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ARTICLE INFO ABSTRACT

Agricultural drought is one of most damaging agricultural hazards worldwide that can bring significant agri-
cultural losses and water scarcity. The use of satellite images for monitoring agricultural drought has received
increasing research attention and has also been applied at both the regional and global scales. In this paper, the
land surface temperature (LST) and radiance products of the new Sentinel-3A SLSTR (sea and land surface
temperature radiometer) launched by European Space Agency (ESA) are used for the first time for estimating the
vegetation temperature condition index (VTCI), which in turn is used for monitoring agricultural drought in the
Hetao Plain of Inner Mongolia, China. This paper initially analyzes the correlation between LST and normalized
difference vegetation index (NDVI) by using time series time MODIS LST and NDVI products under different
vegetation growth conditions. The findings reveal that VTCI can only be used in warm seasons (late spring and
summer periods) when negative correlations between LST and NDVI are observed. Therefore, VTCI images are
captured in the study area between July and August 2017 by using Sentinel-3A SLSTR LST and NDVI and are
utilized for drought investigation. These images reveal that the average VTCI of the cultivated land pixels in the
study area has increased from 0.4511 on July 28 to 0.5229 on August 12 before declining to 0.4710 on August 18
due to the rainfall in the first period, thereby indicating that VTCI has a timely response to rainfall. Meanwhile,
cross-comparison of VTCI values from Sentinel-3A SLSTR shows high consistency in terms of spatial distribution
with that estimated from EOS MODIS products. The difference between these indices ranged from —0.1 to 0.1
for most points, especially in the cultivated land cover. Overall, the findings support the use of the LST and NDVI
products of Sentinel-3A SLSTR in monitoring agricultural drought.
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1. Introduction

Agricultural drought is a natural hazard and a complex worldwide
phenomenon (Wilhite and Glantz, 1985; Smith and Katz, 2013) that is
closely related to water security and crop production and can even lead
to significant economic losses, especially for developing countries
(Wilhite, 2005; Godfray et al., 2010). Wilhite and Glantz (1985) cate-
gorized droughts into meteorological, hydrological, agricultural, and
socioeconomic droughts, whose severity is influenced by their intensity,
duration, spatial coverage, and local socioeconomic level. Agricultural

drought usually refers to a period with declining soil moisture that
influences crop production or crop failure without explicit reference to
surface water resources (Mishra and Singh, 2010). As the importance of
food security is increasingly being recognized, the development of
agricultural drought monitoring methodologies has attracted much re-
search interest. Over the past few decades, a large number of methods
have been developed for studying agricultural drought based on pre-
cipitation, soil moisture, temperature, vegetation index, and other in-
dicators.

Drought can be quantified by using meteorological data-based
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indices, such as the Palmer drought severity index (Alley, 1984; Wells
et al., 2004), crop moisture index (Palmer, 1968), surface water supply
index (Shafer and Dezman, 1982; Valipour, 2013), and standardized
precipitation index (McKee et al., 1993), and the development of those
drought indices and their application in the USA have been reviewed by
Heim (2002). To our knowledge, these indices use precipitation either
singly or in combination with other meteorological elements. However,
their applicability at local or regional scales primarily depends on the
density and spatial distribution of the ground station networks
(Rhee et al., 2010). Hazaymeh and Hassan (2016) showed that some
indices can be interpolated or via reanalysis, like SPEI (Standardized
Precipitation Evapotranspiration Index, Vicente-Serrano et al., 2010),
and used to assess meteorological drought, but they have the problem
of low spatial resolution. Furthermore, these indices also show defi-
ciencies in near-real-time drought monitoring and in helping farmers
and governments, especially those in large-scale regions and areas with
sparse stations, in making crucial decisions (Unganai and Kogan, 1998;
Rhee et al., 2010; Liang et al., 2012; Son et al., 2012; Sanchez et al.,
2018).

With the development of satellite remote sensing technology, sev-
eral studies have applied remote sensing data (e.g. multispectral,
thermal infrared, or microwave data) to monitor large-scale drought
(Kogan, 1995; McVicar and Jupp, 2002; Hao et al., 2017). Satellite
remote sensing provides a synoptic view of the land and a spatial
context for measuring the impacts of drought. This technique has also
been proven to be a valuable source of timely, spatially continuous data
that can facilitate the monitoring of vegetation dynamics over large
areas. For instance, the normalized difference vegetation index (NDVI)
calculated from remote sensing images has been widely used to monitor
drought (e.g. Henricksen and Durkin, 1986; Peters et al., 2002; Klisch
and Atzberger, 2016) because the value of this index can be used to
separate vegetation from its soil background as well as provide valuable
information related to vegetation health (Pettorelli et al., 2005).
Kogan (1995) developed a vegetation condition index (VCI) that detects
drought based on scaled NDVI. However, NDVI alone may not able to
identify vegetation drought effectively (Heim, 2002) because many
factors, such as land cover change and pest infestation, can lead to an
NDVI anomaly similar to that caused by drought. The precipitation and
soil moisture datasets derived from microwave satellite sensors have
also been used for monitoring droughts (Sahoo et al., 2015; Liu et al.,
2017). One of the key parameters in the physics of land surface pro-
cesses at the local and global scales, the land surface temperature (LST)
derived from satellite observations has been used singly or in combi-
nation with NDVI to monitor drought (Kogan, 1995; Karnieli et al.,
2010). Other remote sensing indices have also been proposed for the
same purpose, including the normalized difference water index (NDWI;
Gao, 1996), normalized difference drought index (NDDI; Gu et al.,
2007), vegetation temperature condition index (VTCL; e.g. Wang et al.,
2001; Wan et al., 2004; Patel et al., 2012), temperature-vegetation
dryness index (TVDI; Sandholt et al., 2002), and microwave integrated
drought index (MIDI; Zhang and Jia, 2013). Both the VTCI and TVDI
are based on the LST-NDVI scattering space.

The Sea and Land Surface Temperature Radiometer (SLSTR) on-
board the Sentinel 3A of the European Space Agency (ESA) is a visible
and infrared radiometer used for ocean and land monitoring. Launched
on February 16, 2016, Sentinel-3A flies at an altitude of 814.5km at a
near-polar, sun-synchronous orbit with a descending node equatorial
crossing at 10:00 h of the mean local solar time (Donlon et al., 2012).
SLSTR observes the global surface in nine bands, of which three are in
visible/NIR ranges (VNIR, centered at 0.550, 0.659, and 0.865 um),
three are in short wave infrared ranges (SWIR, centered at 1.375, 1.610,
and 2.25um), and three are in middle and thermal infrared ranges
(MIR/TIR, centered at 3.74, 10.85, and 12.0 um). Both VNIR and SWIR
images are captured at a resolution of 0.5 km, while both MIR and TIR
images are captured at a resolution of 1 km. Given that VNIR and SWIR
images can be used to calculate various vegetation (e.g., NDVI and
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Enhanced Vegetation Index, EVI) and water indices (e.g., NDWI) while
TIR images are suitable for estimating LST, it is hypothesized that
SLSTR observations have potential to monitor agricultural drought.
This potential has not been previously evaluated and reported in the
literature. This paper evaluates the VTCI drought monitoring index
derived from Sentinel-3A SLSTR and compares these values against
those obtained from the MODIS instrument. MODIS products have
previously been widely used for monitoring drought (e.g. Wan et al.,
2004; Gu et al., 2007; Son et al., 2012; Klisch and Atzberger, 2016). The
objectives of this paper are (1) to analyze the LST-NDVI correlation
under different vegetation growth conditions using MODIS data, (2)
using the results derived from objective 1, investigate the performance
of Sentinel-3A SLSTR data for agricultural drought monitoring, and (3)
to evaluate the results by comparing with MODIS VTCI. The paper is
organized as follows. Section 2 describes the study area and data in
detail, Section 3 presents the LST-NDVI correlation analysis and eval-
uates the VTCI method based on SLSTR images, Section 4 presents the
drought monitoring and validation results obtained in Hetao Plain, and
Section 5 discusses the main findings and concludes the paper.

2. Study area and data
2.1. Hetao Plain

The Hetao Plain in Inner Mongolia of Northwest China is selected as
the study area because of its small annual precipitation and high
drought frequency. The Hetao Plain is a typical sediment-filled basin in
Northwest China located near the north of the Yellow River and Kubugi
Desert on the eastern fringe of the Ulan Buh Desert (Fig. 1). This study
area has an arid climate with an average annual precipitation ranging
from 130 mm to 220 mm that mainly falls between July and September.
The annual evapotranspiration in this area ranges approximately from
2000 mm to 2500 mm (Guo et al., 2008), which is much larger than the
average annual precipitation. Due to a lack of water resources (Xu et al.,
2010), some artificial drainage ditches have been built to divert irri-
gation water from the Yellow River at the western tip of the Hetao Plain
to the Wuliangsuhai Lake, which then drains its excess water into the
Yellow River (Guo et al., 2008). With its well-irrigated conditions, the
Hetao Plain is considered one of the oldest and most important irrigated
agriculture districts in China. Several types of crops, including corn,
wheat, rape, and sunflower, are planted within approximately
2,500,000 ha of the plain with an annual crop production of nearly 2.5
million tonnes.

The majority of the Hetao Plain is cultivated. Fig. 2 shows a land
cover map of the Hetao Plain from 30-meter GlobalLand cover data
product (Chen et al., 2014, 2017). To monitor agricultural drought
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Fig. 1. Map and location of the Hetao Plain.
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Fig. 2. Land cover map of the Hetao Plain (modified from Chen et al., 2017, available at http://www.globallandcover.com/GLC30Download/index.aspx).

based on empirical LST-NDVI relationships, the correlation between
LST and NDVI must be analyzed at different periods. Therefore, we
selected a representative sample with a homogeneous, stable, and cul-
tivated land cover (black box in Fig. 2) to derive the correlation coef-
ficients from simple linear regressions between LST and NDVI.

2.2. Image data

To calculate VTCI, the LST products of SLSTR were downloaded
from ESA (https://sentinel.esa.int/). These products were generated by
using a split-window algorithm that works similarly as the LST retrieval
method for Advanced Along Track Scanning Radiometer (AATSR)
images (Ghent et al., 2017). The corresponding NDVI was calculated
from the ground reflectance of the SLSTR red and NIR bands after at-
mospheric correction by using the atmospheric radiative transfer code
6S (Second Simulation of the Satellite Signal in the Solar Spectrum) and
the MODIS aerosol product (MOD04_L2) from the Earth Observing
System Data and Information System (https://earthdata.nasa.gov/).
Three clear-sky images captured in three dates of the year 2017 (July
28, DOY (day of year, Julian Day) 209; August 12, DOY 224; and Au-
gust 18, DOY 230) over the study area were selected. These dates
correspond to the summer growing period and occurred during a time
where rainfall, obtained from the China Meteorological Data Sharing
Service System (http://data.cma.gov.cn/), was determined to be vari-
able. The period prior to July 28 was characterized by zero rainfall.
Between July 28 and August 12 (Fig. 3) there was considerable rainfall
in the study area. This was followed by a period without rain. There-
fore, it is hypothesized that the VTCI index should be relatively low,
then increasing over the wet period and finally decreasing after the wet
period.

MODIS LST (MOD11A1) and surface reflectance (MODO9GA) pro-
ducts were also obtained in the same three dates to verify the
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Fig. 3. Precipitation in the study area from July 28 to August 18.

agricultural drought results obtained by SLSTR. MODIS NDVI was
computed from the surface reflectance of the red and NIR bands in-
volved in the MODO9GA product. To investigate the correlations be-
tween LST and NDVI and to verify the availability of VTCI for mon-
itoring agricultural drought in the study area, we downloaded 7.5
years’ (January 2011 to June 2018) worth of MODIS LST and NDVI
products (MOD11A2 and MOD13A2) with 8-day and 16-day composite
data, respectively.

3. Agricultural drought monitoring method
3.1. LST-NDVI correlation analysis

It was necessary to determine the relationship between NDVI and
LST using a comparable satellite data product, in this case MODIS, to
confirm the behavior of the equivalent products derived from Sentinel-
3A SLSTR. Fig. 4 shows the averages and the mean plus or minus a
standard deviation (shaded area) of LST and NDVI in the study area
(Fig. 2) from MODIS between 2011 and 2018. Both higher values of
NDVI and LST recorded during the summer growing season (from June
to September) and lower values recorded during winter. However, the
increase in NDVI demonstrated a hysteretic trend in contrast to LST,
which fitted the trend of the vegetation growth process (Sun and
Kafatos, 2007).

Based on the results presented in Fig. 4, the average of two adjacent
LSTs (MOD11A2 product) was calculated to correspond to the NDVI
(MOD13A2 product) because the former provides an average LST of 8-
day compositing period while the latter provides an NDVI with a 16-day
compositing period. The LST-NDVI correlations in each pair of ob-
servations from 2011 to 2018 were then calculated and their correla-
tion coefficients are presented in Fig. 5. The seasonal variability of the
LST and NDVI correlation coefficients indicate that different climatic
variables govern their correlations at different times of the year. Spe-
cifically, a negative correlation was observed during the warm season
(in April and summer season) when sufficient solar radiation is avail-
able for the crops and soil moisture or precipitation acts as the primary
stress factor for vegetation growth. In April, there a negative correlation
is observed, because the spring drought has frequently occurred in
Hetao plain. By contrast, a positive correlation was observed during
winter and the early spring period because the amount of solar energy
that supports photosynthesis decreases and temperature limits the
growth of plants, thereby leading to sparse vegetation and, at certain
times, snow cover. Therefore, these drought indices, which are based on
LST-NDVI relationships, should only be used in periods where crop
growth is likely to occur, referred to as warm seasons. This is when
negative correlations are observed, that is, when water (instead of en-
ergy) is the primary factor that limits vegetation growth. In Section 4.1,
three clear-sky Sentinel-3A SLSTR data were obtained between July and
August (DOY 182 and DOY 243) from the study area to analyze
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Fig. 4. Annual variation of (a) MODIS LST and (b) NDVI in the study area from 2011 to 2018.
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agricultural drought.

3.2. The VTCI method for monitoring agricultural drought

VTCI uses the LST-NDVI scattering space technique (illustrated in

Fig. 6; Wan et al., 2004) to monitor agricultural drought. In this LST-
NDVI space, some pixels have similar NDVI values yet different LSTs.
Therefore, a maximum LST and a minimum LST is available for each
NDVI value in theory. The maximum LSTs vary along with NDVIs and
can be linearly regressed as LSTypvy,max = @ + b-NDVI,. The regression
line is called the warm or dry edge of the triangle (Fig. 6), while the
regression line between the minimum LST and NDVI
(LSTxpviymin = @' + b’"NDVI,) is called the cold or wet edge. VICI can
be defined as

LSTNpvi;max — LSTnpvy;
LSTnovi,max — LSTNDVI,min (@D

VTCI =

Where, LSTNDVI,‘,maX =a+ bNDVIl and LSTNDVI,‘,min =a + bINDVIl

In Eq. (1), the denominator is computed as the difference between
the maximum (LSTxpvi;max) and minimum LSTs (LSTypviy,min ) for the
specified NDVI;, while the numerator is computed as the difference
between the maximum and current pxel LSTs (LSTxpvy,). @, b, a’, and b’
are the coefficients for the linear regression which accuracies are cru-
cial for measuring VTCI. Therefore, the region used for building the
LST-NDVI triangle space must be large enough to represent the entire
range of surface moisture contents from wet to dry and from bare soil to
fully vegetated surface. In general, the coefficients can be estimated
from the scatter plot of the LST and NDVI in the study area. The shape
of the scattering space is normally triangular or trapezoidal if the study
area is large enough to provide a wide range of NDVI and surface
moisture conditions (Han et al., 2010; Gillies et al., 1997; Wang et al.,
2001). In other words, VTCI can be used in water-limited vegetation
growth conditions when LST and NDVI are negatively correlated
(Section 3.1) and when the coefficients (a, b, a’, and b’) of the warm
and cold edges can be determined effectively.

As stated above, LSTypvr; max is regarded as the warm or dry edge for
VTCI = 0, which indicates a condition with relatively less soil moisture,
corresponding to a relatively limited evaporation, and plants are con-
sidered as suffering water-stress conditions. Meanwhile, LSTypyi; min iS
known as the cold or wet edge for VICI = 1, which indicates a con-
dition with minimum water restriction or maximum transpiration for
plant growth (Gillies et al., 1997; Wang et al., 2001). Therefore, a lower
VTCI corresponds to a higher occurrence of drought. Unlike the TVDI
that uses a constant LST,,;,, VTCI uses various LST\pvi;min for each
NDVI,;, thereby producing better results than TVDI because the cold
edges are not directly horizontal in most LST-NDVI triangle spaces.
Having horizontal lines may lead to the overestimation of TVDI at low
NDVI values. According to Wang et al. (2004), VTCI can be divided into
five drought levels, namely, 0.0 < VTCI < 0.2 (severely dry),
0.2 < VTICI < 0.4 (dry), 0.4 < VTICI < 0.6 (water balanced),
0.6 < VTCI =< 0.8 (wet), and 0.8 < VTCI =< 1.0 (very wet). Given that
the absolute soil moisture cannot be known from this VTCI or from
some similar methods, the value of VTCI can only reflect the relative
level of agricultural drought.

The method proposed by Tang et al. (2010) was used to estimate the
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Fig. 8. The LST, NDVI, and VTCI images and the VTCI histograms of the Hetao Plain in the three dates (A, B, C).

warm and cold edges, and we made some improvements to discard the
abnormal value in the initial step. For the warm edge of the triangle, all
NDVIs were initially divided into 20 intervals, with each interval di-
vided into five subintervals. The LST was regarded as abnormal and
discarded if its value exceeds the average value (LSTqy,) plus or minus
three times of the standard deviation (o) of all LSTs in a specified
subinterval. Afterward, LST,,, and o were recalculated as an initial
state. If the maximum LST of each subinterval was less than LSTqy,
minus one ¢ of the LST in these five subintervals, then this subinterval

was removed and a new maximum LST was selected for the same in-
terval. The coefficients a and b of the warm edge were then computed
through a linear least square regression between the remaining max-
imum LST values and their corresponding NDVIs, and the root-mean-
square error (RMSE) of the LST regression residual was calculated
afterward. For a given interval, if the maximum LST exceeds the
average LST of the remaining maximum LST plus two times RMSE, then
this interval will be discarded. Afterward, the coefficients a and b were
recalculated until no interval can be discarded. The warm edge and its
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Fig. 8. (continued)

coefficients were eventually obtained through a linear regression. The
cold edge was determined in a similar manner.

Fig. 7 presents the LST-NDVI triangle spaces that are obtained by
plotting NDVI against LST for the SLSTR products obtained on July 28,
August 12 and August 18 2017, respectively. The red asterisk and plus
sign in Fig. 7 denote the warm and cold edges respectively. None of the
three cold edges are horizontal, these results are in consistent with
VTCI's definition. All points above the warm edge were removed from
the analysis as it was determined that these were caused by non-culti-
vated surfaces.

4. Agricultural drought monitoring results and analysis
4.1. Temporal behavior of VICI from Sentinel-3A SLSTR

VTCI results, derived from LST and NDVI images collected from the
study area over three dates from SLSTR are presented in Fig. 8 along
with their corresponding statistical histograms. To compare the changes
in the VTCI of cultivated land, only the VTCIs for the pixels with NDVI
larger than 0.15 were calculated. A higher drought occurrence (in-
dicated by low VTCI) was observed in the west and south parts of the
study area (Kubugi Desert), while some areas in the east part and along
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the Yellow River were under wet conditions (see Fig. 8(c)s). The VTCI
histograms (Fig. 8(d)s) show that the average VTCI value initially in-
creases from 0.4511 on July 28 to 0.5229 on August 12 before de-
creasing back to 0.4710. This result indicates that the drought level
recorded on August 12 was less severe than those recorded on July 28
and August 18. This corresponds well with the precipitation data, which
revealed that significant precipitation occurred in the study area be-
tween July 28 and August 12 (Fig. 3). The results also reveal that the
VTCI was sensitive to rainfall and, therefore, was sensitive to both soil
moisture content and variation, and can be used for monitoring agri-
cultural drought in the study area.

We compared the VTCI images obtained in three separate dates and
present the results in Fig. 9, in which (a) presents the difference in the
VTCIs recorded on July 28 and August 12. Given that several pre-
cipitations occurred in the study area between August 12 and August
18, the drought severity should decline. Fig. 9(a) also shows that the
VTCI difference value (VTCI in August 12 minus VTCI in July 28) was
positive in most areas, thereby suggesting that the drought severity has
weakened. However, in the south of Hetao Plain, the VTCI difference
value decreased perhaps due to the influence of the high temperature
and dry winds driven from the south desert area.

As shown in Fig. 9(b), the difference value (VTCI on August 18
minus VTCI on August 12) was negative in most areas, thereby sug-
gesting that the drought severity increased in these areas. Fig. 3 reveals
that no precipitation has occurred between August 12 and August 18

and that evapotranspiration has reduced the water content in both the
soil and vegetation. The changes in the VTCI recorded in the three se-
lected dates indicated that the agricultural drought monitoring results
conformed to the actual observations.

4.2. Comparison using MODIS LST and surface reflectance products

MODIS products have been widely used in drought monitoring
(Wan et al.,, 2004; Gu et al.,, 2007; Son et al., 2012; Klisch and
Atzberger, 2016). Therefore, we used the MODIS LST product
(MOD11A1) and NDVI (from the surface reflectance product
MODO09GA) to validate the agricultural drought monitoring results
obtained from the SLSTR images. The ground surface reflectance for
bands 1 (620-670 nm) and 2 (841-876 nm) from MODO09GA were used
to compute NDVI. The LST-NDVI triangle space was then created fol-
lowing the aforementioned procedures before calculating VTCI. Taking
the result of August 12 as an example, Fig. 10(a) presents the VTCI
image of MODIS observations, and figures (b), (¢) and (d) show the
differences of TVCI, LST and NDVI between Sentinel-3A SLSTR and
MODIS. Since in that day the local overpassing time of MODIS and
SLSTR imageries were around 10:18 am and 11:34 am, respectively, all
of Fig. 10(b), (c) and (d) were the results of the SLSTR minus MODIS.

Fig. 10 shows that there are areas where the VTCI from MODIS and
Sentinel-3A SLSTR are similar but also where there are differences. In
Fig. 10(b), most of the difference values between two types of satellite
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data in the cultivated land ranged from —0.1 to 0.1. However, the non-
cultivated land (e.g., Yellow River, Kubugi Desert south of Hetao Plain,
and some artificial land in the plain) showed large difference values. In
Fig. 10(c), it is seen that the LST difference was more pronounced. This
is thought to be because the overpass time between two sensors differed
by around 90 min, thereby producing a temperature difference in the
period of warming in the morning. Furthermore, different LST retrieval
algorithms were applied between the MODIS LST product and the
Sentinel-3A SLSTR LST product, thereby possibly explaining the LST
difference between MODIS and SLSTR and the differences in their
VTCIs. However, the VTCI difference was not orders of magnitude apart
in cultivated land, thereby suggesting that the Sentinel-3A SLSTR can
be used to monitor drought in cultivated land alongside MODIS derived
VTCI. Given that the value of VTCI was effective and sensitive to
rainfall as explained in Sections 4.1 and 4.2, this index may be con-
sidered as a future drought monitoring indicator that can be further
used along-side MODIS (with a note of caution about the overpass
times) or on its own.

5. Discussion and conclusion

When combined with the LST and NDVI retrieved from satellite
data, VTCI may provide more valuable information for agricultural
drought monitoring, especially in large-scale areas and regions with
insufficient ground monitoring stations or infrastructure. The index is
also sensitive to rainfall and may effectively provide near-time drought
information. This work combined the VTCI obtained from Sentinel-3A
SLSTR LST with NDVI to monitor agricultural drought in the Hetao
Plain and obtained reasonable results. MODIS products, which have
been widely applied for monitoring agricultural drought, were also
used to evaluate the results. A comparison between VTCI values derived
from different satellites show some differences, thought to be as a result
of different overpass times acquiring different LST estimates, but there
is consistency between products that support the continued develop-
ment of VTCI from Sentinel-3A SLSTR products. A more thorough va-
lidation exercise is needed by comparing VTCI values with soil moisture
data, such as the soil moisture active passive (SMAP; Entekhabi et al.,
2010) and the in-situ measured soil moisture data. As the objective of
this paper is to determine the potential use of VTCI from the new
Sentinel-3 satellite, this has been designated as future work. We further
plan to investigate the temporal evolution of VTCI parameters by using
multi-temporal Sentinel-3A SLSTR data for the Hetao Plain and other
agricultural regions, and to improve VTCI by considering similar ve-
getation indices, like the NDWI derived from SLSTR. It has been pro-
posed that the NDWI is less sensitive to atmospheric scattering effects,
and more sensitive to changes in liquid water content of vegetation
canopies than NDVI (Gao, 1996).

The VTCI derived from LST and NDVI in Sentinel-3A SLSTR pro-
ducts is applied for the first time to monitor agricultural drought in the
Hetao Plain of Inner Mongolia. The LST-NDVI triangle space, warm
edge, and cold edge are well-defined over three separate dates in the
summer growing season. Analyses of VTCI data obtained over three
dates reveal a high drought occurrence in the west and south areas of
the plain. However, some areas in the east area and along the Yellow
River were experiencing wetter conditions which were detected by the
VTCI data. Using MODIS data, the VTCI has been shown to be useful in
summer months when negative correlations between LST and NDVI are
observed, that is, when water-not energy-is primary factor for limiting
vegetation growth. The VTCI indicator was also found to be sensitive to
rainfall. The comparison of the results from MODIS and SLSTR revealed
a high consistency in their spatial distribution in cultivated areas. These
findings show that Sentinel-3A SLSTR products can be used to monitor
agricultural drought the same way as MODIS products, but that they
cannot be compared directly due to overpass time differences. The
observation that VTCI responded quickly to a known precipitation
event was encouraging if the product is developed further as a drought
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monitoring indicator.
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