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5

1. The most reliable estimates of the population abundance of ground-dwelling arthropods are ob-6

tained almost entirely through trap counts. Trap shape can be easily controlled by the researcher,7

commonly the same trap design is employed in all sites within a given study. Few researchers8

really try to compare abundances (numbers of collected individuals) between studies because9

these are heavily influenced by environmental conditions, e.g. temperature, habitat structure,10

food sources available, directly affecting insect movement activity.11

2. We propose that useful insights can be obtained from a theoretical based approach. We focus12

on the interplay between trap shape (circle, square, slot), the underlying movement behaviour13

and the subsequent effect on captures. We simulate trap counts within these different geometries14

whilst considering movement processes with clear distinct properties, such as Brownian motion15

(BM), the Correlated Random Walk (CRW) and the Lévy walk (LW).16

3. (i) We find that slot shaped traps are far less efficient than circular or square traps assuming17

same perimeter length, with differences which can exceed more than two-fold. Such impacts18
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of trap geometry are only realised if insect mobility is sufficiently large, which is known to19

significantly vary depending on type of habitat.20

(ii) If the movement pattern incorporates localized forward persistence then trap counts accu-21

mulate at a much slower rate, and this rate decreases further with higher persistency.22

(iii) If the movement behaviour is of Ĺevy type, then fastest catch rates are recorded in the case23

of circular trap, and the slowest for the slot trap, indicating that trap counts can strongly24

depend on trap shape. Lévy walks exacerbate the impact of geometry while correlated25

random walks make these differences more inconsequential.26

4. In this study we reveal trap efficiencies and how movement type can alter capture rates. Such27

information contributes towards improved trap count interpretations, as required in ecological28

studies which make use of trapping systems.29

1 Introduction30

Trapping of insects is central to many ecological studies, particularly in ecosystem services ecology (Work31

et al.,2002). For ground-dwelling (surface-active) arthropods, pitfall traps are most frequently used to32

collect trap count samples, which are then manipulated to obtain information on structure of communi-33

ties (Hammond, 1990), habitat associations (Honêk, 1988), activity patterns (Den Boer, 1981), spatial34

distribution (Niemel̈a et al., 1990), relative abundances (Desender and Maelfait, 1986), total population35

estimates (Mommertz et al., 1996) and distribution ranges (Giblin-Davis et al., 1994). Most common sam-36

pled species include; ground beetles (Coleoptera: Carabidae), rove beetles (Coleoptera: Staphylinidae),37

wandering spiders (Aranae: LycosidaeandClubionidae), and ants (Hymenoptera: Formicidae) (Wood-38

cock,2005). The advantages of such a sampling technique is that pitfall traps are simple to install, easy to39

transport and cost-effective, studies are easy to replicate and enable large data collection useful for statisti-40

cal analyses (Greenslade, 1964). Pitfall traps are also used for general survey of insect diversity, detection41

of new invasions of insect pests for delimitation of area of infestation, and for monitoring population levels42

of established pests. Such information aids the decision making process for the initiation of control mea-43

sures or to measure effectiveness of a pest management program (Pimentel, 2009). Mass trapping is an44

example of a direct control strategy, that aims to reduce the rate of increase in a population by removing a45

large number of insects (El-Sayed et al., 2006). Another example which is different from pitfall trapping,46

but equally as relevant, and suggested to have great potential is the installation of trap crops, which are47

plant stands that are grown to attract pests to reduce pest density in the main crop (Hannunen, 2005).48

Despite frequent use, the issue is that trap captures can be influenced by variation in trap design, such49

as shape, size, quantity, spatial arrangement, material, type of preservative used (Luff , 1975; Peḱar, 2002;50
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Koivula et al., 2003). Often, this leads to interpretation issues, e.g. if trap size is unnecessarily large,51

sample counts can be distorted due to unwanted by-catches of non-target insects or even non-arthropods52

(Pearce et al., 2005). These factors can be adjusted and modifications can be made in line with experimen-53

tal requirements. In contrast, physical or biological factors amongst species which influence counts are54

much more difficult to control, such as inter/intra-individual individual differences (e.g. body mass, move-55

ment capabilities), ecological interactions, or those specific to the environment or habitat (e.g. temperature,56

rainfall, vegetation structure) (Melbourne, 1999; Saska et al., 2013). For some time now, ecologists have57

highlighted that since conclusions are drawn from samples and in turn used to make hypotheses about58

populations, the impact of these factors must be well understood (Cheli and Corley, 2010).59

To increase trapping efficiency, many studies have attempted to propose improved trap designs, but60

much focus is on more practical details i.e. material construction (e.g. use of roof/funnels, plastic rims,61

guidance barriers) (Cśasźar et al., 2018; Boetzl et al., 2018), albeit, few researchers have focused on other62

details, e.g. body mass, temperature (Koivula et al., 2003; Engel et al., 2017). We appreciate that such63

studies are informative, although very few address more fundamental questions relating to trap geometry64

or insect movement behaviour. Another issue is that there exists extreme variation in experimental de-65

sign, and how counts are reported and interpreted (Brown and Matthews, 2016). Currently, the trend has66

been usage of an assortment of traps of different shapes and sizes at randomized spatial locations (En-67

gel et al.,2017). The consequence is that the ability to draw meaningful comparisons across studies is68

severely hampered. Note that, in principle, standardization of pitfall traps does not necessarily translate69

to effective comparability in all cases, due to the sensitive nature of trap counts, as mentioned earlier,70

however, sound methodological reporting alongside a unified approach could potentially improve compa-71

rability. Better understanding of trap geometry and movement impacts would certainly contribute towards72

this process. Taking the above into account, it is not surprising that very few studies provide information73

on such impacts. Actually, we question whether such intricate information can really be obtained from74

field experiments, if catch rates are heavily influenced?75

In this study, our focus is on trap shape and the subsequent impact, whilst considering different modes76

of movement. As a first step, it makes sense to work at the smallest spatial scale, that is in the case of77

a single trap. The trap shapes considered are those which are used in pitfall trapping studies, with the78

circular trap being most frequently used by consensus, and those used on occasion such as square and79

slot (rectangular trap shape, also called gutter) (Southwood, 1978; Blackshaw et al., 2018). We propose80

that a more effective and robust approach to investigate this issue is from a theoretical standpoint through81

simulations, whilst other empirical studies have led to inconsistent results (Spence and Niemelä, 1994).82

Simulations are cost effective, easy to replicate, and alternative information can be sought that normally83

would be difficult to obtain otherwise (Petrovskii and Petrovskaya, 2012). Most importantly, some of those84
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factors which are deemed difficult to control in a real-field, would now either be absent or controllable.85

For example, each individual can now be considered completely ‘identical’ with respect to physical and86

biological traits - whereas in the field, ground-dwelling arthropods have different body mass, can vary87

in stage of development (metamorphosis) or exhibit different movement capabilities even in the case of88

the same species (Petrovskii and Morozov, 2009; Engel et al., 2017). Any additional complexity due89

to environmental heterogeneity is also removed from the system e.g. effects of temperature or wind are90

absent.91

The earliest modelling attempts for insect movement have been entirely based on Brownian motion92

(BM) and diffusion as the mean field counterpart - which have proven to be successful, especially at large93

time scales (Levin et al., 1984). This is partly due to the presumption that such species can be thought94

of as non-cognitive and thus completely random (Okubo, 1980). Examples of ecological applications95

include, conservation (Reichenbach et al., 2007), biological invasions (Hengeveld, 1989) and insect pest96

monitoring (Petrovskii et al., 2012, 2014), with attempts made for a variety of taxa, e.g. black veined white97

butterflies (Aporia crataegi) (Watanabe, 1978), slug parasitic nematode (Phasmarhabditis hermaphrodita)98

(Hapca et al., 2009) and walking beetles (Tenebrio molitor) (Bearup et al., 2016). Despite the success, it99

has been realised for some time now, that BM provides an oversimplified description on smaller time100

scales, not only for animals that exhibit cognitive abilities (e.g. mammals or reptiles) (Holmes, 1993) -101

which is expected, but also for ground-dwelling arthropods. As a result, models which are essentially non-102

Brownian have been developed, such as the Correlated Random Walk (CRW), which allows for forward103

directional persistence as opposed to being completely random (Kareiva and Shigesada, 1983). This pro-104

vides a more accurate description of the movement trajectory, as individuals are more likely to maintain105

the same direction of travel or turn at small angles (Pyke, 2015). Some examples where the CRW model106

has been effective include; cabbage butterflies (Pieris rapae) (Kareiva and Shigesada, 1983), bark beetles107

(Scolytinae) (Byers, 2001), andLeptothoraxant colonies (Sendova and Lent, 2012).108

The mechanisms behind individual insect movement can be more complicated than what BM and109

the CRW propose. In the literature, other more complicated processes have been documented, such as;110

intermittent stop-start movement (Mashanova et al., 2010), behavioural intensive-extensive changes (Knell111

and Codling,2012), individual interactions (De Jager et al., 2012), density or time dependent diffusion112

(Ahmed and Petrovskii, 2015; Ellis et al., 2018), Lévy walks (Sims et al., 2008) or even a mixture or113

composition of the above (Auger-Méth́e et al., 2015). The issue is more perplexing, since movement114

patterns can be misidentified (Petrovskii et al., 2011) or even, in the context of trapping, almost identical115

trap counts can be reproduced for inherently different movement models (Ahmed et al., 2018). Also, the116

conceptual case of BM is often revisited due to its relative simplicity and on occasion shown to be in117

excellent agreement with field data (Bearup et al., 2016). The commentary byCodling (2014) discusses118
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some of the current ongoing challenges in identifying the underlying movement model.119

Provided the movement process and its properties are sufficiently known, we can simulate the move-120

ment track of each individual using a random walk framework, and by extension, the distribution of the121

population in space can be estimated (Grimm and Railsback, 2005). If we consider the motion ofN122

individuals in a confined arena with trap installed, assuming no migration, mortality or reproduction and123

assume that the trap depth is deep enough so that no individual is prone to escape, then the total population124

can only decrease as a result of trapping. Trap counts are accumulated by removing those individuals from125

the system whose position lies within a predefined trapping region (Petrovskii et al., 2012). The resulting126

trap count trajectory is stochastic, and simulations can be averaged over multiple runs to reduce this effect127

- enabling comparability across different scenarios.128

By consensus, the default trap shape is normally circular, however, there is no principal argument129

for this choice. The study bySpence and Niemelä (1994) demonstrated that circular pitfall traps yielded130

generally more catches than slot type, although they could not determine the rank of other types of pitfall131

traps, since captures were influenced by both species type and landscape. Another example is that byBaars132

(1979), who simulated single trap year-catches for ground beetles (Pterostichus versicolor), and found that133

circular traps were slightly more efficient than square type (see Table 10 in that paper). Elsewhere, simu-134

lation models have been used to optimize the spatial distribution and other features of traps in agricultural135

fields, especially trap cropping (Holden et al., 2012), but the geometry of these structures have very rarely136

been assessed on trapping efficiency, for e.g.Hannunen(2005) only consider slot shaped crop patches.137

We investigate this issue in more depth, with interest in the precise rank order of trap shapes in terms of138

efficiency and the corresponding trap count patterns that emerge. Identification of the optimal trap shape,139

and in general, better understanding of the interplay between trap shape and captures contributes towards140

the design of effective traps used to control pest insects or help improve surveys for detection of invasion141

species (Pimentel, 2009; Berec et al., 2015). This could also apply in the case of insect monitoring at142

multiple scales, where many traps are deployed over a large agricultural field or even on a landscape scale143

(Petrovskii et al., 2014). Such information would also be of particular interest to those who call for, and144

propose to develop a standard pitfall trap design (Brown and Matthews, 2016).145

In this study, we consider movement models with clear distinct properties, namely, Brownian motion146

(BM), the Correlated Random Walk (CRW) and the Lévy walk (LW). Our aim is two-fold, firstly, to inves-147

tigate the trapping efficiency of different trap shapes, and secondly, to reveal how capture rates are affected148

by these type of movement processes and to what extent. The focal point is to help better understand catch149

patterns in general - facilitating better trap count interpretations leading to practical applications.150
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2 Modelling framework151

The movement path of an insect browsing in the field can be described by a continuous curved trajectory152

with positionr = (x(t),y(t)) at timet. For computational expediency, we discretize the movement path,153

so that each positionr i = {r0, r1, r2, ..., rn, ...} is recorded at discrete timesti = {t0, t1, t2, ..., tn, ...}, with154

i = 0,1,2, ...,n, ... steps (Turchin, 1998). If the initial positionr0 = (x0,y0) is prescribed at timet = t0 = 0,155

then each subsequent position can be determined by the relation156

r i+1 = r i +(Δr)i at time ti = iΔt, (2.0.1)

where movement data is assumed to be recorded at fixed time incrementsΔt. The step vector(Δr)i has157

components which can be written in either (a) cartesian co-ordinates(Δr)i = (ξi ,ηi) whereξ ,η are ran-158

dom variables for the horizontal/vertical components of each step, respectively, or in (b) polar co-ordinates159

(Δr)i = (li ,θi) with l2i = ξ 2
i + η2

i , θi = arctan2(ηi ,ξi), where arctan2(ηi ,ξi) is equal to arctan
(

ηi
ξi

)
for160

ξi > 0 and to arctan
(

ηi
ξi

)
±π radians forξi < 0. The step vector is described in terms of the step length161

(also known as dispersal kernel)li = |r i+1− r i |= {l0, l1, ..., ln−1} and turning angleθi = {θ0,θ1, ...,θn−1},162

measured clockwise from the line of direction at each heading. The characteristics of the movement163

process are determined by the statistical properties of the step length and turning angle probability distri-164

butions. Fig.2.0.1illustrates the random walk model in each co-ordinate system.165
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Figure 2.0.1: Random walk model: Insect begins at initial positionr0 = (x0,y0) at timet = 0. Subsequent

positions are determined by (2.0.1), i.e. r1 = r0 + (Δr)0, r2 = r1 + (Δr)1, r3 = r2 + (Δr)2 and so on,

recorded at timest = Δt,2Δt,3Δt, ... respectively. The step vector can be described either by (a) cartesian,

(Δr)i = (ξi ,ηi) i.e in terms of its horizontal/vertical components, or (b) polar:(Δr)i = (li ,θi) i.e in terms

of step lengths and turning angles.

2.1 Brownian Motion (BM)166

In case of BM the movement pattern is completely random and each component of the step vector(ξi ,ηi)167

is normally distributed. Both step distributions have zero mean and the same varianceσ2, whereσ is the168

mobility rate which determines insect activity. This implicitly assumes that the movement does not have169

any global directional bias and hence it occurs in an isotropic environment. In other words, there is no170

long-term drift which normally would arise due to external directional cues (taxis) or a response to an171

external stimulus (differential klino-kinesis) (Bailey et al., 2018). On a local level, we assume that there is172

no forward directional persistence and thus the movement process is essentially Markovian with regard to173

location. This means that the random walk is uncorrelated, such that ‘memory’ effects are absent and the174

direction of movement is completely independent of the previous directions moved (Weiss, 1994). Under175

these assumptions, the corresponding movement type is known as a simple random walk. The probability176

distributions for the step lengthλ and turning angleψ reads,177

λ (l ;σ) =
l

σ2 exp

(

−
l2

2σ2

)

, ψ(θ) =
1

2π
l > 0, −π < θ ≤ π, (2.1.1)
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whereλ is the Weibull1 distribution with scale parameter
√

2σ and the turning angle is uniformly dis-178

tributed over the circle, so that each insect has an equal chance of moving in all directions. A simple179

derivation of how these can be derived from the distributions of(ξi ,ηi) can be found inPetrovskii et al.180

(2014).181

2.2 Correlated Random Walk (CRW)182

More realistic than completely random movement, one would expect insects to maintain a similar direction183

that coincides with the direction of motion at the previous step - resulting in a short term localized bias184

referred to as forward persistence (Bovet and Benhamou, 1988). As a result, any two subsequent steps185

in the random walk are correlated, and the corresponding movement is known as the CRW (Codling186

et al.,2008). Such mechanisms are ensured if the frequency of large turning angles is suppressed with187

low probability of occurrence (Bergman et al., 2000). From a modelling perspective, the probability188

distribution for the turning angleψ is no longer uniform, and now takes the form of a circular distribution.189

In this study, we consider the following190

λ (l ;ν) =
l

ν2 exp

(

−
l2

2ν2

)

, ψ(θ ;κ) =
eκ cosθ

2πI0(k)
, l > 0, −π < θ ≤ π, ν ,κ > 0, (2.2.1)

whereλ is the Weibull distribution with scale parameter
√

2ν (as in the case of BM), andψ is the von191

Mises distribution (VMD) with concentration parameterκ and zero mean (Morales et al., 2004). Note192

that, other potential candidates forψ are also suitable e.g. wrapped Cauchy distribution (Fisher, 1995).193

Here,I0(k) denotes the zeroth order modified Bessel function of the first kind, defined through the integral194

I0(κ) = 1
2π
∫ π
−π eκ cosθ dθ . Larger values ofκ corresponds to higher concentration, resulting in stronger195

forward persistence, and vice versa. In the limiting caseκ → 0, the VMD converges to the uniform196

distribution, and reduces to the special case of BM ifκ = 0. For simulation methodology, random turning197

angles centered at each headingθi are generated by the relationθi+1 = VMD(θi ,κ),θ0 = 0. SeeFagan and198

Calabrese (2014) for a contextualization of the CRW and its development within the ‘rise of movement199

ecology’.200

2.3 Lévy Walk (LW)201

Much discussion in the literature has led to the introduction of an alternative movement pattern known as202

the Lévy walk (LW). The main difference is that the end tail of the step length distribution decays slowly203

1The general form for the Weibull distribution isλ (l ;α ,β ) = α
β

(
l
β

)α−1
exp
(
−
(

l
β

)α)
, l > 0. The step length distribution

in (2.1.1) has specific distribution parametersα = 2, β =
√

2σ .
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according to a power law (‘fat tails’), in contrast to faster than exponential decay for BM (‘thin tails’), see204

(2.1.1). The statistical consequence is that the variance is divergent and the characteristic scale is undefined205

(scale-free), often regarded as the ‘fingerprint’ of a LW. The movement path is composed of multiple short206

steps in clusters with the occasional longer steps in between them, and the resulting movement pattern is207

much faster. The step length distributionλ is expressed through its asymptotic property, and described by208

λ (l) ∼ l−μ , 1 < μ ≤ 3, (2.3.1)

whereμ is the tail index. This is undefined forμ ≤ 1, since it cannot be normalized and forμ > 3,209

the end tail decays sufficiently fast, converging to a normal distribution due to the central limit theorem210

(CLT), and thus the interval of interest is precisely that in (2.3.1). As a technical note, the terminology211

‘Lévy flight’ or ‘ Lévy walk’ is synonymous in the biological literature, but a clear distinction is made in212

the physical sciences, these subtleties are mentioned in AppendixS3. Any subsequent results and analysis213

that follow actually apply indirectly to LWs. In the ecological literature, there is ample evidence that the214

movement pattern for a range of animals can be modelled well by the LW (Reynolds, 2012; Focardi et al.,215

2009; Humphries et al., 2010) and many others, albeit, somewhat controversial since some studies have216

been contested due to both empirical and theoretical issues being identified (Edwards et al., 2007; Codling217

and Plank,2011; Palyulin and Metzler., 2014). Often, the strongest evidence appears in context specific218

scenarios e.g. optimal searching strategies in resource scarce environments (Bartumeus and Catalan, 2009;219

Viswanathan et al., 1999). Our motivation for including LWs, stems from the fact that such movement220

mechanisms are becoming increasingly important and often discussed, more generally, in the context of221

animal movement.222

In principle, we can make use of any type of LW with reasonable choice ofμ. For the purposes of this223

study, we consider a particular example of such, where step lengths are Folded-Cauchy distributed,224

λ (l ;γ) =
2γ

π(γ2 + l2)
, l > 0, ψ(θ) =

1
2π

, −π < θ ≤ π, (2.3.2)

with scale-parameterγ and tail indexμ = 2, which determines the rate of decay in the end tails i.e.225

λ ∼ 1
l2

. This is an interesting special case due to its ecological significance (e.g. foraging theory), as the226

corresponding distribution of flight lengths provides an optimal searching strategy under some additional227

conditions (Viswanathan et al., 1999). The turning angle is uniformly distributed over the circle, and the228

model is uncorrelated, which occurs in an isotropic environment, assuming the absence of any global or229

localized bias. Note that, ifψ were some type of circular distribution then the above would describe a230

correlated Ĺevy walk (CLW), which is not considered in this paper. For a comprehensive review, see231
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Reynolds(2018) which discusses in more detail, the ‘current status and future directions of Lévy walk232

research’.233

3 Simulation setting234

To simulate the pitfall trapping process, considerN individuals homogeneously distributed2 within a con-235

fined arena in the presence of a single trap installed. The movement of each individual is modelled by the236

random walk, as outlined in§2.1, whilst considering separately BM, CRW and the LW as distinct move-237

ment types. Assuming that the system has no immigration/migration properties so that the arena boundary238

is impenetrable, and the absence of reproduction or mortality (births/deaths), then the total populationN239

can only decrease over time as a result from trapping. The absorbing trap boundary functions in the fol-240

lowing way: at any instant in time, if the positionr i of any individual is located within the trap, then this241

individual is removed from the system (Petrovskii et al., 2012). It follows that the conservation relation242

between population numberN(t) (number of individuals which remain within the system) and trap counts243

J(t) accumulated from timet = 0 to t is N(t)+J(t) = N. In case the individual will ‘hit’ the trap, so that244

the position is located precisely on the trap boundary (or close to it), then it is possible to move away from245

the boundary at the next step, due to a possible re-orientation. This reflects on what is observed in real246

field tests, since only a low proportion of contacts results in catches, i.e. direct interaction with the trap247

boundary does not ensure that the insect is trapped (Halsall and Wratten, 1988). Intuitively, we expect that248

the interplay between trap shape and movement behaviour will affect trap counts and therefore the catch249

probability. Note that, the movement process described here is a ‘jump process’ since individuals appear250

at positionsr i at timesti but do not move along the intermediate paths, and so can potentially jump over251

the traps. This modelling artefact is a minor issue since we know that trap counts computed in this way,252

correspond well with mean field solutions (Ahmed, 2015).253

3.1 Trap geometry254

We consider a single trap installed at the centre of a circular arena of radiusr = R2, with the following255

shapes, in separate scenarios.256

1. Circular trap with trap radiusR1 (R1 < R2), perimeterP = 2πR1, with trap boundary257

∂Ωc = {(r,θ) : r = R1, −π < θ ≤ π} , (3.1.1)

2See AppendixS1which describes the simulation methodology for the initial condition. In case of circular geometry the
total population is uniformly distributed on an annulus, however, in other square/slot geometries it can be more complicated.
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and arena258

Ωc = {(r,θ) : R1 < r < R2,−π < θ ≤ π} . (3.1.2)

2. Square trap with (base) lengthE, width w = E, P = 4E, with trap boundary259

∂Ωs =

{

(x,y) : |x| <
1
2

E, y = ±
1
2

E∩|y| <
1
2

E, x = ±
1
2

E

}

, (3.1.3)

and arena260

Ωs =

{

(x,y) : x2 +y2 < R2
2 ∩|x| >

1
2

E∩|y| >
1
2

E

}

. (3.1.4)

3. Slot trap with lengthE, width w = ωE, P = 2E(1+ω), with trap boundary261

∂Ωω =

{

(x,y) : |x| <
1
2

E, y = ±
1
2

ωE∩|y| <
1
2

ωE, x = ±
1
2

E

}

, (3.1.5)

and arena262

Ωω =

{

(x,y) : x2 +y2 < R2
2 ∩|x| >

1
2

E∩|y| >
1
2

ωE

}

. (3.1.6)

Here,c,s,ω are labels referring to the circle, square, and slot geometries, respectively.ω is the263

aspect ratio between the width and length of the slot, which corresponds to a square trap ifω = 1.264

Figure 3.1.1: Trap dimensions: (a) Circular trap with radiusR1 = 2 and perimeterP = 2πR1 = 4π. (b)

Square trapω = 1, with lengthE = π, width w = E = π. (c) Slot trapω = 2, with E = 2π
3 , width w = 4π

3 .

(d) Slot trapω = 5, E = π
3 ,w = 5π

3 . (e) Slot trapω = 10,E = 2π
11,w = 20π

11 . All traps have the same fixed

perimeter. The initial population distribution is homogeneous, see AppendixS1, and confined within an

arena of radiusR2 = 20. Only part of the arena is shown here for visual purposes.

Fig. 3.1.1 illustrates the trap dimensions of different trap shapes placed at the centre of the arena,265

so that the intersection of the lines of symmetry coincide with this point. The geometry is rotationally266

symmetric with respect to the spatial population distribution, that is, on average, we expect that similar267

trap counts are obtained if traps were to be rotated. Fig3.1.1(b) - (e) shows the transition from square to268

slot, which is characterized by the aspect ratioω. As ω increases from 1, the length decreases and width269

increases, forming a thinner slot with smaller area.270
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3.2 Arena boundary condition271

Once a trap is installed, the trap boundary introduces a perturbation into the population distribution in the272

vicinity of the trap, and the ‘radius’ of such a perturbation grows with time. Since the primary interest of273

insect monitoring is on the short time dynamics, and given that on such a time-scale, the density further274

away from the trap is essentially unperturbed, it follows that the actual choice of arena shape is not so275

important, and it is expected that this outer boundary will have negligible effect on trap counts, if any.276

From a modelling perspective, the arena shape is chosen to avoid unnecessary complications, and obvious277

choices are either circular or square, depending on the type of co-ordinate system one adopts. Without278

loss of generality, we consider a fixed circular arena boundary of radiusR2, with perimeterPArena= 2πR2279

and areaAArena= πR2
2. Typically, the ratio between arena and trap scales in a real-field is considerably280

large, at least one order of magnitude, and the dimensions chosen in our simulations should reflect this.281

Henceforth, we set arena to trap perimeter ratio asPArena
PTrap

= 10 times as large, which is sufficient. In case282

of a circular trap, this means that the arena radius is 10 times trap radius, so thatR2 = 10R1.283

The boundary condition for the impenetrable arena boundary can be specified in a number of ways.284

The common types are; (i) Reflective: angle of reflection is the same as the angle of incidence, (ii) Stop-go285

or ‘sticky’: individual remains at the boundary at that meeting point, (iii) No-go: alternative path is chosen286

at the previous step to ensure individual remains within the arena (Bearup and Petrovskii, 2015). These287

conditions are quite easy to implement for boundaries with straight edges (e.g. square type), however, for288

a circular arena, it is best to introduce the concept of a ‘projection’, defined in the following way: if any289

individual position is located outside the arena at theith step, then the individual is projected back onto290

the arena boundary in the direction ofr i , so that, if|r i | > R2 thenrnew
i = R2 ∙

r i
|r i |

, see Fig.3.2.1Path B. At291

the next step, if the position is within the confines of the arena, then the movement process continues as292

per the random walk model (2.0.1). Over the course of the movement track, the individual may attempt to293

overstep the arena boundary on multiple occasions, at which point it will always be projected back, in the294

same manner. This concept is similar in essence to the sticky type condition. Fig.3.2.1illustrates typical295

movement paths to demonstrate the trap function (Path A), and how the actual position is redefined via a296

projected boundary encounter (Path B).297
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Figure 3.2.1: Illustration of typical movement paths in the case of circular trap geometry. The insect begins

at initial positionr0 at timet = 0, and further positions are determined by the random walk model (2.0.1).

Path A demonstrates the trap function. Insect falls into the trap at thej th step, and is then subsequently

removed from the system, forming a trap count. Path B demonstrates the projected boundary encounter.

Insect attempts to overstep the boundary at theith step, and is then projected back onto the arena boundary

in the direction ofr i with new positionrnew
i = R2 ∙

r i
|r i |

.

3.3 Equivalent geometries298

At first sight, one may expect that trapping efficiencies are related to the area of the trapping region.299

Considering those dimensions in Fig.3.1.1, it is readily seen that the area of the square trapAs = π2 is300

less than that of the circular trapAc = 4π, which can mistakenly be translated to the square trap being301

less efficient. Under this guise, it may seem that efficiencies are ‘self-evident’, but on the contrary it is302

counter intuitive. Trap shapes should actually be compared on a basis of equal perimeter lengths, which is303

well supported by theoretical, empirical and simulated results (Luff , 1975; Work et al., 2002; Miller et al.,304

2015). Intuitively, this makes more sense, since trapping is fundamentally a phenomenon of interactions305

with the trap boundary.306

To compare trap efficiencies across different geometries there are two fundamental parameters that307

must be fixed, firstly, the trap perimeter lengthP must be the same, from which we can relate trap dimen-308

sions309

E =
πR1

1+ω
. (3.3.1)

Secondly, the population densityρ (number of individuals per unit area) must be constant. For different310

trap geometries, this can be ensured by either, fixing the arena sizeR2 and varying the total population311

N, or alternatively, fixN and varyR2. In this study we adopt the former, but confirm that any loss/gain312

in area due to varying arena size has negligible effect on captures, irrespective of the type of movement313
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process or varied insect activity. The two approaches are equivalent, provided that the arena is of a similar314

size, otherwise, arena boundary encounters can noticeably impact trap counts. On assuming constant315

population densityρ = Nc
Ac

= Nω
Aω

, we obtain a relation between population numbers316

Nω = Nc

1− πω
(1+ω)2 .

(
R1
R2

)2

1−
(

R1
R2

)2 . (3.3.2)

If the details in the circular case are specified i.e. circular trap radiusR1 and total populationNc, then cor-317

responding parameters for the equivalent square/slot geometry can be computed using (3.3.1) and (3.3.2)318

whilst considering different aspect ratiosω.319

4 Results320

4.1 Impact of trap geometry for Brownian Motion321

Figure 4.1.1: Snapshots of the spatial distribution with positionr i shown at timest = 1,3,10,20, with

corresponding total number of stepsn = 100,300,1000,2000. (i) Circle trap: PopulationNc = 1244, trap

radiusR1 = 2. (ii) Square trap: PopulationNω = 1247, side lengthE = π ≈ 3.14, aspect ratioω = 1. (iii)

Slot trap: PopulationNω = 1253, lengthE = 2π
11 ≈ 0.57, widthw= 20π

11 ≈ 5.71,ω = 10. Other parameters

include: time incrementΔt = 0.01, mobility rateσ = 1.5, arena radiusR2 = 20, constant population

densityρ ∼= 1, fixed perimeterP = 4π ≈ 12.57.
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Fig. 4.1.1illustrates the evolution of the spatial distribution at timest = 1,3,10,20. The movement process322

is Brownian with step lengths and turning angles given by (2.1.1). Individuals are uniformly distributed323

across each arena, with impenetrable arena boundary due to the projection condition. The trap dimensions324

here are precisely those shown in Fig.3.1.1, for different trap geometries; circle, square (ω = 1), thin slot325

(ω = 10), and for brevity the casesω = 2,5 are not shown here. On comparing population numbers at326

t = 20, it is clear that details of trap shape has an impact on trapping efficiency.327

Figure 4.1.2: Trap counts (%) vs time(t = 0,0.01,0.02, ...,3). Trap geometries considered; circle, square

ω = 1 and slotω = 2,5,10. Details for the slot trap, include: (i)ω = 2, populationNω = 1248, length

E = 2π
3 ≈ 2.09, widthw = 4π

3 ≈ 4.19. (ii) ω = 5, populationNω = 1251, lengthE = π
3 ≈ 1.05, width

w = 5π
3 ≈ 5.24. All other cases with corresponding details are the same as in the caption of Fig.4.1.1, see

also Fig.3.1.1.

Fig. 4.1.2compares trap count trajectories across different geometries; circle, square and slot. Since328

the population is confined and can only reduce as a result of trapping, the trap count trajectories are329

monotonously increasing, subject to inherent stochastic fluctuations due to the randomness of individual330

movement. These trajectories are averaged over 20 simulation runs to reduce this effect. The result in331

Fig. 4.1.2shows that the circle trap is the most efficient. A small but noticeable difference is observed on332

comparing to the square trap. In the case of slot geometry a more prominent difference is noticed, with less333

trap counts recorded as the aspect ratioω increases, that is, as the slot becomes thinner, see Fig.3.1.1(c)334

- (e). This poorer efficiency in capture rates can be explained by the fact that, insects moving orthogonally335

to the shortest sides will, on average, outweigh the gains from the longest sides. It is evident that there is336

a hierarchy of trap shapes with respect to impacts on trap efficiency, with trap count differences growing337

with time.338
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Figure 4.1.3: Trap counts (%) vs time(t = 0,0.01,0.02, ...,3) for varying mobility ratesσ = 0.3,0.8,1.5.

Trap geometry: (i) Circle trap: PopulationNc = 1244, trap radiusR1 = 2. (ii) Square trap: Population

Nω = 1247, lengthE = π ≈ 3.14, ratio parameterω = 1. (iii) Thin slot trap: PopulationNω = 1253,

lengthE = 2π
11 ≈ 0.57, widthw = 20π

11 ≈ 5.71, ω = 10. Other details include: time incrementΔt = 0.01,

arena radiusR2 = 20, population densityρ ∼= 1, perimeterP = 4π ≈ 12.57.

Fig. 4.1.3shows that the most efficient trap is the circular, square, and then slot, in this precise order,339

even in the case of varied mobility (insect activity) - where trap count differences are more realised for340

larger mobility rates. To quantify this ‘impact’, we introduce the following: firstly, denoteJm(iΔt), i =341

1,2, ...,n as the accumulated trap count recorded afteri steps, with time stepΔt and total duration of342

trap exposureT = nΔt. The indexm denotes themth recording, which serves as a counter for multiple343

simulation runs, synonymous to repeated experimental trials in the real field. LetĴm = Jm

N denote the total344

number of individuals trapped ‘normalized’ by total population. Normalization is required since the total345

population varies across different geometries to ensure constant population density. We can then compute346

the ‘relative’ normalized trap countsΔĴm between circular and other geometries,347

ΔĴm(iΔt) =
Jm

c (iΔt)
Nc

−
Jm

ω (iΔt)
Nω

. (4.1.1)

Recall thatω = 1 corresponds to the square trap, andω > 1 for slot traps. IfΔĴm is positive then the348

normalized trap count is greater in the circular geometry, vice versa if negative, and the same if equal to349
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zero. On averaging overM simulation runs andn steps, we obtain the simple statistical metric350

〈
ΔĴ
〉

=
1

nM

n

∑
i=1

M

∑
m=1

ΔĴm(iΔt) =
1

nM

n

∑
i=1

M

∑
m=1

(
Jm

c (iΔt)
Nc

−
Jm

ω (iΔt)
Nω

)

, (4.1.2)

which provides a means to quantify the ‘impact of trap geometry’ through normalized trap count differ-351

ences. It is expected that this metric should complement any conclusions drawn from qualitative compar-352

isons of trap count trajectories.353

〈
ΔĴ
〉

(%)
Mobility rate σ Square vs.Circle Slot (ω = 10) vs.Circle

0.3 0.38 0.52
0.8 0.28 2.99
1.5 1.85 10.73

Table 4.1.1: Relative normalized trap counts averaged overn = 300 steps andM = 20 simulation runs
〈
ΔĴ
〉
. The metric is computed for varying mobility rates.

Tab. 4.1.1shows that in the case of square vs. circle, with low mobility rates such asσ = 0.3,0.8,354

the value of the metric
〈
ΔĴ
〉

is of the same order and less than 1%, and therefore, trap shape does not355

have much impact. In the slot vs circular case,
〈
ΔĴ
〉

increases from 0.5% to 3% approx - indicating that356

slot type traps are significantly less efficient. For larger mobility rates such asσ = 1.5, the value of
〈
ΔĴ
〉

357

is relatively greater, more so in the case of slot geometry. This means that details of trap shape such as358

impact of corners is important, but largely depends on insect activity, with greater impacts registered for359

faster moving insects.360

It is well known that the spatio-temporal population densityρ(r , t) of a system of individuals perform-361

ing BM with diffusion rateD is a solution of the diffusion equation (Berg, 1983; Sornette, 2004)362

∂ρ
∂ t

= D

(
∂ 2ρ
∂x2 +

∂ 2ρ
∂y2

)

, (4.1.3)

which can easily be derived from a simple random walk (Codling et al., 2008). The hallmark of BM is363

that the mean squared displacement (MSD) grows linearly with time, which yields a relation between the364

mobility rateσ andD, writtenσ2 = 2Dt (Turchin, 1998). For a discrete time model, one can expect that365

this remains valid, at least approximately, for a small, but finite value ofΔt, that is366

σ2 = 2DΔt. (4.1.4)

In some simple cases, analytical solutions for the diffusion equation (4.1.3) can be found, subject to appro-367
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priately chosen initial and boundary conditions. For instance, a solution can be sought as an infinite series368

in the case of circular trap geometry with uniform initial density, but not useful, because the coefficients in369

the series contain zeros of Bessel functions that are not known analytically and must be computed numer-370

ically (Carslaw and Jaeger, 1959). In other more complex geometries such as the case of square/slot trap371

geometry, analytical solutions do not exist, and therefore one must resort to numerical techniques anyway372

(Strauss, 2008).373

Petrovskii et al.(2012) studied trap efficiency between the circular and square cases, by computing the374

numerical solution to the diffusion equation (4.1.3) and comparing the flux through the trap boundary, over375

the time interval 0< t < 3. It was deduced that trap counts do not depend much on the details of the trap376

shape, and thus the impact of corners in case of square geometry is not important. The results showed that377

the circle trap was slightly more efficient, but the difference was far too negligible to suggest otherwise.378

Here, the flux was compared with fixed diffusion coefficientD = 1, and for fixed time incrementΔt = 0.01379

(as used in Fig.4.1.3), which corresponds to a mobility rateσ =
√

2
10 ≈ 0.141, calculated from (4.1.4). This380

value ofσ is far too low (c.f. Fig.4.1.3), to observe any considerable changes in trap counts, also, see381

Tab. 4.1.1square vs. circle, where
〈
ΔĴ
〉

is well below 1%. Although the claim can be substantiated for382

these chosen parameters or other cases of low mobility, our results demonstrate that this conclusion is not383

necessarily true for ground-dwelling arthropods which are highly active. Trap shape can indeed affect the384

efficiency of trap counts, but only noticeable provided the mobility rateσ ∼
√

Dt is sufficiently large.385

In relation to observations in the real field, relatively lower mobility rates are typically reported for386

a variety of taxa, e.g. the lady beetle (Epilachna sparsa orientalis) σ = 0.12 (D = 0.71) (Iwao and387

Machida,1963), native tree hopper (Publica concava) σ = 0.07 (D = 0.23) (McEvoy, 1977), leaf beetle388

(Galerucella pusillaandGalerucella calmariensis) σ = 0.10 (D = 0.46) (Grevstad and Herzig, 1997).389

These diffusion coefficientsD are recorded in these texts (measured in m2/day), but have been converted390

to σ using (4.1.4) with Δt = 0.01, as used in our simulations. There is empirical evidence that insect391

activity can depend on habitat structure, for example, the meta-analysis byAllema et al.(2015) showed392

that mobility rates of Carabid beetles (Carabidae) is approximately 5.6 times as high in farmland as in393

woody habitat. In particular, those species associated with forested habitats had greater mobility than394

those associated with open field habitats, both in arable land and woody habitat. In case of forested habitat395

with arable land,σ is observed to typically vary between[1.29,2.63] (D = [83,347]). The implication is396

that, impacts of trap geometry may be magnified in specific habitats, particularly where ground-dwelling397

arthropods are known to exhibit faster movement.398

18



4.2 Impact of trap geometry for non-Brownian Motion399

To compare between two distinct movement processes, scale parameters must be related by some type of400

‘condition of equivalence’. In case of BM and the CRW this can be done easily, as both are scale-specific401

processes, and a relation can be sought by equating the mean squared displacement (MSD) (Kareiva and402

Shigesada,1983). AppendixS2provides a derivation of the result403

ν = σ





1+

π
2
∙

I1(κ)
I0(κ)

1− I1(κ)
I0(κ)



1−
1
n
∙
1−
(

I1(κ)
I0(κ)

)n

1−
(

I1(κ)
I0(κ)

)










− 1
2

(4.2.1)

which relates the CRW distribution parameterν in terms of the mobility parameterσ for BM, after n404

steps, given some concentrationκ. If κ = 0, then the CRW reduces to BM withν = σ , as expected.I0(k)405

andI1(k) are defined through the integralIp(κ) = 1
2π
∫ π
−π cos(pθ)eκ cosθ dθ , which denotes thepth order406

modified Bessel function of the first kind.407

Since LWs are essentially scale-free, in the sense that the variance of step lengths is divergent (and408

therefore so is the MSD), it follows that the usual methodology outlined above cannot be applied. In409

AppendixS3 we derive a new and unique equivalence condition which can be used, more generally, to410

relate between any two movement processes when the variance of at least one of them does not exist, based411

on minimizing the ‘distance’ in the sense ofL2 norm, between the corresponding step length distributions.412

In case of BM and the LW with Folded-Cauchy distributed step lengths (2.3.2), we compute the following413

relation414

γ = 1.536σ (4.2.2)

whereγ is the distribution parameter for the LW. This improves on previously used approaches, where such415

relations are arbitrarily derived and therefore ambiguous (Rodrigues et al., 2015; Bearup et al., 2016).416

Now that the movement mechanisms for the CRW and LW alongside these inter scale parameter re-417

lations have been introduced (4.2.1) - (4.2.2), the next step is to analyse how trap catch patterns alter if418

insect movement behaviour is correlated or of Lévy type.419
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Figure 4.2.1: Snapshots of the spatial distribution in the case of circular trap geometry. Individual position

r i is shown at timest = 1,3,10,20 with corresponding total number of stepsn = 100,300,1000,2000.

The type of movement processes considered are: (i) BM with mobility rateσ = 1.5 (ii) CRW with low

forward persistenceκ = 1.5 (iii) CRW with high forward persistenceκ = 5. In both cases, for the CRW,

the mobility rateν is determined by (4.2.1) (iv) LW with γ found from (4.2.2). Other details: Initial

populationNc = 1244, trap radiusR1 = 2, time incrementΔt = 0.01, arena radiusR2 = 20, constant

population densityρ ∼= 1.

Fig. 4.2.1shows the evolution of the spatial distribution with time, in the case of circular geometry,420

whilst considering the following movement processes: (i) BM with mobility rateσ = 1.5, (ii) CRW with421

low forward persistenceκ = 1.5, (iii) CRW with higher persistencyκ = 5, (iv) LW with γ = 2.304. For (ii)422

- (iv) scale parameters are related to the BM case, through the conditions of equivalence (4.2.1) and (4.2.2).423

For case (iii) CRW for small time, there is a tendency for the individuals to move in the rightward direction,424

as expected, since the turning angle distributionψ is centered aboutθ0 = 0. On comparing population425

numbers att = 20, it is clear that the inclusion of forward persistence has an impact on trap captures,426

with less counts recorded for higher persistency - indicating the importance of movement behaviour. For427

brevity, the cases of square and slot traps are not shown here - but intuitively, the implications are the428

same. It is unclear from these snapshots, what impact may result from switching from BM to LW due to429

similar counts, therefore, further analysis of trap count trajectories is required.430
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4.2.1 Impact of trap geometry431

Figure 4.2.2: Trap counts (%) fordifferent trap geometry, partitioned by type of movement process: (a)

BM with mobility rateσ = 1.5 (b) CRW with low forward persistenceκ = 1.5 (c) CRW with high forward

persistenceκ = 5. In both cases, for the CRW, the mobility rateν is determined by (4.2.1) (d) LW with γ
found from (4.2.2). Trap geometries: circle, squareω = 1 and slotω = 5,10. Details of trap dimensions

are shown in Fig.3.1.1. All other details are the same as in the caption of Fig.4.1.1.

〈
ΔĴ
〉

%
Movementprocess Square vs.Circle Slot (ω = 5) vs.Circle Slot (ω = 10) vs.Circle

BM σ = 1.5 (κ = 0) 1.86 6.18 10.76
CRW κ = 1.5 1.88 4.19 8.10
CRW κ = 5 1.25 1.83 3.71

LW γ = 2.304 4.70 12.10 17.90

Table 4.2.1: Relative normalized trap counts averaged overn = 300 recordings andM = 20 simulation

runs
〈
ΔĴ
〉
. These values are listed for different movement processes, each related to the BM case with

mobility parameterσ = 1.5.

Fig. 4.2.2shows trap count trajectories for different trap geometries, partitioned by type of movement432

process. On comparing the order of the trajectories in terms of efficiency, we observe that the hierarchy433

of trap shapes is ranked as: (1) circular, (2) square and then (3) slot(ω = 5) with less counts recorded434

for a (4) thinner slot(ω = 10). Tab. 4.2.1 also confirms this, which lists the values of the statistic435
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defined earlier in (4.1.2) - since the magnitude of relative normalized trap counts
〈
ΔĴ
〉

increases across436

each row, irrespective of the movement type. On comparing (a) - (c), we observe that if individuals437

persist in a localized direction, then the chances of being trapped are lower, as less counts are registered438

if the movement model is correlated. Also, from Tab.4.2.1, on the whole,
〈
ΔĴ
〉

decreases with higher439

forward persistence, which means that the impact of trap geometry is less significant for heavily correlated440

movement paths. Note that, the ‘indent’ in the trajectory shown in (c), is a direct consequence of the441

condition of equivalence as depicted in Appendix Fig.S2.1(a), since the mobility rateν reduces and442

approaches a constant value, see asymptotic relation Appendix (S2.11). Trap counts accumulate rather443

fast on a short time scale, with a sudden reduction in the rate of accumulation forming such an ‘indent’,444

which is more prominent for largerκ . In the case of the LW shown in (d), there is relatively large variation445

in trap counts for different geometries, also supported by those values in Tab.4.2.1(shaded), compare446

〈
ΔĴ
〉

with the other cases of BM or CRW. This shows that the impact of trap geometry is more realised447

when the step length distribution exhibits a slower rate of decay i.e. if the movement pattern allows for448

occasional large steps. This is a typical example of how theoretical ecology and simulations in particular,449

can provide information that is sometimes difficult or near enough impossible to obtain from field studies.450
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4.2.2 Effect of mobility rate451

Figure 4.2.3: Trap counts (%) for varyingmobility rates σ = 0.3 (black),σ = 1.5 (blue), partitioned by

type of movement process: (a) BM with mobility rateσ = 1.5 (b) CRW with low forward persistence

κ = 1.5 (c) CRW with high forward persistenceκ = 5. In both cases, for the CRW, the mobility rateν is

determined by (4.2.1) corresponding to eachσ (d) LW with γ found from (4.2.2), γ = 2.304 forσ = 1.5

andγ = 0.461 for σ = 0.3. Trap geometries: circle (solid), squareω = 1 (dashed-dotted) and thin-slot

ω = 10 (dotted). Details of trap dimensions are shown in Fig.3.1.1. All other details are the same as in

the caption of Fig.4.1.1.

〈
ΔĴ
〉

%
Movementprocess Square vs.Circle Slot (ω = 10) vs.Circle

BM σ = 0.3 (κ = 0) 0.38 0.52
CRW κ = 1.5 −0.02 0.10
CRW κ = 5 0.19 0.17

LW γ = 0.461 1.26 5.34

Table 4.2.2: Relative normalized trap counts through the trap boundary averaged overn = 300 recordings

andM = 20 simulation runs
〈
ΔĴ
〉
. These values are listed for different movement processes, each related

to the BM case with mobility parameterσ = 0.3.

Fig. 4.2.3demonstrates that the impact of trap geometry is only significant if the mobility rate is suf-452

ficiently large, as previously discussed at the end of§4.1. For BM and the CRW, see plots (a) - (c), and453

low mobility parameter such asσ = 0.3, the trajectories are almost indistinguishable. This holds whether454
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the movement paths are correlated or not. Tab.4.2.2shows that the relative normalized trap counts is well455

below 1% (unshaded). The negative recording of
〈
ΔĴ
〉

= −0.02 technically means that trap counts are456

on average greater in the square geometry, however, this difference is far too small and most likely due to457

stochastic fluctuations. For the LW withγ = 0.461 (corresponding toσ = 0.3), there is a noticeable differ-458

ence in trap counts, see plot (d) and compare to (a) - (c), with considerably larger percentage differences459

in Tab. 4.2.2(shaded). This can be explained by the higher frequency of rare but large steps, resulting460

in a faster movement pattern. In terms of mobility rates, even thoughγ is conditionally equivalent toσ461

through (4.2.2), it is still large enough so that the impact of trap geometry is realised. Ifγ is sufficiently462

small, then we expect the details of trap shape to have little or almost no impact on trap counts.463

4.2.3 Impact due to movement type464

Figure 4.2.4: Trap counts (%) fordistinct movement processes, partitioned by trap geometry: (a) circular

(b) squareω = 1 (c) slotω = 5 (d) thin-slotω = 10. Details of trap dimensions shown in Fig.3.1.1. All

other details are the same as in the caption of Fig.4.1.1.
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〈
ΔĴ
〉

MP%
Trapgeometry CRW (κ = 1.5) vs.BM CRW (κ = 5) vs.BM LW vs. BM

Circle (κ = 0) 4.50 12.44 −0.88
Square 4.53 11.83 1.97

Slot (ω = 5) 2.51 8.08 5.04
Slot (ω = 10) 1.84 5.38 6.25

Table 4.2.3: Relative normalized trap counts through the trap boundary averaged overn = 300 recordings

andM = 20 simulation runs
〈
ΔĴ
〉
. These values are listed for different movement processes, each related

to the BM case with mobility parameterσ = 1.5.

Fig. 4.2.4shows trap counts for different movement processes, partitioned by trap geometry. Evidently,465

capture rates can vary significantly depending on the type of movement behaviour adopted. To quantify466

this, we can compute the average normalized trap counts (relative to the conceptual case of BM) as467

〈
ΔĴ
〉

MP =
1

nM

n

∑
i=1

M

∑
m=1

ΔĴm
MP(iΔt) =

1
nM

n

∑
i=1

M

∑
m=1

(
Jm

BM(iΔt)
N

−
Jm

MP(iΔt)
N

)

, (4.2.3)

here the label ‘MP’ refers to the ‘movement process’, such as CRW or LW, and the total population468

N = Nc,Ns or Nω depends on each respective trap shape, as mentioned in the caption of Fig.4.1.1. Plots469

(a) - (c) demonstrate that the CRW yields less trap counts in comparison to BM, irrespective of the type of470

geometry (compare black trajectories), which is exacerbated with greater forward persistence. Note that,471

the value of
〈
ΔĴ
〉

MP is magnified across each unshaded row in Tab.4.2.3with increasing concentration472

κ. Moreover, the impact of this movement type is lessened for thinner slots, and in the extreme case473

of severely elongated slots, it may not matter whether persistence mechanisms are present or not, as474

demonstrated by the ‘overall’ decrease in
〈
ΔĴ
〉

MP unshaded columns. For the LW, the order of trajectories475

alternate, depicting an irregular pattern, suggesting that trap counts are heavily dependent on details of476

trap shape. From plot (a) in the case of the circular trap, Lévy walking behaviour yields optimal trap477

counts, whereas, there is better trapping efficiency with BM in case of square trap geometry. The impact478

of movement type is more realised for slot traps, and grows for thinner slots, see Tab4.2.3shaded column.479

This is in strict contrast to the CRW vs BM case, where the opposite effect is observed. In summary, the480

above describes the typical interplay between movement type and trap shape in the context of trapping481

efficiencies.482

5 Summary of results483

To summarise, our main findings are as follows:484
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1. Contrary to the assumption often made in field studies, for e.g. seeBlackshaw et al.(2018), slot-485

shaped traps are significantly less efficient compared to circular or square-shaped traps of the same486

perimeter. For the same population, the counts obtained with a slot-shaped trap can be more than487

twice less than the traps obtained with the equivalent circular trap (cf. Fig.4.2.2). To notice488

significant impacts of trap shape, we find that insect activity must be large enough, (see Fig.4.1.3).489

2. For a given trap shape, the trap count significantly depends on the type of insect movement but490

the hierarchy of movement types (i.e. which movement types are trapped more efficiently) can be491

different for different trap shapes. A general observation is that the rate at which the population492

is being trapped decreases with an increase in the persistency of the movement (as quantified by493

parameterκ); in particular, the population of insects performing CRW is trapped at a slower rate494

compared to the population of insects performing BM (see Fig.4.2.4). In specific cases, such as for495

thin slots with movement patterns incorporating low forward persistence mechanisms, the impact496

on trap counts are somewhat negligible.497

3. The rate of trapping of the LW population strongly depends on the trap shape. In case of a circular498

trap, the populations of LW individuals is trapped at the fastest rate, i.e. providing, on average, the499

largest trap count. However, in case of a slot-shaped trap, the rate of trapping of the LW population500

is the lowest, c.f. Figs.4.2.4(a) and4.2.4(d). For thinner slots, this movement type can severely501

exacerbate the impact on trap counts, but inconsequential if movement paths are correlated.502

These results are primarily based on theory through modelling and simulations, and we hope that other503

researchers, primarily ecologists and/or entomologists, will be motivated to test these predicted patterns504

using well selected model species, whilst considering different movement activities, to evaluate them505

under field or at least laboratory conditions.506

6 Discussion507

1. In this study, we focused on trapping efficiency of different trap shapes, and how capture rates508

are affected by movement behaviour, and to what extent. Our results, as outlined in§5, have some509

broader implications. Traps are widely used for surveying insect diversity, detection of invasive pests510

and as a form of pest management in agricultural fields (using either e.g. sticky traps, pitfall traps,511

or alternatively trap crops). In this context, simulation models of insect movement have been used512

to optimize the spatial distribution and other features of traps, but, the geometry of these structures513

have hardly ever been assessed on trapping efficiency (Hannunen, 2005). The logic in this study514

could be applied to determine the optimal physical design of trap systems, which would constitute515
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an important line of direction for future research work. Also, impacts of trap geometry would516

be a crucial aspect to be considered, for those who seek to propose a unified trap design (Brown517

and Matthews,2016). More generally, a good understanding of the interplay between trap shape,518

adopted movement types and the subsequent effect on captures, would facilitate better trap count519

interpretations - which is known to be a challenging issue (Petrovskii et al., 2012).520

2. Through simulations,Miller et al. (2015) found that slot traps (line traps) of equal perimeter to521

have similar or even higher efficiency rates than circular shaped traps. Moreover, capture rates for522

square traps were shown to be noticeably higher (see§4.5 in that book). Both of these observations523

apparently contradict with our results, but can be explained with a closer look at the simulation524

methodology used therein. Some of the issues include: (i) A total number of 5000 random walkers525

were seeded into an environment, and those individuals happening to originate within the confines526

of the trap were excluded from the data. The resulting population is less than the original total, and527

varies due to differences in trap area. Therefore the population density is not constant, which is fun-528

damentally required for comparisons across different geometries (see§3.3). (ii) The movement type529

used is a Weston random walk3 with circular standard deviation of 20◦, corresponding to a heavily530

directed movement path with extremely high concentration (relative to those used in this study).531

We know from Fig.4.2.2(a) - (c), that strong correlations can reduce the impact of trap geometry,532

making trap count trajectories more difficult to differentiate. (iii) Trap counts were simulated for a533

single simulation run and were not averaged, allowing for considerable stochastic fluctuations. Note534

that, the simulations conducted byMiller et al. (2015) were designed for a specific goal, that is, to535

show that catch rates are related to perimeter length. For intricate information, such as comparing536

trapping efficiencies, much more care must be taken. Taking the above (i) - (iii) into account, we do537

not see a clear contradiction as our purposes are different.538

3. By computing the diffusive flux through boundaries, and on comparing,Petrovskii et al.(2012)539

showed that the impact of trap geometry is not so important (in the circular vs. square case) -540

which is correct in case of low insect activity. For substantial differences to be realised, we find541

that mobility rates must be sufficiently large (see§4.1). If mobility is much smaller than those542

rates which determine these movement types to be conditionally equivalent, then the impact of543

trap geometry can possibly be non-existent, even for faster movement types such as the LW. The544

implication is that for field studies, the choice of trap shape may become important depending on545

the movement capabilities of the type of species and thus habitat specific, e.g. high dispersal rates546

3A Weston random walk is a CRW with fixed step length and each new heading is randomly generated from a normal
distribution centered on the previous heading. The concentration parameter is defined through the circular standard deviation.
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have been recorded for Carabid beetles (Coleoptera: Carabidae) in farmland in contrast to lower547

rates measured in woody habitats, see Tab. 2 inAllema et al.(2015).548

4. Capture rates are strongly influenced if the movement paths are correlated, i.e. if insects exhibit549

memory, such as recollection of previous locations. In such a scenario, trap counts tend to accumu-550

late at a much slower rate. With greater persistency, not only is there a gradual reduction in captures,551

but also the impact of trap geometry is lessened (see Fig.4.2.4). In terms of trap data interpretation,552

low catches can arise due to a multitude of reasons, e.g. low population densities, if abundant food553

resources are available, due to the biological state of insects such as lack of need for mating, or554

can even be more complicated, such as a composition of the above. These factors directly influence555

insect mobility and in turn impact trap counts. We find that, alongside these reasons, the underlying556

movement mechanisms play a major role in how trap counts are formed, and thus provides an alter-557

native explanation for low counts i.e. if forward persistence is prevalent. To unravel, which of these558

is ‘most’ responsible for low counts, is more difficult to answer, and should be the subject of another559

study. As a starting step, one would need to identify exactly how these factors influence mobility560

rates and to what extent (Maśo, 2015).561

5. Many recent studies (but not all) which have reported LW behaviour in animal movement data have562

been criticized, partly due to usage of inappropriate statistical techniques and misinterpretations of563

data (Edwards, 2011). In some cases, movement has been incorrectly identified as Lévy type as other564

movement models produce a similar pattern, such as the composite correlated random walk (CCRW)565

(Plank and Codling, 2009). In the context of trapping, it was recently shown that almost identical566

trap counts are reproduced for inherently different movement models, such as BM with time depen-567

dent mobility rate and the LW, which suggests that the type of underlying movement pattern is not568

that important after all, unless placed under some ecological context, e.g. pest monitoring (Ahmed569

et al.,2018). Although controversy persists, our motivation for including LWs stems from the fact570

that such mechanistic processes have received much attention in the movement ecology literature571

(Reynolds, 2018). Our results show that, if animals switch to Lévy type movement (typically ob-572

served in resource scare environments), then trap counts strongly depend on trap shape. In the case573

of circular geometry, optimal trap counts are recorded for a system of Lévy walkers, but for square574

geometry, BM yields the optimal (see Fig.4.2.4). This suggests that individuals can avoid portions575

of the trapping region if corners are present. Intuitively, the frequency of ‘avoidance’ increases for576

slot traps, and even more so for thinner slots, possibly a by-product due to a reduction in ‘effective577

size’. Moreover, the impact of trap geometry grows with time, with the opposite effect observed for578

correlated movement paths with increasing strength of forward persistence. These results have some579
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wider implications which are applicable, more generally for animal movement. For instance, if we580

think of the trapping region as a circular area which contains a food patch at the centre, and the trap581

radius as a detection boundary, then the problem is analogous to random searches. If in addition we582

assume that any animal which enters the boundary, remains in the close vicinity of the food source583

(non-revisitable) - then this essentially functions as a ‘trapped’ individual. In this context, our results584

agree with the fact that Ĺevy type movement allows for a more efficient random search of a target,585

which is well known and documented in the literature (Viswanathan et al., 1999; Bartumeus et al.,586

2005). However, this may not be true in general, as searching success could depend on the shape587

of the target boundary (see Fig.4.2.4). This is not uncommon, as Brownian search strategies are588

known to become more advantageous under some conditions (e.g. presence of global bias), where589

it is shown that Ĺevy searchers can easily overshoot the target (Palyulin and Metzler., 2014).590

On a final note, we would like to mention some limitations to this study which can possibly motivate591

further research work:592

1. This study is limited to trap shapes which have been used in the field, namely, circular, square and593

slot, but, it would be interesting to consider other shapes, which are also used on occasion e.g. cross594

shaped traps (Perner and Schuler, 2004; Blackshaw et al., 2018).595

2. Baars (1979) recorded that circular traps are slightly more efficient than square type, but this result596

could not be reproduced in a multi-trap setting with traps of the same shape. It is unclear whether597

our results on trap efficiency hold in such a scenario. This opens up additional questions related to598

how trapping efficiencies may alter with respect to various spatial arrangements. Our study provides599

a better understanding at the single trap level and thus a conceptual basis for investigating more600

complex settings, such as multi-trapping systems.601

3. Our results are relevant to pitfall trapping studies with use of conventional traps. However, traps602

can be tailored to meet experimental requirements, and various designs have been developed to603

influence capture rates, e.g. baited traps (Rieske and Raffa, 1993), time-sorting traps (Chapman and604

Armstrong,1997), barrier trapping (Desender and Maelfait, 1986), drift fences (Melbourne, 1999),605

ramps (Bostanian et al., 1983). Although applications are context specific and they are not as widely606

used, these alternatives still exist. For a better understanding of trap efficiencies in these cases, the607

modelling framework would need to be refined to account for the response due to these specific trap608

functions.609

4. This study is primarily based on individual based modelling, but it is well known that the mean-field610

dynamics for BM, is well described by the diffusion equation (Petrovskii et al., 2012; Bearup et al.,611
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2015, 2016). It would be interesting to see a complimentary study that can reproduce our results612

in §4.1 at this level. In addition, trap counts could be further explored by considering more com-613

plicated movement types, which incorporate composite and/or intermittent behaviour, time/density614

dependent movement, interactions with the environment, etc. (Nathan et al., 2008; Codling, 2014).615

5. Shlesinger and Klafter (1986) first introduced the concept of a LW in the biological literature with616

the proposal that such movement mechanisms could be observed in the foraging behaviour of ants.617

To the best of our knowledge, the extensive ecological literature does not contain empirical evidence618

that ground-dwelling arthropods perform LWs, even for a single species. Admittedly, any practical619

implications derived from our theoretical results on insects may be limited, but can be useful, more620

generally for animal movement.621

6. From a more practical viewpoint, ‘small’ differences in trap efficiencies are not so much of a seri-622

ous problem for field entomologists. There are other aspects linked to pitfall trapping still poorly623

understood, that need to be solved by both theoretical and field ecologists, e.g. why trap counts624

of ground-dwelling arthropods assemblages can provide a different record compared to techniques625

measuring population densities? Why some ground-dwelling arthropods are completely missing in626

pitfall trap samples and others are overestimated i.e. have low population densities but relatively627

high catches?628
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Supplementary information639

S1 Homogeneously distributed insects over the arena640

In our simulations we assume that insects are homogeneously distributed over the arena at timet = 0. In641

mathematical terms, each initial position can be described as a random vector, written in polar co-ordinates642

r0 = (r0,ϑ), wherer0 is the distance from the centre of the field, andϑ is the angle subtended from the643

horizontal. The probability distribution can easily be written in the case of a circular arena with circular644

trap installed at the centre (3.1.1),645

λ0(r0) =
2r0

R2
2−R2

1

, R1 < r0 < R2, ψ0(ϑ) =
1

2π
, −π < ϑ ≤ π, (S1.1)

where the subscript inλ0 and ψ0 refers to ‘initial’. For simulations, each individual position can be646

independently and randomly generated by647

r0 ∼

(√(
R2

2−R2
1

)
U +R2

1,2πU

)

(S1.2)

whereU is the uniform distribution defined over the interval from 0 to 1. This corresponds to uniformly648

distributed individuals over an annulus. In more complex geometries (asymmetrical under rotation) such649

as the square or slot trap cases, the probability distribution cannot be expressed analytically. Therefore,650

we devise the following methodology: a population ofNf individuals are uniformly distributed around651

the whole circular fieldr0 ∼
(
R2

√
U ,2πU

)
, prior to the installation of the trap. Those individuals which652

happen to be situated within the trapping region are removed. As a result, the remaining population is653

uniformly distributed about the arena, with population, sayNω < Nf , whereω = 1 corresponds to the654

square trap, andω > 1 for the slot trap. On assuming a constant population densityρ (number of insects655

per unit area), it follows that656

ρ =
Nf

Af
=

Nω
Aω

⇒ ρ =
Nf

πR2
2

=
Nω

πR2
2−ωE2

, (S1.3)

whereA denotes total area. From this we can determine an estimate forNω ,657

Nω = Nf

(

1−
ω
π

(
E
R2

)2
)

(S1.4)

which expresses the remaining populationNω in terms of the population distributed around the whole field658

Nf , in the absence of a trap.659
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S2 Condition of equivalence: Correlated random walk vs Brownian motion660

Consider the random walk framework as described in§2. The total displacement aftern steps is given by,661

Rn =
n−1

∑
i=0

(r i+1− r i) =
n−1

∑
i=0

(Δr)i (S2.1)

where(Δr)i is the step vector as defined in (2.0.1). The corresponding mean squared displacement (MSD)662

derived byKareiva and Shigesada(1983) reads,663

E
(
R2

n

)
= E

(
|Rn|

2)= nE(l2)+2E(l)2 ∙
(c−c2−s2)n−c

(1−c)2 +s2 +2E(l)2 ∙
2s2 +(c2 +s2)

n+1
2

[(1−c)2 +s2]2
∙F(s,c) (S2.2)

where

F(s,c) =
(
(1−c)2−s2)cos

(
(n+1)arctan

(s
c

))
−2s(1−c)sin

(
(n+1)arctan

(s
c

))
.

Here,664

E(l) =
∫ ∞

0
lλ (l)dl, E(l2) =

∫ ∞

0
l2λ (l)dl (S2.3)

are the 1st and the 2nd moments of the step length distributions, respectively. For turning angles, such linear665

statistics cannot be used since any angular value is defined modulo 2π, soθ −π andθ +π correspond to666

the same direction (Codling et al., 2008). Useful moments for circular distributions include the mean sine667

s and mean cosinec, defined as668

s= E(sinθ) =
∫ π

−π
sinθψ(θ)dθ , c = E(cosθ) =

∫ π

−π
cosθψ(θ)dθ , (S2.4)

and once these are computed for some givenψ, alongside (S2.3), then the MSD can be computed through669

(S2.2). Now consider the following cases:670

Case 1 MSD for BM: Uniform turning angleψ(θ) = 1
2π with zero mean sines and cosines,s= c = 0.671

With this, (S2.2) reduces to672

E(R2
n) = nE(l2) = n

∫ ∞

0
l2λ (l ;σ)dl = 2nσ2. (S2.5)

Case 2 MSD for the CRW:ψ(θ ;κ) is the VMD given by (2.2.1) and due to symmetry we have thats= 0673
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and from (S2.2) we obtain674

E(R2
n) = nE(l2)+2E(l)2 c

1−c

(

n−
1−cn

1−c

)

. (S2.6)

On computing moments, we have that

E(l) =
∫ ∞

0
lλ (l ;ν)dl =

ν
√

2π
2

, E(l2) =
∫ ∞

0
l2λ (l ;ν)dl = 2ν2, c =

∫ π

−π
cosθ ∙

eκ cosθ

2πI0(k)
dθ =

I1(κ)
I0(κ)

,

whereI0(k) and I1(k) are defined through the integralIp(κ) = 1
2π
∫ π
−π cos(pθ)eκ cosθ dθ , which denotes675

the pth order modified Bessel function of the first kind. Substituting into (S2.6) we find that676

E(R2
n) = ν2





2n+π ∙

I1(κ)
I0(κ)

1− I1(κ)
I0(κ)



n−
1−
(

I1(κ)
I0(κ)

)n

1−
(

I1(κ)
I0(κ)

)









. (S2.7)

The condition of equivalence is obtained by equating the MSDs in (S2.5) and (S2.7), and on rearranging677

we have that678

ν = σ





1+

π
2
∙

I1(κ)
I0(κ)

1− I1(κ)
I0(κ)



1−
1
n
∙
1−
(

I1(κ)
I0(κ)

)n

1−
(

I1(κ)
I0(κ)

)










− 1
2

. (S2.8)

Finally, we can express the ratio of scale parameters in terms of concentrationκ,679

ν
σ

=





1+

π
2
∙

I1(κ)
I0(κ)

1− I1(κ)
I0(κ)





1−

Δt
ti
∙
1−
(

I1(κ)
I0(κ)

) ti
Δt

1−
(

I1(κ)
I0(κ)

)












− 1
2

. (S2.9)

with discretized timeti instead of the number of stepsn, see (2.0.1). In case of large timeti and small but680

finite value ofΔt, we have thatΔt
ti
≈ 0, and therefore an approximation for (S2.9) reads,681

ν
σ

≈



1+
π
2
∙

I1(κ)
I0(κ)

1− I1(κ)
I0(κ)





− 1
2

(S2.10)

and in the infinite limitti → ∞, Δt
ti
→ 0, (S2.9) reduces to682

ν
σ

=



1+
π
2
∙

I1(κ)
I0(κ)

1− I1(κ)
I0(κ)





− 1
2

(S2.11)
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Figure S2.1: Plot (a) Condition of equivalence (S2.9) plotted against timeti with Δt = 0.01, for varying

concentrationsκ = 0,1,2,5. Plot (b) Sample random walks withn= 1000 steps for (i) BMσ = 0.3 (black),

(ii) CRW with low forward persistenceκ = 1.5 (blue) and (iii) CRW with high forward persistenceκ = 5

(red). Note that, the CRW parameterν varies at each time step, and is determined from (S2.9).

which is constant for fixedκ. As a result, the ratio of scale parameters is time invariant for sufficiently683

large time, as observed in Fig.S2.1(a). Note that, in the special caseκ = 0 (no forward persistence)684

the VMD in (2.2.1) is the uniform distributionψ(θ ;κ = 0) = 1
2π , and the CRW reduces to BM with685

equal scale parameters,ν = σ , as expected. Fig.S2.1(b) illustrates typical sample paths for BM and the686

CRW with low/high forward persistence. Here, the scale parameters are related through the condition of687

equivalence (S2.9) which ensures that each trajectory has the exact same MSD. We observe completely688

random movement for BM, whereas, for the CRW the movement is more directed with less ‘tangles’ and689

‘turns’.690

S3 Condition of equivalence: Ĺevy walk vs Brownian motion691

As a technical note, the terminology ‘Lévy flight’ or ‘ Lévy walk’ is synonymous in the biological literature.692

The subtle difference is that, Lévy flights allow for arbitrarily large steps, which can theoretically result in693

non-physical infinite velocities, whereas LWs ensure that the propagation velocity is finite. Note that, in694

the physical sciences more caution is taken and a clear distinction is made (Dybiec et al., 2017). To avoid695

any unnecessary confusion, throughout the study, we use Lévy walks as a reference to a random walk696

whose step distribution has the asymptotic property (2.3.1), although technically, this is a Lévy flight.697
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Lévy walks are scale-free in the sense that the variance of the step length distribution is divergent. The698

MSD is unbounded and grows ballistically or sub-ballistically over time (Klafter et al., 1987). The usual699

methodology used to relate scale-specific movement processes through equating the MSD (as outlined in700

§S2) cannot be applied. To overcome this, an alternative approach allows a characteristic scale lengthL to701

be defined, by fixing the probabilityε of executing a step not exceedingL,702

P(l < L) = ε (S3.1)

also known as a survival or exceedance probability. In the literature on individual animal movement, there703

are some arguments that LWs are never really scale-free, since terminology can be misleading. A char-704

acteristic step length can ‘always’ be defined, but may be described somewhat differently, either through705

the median, geometric-averages, or even based on dimensional analysis (Kawai and Petrovskii, 2012).706

Although such approaches are plausible, they are hardly ever used and not favourable. A quick scope of707

recent literature will demonstrate that the usual methodology is through equating survival probabilities,708

e.g. Rodrigues et al.(2015); Bearup et al.(2016); Choules and Petrovskii(2017); Ellis et al.(2018) and709

there are many others. The motivation stems from the idea that step lengths can be divided into two classes,710

short range stepsl < L and long range stepsl > L, with probabilitiesε and 1− ε, respectively.711

To obtain a condition of equivalence between BM and the LW, firstly, we need an expression forL.712

From (S3.1) we can derive the following for Brownian step lengths,713

∫ L

0
λ (l ;σ)dl =

∫ L

0

l
σ2 exp

(

−
l2

2σ2

)

dl = ε ⇒ L =
√
−2σ2 ln(1− ε), (S3.2)

and for the Ĺevy step length distribution,714

∫ L

0
λ (l ;γ)dl =

∫ L

0

2γ
π(γ2 + l2)

dl = ε ⇒ L = γ tan
(πε

2

)
. (S3.3)

To enforce equivalence, we assume that this characteristic length is the same, and therefore we can715

eliminateL from (S3.2) - (S3.3) and rearrange to obtain716

ζ (ε) =
γ
σ

=
√
−2ln(1− ε)cot

(πε
2

)
, (S3.4)

which expresses the ratio of scale-parametersζ purely in terms of probabilityε. The basic idea is that717

for chosenε, the value ofζ can be computed from (S3.4), and therefore a conditional relation of the718

form γ = ζσ can be sought. The issue is that the value ofε is always chosen arbitrarily, without any719

clear reasoning. Some typical choices areε = 0.1,0.5,0.9 (Rodrigues et al.(2015); Bearup et al.(2016);720

Choules and Petrovskii(2017); Ellis et al. (2018)). To overcome this issue, we introduce the following721
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optimization technique to uniquely determine the optimal probabilityε∗.722

Firstly, consider theL2 norm defined as,723

L2(γ ,σ) =

(∫ ∞

0
(λ (l ;γ)−λ (l ;σ))2dl

) 1
2

(S3.5)

which computes the squared distance between the step length distributions. For the LW (with Folded724

Cauchy distribution) and BM we have that,725

L2(γ ,σ) =

(∫ ∞

0

(
2γ

π(γ2 + l2)
−

l
σ2 exp

(

−
l2

2σ2

))2

dl

) 1
2

(S3.6)

which can be evaluated analytically,726

L2(γ ,σ) =

(√
π

4σ
−

2γ
πσ2 exp

(
γ2

2σ2

)

E1

(
γ2

2σ2

)

+
1

πγ

) 1
2

(S3.7)

where E1(z) =
∫ ∞

z
e−t

t dt is a form of the exponential integral (Abramowitz and Stegun, 1972). On substi-727

tuting ζ = γ
σ , the above can be written as728

L2(ε;σ) =
1

√
πσ

∙

(
π
√

π
4

−2ζ exp

(
ζ 2

2

)

E1

(
ζ 2

2

)

+
1
ζ

) 1
2

(S3.8)

with ζ = ζ (ε) given by (S3.4). We now seek to solve the following optimization problem, that is, to729

determine the value ofε = ε∗ which minimizes the norm (S3.8).730

The derivative of (S3.8) reads,731

dL2

dε
=

dL2

dζ
∙
dζ
dε

= −
G(ε)

2πσL2
∙
dζ
dε

(S3.9)

where732

G(ε) =
1

ζ 2 −2
(
1+ζ 2)exp

(
ζ 2

2

)

E1

(
ζ 2

2

)

−4 (S3.10)

is the optimality function. It follows that the optimal probability is a solution of the equationG(ε∗) = 0733

which can easily be computed numerically.734

Fig. S3.1(a) - (c) shows that theL2 norm is minimized atε∗ = 0.342 (to 3.d.p), and is invariant with735

respect toσ . Plot (d) shows the optimality functionG(ε), and this optimal probability is a zero of this736

function. Plot (e) demonstrates equivalent step length distributions in the case of BM withσ = 0.5,1,3737

and the LW withγ = 0.768,1.536,4.608, respectively. The condition of equivalence between these scale738
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Figure S3.1: Semi-log plots of theL2 norm given by (S3.8) for different values of (a)σ = 0.5 (black),

(b) σ = 1 (blue) and (c)σ = 3 (red). (d) Optimality functionG(ε) given by (S3.10). (e) Equivalence

obtained between step length distributions, namely, the Weibull distribution (2.1.1) with σ = 0.5 (black

solid),σ = 1 (blue solid)σ = 3 (red solid) and Folded-Cauchy distribution (2.3.2) with γ = 0.768 (black

dashed),γ = 1.536 (blue dashed),γ = 4.608 (red dashed). Corresponding parameters are determined from

γ = ζ ∗σ with ζ ∗ = 1.536 and optimal probabilityε∗ = 0.342.

parameters is given by,739

γ = ζ ∗σ with ζ ∗ = 1.536 (S3.11)

which ensures that for both movement processes, the probability of executing the same step size of at most740

lengthL is fixed atε∗ = 0.342, subject to the ‘similarity’ constraint that the squared distance between the741

step length distributions is minimized. The advantage of this methodology is thatε∗ is optimal and now742

unique, rather than chosen arbitrarily. Of course, other constraints are possible such as minimizing theL1743

norm, which is equivalent to minimizing the area between the distributions, however, in this case the norm744

is not analytically tractable, and also cannot be generalized sinceε∗ varies withσ . The methodology745

outlined in this section can be easily extended to compare random walks for a variety of step length746

distributions where at least one of them has a divergent variance. An upcoming paper aims to deal with747

this issue in more detail (Ahmed and Bearup, 2019).748
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One, 4(8). https://doi.org/10.1371/journal.pone.000658.843
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Mommertz, S., Schauer, C., Kösters, N., Lang, A., and Filser, J. (1996). A comparison of d-vac suction,902

fenced and unfenced pitfall trap sampling of epigeal arthropods in agroecosystems.Annales Zoolgica903

Fennici, 33:117 – 124.904

Morales, J., Haydon, D., Frair, J., Holsinger, K., and Fryxell, J. (2004). Extracting more out of relocation905

data: building movement models as mixtures of random walks.Ecology, 85(9):2436 – 45.906

Nathan, R., Getz, W., Revilla, E., Holyoak, M. Kadmon, R., and Saltz, D. (2008). A movement ecology907

paradigm for unifying organismal movement research.Proc Natl Acad Sci USA, 105:19052 – 9.908

Niemel̈a, J., Halme, E., and Haila, Y. (1990). Balancing sampling effort in pitfall trapping of carabid909

beetles.Entomologica Fennica, 1:233 – 238.910

Okubo, A. (1980).Diffusion and Ecological Problems: Mathematical Models.Springer, Berlin.911
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