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Abstract 

Africa’s southern Cape is a key region for the evolution of our species, with early symbolic 

systems, marine faunal exploitation, and episodic production of microlithic stone tools taken 

as evidence for the appearance of distinctively complex human behaviour. However, the 

temporally discontinuous nature of this evidence precludes ready assumptions of intrinsic 

adaptive benefit, and has encouraged diverse explanations for the occurrence of these 

behaviours, in terms of regional demographic, social and ecological conditions. Here, we 

present a new high-resolution multi-proxy record of environmental change that indicates that 

faunal exploitation patterns and lithic technologies track climatic variation across the last 

22,500 years in the southern Cape. Conditions during the Last Glacial Maximum and 

deglaciation were humid, and zooarchaeological data indicate high foraging returns. By 

contrast, the Holocene is characterised by much drier conditions and a degraded resource base. 

Critically, we demonstrate that systems for technological delivery – or provisioning – were 

responsive to changing humidity and environmental productivity. However, in contrast to 

prevailing models, bladelet-rich microlithic technologies were deployed under conditions of 

high foraging returns and abandoned in response to increased aridity and less productive 

subsistence environments. This suggests that posited links between microlithic technologies 

and subsistence risk are not universal, and the behavioural sophistication of human populations 

is reflected in their adaptive flexibility rather than in the use of specific technological systems.  

Keywords: palaeoclimate; palaeoecology; rock hyrax middens; microlithic; macrofauna; 

Boomplaas Cave; Robberg 
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Introduction 

South Africa’s southern coastal margin is a key region for the evolution and development of 

our species (Ambrose, 2002; Ambrose and Lorenz, 1990; Brown et al., 2012; Henshilwood et 

al., 2004a; Henshilwood et al., 2002; Marean, 2010; Powell et al., 2009). The southern Cape 

archaeological record has reframed the debate about the evolution of human behaviour, 

providing early examples of engravings, ornaments, heat treatment of tool-stone and the 

focussed consumption of marine resources (Delagnes et al., 2016; Henshilwood et al., 2004b; 

Henshilwood et al., 2002; Henshilwood et al., 2014; Marean, 2014). The region also exhibits 

regular technological turnover through the last 100,000 years, with the intermittent production 

of bladelets, bifacial points and backed artefacts and the use of fine-grained rock, interspersed 

with periods lacking regular retouched flake forms and dominated by locally available rocks 

such as quartzite and quartz (Deacon, 1984; Wilkins et al., 2017). The links between these 

variable technological and subsistence records and their environmental context – necessary to 

arguments about the evolution of human adaptation – remain surprisingly unclear (Deacon, 

1982; Roberts et al., 2016). This reflects the region’s particular climatic dynamism (Chase and 

Meadows, 2007) coupled with disagreement concerning the interpretation of its 

palaeoenvironmental archives (e.g. Chase and Meadows, 2007; Deacon and Lancaster, 1988; 

Faith, 2013b; Marean et al., 2014).  

In this paper, we focus on the Later Stone Age record in the southern Cape, for which 

- in contrast with the Middle Stone Age - high resolution environmental and archaeological 

data are now available. We explore the strength of coupling between environments, subsistence 

behaviour and lithic technology over the last 22,500 years to understand whether, and how 

closely, human behaviour tracked environmental change. Spanning the transition from the Last 

Glacial Maximum (LGM; 24-18 ka) to the Holocene (11.7 ka to present), and episodes of the 

use of bladelet-rich technological systems, our data also have a bearing on broader debates 

about the role of what are often termed ‘microlithic’ technologies in issues of human adaptation 

and expansion. 

Later Stone Age Environments and Archaeology in the Southern Cape 

Influenced by both temperate and tropical climate systems (Figure 1), long-term climate change 

in the southern Cape is characterized by significant, and often abrupt fluctuations (Bard and 

Rickaby, 2009; Chase et al., 2013; Chase and Meadows, 2007; Heaton et al., 1986; Quick et 
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al., 2015; Quick et al., 2016; Talma and Vogel, 1992). Existing evidence indicates that during 

the Holocene the relative influences of the two dominant synoptic scale moisture-bearing 

systems – 1) the southern westerly storm track, which expands/shifts northward in the winter, 

and 2) tropical easterly flow, which transports moisture from the Indian Ocean during the 

summer – have varied significantly (Chase et al., 2013; Chase et al., 2015b). However, there is 

little detailed palaeoenvironmental evidence pre-dating the Holocene (Carr et al., 2016b; Chase 

and Meadows, 2007), and as a result there are contradictory opinions concerning conditions 

since the LGM (Chase and Meadows, 2007; Deacon and Lancaster, 1988; Faith, 2013b; 

Kohfeld et al., 2013; Partridge et al., 1999; Partridge et al., 2004; Sime et al., 2013; Stone, 

2014), to the extent that some studies conclude that the region was exceptionally “harsh” and 

arid during the LGM (Deacon and Lancaster, 1988; Scholtz, 1986), while others infer greater 

humidity and highly productive terrestrial environments (e.g. Faith, 2013b; Parkington et al., 

2000). This uncertainty has fundamentally hindered our understanding of past climate 

dynamics in the region, and by extension the impact of past climate change on hunter-gatherer 

adaptive and subsistence strategies during both the Later and Middle Stone Age. 

In the southern Cape, the Later Stone Age archaeological sequence is typically divided 

into several industries or technocomplexes: early Later Stone Age (ELSA ~<40-24 cal kBP), 

Robberg (~24-12 cal kBP), Oakhurst (~12-8 cal kBP) and Wilton (~8-2 cal kBP), followed by 

the arrival of Khoikhoi herders in the last 2000 years (Deacon et al., 1984; Deacon, 1978; 

Lombard et al., 2012; Mitchell, 1988). The ELSA is associated with the production of small 

flakes often through bipolar reduction of cores, though it otherwise lacks unifying 

characteristics and has been described as a period of technological heterogeneity (Mitchell, 

1988; Wadley, 1993). The Robberg presents more coherent characteristics, including the 

production of large numbers of bladelets (small, elongate flakes usually less than 24 mm long) 

produced both from dedicated bladelet cores and from those worked by bipolar reduction 

(Mitchell, 1988). The Robberg also sees more concentrated, if episodic, use of fine grained 

rocks such as a silcrete and chert than the preceding or subsequent phases (Deacon, 1978; 

Deacon, 1982). The Oakhurst (or Albany) is typified by fewer bladelets, larger flakes, a range 

of scraper forms and declining use of fine-grained rock, while the Wilton features both scrapers 

and backed artefacts and highly variable patterns of raw material use (Deacon, 1972; Deacon, 

1978; Lombard et al., 2012). While these units are coarse and mask considerable variation, 
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they provide a useful heuristic for discussing broad patterns in technological change across the 

later LSA. 

Consistent with the imprecise meaning of the term (Pargeter, 2016), the ELSA, Robberg 

and Wilton have all been described as ‘microlithic’ (Bousman, 2005; Deacon, 1984; Mitchell, 

1988; Wadley, 1993), but based on different characteristics – small flakes in the case of the 

ELSA, bladelets in the case of the Robberg and backed artefacts in the Wilton (Lombard et al., 

2012). The advent of dedicated bladelet production in particular – as characterises the Robberg 

– is argued to have presented humans with a significant adaptive advantage during our 

evolution and dispersal (Ambrose, 2002; Bar-Yosef and Kuhn, 1999; Clarkson et al., 2009; 

Foley and Lahr, 2003). Some researchers have linked an emphasis on bladelet production with 

responses to heightened subsistence risk associated with low or declining subsistence resource 

productivity (Elston and Brantingham, 2002; Petraglia et al., 2009) (for discussion of the risk 

concept used here see Bamforth and Bleed, 1997). Others have suggested that bladelet 

production provided benefits under conditions of high residential mobility (Goebel, 2002; 

Neeley, 2002). Both explanations – increased subsistence risk and increased mobility – have 

been posited for bladelet-rich systems in southern Africa during globally cooler conditions 

(Ambrose, 2002; Grosjean et al., 2003; McCall, 2007; McCall and Thomas, 2012; Mellars, 

2006; Mitchell, 2000). The Robberg specifically has been associated with increased residential 

mobility in response to inferred diminishing resource density (Ambrose, 2002; Mitchell, 2000), 

and has been explained as a risk-dampening response to resource stress (Mackay, 2009). Other 

researchers, however, have suggested that any tracking between LSA technological systems 

and palaeoenvironmental variation was relatively weak, and occurred only at the broadest scale 

of environmental change (e.g. Deacon, 1982). The reality of coupling between technology, 

subsistence conditions and environmental change in this period is thus contested, and with it 

the viability of high-order explanations for the behavioural significance of artefacts such as 

bladelets.  

Sites and Regional Setting 

To explore the relationship between environmental change and human activities and 

technology, we focus on sites from the Swartberg mountains of South Africa’s southern Cape, 

one of the major ranges in the east-west axis of the Cape Fold Mountains (Figure 1). From 

Seweweekspoort, a deep transversal valley in the central Swartberg mountains, a series of rock 
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hyrax (Procavia capensis) middens – stratified accumulations of dried urine and faecal pellets 

(see Chase et al., 2012) – were identified, and six middens from two sites, Seweweekspoort-1 

(SWP-1; 33.3668°S, 21.4144°E) and Seweweekspoort-3 (SWP-3; 33.4092°S, 21.4031°), were 

analysed for this study. SWP-1 is located on a west-facing cliff on the northern slope of the 

pass (Figure 1). The SWP-1 middens were taken from several locations within the same larger 

shelter, formed by a ~100 m overhanging cliff. SWP-3 is located on a low eastern cliff in the 

central section of the valley near the valley bottom, and experiences a more humid 

microclimate relative to the exposed position of SWP-1. 

 

The SWP-1 site is located in the North Swartberg Sandstone Fynbos, but less than a 

kilometre to the north is the Matjiesfontein Shale Renosterveld (Mucina and Rutherford, 2006). 

The former, depending on altitude and aspect, is predominantly asteraceous, proteoid and 

restioid fynbos, while the latter is dominated by asteraceous elements, particularly 

Elytropappus rhinocerotis, Eriocephalus sp. and Euryops sp., and by an increasing number of 

succulents, primarily from the Crassulaceae family (Mucina and Rutherford, 2006). At SWP-

1, these vegetation types inter-digitate to some extent, with the broad west-facing drainage just 

north of the site supporting more hydrophilic taxa, such as Protea. The north-facing rock 

shelves directly adjacent to the site maintain only shallow soils and a dominance of succulents. 

Grasses in the region are a mixture of C3 (e.g. Erharta) and C4 (e.g. Aristida, Stipagrostis) 

varieties (http://sibis.sanbi.org/faces/DataSources.jsp; Rutherford et al., 2012; Rutherford et 

al., 2003; SANBI, 2003). SWP-3 is located in the South Swartberg Sandstone Fynbos, which 

at the site is primarily proteoid in character. In addition, there are numerous arboreal/Cape 

thicket elements (e.g. Podocarpus, Celastraceae, Dodonaea, Searsia, Euclea, Oleaceae) 

associated with drainages and the nearby riparian zones of the valley bottom. 

The Seweweekspoort sites are located 70 km west of the well-stratified late Pleistocene 

/ Holocene archaeological site of Boomplaas Cave. This site is also situated on the flanks of 

the Swartberg and occupies a very similar climatic regime, making it ideal for exploring 

linkages between climate, environment, subsistence and technology at high temporal 

resolution. Located on the southern flanks of the Swartberg range overlooking the Cango 

Valley, Boomplaas Cave was excavated by Hilary Deacon in the 1970s (Deacon, 1979). The 

excavated sediments were divided into a series of members, some of which were subdivided 

into units. The site is positioned within a transitional shrubland whose component species vary 
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as a function of temperature and moisture gradients moving upslope from the floor of the valley 

(Vlok and Schutte-Vlok, 2010). The lowlands to the south are characterized by renosterveld 

habitats, which give way to fynbos vegetation along the slopes of the Swartberg. Along 

watercourses and ravines in the Cango Valley are more densely wooded habitats that include 

sweet thorn trees (Acacia karroo) and ironwood (Olea spp.) among others (Moffett and 

Deacon, 1977). As is also the case at Seweweekspoort, Boomplaas today receives contributions 

of both winter and summer rainfall (Figure 1). Thus, the limited grasses that do occur in the 

area today include a mixture of both C3 and C4 species.  

Materials and Methods  

Rock hyrax middens accumulate over thousands of years and preserve continuous records of 

past climate change (Chase et al., 2012). The six middens from Seweweekspoort sites SWP-1 

and SWP-3 were selected for analysis because they are composed almost entirely of hyraceum 

(no visible faecal pellets). Our experience suggests that such middens have superior 

stratigraphic integrity compared to more pellet-rich middens. Representative portions of the 

middens were processed according following Chase et al. (2013; 2012). Radiocarbon age 

determinations (n=36) were processed at the 14CHRONO Centre, Queen’s University Belfast 

using accelerator mass spectrometry (AMS) (Figure S1; Table S1). The radiocarbon ages were 

corrected for isotope fractionation using the AMS measured δ13C and calibrated using the 

SHCal13 calibration data (Hogg et al., 2013). The Bacon 3.0.3 software package (Blaauw and 

Christen, 2011) was used to generate all age-depth models (Figure S1). Results indicate that 

these sequences continuously span the last 22,500 years.  

The fossil pollen content of 82 adjacent, contiguous pollen samples were prepared with 

standard physical (600 μm sieving and decanting) and chemical (HCl, KOH, HF and acetolysis) 

methods (Moore et al., 1991). Lycopodium tablets were added to the weighed sample to 

estimate pollen concentrations (Stockmarr, 1971). A minimum pollen sum of 400 grains was 

counted at a magnification of ×400 under a light microscope, and identified with the help of 

the literature (Scott, 1982; van Zinderen Bakker, 1953, 1956; van Zinderen Bakker and 

Coetzee, 1959), and photographic and slide reference collections at the Universities of the Free 

State, Cape Town, and Montpellier. 

The bulk stable nitrogen (15N) and carbon (13C) isotope contents of 811 overlapping 

hyraceum samples were measured at the Department of Archaeology, University of Cape Town 
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following Chase et al. (2010; 2009; 2011; 2012), with contiguous/overlapping samples 

obtained from two series of offset 1 mm holes. For the stable isotope analyses, the standard 

deviation derived from replicate analyses of homogeneous material was better than 0.2‰ for 

both nitrogen and carbon. Nitrogen isotope results are expressed relative to atmospheric 

nitrogen (Figure S2). Carbon isotope results are expressed relative to Vienna PDB (Figure S3).  

Stable isotope results from the different Seweweekspoort rock hyrax middens were 

combined into a single aggregate record using Local Regression (LOESS) curve fitting of the 

combined datasets (Figures S2 and S3). As individual middens under the same climate regime 

may exhibit differences in their isotopic records due to microclimatic influences on individual 

foraging ranges (i.e. baseline 15N variability, we have adjusted the δ15N to account for these 

differences prior to LOESS curve fitting. Using the SWP-1-1 and SWP-1-4b records as a 

datum, an estimated offset of 1.5‰ was added to the δ15N data from the SWP-3-1 to 

compensate for the more humid microclimate in which the midden was found, and 0.5‰ and 

1‰ were added to SWP-1-5 and SWP-1-2a respectively to account for their more exposed 

positions. 

The carbon isotopic composition of the hyraceum is representative of vegetation around 

a midden site (Carr et al., 2016a) and provides information on 1) the relative contribution of 

C3, C4 and CAM plants (Smith, 1972) to the animals’ diet, and 2) variations in plant water-use 

efficiency (WUE) as a function of climate (Ehleringer and Cooper, 1988; Farquhar et al., 1989; 

Farquhar and Richards, 1984; Pate, 2001). Throughout the broader region, the distribution of 

C3 and C4 grasses tracks the proportion of winter versus summer rainfall (Vogel, 1978). As 

mentioned, at Seweweekspoort today, grasses are a mosaic of C3 and C4 varieties (Rutherford 

et al., 2012; Rutherford et al., 2003; SANBI, 2003), and where aspect and soil depth limit soil 

water content, CAM plants become increasingly abundant. As C3 plants are depleted in 13C 

compared with most CAM and all C4 plants, higher δ13C values indicate more abundant warm 

season (C4) grasses and/or succulent plants (CAM), and generally warmer/more arid 

conditions. 

Hyraceum δ15N is an indicator of changes in ecosystem water-availability (Carr et al., 

2016a; Chase et al., 2013; Chase et al., 2015b; Chase et al., 2009; Chase et al., 2011). A positive 

relationship exists between aridity and δ15N in soils, plants and herbivores, with drier 

conditions correlating with enriched δ15N (Carr et al., 2016a), most likely as a result of 

denitrification processes in arid/semi-arid soils (Handley et al., 1999; Handley et al., 1994; 
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Hartman, 2011; Heaton, 1987; Murphy and Bowman, 2006, 2009; Wang et al., 2010). In the 

hyraceum samples, the narrowly defined feeding range of the hyraxes (<60 m; Sale, 1965), and 

the accumulation rates of the middens (~20-60 years/sample) enforce a spatio-temporal 

averaging that reduces the δ15N variability observed in modern ecosystem studies (Carr et al., 

2016a), and provides a more reliable index of past water variability (Carr et al., 2016a; Chase 

et al., 2012). 

Boomplaas faunal and archaeological archives 

The Boomplaas sequence spans much of the last >65,000 years (Deacon, 1982), though we 

focus here on the fauna and flaked stone artifacts from the upper stratigraphic units 

corresponding in age with the Seweweekspoort record (Table S2). We use these data to explore 

the relationship between the palaeoenvironmental changes documented at Seweweekspoort 

and mammal community composition, foraging efficiency, and technological organization. 

Ages for Boomplaas follow Deacon (1982), calibrated using SHCal13 (Hogg et al., 2013). 

These published data do present limitations, as they do not adequately bracket each 

stratigraphic unit. In an effort to maximize their utility, and estimate likely intervals of time 

that each unit may represent, we derived depths from the published stratigraphic diagrams and 

calculated a general age-depth model for the sequence. While apparently quasi-continuous, 

with a relatively constant depositional rate, the nature of the sequence, in terms of lithology 

and suggests more sporadic deposition. In plotting each unit, we have included both minimum 

and maximum weighted mean ages as well as potential minimum and maximum ages of the 

units considering potential sources of error related to radiocarbon calibration and assumptions 

of accumulation rates (Figure S4). This highlights the clear need to initiate a systematic revision 

of the chronologies of many archaeological sites in the region (e.g. Loftus et al., 2016; Sealy 

et al., 2016) to enable more robust inter-site and inter-regional comparisons. 

Taxonomic abundances (number of identified specimens: NISP) of ungulates from 

Boomplaas Cave were derived from Faith (2013a), with Klein’s (1983) specimen counts used 

for the uppermost member DGL. Comparable data (minimum number of individuals: MNI) for 

the Boomplaas microfauna were derived from Avery (1982). To facilitate comparison with the 

SWP record, we conducted a detrended correspondence analysis (DCA) for both data sets, 

using the first axis (rescaled from 0 to 100) to broadly summarize faunal composition (Figure 

3). The linear trends in both taxonomic groups closely parallel a decline in ungulate grazers 

(Figure 3), suggesting that the DCA axis 1 scores are related to the replacement of grasslands 
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by more shrubby habitats (see also Faith, 2013a). Broadly parallel changes are also observed 

in the south coast faunal sequences from Nelson Bay Cave (Klein, 1983) and Byneskranskop 

1 (Schweitzer and Wilson, 1983) (Figure 1), implying regional shifts in habitat structure.  

Humans are the primary accumulator of the Boomplaas Cave macrofauna from stratum 

CL4 and above (Faith, 3013a; see also Faith, 2011). This allows us to explore how the 

environmental changes documented at SWP translate to changes in foraging efficiency. Based 

on models grounded in optimal foraging theory, we examine two zooarchaeological indicators 

of foraging efficiency. These include the relative abundance of small-bodied and presumably 

low-ranked prey (leporids and tortoises) and the average food utility index (FUI; Metcalfe and 

Jones, 1988) – a proxy for energetic returns (e.g., meat, fat, marrow) of various body ungulate 

body parts – of large mammal (size classes 3 and 4: 84 to 900 kg) skeletal elements (data from 

Faith, 2011b). Given the evidence for attrition at Boomplaas Cave (Faith and Thompson, in 

press), we follow Cleghorn and Marean’s (2004) taphonomic model of bone survivorship and 

restrict analysis to the long-bones (femur, tibia, humerus, radius, and metapodials) and skull 

elements (crania and mandibles). Building on previous studies conducted elsewhere (e.g., 

Broughton, 1994, 1999; Cannon, 2003; Faith, 2007; Grayson, 1991; Grayson, 2005; Munro 

2004), we predict that declining foraging efficiency will be characterized by (1) increasing 

frequencies of low-ranked prey, reflecting declining availability of high-ranked prey (e.g., large 

game) on the landscape, and (2) increasing mean FUI values, reflecting intensified field 

processing due to an increase in carcass transport distances and/or search times. We recognize 

that because tortoises are slow-moving and easily captured, they might be considered a high-

ranked prey type that should be collected whenever encountered (e.g. Stiner et al., 2000). 

However, the significant positive correlation between their abundances and those of leporids 

(Spearman’s ρ: rs = 0.814, p ≤ 0.001), which are unequivocally a low-ranked prey type, 

suggests that we can treat tortoises as low-ranked prey in this context. 

  

 

All lithic data are taken from Deacon (1982), standardized to site mean (standardized 

value = (layer value – site mean) / site standard deviation). We focus on the abundance of 

bladelets (Figure 3d), and three indicators of technological delivery: ratio of cores to retouched 

flakes (Figure 3g), total proportions of retouched flakes (Figure 3e), and artefact density 
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measured as total number of artefacts per bucket of excavated sediment following Deacon 

(1982) (Figure 3h). These latter three values function, respectively, as proxies for the transport 

of retouched flakes vs tool-making potential (mode of technological ‘provisioning’ (Kuhn, 

1995)), frequency of flake curation, and intensity of site-use (Barton and Riel-Salvatore, 2014; 

Kuhn and Clark, 2015; Parry and Kelly, 1987; Riel-Salvatore and Barton, 2004). Provisioning, 

which we define as the systems by which stone artefact technologies are delivered in 

anticipation of future needs, has been argued to mediate the response of mobility to 

environmental change (Mackay et al., 2014; Wilkins et al., 2017). Under conditions of 

diminished residential mobility, we expect increases in core transport and artefact density, and 

lower rates of curation. The inverse is expected when mobility increases and the scheduling of 

movements becomes harder to predict. If bladelets are a response to diminishing subsistence 

returns, then their abundance should track humidity and resource productivity inversely. 

Similarly, if bladelets are positively associated with increasing residential mobility and 

declining durations of site occupancy then we expect an inverse relationship with artefact 

density. We also consider the relative abundance of spatially-rare, fine-grained rocks such as 

silcrete and crypto-crystalline silicates (CCS, subsuming chert and chalcedony) (Figure 3f); it 

has recently been shown that the abundance of rocks such as silcrete is responsive to increases 

in overall artefact abundance (Will and Mackay, 2016), and may thus reflect diminished 

residential mobility and improved scheduling of movements. 

Results 

Climate change since the Last Glacial Maximum at Seweweekspoort 

The Seweweekspoort record shows substantial changes in both δ13C (range 5.1‰) and δ15N 

(range 9.5‰) over the last 22,500 years, implying significant changes in vegetation and climate 

(Figure 2). These changes are coherent with the pollen data from the same material. Across this 

period, a strong first-order trend is apparent, with cool, humid glacial conditions (indicated by 

increased cryophilic Fynbos Biome vegetation pollen and lower δ13C and δ15N) transitioning 

into warmer, but substantially drier conditions during the Holocene (declining fynbos pollen 

and higher δ13C and δ15N (Figure 2). This aridification coincides with the deglacial decline in 

Antarctic sea-ice extent (using sea-salt sodium as a proxy) between 19-11 ka (Fischer et al., 

2007; Levine et al., 2014; Wolff et al., 2010) (Figure 2), which is considered to be a strong 

determinant on the position of the westerly storm track (Bard and Rickaby, 2009; Stuut et al., 
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2004). The elevated grass pollen percentages during the last glacial period, coupled with low 

δ13C suggest the increased prevalence of cool growing season C3 grasses (Vogel, 1978), 

consistent with the model that much of the precipitation during this period fell during the winter 

months as a result of increased westerly influence. While recent work has indicated that 

variability in summer rainfall may have had some significant impact in the winter rainfall zone 

(Chase et al., 2015a; Chase et al., 2015b), long-term (i.e., glacial-interglacial timescales) 

precipitation trends in the summer rainfall zone (Chevalier and Chase, 2015) exhibit a clear 

antiphase relationship with humidity at Seweweekspoort (Figure 2), indicating that tropical 

systems played a limited role in the region at these timescales. 

 

 Within this broad first-order trend of deglacial aridification at Seweweekspoort, 

significant second-order abrupt episodes of wetter conditions (centred at 14.5, 11 and 4 cal 

kBP, and the last millennium) indicate major reorganisations of regional climate dynamics. In 

southern Africa, where rainfall regimes are defined by their strong seasonality, the varying 

contribution of the non-dominant moisture-bearing system can have a substantial impact on 

regional environments, shortening or attenuating the impact of often pronounced drought 

seasons (Chase et al., 2015a). In this context, humid episodes within the last glacial-interglacial 

transition (LGIT; 18.5-11.7 ka) – previously identified as being a period of exceptionally high 

effective precipitation in the region (Scholtz, 1986) – can be linked to the warming of both high 

southern latitudes (Stocker, 1998; Stocker and Johnsen, 2003) and the oceans surrounding 

southwestern Africa (Barker et al., 2009; Farmer et al., 2005; Kim and Schneider, 2003), 

including a response to the slow-down of Atlantic Meridional Overturning Circulation 

(AMOC) during Heinrich stadial 1 (HS1; ~18-14.6 ka) (McManus et al., 2004) (Figure 2). 

While the influence of the westerly storm track may have diminished as the Subtropical 

Front shifted poleward (Barker et al., 2009), increased evaporation from warmer oceans and 

the invigoration of the southern African monsoon system would have augmented the summer 

rain component in what was then primarily a winter rainfall regime, reducing rainfall 

seasonality and drought stress. At Seweweekspoort, peaks in humidity at 14.5 and 11 cal kBP 

typify this, with reductions in fynbos vegetation under slightly warmer conditions, and with 

increased grass cover as a function of more regular rains promoting shallow rooting vegetation. 

With the onset of the Holocene, as warming continued, the combination of tropical and 

temperate systems that resulted in these phases of LGIT humidity broke down. Changes in 
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global boundary conditions resulted in 1) a more permanent southerly position of the westerly 

storm track, and less winter rain, and 2) strong regional warming that intensified potential 

evapotranspiration, enhancing drought stress (Chevalier and Chase, 2016). Combined, these 

factors are interpreted to have driven the marked aridification exhibited in the Seweweekspoort 

records (Figure 2). 

Changing resources and technology 

The climatic changes robustly identified at Seweweekspoort are strongly reflected in our newly 

synthesised faunal and archaeological records (Figure 3). Large mammals and microfauna from 

Boomplaas Cave indicate open and grassy environments during the LGM, giving way to 

shrublands across the Pleistocene-Holocene transition; a phase marked by large mammal 

extinctions and shifts in faunal community composition throughout the region (Faith and 

Behrensmeyer, 2013). These changes are evident in the DCA axis 1 scores (Figure 3). The 

abundance of ungulate grazers and axis 1 scores at the site closely tracks δ13C, δ15N (Figure 3), 

and changes observed in the pollen record at Seweweekspoort (Figure 2). Likewise, the carbon 

isotope composition of tooth enamel from Boomplaas grazers parallels the δ13C shifts at 

Seweweekspoort, with predominantly C3 grasses consumed during the LGM giving way to 

increased C4 grasses during the LGIT (Sealy et al. 2016).  

 

These findings contrast with earlier interpretations from floral (Deacon et al., 1984; 

Scholtz, 1986) and faunal assemblages (Avery, 1982; Klein, 1972; Klein, 1980, 1983) from 

southern Cape archaeological sequences, wherein open grassland environments – inferred 

primarily from a predominance of grazers in large mammal fossil records – were interpreted as 

signs of increased aridity. Our results support inferences that evidence for grassier vegetation 

indicates the influence of more/more regular precipitation on the richer soils of the valleys and 

plains of the southern Cape (Chase, 2010; Faith, 2013b), which currently support relatively 

xeric karroid vegetation (Cowling, 1983). In contemporary African ecosystems, elevated 

precipitation is typically associated with increased biomass of large herbivores (Coe et al., 

1976; East, 1984), a phenomenon likely to have been enhanced by increased plant nutrient 

content under reduced atmospheric CO2 concentrations (Faith, 2011a). The implications for 

human populations is that cooler, more humid late Pleistocene conditions presented a more 

productive resource base, including the proliferation of large grazing ungulates.  
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Zooarchaeological evidence from the human-accumulated vertebrate assemblages at 

Boomplaas Cave (CL4 and above) indicates that aridification through the LGIT is associated 

with a decline in foraging efficiency. Across the LGIT (CL4 to BRL5), tortoises and leporids 

increase in abundance relative to ungulates (tortoises: χ2
trend = 90.332, p < 0.001; leporids: χ2

trend 

= 64.854, p < 0.001). Because ungulates are larger and provide greater energetic returns than 

tortoises or hares – in which case they should be pursued whenever encountered – these trends 

imply a decline in their abundances on the landscape. This is also reflected in changes in carcass 

transport strategies. The average food utility index of large mammal high-survival skeletal 

elements increases steadily across the LGIT (Spearman’s rho = 0.964, p < 0.001), indicating a 

greater emphasis on skeletal parts providing the highest energetic returns. Within an optimal 

foraging framework, this trend is consistent with an increase in carcass transport distances 

and/or search times stemming from diminished availability of large game (Cannon, 2003; 

Faith, 2007). These parallel trends imply that the cooler and more humid conditions of the late 

Pleistocene provided a more productive vertebrate resource base with higher average energetic 

returns than did the more arid conditions of the early Holocene. 

The decline in foraging efficiency through the deglaciation reverses through the 

Holocene. Barring an increase observed in the two upper units (Table 1), leporids decline in 

abundance relative to ungulates after the peak in BRL5 (~11-12 cal kBP) (χ2
trend = 15.854, p < 

0.001). This trend, which is consistent with an increase in ungulate abundances on the 

landscape, complements a decline in the mean FUI of large mammal skeletal parts (Spearman’s 

rho = 0.821, p = 0.034).  

From the LGM through the Holocene, there are marked temporal trends in lithic 

indicators of technological systems at Boomplaas Cave (Figure 3). Though not without some 

variation, there is a general decline through time in the abundance of bladelets (χ2
trend = 

1323.693, p < 0.001), cores relative to retouched flakes (χ2
trend = 921.328, p < 0.001), and fine-

grained raw materials (χ2
trend = 775.322, p < 0.001) coupled with an increase in the frequency 

of retouched pieces (χ2
trend = 1510.282, p < 0.001). A relationship between technological 

systems and the environment is suggested by strong correlations between these indicators and 

the DCA axis 1 scores derived from for both ungulates and microfauna (Figure 3b, c; Table 2). 

Indeed, all the measures of technological change we employ for the Boomplaas assemblage are 

significantly correlated with changes in ungulate community composition, and most with the 

composition of micromammal communities (Table 2). Both sets of axis 1 scores track changing 
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frequencies of grassland indicators at the site, as well as the δ15N and especially δ13C values 

from Seweweekspoort (Figure 3). It follows that technological change is tracking 

environmental change, including the patterns of climate-driven environmental change 

documented in the Seweweekspoort records.  

 

During the LGM and early LGIT bladelets are abundant and artefact indicators are 

consistent with low residential mobility (Figure 3). With the exception of the earliest LGM 

members (GWA/HCA), for which taphonomic data suggest limited human occupation (Faith, 

2013a), artefact densities are well above the overall mean at Boomplaas, flake curation is 

uncommon, and all core to retouched flake values pre-13 ka (CL member units) are higher than 

all those that follow. Associated high frequencies of rock such as silcrete and CCS before 12 

cal kBP (CL + BRL 7) imply regular and predictable access to fine-grained rock through this 

period (Figure 3). These factors combined imply an emphasis on the transport of tool-making 

potential to sites.  

Coincident with the onset of the first-order aridification trend after ~14 ka (BRL 

member units), artefact densities decrease, as do proportions of fine-grained rock and bladelets. 

The period is broadly characterised by more common acquisition and reduction of readily 

available local rocks (quartz and quartzite), with diminishing intensity of site use and little 

transport of cores or curation of flakes. Investment in technological costs in the later LGIT 

appears minimal and may reflect greater allocation of energy to search and handling of 

subsistence packages in response to diminishing ungulate abundance (cf., Hames, 1992; 

Mackay and Marwick, 2011). From the beginning of the Holocene (BRL3 through to DGL 

member), and tracking diminishing humidity, artefact densities are low and locally abundant 

rock continues to dominate, but flake curation becomes markedly more common – 

technological systems show a much greater emphasis on transportation and maintenance of 

implements in this period than in the Pleistocene.  

Conclusions 

The findings presented here overturn prevailing models of environmental and behavioural 

change in Africa’s southern Cape. A continuous and high-resolution environmental base-line 

is provided for the first time, indicating a trend from relative humidity during the LGM to 

increased aridity during the Holocene, with marked shifts in moisture across the LGIT. Rather 
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than being characterised by ‘harsh,’ conditions (Deacon and Lancaster, 1988; Scholtz, 1986), 

the mesic environments of the late Pleistocene were highly productive, with more extensive 

grasslands existing in areas now dominated by drought resistant succulent shrublands. 

Zooarchaeological data indicate proliferation of a diverse ungulate grassland community 

during this time, suggesting greater resource availability for humans living in the area, and 

reduced search and handling times for large game. While lithic technologies track these 

changes, we found no evidence to support an association between the production of bladelets 

during the LGM/early LGIT (Robberg) and diminished subsistence conditions. Indeed, 

bladelets seem to have flourished in a period of relative resource abundance. The period of 

lowest subsistence productivity inferred from the Seweweekspoort data probably occurred 

during the Holocene, associated with aridification and concomitant the loss of large ungulates 

and faunal diversity recorded at Boomplaas. This change led to increases in carcass processing 

at kill sites, as evidenced by more selective transport of high utility body parts, increased 

reliance on low-ranked prey, and a technological response in which flakes from locally 

acquired rocks were curated, core transportation was relatively rare, and bladelets were 

uncommon. In documenting the strong coupling of environmental, subsistence and 

technological behaviour in Later Stone Age foragers, our data reflect the simple observation 

that all lithic technologies can be adaptive solutions, not only those often assumed to provide 

particular adaptive benefits. The findings afforded by high resolution analysis of late 

Pleistocene and Holocene climate imply more generally that the lack of certain kinds of 

technologies – such as bladelets, backed artefacts and bifacial points - in the earlier stages of 

human evolution need not carry inherent meaning. The ability of foragers to track rapid climatic 

and environmental changes with adaptive cultural responses is a better arbiter of cognitive 

complexity than the deployment of any specific technological system.  
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Tables 

Table 1: Zooarchaeological indicators of foraging efficiency at Boomplaas Cave. These include the 

relative abundance of tortoises (%), leporids (%), and mean food utility index of high-survival body 

parts belonging to size 3-4 mammals (FUI). 

Stratum % 

Tortoises 

% 

Leporids 

FUI 

BLD3 74.6 30.9 1405 

FBL/BLA 79.1 28.7 1737 

BRL/BRL1 61.8 10.4 1465 

BRL2 71.7 13.5 1910 

BRL3 78.1 24.2 1610 

BRL4 74.1 24.2 2245 

BRL5 80.3 36.2 2432 

BRL6 68.2 15.2 2246 

BRL7 70.9 22.3 2188 

CL1 68.9 8.5 2028 

CL2 71.9 3.6 2037 

CL3 47.1 4.4 1840 

CL4 54.5 0 1458 
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Table 2: The correlation (Spearman’s ρ) between lithic technological indicators and faunal community 

composition (DCA Axis 1 scores) for ungulates and microfauna at Boomplaas Cave. Significant values 

in bold. 
 

Ungulates   Microfauna 
 

rs p rs p 

%Bladelets -0.696 0.004 0.88 <0.001 

Core/tool -0.842 <0.001 0.68 0.015 

Tool/aft 0.732 0.002 -0.7 0.012 

CCS+Silcrete -0.604 0.017 0.48 0.094 

Density -0.618 0.014 0.36 0.234 

 

 

Figures 

 

Figure 1: (A) Map of southern Africa showing seasonality of rainfall and climatic gradients dictated 

by the zones of summer/tropical (orange) and winter/temperate (blue) rainfall dominance. Winter 

rainfall is primarily a result of frontal systems embedded in the westerly storm track. Major atmospheric 

(white arrows) and oceanic (blue arrows) circulation systems and the austral summer positions of the 

Inter-Tropical Convergence Zone (ITCZ) and the Congo Air Boundary (CAB) are indicated. The 

location of the study site in the transitional southern Cape region is shown. (B) Map of southwest 

African coastal region with the Seweweekspoort sites and other key palaeoenvironmental and 

archaeological sites indicated (shading as for panel ‘A’). (C) Topographical map of Seweweekspoort, 

with the SWP-1 and SWP-3 sites indicated. 
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Figure 2: Comparison of δ15N (e),δ13C values (b), fynbos (c) and grass (d) pollen percentages from the 

Seweweekspoort hyrax middens with relevant palaeoenvironmental records including the northern 

summer rainfall zone wet season precipitation reconstruction (a; Chevalier and Chase, 2015), the 

Bermuda Rise record of Atlantic Meridional Overturning Circulation (AMOC) strength and the 

northward oceanic transport of heat (f; McManus et al., 2004), foraminifera records indicating 

conditions in the ocean to the south of the Africa (g, h; Barker et al., 2009) and sea salt sodium 

concentrations from the EPICA DML ice core in Antarctica (i; Fischer et al., 2007). 
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Figure 3: Comparison of δ15N (j) and δ13C (i) values from the Seweweekspoort hyrax middens with 

zooarchaeological records (a-c) of macrofauna (Faith, 2013a; Klein, 1983) and microfauna (Avery, 

1982), and (d-h) lithic data (Deacon, 1979; Deacon et al., 1984) from Boomplaas Cave. Error bars on 

the data from Boomplaas reflect potential age ranges (2σ) of each stratigraphic unit. 
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