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Abstract. Forward-invariant peeling aims to produce forward-invariant subset from a given
set in phase space. The structure of chemical kinetic equations allows us to describe the general
operations of the forward-invariant peeling. For example, we study a simple reaction network
with three components A1, A2, A3 and reactions A1 → A2 → A3 → A1, 2A1 ⇋ 3A2 (without
any stoichiometric conservation law). We assume that kinetics obey the classical mass action
law and reaction rate constants are positive intervals 0 < ki min ≤ ki ≤ ki max < ∞. Kinetics of
this system is described by a system of differential inclusions. We produce forward-invariant sets
for these kinetic inclusions from the sets {c|ci ≥ 0,

∑
ci ≥ ε} by the forward-invariant peeling

(for sufficiently small ε > 0). In particular, this construction proves persistence of this kinetic
system (a positive solution cannot approach the origin even asymptotically, as t → ∞).
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1. Introduction

1.1. The problem

Differential inclusions for chemical kinetics with a given reaction mechanism, unknown rate constants
but known thermodynamic data were introduced in 1979 [3] (for further references, generalizations and
examples see [2, 4, 5, 7, 8, 10]; our works were mostly inspired by A.I.Volpert [9]). Solutions to these
inclusions are forward-invariant sets of the kinetic equations.

In many important cases, the cones of the possible velocities in the concentration spaces are piecewise
constant (for systems with a given reaction mechanism and the complex balance condition but unknown
values of reaction rate constants, for example [7]). Two main approaches to evaluation of solutions to
these kinetic inclusion have been proposed. If we start from an initial point and build the solutions
stepwise by adding the cones of the possible velocities and intersection with the compartments where
these cones are constant then the result is the minimal forward-invariant set which includes the initial
point. The dual approach is the so-called forward-invariant peeling: we start from a domain in the
concentration space and then delete some parts of this set (the ‘peel’ or the ‘rind’) to make it invariant
[7].
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The goal of this note is to demonstrate how the procedure of forward-invariant peeling works on a
simple but not yet trivial example. For this purpose, we take a system from a recent paper [8]

A1
k1→A2

k2→A3
k3→A1, 2A1

k4

⇋

k−4

3A2 (1.1)

with the classical mass action law and interval constants 0 < min ki ≤ ki ≤ max ki < ∞. Consider the
kinetic equations with such interval constants and classical mass action law. We will demonstrate how
to use peeling for solution of the persistence problem for this system: is it possible that the solution
of the differential inclusion with these interval constants starting from a positive vector will go to zero
when t → ∞? This question for that system was considered recently as an unsolved problem [8]. The
solution was demonstrated in recent preprint [7]. The goal of this note is rather modest in the light of
the general theory of toric inclusions announced very recently [1] but I believe that the publication of the
straightforward analysis of an example of forward-invariant peeling still makes sense.

1.2. Mass action law

The list of components is a finite set of symbols A1, . . . , An.
A reaction mechanism is a finite set of the stoichiometric equations of elementary reactions:

∑

i

αρiAi →
∑

i

βρiAi (1.2)

where ρ = 1, . . . ,m is the reaction number and the stoichiometric coefficients αρi, βρi are nonnegative
numbers. Usually, these numbers are assumed to be integer but in some applications the construction
should be more flexible and admit real nonnegative values. Let αρ, βρ be the vectors with coordinates
αρi, βρi correspondingly.

A stoichiometric vector γρ of the reaction in Equation (1.2) is a n-dimensional vector γρ = βρ − αρ

with coordinates
γρi = βρi − αρi (1.3)

that is, “gain minus loss” in the ρth elementary reaction. We assume αρ 6= βρ to avoid trivial reactions
with zero γρ.

A non-negative intensive variable, the reaction rate rρ, corresponds to each elementary reaction.
The kinetic equations for a homogeneous system in the absence of external fluxes are

dN

dt
= V

∑

ρ

rργρ. (1.4)

If the volume is not constant then the equations for concentrations include V̇ and have different form
(this is typical for combustion reactions, for example). In our case study we assume that the volume is
constant and the equation for concentration can be used

dc

dt
=
∑

ρ

rργρ. (1.5)

Mass Action Law (MAL) gives a representation of the reaction rate as the functions of concentrations:

rρ = kρ

n
∏

i=1

c
αρi

i , (1.6)

where kρ are kinetic constants (they depend on the temperature but not on the concentrations).
For the intervals of kinetic constants, we work with differential inclusions

dc

dt
∈
∑

ρ

rργρ; min kρ ≤ kρ ≤ max kρ (1.7)
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Figure 1. Kinetic inclusion for first order kinetics with three components and given
equilibrium. The triangle of concentrations is split into compartments by the partial
equilibria lines. The corresponding cones of possible vectors ċ (the angles) for given
equilibrium are piecewise constant (without any assumption of detailed balance).

2. A toy example

2.1. The system

Let us consider a reaction mechanism (1.1) [8].

The stoichiometric vectors of the reactions are

γ1 =





−1
1
0



 ; γ2 =





0
−1
1



 ; γ3 =





1
0
−1



 ; γ4 = γ−4 =





−2
3
0



 ; (2.1)

The reaction rates are: r1 = k1c1, r2 = k2c2, r3 = k3c3, r4 = k4c
2
1, r−4 = k−4c

3
2

The chemical kinetic inclusions for the given interval of constants are

dc

dt
∈ k1c1





−1
1
0



+ k2c2





0
−1
1



+ k3c3





1
0
−1



+ (k4c
2
1 − k−4c

3
2)





−2
3
0



 , (2.2)

where ki ∈ [min ki,max ki].

This system has no linear conservation law (like mass balance). In chemical kinetics such systems
might appear as subsystems of larger systems. For example, we can assume that the nonlinear reaction
2A1 ⇋ 3A2 includes one more reagent, B: 2A1 +B ⇋ 3A2 and the concentration of B is kept constant.

The systems with total mass balance cannot approach zero from a positive initial state, this means, it is
persistent. Without such a conservation law persistence depends on the reaction mechanism. Nevertheless,
we will demonstrate that solution of inclusion 2.2 cannot tend to zero from positive initial conditions.
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Figure 2. Partial equilibria of the reversible cycle with interval restrictions on the
equilibrium constants. The lines of partial equilibria Ai ⇋ Aj , which correspond to the
end of the intervals of equilibrium constants, split the triangle into several compartments.
The borders of these compartments are combined from the intervals of the dashed lines.
These dashed lines correspond to the minima and maxima of the equilibrium constants
κj/κ−j . In each compartment, the cone (the angle) of possible directions of ċ is given.
This is a proper cone (an angle that is less than π) outside the equilibria strips, a halfplane
in an equilibrium strip of a single reaction, and a whole plane in the intersection of two
such strips. The area of the possible equilibria (the angle of possible directions of ċ is
the whole plane) is outlined by bold line and colored in green.

2.2. Transformation to fully reversible system

Let us use the local equivalence of reversible and general Markov chains with the same equilibrium [6]
(this is a particular case of local equivalence of systems with detailed and complex balance [7]) and
represent the system (2.2) as a particular case of differential inclusion for a reversible reaction network
A1 ⇋ A2 ⇋ A3 ⇋ A1, 2A1 ⇋ 3A2 (with possible extension of the interval of constants).

For every first order kinetics with given equilibrium the velocity vector ċ at each state c may be
expressed as a velocity vector for a first order system with detailed balance and the same equilibrium
(the choice of this system with detailed balance depends on the state c). The cone of the possible velocity
vectors is piecewise constant (Fig. 1).

The equilibrium concentrations c∗i in the irreversible cycle satisfy the following identities:

k1c
∗

1 = k2c
∗

2 = k3c
∗

3,
c∗i
c∗j

=
kj
ki

Instead of the irreversible cycle of linear reactions we will take the reversible cycle

A1

κ1

⇋
κ−1

A2

κ2

⇋
κ−2

A3

κ3

⇋
κ−3

A1

with the interval restrictions on the equilibrium constants (the ratios of the reaction rate constants κj/κ−j)

min k2
max k1

≤ κ1

κ−1
≤ max k2

min k1
,

min k3
max k2

≤ κ2

κ−2
≤ max k3

min k2
,

min k1
max k3

≤ κ3

κ−3
≤ max k1

min k3
(2.3)

The detailed balance condition should also hold for the constants κ±j :

κ1κ2κ3 = κ−1κ−2κ−3
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Figure 3. The equilibrium strip of the reaction 2A1 ⇋ 3A2 (yellow) and the area where
∑

i ċi > 0 (blue) rescaled from the triangle with
∑

ci = ε to the unit triangle

In the graphic illustrations below we use the symmetric intervals for κi/κ−i in the form

1

ω
≤ κ1

κ−1
≤ ω

for some ω > 1. Every interval could be included into such a symmetric one. Therefore, if we demonstrate
persistence for the systems with symmetric intervals then it the persistence for all positive intervals is
also proven.

The equilibria for this cycle satisfy the conditions

κ1c
∗

1 = κ−1c
∗

2, κ2c
∗

2 = κ−2c
∗

3, κ3c
∗

3 = κ−3c
∗

1

.

These conditions provide the same range of equilibrium concentrations for the reversible and irreversible
cycles. Therefore, the possible value of ċ for the irreversible cycle in the given interval of reaction rate
constants always belongs to the cone of possible values of ċ of the reversible cycle under given restrictions.

For the reversible cycle the reaction rates are

r1 = κ1c1 − κ−1c2, r2 = κ2c2 − κ−2c3, r3 = κ3c3 − κ−3c1

The differential inclusion for the linear cycle is represented in Fig. 2. There are three types of areas:
(i) area where the equilibria may be located and the direction of ċ may coincide with any vector of the
linear subspace

∑

i ċi = 0, (ii) areas where direction of one reaction is indefinite but the signs of two other
reactions rates are fixed, and (iii) areas where signs of all reaction rates are fixed. The cones (angles) of
possible vectors ċ are drown in Fig. 2.

2.3. Separation of equilibria for different subsystems near origin

For the linear system the scheme presented in Fig. 2 does not depend on the positive value of the balance
∑

i ci = ε. We can just rescale ci ← ci/ε and return to the unit triangle with the unit sum of ci. The
situation is different for the nonlinear reaction 2A1 ⇋ 3A2. Consider the “equilibrium strip” where the
reaction rate r4 = k4c

2
1 − k−4c

3
2 may be zero for the admissible reaction rate constants:
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V0234:  

Figure 4. Faces of the peeled invariant set in the central projection onto unit triangle.
The borders between faces are highlighted by bold.

min k−4

max k4
≤ c21

c32
≤ max k−4

min k4

Let us take this strip on the plane
∑

i ci = ε and return it to the unit triangle by rescaling (ci ← ci/ε).
For small ε this strip approaches the [A2, A3] edge of the triangle. It is situated between the line

c1 =
√
ε

√

max k−4

min k4
(1− c3)

3/2

and the segment [A2, A3]. Further we use the notation ϑ for the coefficient in this formula:

ϑ =
√
ε

√

max k−4

min k4

The line

c1 = ϑ(1− c3)
3/2 (2.4)

separates the equilibrium strip of the reaction 2A1 ⇋ 3A2 (where r4 = 0 for some admissible combinations
of the reaction rate constants) from the area where r4 > 0 (i.e. k4(εc1)

2−k−4(εc2)
3 > 0 for all admissible

k4, k−4. (We use the rescaling from the triangle with
∑

ci = ε to the unit triangle without further
comments.)

This line is tangent to the segment at the vertex A3 (Fig. 3). On the other side of the line the time
derivative of

∑

i ci is positive:

∑

i

ċi = r4 > 0
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2.4. Faces of peeled set and separation from origin

Let us describe first the structure of the peeled set. Select for peeling the set U = {c | ∑i ci ≥ ε, ci ≥ 0}.
The structure of peeling scaled to c1 + c2 + c3 = 1 is presented in Fig. 4 It appears that the piecewise
linear peeling is sufficient. There are five faces different from the coordinate planes. The face F0 is a
polygon on the plane

∑

ci = 1. The face F1 is situated at the A2 corner. It is produced by the peeling
parallel to Span{γ3, γ4}. The plane of F1 is given by the equation 3c1+2c2+3c3 = const. The face F2 is
presented by a parallelogram at the middle of the edge [A2, A3] (Fig. 4). It covers the intersection of the
equilibrium strips of the reactions 2A1 ⇋ 3A2 and the reaction A2 ⇋ A3. F2 is produced by the peeling
parallel to Span{γ2, γ4}. The plane is given by the equation 3c1+2c2+2c3 = const. Its intersection with
the plane c1 + c2 + c3 = 1 is a straight line c1 = c◦1, c2 + c3 = 1− c◦1 for a sufficiently small c◦1 > 0.

The final fragment of peeling is situated near the vertex A3 (Fig. 4). It consists of two triangles. The
first (F3) is a fragment of a plane c1 + c2 + vc3 = const (0 < v < 1). Parameter v is defined from the
condition of positive invariance below.

The second triangle (F4) situated near the vertex A3 is parallel to γ4 and the common edge with
F3. The general plane parallel to γ4 is given by the equation 3c1 + 2c2 + lc3 = D. We will define the
parameters l and D from the vertices of the face F3,

Let us define the parameters of this peeling. At the A2 corner the peeling is parallel to Span{γ3, γ4}.
The plane can be given by the equation 3c1+2c2+3c3 = const. The edge between this face and the face
∑

ci = 1 belongs to the straight line c2 = c◦2, c1 + c3 = 1− c◦2. The level c◦2 should be selected above all
the equilibria of the linear reactions (Fig. 2) but below the intersection of the curve (2.4) with the right

border of the equilibrium strip of the reaction A1 ⇋ A3 given by the equation c3 = c1 max
{

κ−3

κ3

}

. For

the intersection we have

c3 = ϑmax

{

κ−3

κ3

}

(1− c3)
3/2

Therefore, at this point

c3 < ϑmax

{

κ−3

κ3

}

and c1 < ϑ on the line (2.4). Therefore, we can select

c◦2 = 1− ϑ

(

max

{

κ−3

κ3

}

+ 1

)

This c◦2 is smaller than the value of c2 at the intersection and for sufficiently small ϑ, the line c2 = c◦2 is
close to the vertex A2 and does not intersect the area of possible equilibria of linear reactions.

Consider intersection of the straight line c2 = c◦2, c1 + c3 = 1 − c◦2 with the curve (2.4) and evaluate
the value of c1 at this intersection from above: c1 = ϑ(c◦2 + c1)

3/2, c1 < ϑ, hence, c1 < c◦1 = ϑ(c◦2 + ϑ)3/2.
Thus, the vertex V012 at the intersection of three faces, F0, F1, and F2 is selected as (c◦1, c

◦
2, c

◦
3), where

c◦1 = ϑ

(

1− ϑmax

{

κ−3

κ3

})3/2

c◦2 = 1− ϑ

(

max

{

κ−3

κ3

}

+ 1

)

c◦3 = 1− c◦1 − c◦2 = ϑ

(

1 + max

{

κ−3

κ3

}

−
(

1− ϑmax

{

κ−3

κ3

})3/2
)

To check that this point is outside the equilibrium strip of the reaction A1 ⇋ A3, we calculate

c◦3
c◦1

=
1 +max

{

κ−3

κ3

}

(

1− ϑmax
{

κ−3

κ3

})3/2
− 1 > max

{

κ−3

κ3

}
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The next group of parameters we have to identify are the coordinates of the vertex V0234 (c′1, c
′
2, c

′
3)

at the intersection of four faces F0, F2, F3, and F4. We will define it as the intersection of F0, F2, and
F3 and then use its coordinated for definition of parameters of F4. One coordinate, c′1 is, obviously,
c′1 = c◦1 because the intersection of F2 and F0 is parallel to γ2, i.e. it is parallel to the edge [A2, A3] of
the unit triangle and c1 is constant on this edge. Another coordinate, c′3 can be easily determined from
the condition that the line c3 = c′3 in the unit triangle should not intersect the strips of equilibria for the
reactions A2 ⇋ A3 and A1 ⇋ A3. Immediately, these condition give the inequalities that should hold for
all admissible reaction rate constants:

c′3 >
κ−3

κ3 + κ−3
, c′3 >

κ2

κ2 + κ−2

Finally,

c′3 > max







1

min
{

κ3

κ−3

}

+ 1
,

1

1 + min
{

κ−2

κ2

}







We can take c′3 between this maximum and 1, for example we propose

c′3 =
1

2
+

1

2
max







1

min
{

κ3

κ−3

}

+ 1
,

1

1 + min
{

κ−2

κ2

}







For sufficiently small ϑ, the inequality c′3 + c◦1 < 1 holds, and we can take c′2 = 1− c′3 − c◦1 > 0.
If we know c′3 and v then we know the equation of the plane F4:

c1 + c2 + vc3 = 1− (1− v)c′3

We also find immediately the coordinates of the vertex V34, the intersection of F3 (and F4) with the
coordinate axis A3. This vertex is (0, 0, 1

v (1− c′3) + c′3).
Let us define the parameters l and D for the face F4. This face should include the vertices V0234

(c◦1, c
′
2, c

′
3) and V34 (0, 0, 1

v (1− c′3) + c′3). Therefore,

l = v

(

2 +
c◦1

c◦1 + c′2

)

, D = 3c◦1 + 2c′2 + lc′3

To demonstrate the positive invariance of the peeled set we have to evaluate the sign of the inner
product of ċ onto the inner normals to the faces on the faces.

The time derivatives of the concentrations are

ċ1 = −r1 + r3 − 2r4, ċ2 = r1 − r2 + 3r4, ċ3 = r2 − r3

The signs of some reaction rates are unambiguously defined on the faces:

– On F0 r4 > 0;
– On F1 r1 < 0, and r2 > 0;
– On F2 r1 < 0, and r3 > 0;
– On F3 r2 < 0, r3 > 0, and r4 > 0;
– On F4 r1 < 0, r2 < 0, and r3 > 0.

The inner products of ċ onto the inner normals to the faces are:

– On F0 d
dt (c1 + c2 + c3) = r4 > 0;

– On F1 d
dt (3c1 + 2c2 + 3c3) = −r1 + r2 > 0;

– On F2 d
dt (3c1 + 2c2 + 2c3) = −r1 + r3 > 0;
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– On F3 d
dt (c1 + c2 + vc3) = (1− v)(−r2 + r3) + r4 > 0 (0 < v < 1);

– On F4 d
dt (3c1 + 2c2 + lc3) = −r1 − (2− l)r2 + (3− l)r3 < 0 if 0 < l < 2.

Thus, the peeled set is positively invariant if 0 < l < 2. This means

0 < v <
1

1 +
c◦
1

2(c◦
1
+c′

2
)

It is sufficient to take 0 < v < 2
3 because of obvious inequality.

We have demonstrated that for any given range of positive kinetic constants any solution of the kinetic
inclusion for the system (1.1) cannot approach the origin when t→∞. We have constructed a piecewise-
linear surface that isolated the ε-vicinity of the origin from the outside. If ε > 0 is sufficiently small then
this surface cannot be intersected by the solutions of the kinetic inclusion in the motion from the outside
to the origin.

3. Discussion

The forward-invariant peeling is a universal procedure for producing forward-invariant sets for kinetic
equations and inclusions. The peeling procedure used in this toy-example for isolation from zero differs
from the general greedy peeling [7]. (It is a simplified version of the greedy peeling.) We have guessed
the structure of the corner near A3 and build two plain faces, F3 and F4, instead of a sequence of the
curvilinear “cylindric” faces. This piecewise peeling is not minimal but is simpler for drawing.

Acknowledgements. I am very grateful to Anne Shiu for encouraging comments.
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