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Abstract

Representations of Quantum Conjugacy Classes of

Non-Exceptional Quantum Groups

Thomas Stephen Ashton

Let G be a complex non-exceptional simple algebraic group and g its Lie algebra. With every point

x of the maximal torus T ⊂ G we associate a highest weight module Mx over the Drinfeld-Jimbo

quantum group Uq(g) and an equivariant quantization of the conjugacy class of x by operators

in End(Mx). These equivariant quantizations are isomorphic for x lying on the same orbit of the

Weyl group, and Mx support different exact representations of the same quantum conjugacy class.

This recovers all quantizations of conjugacy classes constructed before, via special x, and also

completes the family of conjugacy classes by constructing an equivariant quantization of “border-

line” Levi conjugacy classes of the complex orthogonal group SO(N), whose stabilizer contains a

Cartesian factor SO(2)× SO(P ), 1 6 P < N , P ≡ N mod 2.

To achieve this, generators of the Mickelsson algebra Zq(g, g
′), where g′ ⊂ g is the Lie subalgebra

of rank rkg′ = rkg−1 of the same type, were explicitly constructed in terms of Chevalley generators

via the R-matrix of Uq(g).
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Chapter 1

Introduction

This is a PhD dissertation in equivariant deformation quantization of an important family of

homogeneous spaces: semi-simple conjugacy classes of simple complex algebraic groups of infinite

series. We treat them in the spirit of classical algebraic geometry, based on the fact that they

exhaust the list of closed conjugacy classes, [81]. The main idea is to realize a quantized polynomial

ring, by operators in a module over the total quantum group, canonically associated with every

point on the Weyl group orbit in a fixed maximal torus.

The concept of quantization goes back to the origin of quantum mechanics in the early 20th

century, when the physical world revealed its quantum nature in experiments with electrons, light

waves, [61], and black body radiation [75]. It was then realized that the most adequate descrip-

tion of physical processes of micro scales was in terms of vectors in Hilbert spaces and self-adjoint

operators acting upon them, [15, 20]. Two formulations of quantum mechanics: the matrix formal-

ism of Heisenberg [14] and wave approach of Schrödinger [76] signified a revolution in traditional

mathematical apparatus used for the description of the physical world and takes into account the

Heisenberg uncertainty principle [46].

A conventional state space of classical mechanics is a smooth manifold X equipped with a

Poisson structure, while the algebra of physical observables like coordinates, momenta, energy, etc.

are smooth functions, which form a commutative algebra, [3]. The matrix mechanics of Heisenberg

treats physical observables as linear operators that close up into a non-commutative algebra. The

passage from the classical commutative algebra to the quantum non-commutative one is controlled

by a small parameter ~ called the Planck constant. This is the famous correspondence principle

[13] suggesting that, mathematically, such a transition is a deformation of the initial algebraic

structure, [42, 43, 44, 45].

The key concept of Schrödinger’s approach to quantum mechanics is wave functions, which are

descriptions of the quantum state of a system (i.e. the spatial distribution of a quantum particle)

[76]. It implies that we get information about surrounding objects, as scattering data upon testing

it with probe matter, be it matter, electrons or photons. This also applies to the geometry of space

because it is inseparable from physics. It is therefore natural to incorporate geometry into the
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quantum world once we consistently treat coordinates as operators. The idea to view a geometric

object not as a collection of points but as the function algebra on it is not new and underlies

classical algebraic geometry, [19, 79, 80]. The next step on that path is to drop the commutativity

constraint and regard an arbitrary associative algebra as that of functions on a “quantum space”.

This idea has lead to the noncommutative geometry of Alain Connes, [17].

From the initial discovery of quantum mechanics, there arose a purely mathematical problem

of what should be understood by quantization, [20]. It was initially viewed as some correspondence

between the two algebras without a clear prescription of the transition mechanism. One of the

requirements was a realization of the new algebra in a Hilbert space. A systematic approach to

quantization was developed by F. Bayen, M. Flato, C. Fronsdal, A. Lichneroviz, and D. Sternheimer

in [11], who unchained it from a particular representation. The new multiplication of the quantized

function algebra C[X] is a result of the action of a bidifferential operator, F = F1 ⊗F2 (we adopt

the Sweedler convention of indexing tensor factors) on a pair of functions, f, g ∈ C[X]:

f ∗ g = (F1f) · (F2g) =

∞∑
n=0

~n(Fn1 f) · (Fn2 g)

Here · stands for the classical multiplication in C[X]. The correspondence principle is accounted

for, by the requirements that (F0
1 f) · (F0

2 g) = f · g and (F1
1 f) · (F1

2 g)− (F1
1 g) · (F1

2 f) is the Poisson

structure on X. In this approach, the underlying vector space is a priori given and equals C[X]

with the main problem being associativity implying certain constraints on F .

The contemporary understanding of quantization is as follows: given a Poisson algebra A, its

quantization is a C[[~]]-algebra A~ that is flat as a C[[~]]-module and coincides with A modulo ~A~

as a C-algebra. In this form, it need not be local, and we can return to the language of algebraic

geometry for X being a variety and C[X] its polynomial ring. In this approach, A~ is presented

as a quotient of a free algebra generated by quantum coordinates. Associativity is given for free

and the focus of the problem is moved to the size of the quotient. Typically that is resolved via

a representation of A~ by endomorphisms of a C[[~]]-flat module, so we get back to the original

representation-theoretical point of view, but at a new level.

Another key concept underlying modern mathematics, is that of symmetry [47]. It plays an

important role in physics as well, giving rise to conservation laws, [72, 83]. If a group G acts on

the manifold X and preserves its Poisson structure, x{f, g} = {xf, xg}, ∀x ∈ G, then it is natural

to seek a quantization A~ that supports an action of G by algebra automorphisms, which is a

deformation of the initial action. This is the conventional approach to equivariant quantization,

and it was adopted from the very beginning of quantum mechanics. A typical example is the dual

space g∗ equipped with the Lie-Kirillov-Kostant-Souriau bracket {x, y} = [x, y] ∈ g ∈ C[g∗], for all

x, y ∈ g, [55]. It restricts to every orbit in g∗ making it a symplectic homogeneous manifold. While

quantization of C[g∗] is delivered by the universal enveloping algebra, C~[g∗] ' U(g), quantization

of coadjoint orbits remains a non-trivial problem.

Conventional equivariant quantization treats G as a “ruler” applied to the manifold X from
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outside. On the other hand, a smooth group G is an equal participant in the classical geometry.

Homogeneous spaces they act upon can be nicely presented as coset spaces in purely group terms.

The most distinguished of them, the conjugacy classes, are realized as submanifolds in G: they are

orbits under the conjugation action of the group on itself. This observation makes it very natural

to include G into the quantum universe. That is done within the theory of quantum groups created

by Drinfeld [30] on the base of results obtained by mathematical physicists, [38, 39].

Drinfeld’s theory is based on the material accumulated within the quantum inverse scattering

approach to integrable spin chains developed by L. Faddeev and his Leningrad school, [58]. The key

ingredient of their method is the so called matrix R ∈ End(V )⊗End(V ), satisfying the (quantum)

Yang-Baxter equation

R12R13R23 = R23R13R12.

Drinfeld’s quantum groups appeared to be just right to accommodate this identity. They are

deformations of C[G] or the universal enveloping of its Lie algebra g in the class of Hopf algebras.

The R-matrix plays a role of an intertwining operator between tensor products of representations

in different order.

The quasi-classical limit of a quantum group is a Poisson group G, which is equipped with a

Poisson structure preserved under the multiplication map

G×G→ G

Here the direct product is equipped with the Poisson structure naturally lifted from the factors.

It is a result by Etingof and Kazhdan, [35, 36], that every Poisson group gives rise to a quantum

group in a functorial way. They also quantized some coset spaces G/K whose Poisson structure

can be projected from G, [37].

In terms of the Lie algebra g, the Poisson groups correspond to Lie bialgebras, [30]. A Lie

bialgebra is a Lie algebra g with a cobracket µ : g→ g∧ g making g∗ a Lie algebra by duality. The

compatibility condition is that µ is a g∧g-valued 1-cocycle. In the case it is coboundary, there is an

element r ∈ g∧g such that µ(ξ) = [ξ⊗1+1⊗ξ, r], ξ ∈ g. It solves a modified Yang-Baxter equation,

[78], and is regarded as the quasi-classical term of the quantum R-matrix. Then the Poisson bivector

field is given by rl,l− rr,r, where (ηrf)(x) = df
dtf(etηx)|t=0, (ηlf)(x) = df

dtf(xetη)|t=0, for η ∈ g and

f ∈ C[G]. This Poisson structure is called Drinfeld-Sklyanin bracket.

Poisson groups can act on Poisson spaces in a compatible way. Namely, X is called a (left)

Poisson manifold over a Poisson group G if the action map

G×X → X

is Poisson. This definition recovers the usual G-invariance if G is equipped with the zero bracket.

In general, the bracket on X is no longer invariant, so the equivariant quantization needs adapting

to the new setting. Let U~(g) be the quantized universal enveloping algebra (quantum group) of the
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Poisson group G. Let X be a Poisson manifold over G and A its function algebra. A quantization

A~ is called equivariant if it is an U~(g)-module algebra (the multiplication ∗ is a U~(g)-morphism)

and the action is a deformation of the classical action.

Quantization of a non-degenerate Poisson structure can be constructed by Fedosov’s method,

[41] (and [21] for its generalization to the locally non-degenerate case). A general quantization of

Poisson structure can be locally obtained via Kontsevich’s construction, [56]. However, the method

of [56] does not respect group action while Fedosov’s approach needs an invariant flat connection,

whose general existence is questionable. At the same time, the presence of a group creates a very

special context making equivariant quantization a part of representation theory.

The most important example for us is X = G equipped with the conjugation action x : a 7→

xax−1, x, a ∈ G. Suppose that G is a Poisson group with the Drinfeld-Sklyanin bracket rl,l − rr,r.

Suppose there is an ad-invariant symmetric tensor ω ∈ g⊗ g such that r + ω ∈ g⊗ g satisfies the

classical Yang-Baxter equation

[r12, r13] + [r12, r23] + [r13, r23] = 0.

Let ηad = ξl − ξr denote the adjoint vector field generated by η ∈ g. Then the bivector field

rad,ad + ωr,l − ωl,r makes X = G a Poisson-Lie manifold over the Drinfeld-Sklyanin Poisson group

G. We call it Semenov-Tjan-Shanksky bracket, [77]. A remarkable fact is that it can be restricted

to every conjugacy class of G, [2]. In this way, it is a Poisson-Lie analog of the Kirillov-Kostant-

Souriau bracket. In this thesis, we address the restriction of this bracket to semi-simple conjugacy

classes for the case of standard factorizable matrix r.

Classification of (local) homogeneous Poisson Lie manifolds was done by Drinfeld in [29]. Ac-

cording to his result, they are described by the following data. Every Poisson group corresponds to

a pair of Lie algebras, (g, g∗), such that their sum is also a Lie algebra, g ./ g∗, called double of g.

It is uniquely determined by the requirement that the canonical symmetric inner product on g⊕g∗

is ad-invariant. Suppose that l ⊂ g is the isotropy Lie subalgebra. There exists a Lagrangian Lie

subalgebra m ⊂ g ./ g∗ such that m ∩ g = l. This data also describes quasi-Lie bialgebras, which

are infinitesimal deformations of U(g) as quasi-Hopf algebras, [31]. Drinfeld called this finding

mysterious and posed a problem of its “quantization”, i.e. to reveal the role of quasi-Hopf algebras

in quantization of Poisson-Lie manifolds.

Although this problem is still open, there is a class of manifolds, for which this relation has

been unveiled. That was done in the framework of dynamical Yang-Baxter equations, dynamical

twists and, what is essentially the same, Shapovalov form, [1, 25, 32, 33, 52], for a wide class of

homogeneous spaces that were not covered by [37]. Namely, those are semi-simple coadjoint orbits

of simple Lie groups and conjugacy classes with Levi isotropy subgroups. Up to now, non-Levi

conjugacy classes have not been incorporated into that scheme.

The relation between analytic and algebraic approaches to quantization can be illustrated by

the following. Suppose that G acts on itself by conjugation and fix an initial point x ∈ G. Let Ox
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be the orbit of that action, i.e. Ox = {gxg−1|g ∈ G}. Then x gives rise to two G-maps

G� Ox ↪→ G, g 7→ gxg−1,

where G on the left is equipped with the left multiplication action. The arrow � is a surjection

while ↪→ is an embedding. If K ⊂ G is the centralizer subgroup of x, then the leftmost mapping

factors through an isomorphism, G/K ' Ox, of G-spaces. This way, the point x makes Ox

simultaneously a subset and a quotient set of G. In the dual picture, in terms of function algebras,

we have

C [G]←↩ C [Ox]� C [G] ,

where the left map is embedding and the right is a projection.

In the dual picture, the point x is a character of the algebra C[G], i.e. a homomorphism

x : C[G] → C. Then the composition of maps C[G] → C[G] is given by (x ⊗ id) ◦ δ, where δ is

the (right) coaction that is dual to conjugation action, δ : C[G]→ C[G]⊗C[G]. The image of this

map is the subalgebra C[G]K of K-invariants under the right multiplication, f(g) 7→ f(gk), k ∈ K,

f ∈ C[G].

Let A1
~ and A2

~ be the quantizations of C[G] along the Drinfeld-Sklyanin and Semenof-Tjan-

Shansky Poisson brackets, respectively. The algebra A1
~ is determined by the famous RTT=TTR

relations, [40], and is in Hopf duality with Uq(g). The algebra A2
~ is related to the reflection

equation, [57] and is a right comodule over A1
~. Lifting the dual picture to the quantum setting,

one may try to construct the chain of maps

A1
~ ←↩ C~ [G/K] ' C~ [Ox]� A2

~,

provided there is character of A2
~, a deformation of the classical point x. Its quasi-classical char-

acterization is that the Poisson bivector vanishes at x. It is known that such points are in short

supply, [63], and only a few classes can be treated this way, [27].

The method of quantum points is a (thin) borderline between the two approaches,

A1
~ ←↩ C~ [G/K] , C~ [Ox]� A2

~, (1.1)

which represent the two alternative (analytic and algebraic) formulations of quantization. The

right arrow yields C~ [Ox] as a quotient of A2
~ by an invariant ideal. This ideal is realized as the

annihilator of a certain module, Mx, of the quantum group Uq(g) via an embedding A2
~ ⊂ Uq(g).

For Levi K, the left arrow can be worked out as well, in a more general setting. There is a

unique (up to a multiple) invariant bilinear pairing between Mx (highest weight) and an opposite

(lowest weight) module, Nx. It is non degenerate over C[[~]] and has the inverse form. There is

a lift F ∈ U~(g) ⊗ U~(g), which one can take for a quasi-Hopf algebra twist U~(g). Using this

twist, one can change the multiplication on A1
~ via the left co-regular action. Although the new
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multiplication is not-associative, it becomes so when restricted to the subspace of U~(k)-invariants,

where k is the Lie algebra of K. This quantization of C~ [G/K] is equivariant with respect to the

right co-regular action, [1, 25, 32, 33, 52]. This is the partial answer to the Drinfeld problem from

[29]. Its extension for non-Levi K is open due to the absence of Uq(k).

In this dissertation we pursue the algebraic approach to quantization, via the right arrow in

(1.1). Here is an overview of the previous work directly related to this project. Classification

of Poisson brackets on conjugacy classes of simple groups was done by Donin, Gurevich, and

Shnider in [22, 23], see also the work of Karolinsky, [50], which is based on Drinfeld’s approach.

Quantization of coadjoint orbits as subalgebras of endomorphisms of parabolic Verma modules

was realized in [24]. Their annihilators in universal enveloping algebras were explicitly evaluated

by Toshio Oshima in [73]. About the same time, similar results were obtained for two parameter

quantization of orbits of GL(n) in [26]. That is the only series where the Kirillov-Kostant-Souriau

and Semenov-Tjan-Shansky brackets can be united in a two parameter family, [23].

Non exceptional Levi conjugacy classes of infinite series were constructed by Mudrov in [68].

This approach was extended to non-Levi classes of orthogonal and symplectic groups in [65, 69].

All these results were obtained via very special choice of points on the maximal torus. The case

of borderline classes of orthogonal groups was missing from this list.

Observe that semisimple conjugacy classes in SO(N) can be categorized by their sets of eigen-

values: whether they include both ±1 or not. The stabilizer subgroup of the second type is Levi,

and such a class is isomorphic to an adjoint orbit in so(N) as an affine variety. Their quanti-

zation has been constructed in [68]. The stabilizer of the first type contains a Cartesian factor

SO(2m) × SO(P ), where 2m and P are the multiplicities of the eigenvalues −1 and +1 respec-

tively and P is of the same parity as N . If m > 2 (one should also assume P > 4 for even

N), the stabilizer subgroup is not Levi. Such classes have been quantized in [64]. The remaining

classes corresponding to m = 1 form a special family, which was not covered before. Due to the

isomorphism GL(1) ' SO(2), they form a borderline between the Levi and non-Levi families.

In Chapter 3, the quantization method of the borderline Levi classes is similar to that used in

[64] and [68]: a realization of its quantized polynomial algebra in a Uq(g)-module of highest weight.

In the case of interest, it is a parabolic Verma module of special weight. Due to this constraint, it

is not a deformation of a Verma module over Uq(g). The boundary classes were not covered in [68]

because the analysis was based on the properties of the Shapovalov form derived by deformation

arguments from its classical counterpart. The specialization of the highest weight in our present

approach requires a special study of the module CN ⊗Mλ.

In Chapter 4, generators of Mickelsson algebras for the non-exceptional quantum groups are

constructed. In mathematics literature, lowering and raising operators are known as generators of

step algebras, which were originally introduced by Mickelsson [60] for reductive pairs of Lie algebras,

g′ ⊂ g. These algebras naturally act on g′-singular vectors in U(g)-modules and are important in

representation theory, [62, 84]. The general theory of step algebras for classical universal enveloping

algebras was developed in [84, 86] and extended to the special liner and orthogonal quantum groups
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in [53]. They admit a natural description in terms of extremal projectors, [86], introduced for

classical groups in [5, 6] and generalized to the quantum group case in [54, 82]. It is known that

the step algebra Z(g, g′) is generated by the image of the orthogonal complement g	 g′ under the

extremal projector of the g′. Another description of lowering/raising operators for classical groups

was obtained in [62, 71, 74] in an explicit form of polynomials in g.

A generalization of the results of [71, 74] to quantum gl(n) can be found in [4]. In this special

case, the lowering operators can be also conveniently expressed through “modified commutators”

in the Chevalley generators of U(g) with coefficients in the field of fractions of U(h). Extending [62]

to orthogonal and symplectic quantum groups is not straightforward, since there are no nilpotent

triangular Lie subalgebras g± in Uq(g) but only their deformed associative envelope. The lack of

g± can be compensated by the entries of the universal R-matrix with one leg projected to the

natural representation. Those entries are nicely expressed through modified commutators in the

Chevalley generators turning into elements of g± in the quasi-classical limit. Their commutation

relation with the Chevalley generators modify the classical commutation relations with g± in a

way, which is easy to control. Thus the results of [62, 71, 74] can be generalized and generators of

Mickelsson algebras for the non-exceptional quantum groups can be constructed. Explicit form of

these generators is useful because they are related to singular vectors generating certain submodules

involved in quantization of conjugacy classes, especially in Chapter 6.

In Chapter 5, let G denote the complex general linear algebraic group GL(n) and let g be its Lie

algebra gl(n). Regard G as a Poisson group relative to the standard classical r-matrix and let U~(g)

be the corresponding quantum group. Consider a semisimple conjugacy class O ⊂ G, which is an

affine subvariety of G. This chapter presents a family of exact representations of C~[O] on U~(g)-

modules of highest weight. This family is parameterized by diagonal matrices from O. Equivalently,

every diagonal matrix is associated a highest weight module and an equivariant quantization of

the conjugacy class of this matrix, through an operator realization on that module. The quantized

affine ring depends on O and not on a particular point in it. However, the modules are not

isomorphic thus yielding non-equivalent exact representations of the same quantum conjugacy

class.

Although the isotropy subgroups of all points in O are isomorphic, not all are strictly compatible

with the standard triangular polarization of g. We call such a stabilizer a Levi subgroup if simple

roots of its Lie algebra k are simple roots of g, i.e. Π+
k ⊂ Π+

g . By this definition, k being a Levi

subalgebra depends on a polarization of g relative to a Cartan subalgebra, which is fixed once

and for all. The quantization theory of the corresponding conjugacy class is standard: it can be

realized by operators on a parabolic Verma module Mλ relative to Uq(k) ⊂ Uq(g). General diagonal

matrices in O are uniquely parameterized by Weyl group elements σ satisfying σ(R+
k ) ⊂ R+

g , where

R+ is the set of positive roots. For such σ we construct a highest weight module Mσ.λ and realize

the algebra C~[O] in End(Mσ.λ). Of course, Mσ.λ is a parabolic Verma module if σ(Π+
k ) ⊂ Π+

g .

An interesting feature of the non-parabolic quantization via Mσ.λ is a lack of natural candidate

for the quantum isotropy subgroup. In this respect, this quantization may help to understand
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the properties of quantum conjugacy classes which are essentially non-Levi, that is, their isotropy

subgroups are not isomorphic to Levi subgroups, [64, 65, 69]. Such classes are not present in GL(n)

but form a large family in symplectic and orthogonal groups.

Chapter 6 can be viewed as a uniform approach to quantization that includes the results of

[26, 64, 65, 68] and Chapter 3 as a special case and it is done in the spirit of Chapter 5 devoted

to G = GL(n). The earlier constructed quantum conjugacy classes were realized by operators on

certain modules of the quantized universal enveloping algebra Uq(g) of the Lie algebra g of the group

G. For a large number of examples, this theory is parallel to the U(g)-equivariant quantization

of semisimple adjoint orbit in g ' g∗, [24, 26, 73]. In both cases, G and g, the quantized algebra

of polynomial functions is represented on parabolic Verma modules, respectively, over Uq(g) and

U(g). However, adjoint orbits in G are in a greater supply than in g. Quantization of some of

them requires more general modules, which cannot be obtained by induction from a character of

the parabolic extension of the stabilizer, [64, 65]. Moreover, the latter itself disappears as a natural

subalgebra in Uq(g). This observation makes us take a more general look at already constructed

quantum homogeneous spaces and conclude that they were obtained through a very special choice

of the initial point. Such points are distinguished by their isotropy subgroups, whose triangular

decomposition perfectly matches the triangular decomposition of G. They are all of Levi type, as

for semisimple orbits in g, and their basis of simple positive roots is a part of the basis of the total

group. That is violated for stabilizers of non-Levi type appearing among conjugacy classes in G.

At the same time, one can apply a generic Weyl group transformation to the initial point in g and

break the nice inclusion of root bases even in the Levi case. In this respect, a generic initial point

whose stabilizer is isomorphic to a Levi subgroup has much similarity with essentially non-Levi one.

It makes sense therefore to extend the original approach to quantization and consider all points on

the maximal torus (the Cartan subalgebra) for the initial point. They belong to the same conjugacy

class if and only if they lie on the same orbit of the Weyl group. We associate a module of highest

weight with every such point and realize the quantization of its conjugacy class by linear operators

on that module. Points on the same Weyl group orbit give rise to isomorphic quantizations, which

can be regarded as different representations of the same quantum homogeneous space. They can

also be thought of as different polarizations of the same algebra.

There are other interesting problems related to quantum homogeneous spaces, such as quantiza-

tion of associated vector bundles, star product formulation etc. That is well understood for classes

with Levi isotropy subgroups, through the mechanism of parabolic induction, [1, 25, 32, 33, 51].

At the same time, the difference between Levi and non-Levi conjugacy classes is qualitative, and

alternative representations of Levi classes could be a bridge between the two cases. A uniform

approach to quantization may help to understand the non-Levi case too.

In summary, in this project, we

• quantize the borderline Levi conjugacy classes of orthogonal groups,

• associate an exact representation of quantum semi-simple conjugacy classes of simple classical
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matrix groups with every point of a fixed maximal torus.

The dissertation is based on four research papers:

1. T. Ashton, A. Mudrov, On Representations of Quantum Conjugacy Classes of GL(n). —

Lett. Math. Phys. 103 (2013), 1029–1045.

2. T. Ashton, A. Mudrov, Quantization of Borderline Levi Conjugacy Classes of Orthogonal

Groups. — J. Math. Phys. 55 (2014), 121702.

3. T. Ashton, A. Mudrov, R-Matrix and Mickelsson Algebras for Orthosymplectic Quantum

Groups. — J.Math. Phys. 56 (2015), 081701.

4. T. Ashton, A. Mudrov, Representations of Quantum Conjugacy Classes of Orthosymplectic

Groups, J. Math. Sci. 213 (2016), 637– 650

The structure of the thesis is as follows:

In Chapter 2, the preliminary facts about quantum groups, their representations, natural mod-

ules and a diagram technique for the analysis of CN ⊗Mλ, where Mλ is a generalized parabolic

Verma module of weight λ, are discussed.

In Chapter 3, the quantizations of conjugacy classes is completed by including quantization of

borderline Levi orthogonal classes.

In Chapter 4, there is a technical analysis of the R-matrix and Mickelsson algebras for orthog-

onal and symplectic quantum groups.

In Chapter 5, the representations of quantum conjugacy classes are constructed, under restric-

tion to GL(n).

In Chapter 6, the theory of representations of quantum conjugacy classes will be generalised

for orthogonal and symplectic groups.
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Chapter 2

Quantum Groups and their

Natural Representations

This chapter provides the foundation for the theory in later chapters. Firstly, the construction

of quantum groups Uq(g) from a system of roots via quantum analog of the Chevalley-Serre re-

lations and extension to a Hopf algebra. Then the natural representation Uq(g(N)) → End(CN )

is discussed along with the specific action of the Chevalley generators on CN . At which point,

principal monomials are introduced. These principal monomials are an integral part of a diagram

technique, formulated as a tool for the analysis of CN ⊗Mλ, where Mλ is a generalized parabolic

Verma module of weight λ.

Let G be a complex simple connected algebraic group of classical type, g be its Lie algebra and

let n designate the rank of g.

Choose a Cartan subalgebra h ⊂ g with the inner product (., .) on h∗ normalized to the unit

length of the highest weight of the natural representation. By R we denote the root system of g

with a fixed subsystem of positive roots R+ ⊂ R and the basis of simple roots Π+ ⊂ R+. Using

the standard realization of R in a complex Euclidean vector space with the inner product (., .), we

express the simple positive roots in an orthogonal basis {εi} by:

αi = εi − εi+1 i = 1, . . . , n− 1, αn =



εn − εn+1 g = sl(n+ 1)

εn g = so(2n+ 1)

2εn g = sp(2n)

εn−1 + εn g = so(2n)

(2.1)

For every λ ∈ h∗ we denote by hλ its image under the isomorphism h∗ ' h, that is (λ, β) = β(hλ)

for all β ∈ h∗. We put ρ = 1
2

∑
α∈R+ α for the Weyl vector (the half-sum of positive roots).

When we need to distinguish the root system of a subgroup, we mark it with the corresponding

subscript and thus reserving by default the notation R = Rg, R+ = R+
g and Π+ = Π+

g .

Consider the polarization g = g− ⊕ h ⊕ g+, where g± are the nilpotent Lie subalgebras of
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positive and negative root subspaces.

Suppose that q ∈ C is not a root of unity. Denote by Uq(g±) the C-algebra generated by e±α,

α ∈ Π+, subject to the q-Serre relations

1−aij∑
k=0

(−1)k

 1− aij
k


qαi

e
1−aij−k
±αi e±αje

k
±αi = 0,

where aij =
2(αi,αj)
(αi,αi)

, i, j = 1, . . . , n = rk g (the rank of g), is the Cartan matrix, qα = q
(α,α)

2 , and

 m

k


q

=
[m]q!

[k]q![m− k]q!
, [m]q! = [1]q · [2]q . . . [m]q.

Here and further on, [z]q = qz−q−z
q−q−1 whenever q±z make sense.

Denote by Uq(h) the commutative C-algebra generated by q±hα , α ∈ Π+. The quantum group

Uq(g) is a C-algebra generated by Uq(g±) and Uq(h) subject to the relations [30]

qhαe±βq
−hα = q±(α,β)e±β , [eα, e−β ] = δα,β

qhα − q−hα

qα − q−1
α

.

Although h is not contained in Uq(g), it is convenient for us to keep reference to h.

We use the notation ei = eαi and fi = e−αi for αi ∈ Π+, in all cases apart from i = n,

g = so(2n + 1), where we set fn = [ 1
2 ]qe−αn . The reason for this is two-fold. Firstly, the natural

representation can be defined through the classical assignment on the generators, as given below.

Secondly, we get rid of qαn = q
1
2 and can work over C[q], as the relations involved turn into

[en, fn] =
qhαn − q−hαn
q − q−1

,

f3
nfn−1 − (q + 1 + q−1)f2

nfn−1fn + (q + 1 + q−1)fnfn−1f
2
n − fn−1f

3
n = 0.

It is easy to see that the square root of q disappears from the corresponding factor in the presen-

tation (2.3).

DEFINITION 2.1 [59] Hopf algebra H is defined by the following axioms:

1. H is a unital algebra (H, ·, 1) over a field k.

2. H is a counital coalgebra (H,∆, ε) over k. Here the coproduct and counit maps ∆ : H →

H ⊗ H and ε : H → k are required to obey (∆⊗ id) ∆ = (id⊗∆) ∆ and (ε⊗ id) ∆ =

(id⊗ ε) ∆ = id.

3. ∆, ε are algebra homomorphisms.

4. There exists an antipode map γ : H → H obeying · (id⊗ γ) ∆ = · (γ ⊗ id) ∆ = 1ε .
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The quantum group Uq (g) has the following comultiplication ∆, counit ε and antipode γ maps.

∆ (eα) = eα ⊗ 1 + qhα ⊗ eα ε (eα) = 0 γ (eα) = −q−hαeα
∆ (fα) = fα ⊗ q−hα + 1⊗ fα ε (fα) = 0 γ (fα) = −fαqhα

∆ (hα) = hα ⊗ 1 + 1⊗ hα ε (hα) = 0 γ (hα) = −hα

Thus Uq (g) becomes a Hopf algebra. We use the Sweedler notation ∆(x) = x(1)⊗x(2) for x ∈ U~(g)

for the coproduct.

Denote by T the maximal torus of G exponentiating the Cartan subalgebra h ⊂ g. Given

a point x ∈ T , denote by K ⊂ G its centralizer subgroup with the Lie algebra k, which is a

reductive subalgebra of maximal rank in g. The triangular decomposition of g induces a triangular

decomposition k = k+ ⊕ h⊕ k−. There are inclusions Rk ⊂ Rg and R+
k ⊂ R+

g , but not Π+
k ⊂ Π+

g in

general. If the latter holds, K is said to be a regular Levi subgroup of G. If K is not isomorphic

to a Levi subgroup, we call it pseudo-Levi. We call it regular if a maximal Levi subgroup among

those contained in K is regular. Similar terminology is used for its Lie algebra k. Collectively we

call K and k generalized Levi subgroups and subalgebras.

Fix a generalized Levi subalgebra k ⊂ g. By c∗k we denote the set of weights λ ∈ h∗ such that

(λ, α) = 0 for all α ∈ Rk and by c∗k,reg ⊂ c∗k the set of weights such that (λ, α) = 0⇔ α ∈ Rk. For

each λ ∈ c∗k the element e2hλ ∈ G commutes with K, and k is exactly the centralizer Lie algebra of

x = e2hλ once λ ∈ c∗k,reg.

The subalgebras Uq(b±) ⊂ Uq(g) generated by Uq(g±) over Uq(h) are quantized universal

enveloping algebras of the Borel subalgebras b± = h + g± ⊂ g. We consider a grading in Uq(b±)

with deg eα = deg fα = 1, deg q±hα = 0, for α ∈ Π+.

The Chevalley generators eα can be extended to a set of composite root vectors eβ for all β ∈ R.

A normally ordered set of root vectors generate a Poincaré-Birkhoff-Witt (PBW) basis of Uq(g)

over Uq(h), [16]. We will use g± to denote the vector space spanned by {e±β}β∈R+ .

The universal R-matrix is an element of a certain extension of Uq(g) ⊗ Uq(g). We heavily use

the intertwining relation

R∆(x) = ∆op(x)R, (2.2)

between the coproduct and its opposite for all x ∈ Uq(g). Let {εi}ni=1 ⊂ h∗ be the standard

orthonormal basis and {hεi}ni=1 the corresponding dual basis in h. The exact expression for R can

be extracted from [16], Theorem 8.3.9, as the ordered product

R = q
∑n
i=1 hεi⊗hεi

∏
β

expqβ

(
(1− q−2

β )(e−β ⊗ eβ)
)
∈ Uq(b−)⊗̂Uq(b+), (2.3)

where expq(x) =
∑∞
k=0 q

1
2k(k+1) xk

[k]q !
.

We can also consider Uq(g) over the ring C[q, q−1] and its localizations. Further extension over

C[[~]] via q = e~ determines an embedding Uq(g)  U~(g), for which we use the same notation. Then
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U~(g) is the completion of Uq(g) in ~-adic topology. Note that h ⊂ U~(g) contrary to Uq(g). Unless

otherwise stated, the quantum group Uq(g) and its modules are considered over the complex field,

upon specialization of q to not a root of unity. We assume that U~(g)-modules are free over C[[~]]

and their rank will be referred to as dimension. Finite dimensional U~(g)-modules are deformations

of their classical counterparts, and we drop the reference to ~ to simplify notation.

Let U~(h) be the Cartan subalgebra in U~(g). We shall deal with U~(h)-diagonalizable, i.e.

weight modules. If V is an h-invariant subspace, we mean by [V ]α the subspace of weight α ∈ h∗.

We stick to the additive parametrization of weights facilitated by the embedding Uq(h) ⊂ U~(h).

Under this convention, weights belong to 1
~h
∗[[~]] and are well defined on t±1

αi ∈ q
h. It is sufficient

for our needs to confine them to the subspace 1
~h
∗ ⊕ h∗ ⊂ 1

~h
∗[[~]].

We denote by ck ⊂ h the center of k and realize its dual c∗k as a subspace in h∗ thanks to the

canonical inner product.

2.1 Natural Representations

Fix N = n + 1, N = 2n + 1 or N = 2n when g = sl(n + 1), g = so(2n + 1) or g = sp(2n), so(2n)

respectively. The vector space CN is regarded as a Uq(g)-module supporting its natural represen-

tation.

Let I designate the set of integers {1, . . . , N} and let {εi}i∈I be the weights of the natural

Uq(g)-module CN . Then {εi}
n+δg,sl
i=1 , n = rk g, form an orthogonal basis in h∗. The simple positive

roots are expressed through {εi}
n+δg,sl
i=1 , as shown in (2.1). Let i′ = N + 1 − i for i ∈ I and

εi′ = εN+1−i = −εi for g orthogonal or symplectic.

Denote by wi ∈ CN the standard basis elements of weight εi, i = 1, . . . , N .

By Γ we denote the root lattice Γ = ZΠ+ with Γ+ = Z+Π+. For β ∈ Γ+ we define P (β) to

be the set of all ordered pairs i, j ∈ I such that εi − εj = β. For each α ∈ Π+ ⊂ Γ+, the pairs

(i, j) ∈ P (α) are called simple.

Let eij ∈ End(CN ), i, j ∈ I, denote the standard matrix units. The following assignment π :

U~ (g)→ End
(
CN
)
defines a representation of g, which is equivalent to the natural representation:

π(eα) =
∑

(l,r)∈P (α)

elr, π(fα) =
∑

(l,r)∈P (α)

erl, π(hεi) =

eii g = sl

eii − ei′i′ g = so, sp

For g 6= sl(n+ 1), the assignments expressed explicitly are:

π(ei) = ei,i+1 + ei′−1,i′ , π(fi) = ei+1,i + ei′,i′−1, π(hαi) = eii − ei+1,i+1 + ei′−1,i′−1 − ei′i′ ,

for i = 1, . . . , n− 1 and

π(en) = en,n+1 + en′−1,n′ , π(fn) = en+1,n + en′,n′−1, π(hαn) = enn − en′n′ ,
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π(en) = enn′ , π(fn) = en′n, π(hαn) = 2enn − 2en′n′ ,

π(en) = en−1,n′+en,n′+1, π(fn) = en′,n−1+en′+1,n, π(hαn) = en−1,n−1+enn−en′n′−en′+1,n′+1,

respectively, for g = so(2n+ 1), g = sp(2n), and g = so(2n).

Note that π(ei), π(fi) and π(hαi) for i = 1, . . . , n−1 defines a direct sum of two representations

of gl(n). Where gl(n) ⊂ g is the Lie subalgebra with the simple roots {αi}n−1
i=1 and Uq

(
gl(n)

)
the

corresponding quantum subgroup in Uq(g).

A similar assignment for Chevalley generators eα and fα changes the summation of the two

standard matrix units to their difference, which corresponds to the standard representation that

preserves the bilinear form with entries Cij = δi′j , for g = so(N), and Cij = sign(N+1
2 − i)δi′j , for

g = sp(N).

ζ(ei) = ei,i+1 − ei′−1,i′ , ζ(fi) = ei+1,i − ei′,i′−1, ζ(hαi) = eii − ei+1,i+1 + ei′−1,i′−1 − ei′i′ ,

for i = 1, . . . , n− 1, and

ζ(en) = en,n+1 − en′−1,n′ , ζ(fn) = en+1,n − en′,n′−1, ζ(hαn) = enn − en′n′ ,

ζ(en) = enn′ , ζ(fn) = en′n, ζ(hαn) = 2enn − 2en′n′ ,

ζ(en) = en−1,n′−en,n′+1, ζ(fn) = en′,n−1−en′+1,n, ζ(hαn) = en−1,n−1+enn−en′n′−en′+1,n′+1,

respectively, for g = so(2n+ 1), g = sp(2n), and g = so(2n).

Note that Chevalley generators are normalized so that their representation matrices are inde-

pendent of q.

The algebras Uq(g±) are isomorphic via the Chevalley involution fα ↔ eα. We call contragre-

dient the representation of Uq(g±) on CN given by ekwi = δk,iwi+1 and fkwi = −δk,n−i+1wi−1.

It factors through the automorphisms ei 7→ en−i, fi 7→ fn−i, (inversion of Dynkin diagram) and

the natural representation of Uq(b±). Alternatively, it is a composition of the Chevalley involution

fα ↔ eα and natural representation.

For any finite dimensional Uq(g)-module W define the (right) dual representation on W ∗ as

〈w, x . u〉 = 〈γ−1(x) . w, u〉, where w ∈ W , u ∈ W ∗, and x ∈ Uq(g). Although Uq(g±) are not

Hopf algebras, their dual representations are still defined through the embedding Uq(g±) ⊂ Uq(g).

Consider another copy of vector space CN as dual to initial CN , with the basis {vi}, and the right

conatural representation of Uq(g+) on it. Since γ−1(eα) = −eαq−hα , we have

eαwi =

n∑
j=1

π(eα)ijwj , eαvi = −q−(α,εi)
n∑
j=1

π(eα)jivj , (2.4)

where π(eα), α ∈ Π+, are the matrices of the natural g+-action on CN .

The representation π : Uq (g) → End
(
CN
)

is equivalent to the natural representation. The

action of the Chevalley generators, up to scalar multipliers, can be conveniently visualized by the
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diagrams

g = sl(n+ 1)

wn+1

b� b . . .�

wn

b�

w2

� b
w1

fαn fαn−1 fα2 fα1

g = so(2n+ 1)

b� . . .

w1′

b�

wn′

� b
wn+1

� b
wn

� � b
w1

. . .
fα1 fαn−1 fαn fαn fαn−1 fα1

g = sp(2n)

b . . .�

w1′

b�

wn′

� b
wn

� . . . � b
w1

fα1 fαn−1 fαn fαn−1 fα1

g = so(2n)

b� . . . �

w1′

b
wn′+1

� b
wn′

� � b
wn

� b
wn−1

. . .� � b
w1

fα1 fαn−2 fαn−1

fαn

fαn−1 fαn−2

fαn

fα1

Reversing the arrows we get the diagrams for positive Chevalley generators of g.

Similarly, we can consider dual natural representation of Uq(g) on CN . In the dual basis {vi}Ni=1,

the graphs will be similar, with all arrows reversed.

We introduce a partial ordering on the integer interval I by setting i 4 j if and only if there

is a (monic) Chevalley monomial ψ ∈ Uq(g−) such that wj is equal to ψwi up to an invertible

scalar multiplier, wj = ψwi. This monomial, if exists, represents a path from wi to wj in the

representation diagram, which becomes the Hasse diagram of the poset. Such ψ is unique, which

is obvious for the series A, B and C and still true for D. Indeed, two different paths from wn−1 to

wn+2 yield the products fαnfαn−1
and fαn−1

fαn , which are the same due to Serre relations. We

denote this monomial by ψji. The relation ≺ is consistent with the natural ordering on Z, and

coincides with it unless g = so(2n). In the latter case n and n′ are incomparable.

In what follows, we also use the monomial ψij obtained from ψji by reversing the order of

Chevalley generators, so that vi = ψijvj . We also put ψii = 1 for all i. It is clear that ψij = ψimψmj

for any m such that i 4 m 4 j.

DEFINITION 2.2 We call ψij principal monomial of the pair i 4 j.

Remark that all Chevalley monomials of weight εj − εi are obtained from ψij by permutation of

factors.

Consider the left ideal J ⊂ Uq(g−) generated by f2
α1
, fαi , i > 1. Let N be the quotient module

Uq(g−)/J . Remark that the automorphism of Uq(g−) defined by fαi 7→ aifαi for invertible ai ∈ C

leaves J invariant and gives rise to an automorphism of N .
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PROPOSITION 2.3 N is isomorphic to the natural Uq(g−)-module CN .

Proof. This is a standard fact about finite-dimensional irreducible quotients of Verma Uq(g)-

modules, [48]. The special case of CN can be checked directly by constructing the obvious epimor-

phism N → CN , 1 7→ w1, and its section w1 7→ 1 + J , wi 7→ fαi−1
. . . fα1

+ J , i > 1.

COROLLARY 2.4 The (right or left) conatural and contragredient representations of the alge-

bras Uq(g±) on CN are isomorphic.

Proof. Indeed, in the case of Uq(g+), they are cyclic representations generated by the vector w1

satisfying e2
α1
w1 = eαiw1 = 0, i > 2. Hence they are quotients of N by some submodules. Since

their dimension is N , those submodules are zero, and the quotients are isomorphic to N . The case

of Uq(g−) is checked similarly.

COROLLARY 2.5 Let V be a Uq(g+)-module and regard CN as the conatural Uq(g+)-module.

Then HomUq(g+)(CN , V ) = {v ∈ V |e2
α1
v = eαiv = 0, i > 1}.

Proof. Since the module CN is cyclic, every homomorphism from HomUq(g+)(CN , V ) is determined

by the assignment 1 7→ v, where the vector v annihilates the ideal J .

2.2 Diagram Technique

In what follows, we work out a tool for the analysis of CN ⊗ Mλ, where Mλ is a generalized

parabolic Verma module of weight λ. In this section, we do it for the ordinary Verma module

Mλ = Uq(g) ⊗Uq(b+) Cλ with λ ∈ 1
~h
∗ ⊕ h∗. An essential part of the technique is a diagram

language developed in [10]. We consider the standard filtration V• = (Vi)
N
i=1, {0} = V0 ⊂ V1 ⊂

. . . ⊂ VN = CN ⊗Mλ, where Vi is generated by {wj ⊗ vλ}j6i. Its graded module grV• is a direct

sum of Vj/Vj−1, which are isomorphic to the Verma modules Mλ+εj (the proof of [12], Lemma 5,

readily adapts to quantum groups).

Given β ∈ Γ+ we define Ψβ ⊂ Uq(g−) to be the subset of Chevalley monomials of weight β.

We assume that a pair (i, j) ∈ P (β) is chosen for this section. Having fixed an order of elementary

factors in ψ, we regard it a as path from vλ to ψvλ. We associate with ψvλ a graph Hψ with nodes

{vk} ∈ Mλ, vj = vλ, vi = ψvλ, and arrows being negative Chevalley generators acting on Mλ.

For ψ = ψij , this path is unique in almost all cases (except for type D, where we eliminate the

ambiguity by fixing the order as fαn−1
fαn). For principal ψ, we are concerned not just with the

terminating node ψvλ, but also in all intermediate nodes. On the contrary, for non-principal ψ,

only ψvλ is important for us, while the specific path is immaterial.

We say that fα has length 2 if α = αn and g = so(2n). All other generators are assigned with

length 1. If all factors in ψ have length 1, we write ψ = φi . . . φj−1 with φk ∈ {fα}α∈Π+ , and we

set vk = φkv
k+1. Then the diagram Hψ is set to be
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vi
b� b . . .�

vi+1

b�

vj−1

� b
vj

φi φαi+1
φj−2 φj−1

Now suppose that ψ has (exactly one) factor of length 2. Write ψ = φi . . . φkφk+2 . . . φj−1, where

φk = fαn (there are j − i− 1 factors). Then the graph Hψ is

vi
b� . . . � b

vk

�
×�

vk+1

b
vk+2

. . .� � b
vj

φi φk−1 φk+2

φk = fαn

φj−1

Here we distinguish two cases. If ψ = ψij , then φk−1 = fαn−1
, and the dashed arrow fαn−1

is included in Hψ. The node vk+1 is set to fαn−1
vk+2. For non-principal ψ, the node vk+1 is

arbitrary (immaterial) and there is no arrow from vk+2 to vk+1.

We also consider a graph Vij , which is a part of the natural representation diagram of Uq(g−)

that includes all paths from wi to wj . We transpose it to make a vertical graph oriented from top

wi to bottom wj .

We denote by Arr(vm) the set of arrows originated at vm and similarly Arr(wk) the set of

arrows from wk. By construction, an arrow from node m to node k has length k −m.

Finally, we define tensor product Dψ = Hψ⊗Vij as a graph on a two-dimensional lattice whose

nodes are wmk = wk ⊗ vm ∈ CN ⊗Mλ and arrows are Arr(wmk ) = Arr(wk) ⊗ id
⋃

id ⊗ Arr(vm),

The diagram is oriented so that Hψ-arrows and Vij-arrows are directed, respectively, leftward and

downward; the origin wji is in the right upper corner. We need only the triangular part of the

diagram including the nodes wmk with k+m > i+ j. The set {wkk}
j
k=i is called principal diagonal.

With ψ = ψij , the node wkk on the principal diagonal is wk ⊗ ψkjvλ, k = i, . . . , j. Here is an

example of diagram Dψ with all arrows of length 1:

wii wi+1
i wi+2

i wj−1
i wji� � � . . . � �

φi φi+1 φi+2 φj−2 φj−1

? ? ? ?
wi+1
i+1 wi+2

i+1 wj−1
i+1 wji+1

� � . . . � �

? ? ?
wi+2
i+2 wj−1

i+2 wji+2
� . . . � �

? ?
...

...```
? ?

?

wj−1
j−1 wjj−1
�

wjj

The arrows represent the action of the Chevalley generators on the tensor factors CN (vertical)

and Mλ (horizontal). The following property of this action readily follows from the coproduct

of the Chevalley generators: suppose that φ ∈ Arr(vm) and φ 6∈ Arr(wk). If vr = φvm, then

φ(wmk ) = wrk, i.e., the horizontal arrow yields the action of φ on the entire tensor product. In

general, φ(wmk ) = wrk mod Cwms , where ws = φwk.
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Suppose that nodes of a column segment BC (with C the bottom node) belong to a Uq(g)-

submodule M ⊂ CN ⊗Mλ. Let φ be a Chevalley generator assigned to a horizontal arrow with

the origin at this column. Consider the following situations:

1. The length of φ is 1.

(a) There is no vertical φ-arrow with the origin at C.

(b) There is a vertical φ-arrow with the origin at C.

2. The length of φ is 2, and the size of BC is 2 or greater. Let C ′ and C ′′ be the nodes 1 and

2 steps up, respectively.

(a) There is no vertical φ-arrow with the origin at C and at C ′.

(b) There is a vertical φ-arrow with the origin either at C or at C ′.
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DEFINITION 2.6 We call the transition from column BC to column AD an elementary move

or simply a move of length equal to the length of φ-arrow. The elementary moves 1.a) and 2.a)

are called left. The elementary moves 1.b) and 2.b) are called diagonal.

LEMMA 2.7 (Elementary moves) Under the conditions above, the column segment AD lies

in M .

Proof. Clear.

We will use elementary moves to reach a node or collection of nodes in the diagram starting

from the rightmost column, which is assumed to be in a submodule M . That way we prove that

the target nodes are in M .

Let D′ψ ⊂ Dψ denote the subgraph whose nodes form the triangle lying above the principal

diagonal, i.e. {wmk }k+m>i+j .

LEMMA 2.8 Suppose that ψ = ψij is a principal monomial. Then the linear span of D′ψ lies in

Vj−1.

Proof. Suppose that all horizontal arrows in D′ψ have length 1, such as for g = sl(2n + 1),

g = so(2n+ 1), and g = sp(2n). Consider the diagram Dψ on Fig.2.1.a, where D′ψ is the triangle

ABC. The column BC belongs to Vj−1 by construction. All arrows have length 1. Applying

elementary diagonal moves we prove that ABC is in Vj−1.

Now suppose there is a horizontal arrows of length 2. Assuming i 6 n−1, n′+1 6 j, consider the

diagram Dψ where the triangle D′ψ is denoted by ABC (cf. Fig.2.1.b). The rightmost column BC

18



belongs to Vj−1 by construction. For each node in the trapezoid JBCL there is a horizontal arrow

of length 1. Those arrows are distinct from vertical arrows for all nodes in the line L′M ⊂ JBCL.

Apply the corresponding left moves to the columns rested on L′M . This operation proves that

trapezoid HBCI is in Vj−1. Then apply the diagonal move of length 2 to the column JL and get

FG ⊂ Vj−1. All arrows in the triangle AFG have length 1, therefore AFG ⊂ Vj−1, via diagonal

moves.

Figure 2.1:
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The case i = n, n′+ 1 6 j displayed on Fig.2.2.a is similar to already considered: all horizontal

arrows within D′ψ are of length 1. The case i 6 n− 1, n′ = j is displayed on Fig.2.2.b. Apply the

diagonal move of length 1 to the column BC ′ and get DE ⊂ Vj−1. Then apply the diagonal move

of length 2 to BC ′ and get FG ⊂ Vj−1. Thence the entire triangle AFG is in M .

Figure 2.2:
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PROPOSITION 2.9 Suppose ψ ∈ Ψβ, (i, j) ∈ P (β), and ψ 6= ψij. Then wi ⊗ ψvλ ∈ Vj−1.

Proof. Consider a factorization ψ = ψ′ψmj , where m is some integer satisfying i ≺ m 4 j and

ψ′ ∈ Ψεi−εm . Choose m to be the smallest possible. In the factorization ψij = ψimψmj let φ be

the rightmost Chevalley factor in ψim, while φ′ the rightmost factor in ψ′. Due to the choice of

m, φ 6= φ′. Further we consider algebras of types A,B,C separately from D.

In diagrams of types A,B and C, all arrows have length 1, Fig.2.3.a. All nodes in the north-

east rectangle CDIH are the same as in Dψij . Therefore CDGF is in Vj−1, by Lemma 2.8.
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Since φ′ 6= φ, the left move via φ′ maps CF onto BE, modulo CF ⊂ Vj−1, proving BE ⊂ Vj−1.

Applying diagonal moves to BE we get the triangle ABE ⊂ Vj−1 including the node A, which is

wii = wi ⊗ ψvλ. Now we look at the type D. We can assume that i 6 n − 1, n′ + 1 6 j, since

otherwise this case reduces to already considered. If the length of φ′ is 1, the reasoning is the same

as above. The only difference is that one may have to use a diagonal move of length 2 in transition

from BE to A, see Fig.2.3.b. If the length of φ′ is 2, then the transition to BE is performed

via φ′ applied to CF ′ ⊂ Vj−1, as shown on Fig.2.3.c. This proves that BE ⊂ Vj−1. Further, all

horizontal arrows in the triangle ABE are of length 1 (the factor fαn enters ψ only once). This

situation is similar to the types A,B and C considered earlier. Thus, the node A = wii = wi⊗ψvλ,

belongs to Vj−1.

Figure 2.3:
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For i 4 j denote by ||i − j|| the distance (the number of arrows in a path) from i to j on the

Hasse diagram of the natural representation of Uq(g−).

Set hi = hεi ∈ h for all i ∈ I and introduce ηij ∈ h + C for i, j ∈ I, by

ηij = hi − hj + (εi − εj , ρ)− 1

2
||εi − εj ||2. (2.5)

Here ||µ|| is the Euclidean norm on h∗.

LEMMA 2.10 Suppose that (l, r) ∈ P (α) for some α ∈ Π+. Then

i) if l < r < j, then ηlj − ηrj = hα + (α, εj − εr),

ii) if i < l < r, then ηli − ηri = hα + (α, εi − εr),

iii) ηlr = hα.

Proof. We have (α, ρ) = 1
2 ||α||

2 for all α ∈ Π+. This proves iii). Further, for εl − εr = α:

ηlj − ηrj = hα +
1

2
||α||2 +

1

2
||εj − εr||2 −

1

2
||εj − εr − α||2 = hα + (α, εj − εr), r < j,

ηli − ηri = hα +
1

2
||α||2 +

1

2
||εi − εr||2 −

1

2
||εi − εr − α||2 = hα + (α, εi − εr), i < l,

which proves i) and ii).
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PROPOSITION 2.11 Suppose that i, j ∈ I are such that i ≺ j. Then

wi ⊗ ψijvλ = (−1)||i−j||q−(λ,ηij)wj ⊗ vλ mod Vj−1. (2.6)

Proof. Suppose that α ∈ Π+ and (i, k) ∈ P (α). By Lemma 2.8, the node wi ⊗ ψkjvλ ∈ D′ψ lies in

Vj−1 Applying ∆fα = fα ⊗ q−hα + 1⊗ fα to wi ⊗ ψkjvλ we get

wi ⊗ ψijvλ = −q−(λ,α)−(α,εj−εk)wk ⊗ ψkjvλ

= −q−(λ,ηij−ηkj)wj ⊗ ψkjvλ mod Vj−1

for all k 4 j. Here we used fαwi = wk and fαψ
kj = ψij for all k 4 j. Proceeding recursively along

the path from i to j with the boundary condition ηjj = 0 we complete the proof.
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Chapter 3

Quantization of Borderline Levi

Conjugacy Classes of Orthogonal

Groups

This chapter is devoted to quantization of a special family of conjugacy classes in the complex

algebraic group G = SO(N). This completes the construction of quantum semisimple conjugacy

classes of SO(N) and, generally, of all simple groups of the infinite series. Classes of our present

concern have isotropy subgroups with a Cartesian factor SO(2)× SO(P ), where P is of the same

parity as N . Due to the isomorphism GL(1) ' SO(2), they form a borderline between the Levi

and non-Levi families, whose bulk cases have been processed in [65, 68, 69].

Consider the borderline class Ox passing through the diagonal matrix x with entries

µ1, . . . , µ1︸ ︷︷ ︸
n1

, . . . , µ`, . . . , µ`︸ ︷︷ ︸
n`

,−1, 1, . . . , 1︸ ︷︷ ︸
P

,−1, µ−1
` , . . . , µ−1

`︸ ︷︷ ︸
n`

, . . . , µ−1
1 , . . . , µ−1

1︸ ︷︷ ︸
n1

,

where P = 2p if N = 2n and P = 2p + 1 if N = 2n + 1. The complex vector µ ∈ C`+2, where

µ`+1 = −1, µ`+2 = 1 satisfies the conditions µi 6= µ±1
j for i < j 6 ` and µ2

i 6= 1 for 1 6 i 6 `. The

centralizer of the point x ∈ G is the subgroup

K = GL(n1)× . . .×GL(n`)× SO(2)× SO(P ), (3.1)

whose Lie algebra k is a Levi subalgebra in g,

k = gl(n1)⊕ · · · gl(n`)⊕ so(2)⊕ so(P ).

The subgroup K is determined by an integer valued vector n = (ni)
`+2
i=1 , which is a partition of

n. We reserve the integer l for
∑`
i=1 ni, so that l + 1 + p = n. Here n`+1 = 1 and n`+2 = p. Let

MK denote the moduli space of conjugacy classes with the fixed isotropy subgroup (3.1), regarded
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as Poisson spaces with the bivector field rad,ad + ωr,l − ωl,r (cf. Introduction). We introduce the

subspaceM′K of classes with µ`+1 = −1. The sets of all vectors µ as specified above parameterize

MK and M′K although not uniquely. We denote these sets by M̂K and, respectively, M̂′K .

As a variety, the class Ox associated with µ and n is determined by the set of equations

(X − µ1) . . . (X − µ`)(X + 1)(X − 1)(X − µ−1
` ) . . . (X − µ−1

1 ) = 0, (3.2)

Tr(Xk) =
∑̀
i=1

ni(µ
k
i + µ−ki ) + 2(−1)k + P, k = 1, . . . , N, (3.3)

where the matrix multiplication in the first line is understood. This system is polynomial in the

matrix entries Xij and defines an ideal of C[Xij ] vanishing on Ox.

THEOREM 3.1 The system of polynomial relations (3.2) and (3.3) generates the defining ideal

of the class O in C[SO(N)].

Proof. The proof is similar to [65], Theorem 2.3.

The goal is a generalization of this statement for the quantized polynomial algebra of O.

3.1 Parabolic Verma Module Mλ

Let p+ = k+g+ ⊂ g denote the parabolic subalgebra. An element λ ∈ C∗k = 1
~ c
∗
k ⊕ c∗k defines a one-

dimensional representation of Uq(k) denoted by Cλ. Its restriction to Uq(h) acts by the assignment

q±hα 7→ q±(α,λ), α ∈ Π+. Since q = e~, the pole in λ is compensated, and the representation

is correctly defined. It extends to Uq(p
+) by setting it to zero on g+ ⊂ p+. Denote by Mλ the

parabolic Verma module Uq(g)⊗Uq(p+)Cλ, [48]. Regarded as a Uq(g−)-module by restriction from

Uq(g), Mλ is isomorphic to the quotient Uq(g−)/Uq(g−)k−, which we denote by U−k .

Of key importance for us is the structure of the tensor product CN ⊗Mλ. The element R21R

expressed through the universal R-matrix R ∈ U~(g)⊗U~(g) operates on CN ⊗Mλ as an invariant

matrix Q ∈ End(CN ) ⊗ Uq(g), which commutes with ∆(x) for all x ∈ Uq(g). The normal form

of Q is determined by the submodule structure of CN ⊗Mλ. The eigenvalues of Q are found in

[68]. It is also known that Q is semisimple for generic λ ∈ C∗k . Then we are going to check that Q

remains semisimple for a certain set of λ of our interest.

Note with care that in this section we fix the natural representation ζ with the minus sign, cf.

Section 2.1. The natural Uq(g)-module splits into irreducible Uq(k)-modules,

CN = (Cn1 ⊕ · · · ⊕ Cn`)⊕ C⊕ CP ⊕ C⊕ (Cn` ⊕ · · · ⊕ Cn1), (3.4)

which decomposition is compatible with the basis {wi}Ni=1 = ∪2`+3
i=1 {wk}

mi+1−1
k=mi

counting from the

left. Here mi = n1 + · · · + ni−1 + 1 for i = 1, . . . , ` + 2, and m2`+4−i = N + 1 −
∑i
k=1 nk,

i = 1, . . . , ` + 1. Note that wmi is the highest weight vector of the corresponding irreducible

k-submodule in CN .
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For λ ∈ C∗k , the operator Q ∈ End(CN ⊗Mλ) satisfies the equation
∏2`+3
i=1 (Q − xi) = 0 with

the roots

xi = q2(λ,εmi )−2(mi−1), i = 1, . . . , `+ 2,

x2`+4−i = q−2(λ,εmi )−2N+2(mi+ni), i = 1, . . . , `+ 1,
(3.5)

see [68], Theorem 4.2. The root xi corresponds to a submodule Mi ⊂ CN ⊗Mλ, where Q acts as

multiplication by xi. For generic λ ∈ C∗k and q, the roots xi are pairwise distinct, and CN ⊗Mλ =

⊕2`+3
i=1 Mi.

In this chapter, we are interested in special λ making x`+1 = q2(λ,εl+1)−2l equal to x`+3 =

q−2(λ,εl+1)−2l−2P . In particular, this condition is satisfied if

q2(λ,εl+1) = −q−P . (3.6)

Let C∗k,′ be the subset of all weights λ ∈ C∗k subject to (3.6). We prove that, for generic λ ∈ C∗k,′ and

generic q including q → 1, the direct sum decomposition of CN ⊗Mλ still holds, and the operator

Q is semisimple. To this end, we study the submodules M`+1 and M`+3 and show that their sum is

direct for all λ satisfying (3.6). The analysis is based on calculation of singular vectors generating

M`+1 and M`+3.

As in [68], we introduce a subspace of weights that we use for the parametrization ofM′K , the

moduli space of borderline conjugacy classes with fixed K. Put µ0
k = e2(λ,εmk ), for k = 1, . . . , `+2.

The subset c∗k,′ ⊂ c∗k is specified by the condition µ0
`+1 = −1. Let c∗k,reg denote the set of all weights

λ ∈ c∗k such that µ0 ∈ M̂K and similarly define c∗k,reg′ ⊂ c∗k,′ by the requirement µ0 ∈ M̂′K . Finally,

we introduce C∗k,reg′ = C∗k,′ ∩ ( 1
~ c
∗
k,reg′ ⊕ c∗k ). The subset C∗k,reg′ is dense in C∗k,′ .

3.2 Singular Vectors in CN ⊗Mλ

In this section, k is the Levi subalgebra h + so(P ), which this assumption can be otherwise put as

` = l. The parabolic Verma module Mλ is relative to this subalgebra. In other words, λ ∈ C∗k if

and only if (λ, εi) = 0, i = l + 2, . . . , n.

Given weight λ ∈ 1
~h
∗ ⊕ h∗ we denote λi = (λ, εi), for all i ∈ I.

Recall that a non-zero weight vector v in a Uq(g)-module is called singular if it generates the

trivial Uq(g+)-submodule, i.e. eαv = 0, for all α ∈ Π+. Since the weights of eαv are pairwise

distinct, this is equivalent to the equation Ev = 0, where E =
∑n
m=1 eαm . We will also work with

the operator E′ =
∑n
m=2 eαm , in view of Corollary 3.3 below.

LEMMA 3.2 Let W be a finite dimensional Uq(g)-module and W ∗ its right dual module. Let Y

be a Uq(g)-module. Singular vectors in W ⊗ Y are parameterized by homomorphisms W ∗ → Y of

Uq(g+)-modules.

Proof. Choose a weight basis {wi}di=1 ⊂ W , where d = dimW . Suppose that u ∈ W ⊗ Y is

a singular vector, u =
∑d
i=1 wi ⊗ yi, for some yi ∈ Y . Let π : Uq(g) → End(W ) denote the
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representation homomorphism, π(u)wi =
∑N
j=1 π(u)ijwj . We have, for α ∈ Π+,

eαu =

d∑
i=1

d∑
j=1

π(eα)ijwj ⊗ yi +

d∑
i=1

q(α,εi)wi ⊗ eαyi. (3.7)

So eαu = 0 is equivalent to eαyi = −q−(α,εi)
∑d
j=1 π(eα)jiyj . The vector space Span{yi}di=1 sup-

ports the right dual representation of Uq(g+), provided yi are linear independent. In general, it is

a quotient of the right dual representation.

Formula (3.7) can be more explicitly rewritten as

yj = (−1)εi+1q(εi−εj ,εi)eεi−εjyi

for all i, j ∈ I such that εi − εj ∈ Π+. In the following corollary, Mλ is a parabolic Verma module

relative to arbitrary k.

COROLLARY 3.3 Singular vectors {ui} ∈ CN ⊗ Mλ are parameterized by weight elements

y ∈Mλ satisfying e3
α1
y = 0 if N = 3, e2

α1
y = e2

α2
y = 0 if N = 4 and e2

α1
y = E′y = 0 for N > 4.

Proof. The weight ε1 is integral dominant. The dual natural representation of Uq(g) is generated

by the vector of lowest weight −ε1. When restricted to Uq(g+), it is isomorphic to a quotient of

the left regular Uq(g+)-module. It is the quotient by the left ideal in Uq(g+) generated by e3
α1

if

N = 3, by e2
α1
, e2
α2

if N = 4, and by e2
α1
, eαi , i = 2, . . . , n if N > 4. Therefore, all homomorphisms

from the co-natural module to Mλ are generated by the assignment Uq(g+) 3 1→ y ∈Mλ, where

y satisfies the hypothesis.

Singular vectors generate Uq(g)-submodules of highest weight. It is known that, for generic λ,

singular vectors in CN ⊗Mλ are parameterized by the highest weights ν of the irreducible Uq(g)-

submodules in CN and carry the weights λ + ν. We denote by uj the singular vector of weight

λ+ εj , j ∈ I, which is defined up to a non-zero scalar factor. We can write

uj =

N−l∑
i=1

wi ⊗ yj,i, j ∈ I

where yj,i ∈ Mλ is an element of weight λ + εj − εi, i 6 j. For each j the linear span {yj,i}ji=1

supports a quotient of the co-natural representation of Uq(g+), which is cyclically generated by

{yj,1}

Singular vectors ui, i = 1, . . . , n−1, are related to the subalgebra gl(n) ⊂ g. They were studied

in detail in [7], and can be extracted from Corollary 5.3 below. Singular vector un+1 in the case

of g = so(2n) is related to another copy of gl(n) with αn−1 replaced by αn. Singular vector un+1

for g = so(2n + 1) can be constructed as follows. Define “dynamical root vectors” fεk by setting

fεn = fαn and

fεk−1
= fαk−1

fεk [hεk + n− k + 1]q − fεkfαk−1
[hεk + n− k]q
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for all k = n − 1, . . . , 1. It is also convenient to put f0 = 1. Let Mλ be the Verma module of

highest weight λ and vλ its canonical generator. The identity

eαkfεivλ = δki[λi + n− i]fεi+1
vλ,

can be checked by induction on i. Setting yn+1,1 = fε1vλ, we obtain yn+1,i = (−q)i−1
∏i−1
k=1[λi +

n− k]fεivλ, i = 1, . . . n+ 1.

We are especially interested in uN−l carrying the weight λ − εl+1. It is expanded over the

basis {wi}Ni=1 ⊂ CN as uN−l =
∑N−l
i=1 wi ⊗ yi with coefficients yi = yN−l,i of weight λ− εi − εl+1,

i = 1, . . . , l + 1. They are generated by y1 via the co-natural action of Uq(g+), so we call y1 the

generating coefficient. The next goal is to evaluate y1.

Consider the graph corresponding to the co-natural representation of Uq(g+) for N > 3.

yN−l

b� . . . � b
yl+1

� b
yl

� � b
y2

. . . � b
y1

eαl+1
eαl+1

eαl eαl−1
eα2

eα1

We can readily write down yi for l+2 6 i 6 N− l, up to a scalar factor. Indeed, the corresponding

weight spaces in Mλ have dimension 1. Suppose that ψi,N−l = fαψ
j,N−l for α = εi − εj ∈ Π+

(for odd N , j is always i − 1, while for even N j may be also i − 2 for i = n + 1, n + 2). Then

eαψ
i,N−lvλ ∼ ψi+1,N−lvλ and yi ∼ ψi,N−lvλ:

yN−l ∼ vλ, yN−l−1 ∼ fl+1vλ, yN−l−2 ∼ fl+2fl+1vλ, . . .

In particular, yl+1 ∼ fl+1
<. . . fn−1fnfnfn−1

>. . . fl+1vλ for odd N and a similar expression with

fn−1fn in place of fnfn for even N .

The problem essentially boils down to finding yi with i 6 l + 1. These coefficients feature

the following chain property. Let g′i ⊂ g denote the subalgebra with simple roots {αj}nj=i and

let M ′i,λ ⊂ Mλ be the Uq(g
′
i)-submodule generated by vλ. If yi ∈ M ′i,λ, then yi is the generating

coefficient for a Uq(g
′
i)-singular vector in CN−2i+2⊗M ′i,λ, as follows from the representation graph.

This observation enables construction of yi by descending induction starting from yl+1 ∈ M ′l+1,λ,

which is done in the next section.

3.2.1 Symmetric Classes

In this section, we fix l = 0 or equivalently n = 1+p. This assumption corresponds to the symmetric

conjugacy class of matrices with eigenvalues −1 and +1 of multiplicities 2 and P , respectively. The

singular vector of interest has weight λ+ εl+1 = λ− ε1.

We introduce the following basis in the weight space [U−k ]−2ε1 . Observe that d0
P := dim[U−k ]−2ε1
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is p+ 1 for odd P and p for even P . Define monomials φm, m = 1, . . . , d0
P , by

φm =



fαm
>. . .fα1

fαm+1
>. . .fαp+1

fαp+1
>. . .fα1

, 1 6 m 6 p+ 1 for odd N,

fαm
>. . .fα1

fαm+1
<. . .fαp−1

fαpfαp+1
fαp−1

>. . .fα1
, 1 6 m 6 p− 1

fαpfαp−1
>. . .fα1

fαp+1
fαp−1

>. . .fα1
, m = p

fαp+1fαp−1
>. . .fα1fαpfαp−1

>. . .fα1 , m = p+ 1

 for even N.

All φm have weight −2ε1. Using the Serre relations, we can check for even N that φp+1 =

fαpfαp−1
>. . .fα1

fαp+1
fαp−1

>. . .fα1
= φp, so the number of independent φm is equal to d0

P = dim[U−k ]−2ε1 .

Still it is convenient to consider both φp and φp+1.

The leftmost position in all φm is occupied by fαm . We define vectors φ′m of weight −2ε1 +αm

obtained from φm by deleting this fαm :

φ′m = fαm−1
>. . .fα1

fαm+1
<. . .fαp+1

fαp+1
>. . .fα1

for odd N, and

φ′m =


fαm−1

>. . .fα1
fαm+1

<. . .fαp−1
fαpfαp+1

fαp−1
>. . .fα1

, m 6 p− 1

fαp−1
>. . .fα1fαp+1fαp−1

>. . .fα1 , m = p

fαp−1
>. . .fα1fαpfαp−1

>. . .fα1 , m = p+ 1

, for even N.

Abusing notation, we will also identify φm and φ′m with their images in the quotient U−k .

LEMMA 3.4 The monomial φ′m spans [U−k ]−2ε1+αm for each m = 1, . . . , p+ 1.

Proof. We can check that dim[U−k ]−2ε1+αm = 1, so to prove the statement, we must prove that

φ′m 6= 0. The squared norm 〈φ′mvλ, φ′mvλ〉 with respect to the Shapovalov form on Mλ is equal

to [λ1]q for m = 1 and to [λ1]q[λ1 − 1]q otherwise. It is not zero if [λ1]q[λ1 − 1]q 6= 0. Due to

the isomorphism Mλ ' U−k , φ′m 6= 0 as well as its projection in U−k for generic λ. But φ′m is

independent of λ, which completes the proof.

Let Φ0 denote the linear span of {φmvλ}
d0P
m=1 ⊂ Mλ. Denote by Ê the composition Cd0P →

Φ0 → Mλ of linear maps, (Am) 7→
∑d0P
m=1Amφm = y 7→ Ey. For N > 5, the operator Ê acts on

Cd0P by (Am)
d0P
m=1 7→

∑p+1
m=1Emφ

′
mvλ, where the scalar coefficients Em are given in the following

lemma.

LEMMA 3.5 Suppose that N > 5 and y =
∑d0P
m=1Amφmvλ ∈ Φ0. Then, for all m = 1, . . . , p+ 1,

we have emy = Emφ
′
mvλ, where the scalar factors Em are

E1 = A1[λ1]q +A2[λ1 − 1]q,

Ei = Ai−1 + [2]qAi +Ai+1, i = 2, . . . , d1
P − 1,

Ep = Ep+1 = Ap−1 + [2]qAp, for even N,

Ep+1 = Ap + (1 + [2]q)Ap+1, for odd N.

Proof. A straightforward calculation.
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LEMMA 3.6 Suppose that N > 5. Then the map Ê is injective for generic λ.

Proof. Define

Am = (−1)
m−1

[
P

2
−m+ 1

]
q

, m = 1, . . . , d0
P . (3.8)

For N > 5, one can check that (3.8) is a unique solution of the system of equations Ei = 0,

i = 2, . . . , p + 1, up to a common scalar factor. This makes E1 = A1[λ1]q + A2[λ1 − 1]q into

[λ1 + P
2 − 1]q, which does not vanish for generic λ.

COROLLARY 3.7 a) The system {φmvλ}
d0P
m=1 forms a basis in [Mλ]λ−2ε1 . b) The vector f

(P )
2ε1

vλ =∑d0P
m=1Amφmvλ, where Am are given by (3.8), is a generating coefficient. c) It is a unique gener-

ating coefficient of weight λ− 2ε1, up to a scalar factor.

Proof. The statement is obvious for N = 3, 4 with p = 0 and, respectively, p = 1. Then d0
P = 1

and the vectors f
(1)
2ε1
vλ = [ 1

2 ]qf
2
α1
vλ, f

(2)
2ε1
vλ = fα1

fα2
vλ satisfy the conditions e3

α1
f

(1)
2ε1
vλ = 0 and

e2
α1
f

(2)
2ε1
vλ = e2

α2
f

(2)
2ε1
vλ = 0, as required.

Now suppose that N > 5. Since the operator Ê is injective, the map Cd0P → Φ0 is injective too.

It is surjective by construction, hence it is a bijection. For generic λ, the vectors {φmvλ}
d0P
m=1 form

a basis in Φ0 and hence in [Mλ]λ−2ε1 , as the latter has dimension d0
P . The vectors {φm}

d0P
m=1 form a

basis in [U−k ]−2ε1 , due to the linear isomorphism [Mλ]µ ' [U−k ]µ−λ. These vectors are independent

of λ, hence they form a basis at all λ, as well as {φmvλ}
d0P
m=1. This implies that f

(P )
2ε1

vλ 6= 0, and it

is a unique generating coefficient, up to a scalar factor.

3.2.2 The Case l = 1

To keep reference to the symmetric case considered in the previous section, we enumerate the

simple roots Πg = {αi}p+1
i=0 . Then the roots {αi}p+1

i=1 correspond to the subalgebra Uq(g
′
1) ⊂ Uq(g).

Under this embedding, we regard φm and f
(P )
2ε1

constructed in the previous section as elements of

Uq(g).

Observe that d1
P := dim[Mλ]λ−ε0−ε1 is equal to 3p + 3 for odd N and 3p + 1 for even N .

The only generator which does not commute with fα0
is fα1

, and it enters φm twice. There are

three possible ways to allocate fα0 relative to these fα1 . We use this observation to construct the

basis in [U−k ]−ε0−ε1 from the basis in [U−k ]−2ε1 . For all m = 1, . . . , p+ 1, define φ1
m = fα0φm and

φ3
m = φmfα0

. Define φ2
m to be the monomial obtained from φm by replacing the rightmost copy

of fα1
with fα0

fα1
. For even N , the equality φp+1 = φp implies φ1

p+1 = φ1
p and φ3

p+1 = φ3
p, so we

have effectively 3p+ 1 monomials for even N and 3p+ 3 monomials for odd N .

As in the symmetric case, for all m ∈ [1, p+ 1] we define φ′
i
m ∈ Uq(g−) of weight −ε0− ε1 +αm

by deleting the leftmost copy of fαm from φim. Note that φ′
1
1 = φ′

2
1 and, for even N , φ′

1
p+1 = φ′

1
p,

φ′
3
p+1 = φ′

3
p. Put rm = 2 for m = 1 and rm = 1 for m > 1.
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LEMMA 3.8 For all m = 1, . . . , p + 1, the vectors {φ′im}3i=rm ⊂ [U−k ]−ε0−ε1+αm are linearly

independent.

Proof. We can check that the Gram matrix of the system {φ′imvλ}3i=rm with respect to the Shapo-

valov form on Mλ is [λ1]q[λ0 − λ1 + 1]q [λ1]q[λ0 − λ1]q

[λ1]q[λ0 − λ1]q [λ1 + 1]q[λ0 − λ1]q

 , m = 1,

[λ1]q


[λ1 − 1]q[λ0 − λ1 + 2]q [λ1 − 1]q[λ0 − λ1 + 1]q [λ1 − 1]q[λ0 − λ1]q

[λ1 − 1]q[λ0 − λ1 + 1]q [λ1]q[λ0 − λ1 + 1]q [λ1]q[λ0 − λ1]q

[λ1 − 1]q[λ0 − λ1]q [λ1]q[λ0 − λ1]q [λ1 + 1]q[λ0 − λ1]q

 ,

m = 2, . . . , n, for either parity of N . Its determinant is equal to

[λ0 − λ1]q[λ1]q[λ0 + 1]q, m = 1,

[λ0 − λ1]q[λ1]3q[λ1 − 1]q[λ0 + 1]2q, m = 2, . . . , p+ 1.

It does not vanish for generic λ, hence {φ′imvλ}3i=rm are linearly independent. This is also true for

all λ, since φ′
i
m are independent of λ.

All φimvλ are annihilated by e2
α0

, as fα0 enters only once. Therefore their linear combination

annihilated by eαi , i > 1, is a generating coefficient.

Present Cd1P = Cp+1⊕Cp+1⊕Cp+1 for odd N and Cd1P = Cp⊕Cp+1⊕Cp for even N . Let the

upper index of (Aim) ∈ Cd1P label the summand in this decomposition while the lower index mark

the coordinate within this summand.

Let Φ1 denote the linear span of {φimvλ}m,i ⊂ Mλ. Denote by Ê the composition Cd1P →

Φ1 → Mλ of linear maps acting by (Aim) 7→
∑
m,iA

i
mφ

i
m = y 7→ Ey. It acts by Ê : (Aim) 7→∑3

i=rm
Eimφ

′i
mvλ, where the scalar factors Eim are given in the following lemma.

LEMMA 3.9 Suppose that y =
∑
m,iA

i
mφ

i
mvλ ∈ Φ1, where (Aim) ∈ Cd1P . Then, for all m =

1, . . . , p+ 1, we have eαmy =
∑3
i=rm

Eimφ
′i
mvλ, where the scalar factors Eim are as follows.

a.1) P = 3.

E2
1 = A1

1([λ1]q + [λ1 − 1]q) +A2
1[λ1]q, E3

1 = A3
1([λ1]q + [λ1 + 1]q) +A2

1[λ1]q,

a.2) P = 2p+ 1 > 5

E2
1 = A1

1 [λ1]q +A1
2 [λ1 − 1]q +A2

1 [λ1 + 1]q +A2
2 [λ1]q ,

E3
1 = A3

1 [λ1 + 1]q +A3
2 [λ1]q ,

Ekm = Akm−1 +Akm [2]q +Akm+1, 2 6 m 6 p,

Eip+1 = Aip +
(

1 + [2]q

)
Aip+1 +A2

p+1, i = 1, 3,

E2
p+1 = A2

p +A2
p+1.
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b.1) P = 4

E2
1 = A1

1[λ1]q +A2
1[λ1 + 1]q, E3

1 = A3
1[λ1 + 1]q +A2

2[λ1]q,

E2
2 = A1

1[λ1]q +A3
1[λ1 + 1]q, E3

2 = A2
1[λ1]q +A2

2[λ1 + 1]q.

b.2) P = 2p > 6

Eki = Aki−1 + [2]qA
k
i +Aki+1, i = 1, . . . , p− 1,

whenever the pair (i, k) is distinct from specified below, in which case Eki are

E2
p−1 = A2

m−3 +A2
p−1 [2]q +A2

p +A2
p+1,

E2
p = A2

p−1 +A2
p [2]q ,

E2
p+1 = A2

p−1 +A2
p+1 [2]q ,

Eip = Aip−1 +Aip [2]q +A2
p+1, i = 1, 3,

Eip+1 = Aip−1 +Aip [2]q +A2
p, i = 1, 3.

Proof. A straightforward brute force calculation.

Define f
(P )
ε0+ε1 =

∑
m,iA

i
mφ

i
m, where Aim are as follows:

Aim =


(−1)m+1[λ1 + P −m]q[λ1 + P

2 ]q, i = 1,

(−1)m(qm−
P
2 + q−m+P

2 )q[λ1 + P
2 − 1]q[λ1 + P

2 ]q, i = 2,

(−1)m+1[λ1 +m− 1]q[λ1 + P
2 − 1]q, i = 3,

for m = 1, . . . , d1
P apart from A2

p, A
2
p+1 for even N , which are set to (−1)p[λ1 + P

2 − 1]q[λ1 + P
2 ]q.

LEMMA 3.10 Up to a scalar factor, the vector f
(P )
ε0+ε1vλ is a unique solution of the system

eαif
(P )
ε0+ε1vλ = 0 for all i = 1, . . . , p+ 1. Furthermore, eα0

f
(P )
ε0+ε1vλ = [λ0 + λ1 + P ]qf

(P )
2ε1

vλ.

Proof. The first part of the statement is proved by a lengthy straightforward calculation, which is

omitted here. Let us prove the second statement. Observe the identities

3∑
i=1

Aim[λ0 − λ1 + 3− i]q = [λ0 + λ1 + P ]qAm,

which hold for m = 1, . . . , p + 1, odd N , and for m = 1, . . . , p − 1, even N . This readily implies

the statement for odd N :

eα0f
(P )
ε0+ε1 =

p+1∑
m=1

3∑
i=1

Aimeα0φ
i
mvλ =

p+1∑
m=1

(
3∑
i=1

Aim[λ0 − λ1 + 3− i]qφmvλ

)
= [λ0 + λ1 + P ]qf

(P )
2ε1

.

If N is even, we have also

3∑
i=1

Aip[λ0 − λ1 + 3− i]q +A2
p+1[λ0 − λ1 + 1] = [λ0 + λ1 + P ]qAp.
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Then, for even N ,

eα0f
(P )
ε0+ε1vλ =

p∑
m=1

3∑
i=1

Aimeα0φ
i
mvλ +A2

p+1eα0φ
2
p+1vλ =

p−1∑
m=1

(
3∑
i=1

Aim[λ0 − λ1 + 3− i]qφmvλ

)

+

(
3∑
i=1

Aip[λ0 − λ1 + 3− i]q +A2
p+1[λ0 − λ1 + 1]

)
φpvλ = [λ0 + λ1 + P ]qf

(P )
2ε1

,

as required.

PROPOSITION 3.11 The vectors φim form a basis in [U−k ]−ε0−ε1 . Up to a scalar factor,

f
(P )
ε0+ε1vλ is a unique generating coefficient of the weight λ− ε0 − ε1.

Proof. Observe that d1
P is equal to the dimension of [U−k ]−ε0−ε1 , so we need to prove only linear

independence. Fix a constant c and restrict λ to the hyperplane λ1 = c. By Lemma 3.10, the

map Ê : Cd1P → Φ1 → Mλ is injective for all λ such that [λ0 + c + 2n − 1]q 6= 0. Since the map

Cd1P → Φ1 is surjective, the map E : Φ1 →Mλ is injective too. This implies that φimvλ are linearly

independent for such λ. Since φim are independent of λ0, they are linearly independent at all λ

subject to λ1 = c, and so are φimvλ. As c is arbitrary, the statement holds true for all λ.

3.2.3 The Case l = 2

In order to relate our calculation to already considered cases l = 0, 1, we enumerate the roots as

α−1, α0, α1, . . . , αp+1. We are looking for the generating coefficient of weight λ− ε−1− ε1. It is an

element of Mλ satisfying the equations e2
α−1

y = eαjy = 0, j > 0.

Define the element

f
(P )
ε−1+ε1 = fα−1f

(P )
ε0+ε1 [hε0 + hε1 + P + 1]q − f (P )

ε0+ε1fα−1 [hε0 + hε1 + P ]q ∈ Uq(b−), (3.9)

of weight −ε−1 − ε0 − ε1.

PROPOSITION 3.12 The element f
(P )
ε−1+ε1vλ ∈Mλ is a unique generating coefficient of weight

−ε−1 − ε0 − ε1. Furthermore,

eα−1f
(P )
ε−1+ε1vλ = [λ−1 + λ1 + P + 1]qf

(P )
ε0+ε1vλ.

Proof. We are looking for the generating coefficient in the form

y =
∑
m,k(Ak1

m fα−1
φkm −Ak2

m φ
k
mfα−1

), (3.10)

where (Ak1
m ), (Ak2

m ) ∈ Cd1P . Since fα−1
ϕ′
k
m and ϕ′

k
mfα−1

are independent, the conditions eαmf
(P )
ε−1+ε1vλ =

0 for positive m give Akjm = AkmC
j for some scalars Cj , j = 1, 2. That is, y = C1fα−1f

(P )
ε0+ε1vλ −

C2f
(P )
ε0+ε1fα−1vλ.
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The coefficients C1, C2 are found from the condition eα0
y =

∑n
m=1Emfα−1

ϕm = 0, where Em

are equal to

(
A1
m [λ0 − λ1 + 2]q +A2

m [λ0 − λ1 + 1]q +A3
m [λ0 − λ1]q

)
C1

−
(
A1
m [λ0 − λ1 + 3]q +A2

m [λ0 − λ1 + 2]q +A3
m [λ0 − λ1 + 1]q

)
C2

This boils down to m equations Em = 0 on Ci. The system can be checked to be consistent and

C1 = [λ0 + λ1 +P + 1]q, C
2 = [λ0 + λ1 +P ]q, up to a common scalar factor. Thus, y = f

(P )
ε−1+ε1vλ

is a generating coefficient.

3.2.4 Generating Coefficients for Arbitrary l > 0

Now we return to the usual enumeration of simple roots, α1, . . . , αn. The algebra g = so(2l+2+P )

includes the subalgebra so(6 + P ) via the assignment αi 7→ αl+i, i.e.

α−1 7→ αl−1, α0 7→ αl, . . . , αp+1 7→ αl+p+1 = αn.

Under this embedding, f
(P )
εl+1+εl+2−i

(λ), i = 1, 2, 3, become elements of Uq(g−) of weights −εl+2−i−

εl+1. The subalgebra so(6 + P ) corresponds to already considered case l = 2

Define an element f
(P )
εl−1+εl+1

∈ Uq(b−) by setting

f
(P )
εl−1+εl+1

= fαl−1
f

(P )
εl+εl+1

[hεl + hεl+1
+ P + 1]q − f (P )

εl+εl+1
fαl−1

[hεl + hεl+1
+ P ]q, (3.11)

so that f
(P )
εl−1+εl+1

(λ) is indeed the evaluation of f
(P )
εl−1+εl+1

at the point λ ∈ h∗. Observe that

eαkf
(P )
εk+εl+1

vλ = [λk + λl+1 + P + l − k]qf
(P )
εk+1+εl+1

vλ,

once k = l − 1, l. Suppose we have defined fεk+1+εl+1
for some k ∈ [1, l − 1]. Then put

f
(P )
εk+εl+1

= fαkf
(P )
εk+1+εl+1

[hεk+1
+ hεl+1

+ P + l − k]q

− f
(P )
εk+1+εl+1

fαk [hεk+1
+ hεl+1

+ P + l − k − 1]q.

PROPOSITION 3.13 The vectors f
(P )
εk+εl+1

vλ ∈Mλ satisfy the equations

eαjf
(P )
εk+εl+1

vλ = δjk[λk + λl+1 + P + l − k]qf
(P )
εk+1+εl+1

vλ, k = 1, . . . , l,

eαjf
(P )
2εl+1

vλ = δj l+1[λl+1 +
P

2
− 1]qf

(P )
εl+2+εl+1

vλ, (3.12)

where f
(P )
εl+2+εl+1

= φ′1. Then f
(P )
ε1+εl+1

vλ is a unique generating coefficient of the singular vector in

CN ⊗Mλ of weight λ− ε1 − εl+1.

Proof. The case of k = l − 1, l, l + 1 has been worked out in Sections 3.2.1-3.2.3. We suppose that

the statement is proved for some k + 1 6 l + 1 and prove it for k. Clearly eαjf
(P )
εk+εl+1

vλ = 0 for
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j > k+1 by the induction assumption and j < k by construction. The element f
(P )
εk+1+εl+1

of weight

−εk+1−εl+1 commutes with eαk modulo Uq(b
−)eαk−1

, which readily implies the formula for j = k.

Then the remaining equality eαk+1
f

(P )
εk+εl+1

vλ = 0 easily follows from the induction assumption

eαk+1
f

(P )
εk+1+εl+1

= [λk+1 + λl+1 + P + l − k − 1]qf
(P )
εk+2+εl+1

vλ.

Finally, we argue that f
(P )
ε1+εl+1

vλ does not turn zero for all λ. We showed in Sections 3.2.1–3.2.3

that f
(P )
εk+εl+1

vλ 6= 0 for k = l, l+1, l+2. Assuming it is true for all k 6 l, observe that f
(P )
εk+εl+1

is a

“modified commutator” of f
(P )
εk+1+εl+1

with fαk and that (αk, εk+1 + εl+1) 6= 0. Further arguments

are based on [67], Lemma 9.1, and are similar to the proof of Corollary 9.2 therein.

Next we determine the principal terms of the generating coefficients. This will be of importance

for further analysis. Observe that

f
(P )
2εl+1

vλ = [
P

2
]qψ

l+1,N−lvλ + . . . ,

f
(P )
εl+εl+1

vλ = [λl+1 + P − 1]q[λl+1 +
P

2
]qψ

l,N−lvλ + . . . ,

f
(P )
εm+εl+1

vλ = [λl+1 + P − 1]q[λl+1 +
P

2
]q

l∏
i=m+1

[λi + λl+1 + P + l − i+ 1]qψ
m,N−lvλ + . . . ,

where m < l. The omitted terms contain only non-principal monomials.

Now we can express the principal terms of the coefficients yi = yN−l,i of the singular vector

uN−l. Introduce scalar coefficients c′i via the equality yi = c′iψ
i,N−lvλ+. . ., where the omitted terms

do not contain ψi,N−lvλ. Note that we have exact equality yi = c′iψ
i,N−lvλ for i = l+ 2, . . . , N − l.

Formula (3.7) can be rewritten as

yj = (−1)εi+1q(εi−εj ,εi)eεj−εiyi = (−1)εi+1q(εi,εi)eεj−εiyi

for all i, j ∈ [1, N ] such that εj − εi ∈ Π+. Then

c′m = (−q)m−1[λl+1 +P −1]q[λl+1 +
P

2
]q

m−1∏
i=1

[λi+λl+1 +P + l− i]q
l∏

i=m+1

[λi+λl+1 +P + l− i+1]q,

c′l+1 = (−q)l[P
2

]q

l∏
i=1

[λi + λl+1 + P + l − i]q,

c′l+2 = (−q)l+1[λl+1 +
P

2
− 1]q

l∏
i=1

[λi + λl+1 + P + l − i]q,

where m = 1, . . . , l. Assuming g = so(2n+ 1), we continue as

c′l+2+k = (−q)kc′l+2, k = 1, . . . p,

c′n+1+k = (−q)n−l−1qk−1c′l+2, k = 1, . . . p,

c′n+2+p = (−q)n−l−1qpc′l+2[λl+1]q.

(3.13)
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For g = so(2n), we have

c′l+2+k = (−q)kc′l+2, k = 1, . . . p− 1,

c′n+1+k = (−q)n−l−2qkc′l+2, k = 0, . . . p,

c′n+2+p = (−q)n−l−2qp+1c′l+2[λl+1]q.

(3.14)

We use these formulas in the next section.

3.3 Minimal Polynomial for Q.

In this section we deal with two Levi subalgebras, k and k̂ = h+ so(P ) ⊂ k. All objects related to k̂

will be marked with a hat. In particular, M̂λ is a parabolic Verma module induced from Uq(k̂+g+),

while Mλ stands for the one induced from Uq(k + g+),

Given a weight λ ∈ C∗
k̂

define V̂i ⊂ CN ⊗ M̂λ to be the submodule generated by {wk ⊗ vλ}ik=1.

The sequence {0} = V̂0 ⊂ V̂1 ⊂ . . . ⊂ V̂N forms a filtration, V̂•, of CN ⊗M̂λ. Its graded component

grV̂j = V̂j/V̂j−1 is generated by (the image of) wj ⊗ vλ;

Now assume that λ ∈ C∗k ⊂ C∗
k̂
. Recall that {wmi}2`+3

i=1 are the highest weight vectors of the

irreducible k-blocks in (3.4). Since Span{wk}mi+1−1
k=mi

= Uq(k)wmi , the image of V̂k under projection

Cn ⊗ M̂λ → Cn ⊗Mλ coincides with the image Vmi of V̂mi for all k = mi, . . . ,mi+1 − 1. The

sequence {0} = V0 ⊂ V1 ⊂ . . . ⊂ VN forms a filtration V• of CN ⊗Mλ with the graded module

grV• = (⊕`i=1grVi)⊕ grVl+1 ⊕ grVl+2 ⊕ grVN−l ⊕ (⊕`i=1grV`+3+i). (3.15)

The graded components grVi = Vi/Vi−1 are labelled with irreducible k-submodules of (3.4), and

generated by the images of wmi ⊗ vλ carrying the highest weight λ+ εmi .

PROPOSITION 3.14 As a filtration of Uq(g−)-modules, V• is independent of λ ∈ C∗k .

Proof. This statement is true for all parabolic Verma modules relative to a Levi subalgebra k.

Consider the subalgebra Uq(g
′
−) ' Uq(g−) in Uq(b−) generated by f ′α = qhαfα, α ∈ Π+. The

Uq(g
′
−)-module Mλ is isomorphic as a Uq(g−)-module to the quotient of Uq(g

′
−) by the left ideal∑

α∈σΠ+
k
Uq(g

′
−)f ′α. This ideal is independent of λ, hence Mλ are isomorphic for all λ. With

this isomorphism, the representation of Uq(g
′
−) on Cn ⊗Mλ is independent of λ since ∆(f ′α) =

f ′α⊗1+qhα⊗f ′α. On the other hand, Vi/Vi−1 ' Uq(b−)(wmi⊗vλ) = Uq(g
′
−)(wmi⊗vλ), i = 1, . . . , k

(here we identified wmi ⊗ vλ with its image in Vi/Vi−1).

For generic λ ∈ C∗k , the graded component grVmi is a parabolic Verma module induced from

Cλ ⊗ Cni ⊂ Cλ ⊗ CN , hence that is true for all λ. The operator Q is scalar on each grVmi , which

is a cyclic module of highest weight λ+ εmi . Therefore (3.15) determines the spectrum of Q and a

polynomial equation on Q. For generic λ this polynomial is minimal, but may not be so for special

values of λ. In particular, that is not the case for λ ∈ C∗k,reg′ .

Suppose that i 4 j and fix a path from i to j on the Hasse diagram. We define
y∑j
m=i as

summation over all nodes m of that path. We shall use it only when it is path-independent.
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PROPOSITION 3.15 Suppose that i, j ∈ I are such that i ≺ j. Then

wi ⊗ ψijvλ = (−1)j−i+
y∑j−1
k=iεkq(εj−εi,εj)−

y∑j
k=i+1(εk,εk)qλj−λiwj ⊗ vλ mod Vj−1. (3.16)

If ψ is a Chevalley monomial of weight εj − εi and ψ 6= ψij, then wi ⊗ ψvλ ∈ Vj−1.

It is also convenient to use an equivalent local version of formula (3.16):

wi ⊗ ψijvλ = (−1)εi+1qλk−λi+(εk−εi,εj−εk)wk ⊗ ψkjvλ mod Vj−1 (3.17)

where εi − εk = α ∈ Π+ is a positive simple root for some i, k ∈ I, and j < k. Note that (3.16)

holds true for g = gl(n) and k = ⊕`+1
i=1gl(ni) via the embeddings Uq(gl(n)) ⊂ Uq(so(N)), Cn ⊂ CN ,

of algebras and their natural representations.

We consider yet another system of Uq(g)-submodules and compare it with {Vi}l+3
i=1. As we

mentioned, for generic λ there are direct sum decompositions

CN ⊗ M̂λ = ⊕2l+3
i=1 M̂i, λ ∈ C∗

k̂
, CN ⊗Mλ = ⊕2`+3

i=1 Mi, λ ∈ C∗k ,

where M̂i and Mi are generated by singular vector ûi and, respectively, by the projection umi of

rescaled ûmi (which otherwise might turn zero). The submodule Mi (respectively M̂i) is an image

of the parabolic Verma module induced from the irreducible k-submodule of Cλ⊗Cni ⊂ Cλ⊗CN .

The left decomposition holds if the Shapovalov forms of M̂λ and all M̂i are not degenerate; the

same is true for the right decomposition. The operator Q is scalar multiple on M̂i and Mi with

the eigenvalues x̂i and, respectively, xi = x̂mi . Denote Wi =
∑i
k=1Mk.

PROPOSITION 3.16 There is an inclusion Wi ⊂ Vi. Further, Wi = Vi if and only if Wi =

⊕ik=1Mk. Consequently, Wi = Vi if and only if Wk = Vk for all k 6 i.

Proof. The inclusionWi ⊂ Vi follows from Proposition 3.15. The last statement readily follows from

the second. Since Mk and grVk are cyclic modules of the same highest weight, either the projection

πk : Mk → gr Vk is zero or coincides with gr Vk. In the latter case, it is an isomorphism. Indeed,

let M̃j denote the parabolic Verma module projected onto the submodule Mj . Since M̃j ' Vk, the

composition M̃j → Mj → Vj is an isomorphism once it is surjective. Denote M ′k = Wk−1 ∩Mk.

For each k the projection πk factorizes to the composition

Mk �Mk/M
′
k 'Wk/Wk−1 �Wk/(Wk ∩ Vk−1) ↪→ grVk,

where the left and middle arrows are surjective and the right one is injective. As argued, πk is

either an isomorphism or πk = 0. If M ′k = {0} for all k 6 i, then, by ascending induction on k, all

these maps are isomorphisms, and Vk = Wk including k = i. Conversely, assuming Vi = Wi, we

get M ′i = {0} and Vi−1 = Wi−1. Descending induction on i completes the proof.
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COROLLARY 3.17 For all j ∈ I, decomposition Wj = ⊕ji=1Mi holds if and only if πi(ui) 6= 0

for all i = 1, . . . , j.

In particular, if the eigenvalues {xk}Nk=1 are pairwise distinct, the sum W2`+3 = ⊕2`+3
k=1 Mk is direct,

and W2`+3 = V2`+3 = CN ⊗Mλ. However, we are interested in the situation when x`+1 = x`+3.

To address this case, we need to calculate the π`+3(u`+3) ∈ grV`+3.

Let Ci, i = 1, . . . , 2`+ 3, be the scalar coefficient in the presentation ui = Ciwi⊗ vλ mod Vi−1

and Ĉi be similarly defined for i = 1, . . . , 2l + 3. Note that the image of ûi may turn zero in

CN ⊗Mλ, so ui is obtained from ûmi after an appropriated rescaling. This implies that Ci is

proportional to Ĉmi up to a factor turning zero at λ ∈ C∗k .

The next goal is to calculate Ĉi for some i of importance. We do it first for i = n+ 1 in the

case of odd N . Retaining the principal term, we write

yn+1,i = (−q)i−1
i−1∏
k=1

[λk + n− k]

n∏
k=i+1

[λk + n− k + 1]ψi,n+1vλ + · · ·

PROPOSITION 3.18 Ĉn+1 =
∏n
j=1[λj + 1 + n− j]q.

Proof. We can check that

Ĉn+1 =

n+1∑
i=1

qi−1q−λi+i−n−δi n+1

i−1∏
j=1

[λj + n− j]q
n∏

j=i+1

[λj + n+ 1− j]q (3.18)

Replacing λi with λi− λn+1, we get the expression, which is shown in [7], Lemma 6.1, to be equal

to
∏n
j=1[λj − λn+1 + 1 + n− j]q, for any λi, i = 1, . . . , n+ 1. This proves the lemma.

Next we calculate ĈN−l. First we assume l = 0. The coefficient ĈN is
∑N
i=1 c

′
ic
′′
i , where

c′1 = [P2 ]q, c
′
2 = −q[λ1 + P

2 − 1]q, and c′i for i > 2 are given by formulas (3.13) and (3.14) (one

should put l = 0 there). The coefficients c′′i are obtained by specialization of (3.16). For N = 2n+1

they are c′′N = 1 and

c′′1 = (−1)p−1q−2λ1q−2p+1, c′′1+k = (−1)p−1−kq−λ1q−2p+k, c′′n+m = q−λ1q−p−1+m, c′′N−1 = q−λ1 ,

where k = 1, . . . , p, m = 1, . . . ,m+ 1. For N = 2n, they are c′′N = 1 and

c′′1 = (−1)pq−2λ1q−2p+2, c′′1+k = (−1)p−kq−λ1q−2p+1+k c′′n+k = q−λ1q−p+k, c′′N−1 = q−λ1 ,

where k = 1, . . . , p.

LEMMA 3.19 In the symmetric case l = 0, the singular vector ûN is equal to ĈNwN⊗vλ modulo

V̂N−1, where ĈN = (−1)[P+1
2 ][λ1 + P

2 ]q[λ1 + P − 1]q.

Proof. The coefficient (−1)[P+1
2 ]ĈN is equal to

q−2λ1−2p+1[
P

2
]q + [λ1 +

P

2
− 1]qq

−λ1
(
−q
−2p+1 − q
q − q−1

+ q +
q2p+1 − q
q − q−1

)
+ q2p+1[λ1 +

P

2
− 1]q[λ1]q
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if P = 2p+ 1. For P = 2p, it is equal to

q−2λ1−2p+2[
P

2
]q + [λ1 +

P

2
− 1]qq

−λ1q
(
−q
−2p+1 − q
q − q−1

+
q2p−1 − q−1

q − q−1

)
+ q2p[λ1 +

P

2
− 1]q[λ1]q.

Counting the coefficients before q±2λ1 and λ-independent terms proves the statement.

Now consider the general case l > 0.

PROPOSITION 3.20 The singular vector ûN−l is equal to ĈN−lwN−l⊗vλ modulo V̂N−1, where

ĈN−l = (−1)[P+1
2 ]+l[λl+1 +

P

2
]q

l+2∏
j=1
j 6=l+1

[λj + λl+1 + P + 1 + l − j]q.

Proof. The second sum in the expansion ûN−l =
∑l
i wi⊗ yi +

∑l
i=l+1 wi⊗ yi can be replaced with

(−q)l
∏l
i=1[λi + λl+1 + P + l − i]qĈN−lwN−l ⊗ yN−l mod V̂N−l−1, where the factor before ĈN−l

comes from a different normalization of c′l+1 and c′1 in Lemma 3.19. We have

c′i = (−1)[P+1
2 ](−q)i−1ĈN−l

i−1∏
j=1

[λj + λl+1 + P + l − j]q
l∏

j=i+1

[λj + λl+1 + P + l − j + 1]q

and c′′i = (−1)[P+1
2 ]−l+i−1q−P−l+i+q−λi−λl+1 for i = 1, . . . , l. Note with care that c′′l = −q−2q−λl+λl+1c′′l+1.

Summing up the products

c′ic
′′
i = (−1)lqi−1q−l+iq−λi−λl+1−P ĈN−l

i−1∏
j=1

[λj +λl+1 +P + l− j]q
l∏

j=i+1

[λj +λl+1 +P + l− j+ 1]q

from i = 1 to i = l and adding (−q)l
∏l
i=1[λi + λl+1 + P + l − i]qĈN−l we get ĈN−l(−1)l times

the right-hand side of (3.18), where we should replace n with l and λi with λi + λl+1 + P for

i = 1, . . . , l. Finally, since λl+2 = 0, the factor [λl+1 + P − 1]q is included in the product as

[λj + λl+1 + P + 1 + l − j]q, j = l + 2.

The operator Q acting on CN⊗M̂λ satisfies the polynomial equation
∏2l+3
l=1 (Q− x̂i) = 0. When

projected to End(CN ⊗Mλ), it satisfies the equation
∏2`+3
l=1 (Q− xi) = 0, where xi = x̂mi . Denote

by C̄`+3 the product of x̂l+1 − x̂k over all k 6 l such that k 6= mi, i = 1, . . . , `. Put C`+3 = Ĉ`+3

C̄`+3
.

Using arguments similar to Lemma 5.13, we can prove that the image of u`+3 = 1
C̄`+3

û`+3 in

CN ⊗Mλ is regular in q and λ ∈ C∗k . Then u`+3 = C`+3w`+3 ⊗ vλ mod V`+2 is a singular vector.

Similarly we define un+1 for the case N = 2n+ 1, P = 1.

PROPOSITION 3.21 Suppose that λ ∈ C∗k,′ and q ∈ C are such that {xi}2`+3
i=1 − {x`+3} are

pairwise distinct. Then CN ⊗Mλ = ⊕2l+3
i=1 Mi.

Proof. All we need to check is that the sum M`+1 +M`+3 is direct. We have W`+2 = ⊕`+2
i=1Mi hence

W`+2 = V`+2, by Proposition 3.16. Further, C`+3 6= 0 implies W`+3 = V`+3, hence M`+1 ∩M`+3 ⊂

W`+2 ∩M`+3 = {0}, again by Proposition 3.16.
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COROLLARY 3.22 For λ ∈ C∗k,′ , the operator Q ∈ End(CN ⊗Mλ) satisfies a polynomial equa-

tion of degree 2`+ 2 with roots {xi}2`+3
i=1 − {x`+3}.

3.4 Quantization of Borderline Levi Classes

Recall that quantization of a commutative C-algebra A is a C[[~]]-algebra A~ which is free as a

C[[~]]-module and A~/~A~ ' A. If A is a U(g)-algebra, the quantization is called U~(g)-equivariant

if A~ is a U~(g)-algebra, and the action of U~(g) is a deformation of the U(g)-action. In this section,

A will be the polynomial algebra either on G or on its (borderline Levi) conjugacy class.

Fix λ ∈ C∗k,reg′ and define µ ∈ C`+2[[~]] by

µi = xi, i = 1, . . . , `+ 2. (3.19)

The eigenvalues of Q on End(CN ⊗Mλ) are expressed through µ by

µi, µ−1
i q−2N+2(ni+1), i = 1, . . . , `, µ`+1 = −q−N+2, µ`+2 = q−N+P , (3.20)

cf. (3.5). By construction, lim~→0 µ ∈ M̂′K .

Define central elements τk = Tr
(
q2hρQk

)
= Trq

(
Qk
)
∈ Uq(g), [28], where ρ = 1

2

∑
α∈R+

α =∑n
i=1(N2 − i)εi is the half-sum of positive roots. A module of highest weight λ determines a one

dimensional representation χλ of the center of Uq(g), which assigns a scalar to each τk:

χλ(τk) =

N∑
i=1

q2k(λ+ρ,εi)−2k(ρ,ε1)+k(εi,εi)−k
∏
α∈R+

q(λ+εi+ρ,α) − q−(λ+εi+ρ,α)

q(λ+ρ,α) − q−(λ+ρ,α)
, (3.21)

cf. [68], formula (24). Restriction of λ to C∗k,reg′ makes the right-hand side a function of the vector

µ defined in (3.19). We denote this function by ϑkn,q(µ), where n = (n1, . . . , n`, 1, p) is the integer

valued vector of multiplicities. In the limit ~ → 0, ϑkn,q(µ) goes over into the right-hand side of

(3.3), where µi = limh→0 q
2(λ,εmi ), i = 1, . . . , `.

In general, τk mod ~ do not separate classical conjugacy classes of SO(2n). That is done by

an additional invariant which nevertheless turns zero on a class with eigenvalues ±1. Therefore its

quantum counterpart τ− yielding χλ(τ−) =
∏n
i=1(q2(λ+ρ,εi) − q−2(λ+ρ,εi)) can be ignored.

Denote by S ∈ End(CN ) ⊗ End(CN ) the product PR of the ordinary flip P on CN ⊗ CN

and the R-matrix R in the form of [40]. It is U~(g)-invariant, i.e. commutes with ∆(x) for all

x ∈ U~(g). Let κ ∈ End(CN ) ⊗ End(CN ) be the one-dimensional projector to the trivial U~(g)-

submodule, [40]. Denote by C~[O(N)] the associative C[[~]]-algebra generated by the matrix entries

X = (Xij)
N
i,j=1 ∈ End(CN )⊗ C~[O(N)] modulo the relations,

S12X2S12X2 = X2S12X2S12, X2S12X2κ = q−N+1κ = κX2S12X2. (3.22)

These equations are understood in End(CN )⊗ End(CN )⊗ C~[O(N)], and the indices distinguish
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the two copies of End(CN ), in the usual way.

The algebra C~[O(N)] is an equivariant quantization of C[O(N)], [66]. The algebra C~[G],

G = SO(N), is a quotient of C~[O(N)] setting the quantized determinant (whose existence follows

from general deformation arguments, as in [66]) to 1. Its explicit form is immaterial, because it is

automatically fixed by the equations of conjugacy class.

The algebra C~[G] can be realized as a U~(g)-invariant subalgebra in Uq(g) (extension over C[[~]]

understood), with respect to the adjoint action. The embedding is implemented via the assignment

End(CN )⊗ C~[G] 3 X 7→ Q ∈ End(CN )⊗ Uq(g).

Via this inclusion, the Uq(g)-module Mλ extended over C[[~]] becomes a C~[G]-module.

THEOREM 3.23 Suppose that λ = C∗k,reg′ and let µ be as in (3.19). The quotient of C~[G] by

the ideal of relations

∏̀
i=1

(Q− µi)× (Q− µ`+1)(Q− µ`+2)×
∏̀
i=1

(Q− µ−1
i q−2N+2(ni+1)) = 0, (3.23)

Trq
(
Qk
)

= ϑkn,q(µ), (3.24)

is an equivariant quantization of the class lim~→0 µ ∈ M̂′K . It is the image of C~[G] in the algebra

of endomorphisms of the Uq(g)-module Mλ.

Proof. The proof is similar to [64], Theorem 10.1. and [68], Theorem 8.2. Here we indicate the key

steps. The algebra End(Mλ) is C[[~]]-free since the module Mλ is C[[~]]-free. The image of C~[G] in

End(Mλ) factors through a quotient by the ideal generated by kerχλ. As a module over U~(g), this

quotient has C[[~]]-finite isotypic components. Therefore its image in End(Mλ) is C[[~]]-free. The

annihilator of Mλ in C~[G] contains the U~(g)-invariant ideal J generated by (3.23) and (3.24).

The image of J/~J in C[G] is exactly the defining ideal of the conjugacy class and therefore a

maximal proper U(g)-invariant ideal. This implies that J is exactly the annihilator of Mλ, by the

Nakayama lemma, [34]. The quotient of C~[G] by J is free over C[[~]], and its zero fiber mod ~ is

the polynomial algebra on the conjugacy class. Therefore, C~[G]/J is an equivariant quantization

of the class.

Theorem 3.23 describes the ideal of the class in the algebra C~[G]. To describe its pre-image

in C~[O(N)], we should replace Q with X in (3.23) and (3.24) and add the relations (3.22).
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Chapter 4

R-Matrix and Mickelsson Algebras

for Orthogonal and Symplectic

Quantum Groups

In the mathematics literature, lowering and raising operators are known as generators of step

algebras, which were originally introduced by Mickelsson [60] for reductive pairs of Lie algebras,

g′ ⊂ g. These algebras naturally act on g′-singular vectors in U(g)-modules and are important in

representation theory, [62, 84]. It is known that the step algebra Z(g, g′) is generated by the image

of the orthogonal complement g 	 g′ under the extremal projector of the g′. Another description

of lowering/raising operators for classical groups was obtained in [62, 71, 74] in an explicit form of

polynomials in g.

A generalization of the results of [71, 74] to quantum gl(n) can be found in [4]. In this special

case, the lowering operators can be also conveniently expressed through “modified commutators”

in the Chevalley generators of U(g) with coefficients in the field of fractions of U(h). Extending [62]

to orthogonal and symplectic quantum groups is not straightforward, since there are no nilpotent

triangular Lie subalgebras g± in Uq(g) but only their deformed associative envelope. The lack of

g± can be compensated by the entries of the universal R-matrix with one leg projected to the

natural representation. Those entries are nicely expressed through modified commutators in the

Chevalley generators turning into elements of g± in the quasi-classical limit. Their commutation

relation with the Chevalley generators modify the classical commutation relations with g± in a

way, which is easy to control. Thus the results of [62, 71, 74] can be generalized and generators of

Mickelsson algebras for the non-exceptional quantum groups can be constructed. Explicit form of

these generators is useful because they are related to singular vectors generating certain submodules

involved in quantization of conjugacy classes, especially in Chapter 6.
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4.1 R-Matrix of Non-Exceptional Quantum Groups

In this section, we work with the opposite version of the comultiplication as compared to Chapter

2. The universal R-matrix

R = q
∑n
i=1 hεi⊗hεi

∏
β

expqβ

(
(1− q−2

β )(eβ ⊗ e−β)
)
∈ Uq(b+)⊗̂Uq(b−), (4.1)

is obtained from (2.3) by the flip of tensor factors.

Define Ř = q−
∑n
i=1 hεi⊗hεiR. Denote by Ř− = (π ⊗ id)(Ř) ∈ End(CN ) ⊗ Uq(g−) and by

Ř+ = (π⊗ id)(Ř21) ∈ End(CN )⊗Uq(g+). In this section, we deal only with Ř− and suppress the

label “−” for simplicity, Ř = Ř−.

Denote by N+ the ring of all upper triangular matrices in End(CN ) and by N ′+ its ideal spanned

by eij , i < j + 1.

LEMMA 4.1 One has

Ř = 1⊗ 1 + (q1+δ1n − q−1−δ1n)

n∑
i=1

π(ei)⊗ fi mod N ′+ ⊗ Uq(g−),

where δ1n is present only for g = sp(2n).

Proof. For all positive roots α, β the matrix π(eαeβ) belongs to N ′+. Also, π(eβ) ∈ N ′+ for all

β ∈ R+\Π+. Therefore, the only terms that contribute to Spanεi−εj∈Π+{eij ⊗ Uq(g−)} are those

of degree 1 from the series expqα
(
(1− q−2

α )(eα ⊗ e−α)
)

with α ∈ Π+.

Write Ř =
∑N
i,j=1 eij ⊗ Řij , where Řij = 0 for i > j. Due to the h-invariance of Ř, the entry

Řij ∈ Uq(g−) carries weight εj − εi.

Introduce a new notation for the negative root vectors fi,j ∈ Uq(g−), which are indexed by

the matrix entry of their natural representation. For all g, we have fk,k+1 = fk = fk′−1,k′ once

k < n and fn,n+1 = fn = fn+1,n′ for g = so(2n + 1), fn−1,n′ = fn = fn,n′+1 for g = so(2n),

and fnn′ = [2]qfn for g = sp(2n). We present explicit expressions for the entries fij in terms of

modified commutators in Chevalley generators, [x, y]a = xy− ayx, where a is a scalar; we also put

q̄ = q−1.

PROPOSITION 4.2 Suppose that εi − εj ∈ R+\Π+. Then the elements fij are given by the

following formulas:

For all g and i+ 1 < j 6 N+1
2 :

fij = [fj−1, . . . [fi+1, fi]q̄ . . .]q̄, fj′i′ = [. . . [fi, fi+1]q̄ , . . . fj−1]q̄. (4.2)

Furthermore,

• For g = so(2n+ 1): fnn′ = (q − 1)f2
n and

fi,n+1 = [fn, fi,n]q̄ , fn+1,i′ = [fn′,i′ , fn]q̄ , i < n,
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fij′ = qδij [fn+1,j′ , fi,n+1]q̄δij , i, j < n.

• For g = sp(2n): fnn′ = [2]qfn and

fin′ = [fn, fin]q̄2 , fni′ = [fn′i′ , fn]q̄2 , i < n,

fij′ = qδij [fnj′ , fin]q̄1+δij , i, j < n.

• For g = so(2n): fnn′ = 0 and

fin′ = [fn, fi,n−1]q̄ , fni′ = [fn′+1,i′ , fn]q̄ , i < n− 2,

fji′ = qδij [fni′ , fj,n]q̄1+δij , i, j 6 n− 1.

Proof. The proof is a direct calculation with the use of the identity

(fα ⊗ 1)Ř − Ř(fα ⊗ 1) = Ř(q−hα ⊗ fα)− (qhα ⊗ fα)Ř,

which follows from the intertwining axiom (2.2) for x = fα. This allows us to construct the

elements fij by induction starting from fα, α ∈ Π+.

PROPOSITION 4.3 The matrix entries fi,j ∈ Uq(g−) such that εi−εj 6∈ Π+ satisfy the identity

[eα, fij ] =
∑

(l,r)∈P (α)

(
filδjrq

hα − q−hαδilfrj
)
,

for all simple positive roots α.

Proof. The proof is a straightforward calculation based on the intertwining relation (2.2), which is

equivalent to

(1⊗ eα)Ř − Ř(1⊗ eα) = Ř(eα ⊗ qhα)− (eα ⊗ q−hα)Ř,

for x = eα, α ∈ Π+. Alternatively, we can use the expressions for fij from Proposition 4.2.

4.2 Mickelsson Algebras

Consider the simple Lie subalgebra g′ ⊂ g corresponding to the root subsystem Rg′ ⊂ Rg generated

by αi, i > 1, and let h′ ⊂ g′ denote its Cartan subalgebra. Let the triangular decomposition

g′− ⊕ h′ ⊕ g′+ be compatible with the triangular decomposition of g. Recall the definition of

step algebra Zq(g, g
′) of the pair (g, g′). Consider the left ideal J = Uq(g)g′+ and its normalizer

N = {x ∈ Uq(g) : eαx ⊂ J,∀α ∈ Π+
g′}. By construction, J is a two-sided ideal in the algebra N .

Then Zq(g, g
′) is the quotient N/J .
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For all βi ∈ R+
g \R+

g′ let eβi be the corresponding PBW generators and let Z be the vector

space spanned by ekl−βl . . . e
k1
−β1

ek00 e
m1

β1
. . . emlβl , were e0 = qhα1 , ki,mi ∈ Z+, and k0 ∈ Z. The PBW

factorization Uq(g) = Uq(g
′
−)ZUq(h

′)Uq(g
′
+) gives rise to the decomposition

Uq(g) = ZUq(h
′)⊕ (g′−Uq(g) + Uq(g)g′+).

PROPOSITION 4.4 ([53], Theorem 1) The projection Uq(g)→ ZUq(h
′) implements an em-

bedding of Zq(g, g
′) in ZUq(h

′).

Proof. The statement is proved in [53] for the orthogonal and special linear quantum groups but

the arguments apply to symplectic groups too.

The algebra Zq(g, g
′) inherits the adjoint action of the Cartan subalgebra, so we can speak

of weights of its elements. It is proved within the theory of extremal projectors that Zq(g, g
′) is

generated by elements of weights β ∈ Rg\Rg′ plus z0 = qhα1 . We calculate them in the subsequent

sections, cf. Propositions 4.7 (negative β) and 4.11 (positive β).

4.2.1 Lowering Operators

In what follows, we extend Uq(g) along with its subalgebras containing Uq(h) over the field of

fractions of Uq(h) and denote such an extension by hat, for example Ûq(g). In this section we

calculate representatives of the negative generators of Zq(g, g
′) in Ûq(b−).

As in Section 2.1, we consider Hasse diagram of the natural representation, with partial ordering

≺. We call a strictly ascending sequence ~m = (m1, . . . ,ms) of integers a route from m1 to ms. We

write m ≺ ~m and ~m ≺ m for m ∈ Z if, respectively, m ≺ min ~m and max ~m ≺ m. More generally,

we write ~m ≺ ~k if max ~m ≺ min~k. In this case, a sequence (~m,~k) is a route from min ~m to max~k.

We also write m 4 ~m if m = min ~m and ~m 4 m if m = max ~m.

Given a route ~m = (m1, . . . ,ms), define the product f~m = fm1,m2
· · · fms−1,ms ∈ Uq(g−).

Consider a free right Ûq(h)-module, Φ1m, generated by f~m with 1 4 ~m 4 j and define an operation

∂lr : Φ1j → Ûq(b−) for (l, r) ∈ P (α) as follows. Assuming 1 4 ~̀≺ l ≺ r ≺ ~ρ ≺ j, set

∂lrf(~̀,l)f(l,r)f(r,~ρ) = f(~̀,l)f(r,~ρ)[ηlj − ηrj ]q,

∂lrf(~̀,l)f(l,~ρ) = −f(~̀,l)f(r,~ρ)q
−ηlj+ηrj ,

∂lrf(~̀,r)f(r,~ρ) = f(~̀,l)f(r,~ρ)q
ηlj−ηrj ,

∂lrf~m = 0, l, r 6∈ ~m

Extend ∂lr to the entire Φ1j by Ûq(h)-linearity. Let p : Φ1j → Û(g) denote the natural homomor-

phism of Ûq(h)-modules.

LEMMA 4.5 For all α ∈ Π+ and all x ∈ Φ1j, eα ◦ p(x) =
∑

(l,r)∈P (α) p ◦ ∂lr(x) mod Ûq(g)eα.

Proof. A straightforward analysis based on Proposition 4.3 and Lemma 2.10.

To simplify the presentation, we suppress the symbol of projection p in what follows.
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Introduce elements Ajr ∈ Ûq(h) by

Ajr =
q − q−1

q−2ηrj − 1
, (4.3)

for all r, j ∈ I subject to r ≺ j. For each simple pair (l, r) we define (l, r)-chains as

f(~̀,l)f(l,~ρ)A
j
l + f(~̀,l)f(l,r)f(r,~ρ)A

j
lA

j
r + f(~̀,r)f(r,~ρ)A

j
r, f(~̀,l)fl,jA

j
l + f(~̀,j), (4.4)

where 1 4 ~̀≺ l and r ≺ ~ρ 4 j. Remark that f(l,r) =
[

(α,α)
2

]
q
e−α, where α = εl − εr.

LEMMA 4.6 The operator ∂lr annihilates (l, r)-chains.

Proof. Applying ∂lr to the 3-chain in (4.4), we get

f(~̀,l)f(r,~ρ)(−q−ηlj+ηrjAjl + [ηlj − ηrj ]qAjlA
j
r + qηlj−ηrjAjr).

The factor in the brackets turns zero on substitution of 4.3.

Now apply ∂lj to the right expression in (4.4) and get

f(~̀,l)([hα]qA
j
l + qhα) = f(~̀,l)(

qhα − q−hα
q−2ηlj − 1

+ qhα) = f(~̀,l)

[hα − ηlj ]q
[−ηlj ]q

= 0,

so long as ηlj = hα by Lemma 2.10.

Given a route ~m = (m1, . . . ,ms), put Aj~m = Ajm1
· · ·Ajms ∈ Ûq(h) (and Aj~m = 1 for the empty

route) and define

z−j+1 =
∑

1≺~m≺j

f(1,~m,j)A
j
~m ∈ Ûq(b−), j = 2, . . . , N, (4.5)

where the summation is taken over all possible ~m subject to the specified inequalities plus the

empty route.

PROPOSITION 4.7 eαz−j = 0 mod Ûq(g)eα for all α ∈ Π+
g′ and j = 1, . . . , N − 1.

Proof. Thanks to Lemma 4.5, we can reduce consideration to the action of operators ∂lr, with

(l, r) ∈ P (α). According to the definition of ∂lr the summands in (4.5) that survive the action of

∂lr can be organized into a linear combination of (l, r)-chains with coefficients in Ûq(h). By Lemma

4.6 they are killed by ∂lr.

The elements z−i, i = 1, . . . , N − 1, belong to the normalizer N and form the set of negative

generators of Zq(g, g
′) for symplectic g. In the orthogonal case, the negative part of Zq(g, g

′) is

generated by z−i, i = 1, . . . , N − 2.

4.2.2 Raising Operators

In this section, we regularize Mickelsson generators of positive weights. The assignment fα 7→ eα,

extends to an anti-algebra isomorphism ω : Uq(g−)→ Uq(g+). Denote gji = ω(fij) ∈ Uq(g+). The
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matrix Ř+ = (π ⊗ id)(Ř21) is equal to 1⊗ 1 + (q − q−1)
∑
i<j eji ⊗ gji.

LEMMA 4.8 For all α ∈ Π+
g′ and all i > 1, eαgi1 =

∑
(l,r)∈P (α) δilgr1 mod Ûq(g)eα.

Proof. Follows from the intertwining property of the R-matrix.

Consider the right Ûq(h)-module Ψi1 freely generated by f(~m,k)gk1 with i 4 ~m ≺ k. We define

operators ∂lr : Ψi1 → Ûq(g) similarly as we did it for Φ1j . For a simple pair (l, r) ∈ P (α), put

∂l,rf(~m,k)gk1 =

 f(~m,l)gr1, l = k,(
∂l,rf(~m,k)

)
gk1, l 6= k,

i 4 ~m ≺ r.

The Cartan factors appearing in ∂lrf(~m,k) depend on hα. When pushed to the right-most position,

hα is shifted by (α, ε1 − εr). We extend ∂lr to an action on Ψi1 by the requirement that ∂lr

commutes with the right action of Ûq(h). Let p denote the natural homomorphism of Ûq(h)-

modules, p : Ψi1 → Ûq(g). We can prove the following analog of Lemma 4.5.

LEMMA 4.9 For all α ∈ Π+
g′ and all x ∈ Ψi1, eα ◦ p(x) =

∑
(l,r)∈P (α) p ◦ ∂lr(x) mod Ûq(g)eα.

Proof. Straightforward.

We suppress the symbol of projection p to simplify the formulas.

For i ≺ j let ||i−j|| be the number of simple positive roots entering εi−εj . For all i, k = 2, . . . , N ,

i ≺ k, put

Aik =
qηk1−ηi1

[ηi1 − ηk1]q
, Bik =

(−1)||i−k||

[ηi1 − ηk1]q
,

For each (l, r) such that εl − εr = α, where α ∈ Π+
g′ , define 3-chains as

f(i,~m,l)gl1B
i
l + f(i,~m,l)f(l,r)gr1A

i
lB

i
r + f(i,~m,r)gr1B

i
r, (4.6)

with i ≺ ~m ≺ l ≺ r 4 N and

f(i,~̀,l)f(l,~ρ,k)gk1A
i
l + f(i,~̀,l)f(l,r)f(r,~ρ,k)gk1A

i
lA

i
r + f(i,~̀,r)f(r,~ρ,k)gk1A

i
r (4.7)

with i ≺ ~̀≺ l ≺ r ≺ ~ρ ≺ k 4 N . The 2-chains are defined as

gi1 + f(i,r)gr1B
i
r, f(i,~m,k)gk1 + f(i,r)f(r,~m,k)gk1A

i
r (4.8)

where r is such that εi − εr ∈ Π+
g′ and i ≺ r ≺ ~m ≺ k 4 N . In all cases, empty ~m are admissible.

LEMMA 4.10 For all α ∈ Π+
g′ and all (l, r) ∈ P (α) the (l, r)-chains are annihilated by ∂lr.

Proof. Suppose that i = l and apply ∂ir to the left 2-chain in (4.8). The result is

gr1 + [hα]qgr1B
i
r = gr1(1 + [hα + (α, ε1 − εr)]qBir) = gr1(1 + [ηi1 − ηr1]qB

i
r) = 0,
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by Lemma 2.10. Applying ∂ir to the right 2-chain in (4.8) we get

f(r,~m,k)gk1(−q−ηi1+ηr1 + [ηi1 − ηr1]qA
i
r) = 0.

Now consider 3-chains. The action of ∂lr on the (4.7) produces

−f(i,~̀,l)q
−hαf(r,~ρ,k)gk,1A

i
l + f(i,~̀,l)[hα]qf(r,~ρ,k)gk,1A

i
lA

i
r + f(i,~̀,l)q

hαf(r,~ρ,k)gk,1A
i
r,

which turns zero since −qηr1−ηl1Ail + [ηl1 − ηr1]qA
i
lA

i
r + qηl1−ηr1Air = 0. The action of ∂lr on (4.6)

yields

f(i,~m,l)gr1B
i
l + f(i,~m,l)[hα]qgr1A

i
lB

i
r + f(i,~m,l)q

hαgr1B
i
r.

This is vanishing since Bil + [ηl1 − ηr1]qA
i
lB

i
r + qηl1−ηr1Bir = Bil +

[ηi1−ηr1]q
[ηi1−ηl1]q

Bir = 0.

Given a route ~m = (m1, . . . ,mk) such that i ≺ ~m let Ai~m denote the product Aim1
. . . Aimk .

Introduce elements zi ∈ Ûq(g−)g+ of weight ε1 − εi by

zi−1 = gi1 +
∑

i≺~m≺k4N

f(i,~m,k)gk1A
i
~mB

i
k, i = 2, . . . , N.

The summation includes empty ~m.

PROPOSITION 4.11 eαzi = 0 mod Ûq(g)eα, for all α ∈ Π+
g′ and i = 1, . . . , N − 1.

Proof. By Lemma 4.8, the vectors g2′1 and zN−1 = g1′1 are normalizing the left ideal Ûq(g)g′+,

so is zN−2 = g2′1 + f1g1′1B
1′

2′ . Once the cases i = 2′, 1′ are proved, we further assume i ≺ 2′. In

view of Lemma 4.9, it is sufficient to show that zi−1 is killed, modulo Ûq(g)g′+, by all ∂lr such that

εl − εr ∈ Π+
g′ . Observe that zi−1 can be arranged into a linear combination of chains, which are

killed by ∂lr, as in Lemma 4.10.

The elements zi, i = 1, . . . , N − 1, belong to the normalizer N . They form the set of positive

generators of Zq(g, g
′) for symplectic g. In the orthogonal case, the positive part of Zq(g, g

′) is

generated by zi, i = 1, . . . , N − 2.
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Chapter 5

Representations of Quantum

Conjugacy Classes of GL(n)

Let G denote the complex general linear algebraic group GL(n) and let g be its Lie algebra gl(n).

Regard G as a Poisson group relative to the standard classical r-matrix and let U~(g) be the

corresponding quantum group. Consider a semisimple conjugacy class O ⊂ G, which is an affine

subvariety of G. This chapter presents a family of exact representations of C~[O] on U~(g)-modules

of highest weight. This family is parameterized by diagonal matrices from O. Equivalently, every

diagonal matrix is associated a highest weight module and an equivariant quantization of the

conjugacy class of this matrix, through an operator realization on that module. The quantized

affine ring depends on O and not on a particular point in it. However, the modules are not

isomorphic thus yielding non-equivalent exact representations of the same quantum conjugacy

class.

Although the isotropy subgroups of all points in O are isomorphic, not all are strictly compatible

with the standard triangular polarization of g. We call such a stabilizer a Levi subgroup if simple

roots of its Lie algebra k are simple roots of g, i.e. Π+
k ⊂ Π+

g . By this definition, k being a Levi

subalgebra depends on a polarization of g relative to a Cartan subalgebra, which is fixed once

and for all. The quantization theory of the corresponding conjugacy class is standard: it can be

realized by operators on a parabolic Verma module Mλ relative to Uq(k) ⊂ Uq(g). General diagonal

matrices in O are uniquely parameterized by Weyl group elements σ satisfying σ(R+
k ) ⊂ R+

g , where

R+ is the set of positive roots. For such σ we construct a highest weight module Mσ.λ and realize

the algebra C~[O] in End(Mσ.λ). Of course, Mσ.λ is a parabolic Verma module if σ(Π+
k ) ⊂ Π+

g .

This chapter gives a description of singular vectors in the Verma modules and their tensor

product with the natural representation of Uq(g). Then finds the eigenvalues of a “quantum

coordinate” matrix acting on the Uq(g)-module Cn ⊗Mσ.λ and checks that they are independent

of σ. This enables us to construct the representation of C~[O] in End(Mσ.λ).
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5.1 Description of Quantum Conjugacy Classes of GL(n)

It is an elementary fact from linear algebra that two semisimple matrices are related by a conju-

gation if and only if they have the same eigenvalues. So a conjugacy class Ox of an element x is

determined by the spectrum of a matrix X ∈ Ox. This spectrum can be described by the complex-

valued vector x = (x1, . . . , xk) of pairwise distinct eigenvalues and the integer-valued vector of

multiplicities n = (n1, . . . , nk). All xi are invertible, while n is a partition of n. The integer k is

assumed to be from the interval [2, n], as the case k = 1 is trivial. The correspondence (x,n) 7→ Ox

goes through the choice of the initial point

x = diag(x1, . . . , x1︸ ︷︷ ︸
n1

, . . . , xk, . . . , xk︸ ︷︷ ︸
nk

).

The centralizer of x in G is the group K = GL(n1) × . . . ×GL(nk), so Ox is isomorphic to G/K

as a G-space. Note that the parametrization (x,n) 7→ Ox is not one-to-one, as a simultaneous

permutation of xi and ni gives the same conjugacy class albeit a different initial point.

Restriction of Ox to the maximal torus T of diagonal matrices is an orbit of the Weyl group,

which is the symmetric group Sn in the case of study. It acts on diagonal matrices by permutation

of entries, (σX)ii = Xjj , j = σ−1(i), where σ ∈ Sn. The isotropy subgroup of x in Sn is

Sn = Sn1 × . . .× Snk , thus Ox ∩ T is in bijection with Sn/Sn.

The affine ring C[Ox] is the quotient of the ring C[End(Cn)] by the ideal of relations

(X − x1) . . . (X − xk) = 0, Tr(Xm)−
k∑
i=1

nix
m
i = 0, m = 1, . . . , k,

where X =
∑n
i,j=1 eij ⊗Xij is the matrix of coordinate functions Xij . Here eij ∈ End(Cn) are the

standard matrix units, eijelm = δjleim. The left equality determines the vector x while the values

of Tr(Xm) fix the vector n, up to a simultaneous permutation of their components.

The quantum conjugacy class C~[Ox] is described as follows. Let S ∈ End(Cn)⊗ End(Cn) be

the Hecke braid matrix associated with Uq(g), whose explicit form can be extracted from [49]. The

quantized polynomial ring C~[End(Cn)] is generated over C[[~]] by the matrix entries (Xij)
n
i,j=1

subject to the relations

S12X2S12X2 = X2S12X2S12 (5.1)

written in the standard form of “reflection equation” in End(Cn)⊗ End(Cn)⊗C~[End(Cn)]. The

algebra C~[Ox] is a quotient of C~[End(Cn)] by the ideal of relations

k∏
i=1

(X − xi) = 0, Trq(X
m) =

k∑
i=1

xmi [ni]q

k∏
j=1
j 6=i

qnjxi − xjq−nj
xi − xj

, m = 1, . . . , k,

with the q-trace of Xn defined as Trq(X
n) =

∑n
i=1 q

n+1−2iXn
ii.
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Until Proposition 5.15, Uq(g) is understood as a C-algebra.

The quantum matrix space C~[Xij ] introduced in (5.1) is a U~(g)-module algebra. The action

is defined on the generators by (id⊗ x)(X) =
(
π
(
γ(x(1))

)
⊗ id

)
(X)

(
π(x(2))⊗ id

)
, x ∈ U~(g), and

extended to C~[Xij ] 3 a, b by the “quantum Leibniz rule” x(ab) = (x(1)a)(x(2)b). There exists a

homomorphism C~[Xij ]→ U~(g) implemented via the assignment Xij 7→ Qij , whereQ is expressed

through the universal R-matrix of U~(g) by Q = (π⊗id)(R21R). The image of this homomorphism

is a quantization, C~[G], of the coordinate ring of the group G. The algebra C~[Ox] is a quotient

of C~[G].

5.2 Singular Vectors

Denote by k = gl(n1) ⊕ . . . ⊕ gl(nk) ⊂ gl(n) the stabilizer Lie algebra of the point x ∈ Ox. Put

p± = k + g± to be the parabolic subalgebras relative to k. The universal enveloping algebras U(k)

and U(p±) are quantized as Hopf subalgebras in Uq(g). So Uq(k) is generated by {eα, fα}α∈Π+
k

over Uq(h) and Uq(p
±) is generated by Uq(g±) over Uq(k).

For every λ ∈ 1
~h
∗ ⊕ h∗ define a one-dimensional representation of Uq(b+) by q±hα 7→ q±(λ,α),

eα 7→ 0. Denoting it by Cλ, consider the Verma module M̂λ = Uq(g) ⊗Uq(b+) Cλ. Let ck ⊂ h be

the center of k and c∗k ⊂ h∗ be the subset orthogonal to Π+
k . Suppose that λ ∈ 1

~ c
∗
k ⊕ c∗k , so that

(λ, α) = 0 for all α ∈ Π+
k . For such λ, the Uq(b+)-module Cλ extends to a Uq(p

+)-representation,

and M̂λ admits a projection onto the parabolic Verma module Mλ = Uq(g) ⊗Uq(p+) Cλ. With

xi = q2(λ+ρ,εmi )−2(ρ,ε1), where mi = n1 + . . .+ni−1 + 1, i = 1, . . . , k, the quantum conjugacy class

C~[Ox] is realized by operators on Mλ.

Recall that a non-zero vector v in a Uq(g)-module is called singular if it generates the trivial

Uq(g+)-submodule, i.e. eαv = 0, for all α ∈ Π+. Also recall Lemma 3.2, in particular, singular

vectors in Y ' C⊗ Y generate trivial Uq(g+)-modules, which recovers their definition.

Further we describe singular vectors of certain weights in M̂λ and Cn ⊗ M̂λ. We need a few

technical facts about M̂λ. We define “dynamical root vectors” f̌α ∈ Uq(b−) for all α ∈ R+. For

α ∈ Π+ we put f̌α = fα. If α =
∑j
k=i αk where αk ∈ Π+ and the ordering i to j coincides with

the ordering of simple roots in the Dynkin diagram, then α = αi + β, where β =
∑j
k=i+1 αk , we

proceed recursively by

f̌α = fαi f̌β
qhβ+(ρ,β) − q−hβ−(ρ,β)

q − q−1
− f̌βfαi

qhβ+(ρ,β)−1 − q−hβ−(ρ,β)+1

q − q−1
(5.2)

Note that qhβ is well defined as an element of Uq(h) for β ∈ ZΠ+. The Cartan coefficients in f̌β

commute with fαi and can be gathered on the right. For example, let j > i+1 and let β = αi+1+γ,

where γ =
∑j
k=i+2 αk and let f̌β be defined similar to f̌α in (5.2). Then the Cartan coefficients

qhγ+(ρ,γ)−q−hγ−(ρ,γ)

q−q−1 and qhγ+(ρ,γ)−1−q−hγ−(ρ,γ)+1

q−q−1 commute with fαi in f̌α because (γ, αi) = 0. By

f̌α(λ) we understand an element from Uq(g−) obtained through specialization of the coefficients

at weight λ. Clearly f̌α(λ)vλ = f̌αvλ.
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Let gln ⊂ g denote the subalgebra gl(n − l + 1) with the root system {αl, . . . , αn−1}, l =

1, . . . , n − 1. The vectors f̌α are generators of the Mickelsson algebras associated with filtration

gnn ⊂ . . . ⊂ g1n = g, [85]. Their basic property is the equality

eαj f̌
m
α vλ = δji[m]q[(λ+ ρ, α)−m]q f̌β f̌

m−1
α vλ. (5.3)

for any Verma module M̂λ and any m ∈ N, see [67]. It is convenient to extend (5.2) by f̌α = 1 for

α = 0 and f̌α = 0 for α ∈ −R+. Then (5.3) is valid for all α > 0.

The following fact about f̌αvλ holds true. Its proof can be found in [67].

PROPOSITION 5.1 Let α = εi − εj ∈ R+. The vector f̌αvλ ∈ M̂λ is not vanishing at all λ.

It is singular with respect to Uq(gi+1 n). Up to a scalar factor, it is a unique Uq(gi+1 n)-singular

vector of weight λ− α. It is Uq(g)-singular iff q2(λ+ρ,α) = q2. Up to a scalar factor, it is a unique

singular vector of weight λ− α.

Further we apply Lemma 3.2 to W = Cn and Y = M̂λ.

LEMMA 5.2 For all l = 1, . . . , n, there is a unique Uq(b+)-submodule in M̂λ of lowest weight

λ+ εl − ε1. It is generated by f̌ε1−εlvλ.

Proof. Proposition 5.1 implies that f̌ε1−εlvλ is a unique, up to a factor, Uq(g2 n)-singular vector

of this weight. It automatically satisfies the equation e2
α1
f̌ε1−εlvλ = 0 and generates a unique

Uq(b+)-submodule, which is a quotient of conatural module, by Corollary 2.5.

Put λi = (λ, εi) ∈ 1
~C, i = 1, . . . , n, and present the singular vectors in Cn ⊗ M̂λ explicitly.

COROLLARY 5.3 Up to a scalar factor, the singular vector in Cn ⊗ M̂λ of weight λ + εl,

l = 1, . . . , n, is given by ûl =
∑l
i=1(−q)i−1

∏i−1
j=1[λj − λl + l − j − 1]qwi ⊗ f̌εi−εlvλ,

Proof. In accordance with Lemma 5.2, put y1 = f̌ε1−εlvλ in ûl =
∑n
i=1 wi ⊗ yi and apply formula

(5.3), m = 1, to yi+1 = −qeαiyi for i > 1 taking into account f̌εi−εl = 0, i > l.

5.3 The Uq(g)-module Cn ⊗ M̂λ

Define V̂ λj ⊂ Cn ⊗ M̂λ as a Uq(g−)-submodule generated by {wi ⊗ vλ}ji=1. It is also a Uq(g)-

submodule, and the sequence V̂ λ1 ⊂ . . . ⊂ V̂ λn = Cn⊗M̂λ forms a filtration. Its graded components

V̂ λj /V̂
λ
j−1 are generated by the image of wj ⊗ vλ, which is the highest weight vector.

It is known that V̂ λj /V̂
λ
j−1 are isomorphic to the Verma modules M̂λ+εj and determine the

spectrum {x̂i}ni=1 of the Uq(g)-invariant operator Q, with x̂i = q2(λ+ρ,εi)−2(ρ,ε1) = q2(λ,εi)−2i+2,

[68]. The shifted Sn-action on h∗ by σ : λ 7→ σ · λ = σ(λ+ ρ)− ρ permutes x̂i to x̂σ−1(i).

The initial point x ∈ Ox determines a partition of the integer interval [1, n] into the disjoint

union of k subsets: i, j are in the same subset if and only if xi = xj . This partition determines

a partial ordering on [1, n]: we write i ≺ j iff i, j are from the same subset and i < j. We call a

permutation σ ∈ Sn admissible if it respects the ordering, i.e. σ(i) < σ(j) once i ≺ j.
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LEMMA 5.4 For every point a ∈ Ox ∩ T there is a unique admissible permutation σ ∈ Sn such

that a = σx.

Proof. Indeed, if i ≺ j and σ(i) > σ(j), the sign of inequality can be changed by combining σ

with the flip (i, j) ∈ Sn. This way, every permutation σ such that a = σx can be adjusted so as to

satisfy the required condition. Uniqueness is obvious.

Lemma 5.4 defines an embedding Sn/Sn ⊂ Sn as a subset of admissible permutations. In terms

of root systems, σ is admissible if and only if σ(R+
k ) ⊂ R+

g or, equivalently, σ(±R+
k ) ⊂ ±R+

g or,

equivalently, σ(Π+
k ) ⊂ R+

g . Although the stabilizer of the point σ(x) is isomorphic to k, we call it

a Levi subalgebra only if σ(Π+
k ) ⊂ Π+

g .

Let c∗k,reg denote the subset in c∗k such that for λ ∈ 1
~ c
∗
k,reg the complex numbers q2(λ,εmi ),

i = 1, . . . , k, are pairwise distinct.

LEMMA 5.5 Suppose that λ ∈ 1
~ c
∗
k,reg and σ ∈ Sn/Sn. Let α ∈ Π+

k and σ(α) = µ+ ν for some

µ, ν ∈ R+
g . Then

(
σ(λ), µ

)
6= 0 6=

(
σ(λ), ν

)
.

Proof. For any λ ∈ 1
~ c
∗
k,reg, the equality

(
σ(λ), µ

)
= 0 implies

(
λ, σ−1(µ)

)
= 0 =

(
λ, σ−1(ν)

)
.

Therefore σ−1(µ) and σ−1(ν) belong to Rk and specifically to R+
k since σ is admissible. This

contradicts the assumption that α is a simple root.

PROPOSITION 5.6 Suppose that λ ∈ 1
~ c
∗
k ⊕ c∗k and σ is an admissible permutation. For every

α ∈ Π+
k the vector vσλ,α = f̌σ(α)vσ·λ ∈ M̂σ·λ is singular.

Proof. As follows from (5.3) the vector vσλ,α is singular if and only if

0 = [(σ · λ+ ρ, σα)− 1]q = [
(
σ(λ+ ρ), σ(α)

)
− 1]q = [(λ+ ρ, α)− 1]q.

This is the case for all α ∈ Π+
k since α = εi − εi+1 for i ≺ i+ 1 and (ρ, α) = 1.

Introduce the subset Ik = {mi}ki=1 ⊂ [1, n] and its complement Īk in [1, n]. Elements of Ik

enumerate the highest weights of the irreducible k-submodules in Cn. For a permutation σ ∈ Sn/Sn

put Iσk = σ(Ik) and Īσk = σ(Īk). Order the set Iσk = {mσ
1 , . . . ,m

σ
k} by mσ

i < mσ
j for i < j. Note

with care that mσ
i 6= σ(mi).

Suppose that λ ∈ 1
~ c
∗
k ⊕ c∗k and σ is an admissible permutation. By Proposition 5.6, the vector

vσλ,α is singular in M̂σ·λ for every α ∈ Π+
k . Denote by Mσ·λ the Uq(g)-module that is quotient of

M̂σ·λ by the submodule
∑
α∈Π+

k
Uq(g)vσλ,α. Let $ be the projector M̂σ·λ → Mσ·λ. Consider the

filtration (V̂ σ·λj )nj=0 of Cn ⊗ M̂σ·λ and put V σ·λi = (id⊗$)(V̂ σ·λmσi
), i = 1, . . . , k.

PROPOSITION 5.7 For all m ∈ Īσk , (id⊗$)(V̂ σ·λm /V̂ σ·λm−1) = {0}. The Uq(g)-modules (V σ·λi )ki=1

form a filtration of Cn⊗Mσ·λ. As a filtration of Uq(g−)-modules, it is independent of λ ∈ 1
~ c
∗
k ⊕ c∗k

once σ(Π+
k ) ⊂ Π+

g .
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Proof. For each m ∈ Īσk there is a positive integer l < m such that α = εl− εm ∈ σΠ+
k . The vector

vσλ,α is singular in M̂σ·λ and vanishes in Mσ·λ. By Proposition 2.9 and Proposition 2.11,

wl ⊗ vσλ,α ' wl ⊗ ψlmvσ·λ ' wm ⊗ v̂σ·λ mod V̂ σ·λm−1.

Projection to Cn⊗Mσ·λ annihilates wl ⊗ vσλ,α, hence (id⊗$)(wm⊗ v̂σ·λ) ∈ (id⊗$)(V̂ σ·λm−1). This

proves the first and second statements.

The last statement follows from Proposition 3.14.

Proposition 5.7 gives an upper estimate k for the degree of the minimal polynomial of Q on

Cn ⊗Mσ·λ. To make it exact, we must show that all V σ·λi+1 /V
σ·λ
i 6= {0}.

5.4 Realization of C~[Ox] in End(Mσ·λ)

Until Lemma 5.11, λ is an arbitrary weight from 1
~h
∗⊕h∗. Define M̂λ

i ⊂ Cn⊗M̂λ to be the Uq(g)-

submodule generated by the singular vector ûi of weight λ + εi, i = 1, . . . , n. The operator Q

restricted to M̂λ
i is scalar multiplication by x̂i = q2(λi−i+1). For all σ ∈ Sn, the action σ : λ 7→ σ ·λ

gives rise to the permutation x̂i 7→ x̂σ−1(i).

The contribution of principal monomials to the dynamical root vector gives

f̌εi−εlvλ =

l−1∏
j=i+1

[λj − λl + l − j]qψilvλ + . . . , λi = (λ, εi),

where non-principal terms are omitted. Applying Proposition 2.9 and Proposition 2.11 we find

that ûl is equal to (−1)l−1Ĉlwl ⊗ vλ modulo V̂ λl−1 with some scalar Ĉl.

LEMMA 5.8 For all l = 1, . . . , n, Ĉl =
∏l−1
j=1[λj − λl + l − j]q.

Proof. For l = 2, we have

û2 = −q[λ1 − λ2]qw2 ⊗ vλ + w1 ⊗ f1vλ = −(q[λ1 − λ2]q + q−λ1+λ2)w2 ⊗ vλ mod V̂ λ1 ,

so Ĉ2 = [λ1 − λ2 + 1]q. For l > 2 we find

Ĉl =

l∑
i=1

qi−1qλl−λi+i−l+1−δil
i−1∏
j=1

[λj − λl + l − j − 1]q

l−1∏
j=i+1

[λj − λl + l − j]q.
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Suppose that the lemma is proved for Ĉl−1. Then we can write

(−1)l−1Ĉl =
( l∑
i=2

qi−2qλl−λi+i−l+1−δil
i−1∏
j=2

[λj − λl + l − j − 1]q

l−1∏
j=i+1

[λj − λl + l − j]q
)

× q[λ1 − λl + l − 2]q + qλl−λ1−l+2
l−1∏
j=2

[λj − λl + l − j]q

=
(
q[λ1 − λl + l − 2]q + qλl−λ1−l+2

) l−1∏
j=2

[λj − λl + l − j]q.

We applied the induction assumption to the expression in brackets in the top line. The factor in

the brackets on the second line is equal to [λ1 − λl + l − 1]q, so the statement is proved.

Up to a non-zero factor, Ĉl =
∏l−1
j=1(x̂j − x̂l), where x̂i are the eigenvalues of Q on Cn ⊗ M̂λ.

LEMMA 5.9 For i < j, the submodule M̂λ
j is contained in M̂λ

i if and only if x̂i = x̂j.

Proof. “Only if” is obvious. Suppose that x̂i = x̂j . Then the coefficient Ĉl turns zero and

ûl ∈ V̂ λl−1. First suppose that all x̂l are pairwise distinct for l < j. Then V̂ λl−1 = M̂λ
1 ⊕ . . .⊕ M̂λ

l−1

and M̂λ
j ⊂ M̂λ

i . The vector uj is singular in M̂λ
i , therefore ûj ' f̌εi−εj ûi. This equality is true for

generic λ subject to x̂i = x̂j , hence for all such λ.

Define Ŵλ
i = M̂λ

1 + . . .+ M̂λ
i , so that Ŵλ

i ⊂ Ŵλ
j , i < j.

PROPOSITION 5.10 The submodules Ŵλ
i and V̂ λi coincide if and only if the eigenvalues {x̂l}il=1

are pairwise distinct.

Proof. By Proposition 2.9 and Proposition 2.11, Ŵλ
l ⊂ V̂ λl . If the eigenvalues are distinct, Ĉl 6= 0

for all l and then V̂ λl ⊂ Ŵλ
l . Otherwise M̂λ

j ⊂ M̂λ
i for some i < j, by Proposition 5.9. Then the

graded modules grŴλ
n and grV̂ λn are different (recall that the latter is independent of λ as a vector

space, by Proposition 5.7 applied to k = h).

Suppose that the weight λ satisfies the condition [(λ + ρ, α) − 1]q = 0 for α ∈ R+ and let

M̂λ−α ⊂ M̂λ be the submodule generated by the singular vector f̌αvλ. Define the quotient module

Mλ,α = M̂λ/M̂λ−α and let $α : M̂α →Mλ,α be the projector.

LEMMA 5.11 If [(λ+ ρ, α)− 1]q = 0 for some α = εi − εj ∈ R+, then (id⊗$α)(M̂λ
j ) = {0}.

Proof. Let us prove that ûj ∈ Cn ⊗ M̂λ−α ⊂ Cn ⊗ M̂λ. This is so if i = 1 since ûj = w1 ⊗ f̌αvλ.

If i > 1, the definition (5.2) implies f̌εi−1−εjvλ = [(λ + ρ, α)]qfαi−1
f̌αvλ ∈ M̂λ−α. Proceeding by

descending induction on l we can check that f̌εl−εjvλ ∈ M̂λ−α for all l 6 i. Indeed, all monomials

constituting f̌εl−εj contain either the factor fαi−1
fα or fαfαi−1

, by (5.2). The latter enters with

the factor [hα + (ρ, α)− 1]q, which can be pushed to the right and killed by vλ. The vector f̌εl−εj

is obtained from f̌εi−1−εj via generalized commutators with fαm , m < i− 1, which commute with

f̌α. This implies ûj ∈ Cn ⊗ M̂λ−α and (id⊗$α)(ûj) = 0, as required.
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COROLLARY 5.12 Let λ ∈ 1
~ c
∗
k and σ ∈ Sn/Sn. Then for any j ∈ Īσk the submodule M̂λ

j is

annihilated by the projection id⊗$ : Cn ⊗ M̂σ·λ → Cn ⊗Mσ·λ.

Proof. Suppose that j ∈ Īσk . There exists i ∈ [1, n] such that α = εi − εj ∈ σ(Π+
k ) and f̌αvσ·λ is

singular in M̂σ·λ. As follows from Lemma 5.11, the submodule M̂λ
j is annihilated by the projection

Cn ⊗ M̂σ·λ → Cn ⊗Mσ·λ.

Now we turn to the submodules M̂λ
j that survive under id⊗$; they are of j ∈ Iσk .

LEMMA 5.13 Suppose that α = εi − εj and β = εl − εm are such that l 6 i < j < m. Suppose

that [(λ+ ρ, α)− 1]q = 0. Then the vector $α(f̌βvλ) ∈Mλ,α has a simple divisor x̂j − x̂m.

Proof. We have the only condition on λ, which translates to the Q-eigenvalues as x̂i = x̂jq
2. For

almost all such λ the coefficient Ĉm '
∏m−1
r=1 (x̂m − x̂r) is not zero, therefore (id ⊗ $α)(ûm) ∈

Cn ⊗Mλ,α is not zero. By Lemma 5.9 we have M̂λ
m ⊂ M̂λ

j at x̂m = x̂j . Then (id ⊗$α)(M̂λ
m) ⊂

(id ⊗$α)(M̂λ
j ) = {0} and (id ⊗$α)(ûm) is divisible by x̂m − x̂j . The degree of this divisor is 1,

as it is simple in Ĉm. By Corollary 5.3, we can write

ûm =

m∑
l=1

(−q)l−1
l−1∏
s=1

(x̂s − x̂mq2)cms wl ⊗ f̌εl−εmvλ, where all cms 6= 0.

The part of the sum corresponding to l > i is divisible by x̂j − x̂m = x̂iq
−2 − x̂m. Retaining the

terms with l 6 i we write ûm =
∑i
l=1(−q)l−1

∏l−1
s=1(x̂s − x̂mq2)cms wl ⊗ f̌εl−εmvλ + . . . Hence the

vectors $α(f̌εl−εmvλ) are divisible by x̂m− x̂j for all l = 1, . . . , i. Clearly the degree of x̂m− x̂j in

$α(f̌ε1−εmvλ) is 1 since $α(f̌ε1−εmvλ) generates the other coefficients in (id⊗$α)(ûm). By (5.2),

x̂m − x̂j is a divisor of degree 1 in $α(f̌εl−εmvλ) for all l = 1, . . . , i.

Assuming i = 1, . . . , k define the submodules Mλ
i , Wλ

i , and V λi in Cn ⊗Mλ to be the images

of M̂λ
mi , Ŵ

λ
mi , and V̂ λmi under the projection Cn ⊗ M̂λ → Cn ⊗ Mλ. Define xi = x̂mi to be

the eigenvalues of Q on Cn ⊗Mλ. Put xσi = x̂mσi and Mσ·λ
i ⊂ Cn ⊗Mσ·λ to be the image of

M̂σ·λ
mσi
⊂ Cn ⊗ M̂σ·λ.

PROPOSITION 5.14 The Uq(g)-module Cn⊗Mλ splits into the direct sum Mσ·λ
1 ⊕ . . .⊕Mσ·λ

k

if and only if the eigenvalues {xi}ki=1 are pairwise distinct.

Proof. Put Cσi =
∏i−1
j=1(xσi − xσj ) and C̄σi = Ĉmσi /C

σ
i '

∏
j∈[i,j)∩Īσk

(x̂mσi − x̂j). Define uσi =

1
C̄σi

(id ⊗$)(ûmσi ) ∈ Cn ⊗Mσ·λ. The module Mσ·λ
i is generated by the singular vector uσi , which

is a regular function of {xσj }, by Lemma 5.13. We have uσi = Cσi wmσi ⊗ vλ mod V σ·λi−1 , Therefore

V σ·λi = Wσ·λ
i = Mσ·λ

1 ⊕ . . .⊕Mσ·λ
i if and only if Cσj 6= 0 for all j ∈ [1, i]. This immediately implies

the assertion.

Choosing λ from 1
~ c
∗
k,reg splits the set of eigenvalues {x̂i = q2(λi−i+1)}ni=1 of Q to k strings

(x1, x1q
−2, . . . , x1q

−2(n1−1), . . . , xk, xkq
−2, . . . , xkq

−2(nk−1)),
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where x̂i, x̂j enter a string if and only if i 4 j. The lowest term in each string is xi = q2(λmi−mi+1),

i = 1, . . . , k. They are exactly the eigenvalues of Q that survive in the projection Cn ⊗ M̂λ →

Cn ⊗Mλ. The matrix Q has the same eigenvalues on Cn ⊗Mσ·λ for all σ. They are exactly the

eigenvalues that survive in the projection Cn ⊗ M̂σ·λ → Cn ⊗Mσ·λ. The permutation σ ∈ Sn

induces a permutation (x1, . . . , xk) 7→ (xσ1 , . . . , x
σ
k).

At this point we turn to deformations and regard Uq(g) as a C[[~]]-subalgebra of U~(g). Corre-

spondingly, Uq(g)-modules and their quotients are extended over C[[~]] to become U~(g)-modules.

The standard root vectors fα ∈ U~(g−), α ∈ R+, generate a PBW-basis in U~(g−), [16]. This basis

establishes a U~(h)-linear isomorphism U~(g−) ' U(g−) ⊗ C[[~]]. The root vectors fα ∈ U~(g−),

α ∈ Π+ are deformations of their classical counterparts.

LEMMA 5.15 Suppose that α ∈ Π+
k and σ ∈ Sn/Sn. For any λ ∈ 1

~ c
∗
k,reg, the specialization

f̌σ(α)(σ · λ) is a deformation of fσ(α), upon a proper rescaling.

Proof. Let i < j be the pair of integers such that σ(α) = εi − εj . The statement is trivial if

j− i = 1, since f̌σ(α) = fσ(α) then. If j− i > 1, then, by Lemma 5.5, q2(σ(λ),εl) 6= q2(σ(λ),εj) for all l

such that i < l < j. Hence the modified commutators in (q−q−1)j−i−1f̌σ(α)(σ ·λ) are deformations

of ordinary commutators, up to a non-zero multipliers. On the other hand, the standard fσ(α) is

itself a composition of deformed commutators of Chevalley generators

PROPOSITION 5.16 Suppose that λ ∈ 1
~ c
∗
k,reg. Then the Uq(g)-module Mσ·λ is C[[~]]-free.

Proof. The proof is similar to [65], Proposition 6.2, where it is done for a certain quotient of the

parabolic Verma module over Uq
(
sp(n)

)
. It is based on a construction of a PBW basis in M̂λ,

see therein, Section 6. Here we indicate only the crucial point: for all α ∈ Π+
k , σ ∈ Sn/Sn, and

λ ∈ 1
~ c
∗
k,reg the vectors f̌σ(α)vσ·λ can be included in a PBW basis in Mλ when the ring of scalars

is C[[~]]. This follows from Lemma 5.15.

THEOREM 5.17 For all σ ∈ Sn/Sn and λ ∈ 1
~ c
∗
k,reg such that xi = q2λi−2mi+2, i = 1, . . . , k, the

homomorphism of C~[End(Cn)]→ End[Mσ·λ] factors through an exact representation of C~[Ox].

Proof. The minimal polynomial of Q and Trq(Qm) are independent of σ, hence the homomorphism

of C~[G] → End[Mσ·λ] factors through a homomorphism C~[Ox] → End[Mσ·λ]. In the zero fiber,

the kernel of this homomorphism is zero. Indeed, it is a proper invariant ideal in C[Ox] and it is

zero since Ox is a G-orbit. The algebra C~[Ox] is C[[~]]-free. It is a direct sum of isotypic U~(g)-

components, which are finite over C[[~]], [68]. Therefore, the U~(g)-invariant kernel is free. It is nil

since its zero fiber is nil; the representation of C~[Ox] in End[Mσ·λ] is exact.

5.5 Quantization of the Kirillov Bracket on g∗

A similar theory can be developed for quantization of the Kirillov bracket on g∗. The quantum

group U~(g) is replaced with U(g) ⊗ C[[t]], the algebra C~[End(Cn)] with U(gt) where gt = g[[t]]
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is a C[[t]]-Lie algebra with the commutator [Eij , Elm]t = tδjlEim − tδimElj , Eij ∈ g ⊂ g[[t]],

i, j = 1, . . . , n. The assignment Eij 7→ tEij makes U(gt) a subalgebra in U(g) ⊗ C[[t]]. The

dynamical root vectors are obtained from (5.2) via the limit q → 1. The U(g)-module Mσ·λ is

defined similarly. For λ ∈ 1
t c
∗
l,reg, it is generated over C((t)) by the vector space U(g−)vσ·λ. Its

regular part M+
σ·λ = U(g−)vσ·λ ⊗ C[[t]] is U(gt)-invariant. The algebra U(g) acts on End(M+

σ·λ)

and on the image of U(gt) in End(M+
σ·λ). The quantum orbit Ct[Ox] is described in terms of

E =
∑n
i,j=1 eij ⊗Eji ∈ End(Cn)⊗U(gt) as the quotient of Ut[g] by the ideal of the relations (now

xi may be not invertible but still pairwise distinct)

k∏
i=1

(E − xi) = 0, Tr(Em) =

k∑
i=1

xmi ni

k∏
j=1
j 6=i

(
1 +

tnj
xi − xj

)
, m = 1, . . . , k.

These formulas can also be derived from a two parameter quantization at the limit ~→ 0. The two

parameter quantization can be formally obtained by a shift of the matrix K and its eigenvalues,

see [26] for details.

THEOREM 5.18 For all σ ∈ Sn/Sn and λ ∈ 1
t c
∗
k,reg such that xi = 2t(λi−mi+1), i = 1, . . . , k,

the homomorphism of U(gt) → End(M+
σ·λ) factors through an exact representation of the algebra

Ct[Ox].
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Chapter 6

Representations of Quantum

Conjugacy Classes of

Orthosymplectic Groups

Throughout this chapter, g is a complex simple Lie algebra of type B, C or D (the A-case has

been considered in Chapter 5).

We denote by Ox the conjugacy class of x as before. The coordinate ring C[Ox] is a quotient

of C[G] by a certain G-invariant ideal. To describe this ideal, observe that x determines a 1-

dimensional representation χx of the subalgebra of invariants in C[G] (under the conjugation

action). Apart from SO(2n), it is generated by traces of the matrix powers of (Xij), where Xij are

the coordinate functions on G. In the special case of SO(2n) one has to add one more invariant

that is sensible to the flip of the Dynkin diagram, in order to separate two SO(2n)-classes within

an O(2n)-class whose eigenvalues are all distinct from ±1. Furthermore, the matrix X, when

restricted to Ox, satisfies an equation p(X) = 0 with a polynomial p in one variable. The entries

of the matrix p(X) are polynomial functions in Xij . The defining ideal of Ox is generated by the

entries of p(X) over the kernel of χx, provided p is the minimal polynomial for x, [65].

A pseudo-Levi subgroup K contains a Cartesian product of two blocks of the same type as

G. They correspond to the eigenvalues ±1 of the matrix x, which are simultaneously present in

its spectrum. For the symplectic group, it is SP (2m) × SP (2p), where m, p > 1. For the odd

orthogonal group, it is SO(2m)×SO(2p+ 1), where m > 2, p > 0. For the even orthogonal group,

it is SO(2m) × SO(2p), where m, p > 2. The lower bounds on m, p come from the isomorphism

SO(2) ' GL(1): if the multiplicities of ±1 are small, then the isotropy subgroup stays within the

Levi type. We distinguished such conjugacy classes as borderline Levi because they share some

properties of both types, cf. Chapter 3.

The quantized polynomial algebra C~[Ox], ~ = log q, is described as follows. The algebra C[G]

is replaced with C~[G], which is an equivariant quantization of the Poisson bracket rad,ad+ωr,l−ωl,r
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on G. This bracket makes G a Poisson–Lie homogeneous space over the Poisson group G equipped

with the Drinfeld-Sklyanin bracket rl,l − rr,r, with respect to the conjugation action. The algebra

C~[G] admits an equivariant embedding into the corresponding quantum group U~(g) ⊃ Uq(g). As

a subalgebra in U~(g), it is generated by the entries of the matrix Q = (π ⊗ id)(R21R), where R

is the universal R-matrix of U~(g) and π stands for the representation homomorphism U~(g) →

End(CN ). The factor R21 is obtained by flip of the tensor legs of R. This embedding makes a

U~(g)-module into a C~[G]-module and the representation homomorphism of C~[G] automatically

U~(g)-equivariant.

The subalgebra of invariants in C~[G] coincides with its centre, which is generated by q-traces of

the matrix powers ofQ (apart from the special case of SO(2n), as mentioned above). The “quantum

initial points” can be described as follows. Regard points of the maximal torus as elements of Uq(h).

With the identification h ' h∗ define λ ∈ 1
~h
∗⊕ h∗ via the equation q2λ = xq2ρk−2ρg , where ρk and

ρg are the Weyl vectors (half-sums of positive roots) of the algebras k and g, respectively. In the

classical limit q → 1, q2λ → x.

Let c∗k be the orthogonal complement to CΠ+
k . Denote C∗k,reg = 1

~ c
∗
k,reg + c∗k + ρk − ρ and

C∗k = 1
~ c
∗
k + c∗k + ρk− ρ. By construction, all λ ∈ C∗k ⊂ 1

~h
∗⊕ h∗ satisfy q2(λ+ρ,α) = q(α,α) for all q if

α ∈ Π+
k while λ ∈ C∗k,reg ⊂ C∗k satisfies this condition only if α ∈ Π+

k . Then the Verma module M̂λ

has singular vectors vλ−α for α ∈ Π+
k .

With λ ∈ C∗k,reg we associate a module Mλ of highest weight λ, so that the image of C~[G] in

End(Mλ) is a quantization of C~[Ox]. It is a parabolic Verma module if and only if k is a regular

Levi subalgebra. Irregular Levi subgroups also appear as stabilizers of initial points in g, so the

approach is applicable to the U(g)-equivariant quantization of adjoint orbits in g as well.

The highest weight of Mλ defines a central character of C~[G], whose kernel is expressed through

q-traces of the matrix powers Qk. The matrix Q yields an invariant operator on CN ⊗Mλ, and

its minimal polynomial is determined by module structure of the tensor product. The annihilator

of Mλ is then generated by the entries of the minimal polynomial over the kernel of the central

character. The structure of CN ⊗Mλ is the key point of this approach. This approach makes use

of some results on the Mickelsson algebras and Shapovalov inverse from Chapter 4 and [9, 70] and

is based on the study of the standard filtration of CN ⊗Mλ in what follows.

6.1 Reduced Shapovalov Inverse

In this section, we recall a construction of Shapovalov inverse reduced to End(CN ) ⊗ Uq(b−).

It is given in Chapter 4 for the natural representation of non-exceptional quantum groups (see

also [70] for the general case). Note with care that Chapter 4 and [9, 70] deal with a different

comultiplication. To adapt those results to the current setting, we have to twist the coproduct by

q

n∑
i=1

hεi⊗hεi
and replace q with q−1.

Given λ ∈ 1
~h
∗⊕h∗ consider a 1-dimensional Uq(b±)-module Cλ with the representation defined

by the assignment q±hα 7→ q±(λ,α), eα 7→ 0 for α ∈ Π+. Denote by Mλ the Verma module
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Uq(g)⊗Uq(b+)Cλ with the canonical generator vλ, [48]. Let M∗λ denote the opposite Verma module

Uq(g) ⊗Uq(b−) C−λ of the lowest weight −λ. There is a unique (up to a multiplier) invariant

pairing Mλ ⊗M∗λ → C, which is equivalent to the contravariant Shapovalov form on Mλ, upon an

identification M∗λ ∼Mλ through an anti-algebra isomorphism Uq(g−) ' Uq(g+), [18]. We also call

it Shapovalov form.

Recall that CN is regarded as a natural Uq(g)-module and {wj}j∈I ⊂ CN is the standard weight

basis. Reduced Shapovalov inverse is a matrix F̂ =
N∑
j=1

j∑
i=1

eij ⊗ f̂ij ∈ End(CN ) ⊗ Ûq(b−), where

the roof means extension over the field of fractions of Uq(h). This matrix yields a singular vector

F̂ (wj ⊗ vλ) in CN ⊗Mλ for all j ∈ I. For generic λ the matrix F̂ is a homomorphic image of the

Shapovalov inverse lifted to Ûq(g+)⊗ Ûq(b−).

The entries f̂ij can be expressed through the Chevalley generators as follows. Recall from

Chapter 4, the elements fij ∈ Uq(g−). For all g, fk,k+1 = fk′−1,k′ = fk for k < n. The rest of the

fij are expressed as shown in Proposition 4.2 with the change in parameter q̄ → q.

We use the notation and terminology of Chapter 4. To every route ~m we assign the products

f~m = fm1,m2 . . . fmk−1,mk , Aj~m = Ajm1
. . . Ajmk ,

where mk ≺ j. Put ρi = (ρ, εi) and define ρ̃i = ρi + ||εi||2
2 for all i ∈ I. Then f̂ij = 0 if i > j,

f̂ii = 1 and f̂ij =
∑

i4~m≺j
f~m,jA

j
~mq

ηij−ρ̃i+ρ̃j for i < j, where the summation is done over all routes

(~m, j) from i to j. Note that the factor qηij−ρ̃i+ρ̃j comes from the opposite multiplication adopted

in [7, 70] and Chapter 4.

Recall that there exists a PBW basis in Uq(g−) generated by certain elements labelled by R+,

which can be presented as deformed commutators of the Chevalley generators, [16]. The presence

of PBW bases allows to identify Uq(g−) with U(g−) as vector spaces (and Uq(h)-modules). This

identification makes Uq(g−) a deformation of U(g−). It follows that fij are deformations of root

vectors from g− (unless i = j in the orthogonal case).

LEMMA 6.1 Suppose that α ∈ Π+
k ⊂ R+

g and (i, j) ∈ P (α). For all λ ∈ C∗k,reg, the specialization

f̂ij [ηij ]q at weight λ is a deformation of a classical root vector, −fα ∈ g−.

Proof. Present λ as α = 1
~λ

0 + λ1 ∈ C∗k,reg, λi ∈ h∗. Observe that a) e2λ0
i = e2λ0

j for all

α = εi − εj ∈ Π+
k once λ0 ∈ c∗k and b) there is no k such that i ≺ k ≺ j and e2λ0

i = e2λ0
k = e2λ0

j if

λ0 ∈ c∗k,reg. Furthermore, write f̂ij [ηij ]q = −fij −
∑

i≺~m~≺j
fi,~m,jA

j
~m,jq

ρ̃j−ρ̃i , where the sum is taken

over non-empty routes ~m. For all k subject to i ≺ k ≺ j, the denominator in Ajk|λ = − q−q−1

q2ηkj |λ−1

tends to e2λ0
k−2λ0

j − 1 6= 0 as q → 1. Therefore, the sum vanishes modulo ~, and fij tends to a

classical root vector.

Define elements f̌ij = f̂ij
∏

i4k≺j
[ηkj ]q ∈ Uq(b−) for all i ≺ j. They satisfy the identity

eαf̌ij = −
∑

(l,r)∈P (α)

δl,iq
−(α,εl)f̌r,j [ηij ]q mod Uq(g)g+, ∀α ∈ Π+, (6.1)
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Fix (i, j) ∈ P (α) for α ∈ R+ and suppose that λ = 1
~λ

0 + λ1 with λi ∈ h∗ satisfies the condition

[ηij |λ]q = 0 = [ηj′i′ |λ]q. Then there is a singular vector vλ−α of weight λ−α in the Verma module

Mλ. We can take vλ−α = f̌ijvλ provided it is not zero, since eαf̌ijvλ = 0 for all α ∈ Π+ by (6.1). If

f̌ijvλ = 0 at some λ, we still can obtain vλ−α from f̌ijvλ (which is polynomial in e±2(λ0,α), α ∈ Π+,

for fixed λ1 and q) via renormalization, since singular vectors are defined up to a scalar multiplier.

In particular, if α ∈ k for some generalized Levi subalgebra k and λ ∈ C∗k,reg, then vλ−α ' fαvλ

mod ~, by Lemma 6.1. Note that f̌ijvλ ' f̌j′i′vλ if i 6= j′, as follows from the theory of Mickelsson

algebras for quantum groups, [54].

6.2 Standard Filtration on CN ⊗Mλ

Fix a generalized Levi subalgebra k ⊂ g and a weight λ ∈ C∗k,reg. Let Mh
λ denote the Verma

module of highest weight λ. For each α ∈ Π+
k , there is a singular vector vλ−α ∈ Mh

λ generating

a submodule Mh
λ−α ⊂ Mh

λ , cf. Section 6.1. Set M k
λ to be the quotient of Mh

λ by the submodule∑
α∈Π+

k

Mh
λ−α.

We introduce yet another partial ordering on integer interval I that is relative to k: write il j

if wi and wj ∈ Uq(k−)k−wi. Clearly i l j if and only if i ≺ j and wi, wj belong to an irreducible

k-submodule in CN . Let Ik ⊂ I be the set of all minimal elements with respect to this ordering

and Īk be its complement in I. Elements of Ik label the highest weight vectors of the irreducible

k-submodules in CN . This notation is compatible with what was used in Chapter 5.

We denote by V k
• = (V k

i )Ni=1 a filtration of CN ⊗M k
λ by the modules V k

i generated by wk ⊗ vλ,

k = 1, . . . , i. For k = h it is the standard filtration considered in the previous chapters. Clearly V k
•

is obtained from V h
• through the projection CN ⊗Mh

λ → CN ⊗M k
λ. Further we show that V k

j /V
k
j−1

vanishes once j ∈ Īk and q is close to 1.

PROPOSITION 6.2 For each λ ∈ C∗k,reg there exists an open set Ω 3 1 in C such that the

submodule V k
j is generated by wi ⊗ vλ, i 6 j, i ∈ Ik, for all q ∈ Ω.

Proof. For all j denote by V ′j ⊂ V k
j the submodule generated by all wi ⊗ vλ with i 6 j and i ∈ Ik.

We aim to prove that V ′j = V k
j .

The statement is trivial for j = 1. Suppose it is true for all i < j. If j ∈ Ik, then V k
j is

generated by wj ⊗ vλ and by V k
j−1 = V ′j−1, hence the proof. Suppose that j ∈ Īk. Choose the

greatest i such that i l j. Then (i, j) ∈ P (α) for some α ∈ Π+
k . By Lemma 6.1 there exists an

open set Ω ⊂ C containing 1 such that the principal term in f̌ijvλ ' vλ−α is not zero for all q ∈ Ω.

Then wj ⊗ vλ ' wi ⊗ ψijvλ ' wi ⊗ f̌ijvλ = 0 modulo V k
j−1, by Propositions 2.11 and 2.9. By the

induction assumption, we conclude that wj ⊗ vλ ∈ V ′j−1 and V k
j = V ′j−1 = V ′j .

COROLLARY 6.3 The graded module grV k
• is isomorphic to the direct sum ⊕j∈IkV k

j /V
k
j−1.

Recall that the tensor R21R commutes with ∆(x) for all x ∈ Uq(g), [30].
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PROPOSITION 6.4 The invariant operator Q = (π ⊗ id)(R21R) preserves the standard filtra-

tion. It is scalar on each graded component V k
j /V

k
j−1, j ∈ Ik, with the eigenvalue

xj = q2(λ+ρ,εj)−2(ρ,ε1)+||εj ||2−||ε1||2 , (6.2)

unless V k
j /V

k
j−1 6= {0}.

Proof. The operator Q can be presented as ∆(z)(z−1 ⊗ z−1), for a certain central element z,

[28]. Therefore Q is a scalar multiple on every submodule and factor module of highest weight of

V h
N . Now we do induction on j. The submodule V h

1 is of highest weight, thence it is Q-invariant.

Suppose that V h
j−1 is Q-invariant for j > 1. Since Q is scalar on V h

j /V
h
j−1, the submodule V h

j is

Q-invariant.

The eigenvalue of Q on V h
j /V

h
j−1 is determined by its highest weight and equal to (6.2), for all

j ∈ I, [68]. So the proposition is proved for k = h. The general case is obtained from this by taking

projection to CN ⊗ V k
λ and applying Corollary 6.3.

It follows that Q satisfies the polynomial equation
∏
j∈Ik

(Q− xj) = 0 on CN ⊗ V k
λ . We will not

address the issue if V k
j /V

k
j−1 survive for all j ∈ Ik as we bypass it in what follows.

6.3 Representations of Quantum Conjugacy Classes

In this section we extend the ground field C to the local ring C[[~]] of formal power series in ~. The

quantum group U~(g) is a completion of the C[q, q−1]-algebra Uq(g) in the ~-adic topology via the

extension q = e~. Its Cartan subalgebra U~(h) can be generated by hα ∈ h instead of q±hα .

Assuming that k is fixed, we suppress the corresponding superscripts and write simply Mλ = V k
λ

and V• = V k
• .

PROPOSITION 6.5 Suppose that λ ∈ C∗k,reg. Then Mλ is C[[~]]-free.

Proof. The proof is similar to [65], Proposition 6.2, where it is done for a regular pseudo-parabolic

Verma module over Uq
(
sp(n)

)
. The crucial observation is that for all α ∈ Π+

k and λ ∈ C∗k,reg the

vectors f̂ij(λ) with (i, j) ∈ P (α) can be included in a PBW basis in U~(g−) if the ring of scalars

is C[[~]]. This follows from Lemma 6.1.

Proposition 6.5 implies that the algebra End(Mλ) is also C[[~]]-free. We are going to realize the

quantized conjugacy class of a point x = lim~→0 q
2hλ ∈ T as a subalgebra in End(Mλ).

Consider the image of the algebra C~[G] in End(Mλ) under the composition homomorphism

C~[G]→ Uq(g)→ End(Mλ).

Here the algebra Uq(g) is extended over C[[~]]. This representation induces a character, χλ, of the

center of C~[G]. It annihilates the ideal in C~[G] generated by the kernel χλ and by the entries of
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the minimal polynomial of Q ∈ End(CN ⊗Mλ). The center of C~[G] is generated by

τk = Trq(Qk) := Tr
(
(π(q2hρ)⊗ 1)Qk

)
∈ U~(g), k = 1, 2, . . . ,

τ− = Trq(Q+)− Trq(Q−), for g = so(2n).

Here Q± are the images of R21R in End(W±)⊗ Uq(g), were W± ⊂ ∧n(Cn) are finite dimensional

irreducible modules of highest weights
n−1∑
i=1

εi ± εn. In the classical limit, this invariant separates

two SO(2n)-conjugacy classes whose eigenvalues are all distinct from ±1. They are flipped by

any inversion xi ↔ x−1
i , i = 1, . . . , n, and amount to an O(2n)-conjugacy class. If ±1 is in the

spectrum, the O(2n)-conjugacy class is also an SO(2n)-class. In this case, τ− is redundant.

THEOREM 6.6 Let k ⊂ g be a generalized Levi subalgebra, λ ∈ C∗k,reg, and Mλ = V k
λ the

corresponding generalized parabolic Verma module. Then

i) the annihilator of Mλ in C~[G] is generated by

(∏
i∈Ik

(Q− xi)
)
ij
, i, j = 1, . . . , N,

χλ(τk)−
N∑
i=1

xki
∏
α∈R+

q(λ+ρ+εi,α) − q−(λ+ρ+εi,α)

q(λ+ρ,α) − q−(λ+ρ,α)
, k = 1, . . . , N,

χλ(τ−)−
n∏
i=1

(
q2(λ+ρ,εi) − q−2(λ+ρ,εi)

)
, g = so(2n),

where xi is given by (6.2),

ii) the image of C~[G] in End(Mλ) is an equivariant quantization of C~[Ox], x = lim~→0 q
2hλ ,

iii) this quantization is independent of the choice of initial point and is an exact representation

of the unique quantum conjugacy class of x.

Proof. The statements i) and ii) for all types of classes are proved in [8, 64, 65, 68], for certain

regular k = k0 (cf. Chapter 2 for definition of regular k). For arbitrary k there is an element σ of

the Weyl group such that R+
k = σ(R+

k0
). The shifted action λ0 7→ σ(λ0 + ρ) − ρ = λ takes C∗k0,reg

to C∗k,reg. It preserves the central characters and takes the set of eigenvalues of Q on CN ⊗Mh
λ0

to eigenvalues on CN ⊗Mh
λ . Moreover, σ{xi}i∈Ik0 = {xi}i∈Ik as σ relates the orderings l relative

to k0 and k. This implies that the annihilator of M k0
λ in C~[G] vanishes on M k

λ, that is, there is

an equivariant homomorphism C~[G/K0]→ End(M k
λ). In order to complete the proof, we need to

show that this homomorphism is an embedding.

Since C~[G/K0] is a direct sum of C[[~]]-finite isotypic U~(g)-components and End(M k
λ) is C[[~]]-

free, the image of C~[G/K0] is C[[~]]-free. The algebra C[G/K0] has no proper invariant ideals,

hence the kernel of the map C~[G/K0]→ End(M k
λ) is zero. This completes the proof.

62



Bibliography

[1] Alekseev, A., Lachowska, A.: Invariant ∗-Product on Coadjoint Orbits and the Shapovalov

Pairing, Commentarii Mathematici Helvetici 80 #4 (2005), 795–810.

[2] Alekseev, A., Malkin, A.: Symplectic Structures Associated to Lie-Poisson Groups, Commu-

nications in Mathematical Physics, 162 #1 (1994) 147–173.

[3] Arnold, V. I.: Mathematical Methods of Classical Mechanics, Springer-Verlag, New York,

1989.

[4] Asherova, R. M., Burdik, C. Havlicek, M., Smirnov, Yu. F. and Tolstoy, V. N.: q-Analog of

Gelfand-Graev Basis for the Noncompact Quantum Algebra Uq(u(n, 1)), SIGMA, 6 (2010),

010, 13 pages.

[5] Asherova, R. M., Smirnov, Yu. F., Tolstoy, V. N.: Projection Operators For Simple Lie Groups,

Theoretical and Mathematical Physics 8 #2 (1971), 813–825.

[6] Asherova, R. M., Smirnov, Yu. F., Tolstoy, V. N.: Projection Operators For Simple Lie Groups.

II. General Scheme For Constructing Lowering Operators. The Groups SU(n), Theoretical

and Mathematical Physics 15 #1 (1973), 392–401.

[7] Ashton, T., Mudrov, A.: On Representations of Quantum Conjugacy Classes of GL(n), Let-

ters in Mathematical Physics, 103 #9 (2013), 1029–1045.

[8] Ashton, T., Mudrov, A.: Quantization of Borderline Levi Conjugacy Classes of Orthogonal

Groups, Journal of Mathematical Physics, 55 #12 (2014), 121702.

[9] Ashton, T., Mudrov, A.: R-Matrix and Mickelsson Algebras for Orthosymplectic Quantum

Groups, Journal of Mathematical Physics, 56 #8 (2015), 081701.

[10] Ashton, T., Mudrov, A.: Representations of Quantum Conjugacy Classes of Orthosymplectic

Groups, Journal of Mathematical Sciences 213 #5 (2016), 637–650.

[11] Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation Theory

and Quantization I-II, Annals of Physics, 111 #1 (1978) 61–110, 111–151.

[12] Bernstein, I. N., Gelfand, I. M., Gelfand, S. I.: Structure of Representations Generated by

Vectors of Highest Weight, Functional Analysis and its Applications, 5 #1 (1971), 1–8.

63
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