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Abstract—Component and connector (C&C) views specifica-
tions, with corresponding verification and synthesis techniques,
have been recently suggested as a means for formal yet intuitive
structural specification of component and connector models. One
challenge for effective use of C&C views synthesis relates to the
case where the specification is unsatisfiable.

In this work we present an approach to deal with unsatisfiable
C&C views specifications. First, we define a notion of a C&C
views specification core, a locally minimal unsatisfiable subset of
the views specification. Second, based on the core, we generate
explicit, concrete, structured natural-language report, which
explains the cause of unsatisfiability. Finally, we extend our
work to support specifications with architecture styles, library
components, and Boolean formulas beyond simple conjunctions.

Our views core computation relies on a new translation to
SAT, via Alloy, which is refined enough to allow the extraction of
detailed explanations. We implemented our work and evaluated
it using 12 synthetic and real-world C&C views specifications.
The evaluation examines the cost of the core computation and
its effectiveness in reducing the size of the specification.

Index Terms—Component and Connector Models, Satisfiabil-
ity, UNSAT Core

I. INTRODUCTION

Component and Connector (C&C) models, described using
languages such as SysML [17] and AADL [1], [8], are used
extensively in software and systems engineering. Recently, we
have presented C&C views [13], as a means to formally and
intuitively specify constraints on the structure of C&C models.
The views allow engineers to specify constraints on hierarchy
and connectivity, using partial examples, while crosscutting
the implementation-oriented system/sub-system hierarchy of
the target model. The verification problem of checking a C&C
model against a view was investigated in [14]. The synthesis
problem of automatically generating a C&C model satisfying
a given views specification, if one exists, was studied in [13].

One challenge for C&C views synthesis concerns the case
where the views specification is unsatisfiable. Since in this
case no C&C model can be synthesized, the engineer who is
informed about the unsatisfiability of her views specification
is left in the dark as to the problems in it and the causes for
its unsatisfiability.

We aim to address this challenge using two different power-
ful tools: a well-defined locally minimal unsatisfiable subset of
the specification and a comprehensive natural-language report.
Both have to be provided in a fully automated way; the
engineer need not be aware of the details of the performed
computations.

Specifically, in this work we make the following contri-
butions. First, we define a notion of a C&C views core,
and show how to compute it. A views core consists of
a minimal conjunctive specification over a subset of views
from the original specification, where each of the views, by
itself, is stripped down to contain only a minimal subset of its
components, connectors, and ports.

Second, based on the core on the one hand and the
semantics of views on the other hand, we generate explicit,
concrete, structured natural-language explanations about
the root cause of unsatisfiability. The generated explanation
lists the unsatisfiability problem and the names of the concrete
components and/or ports involved in it. As such, it provides
most clear and precise explanation for the reason of the
unsatisfiability at hand.

Finally, we extend our work to support specifications
with architecture styles, library components, and Boolean
formulas beyond conjunctions. These extensions are im-
portant for the more general applicability of our work.

To implement and automate our ideas, we use Alloy [12]
as an intermediate language on the way to SAT. This design
choice is based on Alloy’s readability, which helps us in accel-
erating our work and in gaining confidence in its correctness.
Naively, one would hope to combine the translation of [13]
with Alloy’s support for UNSAT core [19] and obtain a C&C
views core. However, an Alloy core is a minimal set of facts
and predicates, while a C&C views core is a minimal set of
partial views; the naive approach fails. Although the translation
of [13] is correct, it is not regular in the sense of [19] and
thus the algorithm of [19] sometimes fails to produce C&C
views cores based on this translation. We have thus revised and
refined the translation from [13] so that the UNSAT core result
can be effectively mapped back to the C&C views level. We
consider this refined translation to be an important technical
contribution of our work (see Sect. IV-C).

Finally, we note that we fully automated all analysis using
Alloy’s APIs and embedded SAT solver; the engineer need not
see the generated Alloy module and SAT formula.

We have performed an evaluation of our work using 12
synthetic and real-world views specifications, taken from [1],
[2], [10]. The evaluation examines the C&C view core cost in
computation time and its effectiveness in reducing the size of
the specification.



II. PRELIMINARIES

A. C&C Views Specifications

We provide background on the syntax and semantics of
C&C views, as presented in [13].

Definition 1 (Component and Connector model [13]): A
C&C model is a structure m = 〈Cmps, Ports, Cons, Types,
subs, ports, type〉 where

• Cmps is a set of named components, each of which has a
set of ports ports(cmp) ⊆ Ports and a (possibly empty)
set of immediate subcomponents subs(cmp) ⊂ Cmps,

• Ports is a disjoint union of input and output ports
Ports = PortsIn ∪ PortsOut where each port
p ∈ Ports has a name, a type type(p) ∈ Types, and
belongs to exactly one component p ∈ ports(cmp),

• Cons is a set of directed connectors, each of which
connects two ports of the same type, which belong to
two sibling components or to a parent component and
one of its immediate subcomponents, and

• Types is a finite set of type names.

Some additional well-formedness rules apply [15], e.g., that
the subcomponents relation is a strict partial order, that every
port has at most one incoming connector, and that port names
are unique within their component.

Definition 2 (Component and Connector view [13]): A C&C
view is a structure v = 〈Cmps, Ports,AbsCons, Types,
subs, ports, type〉 where

• Cmps is a set of named components, each of which has
a (possibly empty) set of ports ports(cmp) ⊆ Ports and
a (possibly empty) set of subcomponents
subs(cmp) ⊂ Cmps,

• Ports is a disjoint union of sets of input and output
ports Ports = PortsIn ∪ PortsOut where each port
p ∈ Ports has a (possibly unknown) name, a (possibly
unknown) type type(p) ∈ Types ∪ ⊥, and belongs to
exactly one component p ∈ ports(cmp),

• AbsCons is a set of abstract connectors, each of which
connects components (optionally) via ports of the same
type or an unknown type, and

• Types is a finite set of type names.

Note that in a C&C view, abstract connectors are not
required to connect only two sibling components or a parent
component and one of its immediate subcomponents. Again,
the subcomponents relation is a strict partial order.

A C&C model satisfies a C&C view iff the types, compo-
nents, and ports mentioned in the view are contained in the
model, the model respects the subcomponent relation induced
by the view, two ports connected by an abstract connector in
the view are connected by a chain of connectors in the model
(respecting direction, names, and types), and all component’s
ports in the view belong to the same component in the model
with corresponding name, type, and direction. More formally:

Definition 3 (m |= v [13]): A C&C model m satisfies an
C&C view v iff:

• v.Types ⊆ m.Types, v.Cmps ⊆ m.Cmps, v.Ports ⊆
m.Ports,

• ∀cmp1, cmp2 ∈ v.Cmps: cmp1 ∈ v.subs(cmp2) iff
cmp1 ∈ m.subs+(cmp2) (we use + to denote the
transitive closure),

• ∀ac ∈ v.AbsCons ∃ chain of connectors in m, c1, . . . , cn
with ac.srcCmp = c1.srcCmp and
ac.tgtCmp = cn.tgtCmp with matching port names and
types, if specified, and

• ∀cmp ∈ v.Cmps:
(1) v.ports(cmp) ⊆ m.ports(cmp), and
(2) ∀p ∈ v.ports(cmp): p ∈ v.PortsIn iff
p ∈ m.PortsIn ∧ v.type(p) ∈ {⊥,m.type(p)}
(similarly for unknown and given port names).

Definition 4 (C&C views specification [13]): A C&C views
specification (S, V ) is a Boolean expression S over a set
of C&C views V . A C&C model m satisfies a specification
(S, V ) iff replacing each view v in S with the value of m |= v
satisfies S: m |= S ⇔ S[v/(m |= v)]v∈V .

B. Alloy

Alloy [11], [12] is a textual modeling language based on
relational first-order logic. An Alloy module consists of sig-
nature declarations, fields, facts and predicates. Each signature
denotes a set of atoms, which are the basic entities in Alloy.
Relations between two or more signatures are represented
using fields and are interpreted as sets of tuples of atoms.
Facts are statements that define constraints on the elements of
the model. Predicates are parametrized constraints. A predicate
can be included in other predicates or facts.

Alloy modules can be analyzed using Alloy Analyzer, a
fully automated constraint solver. This is done by a translation
of the module into a Boolean expression, which is analyzed
by SAT solvers embedded within the Analyzer. The analysis
is based on an exhaustive search for instances of the module,
bounded by a user-specified scope, which limits the number
of atoms for each signature in an instance of the system that
the solver analyzes. For a complete and detailed account of
Alloy see [12].

C. UNSAT Core

Some work study the problem of finding unsatisfiable cores
of unsatisfiable constraints written as propositional satisfiabil-
ity formulas [6], [21]. Given an unsatisfiable CNF formula, a
minimal unsatisfiable sub-formula, a minimal core, is a subset
of its clauses that is both unsatisfiable and minimal, i.e., any
subset of it is satisfiable. There may be many independent rea-
sons for a formula’s unsatisfiability and hence more than one
core, but extracting all of them is computationally expensive.

Torlak et al. [19] proposed an efficient algorithm for the
extraction of a single core of declarative specifications based
on the resolution refutation proofs generated by SAT solvers
and theorem provers. The Recycling Core Extractor algorithm
(RCE), returns an unsatisfiable core of specifications written in
the Alloy language that is guaranteed to be sound (constraints
not included in the UNSAT core are definitely irrelevant to



the unsatisfiability proof) and irreducible (removal of any con-
straint from the set would make the remaining formula satisfi-
able). Cores have been shown to be useful in the identification
of over-constrained models, weak theorems, and insufficient
scopes while checking models. In this work, we specialize [19]
to the domain of C&C views, in order to localize and explain
unsatisfiability of C&C views specifications.

III. EXAMPLE

We use an example to demonstrate the challenge of localiz-
ing and explaining unsatisfiability of views specifications and
the means we provide to address it. The example is based on
a specification of an industrial robot arm, which we borrow
from [13]. This section is semi-formal and the examples shown
are relatively simple. We give formal definitions and details
about more complicated cases and extensions later in the paper.

A. Example I

Fig. 1 shows the C&C views specification S1, consisting of
six views. We start with an overview of their semantics.

The C&C view RJFunction describes the system archi-
tecture from the point of view of the team responsible for
its function: the RotationalJoint contains a Cylinder
and a Sensor that is connected to an Actuator. As a C&C
view, RJFunction is partial, so it may not contain all the
system’s components. Moreover, while the components shown
inside the joint must actually be inside the joint, they may be
nested within some of its subcomponents (not shown in this
model). On the other hand, the C&C view specifies that the
three subcomponents, Cylinder, Sensor, and Actuator
are not nested within one another. Finally, Sensor and
Actuator must be connected, but their connection is not
necessarily direct and the port names and types are not given
in the view.

The C&C view BodySensorOut describes the C&C
model from the point of view of the team responsible for a
component named Body and focus on its internal structure. It
specifies three subcomponents of Body (not necessarily direct
sub components, not necessarily all of them) and the connec-
tions between them (again, not necessarily all connections,
not necessarily direct ones). Another component, Sensor, is
placed outside Body.

The C&C view SensorConnections describes the point
of view of the engineer responsible for Sensor. It shows
that Sensor is connected to Cylinder and to a component
named JointLimiter. Again, the C&C view is partial, thus
in the complete model the connections shown may be indirect
and Sensor may be connected to additional components.

The C&C view RJStructure provides a high-level de-
scription of the RotationalJoint structure, some of the
components it contains and the connections between them. It
describes the knowledge of the senior engineer responsible
for the joint. It also shows the name angle and type float
of an incoming port of the Cylinder for a connection (not
necessarily direct) coming from Body.

The C&C view ASDependence shows an unwanted
placement of components Actuator and Sensor inside
Body. Thus, it is used in the specification (see below) in a
negated form, to not allow an architecture where Actuator
and Sensor are independent components inside component
Body.

Finally, the C&C view OldDesign specifies that
Actuator is connected to Cylinder and that both com-
ponents are contained inside Body (although not necessarily
directly). It also shows the name angle and type int of the
Cylinder’s incoming port for a connection (not necessarily
direct) coming from Actuator.

The Boolean expression for the C&C views specification S1

is RJFunction ∧ BodySensorOut ∧
SensorConnections ∧ ¬ASDependence ∧
RJStructure ∧ OldDesign.

Is there a C&C model that satisfies this specification? The
tool presented in [13] tells the engineer that there is no such
model. But why? Here the engineer was left in the dark. Our
new work provides a concrete and detailed answer to this
question.

Fig. 2 shows the output of our tool. First, an automatically
generated views core, a minimal subset of the specification
S1 that is already unsatisfiable, where each view by itself
is also stripped down to contain only a minimal subset of
its elements, relevant to the unsatisfiability. In our case, the
core is a specification S′1 made of a conjunction of only two
of the six original views of S1, views RJStructure and
OldDesign. Note that the two views are stripped down from
irrelevant elements: no connectors are shown and component
ServoValve is not shown in view RJStructre because
indeed these elements are redundant in explaining the unsat-
isfiability. Second, an automatically generated unsatisfiability
report, a concrete, structured textual explanation for the cause
of unsatisfiability; in this case about the specific hierarchy
conflict that was found in S1.

B. Example II

Given the views core and report shown in Fig. 2, the
engineer may decide to create a view similar to OldDesign,
but with component Cylinder outside Body. Fig. 3 presents
this view, named OldDesignExternalCylinder. She
now considers the specification S2, which is a modi-
fied version of S1 where OldDesign is replaced by
OldDesignExternalCylinder. Is S2 satisfiable?

The answer is negative and our tool provides a views core
and a concrete explanation, shown in Fig. 4. Again, only two
views are included in the core, and they are stripped down
to include only the necessary elements related to the reason
for unsatisfiability. The unsatisfiability report provides details
about the conflicting port types problem.

IV. DEALING WITH UNSAT C&C VIEWS SPECIFICATIONS

We are now ready to present the contribution of our work,
namely our approach to dealing with UNSAT C&C views
specifications.
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Fig. 1. A C&C views specification S1. Note ASDependence is negated, so it must not be satisfied by the model.

Views core report

Component hierarchy problem found.

Problem: Two independent components detected, with one containing the 

other.

In view RJStructure components Body and Cylinder are independent.

In view OldDesign component Body contains Cylinder.

Views core

Body

Cylinder

«view» OldDesign’

CylinderBody

«view» RJStructure’

S’1: RJStructure’ AND OldDesign’

Fig. 2. Generated C&C views core and unsatisfiability report for specification
S1. The resulting core specification is called S′

1.

Body
Actuator Cylinder

angle: int

«view» OldDesignExternalCylinder

Fig. 3. The view OldDesignExternalCylinder, a modified variant of
view OldDesign, where component Cylinder is outside Body.

A. Solution Architecture and Overview

Fig. 5 shows a flow chart of our solution architecture. The
input to the synthesis process is a C&C views specification: the
C&C views and the Boolean formula. If the Boolean formula
is not satisfiable (by itself, e.g., is of the form v1 ∧ ¬v1),
there is obviously no solution regardless of the content of
the views. We use a SAT solver to check this and report
this simple case separately. Otherwise, we apply the synthesis
process described in [13], i.e., translate the specification into
an Alloy module, and use a SAT solver in order to synthesize a
C&C model. Most importantly, rather than using the original
translation from [13], we use a new translation to generate
an Alloy module that supports the computation of a views
core (see details in Sect. IV-C). Finally, if the Alloy analyzer
cannot find a satisfying assignment, we do not only report
unsatisfiability, but also extract an Alloy core. Our views core
generator uses the Alloy core to produce the views core and
the views core report. These are the main contribution of our
present paper, described in the next three subsections.

Remark 1: In this section we assume the specification
formula consists of a conjunction of views (including possibly

Views core report

Port problem found.

Problem: A port in one interface does not have a matching type in another.

Port angle of component Cylinder conflicts in views RJStructure and 

OldDesignExternalCylinder.

The port has type my_float in the former and type my_int in the latter.

Views core

S’2: RJStructure’ AND OldDesignExternalCylinder’

Cylinder

«view» RJStructure’

angle: float

Cylinder

angle: int

«view» OldDesignExternalCylinder’

Fig. 4. Generated C&C views core and unsatisfiability report for specification
S2. The resulting core specification is called S′

2.
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Alloy for 
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(and SAT 
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Views core 

report

No solution: The Boolean 

formula of the views is not 

satisfiable by itself.

Unsatisfiable
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No
Alloy 

instance

Alloy 
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Fig. 5. Solution architecture for the main contributions of this paper for
generating C&C views cores and core reports. The new contribution is
emphasized in gray background. We discuss the new Alloy translation changed
from [13] in Sect. IV-C.

negated ones). We address advanced cases of more compli-
cated formulas with disjunctions and implications in Sect. V-C.

B. Views Core

Intuitively, a views core of an unsatisfiable C&C views
specification is a minimal unsatisfiable views specification
consisting of a fragment of the original set of views and



the original specification formula. Minimality of the core is
defined in two dimensions, the views elements dimension and
the specification formula dimension. To formalize, we start by
defining the following partial order on C&C views.

Definition 5 (C&C view partial order): Two C&C views
v = 〈Cmps, Ports,AbsCons, Types, subs, ports, type〉 and
v′ = 〈Cmps′, Ports′, AbsCons′, Types, subs′, ports′,
type′〉, are ordered v′ v v iff Cmps′ ⊆ Cmps, Ports′ ⊆
Ports, AbsCons′ ⊆ AbsCons, ∀c ∈ Cmps′ : subs′(c) =
subs(c) ∩ Cmps′, ∀c ∈ Cmps′ : ports′(c) = ports(c) ∩
Ports′, and ∀p ∈ Ports′ : type′(p) = type(p).

Note that Def. 5 relates the structure of C&C views but also
implies a relation on their semantics (Def. 3), for any C&C
model m and any two views v′ v v, if m |= v then m |= v′.
We use this partial order in our definition of views core of a
conjunction of views and their negations below: a views core
of an unsatisfiable views specification in conjunctive form is
an unsatisfiable views specification that (1) consists of views
that are smaller (or equal) to the original views according
to the partial order v and (2) is minimal in the sense that
removing any of these views or replacing them with smaller
views (according to v), will make it satisfiable. Formally:

Definition 6 (Conjunctive C&C views specification): For any
two sets of views Vp, Vn such that Vp∩Vn = ∅, we define their
conjunctive specification Cnj(Vp, Vn) = (S, Vp ∪ Vn) where
S = (

∧
v∈Vp

v) ∧ (
∧

v∈Vn
¬v).

Definition 7 (C&C views core): A views core of an unsat-
isfiable specification Cnj(Vp, Vn) is a minimal unsatisfiable
specification Cnj(V ′p , V

′
n) such that

• V ′p ⊆ {v′|∃v ∈ Vp : v′ v v};
• V ′n ⊆ Vn;
• For any v1 ∈ V ′p , and any v2 such that v2 v v1 and

v2 6= v1, Cnj(V ′p \ {v1} ∪ {v2}, V ′n) is satisfiable;
• For any v ∈ V ′p , Cnj(V ′p \ {v}, V ′n) is satisfiable; and
• For any v ∈ V ′n, Cnj(V ′p , V

′
n \ {v}) is satisfiable.

For example, the specification S′1 shown in Fig. 2 is a views
core of the unsatisfiable specification S1 of Fig. 1. S′1 consists
of only two views, each of which is smaller (according to
v) than a view in S1: OldDesign’ v OldDesign and
RJStructure’ v RJStructure. As a specific example,
in the view OldDesign’ of S′1, component Actuator does
not appear and component Cylinder has no ports specified,
because these are not necessary for unsatisfiability.

Note that in Def. 5, ports and connectors are considered
complete units. Thus, while unnamed and untyped ports are
allowed in views specifications, rendering a port unnamed
or untyped while keeping unsatisfiability is not part of our
views core definition. Based on Def. 5 and Def. 7, a port
either appears exactly the same in the core as in the original
specification, or it is not a part of the core.

In Def. 7 negated views (elements of Vn) remain the same in
the views core, if they are a part of it, because smaller negated
views impose stronger, not weaker, constraints. Formally, as-
sume that v′ is a negated core view, and v is its corresponding
view in the original specification. Then from v′ v v follows
that for every C&C model m, m |= ¬v′ implies m |= ¬v.

Thus replacing v′ with v in the core would result in a core
which is both less restrictive, and still unsatisfiable. Therefore
v′ = v is always the best choice under these conditions.

It is important to note that the views core definition Def. 7
is monotonic with regard to unsatisfiability.

Theorem 1 (Core Monotonic): Given an unsatisfiable spec-
ification Cnj(Vp, Vn), any extension of Vp, Vn with a view
v or replacing v ∈ Vp by a view v′ with v v v′ keeps the
specification unsatisfiable.
Proof-sketch: Proof for any extension in Def. 7 and Def. 5
that it strengthens the (already unsatisfiable) specification.

Thanks to this monotonicity, we can guarantee that the
reason for unsatisfiability in the core (which we report to
the engineer, see Sect. IV-C below), is also a reason for
unsatisfiability in the original specification. Thus, although
our core is an abstraction of the specification, it never reports
spurious reasons for unsatisfiability.

Finally, note that the views core definition, like other UN-
SAT core definitions in the literature (see, e.g., [19], [21]), is
about local minimality, not a global one. Thus, an unsatisfiable
views specification may have many different view cores (for
example, specification S1 from Fig. 1 has multiple cores). Like
other works, our implementation presents the first core it finds.

C. Computing the Views Core

Given a C&C views specification as input, the work in [13]
produces an Alloy module that has an instance iff the specifica-
tion is satisfiable (in a bounded scope). However, the original
translation from [13], although correct for synthesizing C&C
models, is inadequate for producing C&C views cores with
the algorithm of [19] in case no satisfying instance exists; it
fails to identify view elements and to produce minimal C&C
views according to Def. 5.

Notably, the algorithm of [19] requires translations to be
regular, i.e., translation results are equisatisfiable and all
conjuncts are context-independent. The translation from [13]
produces equisatisfiable results but it is not regular. Thus, we
present here a new translation that revises and refines the
one from [13]. The new translation is regular and UNSAT
core result can be effectively mapped back at the required
abstraction level. Below we demonstrate the limitations of the
original translation and the key features of the new translation.

Fig. 6 (left) shows an excerpt of an Alloy module for the ex-
ample specification S1, as generated by the original translation,
and its Alloy core (highlighted). The Alloy core consists of
the existence of component Cylinder and the bodies of the
predicates contains and independentSet. This core of
one signature and two predicates expresses only very generic
view constraints and is missing important information on the
specific instances that lead to unsatisfiability (e.g., S1 has 8
instances of contains).

Our new translation presents three major differences from
the original translation. It allows the identification of view
elements and the computation of C&C views cores, as we
demonstrate in an excerpt from the result of our new transla-
tion and corresponding highlighted Alloy core in Fig. 6 (right).



pred RJStructure{

one Cylinder

one Body

…

independentSet[ServoValve+Body+Cylinder]

…

}

pred OldDesign {

contains[Body, Cylinder]

…

}

pred contains [p: Component, child: Component]{

child in p.^(subComponents)

}

pred independentSet [cmps : set Component] {

all c1, c2 : cmps | not contains[c1, c2]

}

pred RJStructure{

//ComponentDefinition[Cylinder]

one Cylinder

//ComponentDefinition[Body]

one Body

…

//independentSet[ServoValve + Body]

no ServoValve or no Body or

not (ServoValve in Body.^subComponents and

not Body in ServoValve.^subComponents)

//independentSet[ServoValve + Cylinder]

no ServoValve or no Cylinder or

not (ServoValve in Cylinder.^subComponents and

not Cylinder in ServoValve.^subComponents)

//independentSet[Body + Cylinder]

no Body or no Cylinder or

(not Body in Cylinder.^subComponents and

not Cylinder in Body.^subComponents)

…

}

pred OldDesign {

//contains[Body, Cylinder]

no Body or

(Cylinder in Body.^subComponents)

…

}

recursively expanded predicate 
independentSet and predicate
contains

guard: negated implicit 
constraint of predicate

comment to identify constraint

highlighting of Alloy core

original C&C views translation new translation we present

pairwise split independentSet 
constraint into 3 constraints

1

5

10

15

20

1

5

10

15

20

25

Fig. 6. Two excerpts of Alloy translations for views RJStructure and OldDesign from Fig. 1: The original translation from [13] (left) and the new
translation of this paper (right). For each we highlight the unsatisfiable Alloy core as computed by Alloy Analyzer 4.2 (top-level, locally minimal core).

First, the new translation recursively instantiates and ex-
pands Alloy predicates into constraints. As an example, ll. 9-10
(right) contains the expanded predicate independentSet
and its recursively expanded child predicate contains in-
stantiated for component signatures ServoValve and Body.
This modification ensures the designation of specific con-
straints on view elements instead of generic predicates.

Second, the new translation splits constraints over sets of
signatures for components or ports into multiple constraints
over pairs of signatures. For example, the independence of
components ServoValve, Body, and Cylinder from l. 5
(left) is expanded to three pairwise constraints in ll. 7-18
(right). In addition, the new translation suppresses implicit
constraints by adding guards. As an example, consider the
relational join of p with subComponents in l. 15 (left). The
join implicitly makes p non-empty, i.e., the component repre-
sented by p has to exist. The guards we add are disjunctions
with the negation of the implicit constraint, e.g., l. 23 (right)
negates the non-emptiness of Body. These modifications en-
sure that translated constraints are context-independent, i.e.,
independent of other constraints in the C&C view.

Finally, the new translation adds annotations that
identify specific view constraints, e.g., l. 15 (right)
independentSet. Together, these modifications allow us
to compute a C&C view core from the Alloy core. It is easy
to see that the highlighting in Fig. 6 (right) corresponds to
the views core shown in Fig. 2.

Theorem 2 (Translation regular): The new translation is
regular (in the sense of [19, Def. 2] within a bounded scope)
and the core calculation of [19] implemented in Alloy will
result in a views core as defined by Def. 5 and Def. 7.
Proof-sketch: Proof for any C&C view extension following
Def. 5 that the translation adds an equisatisfiable, context-
independent conjunct, i.e., that it is regular. Restate [19,
Thm. 2] for conjunctive specifications of Def. 6, our regular
translation, and cores of Def. 7.

D. Core Data Classification and Problem Extraction

Core computation results in core data, a minimal set of facts
and annotated constraints that together cannot be satisfied.
The annotated constraints contain predicate names and related
information that point to specific views elements.

From the core, we extract reasons for unsatisfiability us-
ing an extensible two-levels framework. First, we identify a
problem type: a high-level classification of the problems that
cause unsatisfiability. Second, we identify specific problems.
We instantiate the framework for specific problems, including
all of the ones in this paper.

For the high-level clasification, we distinguish between three
problem types shown in Table I (left): hierarchy problems,
where the core consists only of hierarchy constraints (e.g.,
contains[Body, Cylinder] from Fig. 6, right, l. 22);
port problems, where the core consists only of port constraints;
and connection problems, where the core contains connec-
tion constraints (and might also contain hierarchy and port
constraints). This classifies core data into high-level types
of unsatisfiability causes. As an example, the core data we
report in Fig. 2 consists only of facts and constraints related
to hierarchy, while the core data in Fig. 4 consists only of
facts and constraints related to ports.

The low-level extraction is based on problem definitions
consisting of a specific problem name, as shown in Table I
(right), and a matching of facts and annotated constraints from
core data. For example, for problem H3 from Table I we go
through all pairs of components in core constraints annotated
independentSet, and look for contains annotations
indicating a (possibly transitive) containment between them.
This matches the core in Fig. 2 to problem H3. For problem
P1 the matching looks for multiple port annotations, e.g.,
portOfComponent, of the same port with conflicting di-
rections or conflicting types (for typed ports).

Remark 2: With language extensions of C&C views and
more complex specifications (see Sect. V), additional specific



TABLE I
CLASSIFICATION OF BASIC UNSATISFIABILITY PROBLEMS

Problem Type Specific Problem

Hierarchy

H1 Cyclic containment
H2 Independent components contain a third component
H3 An independent component contains the other
HF Other hierarchy problem

Port P1 Inconsistent port definition in two interfaces
PF Other port problem

Connection C1 Connection type mismatch
CF Other connection problem

problems can manifest in core data. Thus, we implemented
specific problems identification as an extensible framework
and added generic problem kinds, HF, PF, and CF (see Table I),
for core data with no specific match.

Remark 3: If there are negated views in the core data, we
report the list of negated views, and the parts of the positive
views they conflict with.

E. Generating Natural-Language Explanations

In most cases, it is possible to match the core data to a
specific problem, which allows the automatic generation of a
structured natural-language explanation that we call views core
report. The report provides a reason for unsatisfiability, and
arranges the information in a way that clarifies the problem.

The first line of a report indicates the type of the problem.
The second line indicates the specific problem, possibly one
version of such a problem according to the findings. The third
part of the report contains structured core information. Reports
may also contain a suggestion.

For example, the views core report in Fig. 4 indicates
problem P1. The first line indicates a port problem. The second
line indicates a port type mismatch. The first sentence of
the third part explains where the port with the conflicting
type appears, and its second sentence shows the names of its
conflicting types.

The reports also extract and arrange information. For exam-
ple, component containment may result from a containment
chain. Our explanations automate the extraction of all con-
tainment chains. Suppose component C1 contains C2 through
component C3. The description formats the containment to
first show the chain C1=>C3=>C2, and then list the views
and the containments according to their order within the chain.
See the second report in Fig. 7 for an example. We do not
show a containment chain in containments that involve only
two components. For example, the chain Body=>Cylinder
does not appear in Fig. 2. This format is used throughout
the many possible problems that involve containments, thus
standardizing its presentation.

The generic problems HF, PF, and CF handle cases not
matched to any specific problem. They provide an arrangement
of core data and/or indications of problems not directly evident
from the core data. For example, if the classification of the core
data indicates a port problem, but no specific port problem
was detected, we suggest that the specified port scope was
too small. In this case the core report advises the engineer to
increase the port scope.

TABLE II
CLASSIFICATION OF ARCHITECTURAL STYLE RELATED PROBLEMS

Style Specific Problem
CS L H6 Top component is contained
CS L H7 Two top components contain the same component
CS L H8 Top components do not contain all components

L H9 A layer cannot contain a required component
H C2 Circular connection

V. EXTENSIONS AND ADVANCED TOPICS

Synthesis was extended in [13] to include architectural
styles, restrictions over components, and more complex
Boolean specifications. We use the extensible mechanism of
identifying specific problems for the former two extensions.
The additional specific problems appear in Tables II and III.
Their enumeration in the tables show their type according to
Sect. IV-D, and they are applied only when indicative core
facts and constraints appear in the core.

A. Architectural Styles

Architectural styles systematize successful architectural de-
sign practices in terms of constraints on architectural elements
and their composition into systems [16], [18]. C&C views
synthesis, as defined in [13], supports three architectural styles:
a hierarchical style, whose essence is to forbid the C&C
models from having directed cycles of connected components,
a client-server style, whose essence is to identify one of
the components as a single server and to forbid any direct
communication between clients, and a layered style, which
forces a partition of the components into a sequence of layers
and allows direct connectors only within layers and between
consecutive layers. As styles impose additional constraints on
the synthesis problem, they may be related to a specification’s
unsatisfiability. Therefore, we extended our work to support
the three styles mentioned above, i.e., to provide style-
related views core reports, when applicable.

Table II shows the style-related specific problems we ad-
dress. H, CS, and L refer to hierarchical, client-server, and
layered styles. The client-server and layered styles require that
certain specified components are top-level components. They
must be non-contained, independent, and contain all other
components (see problems H6, H7, and H8). In layered style
it is possible to require that a specific component be contained
in a specific layer, which may create problem H9.

As an example, the top part in Fig. 7 shows a report of
problem C2, in hierarchical style, which forbids the C&C
models from having directed cycles of connected components.
The report presents three specific ports that are connected in
a circular way. It shows the circular path and lists the views
in which each of the connections appears.

As another example, the bottom part in Fig. 7 shows a report
of problem H7, in layered style with layers TL1, TL2, and
TL3: component Motor is contained in layer TL1 and (by
a chain of containment) in layer TL3. All containments are
listed with the views in which they appear.



Views core report

Connection problem found.

Problem: A circular connection of ports in hierarchical style.

The connections : Door.openSig -> Motor.roll -> Sensor.pad -> Door.openSig.

In view H2 connection Door.openSig -> Motor.roll.

In view H1 connection Motor.roll -> Sensor.pad.

In view H1 connection Sensor.pad -> Door.openSig.

Views core report

Component hierarchy problem found.

Problem: Layers contain the same component in layered style.

TL1 and TL3 should be independent top components in the specified style.

Both contain component Motor.

In view Lay1 component TL1 contains Motor.

Component TL3 contains Motor : TL3 => Portal => Encapsulator => Motor.

In view Lay3 component TL3 contains Portal.

In view Lay2 component Portal contains Encapsulator.

In view Lay2 component Encapsulator contains Motor.

Fig. 7. Examples of generated style-related views core reports. The notation
C1.p1 → C2.p2 means a connection from port p1 of component C1 to port
p2 of component C2.

B. Library Components, Atomic, and Interface Complete

Most C&C models reuse library components, pre-defined
or existing components adopted from other systems. Indeed,
C&C views synthesis, as defined in [13], supports the integra-
tion of library components by adding files that contain their
details, and specifying them as library components. Those are
not C&C views, they do not appear in the Boolean formula,
and cannot be negated. A successful synthesis inserts them as
they are, according to the constraints set by the views.

Library components are both atomic (that is, views may not
add internal components into them), and interface-complete
(they have a fixed list of ports that cannot be changed or
extended, and none of the ports are unnamed or untyped). The
designer may decide to declare a component within a view to
be atomic and/or interface-complete using stereotypes.

We have extended the views core and report to support
unsatisfiable specifications with library, interface-complete,
and atomic components. In the first column of Table III,
problems marked with A are related to atomic components,
and ones marked IC are related to complete interfaces - ones
originating both from stereotypes and from library compo-
nents. We give a brief overview of the extension.

Atomic components may cause component hierarchy prob-
lems. Problems H4 and H5 are about such component found
to be containing other components.

We also handle interface-complete related port problems.
A component may have two complete-interface specifications
with non-identical ports (problem P2), or an interface that
contradicts a complete interface (problem P3). For example, if
a component has an interface-complete declaration with three
ports p1, p2, and p3, and another interface declaration with
two ports, p1 that matches the one of the interface-complete
specification, and another unnamed port, depending on the
types and directions of p2 and p3 the unnamed port may or
may not be matched. In case it cannot be matched, the problem
is presented in the views core report.

Complete interfaces are considered complete units just
like ports, in order to keep unsatisfiability monotonic, since

TABLE III
CLASSIFICATION OF COMPONENT RESTRICTION RELATED PROBLEMS

Feature Specific Problem
A H4 Library component contains a component
A H5 Atomic component contains a component
IC P2 Two complete interfaces are unequal
IC P3 Complete interface specification is contradicted
IC C3 Connection prohibited by lack of ports in

an interface-complete component

adding ports to an interface-complete component may turn an
unsatisfiable specification into a satisfiable one, and removing
such ports may cause a satisfiable specification to become
unsatisfiable. Thus when an interface-complete component
appears in a core view it is unchanged. Similarly, library
components either appear in the core without change, or they
are not part of it.

C. Beyond Conjunctions

C&C views specifications, as originally described in [13]
and supported in our tool, allow not only conjunctions but
also disjunctions (of several literals), implications, and binary
exclusive-or operators. For example, if v1, v2 and v3 are views,
¬v1 ⊗ v2, v1 → ¬v2, and v1 ∨ v2 ∨ ¬v3, are allowed, and
their conjunction is a valid C&C views specification Boolean
formula. This allows engineers to write concise specifications
that are as expressive as any propositional Boolean formula.
Our work on C&C views core supports such more complex
specification formulas, as we describe below.

Consider, for example, a case where v1 ∨ v2 ∨ ¬v3 is part
of the core as returned by Alloy. In the presence of such a
disjunction, Alloy highlights the entire disjunction. Although
correct, we consider this to be not best for our purpose,
because we cannot minimize the views in the core.

Our current solution provides core information for one of
the alternatives by replacing the satisfiable core Boolean for-
mula with a satisfiable refined Boolean formula (for example,
if the core Boolean formula is ¬v1∧(v1∨¬v2)∧v3 we choose
¬v1 ∧¬v2 ∧ v3 rather than ¬v1 ∧ v1 ∧ v3), which is a Boolean
formula that has the form of the formulas in Def. 7, and one
that has only positive views, if there is such an alternative.

Specifically, we implement this as follows. When disjunc-
tions, implications, or exclusive-or expressions are found in
the core Boolean formula, we use the Boolean equivalences
A → B ≡ ¬A ∨ B and A ⊗ B ≡ (¬A ∧ B) ∨ (A ∧ ¬B)
in order to translate implications and exclusive-or expressions
respectively into disjunctions. We then go over all disjunctions
one by one, and choose one of the operands of each disjunction
which is consistent with the rest of the Boolean expression,
with priority to alternatives without negated views. We rerun
Alloy core on the new specification with the original port and
component scopes, to ensure that the rerun does not introduce
a new scope problem.

An example for the above process is as follows. Suppose
the engineer adds a view BodySensorIn, which is exactly
the same as BodySensorOut, only with component
Sensor inside component Body, and uses the specification
S3 = RJFunction ∧ (BodySensorIn ∨ OldDesign) ∧



Views core report

Negation problem found.

Problem: The view ASDependence must not be satisfied according to the 

specification: RJStructure,BodySensorIn,(not ASDependence).

The content in its entirety is conflicting with the requirements in view BodySensorIn.

Views core

Body

Sensor Actuator

«view» BodySensorIn’ «view» ASDependence

Body

Sensor Actuator

S’3: BodySensorIn’ AND NOT ASDependence

Fig. 8. One of the two alternative cores for specification S3

SensorConnections ∧ ¬ASDependence
∧ RJStructure. The core Boolean formula returned
by Alloy is (BodySensorIn ∨ OldDesign) ∧
¬ASDependence ∧ RJStructure, so we replace
the disjunction BodySensorIn ∨ OldDesign by either
BodySensorIn or OldDesign.

Both BodySensorIn or OldDesign are consistent with
the rest of the core Boolean formula, and both are positive
views. If we choose OldDesign, after we rerun synthesis
with the Boolean formula OldDesign∧¬ASDependence∧
RJStructure the resulting core is the same as in Fig. 2. If
we choose BodySensorIn, after a rerun with the formula
BodySensorIn∧¬ASDependence∧RJStructure we
obtain the core report and views core shown in Fig. 8.

The above implementation provides views core information
by restricting the core Boolean formula to a satisfiable Boolean
formula of the form of Def. 7, that still leaves the views
specification unsatisfiable. However, note that this solution is
no longer monotonic because removing disjuncts makes the
Boolean formula stricter. We still decide to use this heuristic in
this case in order to provide the engineer with a smaller views
specification that contains a concrete reason for unsatisfiability.

VI. IMPLEMENTATION AND EVALUATION

We have implemented the C&C views core computation of
Sect. IV, and the extensions discussed in Sect. V, on top of
the prototype implementation provided in [5].

To evaluate our approach to dealing with unsatisfiable C&C
views we consider the following research questions:

R1 What is the performance cost of C&C views core
computation?

R2 Does core computation effectively reduce the number
of views?

A. Corpus of Specifications

Table IV lists the 12 specifications we used in our evalua-
tion, which model a robot arm, a pump-station, and an avionics
system, adapted from [1], [2], [10]. The first 4 specifications
in the list are S1 and S2 from Sect. III, specification S3 from
Sect. V-C, and a version of specification S3 with an exclusive-
or instead of a disjunction. The last 8 specifications are the
unsatisfiable specifications from the evaluation in [13]. The
first 4 specifications of these 8 specifications have a complex
Boolean specification, yet have a simple core specification,

TABLE IV
RUNNING TIMES AND VIEWS COUNTS

Specification Time (ms) Size (#v/#c)
Orig Core Ratio Orig Core

S1 466 1829 3.92 6/22 2/4
S2 503 3071 6.10 6/22 2/2
S3 744 4461 5.99 6/22 2/6
S3 xor 816 6229 7.63 6/22 2/6
paperS1 ClientServer 1337 4600 3.44 6/24 1/2
paperS2 936 2234 2.38 7/27 2/4
paperS2 ExtCyl 978 4763 4.87 7/27 2/2
specAll NoLayers 312 534 1.71 9/25 1/2
specAllAndEmergency 6634 33931 5.11 7/28 2/2
specPhySim1 516 134135 259.95 4/12 2/5
specPhySim2 LowScope 110 51556 468.69 3/10 2/6
specAll LowScope 133 4932 37.08 9/25 5/11

thus they require only a single run of the solver, including in
setup Core. Specifications S3, S3_xor, and specPhySim1
have a complex Boolean specification that require two runs
of the solver in setup Core as described in V-C. The last 2
specifications are unsatisfiable as a result of a low port scope.

B. Validation

We validated the correctness of our implementation on
existing and synthetic specifications. We have created C&C
views specifications that cover all the problems in Table I,
including advanced features described in Sect. V in Tables II
and III, and manually inspected the results of running synthesis
and core computation on them. Additionally, we have run
synthesis over the core specifications our tool produces for all
the specifications in Table IV. As expected, all of the core
specifications were found to be unsatisfiable and minimal.
Computing the core of each views core, with the original
scopes, generated the same views core.

Our implementation, the synthetic specifications used for
validation, all the specifications in our experiments below, and
the test that produces the experiment results, are available
from http://smlab.cs.tau.ac.il/cncviews/unsat/. We invite the
interested reader to inspect them.

C. R1: Performance Cost

To examine the performance of our work, relative to the
original satisfiability check presented in [13], we have com-
pared the running times of two setups, with and without core
computation. Setup Orig uses the translation to Alloy and the
MiniSAT solver that were presented and used in [13]. Setup
Core uses the translation to Alloy presented in Sect. IV-C
and the MiniSATCore solver.

We obtained running times on an ordinary desktop computer
with an i7 3.4 GHz CPU running Windows 7 64Bit, Java 1.7
64Bit, Alloy 4.2, and MiniSAT 64Bit. The times we report
are wall-clock-times measured by the Java API. We executed
each experiment 12 times and report average running times.

The table shows that in our experiments, the running time
ratio varies from less than twice to two orders of magnitude
slower (the median ratio is 5.56). Note that the three excep-
tionally high ratios were obtained for two specifications with a
low port scope, and one with an additional SAT run for a core



alternative. Note also that our tool notifies the engineer that
the specification is not satisfiable early, and it is the engineer’s
choice whether to wait for the more informative response that
includes the views core and report.

To answer question R1: Views core computation does not
come for free, indeed it is in 50% of the cases more than
5.5 times slower than satisfiability checking alone. Still,
this seems a price one would be willing to pay in order to
enjoy the benefits of concise and concrete explanation for
the cause of unsatisfiability.

D. R2: Effectiveness of Core Reduction

Table IV (right) compares the sizes of the original spec-
ification and the core. We measure size by the number of
views (before the slash) and the total number of components
within the views (after the slash, when a component appears
in multiple views we count all its occurrences). In almost all
cases, the core consisted of only one or two views 1. The
single exception belongs to a specification with insufficient
port scope. In this case the views core may be composed of
many unrelated elements of the views because the problem is
not local to any small subset of them. Nevertheless, the views
core report is helpful in this case too, as it explicitly reports
that no other kind of problem (hierarchy etc.) is relevant.

To answer question R2: Core computation effectively re-
duces the number of views to consider by a factor of
at least 3 in 75% of the specifications, and the total
number of components by a factor of over 6 in 50% of
the specifications.

E. Threats to Validity

Internal. Our implementation may have bugs. To mitigate, we
have validated it as described in Sect. VI-B.

External. Although comprehensive, the set of specifications
we have used in our experiments is small; although some
of the specifications are adapted from real-world models (the
robot arm, pump-station, and avionics systems), others were
designed with our implementation in mind. This may limit
the generalizability of our results. We did not do a study with
engineers to evaluate the contribution of the core and report
to the identification and comprehension of the unsatisfiability
problem. Still, the smaller size of the core (as evident in our
evaluation) and the additional textual report, hint that they will
be easier to understand by engineers.

VII. RELATED WORK

In [13] we introduced C&C views synthesis, but did not deal
with the challenge of locating and explaining unsatisfiability.
In [14] we considered the verification problem of checking
whether a C&C model satisfies a given C&C view. We gener-
ated short natural-language texts that explained the reasons for

1A core of only a single unsatisfiable view may occur in advanced style
specifications that add restrictions on the component hierarchy (see Sect. V-A).

satisfaction or non-satisfaction. This motivated us to generate
natural-language texts to explain unsatisfiability in the context
of C&C views synthesis.

Bagheri and Sullivan [3], [4] present a different approach to
using Alloy for specifying structural properties of component
and connector models. To the best of our understanding, they
do not handle a case of unsatisfiability.

Torlak et al. [19] find minimal cores of Alloy modules spec-
ifications efficiently by iterating over refutations of translations
of fragments of the module to CNF formulas. They showed
that translations that have specific properties are enough to
ensure correctness. D’Ippolito et al. [7] suggest a heuristic for
fast approximation of cores of Alloy modules.

While many works discuss the potential of the use of
UNSAT core in addressing software engineering related prob-
lems, we have only found a few that actually try to realize
this potential. Wille [20] suggest and demonstrate the use of
UNSAT core for debugging of UML/OCL models. Gopinath
et al. [9] used UNSAT core using Alloy to improve fault
localization. Our work uses the work of Torlak et al. [19].
We are not aware of other works that have directly used [19].

VIII. CONCLUSION

We presented an approach to deal with unsatisfiable C&C
views specifications. We define a notion of a C&C views speci-
fication core, and show how to compute it via a new translation
to Alloy leveraging UNSAT core techniques; moreover, we
generate a C&C views core report, which presents explicit,
concrete, structured natural-language explanations about the
cause of unsatisfiability. Finally, we extend our work to support
specifications with architecture styles, library components, and
Boolean formulas beyond simple conjunctions.

We implemented our work and evaluated it using synthetic
and real-world C&C views specifications. In the evaluation we
examined the cost of the core computation and its effectiveness
in reducing the size of the specification. We have made the
code and data required in order to reproduce our experiments
available to the readers of the paper.

Beyond its direct contribution to the field of component
and connector modeling, our work provides an interesting,
working demonstration of the potential of existing UNSAT
core technologies to assist in addressing challenges in software
engineering on the one hand, and the work required to realize
this potential on the other hand.

We suggest several directions for future research. First, ob-
viously, an extended evaluation with additional specifications
as well as a user study that will examine the difficulty of iden-
tifying and manually explaining C&C views unsatisfiability as
well as the effectiveness of our generated core and report in
helping engineers identify and fix unsatisfiability problems.

Second, experimenting with alternative means to generate
UNSAT cores, with and without Alloy, e.g., [7].
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