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Human DNA polymerase � is essential for DNA replication
and acts in conjunction with the processivity factor proliferating
cell nuclear antigen (PCNA). In addition to its catalytic subunit
(p125), pol � comprises three regulatory subunits (p50, p68, and
p12). PCNA interacts with all of these subunits, but only the
interaction with p68 has been structurally characterized. Here,
we report solution NMR–, isothermal calorimetry–, and X-ray
crystallography– based analyses of the p12–PCNA interaction,
which takes part in the modulation of the rate and fidelity of
DNA synthesis by pol �. We show that p12 binds with micromo-
lar affinity to the classical PIP-binding pocket of PCNA via a
highly atypical PIP box located at the p12 N terminus. Unlike the
canonical PIP box of p68, the PIP box of p12 lacks the conserved
glutamine; binds through a 2-fork plug made of an isoleucine
and a tyrosine residue at �3 and �8 positions, respectively; and
is stabilized by an aspartate at �6 position, which creates a net-
work of intramolecular hydrogen bonds. These findings add to
growing evidence that PCNA can bind a diverse range of protein
sequences that may be broadly grouped as PIP-like motifs as has
been previously suggested.

Three eukaryotic DNA polymerases (pols),4 �, �, and �, par-
ticipate in chromosomal DNA replication (1), with the latter
two possessing the proofreading exonuclease activity required
to replicate DNA with high fidelity. Human pol � consists of a
catalytic subunit (p125, harboring the polymerase and exonu-
clease activities), associated with three regulatory subunits
(p50, p68, also known as p66, and p12) needed for optimal
holoenzyme function (2, 3), and there is evidence of different
context-specific subassemblies of pol � in vivo (3–5). In partic-
ular, DNA damage or replication stress triggers the degradation
of p12, a 12-kDa polypeptide of unknown structure, resulting in
the formation of a three-subunit enzyme with an increased
capacity for proofreading (3, 4, 6). The processive activity of pol
� in DNA replication (i.e. the ability of the polymerase to syn-
thesize hundreds of bp without detaching from the template) is
conferred by its association with the sliding clamp PCNA, a
ring-shaped homotrimer that encircles and slides on DNA
(6 –8).

Structurally, little is known on how the four subunits of
mammalian pol � interact with each other and PCNA. The p125
catalytic subunit and the p50 subunit form a tight heterodimer,
which constitutes the core enzyme (9). Biochemical analysis
showed that the p68 subunit is attached to the core enzyme
via an interaction between its N-terminal domain and p50,
whereas p12 bridges the p125 and p50 subunits (10, 11). How-
ever, structural information is limited to the p50 –p68 in-
teraction only (12). The p125 subunit, which is composed of a
catalytic domain and a C-terminal domain containing an iron–
sulfur cluster (13), has been reported to directly interact with
PCNA (14, 15), but the p125–PCNA complex showed negligi-
ble processivity in vitro (16), suggesting that the interaction is
weak. Similarly, the p50 –PCNA interaction, if any, is very weak
(10, 17). On the other hand, the interactions between the p68
and p12 subunits and PCNA seem tighter (10, 18), and espe-
cially p68 is critical for pol �–PCNA processivity (16). For both
p68 and p12, examination of reconstituted holoenzymes in

This work was supported by the Italian Association for Cancer Research
(iCARE fellowship from AIRC and the European Commission to A. D. B. and
AIRC Grant IG14718 to S. O.), by Grant CTQ2017-83810-R (MINECO/FEDER,
UE; to F. J. B.), by MINECO Fellowship BES-2015-075847 (to A. G.-M.), and
by Basque Government Predoctoral Fellowship PRE_2016_2_0249 (to
M. R.-M.). The authors declare that they have no conflicts of interest with
the contents of this article.

This article contains Figs. S1–S3.
The atomic coordinates and structure factors (code 6HVO) have been deposited

in the Protein Data Bank (http://wwpdb.org/).
The NMR resonance data of this paper have been deposited in the Biological Mag-

netic Resonance Data Bank under BMRB accession codes 27661 and 27662,
respectively.

1 Present address: Dept. of NMR-based Structural Biology, Max Planck Insti-
tute of Biophysical Chemistry, Göttingen, Germany.

2 To whom correspondence may be addressed: CIC bioGUNE, Parque Tec-
nológico de Bizkaia Edificio 800, 48160 Derio, Spain. Tel.: 34-946572521;
E-mail: fblanco@cicbiogune.es.

3 To whom correspondence may be addressed: Leicester Institute of Struc-
tural & Chemical Biology and Dept. of Molecular & Cell Biology, University
of Leicester, Lancaster Rd., Leicester LE1 7HB, UK. Tel.: 44-116-252-5391;
E-mail: adb43@leicester.ac.uk.

4 The abbreviations used are: pol, polymerase; PCNA, proliferating cell
nuclear antigen; PDB, Protein Data Bank; CSP, chemical shift perturbation;
ITC, isothermal titration calorimetry; IDCL, interdomain connector loop;
TROSY, transverse relaxation-optimized spectroscopy.

croARTICLE

J. Biol. Chem. (2019) 294(11) 3947–3956 3947
© 2019 Gonzalez-Magaña et al. Published under exclusive license by The American Society for Biochemistry and Molecular Biology, Inc.

 at L
eicester U

niversity L
ibrary on A

ugust 15, 2019
http://w

w
w

.jbc.org/
D

ow
nloaded from

 

https://orcid.org/0000-0002-6007-8390
https://orcid.org/0000-0003-3271-916X
https://orcid.org/0000-0003-2139-2958
http://www.jbc.org/cgi/content/full/RA118.006391/DC1
http://www.pdb.org/pdb/explore/explore.do?structureId=6HVO
http://www.pdb.org/
mailto:fblanco@cicbiogune.es
mailto:adb43@leicester.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1074/jbc.RA118.006391&domain=pdf&date_stamp=2019-1-17
http://www.jbc.org/


which the PCNA-binding motifs (the PIP box) have been
mutated or inactivated has been performed (3, 10, 19), and it
was found that both PIP boxes were necessary for optimal pol �
activity. The PIP-box strict consensus sequence is QXXhXXaa,
where h is a hydrophobic, a is an aromatic, and X is any residue.
The crystal structure of a peptide spanning the canonical PIP-
box of p68 (456QVSITGFF462) bound to PCNA has been deter-
mined, showing the PIP box interacting through the prototyp-
ical molecular surface observed in other PCNA-interacting
partners (20). The p68 PIP box is located at the C-terminal
region, which is predicted to be disordered (Fig. S1). Upon bind-
ing, the PIP box forms a 310 helix, and the conserved hydrophobic
trident inserts into a hydrophobic patch located between the N-
and C-terminal domains of the PCNA protomer, whereas the glu-
tamine binds in the so called “Q pocket” (20). By contrast, the
PCNA-binding site of p12 is located in an N-terminal region (10),
also predicted to be intrinsically disordered, and the proposed PIP
box, whereas highly conserved in mammals, is noncanonical
(4KRLITDSY11; Fig. 1). Mutation of p12 residues Ile7, Ser10, and
Tyr11 in the putative PIP box results in defective binding of recom-
binant pol � to PCNA, as well as in reduced pol � processivity (10).

Because the p12 PIP box significantly diverges from the strict
PIP-box consensus sequence, we wondered whether it may
encode for a novel PCNA-binding motif with exclusive struc-
tural specificities. We therefore analyzed the p12–PCNA inter-
action by crystallography, NMR, and isothermal calorimetry.
Our data shows that a 19-residue p12 peptide containing the
PCNA-binding site recognizes PCNA via its divergent PIP box,
which adopts a characteristic 310 helical fold. In the p12 PIP

box, the absence of the glutamine and the aromatic residue at
�7 position and their associated stabilizing intermolecular
interactions is counterbalanced by an intramolecular hydro-
gen-bonding network centered on the aspartate at �6 position,
which stabilizes the 310 helical conformation. Based on our
data, p12 and p68 subunits contribute to the molecular recog-
nition of PCNA by pol � with different structural specificities
and affinities.

Surprisingly, we have found that the affinity of the p12–
PCNA interaction is higher than that measured for the canon-
ical PIP box of the human DNA helicase RecQ5. These results
reinforce the emerging idea of the existence of a broader class of
PCNA-interacting sequences, which may be called “PIP-like”
motifs (21).

Results

NMR and ITC analysis of the p12–PCNA interaction

We first observed and characterized the interaction of PCNA
with p121–19 by solution NMR. 2H-15N–Labeled PCNA was
titrated with unlabeled p12 peptide, and the chemical shift per-
turbations of PCNA backbone amide signals were analyzed
(Fig. 2A). We identified two groups of perturbed residues: those
whose signals gradually shift along the titration, implying a fast
exchange regime on the NMR time scale (Fig. 2B), and those
residues whose signals broaden and disappear (because of sig-
nal attenuation below the noise level or untraceable shifting),
indicating an intermediate exchange regime. When plotting the
chemical shift perturbations (CSPs) along the PCNA sequence

Figure 1. Amino acid sequence of p12 together with disorder and secondary structure predictions. Residues encompassing the peptide used for
crystallization and biophysical characterization (p121–19) with PCNA are indicated in bold pink characters, and those belonging to the divergent PCNA inter-
acting motif are boxed. The consensus residues in the PIP-like motif are indicated by arrows. The solid line shows the disorder prediction by the PrDOS server
(51), and the red line shows the threshold of 0.5. Secondary structure elements (helices) predicted by JPred4 (52) are indicated above the sequence.

Structure of p12–PCNA complex
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(Fig. 2C), a similar pattern as for p21 binding is observed (22),
suggesting a similar mode of binding. The titration of the sig-
nals from those residues with CSP values larger than the aver-
age plus one standard deviation yielded an average dissociation
constant of 130 � 30 �M at 35 °C (Fig. 2D).

Isothermal titration calorimetry (ITC) measurements could
be fitted well to a model of independent p12 peptide binding to
equivalent sites in the PCNA trimer (n � 0.87 � 0.02), with a
dissociation constant of 38 � 4 �M at 25 °C (Fig. 3). Thus, three
p12 peptides bind to the three equivalent PCNA protomers, in
agreement with the NMR spectra, which show a single set of
signals along the titration. The enthalpic term is negative
(�H � �8.1 � 0.3 kcal/mol) and is the driving force for the
favorable Gibbs free energy, whereas the entropic term is unfa-
vorable (�T�S � 2.1 � 0.4 kcal/mol) and is in line with a loss of
conformational freedom of the p12 peptide upon binding to
PCNA.

Crystal structure of the p12–PCNA complex

Crystals of PCNA bound to the p12 peptide diffracted to 2.1
Å resolution (Table 1), and the Fourier difference map calcu-
lated after placing and refining the PCNA ring alone in the
asymmetric unit showed peaks of positive electron density
across all three canonical PIP-box sites on PCNA, arising from
three bound p12 peptides (Fig. S2). The structure of the PCNA
ring is virtually identical to the previously determined structure
of native human PCNA (PDB code 1VYM (23); root mean
square deviation of C� � 0.67 Å). The three p12 peptides in the
three PIP-box sites have nearly identical conformations and
occupancies. Small differences were observed in the length of
the modeled peptides according to their visibility in the elec-
tron density map, and vary from 12 (Lys4–Lys15) to 13 residues
(Arg3–Lys15). p12 residues 7–10 adopt a 310 helical conforma-

tion (Fig. 4A), stabilized by an intramolecular hydrogen-bond-
ing network in which the side chain carboxyl group and main
chain nitrogen atom of Asp9 form hydrogen bonds with the
main chain nitrogen and oxygen atoms of Leu6, respectively,
whereas the main chain nitrogen atoms of both Ser10 and Tyr11

interact with the carbonyl oxygen of Ile7 (Fig. 4B). The 310 helix
inserts into the hydrophobic cavity under the interdomain con-
nector loop (IDCL) of PCNA (Fig. 4, B and C). The side chains
of Ile7 and Tyr11 insert into the hydrophobic cavity, where the
former is fully buried in the pocket lined with hydrophobic
side chains of Met40, Leu47, and Tyr250, and the latter is caged
by the side chains of Ile128, Pro234, and Tyr250. Differently from
the canonical PIP box, the p12 PIP box lacks the terminal glu-
tamine and an aromatic residue at �7 position and thus lacks
the stabilizing hydrophobic interactions mediated by those res-
idues (20). The p12–PCNA interaction is further stabilized by
four intermolecular hydrogen bonds involving the backbone
groups of p12 residues Ile7, Pro12, Val14, and Lys15 and those of
PCNA residues His44, Gln125, and Gly127 and one salt bridge
between p12 residue Arg5 and residue Asp232 on one exposed
loop of PCNA (Fig. 4C). Notably, p12 lacks the stabilizing inter-
actions established with the C terminus of PCNA observed in
the p68 –PCNA structure (20) (Fig. 4D).

Comparison of p12 and RecQ5 interactions with PCNA

We have also characterized by NMR the interaction of PCNA
with a peptide derived from the RecQ5 helicase (Fig. 5A).
RecQ5 plays an important role in the resolution between repli-
cation and transcription machineries (24), partly by a direct
interaction with PCNA mediated by a C-terminal canonical
PIP box (964QNLIRHFF971) (25). The RecQ5 PIP box drew our
attention because the residues preceding the aromatic residues
are basic, instead of the more common neutral or acidic ones.

Figure 2. NMR analysis of the p12 peptide interaction with PCNA. A, superposition of 1H-15N TROSY spectra of 51 �M PCNA in the absence (black) and
presence (red) of a 10-fold molar excess of p121–19 peptide. Spectra were acquired at 35 °C in PBS, pH 7.0, 1 mM DTT. B, region of the NMR spectra of PCNA in the
presence of increasing amounts of p12 peptide (from black to red) showing the titration of Leu235 signal. C, CSPs of PCNA backbone amide 1H and 15N NMR
resonances induced by p121–19. The dashed line indicates the average plus one standard deviation. The green bars indicate the positions of residues that
disappear upon peptide addition. D, chemical shift perturbation of the amide signal of residues with CSP larger than the average plus one standard deviation
at different p12:PCNA ratios. The symbols correspond to the experimental data, and the lines correspond to the best fits to a model of one set of identical
binding sites.

Structure of p12–PCNA complex
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The NMR titration of 2H-15N–labeled PCNA with unlabeled
RecQ5 peptide shows a pattern of CSP similar to that of p12
(Fig. 5B), but a higher peptide:PCNA ratio is necessary to
approach a saturation level similar to p12 (Fig. 5C). Those res-
idues with CSP values larger than the average plus one standard
deviation yielded an average dissociation constant of 210 � 50
�M at 35 °C. Surprisingly, the affinity of binding of this canon-
ical PIP box is lower than that measured for the divergent PIP
box of p12 under identical conditions (Fig. 4C). Our attempts to
crystallize the complex formed by the RecQ5 peptide and
PCNA were unsuccessful, but mapping the CSPs on the surface
of PCNA shows that the RecQ5-binding site is located on the
canonical PIP-box pocket of PCNA and involves only a limited
portion of the IDCL (Fig. 6A). By contrast, the same mapping
for p12 form a continuous surface centered on the PIP box–
binding site and IDCL (Fig. 6B), consistent with the p12–PCNA
crystallographic interface and the higher affinity than RecQ5.

Discussion

Role of p12 subunit in the molecular recognition of PCNA by
pol �

Our work reveals that the p12 and p68 subunits of pol �
interact differently with PCNA. Our crystal structure shows
that, unlike p68, p12 recognizes PCNA through a highly diver-
gent PIP box that lacks the terminal glutamine as well as the
aromatic residue at �7 position in the consensus sequence. The
PIP box of p12 binds the classical hydrophobic pocket on
PCNA, through a 2-fork plug made of an isoleucine and a tyro-
sine residue at �3 and �8 positions, respectively. In the
absence of the mentioned key consensus residues, the presence
of an acidic residue at �6 position seems important to establish
a network of intramolecular hydrogen bonds that stabilize the
p12 peptide in the 310 helical conformation. Such intramolec-
ular stabilizing effect, mediated by an aspartate at �6 position,
was also observed in the interaction of p21 PIP box with PCNA,
which is the strongest interaction of a ligand with PCNA
reported to date (22). Based on our ITC analysis, we estimated a
stoichiometry of binding of 1:1 (peptide–PCNA protomer) and
a 38 �M affinity for the p121–19–PCNA interaction at 25 °C,
which is 2.4-fold lower than the 16 �M affinity measured for the
p68 PIP box at the same temperature (20). The affinity of the
full pol � complex for PCNA encircling DNA is much higher
(dissociation constant, �10 nM (26)), implying that the p125
and p50 subunits must also contribute to the formation of a
tight pol �–PCNA holoenzyme. In particular, p125 was shown
to interact with PCNA via an N-terminal segment (14, 15, 27)
that, based on our modeling, is buried within a structurally
conserved region of the catalytic domain and therefore
rather inaccessible (Fig. S3). An alternative PCNA interac-
tion site in p125 may be located at the flexible C terminus of
the catalytic domain, as observed in the crystal structure of
Pyrococcus furiosus polymerase B bound to PCNA (28) (Fig.
S3). The PCNA-binding motifs of p68 and p12 are both
located in regions predicted to be disordered (Fig. 1 and Fig.
S1), suggesting that flexibility is key to accommodate the two
subunits on one PCNA ring, along with the bulkier p125 and
p50 subunits (Fig. 7).

Figure 3. Isothermal calorimetric titration of PCNA with p12 peptide. The
upper panel represents the heat effect associated with the variable volume
peptide injection, and the lower panel represents the ligand concentration
dependence of the heat released upon binding, after normalization and cor-
rection for the heat of dilution. The molar ratio is that of p12:PCNA protomer.
The symbols correspond to the experimental data, and the continuous line
corresponds to the best fit to a model of one set of identical binding sites.

Table 1
Crystallographic statistics

PDB code 6HVO

Data collection
Space group P212121
Cell dimensions

a, b, c (Å) 71.97, 83.89, 154.98
�, �, � (°) 90.0, 90.0, 90.0

Resolution (Å) 77.5–2.1 (2.16–2.10)
Rmeas 0.17 (2.84)
Rmerge 0.17 (2.9)
CC1⁄2 (%) 99.6 (44.7)
I/�I 10.7 (1.3)
Completeness (%) 100.0 (100.0)
Redundancy 12.9 (13.2)

Refinement
Resolution (Å) 73.9–2.1
No. reflections 55,825
Rwork/Rfree 19.5/24.4
No. atoms

Protein 5,928
Ligand/ion 320/35
Water 243

B-factors
Protein 50.22
Ligand/ion 61.40/65.64
Water 51.61

Root mean square deviations
Bond lengths (Å) 0.009
Bond angles (°) 1.49

Structure of p12–PCNA complex
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Upon DNA damage or replication stress, the p12 subunit of
pol � is degraded, resulting in the formation of a three-subunit
(p125–p50 –p68) enzyme with enhanced proofreading capacity
(3, 5). Thus, removal of the p12 subunit from PCNA is expected
to lead to a rearrangement of the other subunits relative to each
other, PCNA, and DNA, which may decrease the processivity of

the enzyme in the context of higher probability of replication
mistakes. Further analyses on the architecture, dynamics, and
activity of pol � subassemblies are needed to shed light on this
possibility. The degradation of p12 requires an intact ubiquiti-
nation system (3), and CRL4Cdt2, a member of the Cullin family
of E3 ligases, was identified as the ligase responsible for the UV-

Figure 4. Crystal structure of the p12–PCNA complex and comparison with p68 –PCNA structure. A, overall structure of trimeric human PCNA (green)
bound to the peptide derived from p12 (p121–19, magenta). Only p12 residues 3–15 are seen in the electron density map. B, p12–PCNA– binding site highlight-
ing p12 intramolecular interactions. PCNA surface is shown in pale green, the p12 peptide is in magenta with stick representation, and interactions are shown
as yellow dotted lines. Peptide residues involved in the interactions are labeled. 2Fo � Fc map around the p12 peptide is shown in blue contoured at 1 �. C,
p12–PCNA– binding site highlighting p12 intermolecular interactions. PCNA is shown in green with ribbon representation, p12 is in magenta with stick
representation, and interactions are shown as yellow dotted lines. PCNA and p12 interacting residues are labeled. Residues of PCNA involved in hydrophobic
interactions are boxed. D, p68 –PCNA– binding site (PDB code 1U76 (20)). The PCNA surface is shown in dark gray, and p68 (residues 453– 465) is in turquoise stick
representation. The p68 PIP-box consensus residues are labeled. C-term, C-terminus.

Figure 5. NMR analysis of the RecQ5 peptide interaction with PCNA. A, superposition of 1H-15N TROSY spectra of 50 �M PCNA in the absence (black) and
presence (red) of a 37-fold molar excess of RecQ5 peptide. The spectra were acquired at 35 °C in PBS, pH 7.0, 1 mM DTT. B, CSPs of PCNA backbone amide 1H and
15N NMR resonances induced by RecQ5952–979. The dotted line indicates the average plus one standard deviation. The green bars indicate the positions of
residues that disappear upon peptide addition. C, chemical shift perturbation of the amide signal of PCNA residues with CSPs larger than the average plus one
standard deviation at different RecQ5:PCNA ratios. The symbols correspond to the experimental data, and the lines correspond to the best fit to a model of one
set of identical binding sites.

Structure of p12–PCNA complex
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and DNA damage–induced degradation of p12 (30). CRL4Cdt2

recognizes substrates bound to PCNA and DNA through a spe-
cialized PIP box (or PIPdegron, characterized by the Thr–Asp
motif within the PIP box, which confers high affinity to PCNA,
and a basic amino acid four residues downstream of the PIP
box, which is required for recognition by the ligase) and triggers
the degradation of several proteins, including p21 (31–33). The
structure of p21 PIP box bound to PCNA suggests that an acidic
patch on PCNA, centered on residues Asp122 and Glu124 on the
IDCL, provides interaction for the basic residue in the PIPde-
gron (Fig. 8A), and both Asp122 and Glu124 were shown to be
required for CRL4Cdt2 recruitment (34). Based on our X-ray
structure, the basic residue of p12 degron (Lys15) points away
from the acidic patch on the IDCL (Figs. 4 and 8A). However,
Lys15 is the last p12 C-terminal residue visible in the electron
density map, and its side chain is poorly defined (Fig. 4), sug-
gesting that it is rather flexible and may possibly reorient upon
binding to CRL4Cdt2, when p12 is targeted for degradation.

The PCNA binding site of p12 belongs to the broad class of
PIP-like motifs

PCNA is a hub protein that physically interacts with dozens
of protein partners, mostly involved in DNA transactions (7,
35). Most of the partners structurally characterized to date bind
PCNA through canonical PIP boxes (36) (Fig. 8B, left panel).
Notably, several X-ray crystal structures of PCNA bound to
divergent PIP motifs have also been determined (37–39) (Fig.
8B, right panel). This implies that it is highly problematic, or
impossible at all, to identify PCNA-interacting motifs based on
sequence analysis only (21). Nonconsensus PIP motifs lacking
the canonical glutamine have been described for the TLS poly-

merases 	 and 
, in which the glutamine residue is replaced by
methionine and arginine, respectively (28) (Table 2 and Fig. 8).
In both cases, an acidic residue is observed at position �5. The
PIP motif of pol 
 adopts a �-bend-like structure that poses
the side chains of the consensus isoleucine and tyrosine and the
nonconsensus leucine residues at positions �4, �7, and �8 to
insert into the canonical PIP-box pocket. The PIP-like motif of
PARG (KDSKITDHF (38)) shows striking similarities with the
p12 motif described in this work, particularly for the lack of an
aromatic residue at �7 position and the presence of an aspar-
tate at �6 position, which creates a network of stabilizing intra-
molecular interactions.

A second major class of PCNA-interacting motifs named
APIM (AlkB homologue 2 PCNA- interacting motif (40)) has
been proposed, with consensus sequence (K/R)(F/Y/W)(L/I/V/
A)(L/I/V/A)-(K/R). However, the crystal structure (41, 42) of an
APIM motif (from the SWI/SNF helicase ZRANB3), bound to
PCNA reveals a strong similarity between APIM and other
atypical PIP-box motives in both their structures and their
interaction with PCNA (Fig. 8 and Table 2). In fact, it has been
proposed that the PIP motif is not a distinct entity but rather
part of a broad, loosely defined class of PIP-like motives
together with the RIR (Rev1-interacting region) and the MIP
(Mlh1-interacting protein) motives (21). Therefore, it may be
that the APIM motif is another variant of a PIP-like motif. Fur-
ther crystallographic structures of APIM peptides bound to
PCNA might support this hypothesis.

Surprisingly, our NMR data show that the canonical PIP-box
sequence of RecQ5 helicase (QNLIRHFF) binds PCNA with
lower affinity than the p12 divergent PIP motif and through a

Figure 6. NMR chemical shift mapping of the RecQ5 (A) or p12 (B) interaction site on PCNA. Front and back views of one of the PCNA protomers are shown
in white surface representation, whereas p12 peptide in the crystallographic position is shown as blue sticks. PCNA residues whose amide signals significantly
shift, disappear, or remain unassigned in the titration with the RecQ5 or p12 peptides are painted in red, orange, or gray, respectively.

Structure of p12–PCNA complex
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less extended surface of interaction. We propose that the low
affinity of RecQ5 PIP-motif is due to the lack of the stabilizing
acidic residue at �6 position. We conclude that an acidic resi-
due at �6 position, in addition to the hydrophobic trident, is
important to generate a high-affinity PIP box. This acidic resi-
due is, however, not indispensable for binding (p68 PIP-box
sequence does not have one: QVSITGFF), but at least the resi-
due at this position should not be positively charged for a high-
affinity interaction.

Experimental procedures

Protein expression and purification

Human PCNA (UniProt: P12004) was produced in Esche-
richia coli BL21(DE3) cells grown in LB medium to obtain pro-
tein with natural isotopic abundance or in isotope-enriched
medium for uniform enrichment. A PCNA clone with N-termi-
nal His6 tag and HRV 3C protease cleavage site in a pET-derived
plasmid was used. For NMR samples the protein was purified
from the soluble fraction by Co2�-affinity chromatography,
cleaved by HRV 3C protease, and polished by gel-filtration
chromatography (43). All columns and chromatography sys-
tems used where from GE Healthcare. Protein elution was

monitored by absorbance at 280 nm and confirmed by SDS-
PAGE. The purified protein contained the extra sequence
GPH- at the N terminus. The PCNA sample for crystallization
was obtained by introducing two additional purification steps
(44). The sample cleaved with HRV 3C protease was dialyzed
against 50 mM sodium acetate, pH 5.5, 100 mM NaCl. After
separation of some precipitated material, the solution was
loaded on a HiTrap heparin HP column equilibrated with the
same buffer. After column washing, the protein was eluted with
a 0 –100% gradient of 50 mM sodium acetate, pH 5.5, 2 M NaCl
in 20 column volumes. The protein-containing fractions of the
major peak were dialyzed against 20 mM Tris-HCl buffer, pH
7.6, 150 mM NaCl and injected into a HiTrap Chelating HP
column loaded with Co2� cations to remove uncleaved PCNA.
The flowthrough was loaded on a HiTrap Q–Sepharose column
and eluted with a 0 – 60% gradient of 20 mM Tris-HCl, pH 7.6,
1 M NaCl in 5 column volumes. The protein-containing frac-
tions were concentrated and polished using a Superdex 200
26/60 column equilibrated with PBS, pH 7.0, and then
exchanged into the crystallization buffer (20 mM Tris-HCl, pH
7.5, 10% glycerol, 2 mM DTT) using a PD10 column. Stock solu-
tions in PBS or crystallization buffer were flash-frozen in liquid
nitrogen and stored at �80 °C. The protein concentrations
were measured by absorbance at 280 nm using the extinction
coefficient calculated from the amino acid composition (15,930
M�1 cm�1). All indicated concentrations of PCNA samples
refer to protomer concentrations. The peptides were purchased
as lyophilized powders from Apeptide company. The 19-resi-
due-long N-terminal fragment of p12 (1MGRKRLITDSYPV-
VKRREG19) was chosen to contain the PIP box plus residues
that could potentially interact with the IDCL of PCNA (by com-
parison with the p21–PCNA structure) and that would favor
solubility at pH 7.0. The peptide concentration was measured
by UV absorbance using the extinction coefficient of its tyro-
sine residue. The 28-residue-long fragment of RecQ5
(952KTSPGRSVKEEAQNLIRHFFHGRARCES979) was chosen
with similar criteria but elongated at the N terminus to match
the length of the p15PAF peptide, which also binds the inner
channel of PCNA (44). The peptide does not contain any tyro-
sine of tryptophan, and the concentration was thus measured
by UV absorbance at 205 nm (45).

NMR spectroscopy
1H-15N TROSY spectra were recorded at 35 °C on a Bruker

Avance III 800 MHz (18.8 T) spectrometer equipped with a
cryogenically cooled triple resonance z-gradient probe. A
400-�l sample of 51 �M U-[2H,13C,15N]PCNA in PBS (10 mM

phosphate, 140 mM chloride, 153 mM sodium, and 4.5 mM

potassium), pH 7.0, 20 �M DSS (4,4-dimethyl-4-silapentane-1-
sulfonic acid), 0.01% NaN3, 1 mM DTT, and 5% 2H2O was
placed in a 5-mm Shigemi NMR tube (without plunger), and
increasing volumes of the p12 peptide stock solution at 4.9 mM

were added and mixed (by capping and inverting the NMR
tube), causing a 7% PCNA dilution at the last point of the titra-
tion. The peptide solution was prepared in the same buffer as
the PCNA samples (except that no NaN3, DSS (4,4-dimethyl-
4-silapentane-1-sulfonic acid), or 2H2O was added). For that
purpose, and to remove unwanted salts from the synthetic pep-

Figure 7. Possible organization of the human pol �–PCNA complex on
primer/template DNA. The N-terminal (N-t) and C-terminal (C-t) PIP motifs of
p12 and p68 subunits, connected to the folded domains by disordered
regions (shown as dashed lines), are indicated with red or yellow boxes, respec-
tively, and binding two distinct PCNA subunits; CTD, p125 C-terminal Domain.
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tide, the lyophilized powder was dissolved in PBS, pH 7.0, and
passed through a PD-10 Minitrap G25 column. BEST-1H-15N-
TROSY spectra were measured with 256 indirect points for a
total duration of 21.3 h. The p12–PCNA sample remained clear
during the 6-day-long titration. The titration with the peptide
allowed for an extensive transfer of NMR signal assignments
from the free PCNA to the p12-bound PCNA spectra (with a
coverage of 73% of nonproline residues). The CSPs caused by
the peptide were computed as the weighted average distance

between the backbone amide 1H and 15N chemical shifts in the
free and bound states (43), and the estimated error in the cal-
culated CSP is �0.005 ppm. The fitting of the CSP changes (for
those residues with CSPs larger than the average plus one stan-
dard deviation) was performed using a single-site binding
model, and the reported Kd is the average over all selected res-
idues with the standard deviation as an estimate of its uncer-
tainty. The NMR titration of PCNA with the peptide from
RecQ5 was done in the same conditions as p12 except that the
peptide stock solution was 3.5 mM and that the intermediate
titration points were monitored with 1H-15N HMQC spectra
using 124 indirect points and a total duration of 10.6 h. The
assignment coverage was 83% of nonproline residues).

Isothermal calorimetry

For ITC measurements, we employed an ITC200 calorimeter
with 190 �M PCNA in the cell. The PCNA protein solution
(dialyzed against PBS, pH 7.0, 2 mM TCEP) was titrated with a 6
mM stock solution of p12 prepared by dissolving the lyophilized
material in the dialysis buffer and adjusting the pH to 7.0 with
NaOH. A sequence of variable injection volumes was designed
based on simulations (one injection of 0.3 �l, five injections of
0.5 �l, five injections of 1.0 �l, seven injections of 2.0 �l, and 7
injections of 2.5 �l). The heat produced by the binding reaction
was obtained as the difference between the heat of reaction and

Figure 8. A, comparison of p21 and p12 PIP degrons interacting with PCNA. B, superposition of structures of canonical (left) and noncanonical (right)
PCNA-interacting motifs bound to PCNA. A, p21–PCNA (PDB code 1AXC) (22) and p12–PCNA (PDB code 6HVO; current study) structures are aligned. p21 and
p12 peptides are shown as yellow and magenta sticks, respectively. PCNA is shown as a green surface. The residues making up the acidic patch in the IDCL are
colored red. B, left panel, the PCNA protomers are represented by ribbons, and the peptides are represented by their C� traces. The color code is as follows: p21,
yellow (PDB code 1AXC) (22); p15PAF, red (PDB code 4D2G) (44); FEN-1, blue (PDB code 1U7B) (20); p68, green (PDB code 1U76) (20); ZRANB3-PIP, purple (PDB
code 5MLO) (42); DVC1, gray (PDB code 5IY4) (53). B, right panel, the color code is as follows: PARG, gray (PDB code 5MAV) (38); ZRANB3-APIM, brown (PDB code
5MLW) (41); pol 	, blue (PDB code 2ZVK) (37); pol ı, purple (PDB code 2ZVM) (37); pol �, yellow (PDB code 2ZVL) (37); RNH2B, green (PDB code 3P87) (54); TRAIP,
red (PDB code 4ZTD) (29); and p12, orange (PDB code 6HVO).

Table 2
Sequence alignment of PCNA-interacting protein fragments in crystal
structures bound to PCNA. Consensus residues are highlighted. The
residues shown in the alignment are those observed in the crystal
structure and do not include terminal disordered residues present in
the peptides.
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the corresponding heat of dilution, as obtained from an inde-
pendent titration of the peptides into the buffer. The binding
isotherm was analyzed by nonlinear least-squares fitting of the
experimental data to a model assuming a single set of equivalent
sites (46), using Microcal Origin (OriginLab) and in-house
developed software.

p12–PCNA complex crystallization and structure
determination

Stocks of PCNA and p12 peptide solutions were mixed to
final concentrations of 0.4 and 0.5 mM, respectively (1:1.2 pro-
tein monomer:peptide), and incubated at room temperature for
30 min before screening crystallization conditions using the
hanging-drop vapor-diffusion method. Best diffracting co-crystals
grew within 2 days at 18 °C in droplets obtained by mixing 1 �l of
the complex solution and 1 �l of a solution containing 24% PEG
3350 in 0.2 M lithium sulfate buffer, pH 6.5. The crystals were
transferred to precipitant solution supplemented with 20%
PEG 400 and flash frozen in liquid nitrogen. The best crystals
from the p12–PCNA complex diffracted at 2.1 Å resolution on
the ALBA Beamline XALOC (Barcelona, Spain) and belonged
to P212121 space group. XDS (47) and the CCP4i suite (48) were
used for data processing. Molecular replacement was used to
place one human PCNA trimer (PDB code 1VYM) (23) in the
asymmetric unit. Several cycles of refinement using REFMAC5
(49) and model building using COOT (50) were carried out
before placing the three p12 chains into the Fo � Fc electron
density map. Data collection and refinement statistics are listed
in Table 1. All figures with molecular models were prepared
using PyMOL.
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