) 
‐31.370 1.110 ‐0.010 ‐0.136 5.085 20.570 6.600 

0.65 0.88 
‐0.363 ‐3.090 8.271 ‐0.392 ‐5.483 ‐7.983 0.167 

[290, 300) 
‐14.693 1.047 0.099 ‐0.121 8.147 ‐20.388 23.113 

0.57 0.58 
‐1.045 ‐6.059 13.139 ‐0.449 8.040 ‐9.678 0.302 

[300, +∞) 
‐32.582 1.102 0.141 ‐0.102 8.746 ‐22.234 12.728 

0.29 1.00 
‐0.708 ‐6.499 5.360 ‐0.132 9.772 ‐4.499 0.132 
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Figure 4. Histograms of LST residual errors for (a) daytime algorithm and (b) nighttime algorithm. 

 

Figure 5. Variation of the temperature RMSE (without noise) as the column water vapor (CWV) 

changes under different VZAs for (a) daytime algorithm and (b) nighttime algorithm. 

 

Figure 6. Algorithm test results for (a) daytime algorithm and (b) nighttime algorithm. 

2.5. Acquisition of Algorithm Input Parameters 

VZA, BT8, CWV, and LSE are the four vital input parameters for the practical application of the 

proposed LST retrieval algorithm. Among them, VZA images are provided in the SLSTR Level 1 

product at a 10‐km scale and can be resampled to a 1‐km scale on the basis of the pixel location in the 
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observed image. The BT8 can be directly obtained from surface thermal radiance. The water vapor 

information is also provided in the SLSTR Level 1 data, which is derived from the European Centre 

for Medium‐Range Weather Forecasts (ECMWF) [15]. Therefore, the estimation of LSE will be 

introduced in the following discussion. 

The classification‐based method and the vegetation‐index method are two frequently used 

methods for estimating LSE. Assuming that the same land cover type exhibits very similar emissivity, 

the classification‐based method is a simple but accurate method, as long as the land surface is 

properly classified, and the emissivity of each class is well known [3,24]. The vegetation‐index 

method is based on the relationship between LSE and the vegetation index, such as the normalized 

difference vegetation index (NDVI). This method assumes that the surface is only composed of soil 

and vegetation, and that LSE changes linearly with respect to the vegetation fraction in a pixel [25,26]. 

This study combines the two above‐mentioned methods to obtain a more accurate LSE. Considering 

the seasonal impact on the classification product, it is assumed that each land class consists of a 

background component and a vegetation component, according to its feature and structure. The LSE 

of one pixel changes with a changing vegetation fraction. Thus, the LSE of each pixel can be calculated 

as follows [27]: 

� = � + � �� ∙ �� ,   NDVI < NDVI� (barren soil) (4)

� = ��� + ��(1 − �) + 4d� ∙ � ∙ (1 − �),   NDVI� ≤ NDVI ≤ NDVI� (partly vegetated) (5)

� = �� + d�,   NDVI > NDVI� (fully vegetated) (6)

where aλ and c are coefficients transferring band reflectance ρλ to emissivity [26]. εv and εs are channel 

emissivities of the vegetation and background components, respectively, which can be estimated 

from various emissivity samples in the spectral library. dε is the emissivity increment from the cavity 

effect, caused by multiple scattering in the pixel [28]. f represents the fractional vegetation cover 

(FVC), which can be calculated from NDVI [29] as follows: 

� = �
NDVI − NDVI�

NDVI� − NDVI�

�
�

 (7)

where NDVIv and NDVIs are the NDVI of fully vegetated pixels and barren soil pixels, usually using 

the values of 0.86 and 0.2, respectively [30,31]. For the daytime observation, NDVI is calculated from 

the surface reflectance, which is obtained by applying atmospheric correction to the radiance 

observed at the TOA. For the nighttime observation, NDVI cannot be calculated from visual and near 

infrared data since no solar energy in those bands is available. In view of the fact that vegetation 

remains almost unchanged within a few days, the FVC image of the nighttime observation can be 

derived from the daytime observation, whose imaging time is close to it. 

The MODIS Land Cover Type Product (MCD12Q1) is used in this study. MCD12Q1 is created 

by supervised classification of MODIS reflectance data [32,33]. It provides global maps of land cover 

with 500‐m spatial resolution at annual time steps for six different land cover legends, including the 

International Geosphere–Biosphere Programme (IGBP) land cover classification [34,35], the 

University of Maryland (UMD) classification scheme [36], the Biome classification scheme [37], the 

LAI/fPAR Biome scheme [38], the Plant Functional Type scheme [39], and a new three‐layer legend 

based on the Land Cover Classification System (LCCS) from the Food and Agriculture Organization 

[40,41]. The first land cover legend of MCD12Q1 (i.e., IGBP) is used to obtain the LSE for the proposed 

algorithm, and it contains 17 land cover types globally. To obtain the component emissivity of each 

land cover type in the MIR and TIR bands, some emissivity samples of various land surfaces are 

selected from the spectral library [27]. Different land cover types and the estimated emissivities of 

the three bands are listed in Table 3.  
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Table 3. Component emissivities of different land cover types in the MIR and TIR bands. 

Land cover types 
εv εs 

Ch-7 Ch-8 Ch-9 Ch-7 Ch-8 Ch-9 

Evergreen Needleleaf Forests 0.981 0.983 0.982 0.855 0.970 0.975 

Evergreen Broadleaf Forests 0.984 0.983 0.982 0.855 0.970 0.975 

Deciduous Needleleaf Forests 0.981 0.983 0.982 0.855 0.970 0.975 

Deciduous Broadleaf Forests 0.984 0.983 0.982 0.855 0.970 0.975 

Mixed Forests 0.983 0.983 0.982 0.855 0.970 0.975 

Closed Shrublands 0.983 0.982 0.983 0.776 0.971 0.974 

Open Shrublands 0.983 0.982 0.983 0.776 0.971 0.974 

Woody Savannas 0.984 0.983 0.983 0.816 0.971 0.975 

Savannas 0.984 0.982 0.984 0.776 0.971 0.974 

Grasslands 0.984 0.982 0.984 0.776 0.971 0.974 

Permanent Wetlands 0.984 0.982 0.984 0.897 0.983 0.982 

Croplands 0.984 0.982 0.984 0.827 0.974 0.978 

Urban and Build‐up ‐ ‐ ‐ 0.931 0.959 0.966 

Cropland–Natural Vegetation Mosaics 0.984 0.982 0.984 0.827 0.974 0.978 

Snow and Ice ‐ ‐ ‐ 0.979 0.990 0.974 

Barren or Sparsely Vegetated 0.941 0.954 0.953 0.848 0.968 0.975 

Water Bodies ‐ ‐ ‐ 0.973 0.991 0.986 

3. Application and Validation 

3.1. Application in LST Retrieval 

The proposed algorithm is applied when retrieving the LSTs of two study areas for both daytime 

and nighttime observations as examples. The first study area is located in the north of China (denoted 

by Region 1), as shown in Figure 7a. The land of this region mostly contained forest (dark red) in the 

middle part, cropland (red) in the southeast part, grassland (light red) in the northwest part, urban 

areas (gray), and water surface (dark). The daytime and nighttime images were acquired on 24 and 

23 September 2018, respectively. The LST retrieval results of the daytime and nighttime observations 

are shown in Figure 7b,c, respectively. Figure 7d,e shows the corresponding LST histograms. The 

second study area is located in the south of the UK (denoted by Region 2; see Figure 8a) and is mainly 

covered by forest, cropland, grassland, ocean surface, and built‐up area. The daytime and nighttime 

images were acquired on 27 and 28 September 2018, respectively. The LST retrieval results of the 

daytime and nighttime observations are shown in Figure 8b,c, respectively, and the corresponding 

LST histograms are presented in Figure 8d,e. In Region 1, the LST of daytime and nighttime 

observations ranged from 280 to 310 K and 270 to 300 K, respectively. In the daytime image (Figure 

7b), the LST of urban pixels was higher than that of the cropland, grassland, and water surface, but 

in the nighttime image, the LST of water surface got the largest value, because the water had heat 

capacity, and its cooling rate was consequently lower than that of other land covers. The urban 

surface still had larger LST in the nighttime image, due to the heat island effect. In Region 2, the urban 

surface similarly presented larger LST in the daytime than the nonurban areas and ocean surface, 

whereas the ocean surface had a higher temperature than the land surface in the nighttime. Note that 

although the split‐window algorithm was primarily proposed to retrieve land surface temperature, 

it is also applied to estimating the surface temperature of the coastal ocean. In this case, the ocean 

surface atmosphere was assumed to have no remarkable difference to the land surface, and the pixel 

emissivity was regarded as that of a water body in Table 3. 
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Figure 7. Application in Region 1. (a) Location and false‐color image; (b) daytime LST result; (c) 

nighttime LST result; (d) daytime LST histogram; (e) nighttime LST histogram. 
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Figure 8. Application in Region 2. (a) Location and false‐color image; (b) daytime LST result; (c) 

nighttime LST result; (d) daytime LST histogram; (e) nighttime LST histogram. 

3.2. Validation using Ground-Based Measurement 

To validate the retrieval result and evaluate the algorithm accuracy, the surface temperature is 

calculated from the ground flux measurement of several observation sites and regarded as the 

reference value of LST to make the comparison. Four Surface Radiation Budget Network (SURFRAD) 

sites in the USA [42] and three Peking University Land Surface Temperature Network (PKULSTNet) 

sites in China, whose detailed information is listed in Table 4, are used to validate the result. The land 

cover types of the seven sites are cropland or grassland, which is relatively homogeneous and is 

beneficial for validating the retrieved LST. 

For the SURFRAD sites, the LST can be calculated from longwave radiation measurement at an 

uncertainty of 0.2–0.5 K, given that the error of broadband emissivity is about ±0.02. Moreover, the 

pyrgeometer measurement error is about 3–5 W/m2, equivalent to an error of 0.5–0.8 K in 

temperature. Therefore, the total ground LST error can be estimated as � = ���
� + ��

�, which ranges 

from 0.53 to 0.94 K. The sites collect surface upward thermal infrared irradiance �↑ and atmospheric 

downward thermal infrared irradiance �↓ at the wavelength range of 3–50 μm per minute [42]. On 

the basis of the thermal radiative transfer equation of the near surface (in Equation (1), �� = 1 and ���
↑  

= 0) and the Stefan–Boltzmann law, the ground‐measured reference surface temperature can be 

calculated as follows: 

������� = �
�↑ − (1 − �̄)�↓

�̄�
�

�
�

 (8)

where  is the Stefan–Boltzmann constant with a value of 5.67 × 10‐8 W·m‐2·K‐4, and �̄ is the ground 

broadband emissivity (BBE). We applied the technique in Equations (4)–(6) to estimate the BBE for 

the ground measurement, but unlike the pixel emissivity, the broadband (8–13.5 μm) component 

emissivity was used (rather than the channel component emissivity) for BBE calculation, which 
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proved to be the best for estimating the net longwave radiation under clear‐sky conditions. [27,43]. 

The NDVI and FVC for the ground observation are obtained from the corresponding satellite data. 

For the PKULSTNet sites, the radiometer measurement error is 0.113 K, according to the 

instrument document. With the addition of the uncertainty of broadband emissivity, as mentioned 

above (0.2–0.5 K), the total ground LST error is about 0.23–0.51 K, in theory. The radiometers of 

PKULSTNet are sensitive to the wavelength, ranging from 8 to 14 μm, but unlike the SURFRAD sites, 

the measurement outputs of the PKULSTNet sites are the ground‐leaving brightness temperature T1 

and the atmosphere brightness temperature T2, rather than upward and downward irradiance. The 

integral of the Planck’s law over the wavelength from 8 to 14 μm can be defined as 

� = ���� (9)

where M is the total irradiance over 8–14 μm, ' is a constant, which is not equal to the Stefan–

Boltzmann constant, and T is temperature. Thus, Tground can be calculated as 

������� = �
����

� − (1 − �̄)����
�

�̄��
�

�
�

= �
��

� − (1 − �̄)��
�

�̄
�

�
�

 (10)

Because the result of Equation (10) is independent of the value of ', we think that the calculation of 

Tground will not be strongly influenced by using a spectral wavelength from 8 to 14 μm. 

Over the seven sites, a total of 327 clear‐sky SLSTR images were collected in 2017 and 2018, 

including 148 daytime images and 179 nighttime images, and their LSTs were then retrieved using 

the above proposed daytime and nighttime split‐window algorithms, respectively. Meanwhile, in 

order to make a direct comparison, the corresponding ground‐measured LST was calculated from 

Equations (8) and (10). Because the time of ground and satellite measurement cannot match exactly, 

the average of the 10‐min ground‐measured temperature before and after satellite overpassing was 

used as the reference surface temperature. Figure 9 displays the scatter diagrams between satellite‐

retrieved LST (denoted by LST_retrieval) and ground temperature (denoted by LST_ground) in both 

daytime and nighttime observations. Most points were along the 1:1 line. For the daytime and 

nighttime algorithm, the temperature bias was 0.62 K and 0.79 K and the RMSE was 2.24 K and 1.77 

K, respectively. The above‐mentioned results indicated that the nighttime algorithm showed higher 

retrieval accuracy (about 0.5 K) than the daytime algorithm. However, the temperature bias, larger 

than 0 for both daytime and nighttime, meant that the LST from the satellite was slightly 

overestimated, especially for high temperature in the nighttime. 

Table 4 also lists the temperature bias and RMSE of each site. Three sites BND, SXF, and IMB 

had a relatively smaller temperature error in the nighttime, whereas the sites GCM and PSU had an 

RMSE larger than 2.0 K. Meanwhile, in the daytime, the sites GCM, SXF, and HBC had a temperature 

error lower than 2.0 K, and the rest had an error larger than 2.0 K, with the BND site having the 

largest error of about 3.0 K. The bias of each site was not as high as the RMSE. Five sites in seven had 

a bias less than 1.0 K, even with some near 0. According to the present validation results, the 

temperature error from the proposed split‐window algorithms probably ranged from 1.5 to 2.5 K. 

However, the temperature error may be caused by the uncertainty of the split‐window algorithm 

itself and the input parameters (water vapor and emissivity), and may also be affected by the surface 

inhomogeneity in the SLSTR 1‐km pixel scale that resulted in the ground‐point measurement not 

being able to stand for the pixel ground LST.  

Table 4. Detailed information and validation results of each ground site. 

Site names Project Latitude Longitude 
Land 

cover 

Bias (K) 

day/night 

RMSE (K) 

day/night 

Bondville_IL (BND) SURFRAD 40.05°N 88.37°W Cropland 1.18/0.36 2.99/1.02 

Goodwin_Creek_MS (GCM) SURFRAD 34.25°N 89.87°W Pasture 0.03/1.92 1.60/2.51 

Penn_State_PA (PSU) SURFRAD 40.72°N 77.93°W Cropland 1.03/1.79 2.15/2.88 

Sioux_Falls_SD (SXF) SURFRAD 43.73°N 96.62°W Cropland 0.96/0.77 1.62/1.27 

Hebei_Chengde (HBC) PKULSTNet 42.41°N 117.25°E Grassland ‐0.96/0.56 1.47/1.68 



Remote Sens. 2019, 11, 650 14 of 17 

 

Henan_Hebi (HNH) PKULSTNet 35.72°N 114.32°E Cropland ‐0.10/0.73 2.41/1.60 

InnerMongolia_Baotou (IMB) PKULSTNet 41.35°N 111.21°E Grassland 1.81/‐0.11 2.52/1.42 

 

Figure 9. Ground validation in different sites for (a) daytime algorithm and (b) nighttime algorithm. 

4. Discussions and conclusions 

The current study proposed a modified SW algorithm to retrieve LST from Sentinel‐3A SLSTR 

MIR and TIR data to make full use of the spectral information and improve the retrieval accuracy. 

For the daytime observation, only TIR data (Channels 8 and 9) were used to develop the algorithm, 

similar to the conventional SW algorithm. On the other hand, for the nighttime observation, the MIR 

data (Channel 7), with a higher atmospheric transmittance and a lower sensitivity to land surface 

emissivity, was also considered to establish a new equation of the three‐channel SW algorithm. To 

develop the new algorithm, atmospheric radiative transfer model MODTRAN was applied to 

generate quantities of simulated data, from which the algorithm coefficients were obtained by 

regression analysis. In order to improve the accuracy of the algorithm, the dataset was then divided 

into several subranges, according to viewing zenith angle, atmospheric water vapor, and observed 

brightness temperature, and consequently, the algorithm coefficients were calculated in each 

subrange separately. Simulation results showed that the proposed algorithm could estimate LST with 

accuracy better than 1 K on average.  

The algorithms were applied to real images of northern China and southern UK, and the 

retrieval LST captured the surface features for both daytime and nighttime. For validation and 

evaluation, a total of 327 clear‐sky Sentinel‐3A SLSTR images, including 148 daytime and 179 

nighttime images, were collected, and their retrieved LST was compared with ground‐measured 

LSTs over seven sites. Results show that for the daytime algorithm, the bias of LST was 0.62 K and 

the RMSE of LST was 2.24 K, whereas for the nighttime algorithm, the bias and RMSE were 0.79 K 

and 1.77 K, respectively. Results showed that LST could be estimated with an error mostly within 1.5 

K to 2.5 K, using the proposed algorithm, and the nighttime algorithm involved with MIR data had 

a lower error (about 0.5 K) than the daytime algorithm. 

More investigations are expected to improve the LST retrieval accuracy. Future work will focus 

on investigating the influence of the atmosphere and the additional channel. First, as mentioned 

above, in the algorithm development, there were 812 atmospheric profiles whose CWV was less than 

2.5 g/cm2 among all of the 946 profiles. Therefore, dry atmospheric profiles took the major part in the 

simulation dataset, and the algorithm was established mainly based on dry atmosphere. The retrieval 

accuracy may decrease when the water vapor content is high. To minimize this effect, more 

representative profiles should be applied to optimize the current algorithm in future work. Moreover, 

since it is difficult to obtain the aerosol loading from SLSTR observation, especially for the nighttime, 

the current paper only used a default rural aerosol model (with a visibility of 23 km) in the simulation 

dataset for algorithm development. Although the error caused by the aerosol is slight compared with 

water vapor, it still has an impact on LST retrieval accuracy [44]. Therefore, further investigation will 
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concern the impact of the aerosol or thin cloud on the retrieval result. Moreover, some local split‐

window algorithms that only use atmospheric profiles and surface emissivity over a specified area 

are promising for retrieval improvement. Although more channels can provide additional spectral 

information and the MIR channel has its unique advantages, the error introduced by using more 

channels should also be emphasized. More channels may bring additional errors, like observation, 

radiometric calibration, and LSE estimation error. Although the nighttime algorithm shows a better 

performance than the daytime algorithm, it remains necessary to find out how the additional channel 

influences the retrieval result, as it is the basis to further improve the algorithm. 
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