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Abstract: In this paper we give a survey of methods of Quaternionic Holomorphic Geometry and of appli-
cations of the theory to minimal surfaces. We discuss recent developments in minimal surface theory using
integrable systems. In particular, we give the Lopez–Ros deformation and the simple factor dressing in terms
of the Gauss map and the Hopf differential of the minimal surface. We illustrate the results for well–known
examples of minimal surfaces, namely the Riemann minimal surfaces and the Costa surface.

1 Introduction
The study of immersions f : M → R3 from a 2-dimensional Riemannian manifold into 3-space is a clas-
sical topic. Local results were obtained around the end of the 19th century by constructing local solutions
of the Gauss–Codazzi equations for special surface classes, e.g. [1, 5, 6, 15], usually given by conditions on
the curvature or by variational properties arising from physical properties. For example, minimal surfaces
are the critical points of the area functional with fixed boundary, and thus appear physically as soap films.
Minimal surfaces also occur in other settings in nature, for example in string theory where the apparent hori-
zon is a minimal hypersurface (thus linking the theory of black holes to minimal surfaces and the Plateau
problem [17]), or in biological systems where triply periodic minimal surfaces give the structure of photonic
crystals and their optical properties, [30]. Other examples of classically studied surfaces are isothermic sur-
faces, that is, surfaces which allow a conformal curvature line parametrisation: given a thermally isolated
surface of constant heat conduction, the constant coordinate lines are isotherms if and only if the coordi-
nates are isothermal. Examples of isothermic surfaces include surfaces of revolution. Finally, the so–called
Willmore surfaces give another important surface class relevant for this paper: these surfaces are given as the
critical points of the bending energy.

One classicalmethod of constructing new examples of surfaces of a given surface class is to use a suitable
(geometric) transformation which simplifies the underlying PDEs and allows to construct new surfaces from
a given simple one. A classical example is the Darboux transformation [15] for isothermic surfaces: if two
conformal immersions are enveloped by a conformal Ribaucour sphere congruence then both surfaces are
isothermic and are called Darboux transforms of each other. In particular, solutions of a Riccati equation
allow to construct a Darboux transform of a given isothermic surface.

Research in surface theory gathered new impetus in the second half of 20th century: tools from geomet-
ric analysis and integrable systems allow to study global properties. In this paper, we are interested in the
methods from integrable systems: Starting with the work of Uhlenbeck [39] integrable systemsmethods have
been highly successful in the geometric study of harmonic maps from Riemann surfaces into suitable spaces,
e.g., [21], [40], [3], [9], [16], [38]. In particular, the theory can be used to describe the moduli spaces of surface
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classes which are given in terms of a harmonicity condition, such as CMC surfaces and Willmore surfaces,
e.g., [4, 8, 12, 20, 33, 36].

On the other hand, when comparing to the theory of algebraic curves, surface theory is still lacking in
terms of tools, examples and classification results: the study of holomorphic maps f : M → Cn where M is a
Riemann surface is a far richer and more developed theory. The underlying Cauchy–Riemann equations can
be solved globally, and algebraic curves can be studied via their holomorphic line bundles. Powerful tools
include the classical Kodaira embedding, the Riemann–Roch Theorem and the Plücker theorem.

The aim of Quaternionic Holomorphic Geometry is to combine these two theories by replacing complex
numbers with quaternions. The main ingredient is the observation that conformal maps f : M → S4 from a
Riemann surface into the 4-sphere can serve as an analogue of a complex holomorphicmap: the 4-sphere can
be identifiedwith the quaternionic projective spaceHP1 so that conformalmaps f : M → HP1 can be studied
in a similar way to complex holomorphic maps f : M → CP1. In this paper we survey some of the results
in this area [2, 19], e.g. the quaternionic versions of the Kodaira–, Plücker– and Riemann–Roch theorem. We
also will discuss the link to integrable systems: the spectral curve of a conformal torus [7] is given in terms of
a generalisation of the classical Darboux transform.

To link these results to minimal surfaces in 3-space, we first give a short but comprehensive description
of geometric data of a conformal immersion into 3-space (including the mean curvature, the Gaussian cur-
vature and the Hopf differential) in the language of Quaternionic Holomorphic Geometry and explore the
consequences for minimal surfaces. In particular, we show that the conformal Gauss map of a minimal sur-
face can be identified with the Gauss map and the support function of the minimal surface.

Since minimal surfaces in Euclidean 3-space give rise to various harmonic maps, that is, the immersion
itself, its Gauss map and its conformal Gauss map, the study of minimal surfaces fits well within the theory
of integrable systems— even though this link has not been studied in detail yet. However, in the recent study
of properly embedded minimal planar domains [27, 28] algebro-geometric properties of the hierarchy of the
Korteweg–de Vries equation have been used in an essential way whereas the same Lamé potentials appear in
the study of the spectral curve of an Euclideanminimal torus with two planar ends and translational periods
[11]. A further recent link is the observation that the well-known Lopez–Ros deformation of minimal surfaces
is indeed a special case of the simple factor dressing of harmonic maps, [24].

In this paper,wegive theLopez–Rosdeformationand the simple factor dressing in termsof theGaussmap
and the Hopf differential of the minimal surface. We illustrate the results for the Riemann minimal surfaces
and the Costa surface.

2 Quaternionic Holomorphic Geometry
In this section we will give a short introduction of Quaternionic Holomorphic Geometry, for details and more
results see [2, 19, 32].

An immersion f : M → R3 of a Riemann surface M into 3-space is called conformal if |df (X)| = |df (JX)|
and < df (X), df (JX) >= 0 for all X ∈ TM where J is the complex structure on the Riemann surface M. If N is
the Gauss map of f then the conformality condition can be expressed equivalently as

df (JX) = N × df (X) , X ∈ TM .

Denoting by * the negative Hodge star operator, that is, *ω(X) = ω(JX) for X ∈ TM, this can be written as

*df = N × df . (2.1)

We nowwant to use the algebra of quaternions for computations. Recall thatH = spanR{1, i, j, k}where
i2 = j2 = k2 = −1 and ij = k. The imaginary quaternions are given by ImH = spanR{i, j, k} and can be
identified with ImH = R3. Similarly ReH = R so that H = R ⊕ R3. With this in mind, we can write the
quaternionic multiplication for a, b ∈ ImH as

ab = − < a, b > +a × b (2.2)
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where <, > is the standard inner product on R3. In particular, the 2-sphere in R3 is given by

S2 = {n ∈ ImH : n2 = −1} .

Therefore, the Gauss map N : M → S2 of an immersion f is a complex structure on the trivial line bundle
H = M ×H over M.

Moreover, (2.1) and (2.2) show that an immersion f : M → R3 is conformal if and only if

*df = Ndf .

Recall that a map f : M → C is holomorphic if and only if df is complex linear, that is, if *df = idf . Thus,
a conformal immersion f : M → R3 is an analogue of a complex holomorphic map. In particular, if the
Gauss map of a conformal immersion f is constant, say N(p) = i for all p ∈ M, then f takes values in the jk-
plane. We can identify the jk-plane with the complex bundleCk where the complex structure is given by left
multiplication by the quaternion i and C = spanR{1, i}. Thus, f is complex holomorphic since *df = Ndf =
idf .

More generally, we will consider conformal immersions f : M → R4 into 4-space, that is, immersions
with

*df = Ndf = −dfR ,

where the maps N, R : M → S2 give the Gauss map of the immersion f after identifying the Grassmannian of
2-planes in R4 with Gr2(R4) = S2 × S2. The tangent space and normal space of f are uniquely determined by
N and R via, [2],

dfp(TpM) = {v ∈ H | Nv + vR = 0}
⊥f = {v ∈ H | Nv − vR = 0} . (2.3)

Note that in general the left and right normals N and R are not perpendicular to the tangent space of f ,
and that N = R if and only if f : M → ImH (up to translation in H). To construct a conformal theory, one
compactifies S4 = R4∪{∞} = H∪{∞} = HP1. In this case, since a point inHP1 is a line inH2, an immersion
f : M → HP2 can be identified with a quaternionic line bundle L of the trivial H2 bundle H2 = M × H2 over
M via

Lp = f (p) , p ∈ M .

(We will choose all quaternionic bundles to have quaternions act from the right).
The derivative of f is given by

δ = πd|L : L → H2/L .

where π : H2 → H2/L is the canonical projection. The immersion f is conformal if there exists a complex
structure J onH2/L, that is, a quaternionic endomorphism J ∈ End(H2/L) with J2 = −1, such that

*δ = Jδ.

To simplify notations complex structures will be denoted by the same symbol J, e.g. on TM andH2/L, unless
it is not clear from the context where the complex structure is defined. If f : M → H is an immersion then we
consider f as map intoHP1 via its line bundle

L = ψH, ψ =
(︃
f
1

)︃
.

In this case, the point at infinity is given by

∞ = eH , e =
(︃
1
0

)︃
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so that H2 = L ⊕∞. Note that πL : eH → H2/L is an isomorphism and in the following, we will identify in
this caseH2/L = eH =∞. In particular, Jπe = Ne defines a complex structure onH2/L and

δψ = πdψ = π
(︃
df
0

)︃
= edf

shows that f is indeed conformal inHP1 exactly when *df = Ndf .
To motivate further our idea that conformal immersions play the role of quaternionic holomorphic func-

tions, we introduce a holomorphic structure on quaternionic bundles V over M. Given a complex structure J
on V we can decompose every 1-form ω = ω′ + ω′′ ∈ Ω1(V) into K and K̄-parts by

ω′ = 1
2(ω − J * ω) ∈ Γ(KV), and ω′′ = 1

2(ω − J * ω) ∈ Γ(K̄V),

where
Γ(KV) = {ω ∈ Ω1(V) : *ω = Jω} , Γ(K̄V) = {ω ∈ Ω1(V) : *ω = −Jω} .

A (quaternionic) holomorphic structure on a complex quaternionic bundle (V , J) is a first order quater-
nionic linear operator D : Γ(V) → Γ(K̄V) satisfying

D(ψλ) = (Dψ)λ + (ψdλ)′′

where ψ ∈ Γ(V) and λ : M → H.
If we denote by E the +i eigenspace of J then the quaternionic bundle V = E ⊕ E is a double of the

complex bundle E. The holomorphic structure D in general does not commute with J: decomposing D = ∂̄+Q
into J–commuting and anti-commuting parts where

∂̄ = 1
2(D − JDJ), Q = 1

2(D + JDJ)

the J–commuting part ∂̄ induces a complex holomorphic structure on E. In fact, ∂̄ is the double of a complex
∂̄-operator on E. TheWillmore energy of the quaternionic holomorphic structure D is the L2 norm of theHopf
field Q,

W(D) = 2
∫︁

< Q ∧ *Q > ,

where < Q >:= Re tr(Q). The Willmore energy measures thus the difference from our theory to the complex
theory.

A section ψ ∈ Γ(V) is called (quaternionic) holomorphic if Dψ = 0. The set of holomorphic sections
will be denoted by H0(V , D) or H0(V) for short if the holomorphic structure is known in the setting. For a 2-
dimensional linear subspaceH ⊂ H0(L, D) of holomorphic sections of a line bundle Lwith complex structure
J and holomorphic structure D, any choice of basisψ, φ ofH will give a quotient f : M → H,ψ = φf , provided
that φ never vanishes. Defining N : M → S2 by Jφ = φN, we see by the Leibniz rule for D that

*df = Ndf .

A different choice of basis results in a Moebius transformation of f . Moreover, the Willmore energy of the
quaternionic holomorphic bundle coincides with the Willmore energy of the (possibly branched) immersion
f .

This correspondence between linear subspaces of holomorphic sections and (branched) conformal im-
mersions is a special case of the Kodaira embedding for quaternionic holomorphic bundles [19].

If (V , J, D) is a complex quaternionic holomorphic bundle, then there is [32] a unique quaternionic holo-
morphic structure on KV−1 (where V−1 is the dual bundle of V) such that

d < ω, ψ >=< Dω, ψ > − < ω ∧ Dψ >

for ω ∈ Γ(KV−1) and ψ ∈ Γ(V) where <, > denotes the standard pairing KV−1 × V → T*M ⊗ H. The degree
of a complex quaternionic bundle V is the degree of the underlying complex bundle. With this at hand, the
Riemann–Roch theorem of the complex holomorphic setting translates verbatim to the quaternionic setting
by using the invariance of the index of an elliptic operator under continuous deformations:
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Theorem 2.1 (Riemann–Roch Theorem, [19]). Let V be a quaternionic holomorphic vector bundle with holo-
morphic structure D over a compact Riemann surface M of genus g. Then

dimH0(V) − dimH0(KV−1) = degV − (g − 1) rankV .

This theorem gives a first estimate on the number of holomorphic sections, and thus the number of conformal
immersions with a given left normal, on a compact surface.

Complex holomorphic bundles of negative degree do not admit complex holomorphic section whereas
quaternionic holomorphic bundles generally do (in which case, the Hopf field has to be non-trivial). This
suggests that the quaternionic versionof thePlücker formulawill have to involve theWillmore energy; indeed,
the Plücker estimate shows that the Willmore energy of a quaternionic holomorphic line bundle has to grow
quadratically in the number of holomorphic section if the line bundle has more holomorphic sections than
allowed in the complex holomorphic theory:

Theorem 2.2 (Plücker formula, [19]). Let H ⊂ H0(V) be an n +1-dimensional linear subspace of holomorphic
sections of a quaternionic holomorphic line bundle (L, D) of degree d. Then the Willmore energy satisfies

1
4π (W −W

*) = (n + 1)(n(1 − g) − d) + ordH

whereW andW* denote the Willmore energies of L and its dual curve L* respectively.

Here, roughly speaking, ordH counts the singularities of all the higher osculating curves of the Kodaira em-
bedding of V. The dual curve is the highest osculating curve; in case when L is a line subbundle of H2, the
dual curve is given by L* = L⊥ = {α ∈ H* : α|L = 0}.

The Plücker formula has ample applications, for example, it can be used to give a quantitive lower bound
for the eigenvalues of the Dirac operator on surfaces or an area estimate for constant mean curvature tori
f : T2 → R2 in terms of the genus of its spectral curve, [19].

To discuss the spectral curve of a conformal torus, wewill consider the complex quaternionic bundle V =
H2/L given by a conformal immersion f : M → HP1 with complex structure J. We can define a holomorphic
structure on V by setting

Dφ = (πdφ̂)′′ (2.4)

where φ̂ ∈ Γ(H2) is an arbitrary lift of φ ∈ Γ(V), i.e., πφ̂ = φ. Any other lift ϕ̂ = φ̂ + Ψ , Ψ ∈ Γ(L) satisfies
since *δ = Jδ

(πdϕ̂)′′ = (πdφ̂)′′ + (πdΨ)′′ = Dφ̂ + (δΨ)′′ = Dφ̂

which shows that D is well-defined. It is easy to verify that D is a holomorphic structure onH2/L. If f : M → H
then ef ∈ H0(V) when identifying eH = V; indeed, f is the quotient of the two holomorphic sections e, ef ,
that is, we see an instance of the Kodaira theorem we discussed before.

IfW is a bundle overMwedenote by W̃ the pullback ofW to the universal cover M̃ ofM. The computation
(2) then can be used to show that every holomorphic section φ ∈ H0(Ṽ) has a unique lift φ̂ ∈ Γ(M̃ ×H2), the
prolongation of φ, such that

πdφ̂ = 0 .

Then φ̂H : M̃ → S4 defines a branched conformal immersion on M̃, a so-called Darboux transform of f .
This generalises [7] the classical definition of a Darboux transform, which only can be defined for isothermic
surfaces, to general conformal surfaces. Isothermic surfaces are surfaces for which the principal curvature
lines of the surface are conformal coordinates. Note that if there exists a Darboux pair such that f , f̂ : M →
R3 are in 3-space, then both definitions of Darboux transform coincide, and both f , f̂ are isothermic. This
explains why one has to study surfaces in S4 even if one is mainly concerned about surfaces in 3-space. The
Darboux transformations is invariant under Moebius transformations and satisfies a Bianchi permutability
condition.

If φ ∈ H0(Ṽ) is a holomorphic section with multiplier, that is, if

Dφ = 0 and 𝛾*φ = φh𝛾
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for some representation h : π1(M) → H* of the fundamental group π1(M) of M, then the Darboux transform
f̂ : M → S4 is defined on M (rather than M̃). Intuitively, the space of Darboux transforms f̂ : T2 → S4 of a
conformal torus f : T2 → S4 (with zero normal bundle degree) can be now viewed as the spectral curve of f .

More precisely, in the case of a torus, the fundamental group gives a lattice Γ ⊂ C and every represen-
tation h ∈ Hom(Γ ,H*) can be conjugated to a complex representation. The subspace of possible complex
multipliers of holomorphic sections is a 1-dimensional analytic variety, and its normalisation to a Riemann
surface is the spectral curve Σ of the conformal torus. In particular, there is a smooth map

F : T2 × Σ → S4

such that F(·, σ) : T2 → S4 is a Darboux transform of f for σ ∈ Σ and F(p, ·) : Σ → S4 lifts, via the twistor
projection CP3 → HP1, to a complex holomorphic curve in CP3. This way, the spectral curve parametrises
generic Darboux transforms of f and the conformal immersion f can be reconstructed, [7], frommeromorphic
functions on the Riemann surface Σ.

For a complex structure S ∈ Γ(End(H2)), S2 = −1, we decompose the trivial connection d = d′ + d′′ on
H2 into type where

d′′ = 1
2(d + S * d) and d′ = 1

2(d − S * d) . (2.5)

Then d′′ is a quaternionic holomorphic structure onH2. Decomposing d′, d′′ further into

d′′ = ∂̄ + Q and d′ = ∂ + A

where the S-commuting parts of d′′ and d′ are given by

∂̄ϕ = 1
2(d

′′ϕ − Sd′′(Sϕ)) and ∂ϕ = 1
2(d

′ϕ − Sd′(Sϕ))

respectively. The S anti-commuting parts are the Hopf fields of S:

Qϕ = 1
2(d

′′ϕ + Sd′′(Sϕ)) = 1
4(SdS − *dS)ϕ and Aϕ = 1

2(d
′ϕ + Sd′(Sϕ)) = 1

4(SdS + *dS)ϕ . (2.6)

Put differently, the Hopf fields give a decomposition

dS = 2(*Q − *A) (2.7)

of the differential of the complex structure S into type, so that (dS)′ = −2 * A and (dS)′′ = 2 * Q.
In particular, if L ⊂ H2 is a line subbundle and SL = L then S induces a complex structure J onH2/L via

Jπ = πS and the corresponding holomorphic structure (2.4) onH2/L is given by

Dφ = 1
2(πdφ̂ + Jπ * dφ̂) = π(d′′φ̂) (2.8)

where πφ̂ = φ.
A special choice of complex structure is the conformal Gauss map of a conformal immersion f : M → S4:

it is the unique complex structure S ∈ Γ(End(H2)), S2 = −1, such that SL = L, dS(L) ⊂ Ω1(L), *δ = Sδ = δS
and Q|L = 0 where L is the line bundle of f . The first three conditions show that S : M → S4 defines a sphere
congruence so that S(p) goes through f (p) and whose tangent space at p coincides with the tangent space of
f at p for all p ∈ M. The condition on the compatibility of S and δ implies that the orientations of the tangent
spaces coincide. The final condition on the Hopf field shows that the mean curvature vectors of f and S(p)
coincide at p, [2]. Put differently, the conformal Gauss map can be seen geometrically as the mean curvature
sphere congruence of f .

3 Conformal immersions in R3

Since we are interested in conformal surfaces in 3-space we will derive some basic geometric quantities in
terms of the quaternionic model we use. See [2] for the corresponding data for conformal immersion in 4-
space.
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If f : M → R3 = ImH is conformal, and z = x + iy, *dz = idz, a conformal coordinate on M, then the
conformal factor eu of f is given by

eu(dx2 + dy2) = |df |2 .

We will identify 2-forms ω with quadratic forms via ω(X) = ω(X, JX). In particular, if ω = η ∧ θ then

ω(X) = η ∧ θ(X, JX) = η(x)θ(JX) − η(JX)θ(X)

and the quadratic form of the 2-form ω is η * θ − *ηθ. Since *df = Ndf = −dfN, *(*df ) = −df , and df = −df
we thus see that

df ∧ *df = −df 2 − *df 2 = −2df 2 = 2|df |2 ,

so that the conformal factor is in the quaternionic language given by

2eu(dx2 + dy2) = 2eudx ∧ dy = df ∧ *df .

The second fundamental form II(X, Y) = (X · df (Y))⊥ computes with (2.3) to

II(X, Y) = 1
2(X · df (Y) − N(X · df (Y))N) ,

where N : M → S2 is the Gauss map of f with *df = Ndf = −dfN. Differentiating df = NdfN gives

X · df (Y) = −dN(X) * df (Y) + N(X · df (Y))N + *df (Y)dN(X)

so that
II(X, Y) = −12(dN(X) * df (Y) − *df (Y)dN(X)) . (3.1)

Themean curvature vector isH = 1
2 tr II = HN where H : M → R denotes the mean curvature. Note that

this choice of sign for H differs from the one in [2]. For a conformal immersion the mean curvature satisfies

∆f = 2euHN . (3.2)

Since z is a conformal coordinate we have *dz = idz and thus d * df = d(−fxdy + fydx) = −∆fdx ∧ dy.
Therefore,

dN ∧ df = d * df = −∆fdx ∧ dy = −2euHNdx ∧ dy = −HNdf ∧ *df = −Hdf ∧ df

and
(dN + Hdf ) ∧ df = 0 .

Since f is an immersion and

(dN + Hdf ) ∧ df = dN * df + Hdf * df − *dNdf − H * dfdf
= dN * df + Hdf * df + *dNN * df + HdfNdf
= (dN − N * dN + 2Hdf ) * df

we see that (3.2) is equivalent to
−Hdf = 1

2(dN − N * dN) = (dN)′ . (3.3)

The Gaussian curvature is given by

K = det II = 1
|df (X)|4

(︀
< II(X, X), II(JX, JX) > − < II(JX, X), II(X, JX) >

)︀

Astraightforward computation [2] using (3.1), the conformality *df = Ndf = −dfN of f , < Na, b >= − < a, Nb >
and < adf , bdf >=< dfa, d� >=< a, b > |df |2, a, b ∈ H, shows that

K|df |2 = < *dN, NdN > . (3.4)
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Using the complexification C3 = R3 ⊕ iR3, where we denote the complex structure by i to differentiate
it from the quaternion i, we consider the complex derivatives

gz =
1
2(gx − i gy) , gz̄ =

1
2(gx + i gy)

for smooth functions g on M. With this notation, the conformal factor of f is given by

< fz , fz̄ >=
1
2 e

u

and the mean curvature, since ∆f = 4fzz̄, by

1
2He

u =< fzz̄ , N > .

Herewedenote by <, > the standard symmetric bilinear formonC3 that is < a, b >=
∑︀3

i=1 aibi where ai , bi ∈ C

denote the coordinates of a, b ∈ C3 respectively.
The Hopf differential of f is the (complex) quadratic form:

Q = −2 < fzz , N > dz2 .

Since < fzz , N >= − < Nz , fz >= Re (Nz fz) = 1
2 (Nz fz + fzNz) we see that Q is twice the real part (with respect to

the quaternions) of −dN(1,0)df (1,0), that is,

Q = −(dN(1,0)df (1,0) + df (1,0)dN(1,0)) ,

whereω(1,0) = 1
2 (ω−i *ω) is the (1, 0)-part of a 1-formωwith respect to the complex structure i . In particular,

the Hopf differential is independent of the choice of conformal coordinate.
The Willmore energy of f is given by

W(f ) =
∫︁
(H2 − K)|df |2

and the integrand relates to the Hopf differential by

(H2 − K)|df |4 = |Q|2 .

Consider the complex structure

S = G
(︃
N 0
H −N

)︃
G−1 , G =

(︃
1 f
0 1

)︃
. (3.5)

We will now show that S is the conformal Gauss map of f . Using (3.3),

dS = G
(︃
(dN)′′ 0
dH −(dN)′′

)︃
G−1

and the Hopf fields (2.6) compute to

4 * Q = S * dS + dS = G
(︃
2(dN)′′ 0
2dH + ω 0

)︃
G−1 (3.6)

and

4 * A = S * dS − dS = G
(︃
0 0
ω 2(dN)′′

)︃
G−1 (3.7)

where ω = −dH − N * dH + H * (dN)′′. In particular,

SL = S
(︃
f
1

)︃
H = G

(︃
N 0
H −N

)︃(︃
0
1

)︃
H = L ,
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and similarly, dSL ⊂ Ω1(L). For ψ =
(︃
f
1

)︃
∈ Γ(L) we have, when identifying eH = H2/L, δψ =

(︃
df
0

)︃
= edf

so that *δψ = eNdf = −edfN. Since

Sδψ = Sπedf = πSedf = π(eN + Hψ)df = eNdf

and
δSψ = πd(−ψN) = −π(dψ)N = −edfN

we see that
*δ = Sδ = δS .

Finally, Qψ = 0 so that Q|L = 0, and S is the conformal Gauss map of f .
Using (3.3) and (3.4) we have

(H2 − K)|df |2 = |dN′|2− < *dN, NdN >= |dN′|2+ < N * dN, dN >= |dN′′|2 .

On the other hand,

Re trA ∧ *A = −14 Re * dN′′ ∧ dN′′ = 1
2 |dN|

′′

In particular, the Willmore energy of f is gien by

W(f ) =
∫︁
(H2 − K)|df |2 = 2

∫︁
< A ∧ *A >

where as before < B >= Re tr B. A surface f : M → R3 is a Willmore surface, that is, a critical point of the
Willmore energy under compactly supported variations (without fixing the conformal structure onM), if and
only if the conformal Gauss map is harmonic [10, 18, 35]. The conformal Gauss map S is harmonic [2] if the
Hopf fields are co-closed, that is, if

d * A = 0

(which by (2.7) is equivalent to d * Q = 0).

4 Minimal surfaces
In this section we will collect the main properties of minimal surfaces, that is, surfaces with vanishing mean
curvature, needed for this paper. To apply tools from Quaternionic Holomorphic Geometry, we will consider
conformal immersions f : M → R3.

Recall (3.2) that a conformal immersion f : M → R3 satisfies

∆f = 2euHN

where H is the mean curvature, eu is the conformal factor and N is the Gauss map of f . In particular, if f is
conformal then f is a minimal surface if and only if f is harmonic. Put differently, a conformal immersion is
minimal if there is a holomorphic function Φ : M̃ → C3 from the universal cover M̃ to complex 3-space C3

such that ReΦ = f . Note that this implies that there are no minimal surfaces on a compact Riemann surface
M. Since f is conformal, Φ is a null curve that is

< Φ′,Φ′ >= 0

where <, > denotes the standard symmetric bilinear form on C3. Conversely, a holomorphic null curve Φ :
M̃ → C3 gives rise to a conformal minimal immersion f = Re (Φ) : M̃ → R3 provided |Φ′

1|2 + |Φ′
2|2 + |Φ′

3|2 = ̸ 0
where Φi are the coordinate functions of Φ. In particular, if f = Re (Φ) : M → R3 is a minimal surface with
holomorphic null curve Φ : M̃ → C3 then the associated family

fθ = Re (e−i θΦ) : M̃ → R3
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is a family of minimal surfaces. The surface f * = f π
2
is called the conjugate surface of f and the associated

family is given in terms of f and its conjugate f * as

fθ = cos θf + sin θf * .

The Enneper-Weierstrass representation allows to construct holomorphic null curves, and thus minimal
surfaces, from the Weierstrass data (g, ω) where g is meromorphic function and ω a holomorphic 1-form by

Φ =
∫︁
(12(1 − g

2), i2(1 + g
2), g)ω .

Here a pole p of g of orderm has to be a zero of order2m ofω. The holomorphic function g is the stereographic
projection of the Gauss map N of f :

N = 1
1 + |g|2

⎛⎜⎝2Re (g)
2 Im (g)
|g|2 − 1

⎞⎟⎠ .

The Weierstrass data of a minimal surface can be recovered from the holomorphic null curve

ω = dΦ1 − i dΦ2 , g = dΦ3
dΦ1 − i dΦ2

(4.1)

where Φi are the coordinate functions of Φ.
Since Φ is holomorphic we have fx = f *y and fy = −f *x since f = Re (Φ) and f * = Im (Φ). Put differently,

Φ′ = 2fz. In particular, the conformal factor eu = 2 < fz , fz̄ > is given in terms of the Weierstrass data (g, ω)
as

eu = 1
4(1 + |g|2)2|ω|2

and the Hopf differential Q = −2 < fzz , N > dz2 by

Q = dgω .

The Gaussian curvature K|df |4 = −|Q|2 is given by

K = −
(︂

2
1 + |g|2

)︂4 ⃒⃒⃒⃒dg
ω

⃒⃒⃒⃒2
.

Since the holomorphic null curveΦθ = e−i θΦ of the associated family fθ is given by the holomorphic null
curve Φ of f , the Weierstrass data (4.1) of fθ compute to

gθ = g and ωθ = e−i θω .

In particular, the Gauss map Nθ = N is preserved for the associated family fθ whereas the Hopf differential is
changed by

Qθ = e−i θQ .

Note that the Gauss map and the Hopf differential determine a minimal surface uniquely (up to transla-
tion).

From (3.3) we see that the Gauss map of a minimal surface is conformal with

*dN = −NdN = dNN .

In particular, N is harmonic since the Laplacian of N is normal:

d * dN = −dN ∧ dN = dN ∧ *dNN = 2|dN|2N .

Theorem 4.1. Let f : M → R3 be a minimal surface. The conformal Gauss map S of f is given by

S =
(︃
N 2u
0 −N

)︃
where u is the support function of f .
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Proof. Since H = 0 by (3.5) we have 2u = −Nf − fN = 2 < N, f > since f , N : M → ImH. Thus, u is the support
function [29] of f .

The support function u =< N, f > of aminimal surface f is a Jacobi function, see [23] for a discussion of Jacobi
functions of a minimal surface in the quaternionic context. The Hopf field (3.7) of S computes

2 * A = G
(︃
0 0
0 dN

)︃
G−1 =

(︃
0 f
0 1

)︃
dN .

Since df ∧ dN = df * dN − *dfdN = 0 we see that

2d * A =
(︃
0 df ∧ dN
0 0

)︃
= 0

and the conformal Gauss map is harmonic. Therefore, every minimal surface f : M → R3 is a Willmore
surface, and its Willmore energy

W(f ) = −
∫︁
K|df |2

is the negative of the total curvature of the minimal surface f .
By a result by Osserman, [31], a complete minimal surface f : M → R3 has finite total curvature if M

is conformally equivalent to a compact Riemann surface M̄, punctured at finitely many points {p1, . . . , pr},
such that dΦ extends meromorphically into the punctures pi.

If z is a conformal coordinate centered at p and f is complete near p, then p is an embedded finite total
curvature end if and only dΦ has a pole of order 2 at z = 0 and the residue of dΦ at z = 0 is real, [24]. If the
residue is zero, the end is called planar, otherwise, it is called catenoidal.

5 Minimal surfaces and integrable systems
As we have seen, minimal surfaces are given by complex holomorphic functions, and one of the reasons for
the comparable success of the theory of minimal surfaces is due to the wealth of methods from Complex
Analysis that can be used to study minimal surfaces. On the other hand, in the recent study of properly em-
bedded minimal planar domains [27, 28] algebro-geometric properties of the hierarchy of the Korteweg-de
Vries equation have been used in an essential way.

A further reason that we are interested in studying minimal surfaces with the tools of integrable systems
is the important open question whether there exists a complete, embeddedminimal surface of genus g ≥ 1 of
finite total curvature withmore than g+2 ends. It is conjectured, this is part of the Finite Topology Conjecture
by Hoffman and Meeks [22], that there are no such minimal surfaces. In the case of genus g = 0 the Finite
Topology Conjecture is true: using a deformation on the Weierstrass data, López and Ros [25] showed that
the only complete, embedded, finite total curvature minimal surfaces of genus g = 0 are the catenoid and the
plane, thus showing that in this case the number of ends is less or equal to g+2. In a recent paper the López–
Ros deformation [24] has been identified as a special case of a well-known operation in integrable systems,
the simple factor dressing, applied to the conformal Gauss map of the minimal surface. We will summarise
the key results in [24] and give a new view of the simple factor dressing in terms of the Gauss map and the
Hopf differential.

Given a harmonic map from a Riemann surface to an appropriate target space, there is an associated
family of flat connections, givenby the spectral parameters µ ∈ C*. Conversely, under reality andholomorphy
assumptions flat connections of the appropriate form give rise to harmonic maps. To obtain new harmonic
maps from a given one, one can thus investigate which gauge matrices rλ give new suitable families of flat
connections. The resulting new harmonic maps are called dressings. A particular simple choice is for rλ to
have a simple pole away from0,∞: in this case, every parallel bundle of the original family of flat connections
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gives a dressing matrix rλ, and one can explicitly compute the new harmonic map. In case when N : M → S2

is the Gauss map of a minimal surface, the associated family of flat connections onH is given by

dµβ = dβ +
1
2dN(−Nβ(a − 1) + βb) , β ∈ Γ(H) ,

with a = µ+µ−1
2 , b = i µ

−1−µ
2 . Note that dµ is a complex connection with respect to the complex structure given

by right multiplication by i, and dµ is quaternionic if and only if µ ∈ S1. A section β ∈ Γ(H) is dµ–parallel if
and only if β = Nm + m i(1+µ)

1−µ , m ∈ H*. The simple factor dressing of N is then [24]

N̂ = (N + ρ)N(N + ρ)−1 , ρ = m i(1 + µ)1 − µ m−1 ,

where µ ∈ C* gives the pole of the dressing matrix and m ∈ H* the parallel complex line bundle βC of the
simple factor dressing.

Note however, that the harmonic Gauss map does not uniquely determine the minimal surface: the
catenoid and the Enneper surface haveWeierstrass data (g(z) = z, ω = dz

z2 ) and (g(z) = z, ω = dz) respectively
so that the Gauss maps coincide.

Figure 1: Catenoid and Enneper surface

In [24] we thus investigated the simple factor dressing of a different harmonic map: since a minimal sur-
face is Willmore, its conformal Gauss map S is harmonic. Again the parallel sections φ ∈ Γ(H2) of a flat
connection dSµ , µ ∈ C*, of the associated family of S can be computed explicitly to be

φ = en or φ = eα + ψβ

where n ∈ H* and α = −f *m − fm i(1+µ)
1−µ , β = Nm + m i(1+µ)

1−µ .
In fact, the (0, 1)-part (dSµ)′′ is the holomorphic structure d′′ given in (2.5) and (2.8) shows that eα ∈

H0(H2/L). Moreover, the section eα +ψβ is the prolongation of eα and therefore, φH is a Darboux transform
of f . This way, the simple factor dressing relates to the spectral data we discussed before.

When restricting to the case when the dressed surface takes values in 3-space the simple factor dressing
with parameter (µ,m) is given by [24]

f̂ = −f m(a − 1)m
−1

2 + f *mbm
−1

2 − m b
a − 1m

−1
(︂
f mbm

−1

2 + f *m(a − 1)m
−1

2

)︂
where a = µ+µ−1

2 , b = i µ
−1−µ
2 andm ∈ H* gives again the complex parallel bundle spanC{em, eα+ψβ}whereas

µ ∈ C* gives the pole of the simple factor dressing. The simple factor dressing f̂ : M̃ → R3 with parameter
(µ,m) is a minimal surface in 3-space which is complete if f is complete.

The Gauss map of a simple factor dressing of f is the simple factor dressing of the Gauss map N of f (with
the sameparameters). The casewhenm = 1 is called a simple factor dressingwith parameter µ and is denoted
by f µ. It is given by

f µ =

⎛⎜⎝ f1
f2 cosh s − f *3 sinh s
f3 cosh s + f *2 sinh s

⎞⎟⎠
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where s = − ln |µ| and fi , f *i are the coordinate functions of f and a conjugate f * of f .
Note that a simple factor dressing f̂ with parameter (µ,m) is obtained from the simpler case m = 1 by

rotations
f̂ = Rm((R−1m (f ))µ)

whereRm = mfm−1 and (R−1m (f ))µ is the simple factor dressingwith parameter µ ofR−1m (f ) = Rm−1 (f ) = m−1fm.
This allows to easily investigate the periods of the simple factor dressing: a simple factor dressing is

closed if all flux, that is, the periods of the conjugate surface, can be rotated simultaneously into the line iR.
Moreover, the end behaviour can be controlled:

Theorem 5.1 ([24]). The simple factor dressing is a complete surface if f is complete. If f has a planar end at
p then f̂ is single-valued on M and p is a planar end of f̂ . If f has a catenoidal end at p, and f̂ is single-valued
then f̂ has a catenoidal end at p.

If there exists m ∈ H* such that mτ*𝛾m−1 ∈ iR for all 𝛾 ∈ π1(M) where τ*𝛾 are the periods of the conjugate
surface, i.e., 𝛾*f * = f * + τ*𝛾 , then f̂ has the same periods as f .

The López–Ros deformation f r with parameter r is given by the Weierstrass data (rg, ωr ), r > 0, where (g, ω)
is the Weierstrass data of f , [25]. The Lopez–Ros deformation is, [24], a special case of the simple factor
dressing:

f r = Rn((Rn−1f )µ) =

⎛⎜⎝f1 cosh s − f *2 sinh sf1 cosh s + f *2 sinh s
f3

⎞⎟⎠
where n = 1 − i − j − k and µ = −1r and r = es. Conversely, all simple factor dressings are obtained, after
rotation, by applying a Lopez–Ros deformation with complex parameter σ to a rotation of f .

Since Q = dgω the Hopf differential is preserved under the Lopez–Ros deformation, and so is the Hopf
differential of a simple factor dressing: if f̃ = Rm f then Ñ = RmN and the Hopf differential is given by

Q̃ = −2 < Rm fzz ,RmN >= Q .

Put differently, the simple factor dressing of a minmal surface is given by performing a simple factor dressing
of the Gauss map while fixing the Hopf differential (whereas the assocciated family fixes the Gauss map and
rotates the Hopf differential).

We summarise:

Theorem 5.2. Let f : M → R3 be a minimal surface with Gauss map N and Hopf differential Q. The simple
factor dressing with parameters (µ,m) is the unique minimal surface f̂ : M̃ → R3 in 3-space with Gauss map

N̂ = (N + ρ)N(N + ρ)−1 , ρ = m i(1 + µ)1 − µ m−1 ,

and Hopf differential Q̂ = Q.

6 The simple factor dressing: examples
We conclude this paper with a discussion of the simple factor dressing of somewell-knownminimal surfaces,
the Riemannminimal surfaces and the Costa surface. We discuss whether it is possible to close periods of the
simple factor dressing in the examples.
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6.1 The Riemann minimal surfaces

Riemann described in [34] a 1-parameter family of complete, embedded, singly periodic minimal surfaces
which are foliated by circles in parallel planes. Recently, it has been shown [27, 28] that every properly em-
bedded, minimal planar domain M ⊂ R3 with infinite topology is a Riemann minimal example.

The Shiffman function of a minimal surface measures the curvature variation of the parallel sections of
the surface. Thus, the Shiffman function vanishes identically if and only if the minimal surface is foliated by
circles and straight lines in parallel planes, [37]. The Shiffman function is a Jacobi function, and thus gives
rise to a holomorphic section of H2/L, see [23]. In particular, the integrable hierarchy given by the Shiffman
function for a properly embedded minimal planar domain in [28] links to the spectral data of a minimal
surface, that is, the possible monodromy of holomorphic sections φ ∈ H0(H2/L).

The holomorphic null curve of the Riemann minimal surface with parameter σ is given by (see [26] for
the parametrisation and details on the following implementation)

Φ̃ =

⎛⎜⎜⎜⎜⎝
1√
σ

(︂√︁
z−1
z
√
z + σ + 2√

1+σ

(︀
−(1 + σ)E(arcsin

√︀ σ+z
σ , σ

1+σ ) + F(arcsin
√︀ σ+z

σ , σ
1+σ )

)︀)︂
−
√︁

z−1
−σz

√
z + σ

−2 F(arcsin
√ σ

σ+z ,
1+σ
σ )√

σ

⎞⎟⎟⎟⎟⎠
on the fundamental domain Σσ = {z ∈ C | |z − 1−σ

2 | ≤ 1+σ
2 , Im z ≥ 0} \ {0}. Here F(ϕ,m) and E(ϕ,m) denote

the incomplete elliptic integral of the first and second kind respectively with Jacobi amplitude ϕ and elliptic
modulus m.

Figure 2: Fundamental piece of the Riemann minimal surface with σ = 2.

To simplify the computations, wewill consider the translated holomorphic null curveΦ = Φ̃− Re (Φ̃(1))−
Im (Φ̃(−σ)) , and use the symmetries of the surface to construct the complete surface from the fundamental
domain, for details, see [26]:

In particular, the translational period τ* of the conjugate surface is

τ* =

⎛⎜⎝a0
c

⎞⎟⎠ :=

⎛⎜⎝−1 0 0
0 1 0
0 0 −1

⎞⎟⎠ Im (Φ(−σ) − Φ(i
√
σ)) + ImΦ(i

√
σ)

so that the rotation v ↦→ mvm−1 with

m = 1
2
√
a2 + c2

(−ci + j(a −
√︀
a2 + c2))

rotates τ* via mτ*m−1 = i
√
a2 + c2 into a multiple of i. Then the simple factor dressing with parameters

(µ,m) has the same translational period as the Riemannminimal surface by Theorem 5.1. Since the Riemann
minimal surface has planar ends, so does the simple factor dressing. However, the simple factor dressing, as
the Lopez-Ros deformation, in general does not preserve embeddedness:

Note that the Lopez-Ros deformation in this case will not close the periods along the catenoidal necks.
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Figure 3: Construction of the Riemann minimal surface with σ = 2 by its symmetries.

Figure 4: Riemann minimal surface with σ = 8 and σ = 0.4.

Figure 5: Simple factor dressings with parameters (µ,m) of the Riemann minimal surface with σ = 2 whee m = 1
2
√
a2+c2

(−ci +
j(a −

√
a2 + c2)) as above and µ = 1

2 (1 + i), µ = 0.4 and µ = 2i respectively.
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Figure 6: Lopez-Ros deformation with parameter r = 3
2 of the Riemann minimal surface with σ = 2.

6.2 The Costa surface

This surface was discovered by Costa [14] and was the first minimal embedded punctured torus with finite
total curvature. The Costa surface played an important role in introducing computer based experiments to
geometry: J. Hoffmann, see [13], developed computer programs to visualise Costa’s surface based on theoret-
ical work of Hoffman and Meeks. This allowed performing mathematical experiments to obtain insights on
properties of the Costa surface. These observations could later [22] be used to prove results rigidly, e.g., the
embeddedness of the Costa surface and its symmetries. In view of the Finite Topology Conjecture, the Costa
surface exhibits the conjectured maximal numbers of ends for a complete, embedded, finite total curvature
minimal torus.

We use the parametrisation in [41] to implement the Costa surface which is defined on the square torus
w2 = z(z2 − 1). The Weierstrass data of the Costa surface is given by

g(z) = ρ√︀
z(z2 − 1)

, ω =
√
z

ρ
√
z2 − 1

dz .

where the Lopez-Ros parameter ρ = Γ( 34 )√
2Γ( 54 )

is chosen so that the periods on the torus close. Here Γ is the
Euler Gamma function. Note that the residues of dΦ are real so that the ends are indeed embedded finite
total curvature ends. Then the holomorphic null curve of the Costa surface can be integrated explicitly in
terms of the hypergeometric function 2F1(a, b, c, z) as

Φ = 1
2

⎛⎜⎝ ϕ2(z) − ϕ1(z)
i (ϕ1(z) + ϕ2(z))

log z−1
z+1

⎞⎟⎠
where ϕ1, ϕ2 are, see [41],

ϕ1(z) = (2ρi
√
z) 2F1(

1
4 ,

3
2 ,

5
4 , z

2)

and

ϕ2(z) = −
2i z 3

2

3ρ 2F1(
1
2 ,

3
4
7
4 , z

2) ,

(and z is in the first quadrant).
By using the symmetries we obtain the full Costa surface.
The catenoidal ends are at z = ±1 and theplanar end is at z =∞. Since theperiods of the conjugate surface

around the ends z = ±1 is given by τ*±1 = 2πk, we see that the Lopez-Ros deformation closes the periods
around the catenoidal ends ±1, and the Lopez-Ros deformation is defined on C \ {±1} with two catenoidal
ends and one planar end. However, the Lopez-Ros deformation is not defined on the torus.
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Figure 7: Fundamental piece of the Costa surface.

Figure 8: Construction of the Costa surface by its symmetries.
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Figure 9: Lopez-Ros deformation with parameter r = 3
2 of the Costa surface.
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