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At a Glance Commentary:  

Scientific Knowledge on the Subject: Individuals with interstitial lung abnormalities (ILA) share a 

clinical syndrome similar to that observed in idiopathic pulmonary fibrosis (IPF) including 

physiologic decrements, radiologic progression, accelerated lung function decline, and an 

increased risk of death. ILA are associated with the most common and highest genetic risk 

locus in IPF, the MUC5B promoter polymorphism rs35705950. However, the extent to which 

there is additional overlap in the genetic risk of ILA and IPF is not known. 

 

What This Study Adds to the Field: In a genome-wide association study of ILA, we confirmed 

findings at the MUC5B locus, and identified 3 novel loci for ILA and subpleural-predominant ILA. 

These novel loci were not associated with IPF.  Additionally, of 12 distinct prior IPF GWAS loci, 

we identified 11 directionally consistent associations with ILA, of which 7 were at least nominally 

significant and 5 (near DPP9, DSP, FAM13A, IVD, and MUC5B) were significantly associated 

after adjustment for multiple testing.   

 
 
 
 
  



 
ABSTRACT 

Rationale  

Interstitial lung abnormalities (ILA) are associated with the highest genetic risk locus for IPF; 

however, the extent to which there is additional overlap with IPF, or unique associations among 

those with ILA is not known.  

Objectives  

To perform a genome-wide association study (GWAS) of ILA. 

Methods: ILA and the subpleural-predominant subtype were assessed on chest computed 

tomography (CT) scans in the AGES, COPDGene, Framingham Heart, ECLIPSE, MESA, and 

SPIROMICS studies.  We performed a GWAS of ILA in each cohort and combined the results 

using a meta-analysis. We assessed for overlapping associations in independent GWASs of 

IPF. 

Measurements and Main Results 

Genome-wide genotyping data were available in 1,699 ILA cases and 10,274 controls. The 

MUC5B promoter variant rs35705950 was significantly associated with both ILA (p=2.6x10-27) 

and subpleural ILA (p=1.6x10-29). We discovered novel genome-wide associations near IPO11 

(rs6886640, p=3.8x10-8) and FCF1P3 (rs73199442, p=4.8x10-8) with ILA, and HTRE1 

(rs7744971, p=4.2x10-8) with subpleural-predominant ILA.  These novel associations were not 

associated with IPF. Of 12 previously reported IPF GWAS loci, 5 (DPP9, DSP, FAM13A, IVD, 

and MUC5B) were significantly associated (p<0.05/12) with ILA.   

Conclusions 

 In a GWAS of ILA in six studies, we confirmed the association with a MUC5B promoter variant 

and found strong evidence for an effect of previously described IPF loci; however, novel ILA 

associations were not associated with IPF. These findings highlight common and suggest 

distinct genetically-driven biologic pathways between ILA and IPF.  



Introduction 

Idiopathic pulmonary fibrosis (IPF), the most common and severe form of interstitial lung 

disease (ILD)(1), is a disorder of lung scarring that is reported to affect 1 in 200 adults >age 

65(2) and results in a high rate of mortality(3, 4). A strong genetic basis for pulmonary fibrosis 

(PF) has been demonstrated in studies of familial aggregation(5), as well as in genome-wide 

linkage and association studies that have provided replicable evidence for associations between 

common genetic variants and IPF(6-11).  Most consistently, IPF has been associated with 

increased copies of a common variant (rs35705950) in the promoter of the mucin 5B (MUC5B) 

gene(6, 8-11), a finding that may explain up to 30% of the risk of the disease(6). 

 

Due to the severity of physiologic decrements, and the high rate of mortality at the time of 

diagnosis, recent efforts have sought to identify IPF, and other forms of pulmonary fibrosis, in 

their earliest stages(12-14).  These efforts include chest computed tomography (CT) image 

characterization of undiagnosed research participants that have classified imaging features not 

only suggestive of IPF specifically(15-17), but also of the broader set of ILDs (termed interstitial 

lung abnormalities [ILA])(13). Evidence supporting a correlation between some undiagnosed 

research participants with ILA and patients with IPF include a shared association with increased 

copies of the MUC5B promoter variant(12, 18).  However, the extent to which undiagnosed 

research participants with ILA and patients with IPF share common, and unique, genetic 

etiologies remains unclear. 

 

We hypothesized that comparisons between research participants with and without ILA would 

identify findings of genetic association shared with those identified in patients with IPF and, 

based on the diversity of ILA phenotypes(18) and ILDs in general(19), unique associations.  To 

test this hypothesis, common genome-wide single nucleotide variants were genotyped, with 



additional genotypes imputed from reference panels, and then tested for association with 

visually assessed ILA, and the subpleural predominant ILA subtype, in populations of research 

participants from six unique cohorts. Based on the results, further comparisons were performed 

to examine the overlap of top genetic associations in research participants with ILA (and 

subpleural predominant ILA) with genetic associations previously reported in patients with 

IPF(8). Some of the results of this study have been previously reported in the form of an 

abstract. 

 

Methods 

Study population 

Protocols for participant enrollment and phenotyping in the Framingham Heart Study (FHS), the 

Age Gene/Environment Susceptibility (AGES)-Reykjavik, the Genetic Epidemiology of COPD 

Study (COPDGene), the Evaluation of COPD Longitudinally to Identify Predictive Surrogate 

End-points (ECLIPSE), the Multi-Ethnic Study of Atherosclerosis (MESA)-Lung Study, and the 

SubPopulations and InteRmediate Outcome Measures In COPD Study (SPIROMICS) studies 

have been described previously.(12-14, 20-22)  Each cohort obtained approval from appropriate 

ethical/regulatory bodies and informed consent was obtained for all individuals. More detailed 

cohort information, including cohort-specific methods, can be found in the online supplement. 

 

ILA Characterization 

ILA characterization in all cohorts is the result of visual assessments of chest CT scans.  In 

FHS, AGES, COPDGene, and ECLIPSE, CT scans were evaluated for ILA using a sequential 

reading method by up to three readers (radiologists and pulmonologists), who were blind to all 

participant specific information, as previously described(23).  ILA in these cohorts were defined 

as nondependent changes affecting greater than 5% of any lung zone. These abnormalities 

include ground glass, reticular abnormalities, diffuse centrilobular nodularity, multiple 



nonemphysematous cysts, traction bronchiectasis, or honeycombing.  Chest CT scans with 

either focal or unilateral ground glass attenuation, focal or unilateral reticulation, or patchy 

ground glass abnormalities were indeterminate for ILA.(12, 13) In MESA, ILA were assessed by 

a radiologist using the above criteria, as previously described(24).  In SPIROMICS, ILA were 

classified as present or absent using the following criteria: bilateral, non-dependent, peripheral 

(but not necessarily subpleural) ground glass and/or reticular opacities and/or honeycombing 

needed to be present (see the online supplement for further details). 

 

Based on prior data on the genetics of ILA(18), and to provide consistency of subtyping across 

cohorts, an additional ILA subset was created that excluded ILA limited to those with 

centrilobular nodules alone(13) and includes all those with ILA with predominantly subpleural 

imaging findings (Subpleural Predominant).   

 

Genotyping and imputation 

Details of genotyping in each cohort can be found in the online supplement. The genotypes of 

individuals from European-ancestry studies were imputed via the Michigan Imputation Server 

using minimac3 with the Haplotype Reference Consortium (HRC v1.1) reference panel(25). The 

COPDGene and MESA individuals of African-American ancestry were imputed using the 1000 

Genomes Project (Phase 3, version 5)(26). The MUC5B promoter polymorphism (rs35705950) 

was poorly imputed (imputation R2 < 0.5) in the AGES study and we instead used direct 

genotyping data, which was available in 3,209 individuals. 

 

Genome-wide association study and meta-analysis 

Given the case-control imbalance, Firth bias-corrected logistic regression(27, 28) was 

performed in each ancestry-subset of each study, adjusting for age, sex, pack-years of smoking, 

and ancestry-based principal components, as appropriate for each study. In the Framingham 



Heart Study, to allow application of the Firth bias-corrected logistic regression, a subset of 

unrelated participants was selected for analysis, preferentially choosing ILA cases. Summary 

statistics from individual studies, including chromosome and position (hg19), effect allele and 

other allele oriented to the + strand, effect allele frequency, and imputation quality were 

uploaded to a secure site at the Brigham and Women’s Hospital / Channing Division of Network 

Medicine.  

 

The summary statistics from each study were assessed using EasyQC(29) version 10.1.  

Quality control assessments included allele frequency comparisons to either a Haplotype 

Reference Consortium or 1000 Genomes reference panel, standard error versus sample size 

checking, and quantile-quantile plot visualization. Variants with an imputation quality metric of < 

0.5, a minor allele count (MAC) of < 10 (using the effective sample size or the number of cases 

adjusted for imputation quality, where appropriate), were set to missing. Variant names were all 

normalized to hg19 chromosome and position. Only the highest frequency alternate allele was 

retained for multi-allelic variants. 

 

Following summary statistic quality control, we performed an inverse-variance weighted fixed 

effects meta-analysis in METAL (version 2011-03-25) (30, 31) for both the ILA and the 

subpleural predominant ILA analyses. In a set of secondary analyses, we performed a meta-

analysis restricted to ILA and subpleural ILA results from European ancestry subpopulations 

and a smoking stratified (ever compared to never smokers) meta-analysis of our genome-wide 

significant variants.  Only variants present in at least half of the cohort subpopulations in each 

meta-analysis were further evaluated. Genome-wide significance for all associations was 

considered to be p < 5x10-8. To identify distinct results at each locus in European ancestry 

subpopulations, we used GCTA-COJO(32, 33) on all results with P < 5x10-6 using the default 



distance of 10Mb. COPDGene non-Hispanic whites (the largest representative population) were 

the reference population for the GCTA-COJO analysis.  

 

Overlap of ILA genetic loci with idiopathic pulmonary fibrosis, high attenuation areas, 

smoking behaviors, and connective tissue disease  

We evaluated the overlap of top ILA-associated genetic variants with idiopathic pulmonary 

fibrosis (IPF) in two ways: 1) lookup of IPF GWAS loci from the EBI-NHGRI GWAS Catalog (34) 

(downloaded 06/04/2018) in our ILA GWAS results; 2) lookup of our top ILA-associated variants 

(p < 5e-7 with either ILA or subpleural ILA in European [EUR] ancestry subpopulation) with IPF 

in a recent EUR ancestry IPF GWAS and meta-analysis (see online supplement)(11). In the 

lookup of prior IPF GWAS variants in our results, we restricted the lookup to 12 distinct IPF 

GWAS loci (reported results are for the variant demonstrating the greatest statistical 

significance at each locus). Significance for association of IPF GWAS variants with ILA or 

subpleural predominant ILA was set to p < 0.05/12. Additional analyses using logistic regression 

conditioning on the MUC5B promoter polymorphism (rs35705950) were done to assess for 

independence of the multiple SNPs previously identified at the 11p15 locus. To evaluate the 

overlap between ILA and high attenuation areas (HAA), which have been associated with early 

or subclinical ILD and future ILA(14, 24), we did a lookup of the previously reported genome 

wide significant variants associated with HAA(35). To evaluate the overlap between ILA and 

smoking behaviors we performed a look up of the previously reported genome wide significant 

variants associated with smoking behaviors(36). To assess a potential overlap of the genetic 

susceptibility to ILA (and subpleural predominant ILA) with connective tissue disease associated 

ILD (CTD-ILD) and sarcoidosis, we searched the NHGRI-EBI GWAS Catalog (34) for genome-

wide significant SNPs in European-ancestry association studies related to rheumatoid arthritis, 

sarcoidosis, systemic lupus erythematosus, inflammatory myopathies, and systemic sclerosis. 

We assessed the p value for association of the genome-wide significant rheumatologic disease 



SNPs with ILA and subpleural predominant ILA. We used Bonferroni p values as a significance 

threshold to correct for multiple testing (number of genome-wide significant SNPs) within each 

unique trait. 

 

Expression quantitative trait lookups of top GWAS variants 

We assessed whether our significant ILA genetic risk variants were expression quantitative trait 

loci (eQTLs) in the lung and blood using multiple available datasets including GTEx lung and 

blood eQTLs(37, 38), Westra et al. blood eQTLs(39), Hao et al. lung eQTLs(40), Jansen et al. 

NESDA/NTR conditional blood eQTLs(41), and the eQTL Consortium blood eQTL meta-

analysis data(42).  Only cis-eQTLs were assessed; significant associations were determined 

using the adjusted p-values reported in each available eQTL dataset.  

 

 

Results 

We performed a genome-wide association study (GWAS) and meta-analysis of 1699 ILA cases 

and 10274 controls in six cohorts, where individuals in each study were stratified into 

subpopulations according to European, African, and Hispanic ancestry. A secondary GWAS and 

meta-analysis was performed using the subset of 1287 subpleural predominant ILA cases 

(Figure 1). Baseline characteristics of each cohort, and subpopulation, stratified by ILA status 

are included in Table 1 (and in those with ILA limited to the subpleural predominant subtype in, 

Table E1).  Similar to prior studies, participants with ILA tended to be older(15) and generally 

had greater exposure to tobacco smoke than those without ILA. 

 

Genome-wide Association 

We identified three genome-wide significant variants associated with ILA including one at 

11p15, at the known MUC5B promoter polymorphism, rs35705950, (odds ratio [OR] 1.97, 95% 



confidence interval [CI] 1.74-2.22, p = 2.6x10-27) as well as two novel loci including rs6886640 at 

5q12, near IPO11 (OR 1.28, 95% CI 1.18-1.41, p=3.8x10-8), and rs73199442 at 3q13, near the 

lncRNA FCF1P3 (OR 1.68, 95% CI 1.39-2.02, p=4.8x10-8) (Table 2, Figure 2, supplemental 

figures E1 and E2). In the subpleural predominant ILA analysis, in addition to the association 

with the MUC5B variant rs35705950 (OR 2.22, 95% CI 1.93-2.55, p = 1.6x10-29), we identified a 

novel genetic association at the 6q15 locus with rs7744971, near HTR1E (OR 1.32, 95% CI 

95% CI 1.19-1.45, p=4.2x10-8) (Table 2 and Figure 2). The ILA risk variant at 3q13.1 

(rs73199442) was missing in the African and Hispanic ancestry subpopulations (due to low 

minor allele frequency), though showed a consistent direction of effect in all European (EUR) 

ancestry subpopulations (see forest plots in Figure 2). Similar results were noted in meta-

analyses of ILA and subpleural predominant ILA limited to individuals of European ancestry; 

however, the 5q12 locus was not significantly associated with ILA and the 6q15 locus was 

genome-wide significant in association with both ILA and subpleural-predominant ILA 

(Supplemental Tables E2 and E3).  For each variant demonstrating genome-wide significance 

we tested for genotype-by-smoking (ever smokers compared to never smokers) interactions. 

There was no evidence of a significant interaction between smoking status and either of the four 

genome-wide significant variants (Supplemental Table E4 and supplemental figure E3). To 

assess whether these novel ILA risk loci overlapped with IPF, we attempted to replicate our 

genome-wide significant associations with  ILA and subpleural ILA associations in an European 

ancestry GWAS and meta-analysis of 2,668 IPF cases and 8,591 controls(11)(see the online 

supplement). Aside from the known overlap at rs35705950 (IPF p value = 1.2x10-203), none of 

our top ILA loci were significantly associated with IPF (Table 2).  

 

Assessment of Replication for Prior IPF, HAA, Smoking Behaviors, and Connective 

Tissue Disease Genetic Loci 



We examined the overlap of ILA and subpleural predominant ILA genetic associations with 12 

previously reported, distinct idiopathic pulmonary fibrosis (IPF) GWAS loci from the NHGRI-EBI 

GWAS Catalog. There was a substantial enrichment of the 12 IPF GWAS loci in our ILA 

association results, where 5 SNPs near DPP9, DSP, FAM13A, IVD, and MUC5B were 

significantly associated (p < 4.2x10-3) with ILA and an additional 2 SNPs at MAPT and LRRC34, 

were nominally significant (p < 0.05, but did not meet the threshold for significance after 

adjustment for multiple testing) in association with ILA (Table 3 and supplemental table E5). 

All but one of the 12 IPF GWAS SNPs had a consistent direction of risk effect in IPF and ILA. 

Despite the smaller sample size in the subpleural predominant ILA association analysis, IPF 

genetic risk loci were generally more strongly associated (larger odds ratios and smaller p 

values) with risk to subpleural ILA than with ILA.  

 

We assessed the top 21 loci reported in a GWAS of several HAA phenotypes (35) in our ILA 

and subpleural GWAS results and found no overlap of genetic loci between HAA and ILA; 

however, the direction of effect between risk to HAA and risk to ILA and subpleural ILA was 

generally consistent (Supplemental Table E6). 

 

To evaluate the overlap in the genetic susceptibility to ILA and smoking behaviors we performed 

a look up of our 4 genome-wide significant ILA variants in a recent GWAS of four smoking 

behaviors: smoking initiation, age of smoking initiation, smoking cessation, and cigarettes per 

day(36) The p value was > 0.05 for association of the 4 top ILA SNPs with any smoking 

behavior (Supplemental Table E7). We also assessed the genome-wide significant loci 

reported in the smoking GWAS (36); after correction for multiple testing, there was no significant 

overlap of smoking-behavior SNPs with ILA or subpleural predominant ILA (Supplemental 

Table E8).  

 



In a search for CTD-ILD and sarcoidosis associated SNPs in the NHGRI-EBI GWAS Catalog, 

we found 357 SNPs associated with 17 traits in reported in 39 publications. No SNPs were 

associated with ILA. Only one connective tissue disease SNP (rs13389408, intronic to STAT4 

on chromosome 2) met the threshold for Bonferroni significance in association with subpleural 

ILA (OR 1.3, 95% CI 1.1-1.5, p=9.7x10-4). The SNP rs13389408 was discovered in a meta-

analysis of “systemic seropositive rheumatic diseases” (including systemic sclerosis, systemic 

lupus erythematosus, and idiopathic inflammatory myopathies)(43). 

 

Logistic Regression Conditioning on MUC5B at 11p15 

Our conditional analysis did not identify any conditionally distinct signals at 3q13, 5q12, or 6p15.   

However, a previous GWAS of idiopathic pulmonary fibrosis (IPF) reported variant associations 

in TOLLIP (rs5743894, rs5743890, rs111521887) that – despite proximity to MUC5B in the 

11p15 region – were reported independent of the rs35705950 association with IPF due to 

minimal linkage disequilibrium (R2 < 0.2)(9). In the COPDGene study NHW and AA participants, 

we performed a meta-analysis of the association of previously reported TOLLIP SNPs with ILA 

and subpleural ILA and conditioned each TOLLIP SNP association on the MUC5B rs35705950 

genotype. When each TOLLIP SNP association was adjusted for the rs35705950 genotype, the 

TOLLIP SNPs’ effect sizes and strengths of association were diminished (Supplemental Table 

E9). These data suggest the TOLLIP SNP associations with ILA and subpleural predominant 

ILA in COPDGene are not independent of MUC5B rs35705950. 

 

eQTL Assessments for Identified Loci 

We evaluated if our four genome-wide significant ILA and subpleural ILA-associated variants 

have been reported as lung or blood expression quantitative trait loci (eQTLs). The ILA risk 

variants at 5q12 (rs6886640) and 3q13 (rs73199442) were not reported as lung or blood eQTLs 



in any of the examined data. The MUC5B promoter polymorphism (rs35705950) T allele was 

associated with increased expression of MUC5B in the lung (q value = 3.99x10-9) in the GTEx 

lung eQTL data, but not in the Hao et al. lung eQTL data. Further, rs35705950 T allele was 

associated with decreased expression of CD151 in blood in the eQTL Consortium cis-eQTL 

data(42). The subpleural ILA 6q15 variant rs7744971 risk allele (G) was significantly associated 

with decreased blood expression of AKIRIN2, SLC35A1, C6orf164, and RP1-102H19.6 and 

increased blood expression of ZNF292 in the eQTL Consortium cis-eQTL data (42). In the 

NESDA NTR Conditional eQTL Catalog (41) the rs7744971 G allele was also associated with 

decreased AKIRIN2 expression as well as with decreased C6orf162 expression in blood. 

 

 
Discussion 

Our study, which presents the first GWAS of visually assessed ILA, includes 1699 ILA cases 

and 10274 controls and demonstrates several notable findings.  First, we provide the most 

comprehensive data to date demonstrating the links between the genetic association findings of 

patients with IPF and those of research participants with ILA.  For example, these findings 

demonstrate at least nominal, and directionally consistent, evidence for association between ILA 

and most of the common genetic variants previously demonstrated to be associated with IPF.(7-

11) In addition, our results demonstrate genome-wide significant evidence for association with 2 

new genetic risk loci for ILA overall (3q13 and 5q12) and one loci for subpleural predominant 

ILA specifically (6q15).  These new loci do not demonstrate evidence for association with IPF; 

while these could represent false positive associations, this data may also be consistent with 

some cases of ILA representing early stages of diverse forms of ILD, associated with genetic 

risk factors distinct from IPF.    

 



Multiple lines of evidence now demonstrate shared genetic risk between some undiagnosed 

research participants with ILA and patients with clinically diagnosed IPF. Comparable to all prior 

genome-wide association studies of IPF that included the gain-of-function MUC5B promoter 

variant(8-11), our study demonstrates that the MUC5B promoter variant rs35705950 is the most 

significant finding of association with ILA.  In addition, of 12 loci demonstrating prior genome-

wide evidence for association with IPF(7-11) in at least one study, we present evidence for 

directionally consistent associations in 11 of these 12 loci, of which 5 were significant after 

adjustment for multiple testing (p < 0.05/12).  More specifically, this study provides support for 

the fact that common genetic variants in 7 genomic regions are associated with early and/or 

mild stages of pulmonary fibrosis in addition to their known association with more advanced 

stages of disease. Data in support of the latter statement includes the fact that most of these 

genetic association findings were stronger when the ILA phenotype was limited to those with 

subpleural reticular involvement (an imaging phenotype we have previously demonstrated to be 

associated with subpleural fibrosis)(16). 

 

Our study adds to the growing body evidence that demonstrates that increasing copies of the 

gain-of-function minor allele of the MUC5B promoter variant (rs35705950) increases the risk of 

IPF,(6, 8-11) ILA(12, 18), and other forms of pulmonary fibrosis,(44) perhaps as the result of an 

increased expression MUC5B in the distal airspaces(6, 45-47).   Additionally, our conditional 

logistic regression analyses are consistent with prior analyses(8) which demonstrate that there 

do not appear to be additional distinct 11p15 genetic variants associated with either ILA, or IPF, 

after accounting for the effects of the MUC5B promoter genotype (rs35705950).   Recent 

studies in mice demonstrate that Muc5b overexpression leads to impaired mucociliary clearance 

and the persistence of pulmonary fibrosis in response to bleomycin challenge which could be 

mitigated by targeted mucolytic agents.(47)  Future studies will be needed to determine if 



intervention in those with early stages of MUC5B associated interstitial changes(12, 18) could 

help to prevent progression to more advanced forms of pulmonary fibrosis.  

 

 

While our study demonstrates that genetic risk factors between patients with IPF and some 

research participants with ILA are shared, our study identifies genetic loci of some research 

participants with ILA that are distinct.  These results may be consistent with the fact that ILA 

identify diverse imaging features associated with ILDs in general,(23) and it is possible that 

some of the interstitial imaging findings of these unique diseases are contributed to by genetic 

associations that reflect more diverse pathobiologic and clinical processes than are found in 

patients with IPF.(48) For example, given the fact that many of these cohorts include large 

populations of smokers, some of these findings could be consistent with a genetic risk to 

develop smoking-related interstitial fibrosis.(49) Although our results do not demonstrate 

statistically significant evidence for a genotype-by-smoking interaction, the power for these 

analyses was limited, and should be evaluated in future studies. In addition, there is some 

evidence to suggest that genetic risk to develop ILD in some connective tissue diseases may be 

distinct from those processes leading to IPF.(50-52) Until our findings can be tested in 

sufficiently large cohorts of these other important populations of ILD, they should be viewed as 

preliminary.   

   

The association between the minor allele (G) of the SNP rs7744971 on chromosome 6q14 and 

subpleural ILA deserves some mention as the G allele of this SNP has previously been 

demonstrated to be an expression quantitative trait locus (eQTL) that is expected to result in a 

decreased expression of the gene AKIRIN2.(41) Basic research has implicated the importance 

of Akirin-2, known to be expressed in the lung(53), as a critical factor in the innate immune 

system that helps to regulate inflammatory gene transcription,(54) and B-cell activation.(55) 



While Akirin-2 is required for embryonic development,(56) selective knockdown of akirin2 in 

myeloid cells in mice results in impaired inflammatory cytokine production in macrophages in 

response to Toll-like receptor stimulation.(56)  Some of the effect of Akirin-2 is felt to be 

mediated through  its importance as a bridge between some transcription factors (e.g. NF-

kB(56) and Twist(57) that have also been implicated in pulmonary inflammatory(58) and 

fibrosis(59) development) and gene transcription. Future work to confirm the role of this variant 

on expression of AKIRIN2, and potentially testing the role of Akirin-2 deficiency in some forms of 

ILD mediated by pulmonary inflammation may be warranted.   

 

In addition to the lack of statistically significant replication for the novel loci presented in this 

manuscript, our findings have some additional limitations.  First, even though our study includes 

nearly all the available cohort where ILA characterization and genetic testing have been 

performed, larger sample sizes may still be required to more adequately characterize the 

genetic risk of ILA. Second, we cannot exclude the possibility that the generalizability of our 

findings may be limited by the omission of some participants from these analyses. Third, while 

we were able to demonstrate genetic associations with ILA and subpleural predominant ILA, 

sample size may have limited our ability to detect associations with additional specific radiologic 

features and patterns. In addition, we cannot rule out the possibility that inter-cohort differences 

in the methods of ILA characterization, or subclassification, could have introduced phenotypic 

heterogeneity, thus influencing our power to detect genetic associations.  Efforts to develop 

standards of ILA characterization across different research populations could help to minimize 

this concern. Finally, although our findings demonstrate that the genetic risk to ILA in research 

participants overlaps with the genetic risk to IPF, it is important to note that we do not know the 

extent to which genetic risk of IPF is shared with the risk to other forms of pulmonary fibrosis 

(e.g. ILD in the setting of rheumatoid arthritis),(44) or could result in a more mild or less 

progressive form of pulmonary fibrosis.   



 

In conclusion, our study demonstrates that while the MUC5B promoter variant is the dominant 

variant that is common between ILA and IPF, there are nominally significant associations 

between ILA and the majority of genetic loci previously associated with IPF.  In addition, our 

findings demonstrate evidence for novel genetic loci associated with ILA, but not with IPF.  

These findings provide further evidence that the DPP9, DSP, FAM13A, IVD, and MUC5B loci 

may be important in the risk of both early and later stages of pulmonary fibrosis.  Our findings 

also suggest that ILA characterization may also help to identify the genetic risk of developing 

imaging abnormalities, that may represent the early stage of other diverse forms ILD.    
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 Table 1. Baseline characteristics of participants stratified by interstitial lung abnormality (ILA) status in each cohort. 

 

 AGES-
Reykjavik 

COPDGene 
Non-Hispanic 

Whites 

COPDGene 
African-

Americans 

ECLIPSE Framingham 
Heart Study 

MESA 
Non-

Hispanic 
Whites 

MESA 
Hispanics 

MESA 
African-

Americans 

SPIROMICS 

No 
ILA 

(1785, 
86%) 

ILA 
(279, 
14%) 

No 
ILA 

(3771, 
88%) 

ILA 
(497, 
12%) 

No 
ILA 

(1717, 
89%) 

ILA 
(214, 
11%) 

No 
ILA 

(494, 
77%) 

ILA 
(151, 
23%) 

No 
ILA 

(530, 
79%) 

ILA 
(138, 
21%) 

No 
ILA 

(675, 
85%) 

ILA 
(116, 
15%) 

No 
ILA 

(385, 
88%) 

ILA 
(54, 

12%) 

No 
ILA 

(467, 
88%) 

ILA 
66, 

12%) 

No 
ILA 

(450, 
71%) 

ILA 
(184, 
29%) 

Age – 
yrs, 

mean 
(SD*) 

76  
(5) 

77 
(5) 

61  
(9) 

64 
(9) 

54  
(7) 

55 
(8) 

62 
(7) 

64 
(8) 

58 
(11) 

71 
(11) 

69 
(9) 

75 
(10) 

67 
(9) 

74 
(9) 

69 
(9) 

74 
(8) 

65 
(8) 

68 
(8) 

Sex – no. 
female 

(%) 

1078 
(60) 

125 
(45) 

1814 
(48) 

226 
(45) 

701 
(41) 

116 
(54) 

166 
(34) 

40 
(26) 

278 
(53) 

67 
(49) 

344 
(51) 

60 
(52) 

209 
(54) 

29 
(54) 

247 
(53) 

41 
(62) 

206 
(46) 

83 
(45) 

Body 
Mass 
Index, 
mean 
(SD) 

27  
(4) 

27 
(5) 

29  
(6) 

29 
(6) 

29  
(7) 

29 
(7) 

27 
(6) 

26 
(5) 

28  
(5) 

28 
(5) 

28 
(5) 

28 
(6) 

30 
(6) 

30 
(6) 

30 
(6) 

30 
(5) 

27 
(5) 

29 
(5) 

Pack-
years 

Smoking, 
median 

(IQ†) 

2 
(0,  
26) 

21 
(0, 
51) 

40 
(29, 
56) 

45 
(34, 
63) 

34 
(22, 
46) 

35 
(24, 
47) 

45 
(33, 
62) 

43 
(29, 
61) 

0 
(0, 
12) 

8 
(0, 
23) 

14 
(3, 
34) 

15 
(2, 
33) 

3 
(0, 
11) 

13 
(2, 
28) 

11 
(3, 
24) 

18 
(6, 
33) 

41 
(30, 
60) 

50 
(37, 
65) 

Smoking 
Status – 
no. (%) 
Current 
Former 
Never 

211 
(12) 
756 
(42) 
818 
(46) 

46 
(16) 
162 
(58) 
71 

(26) 

1426 
(38) 
2345 
(62) 

-- 

263 
(53) 
234 
(47) 

-- 

1377 
(80) 
340 
(20) 

-- 

178 
(83) 
36 

(17) 
-- 

189 
(38) 
305 
(62) 

-- 

69 
(46) 
82 

(54) 
-- 

33 
(6) 
238 
(45) 
259 
(49) 

11 
(8) 
74 

(54) 
53 

(38) 

43 
(6) 
322 
(48) 
310 
(46) 

8 
(7) 
68 

(59) 
40 

(35) 

20 
(5) 
158 
(41) 
207 
(54) 

6 
(11) 
25 

(46) 
23 

(43) 

50 
(11) 
206 
(44) 
211 
(45) 

8 
(12) 
38 

(58) 
20 

(30) 

126 
(28) 
294 
(65) 
30 
(7) 

59 
(32) 
119 
(65) 

6 
(3) 

History 
of 

COPD‡ – 
no. (%) 

-- -- 1527 
(40) 

171 
(34) 

380 
(22) 

57 
(27) 

494 
(100) 

151 
(100) 

46 
(9) 

18 
(13) 

129 
(22) 

21 
(21) 

62 
(17) 

11 
(23) 

98 
(24) 

14 
(25) 

290 
(64) 

116 
(63) 



 
*SD is standard deviation  
†IQ is interquartile interval  
‡COPD is chronic obstructive pulmonary disease and defined as FEV1/FVC ratio < 70 on spirometry  
Missing data: MESA Non-Hispanic Whites COPD status: No ILA – 76, ILA – 17; MESA African-Americans COPD Status: No ILA – 
58, ILA – 9; Framingham Heart Study Body Mass Index – 1; AGES-Reykjavik Body Mass Index – 1.  
 
  



Table 2. Genome wide significant variants associated with interstitial lung abnormalities (ILA) and subpleural predominant ILA, and 
replication in an idiopathic pulmonary fibrosis (IPF) cohort.  

Chromosome/ 
Location Position rsID Risk Allele Risk Allele 

Frequency 
Nearest 

Gene 

ILA* vs No ILA Subpleural ILA vs No ILA Replication in IPF† 
Cohort 

Odds Ratio‡ 
(95% CI§) P-Value Odds Ratio 

(95% CI) P-Value Odds Ratio 
(95% CI) P-Value 

3q13 106571023 rs73199442 T 0.06 FCF1P3 1.68 
(1.39, 2.02) 5 x 10-8 1.61 

(1.31, 1.99) 7 x 10-6 0.98 
(0.85, 1.12) 0.73 

5q12 62172476 rs6886640 G 0.62 IPO11 1.28 
(1.18, 1.41) 4 x 10-8 1.27 

(1.14, 1.40) 8 x 10-6 1.06 
(0.99, 1.14) 0.11 

6q15 87737841 rs7744971 G 0.28 HTR1E 1.26 
(1.16, 1.37)  1 x 10-7 1.32 

(1.19, 1.45) 4 x 10-8 1.01 
(0.94, 1.09) 0.75 

11p15 1241221 rs35705950 T 0.11 MUC5B 1.97 
(1.74, 2.22) 3 x 10-27 2.22 

(1.93, 2.55) 2 x 10-29 4.84 
(4.37, 5.36) 1 x 10-203 

* ILA is interstitial lung abnormalities 
†IPF is idiopathic pulmonary fibrosis  
‡Odds Ratios are per copy of the risk allele 
§CI is confidence interval  
 

 

 

 

 



Table 3. Association of 12 prior idiopathic pulmonary fibrosis (IPF) genome-wide association loci with ILA and subpleural ILA* 

Chromosome/ 
Location rsID IPF Risk 

Allele Nearest Gene Studies 
IPF 

Odds Ratio 
(95% CI†) 

ILA vs No ILA Subpleural ILA vs No ILA Direction 
of Effect 

Consistent 
with Prior 
Reports 

Odds Ratio 
(95% CI) P-Value Odds Ratio 

(95% CI) P-Value 

4q22 rs2609255 G FAM13A Fingerlin, 
NG‡, 2013 

1.29 
(1.18, 1.42) 

1.18 
(1.07, 1.29) 5x10-4 1.22 

(1.09, 1.35) 3x10-4 Yes 

6p24 rs2076295 G DSP 

Fingerlin, 
NG, 2013 

Allen, 
LRM‖, 2017 

1.44 
(1.35, 1.54) 

1.14 
(1.05, 1.2) 0.001 1.18 

(1.08, 1.29) 3x10-4 Yes 

11p15 rs35705950 
 T MUC5B 

 

Fingerlin, 
NG, 2013 

 

2.43 
 (2.13, 2.77) 

 

1.97  
(1.74, 2.22) 

 

3x10-27 
 

2.22  
(1.93, 2.55) 

 

2x10-29 
 Yes 

15q15 rs2034650 A IVD Fingerlin, 
NG, 2013 

1.30 
(1.19, 1.41) 

1.08 
(0.99, 1.17) 0.07 1.15 

(1.05, 1.26) 0.003 Yes 

19p13 rs12610495 G DPP9 Fingerlin, 
NG, 2013 

1.29 
(1.18, 1.41) 

1.14 
(1.03, 1.26) 0.01 1.23 

(1.10, 1.37) 2x10-4 Yes 

 

3q26 rs6793295 C LRRC34 Fingerlin, 
NG, 2013 

1.30 
(1.19 1.42) 

1.06 
(0.97, 1.15) 0.20 1.12 

(1.01, 1.24) 0.03 Yes 

17q21 rs1981997 G MAPT Fingerlin, 
NG, 2013 

1.41  
(1.28, 1.56) 

1.16  
(1.03, 1.30) 0.01 1.19  

(1.05, 1.36) 0.009 Yes 

 

5p15 rs2736100 A TERT 

Fingerlin, 
NG, 2013 

Mushiroda, 
JMG**, 

2008 

2.11 
(1.61, 2.78) 

1.03 
(0.95, 1.12) 0.44 1.06 

(0.96, 1.16) 0.23 Yes 

10q24 rs11191865 A OBFC1 Fingerlin, 
NG, 2013 

1.25 
(1.15, 1.35) 

1.03 
(0.95, 1.12) 0.46 1.03 

(0.94, 1.13) 0.56 Yes 



13q34 rs1278769 G ATP11A Fingerlin, 
NG, 2013 

1.27 
(1.14, 1.39) 

1.04 
(0.95, 1.15) 0.37 1.04 

(0.94, 1.16) 0.45 Yes 

15q25 rs62025270 A AKAP13 Allen, LRM, 
2017 

1.27 
(1.18, 1.37) 

1.09 
(0.99, 1.20) 0.08 1.07 

(0.96, 1.20) 0.23 Yes 

 

7q22 rs4727443 C LOC100128334/ 
LOC105375423 

Fingerlin, 
NG, 2013 

1.30 
(1.19, 1.41) 

0.95 
(0.87, 1.03) 0.19 0.93 

(0.84, 1.02) 0.12 No 

*IPF is idiopathic pulmonary fibrosis, ILA is interstitial lung abnormalities.  For each loci only the single nucleotide polymorphism is 
reported.   
† CI is confidence interval 
‡ Fingerlin TE, Murphy E, Zhang W, et.al. Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis. 
Nat Genet 2013; 45: 613-620. 
‖Allen RJ, Porte J, Braybrooke R, et.al. Genetic variants associated with susceptibility to idiopathic pulmonary fibrosis in people of 
European ancestry: a genome-wide association study. Lancet Respir Med 2017; 5: 869-88. 
**Mushiroda T, Wattanapokayakit S, Takahashi A, et.al. A genome-wide association study identifies an association of a common 
variant in TERT with susceptibility to idiopathic pulmonary fibrosis. J Med Genet 2008; 45: 654-656. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 1. Flowchart depicting the participants included and excluded from the genome wide 
association analysis by cohort and interstitial lung abnormality (ILA) status.  
 
 
 
 
Figure 2. Locus zoom and forest plots for the genome wide significant loci associated with 
interstitial lung abnormalities (ILA) and subpleural predominant ILA.  Panel A is the comparison 
of ILA to those without ILA, A1 is the locus zoom plot demonstrating the genome wide 
significant association at rs35705950 (nearest gene MUC5B), A2 is the forest plot 
demonstrating the results in each individual cohort and the overall meta-analysis, with x-axis on 
the log odds scale. Panel B is the comparison of ILA to those without ILA, B1 is the locus zoom 
plot demonstrating the genome wide significant association at rs6886640 (nearest gene IPO11), 
B2 is the forest plot demonstrating the results in each individual cohort and the overall meta-
analysis, with x-axis on the log odds scale. Panel C is the comparison of ILA to those without 
ILA, C1 is the locus zoom plot demonstrating the genome wide significant association at 
rs73199442 (nearest gene FCF1P3), C2 is the forest plot demonstrating the results in each 
individual cohort and the overall meta-analysis, with x-axis on the log odds scale. Panel D is the 
comparison of subpleural predominant ILA to those without ILA, D1 is the locus zoom plot 
demonstrating the genome wide significant association at rs7744971 (nearest gene HTR1E), D2 
is the forest plot demonstrating the results in each individual cohort and the overall meta-
analysis, with x-axis on the log odds scale. 
 


